4
|
»
%
i
3
5
i
]
}
|
;
!
!
\

ARGRIVE GOPY

SP-2687
EXPLORATORY EXPERIMENTAL STUDIES COMPARIN

ONLINE AND OFFLINE PROGRAMING PERFORMANC

Py o~
A ‘

=
| H.Sackman W.J.Erikson F.E. Grar

AN 231967 i

) 20 December 1966

SP-2687

S P a professional paper

SYSTEM
EXPLORATORY EXPERIMENTAL STUDIES COMPARINC

OMLINE AND OFFLINE PROGRAMING PERFORMANCE DEVELOPMENT

H. Sackman CORPCRATION
W. J. Erikeon |
. E. G:ant 2500 COLORADO AVE.
SANTA MONICA
20 December 1966
CALIFORNIA
90406

20 December 1966 1 §0-2687

ABSTRACT

Two exploratory experiments conducted at System Development Corporation
compared debugging performance of programers working under conditions
of cnline and offline access to a computer. These are the first known
studies measuring the performance of programers under controlled con-
ditions for standard tasks. In the first study, two groups of six
subjects each, comprising a total sample of 12 experienced programers,
{iebugged two types of programs under online and offline conditions in
aécordancc with a Latin-Square experimental design. The online con-
dition was the normal mode of operation for the SDC Time-Sharing System;
the offline condition was s simulated closed-shop with a two-hour turn-
around time. In the second study, following a similar exparimental
design, two groups of programer trainees--four and five in each group
for s total of nine subjects~-debugged two standard problems under
interactive and noninteractive conditions. The interactive mode was
the normal SDC Time-Sharing System; the noninteractive mode was a
simulated sultiple-console, open-shop system.

Statistically significent results indicated substantially faster de-
bugging under online conditions in both studies. The resulte were
ambiguous for centrsl processor timc--one study showed less computer

time for debugging, and the other showed more time in the online mode,
Perhaps the most important practical finding, ovérshadowing online/offline
differences, involves the large and striking individusl differvences

20 December 1966 _ 2 SP-2687

in programer performance. Attempts were made to relate observed
individu;l differences to objective measures of programer experience
and proficiency through factorial techniques. In lfie with the
exploratory objectives of these studies, methodological problems
encountered in designing and conducting these types of experiments

are described, limitations of the findings are pointed out, hypotheses
are presented to account’for recults, and suggestions are made for

further research.

AARNARS

The research reported in this paper was sponsored by
the Advanced Research Projects Agency Information
?rocessing Techniques Office and was monitored by the
Rlectronic Systewa Division, Aic Force Systems Command
"under contrsct F 1962867C0004, Information Processing
Techaiques, vith the System Development Corporationm.

. e

————— .

20 December 1966 3

ABSTRACT.

CONTENTS

INTRODUCTION .« « « « « o o« « s

1.

2.

3.

EXPERIENCED PROGRAMER STUDY. . . .

1.1
1.2

1.3

Experimentsl Design
Method » . L] L] L] . L] L] L]

1.2.1 Online and Offline Conditions
1.2.2 Experimental Problems . . .
1.2.3 Performance Measures . . .

Results . « ¢ « « o o

1.3.1 Criterion Performance .
1.3.2 Individual Differences.

PROGRAMER TRAINEE STUDY

2.1
2.2

2.3

Experimental Design
mthod L] . L] L] L] . L] L] L]

Interactive and Noninteractive

2.2.1
2.2.2 Experimental Problems .
2.2.3 Performance Measures .

Results+ =« o+

2.3.1 Criterion Performance .
2.3.2 Individual Differences.

INTERPRETATION« .+ . .

3.1
3.2
3.3

Online Versus Offline Programing Performance

Individual Differences . . .
Future Research. . + . «

*

*

Conditions

SP-2687
Page

. 1
L] 5
. 9
. 9
10

. 10
. 11
. 12
. 13
. 13
. 16
. 18
. 18
. 18
. 19
. 19
. 20
. 20
. 20
. 21
. 23
. 24
. 27
. 29

20 December 1966 4 sP-2687

Page
“mc‘s [} L] [] [] [] L] L] L]] L} L] [] [] . L[] L L] . [] L] [] 32

FIGURES

1. Experimental Design for the Experienced Programer Study 9
2. [Experiwental Design for the Programer Trainee Stwdy 18

TABLES

1. Experienced Programer Performance . . « +« + ¢ o ¢ o & o 14
2. Comparative Result. of Three Analyses of Variamce 14
3. Range of Individual Differences in Programing Performance . . . 16
4. Programsr Traimes Parformamcs. . o« ¢ ¢ ¢« ¢ ¢ o o o ¢ o 21

20 December 1966 5 SP-2687

EXPLORATORY EXPERIMENTAL STUDIES COMPAKING ONLINE
AND OFFLINE PROGRAMING PERFORMANCE

Computer pregraming, today, is a multi-billion d-llar industry. Major resources
are being expended on the development of new prorraming languages, new software
techniques, and improved means for man-computer communications. As computer
power grows, and as computer nardware costs go down with advancing computer tech
nology, the human costs of computer programing continue to rise and will prc!=hl
greatly exceed the cost of hardware in the scheme of things to come. Amid all
these portents and signs of the growing importance and the dominating role of
computer programing in the emerging computer scene, one would expect that com-
puter programing would be the object of intensive applied scientific study. Th.
is not the case. There is, in fact, an applied scientific lag in the study of
computer programers and computer programing, a widening and critical lag that
threatens the industry and the profel;ion with the great waste that inevitably
accompanies the sbsence of systematic and estgblished methods and findings, and

its substitution by anecdotal opinion, vested interects and provincialism.

The problem of the applied scientific lag in computer programing is strikingly
highlighted in the field of online versus offline programing. Thé spectacular
rise of time-shared computing systems over the last few years has raised a criti
cal issue for many, if not most managers of computing facilities, Should they
or should they not convert from a batch-processing operation, or from some othe;
form of noninteractive information processing, to time-shared operations? Spir:

controversy has been generated at professional meetings, in the literature and :

B e - R TR —— L e, ST

20 December 1966 6 §P-2687

grass-roots levels, but virtually no experimental comparisons have been made

to objectively test and evaluate these competing alternatives under controlled
conditions. Except for a related study by Gold (1966) which is in progress,

the two experimental studies reported in this article are the first, to our
knowledge, that lL.ave appeared on this central issue. They illustrate the prob-
lems and the pitfalls in doing applied experimental work in computer programing.
They snell out some of the key dimensions of the scientific lag in computer pro-

graming and they provide some useful guidelines for future work.

Time-sharing systems, because of requirements for expanded hardware and more
extensive software, are generally more expensive than closed-shop systems using
the same central computer. Time-sharing advocates feel that such systems more
than pay for themselves in conveniénce to the user, inhmore rapid program develop-
ment, and in manpower savings. It appears that most programers who have worked
with both time-sharing and closed-shop systems are enthusiastic about the online

way of life.

Time-sharirg, however, has its critics. Their arguments are often directed at
the efficiency of time-sharing; that is, at how much of the computational power
of the machine is actually used for productive data processing as opposed to how
much 1is devoted to relatively non-productive functions (program swapping, idle
time, etc.). These critics (see Patrick 1963, Emerson 1965, and McDonald 1965)
claim that the efficiency of time-sharing systems is questionable when compared
to modern closed-shop methods, or with economical small computers. Since online

systems are presumably more axpensive than offline systems, there is'little

. : " I T s 4 o - SPYEL e a

et - ! : B L I I S ST

20 December 1966 07 §P-2687

justification for their use except in tiose situations where online access is
mandatory for system 'operations (for example, in realtime command and control
systems). Time-sharing advocates respond to these charges by saying that, even
if time-sharing is more costly with regard to hardware and operating efficiency,
savings in programer man-hours and in the time required to produce working pro-
grams more thar offset such increased costs. The critics, however, do not
concede this peint either. Many believe that programers grow lazy and adopt
careless and inefficient work habits under time-sharing. In fact, they claim

that instead of improving, programer performance is likely tc deteriorate.

The two exploratory studies summarized here are found in Grant and Sackman (1966)
and in Erikson (1966). The original studies should be consulted for technical
details that are beyond the scope of this article. They were performed by the
System Development Corporation for the Advanced Research Projects Agency of the
Lednzement of Defense. The first study is concerned with online ve. .us offline
debugging performance for a group'of 12 experienced programers (average of seven
years experience). The second investigation involved 9 programer trainees in a
comparison of interactive versus noninteractive program debugging. The high-
lights of each study are discussed in turn and the composite results are inter-
preted in the concluding ection. For essier reference, the first experiment

1s described as the "Expe:iemced Programer” study, and the second as the "Pro-

gramer Trainee" study.

The two experiments were conducted using the SDC Time~Sharing System (TSS) under
the normal online condition and simulated offline or noninteractive conditions.

T88 1is a general-purpose system (see Schwartz, Coffman and Weiesman, 1964)

o 4 AR & .‘m.uyq_wm o AR &+ Vrorey ot 84 » SE———

} w"“m—-—vﬁ-—- - B e R . - S, ittt e oA - - e - - »
‘;.. ,v/a?,». - R ~ -t - LR e I ——
20 December 1966 8 SP-2687

" similar in ~uny respects to the Project MAC system - e Scherr, 1966) at the

Massachusetts Institute of Technology. Schwartz (1965) has characterized this

. class of time-sharing system as providing four important properties to the

user: '"instantaneous" response, independent operation for each user, essentially

simultaneous operation for several users, and general-purpose capability.

TSS utilizes an IBM AN/FSQ-32 computer. The following 1s a geuneral description
of its operation. User programs are stored on magnetic tape or in disc :ile
memory. When a user wishes to operate his program, he goes to one of several
teletype consoles; these consoles are direct input/output devices to the Q-32.
He instru;ts the computer, through the teletype, to load &nd activate his pro-
gram. The system then loads the program either from the disc file or irom
magnetic tape into active storage (drum memory). All currently operating pro-
grams are stored on drum memory and are transferred, one at a time, in turn,
into core memory for processing. Undar 'USS scheduling control, each program is
processed for a short amount of time (usually a fraction of a second) and is
then replaced in active storage to await its next turn. A program is trans-
ferred to core only if it requires processing; otherwise it is passed up for
that turn. Thus, a user may spend as much time as he needs thinking about what
to do ne.it without wasting the computational time of the machine. Although a
time-sharing system processes programs sequentially and discontinuously, it
gives users the illusion of simultaneity and continuity because of its high

speed.

20 December 1966) SP-2687
1. EXPERIENCED PROGRAMER STUDY
1.1 EXPERIMENTAL DESIGN

The design used in this experiment is illustrated in Figure 1.

ONLINE OFFLINE
GROUP I Algebra (6) Maze (6)
GROUP Il Maze (6) Algebra (6)
TOTALS (12) (12)

Figure 1. Experimentsl Design for the Experienced
Programer Study

The 2 by 2 Latin-Square design with repeated measures for this experiment should

be interpreted as follows. Two experimental groups were employed with six sub-

iects in each; the two experimental treatments were online and offline program

debugging; and the Algebra and Maze problems were the two types of programs that
were coded and debugged. Repested measures were employed in that each subject
solved one problem task under online conditions and the other under offline con-
ditions, serving as his own control. Note in Figure 1 that each of the two pro-
gram problems appears once and only once in each row and cclumn to meet the require-
ments of the 2 by 2 Latin-Square. Subjects were assigned to the two groups at

random, and problem order and online/offline order were counterbalanced.

The statistical treatment for this design involves an analysis of variance to test

for the significance of mean differences between the online and offline conditions

. e m e e Lt er Y e e

20 December 1966 10 . SP-2687

and between the Algebra and Maze problems. There are two analyses of variance,
corresponding to the two criterion measures, one for programer man-hours spent

in debugging and the other for central processor time. A leading advantage of

~ the Latin-Square design for this experiment is that each analysis of variance

incorporates a total of 24 measurements. This configuration permits maximum
pooled sample size and high statistical efficiency in the analysis of the results--

especially desirable features in view of the small subject samples that were used.

1.2 METHOD

A number of problems were encountered in the design and conduct of this experi-
ment., Many are illustrative of problems in experimenting with operational com-
puter systems, and many stemmed from lack of experimental precedent in this area.

Key problems are described below,

1.2.1 Online and Offline Conditions. Defining the online condition posed no

probleus. Programers debugging online were simply instructed to use TSS in the
normal fashion. All the standard features of the system were available to them
for debugging. Defining the offline condition proved more difficult. It was
desired to provide a controlled and uniform turnaround time for the offline con-
dition. It was further desired that this turnaround time be short enough so that
subjects could be released to their regular jobs and the experiment completed in
a reasonable amount of time; on the other hand, the turnaround time hLad to be
long enough to constitute a signifi:ant delay. The compromise reached was two
hours--considerably shorter than most offline systems and yet long enough so that

most of the programer-subjects complained about the delay.

b

20 December 1966 11 SP-2687

It was decided to simulate an offline system using TSS and the Q-32 by requiring
the programer to submit a work request to a member of the experimental staff to
have his program operated. The work request contained specific instructions
from the programer on the procedures to be followed in running the program--
essentially the same approach used in closed-shop computer facilities. Strictly
speaking, then, this experiment was a comparison between online and simulated

offline operations.

Each programer was required to code his own program, using his own logic, and

to rely on the specificity of the problem requirements for comparable programs.
Program coding procedures were independent of debugging conditions, {i.e.,
regardless of the condition imposed for checkout--online or offline--all pro-
gramers coded offline, Programers primarily wrote their programs in JTS (JOVIAL

Time-Sharing--a procedure-oriented lauguage for time-gharing).

1.2,2 Experimentsl Problems. 1Two program problem statements were designed

for the experiment. One problem required the subjects to write a program to
interpret teletype-inserted, algebraic equations. Each equation invelved a single
dependent variable. The program was recuired to compute the value of the dependent
variable, given teletype-inserted values for the independent variables, and to
check for specific kinds of errors in teletype inpﬁt. All programers were referred
to a published source (Samelson and Bauer, 1960) for a suggested workable logic to
solve the problem. Programs vritten to solve this problem were referred to as

Algsbra programs.

e s

20 December 1966 12 SP-2687

The other problem called for writing a program to find the one and only path
through a 20 by 20 cell maze. The programs were required to print out the
designators of the cells constituting the path. Each cell was represented as
an entry in a 400-item table, and each entry contained information on the
directions in which movement was possible from the cell. These programs were

referred to as Maze programs.

1.2.3 Performance Measures. Debugging time was considered to begin when

the programer had coded and compiled a program with no serious format errors
detected by the compiler. Debugging was considered finished when the subject's
program was able to process, without errors, a standard set of test inputs. Two
basic criterion measures were collected for comparing online and offline

debugging--programer man-hours and central processor (CPU) time.

Man-hours for debugging were actual hours spent on the problem by the programer
(including turnaround tiﬁe). Hours were carefully recorded by close personal
observation of each programer by the experimental staff in conjunction with a
daily time log kept by the subjects. Discrepancics between observed time and
reported time were resolved by tactful interviewing. TSS keeps its own accounting
records on user activity; these records provided accurate measures of the central
processor time used by each subject. The recorded CPU time included program
execute time, some system overhead time, and times for dumping the contents of

program or system registers.

A variety of additional measures were obtained in the course of the experiment

to provide control data, and to obtain additional indices of programer performance.

20 December 1966 13 SP=-2687

Control measures included: TSS experience, general programing experience
(excluding TSS experience), type of programing language used (JTS or machine
language), and the number of computer runs submitted by each subject in the
offline condition, Additional programer performance measures included: man-
hours spent on each program until a successful pass was made through the com-
piler (called coding time), program size fn macnine instructions, program
running time for a successful pass through the test data, and scores on the
Basic Programing Knowledge Test (BPKT)--a paper-and-pencil test developel by

Berger, et al., (1966) at the University of Southern California.

1.3 RESULTS N
1.3.1 Criterion Performance. Table 1 shows the means and standard deviaticns

for the two criterion variables, debug man-hours and CPU time. These raw-score
values show a consistent and substantial superiority for online debug man-hours,
from 50 percent to 300 percent faster than the offline condition. CPU time shows
a reverse trend; the offline condition consistently required about 30 percent less
CPU time than the online mode. The standard deviations are comparatively large

in all cases, refiecting extensive individual differences. Are these results

statistically significant with such small sumples?

Table 2 shows three types of analysis of variance applied to the Latin-Square
experimental deaign. The first is a straightforward analyris of raw acores. The

second is an analysis of square-root transformed scores to obtain more normal

.distributions. The third is also an analysis of variance on the square-root

scores, but with the covariance associated with programer coding skill partialled

oy

20 December 1966 14

SP-2687

out statistically; that is, irdividuals were effectively equated on coding

skill so that online/offline differences could be tested more directly.

Table 1. Experienced Programer Performance
Debug Man-Hours .
Algebra Maze
Online Offline Online Offline
Mean 3.5 50.2 4.0 12.3
SD 30.5 58.9 4.3 8.7
CPU Time (sec.)
Online Offline Online Offline
Mean 1266 907 229 191
SD 473 1067 175 136
Table 2, Comparative Results of Three Analyses of Variance
l: Significance Levels
erformance Raw Square Square Root
Measures Scores Root = With Covariance
1. Debug Man-Hours
Online vs. Offline ' None «10 +025
Algebra vs. Masze .025 .001 .10
2. CPU Time
Online va. Offline None None None
Algebra vs. Maze None .001 .05

[y g o LRI AT e . L~ o v . e e e

20 December 1966 15 SP--2687

These applications resulted in six analyses of variance (three for each criterion
measure) as shown in Table 2., The columns in Table 2 represent the three kinds
of analysis of variance; the rows show the two criterion measures. For each
analysis of variance, tests for mean differences compared online versus offline
performance, and Algebra versus Maze differences. The entries in the cells show
the level of statistical significance found for these two main effects for each

of the six analyses of variance.

The results in Table 2 reveal key findings for this experiment. The first row
shows results for online versus offline performance as measured by debug man-
hours. The raw-score analysis of variance shows no significant differences,

The analysis on square-root transiormed scores shows a l0-percent level of sig-
nificance in favor of online performance. The last analysis of variance, with
covariance, on square-root scores, shows statistically significant differences
in favor of the online condition at the .025 level. This progressive trend
toward more clearcut mean differences for shorter debug man-hours with online
performance reflects the increasing statistical control over individual dif-
ferences in the three types of analyses. In contrast to debug man-hours, no
significant trend is indicated for online versus offline conditions for CPU time.
'If real differences do exist, along the lines indicated in Table 1 for more CPU
time in the online mode, these differences were not strong enough to shoﬁ statis-
tical significance with these small samples and with the large individual dif-
ferences between programers, even with the square-root and covariance transfor-

mations,

20 Decamber 1966 16 SP-2687

The results for Algebra versus Maze differences were not surprising. The Algebra
task was obviously a longer and harder problem than the Maze task, as indicated
by all the performance measures. The fairly consistent significant differences
between Algebra and Maze scores shown in Table 2 reflect the differential effects
of the three tests of analysis of variance, and, in particular, point up the
greater sensitivity of the square-root transformations over the original raw

scores in demonstrating significant problem differeances.

1.3.2 Individual Differences. The observed ranges of individual differences
are listed in Table 3 for the 10 performance variables measured in this study.

The ratio between highest and lowest values is also shown.

Table 3. Range of Individual Differences in Programing Performauce

Performance Measure N Pborcqt chro Best Score Katio
1. Debug Hours Algebra : 170 6 28:1
2. Debug Hours Maze - 26 1 26:1
3. CPU Time Algebra (sec.) 3075 370 8:1
4. CPU Time Maze (sec.) 541 50 11:1
5. Code Hours Algebra 111 7 16:1
6. Code Hours Maze 50 2 25:1
7. Program Size Algebras 6137 1050 6:1
8. Program Size Maze 3287 651 5:1
9., Run Time Algebra (sec.) 7.9 1.6 5:1

10. Run Time Maze (sec.) 8.0 .6 13:1

20 December 1966 17 Sr-2687

Table 3 points up the very large individual differences, typically by an order
of magnitude, for most performance variables. To paraphrase a nursery rhyme:

When a programer is good,
He is very, very good,
But when he is bad,

He is horrid.

The "horrid" portion of the performance frequency distribution is the long tail
at the high end, the positively s%ewed part in which one poor performer can
consume as much time or cost as 5, 10, or 20 good ones. Validated techniques
to detect and weed out these poor performers could result in vast savings of

time, effort, and cost.

To obtain further information on these striking individual differences, an
exploratory factor analysis was conducted on the intercorrelations of 15 per-
formance and control variables in the experimental data. Coupled with visual
inspection of the empirical correlation matrix, the main results were:

a. A substantial performance factor designated as "programing

speed,” associated with faster coding and debugging,
less CPU time, and the use of a higher-order language.

b. A well-defined "program economy" factor marked by shorter
and faster running programs associated to some extent with
greater programing experience and with the use of machine

language rather than higher-order language.

This concludes the description of the method and results of the first study.

The second study on programer trainees follows.

20 December 1966 18 SP-2687

2. PROGRAMER TRAINEE STUDY
2.1 EXPERIMENTAL DESIGN

A 2 by 2 Latin-Square design was also used in this experiment. With this
design, as shown in Figure 2, the Sort Routine problem was solved by Group I
(consisting of four subjects) in the noninteractive mode and by Group II (con-
sisting of the othcr five subjects) in the interactive mode. Similarly, the
second problem, a Cube Puzzle, was worked by Group I in the interactive mode

and by Group II in the noninteractive mode.

INTERACTIVE NONINTERACTIVE
GROUP 1 (4) Cube Puzzle Sort Routine
GROUP 1II (5) Sort Routine Cube Puzzle
”.aamh
TOTAL 9 Subjects

Figure 2. [Experimental Design for the Programer
Trainee Study

Analysis of variance was used to test the significance of the differences between
the mean values of the two test conditions (Interactive and Noninteractive) and
the two problens. The first (test conditions) was the central experimental

inquiry, and the other was of interest from the point of view of control.

2.2 METHOD
Nine programer trainees were randomly divided into two groups of four and five
each, One group coded and debugged the first problem interactively while the

other group did the same problem in a noninteractive mode. The two groups

“"““

20 December 1966 19 SP-2687

switched computer system type fur the second problem. All sudbjects used TINT
(Kennedy, 1965) for both problems. (TINT is a dialect of JOVIAL that is used

interpretively with TSS.)

2.2.1 Interactive and Noninteractive Conditions. '"Interactive," for this

experiment, meant the use of TSS and the TINT language with all of its associated

aids. No restrictions in the use of this language were placed upon the subjects.

The noninteractive condition was the same as the interactive except that the
subjects were required to quit after every attempted execution. The subjectes ran
their cwn programs under close supervision to assure th;t thgy were not inadver-
tently running their jobs in an interactive manner. If a member of the noninter-
active group immediately saw his error and if there were no other members of the
noninteractive group waiting for a teletype, then, after he quit, he was allowed
to log in again without any waiting period. Waiting time for an available con-
sole in the noninteractive mode fluctuated greatly. bLut typ}cally involved minutes

rather than hours.

2.2.2 Experimental Problems. The two experimental tasks were relatively
simple problems that were normally given to students by the training staff. The
first involved writing a numerical scrt routine, and the second required finding
the arrangement of four specially marked cubes that met a given condition. The
second problem was more difficult than the firet, but neither required more than
five days of elapsed time for a solution by any subject. The subjects worked at
each problem until they were able to produce a correct solution with a run of

their program.

20 December 1966 20 s$2-2687

2.2.3 Performance Measures, CPU time, automatically recorded for each

trainee,‘and programer man~hours spent debugging the problem, recorded by indi-
vidual work logs, were the two major measures of performance. Debugging was
assumed to begin when a subject logged in for the first time, that is, after he
had finishe- coding his program at his desk and was ready for initial runs to

check and test his program.

2.3 RESULTS

2.3.1 Criterion Performance. A summary of the results of this experiment

is shown in Table 4. Analysis of variance showed the difference between the
raw-score mean values of debug hours for the interactive and the noninteractive
conditions to be significant at the .13 level. The difference betv ‘- the two
experimental conditions for mean values of CPU seconds was significant at the

.08 level. 1In both cases, better perform: e (faster solutions) was obtainec
under the interactive mode. 1In the previous experiment, the use of square-root
transformed scores and the use of coding houre a8 a covariate allowed better
statistical control over the differences betwsen individival subjects. No such

result was found in this experiment.

If each of the subjects could be directly compared to himself as he worked with
each of the systems, the problem of matching subjects or subject groups and the
need for extensive statistical analysis could be eliminated. Unfortunately, it
is not meaningful to have the same subject code and debug the same problem twice;
and it is extremely difficult to develop different problems that are at the same
level of difficulty. One possible solution to this problem would be to use some

measure of problem difficulty as a normalizing factor. It should be recognized

e e - - . PN

20 December 1956 21 SP-2687

that the use «f any normalizing factor can introduce problems in analysis and

interpretation. It was decided to use one of the more popular of such measures,
namely, the number cof instructions in the program. CPU time per instruction and
debug man~hcurs per instruction were compared on the two problems for each sub-
ject for the interactive and roininteractive conditions. .The results showed that
the jateractive subjects had significantiy lower values on hoth compute seconds

per instruction (.01 level) and debug hours per imstruction (.06 level).

Table 4. Programer Trainee Performance

Debug Man-Hours

Sort Routine . Cube Puzzle
lgtecactive Nopinteractive Ipteractive Noninteractive
Mean 9.71 4.7 9.2 13.6

SD 0.66 3.3 4.2 7.0

CPU Time (sec.)

So ne Cybe Pyzzle
Intexsctive Meninteractive Interactive Nopinteractive
Mean 11.1 109.1 290.2 875.3
- SD 9.9 65.6 213.0 392.6
2.3.2 Individual Differences. One of the key findings of the previous study

was that there were large individual differences between programers. Because of

differences in sampling and scale factors, coefficients of variation were computed

20 December 1966 22 SP-2687

to compare individual differerces in both studies. (The coefficient of varia-
tion 18 expressed as a percentage; it is equal to the standard deviation divided
by the mean, multiplied by 100.) The overall results showed that coefficients
of‘variation for debug man-hours .nd CPU time in this experiment were only 16
percent smaller than coefficients of variation in the experienced programer

study (median values of 66 percent and 82 percent, respectively). These observed
differences may be attributable, in part, to the greater difficulty level of the
problems in the experienced programer study, and to the much greater range of
programing experience between subjects which tended to wagnify individual pro-

gramer differences.

In an attempt to determine if there are mcasures of skill that can be used as a
preliminary screening tool to equalize groups, data were gathered on the subject's
grades in the SDC programer training class, and, as mentioned earlier, they were
also given the Basic Programing Knowledge Test (BPKT). Correlations between all
experimental measures, adjusted scores, grades, and the BPKT results were deter-
mined. Except for some spurious part-whole correlations, the results showed no
consistent correlation between performance measures and the various grades and
test scores. The most interesting result of this exploratory analysis, however,
was that class grades and BPKT scores showed substantial intercorrelations,

This is especially notable when only the first of the two BPKT scores is con-
sidered. These correlations ranged between .64 and .83 for Part I of the BPKT;
two out of these four correlations are at the 5 percent level and one exceeds

- the 1 percent level of significance even for these small samples. This implies

20 December 1966 23 SP-2687

that the BPKT is measuring the same kinds of skills that are measured in trainee
class performance. It should also he noted that neither class grades nor BPKT
scores would have provided useful predictions of trainee performance in the test
situation that was used in this e;periment. This observation may be interpreted
three basic ways: first, that the BPKT and class grades are valid and that the
problems do not represent general programing tasks; secund, that the problems
are valid, but that the BPKT and class grades are not indicative of working pro-
gramer performance; or third, fhat interrelations between the BPKT and class
grades do in fact exist with respect to programing performance, but that the
intercorrelations are only low to moderate, which cannot be detected by the very
small samples used in these experiments. The results of these studies are
ambiguous with respect to these three hypotheses; further investigation is re-

quired to determine whether ome or amy cembimatien of them will hold.

3. JINTERPRETATION

Before drawing any conclusions fro- the results, consider the scope of the two
studies. Each dealt with a small number of subjects--performance measures were
markcd by large arror variance and wide-ranging individual differences, which
made statistical inference difficult and risky. The subject skill range was
considerable, from programer trainees in one stuly to highly experienced research
and development programers in the other. The programing languages included one
machine language ano two subsets of JOVIAL, a higher-order language. In both
experim;nts TSS served as the online or interactive condition whereas the off-~
line or noninteractive mode had to be simulated on TSS according to specified

rules. Only one faci)ity was used for both experiments——T88., The problems

»

20 December 1966 24 §P-2687
[4
)
" ranged from the conceptually simple tasks administered to the programer trainees §
to the much more difficult problems given to the experienced programers. The i

representativeness of these problems for programing tasks is unknown. The point
of this thumbnail sketch of the two studies is simply to emphasize their tenta-
tive, exploratory nature--at best they cove* a highly circumscribed set of on-

line and offline programing behaviors.

The interpretation of the results is discussed under three broad areas, cor-
responding to three leading objectives of these two studies: comparison of on-
line and offline programing performance, analysis of individual differences in
programing proficiency, and implications of the methodology and findings for

future research.

3.1 ONLINE VERSUS OFFLINE PROGRAMING PERFORMANCE

On the basis of the concrete results of these experiments, the online corditions
resulted in substantially and, by and.large, significantly better performance
for debug man-hours than the offline conditions. The crucial question is: to
what extent may these results be generalized to other computing facilities, to
other programers, to varying levels of turnaround time, and to other types of
programing problems? Provisional answers to these four questioms highlight

problem areas requiring further research.

The online/offline comparisons were nade in a time-shared computing facility in !
which the online condition was the nafural operational mode, whereas offline ;

conditions had to be simulated. It might be argued that in analogous experi~

ments, conducted with a batch-processing facility, with real offline conditions

e e r——

20 December 1966 25 SP-2687

and simulated online conditions, the results might be reversed. One way to sur-
mount this simulation bias is to conduct an experiment in a hybrid facility that
uses both time-sharing and batch-processing procedures on the same computer so
that neither has to be simulated. Another approach is to comipare facilities
matched on type of computer, programing languages, compilers and other tools for
coding and debugging, but differing in online and offline operations. It might
also be argued that the use of new and different programing languages, methods

and tools might lead to entirely different results.

The generalization of these results to other programers essentially boils dowm

to the representativeness of the experimental samples with regard to an objective
and well-defined criterion population. A universally accepted classification
scheme for programers does not exist, nor are there accepted norms with regard

to biographical, educational and job-experience data.

In certain respects, the differences between online and offline performance

hinge on the length and variability of turnaround time, The critical experimental
question is not whether one mode is superior to the other mode, because, all other
things equal, offline facilities with long turnaround times consume rore elapsed
programing time than either online facilities or offline facilities with short
turnaround times. The critical couparison is with online versus offline opera-
tions that have short response times. The data from the ¢ (perienced programer
study suggests the possibility that, as offline turnaround time approaches zero,
the performance differential between the two modes with regard to debug man-hours

tends to disappesr. The programer trainee study, however, tends to refute this

20 December 1966 26 SP-2687

hypothesis since the mean performence advantage of the interactive mode was con-
siderably larger than waiting time for computer availability. Other experimental
studies need to be conducted to determine whether online systems offer a man-
hour performance advantage above and beyond the elimination of turnaround time

in converting from offline to online operationms.

The last of the four considerations crucial to any generalization of the experi-
mental findings--type of programing problem--presents a baffling obstacle, How
does an investigator select a "typical" programing problem or set of problems?
No suitable classification of computing systems exists, let alone a classifica-
tion of types of programs. Scientific vs. business, onrline vs. offline, auto-
mated vs. semiautomated, realtime vs. nonrealtime--these and many other tags for
computer systems and computer programs are much too gross to provide systematic
classification. In the absence of a systematic classification of computer pro-
grams with respect to underlying skills, programing techniques and applications,
all that can be done is to extend the selection of experimental problems to

cover a broader spectrum of programing activity.

The preceding discussion has been primarily concerned with consistent findings
on debug man-hours for both experiments. The opposite findings in both studies
with regard to CPU time require some comment. The results of the programer
trainee study seem to indicate that online programing permits the programer to
solve his problem in a direct, uninterrupted manner which reasult. aot only in
less human time but also less CPU time. The programer does not have to "warm

up" and remember his problem in all its details if he has access to the mputer

20 December 1966 27 SP-2687

‘whenever he needs it. In contrast, the apparent reduction of CPU time in the

experienced programer study under the offline conditicn suggeéts an cpposing
hypothesis; that is, perhaps there is a deliberate tradeoff, on the part of the
programer, to use more machine time, in an exploratory trial-and-error manner,
to reduce his own time and effort in solving his problem. The results of these
two studies are ambigucus with respect to these opposing hypotheses. One or
both of them may be true, to different degrees under different conditioms. Then
again, perhaps these explanations are too crude to account for complex problem-

solving in programing tasks. More definitive research is needed.

3.2 INDIVIDUAL DIFFERENCES

These studies revealed large individual differences between high and low per-
formers, often by an order of magnicude. It is apparent from the spread of the
data that very substantial savings can be effected by successfully detecting

low performers. Techniques measuring individual programing skilis should be
vigorously pursued, tested and evaluated, and developed on a broad front for the

growing variety of programing jobs.

These two studies suggest that such paper-and-pencil tests may work best in pre-
dicting the performance of programer trainees and relatively inexperienced pro-
gramers, The observed patiern was one of substantive correlations of BPKT test
scores with programer trainee class grades, but no detectable correlation with
experienced programer performance., These tentative findings on our small samples
are consistent with internal validation data for the BPKT. The test discriminates

best between low experience levels and fails to discriminats significantly among

20 December 1966 28 SP-2687

highest experience levels. This situation suggests that general pregraming
gkill msy dominate early training and initial on-the-job experience, but that
such skill is progressively transformed and displaced by more specialized skills

with increasing experience.

If programers show such large performance differences, even larger and more
striking differences may bec expected in general user performance levels with the
advent of information utilities (such as large networks of time-ehared computing
facilities with a broad range of information services available to the general
public). The computer science community has not recogniz=d (let alone faced up
to) the problem of anticipsating and dealing with very large individual differ-

ences in tasks involving man-computer communications for the general public.

In an attempt to explain the results of both studies in regard to individual
differences and to offer a framework for future analyses of individual differences
in programer skills, a differentiation hypothesis is offered, as follows: when
programers ars first exposed to and indoctrinated in the use of computers, and
during their early experience with computers, a general factor of programer pro-
ficiency is held to account for a large proportion of observed individual dif-
ferences, However, with the advent of diversified and extended experience, the
general programing skill factor differentiates into separate and relatively

independent factors related to specialized experience.

From a broader and longer-range perspective, the trend in computer science and
teclinology is toward more diversified computers, programing languages and com-

puter applications. This general trend toward increasing variety is likely to

20 December 1966 29 SP-2687

require an equivalent diversification of human skills to program such systems.
A pluralistic hypothesis, such as the suggested differentiation hypothesis,
seems more appropriate to anticipate and deal with this type of technological
evolution, not only for programers, but for the general user o¢f computing

facilities.

3.3 FUTURE RESEARCH

These studies began with a rather straightforward objective--the comparison ¢~
online and offline programer debugging performance under controlled conditions.
But in order to deal with the online/offline comparison, it became necessary

to consider many other factors related to man-machine performance. For example,
it was necessary to look into the characteristics and correlates of individual
differences. We had to recognize that there was no objective way to assass the
representativeness of the various experimental problems for data processing in
general. The results were constrained to a single computing facility normally
using online operations. The debug,ing criterion measures showed relationships
with other performance, experience and control variables that demanded at least
preliminary explanations. Programing languages had to be accounted for in the
interpretation of the results. The original conception of a direct statistical
comparison between online and offline performance had to give way to multivariat:

statistical analysis to interpreét the results in a more meaningful context.

In short, our efforts to measure online/offline programing differences in an
objective manner were severely constrained by the lack of substantii. scientific

information on computer programing performance--constrained by the applied

%
i
!
1

20 De~ember 1966 30 SP-2687

scientific lag in computer programing, which brings us back to the opening

theme. This lag is not localized to computer programing; it stems from a more
fundamental experimental lag in the general study of man-computer communications.
The case for this assertion involves a critical analysis of the status and
direction of computer science which is beyond the scope of this article; this
analysis is presented elsewhere (Sackman, 1967). In view of these various con-
siderations, it is recommended that future experimental comparisons of cnline

and offline programing performance be conducted within the broad framework of pro-
gramer performance, and not as a simple dichotomy existing in a separate data-
processing world of its own. It is far more difficult and laborious tc construct
a scientific scaffoild for the man-machine components and characteristics of pro-
gramer performance than it is to try to concentrate exclusively on 3 rigorous

comparison of online and offline programing.

Eight broad areas for further research are indicated:

a. Development of empirical, normative <-*» on computing system per-
formance with respect to type of ap: ..c..ion, man-machine environ-
mant, and types of computer programs in relation to leading tasks

in object systems.

b. Comparative experimental studies of computer facility performance,
such as online, offline, and hybrid installations, systematically
permuted against broad classes of program languages (machine~
oriented, procedure-oriented and problem-oriented languages), and
representative classes of programing tasks.

c. LCevelopment of cost-effectiveness model~ for computing facilities,
incorporating man and machine elements, with greater emphasis on
empirically validated measures of effectiveness, and less emphasis
on abstract models than has been the case in the past.

.
wd ¥

20 December 1966 31 SP-2687

d. Programer job and task analysis based on representative sampling
of programer activities, leading toward the development of

empirically validated and updated job-classification procedures.

e, Systematic collection, analysis and evaluation of the empirical
characteristics, correlates, and variation associated with
individual performance differences for programers, including

analysis of team effectiveness and team di“ferences.

f. Development of a variety of paper-and-pencil tests, such as the
Basic Programing Knowledge Test, for assessment of general and
spec ific programer skills in relation to representative, normative

populations,

g+ Detailed case histories on the genesis and course of programer
problem-solving, the frequency and nature of human and machine
errors in the problem-solving process, the role of machine feed-
back and reinforcement in programer behavior, and the delineation
of critical programer decision points in the life-cycle of the
design, development and inctallation of computer programs.

h. And finally, integration of the above findings into the broader

arena of man--computer communication for the general user.

More powerful applied research on programer performance, including experimental
compariscns of online and offline programing, will require the development in
depth of basic concepts and procedures for the field as a whole--a development
that can only be achieved by a concerted effort to bridge the scientific gap

between knowledge and application.

e . - N e e i e L e I L il T O A oo s 4 s wad o s o R .

20 December 1966 32 . SP-2687

1.

5.

9.

10,

11,

12,

13.

REFERENCES

Berger, Raymond M. et al. "Computer Personnel Selectior and Criterion
Development: III. The Basic Programing Knowladge Test," University of
Southern California, Los Angeles, California, June 1966.

Emerson, Marvin "The 'S»all' Computer Versus Time-Shared Systems,"
Computers and Automation, September 1965.

Erikson, Warren J. "A Pilot Study of Interactive Versus Noninteractive
Debugging," TM-3296, System Development Corporation, Santa Monica,
California, 13 December 1966.

Gold, M. M. “"Evaluating Time-Shared Computer Usage,'" Working Paper
198-66, Alfred P. Sloan School of Management, Massachusetts Institute
of Technology, May 1966.

Grant, E. E., H. Sackman "An Exploratory Investigation of Programer
Performance linder On-Line and Off-Line Conditioms, SP-2581, System
Development Corporation, Santa Monica, California, 2 September 1966.

*
Kennedy, Phyllis R, '"The TINT Users' Guide," TM-1933/000/03, System
Development Corporation, Santa Monica, California, 30 July 1965.

Macdonald, Neil "A Time-Shared Computer System--The Disadvantages,"
Computers and Automation, September 1965.

Patrick, R. L. "So You Want to Go On-Line?" Dgtsmation, Vol. 9, No. 10,
October 1963, pp. 25-27,

Sackman, H. Man-Machine Digitsl Systems, John Wiley & Sons, New York,
(in press) 1967.

Samelson, K., F. Bauer '"Sequential Formula Translation,” Communications
Of the AC!‘!, Voln 3. 1960' ppl 76"830

Scherr, A. L. "Time-Sharing Measurement,” Datamstion, Vol. 12, No. 4,
April 1966, pp. 22-26.

Schwartz, J. I., E. G. Coffman and C. Weissman "A General-Purpose Time-

Sharing System," AFIPS Conference Proceedings, Vol. 25, 1964 Spring

Joint Computer Conference, pp. 397-411.

Schwartz, J. I. '"Observations on Time-Shared Systems,” Proceedings of the

20th National Confere , ’
1965, pp. 525-542.

Unclassified
Secutity Classificaticn

pmay S ——

DOCUMENT CONTROL DATA - R&D

{Security clessification of title, avdy of ahl,_nct and indeging anastatian swel be entered when the everel! regort is eleesitied)

t. QRIGINATIN G ACT|V|TY (Corporete ayihar) 28. REPORY BECURITY C LASSIFICATION
System Development Corporation Unclassified
Santa Monica, California x5 smoOUP

3. REPORT TITLE
Exploratory Experimental Studies Comparing Online and Offline Programing

Performance

4. DESCRIPTIVE NOYES (Type of report and inciusive detss)

$. AUTHOR(S) (Las? name, tiset name, initiel)
Sackman, H.

Erikson, W. J.
Grant, E. E.

6. REPC AT DATE 70 YOTAL KO. QF RaAQES 75. NO. OF Agr3
20 December 1966
@a. CONTRACT OR GRANT NO. 94. ORIGINATOR'S REFOAT NUMBEArS)
ARPA Command Control
F1l .
N ..3,,6'.2,8,6..7., Research Progran SP-2687
. ‘ TS n.uua REPORY uu’?) (A ny other numbers Rot may be aseighed
d

10. AVAILABILITY/LIMITATION NOTICES
Distribution of this document is unlimited.

11 SUPPL BNENTARY NOTES 12. SPONDORING WILITARY ACTMITY

13. AmsTRACT "Two exploratory experiments conducted at System Development Corporation
tompared debugging performance of programers working under conditions of online and
ffline access to a computer, These are the first known studies measuring the per-
;omnce of programers under controlled conditions for standard tasks.

Statistically significant results indicated substantially faster debugging under

nlire conditions in both studies. The results were ambiguous for central processor
im¢~-~one study showed less computer time for debugging, and the other showed more
ime in the online mode., Perhaps the most important practical finding, overshadowinﬂ
nline/offline differences, involves the large and striking individual differences

nh programer performance. Attemptc were made to relate observed individual differ-
nces to objective measures of programer experience and proficiency through factoria
echniques. In line with the exploratory objectives of these studies, methodologica
roblems encountered in designing and conducting these types of experiments are
escribed, limitations of the findings are pointed out, hypotheses are presented to
ccount for results, and suggestions are made for further research. ‘ .

i

““
DD .. 1473 ‘

N : - - ~»,-_-~-u—-4

Unclassified
Security Classification
1 LINK A LINK B NITTER |
k&Y WORDS ROL K wr (4 '." not. & [24

Ounline access
Offline access

Computer programmer performance

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Departmont of De-
l;nu activity or other organizatior. (corporate author) iasuing
the report.

2a. REFPORT SECURTY CLASSIFICATION: Eater the over
all security classification of the report. Indicate whether
‘‘Restricted Data’ is included Marking iz to be in accord
ance with appropriste security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-

rective 5200, 10 and Armed Forces Industrial Manual. Enter

the grcup aumber. Also, when applicable, show that optional
:n-r:in(l have been used for Group 3 and Group 4 'as suthor-
zed.

3. REPORT TITLE: Enter the compleie report title in all
capital letters. Titles in all cases should be unclassified,
If a meaningful title cannot be selected without classifice-
tion, show title classification in all capitals in parenthesis
immaediately foliowing the title.

4. DESCRIPTIVE NOTKE If eppropriste, enter the type of
report, o. g, interim, pregress, summary, annual, or final.
Give t.’: inclusive detes when a specific reporting period is
covered,

S, AUTHOR(S): Enter the name(s) of suthor(s) as shown on
or in the report. Enter 1ast name, first name, middie initial
If military, show rank ond branch of service. The neme of
the principal anthor iv en absolute minimum requirement.

5 REPORT DATL: Enter the dete of the report as day,
month, year; or mbnth, yean [f nore than one date appesrs
on the report, use date of publication.

7e. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, L o, enter the
number of pages contalning information,

| 7b. NUMBER OF REFERENCER Eater the total number of
i references cited in the report.

8s. CONTRACT OR GRANT NUMBER: If sppropriate, enter
the gpplicable number of the contract or grant under which
the report was written

8b, &, & 8d. PROJECT NUMBER: Enter che appropriste
military depmtment identification, such se project number,
subproject number, system numbers, task number, stc.

9a. ORIGINATTR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originatirg sctivity, This number must
be unique to this report.

95. OTHER REPORT NUMBER(S): If the reoort has been

‘assigned any ot.ier report numbecs {eithér by the originator
or Dy the sponecs), aleso enter this number(s).

INSTRUCTIONS

imponed by security claseification, using standard statements
such aa:

(1) *“*Qualified requeaters may obtain copies of this
teport from DDC."’

(2) ‘Foreigr announcement and disseminsation of this
report by DDC is not authorized.’’

(9 ''U. 8 Government agencies may obtain copies of
this repost directly from DDC. or qualilied DDC
users shall roquest through

(® ''U. 8 military agencies may obtain cuples of this
report directly from DDC. Other qualifiod usere
shall request through

(S) "“All distribution of this report is controlied Qual-
itied DDC uaers shall request through

I the repost has been furnigshed to the Office of Techaical
Services, Department of Commarce, for sale to the public, indi-
cate this fact and enter the price, if known

1L SUPPLEMENTARY NOTE3: Use (or sdditiona] explana-
tory notes

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include addrese.

13, ABSTRACT: Enter an abstract giving s brief and factual
summary of the document indicative of the report, even though
it may alsn appear elsewhere in the body of the technical re-
port. l:::‘dluml space is required, a continuation sheet shall
be stte .

It is highly desireble that the abstract of cisasified regoris
be unclessified. Eech paragreph of the sbitract shatl end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (T85), (8), (C), or (V)

There is no limitation on the of the sbetrgct. How-
ever, the suggested leagth is from 159 to 225 wends.

14. XEY WORDE: Key words are technically meeniagful terms
or short phrases that charscterise a repert and may be used os
index entries for ca‘alogiag the report. Key worde mpst be
selected 80 that no security classification is required. Ildenti-
fiers, such as equipment mods! designation, irade neme, military
project code name, geographic locetion, mey be seed ae hey
worde but will be foliowed by an indication of techaice! con-
toit. The sseignment of links, rules, sad weights is optienst.

10. AVAILABILITY/LIMITATION NOTICES Eater eny lis
muouulmhcmhldhmmruﬁ '

. Yeclansified

