
Dernocua

 ⁘⁛⁛⁘
 Kragen Javier Sitaker
 Buenos Aires
 December, 02021
 Public domain work
 ⁘⁛⁛⁘

 Dernocua is my notebook from 02021 CE, the second year of the
covid pandemic. It’s the sequel to Dercuano and Derctuo. It contains
about 410000 words, about 1100 pages, in 267 notes on various
different topics: programming, machining, electronics, digital
fabrication, math, physics, economics, history, and so on. These are
mostly notes I made while I was figuring things out, so they have a lot
of errors in them because of things I understood incorrectly, and
many of them are incomplete.

 Dernocua’s canonical form is a downloadable tarball of HTML files
. For computers that can’t handle tarballs of HTML, I’ve also hacked
together an inferior PDF rendering of it, formatted for comfortable
reading on small screens like those on hand computers. (In particular,
a lot of the Unicode-art stuff is screwed up in the PDF, and so are
tables.) Errata will be published at the GitLab repository.

Public-domain dedication

 As far as I’m concerned, everyone is free to redistribute Dernocua,
in whole or in part, modified or unmodified, with or without credit;
I waive all rights associated with it to the maximum extent possible
under applicable law. Where applicable, I abandon its copyright to
the public domain. I wrote and published Dernocua in Argentina in
02021 (more conventionally called 2021, or 2021 AD).

 The exception to the above public-domain dedication is the ET
Book font family used, licensed under the X11 license (p. 18). This
doesn’t impede you from redistributing or modifying Dernocua but
does prohibit you from removing the font’s copyright notice and
license (unless you also remove the font). The PDF embeds part of
FreeFont and of the DejaVu fonts, whose copyright notices are also
included (p. 19), but DejaVu and FreeFont are not used in the
HTML tarball.

Notes

02021-01

• Fan noise would be less annoying if intermittent (p. 21) 02021-01-03
(updated 02021-01-04) (1 minute)
• Principled APL redux (p. 22) 02021-01-03 (updated 02021-12-31)
(12 minutes)

http://canonical.org/~kragen/dercuano
http://canonical.org/~kragen/derctuo
http://canonical.org/~kragen/dernocua/dernocua-020211231.tar.gz
http://canonical.org/~kragen/dernocua/dernocua-020211231.pdf
https://gitlab.com/kragen/dernocua

• First class locations (p. 27) 02021-01-04 (3 minutes)
• Layout typescript (p. 29) 02021-01-04 (5 minutes)
• Fibonacci scan (p. 31) 02021-01-10 (updated 02021-01-15)
(1 minute)
• Relayout with heaps (p. 32) 02021-01-10 (updated 02021-01-15)
(6 minutes)
• Transactional editor (p. 35) 02021-01-14 (updated 02021-01-15)
(73 minutes)
• Trie PEGs (p. 53) 02021-01-15 (4 minutes)
• Chat over a content-centric network (p. 55) 02021-01-15 (updated
02021-01-16) (3 minutes)
• Some notes on compiling and notations for grammars, starting from
the inspiring RPN example in Parson (p. 57) 02021-01-15 (updated
02021-12-31) (15 minutes)
• Can transactions solve the N+1 performance problem on web pages?
(p. 67) 02021-01-16 (8 minutes)
• Notes on simulating a ZVS converter (Baxandall converter) (p. 70)
02021-01-16 (6 minutes)
• A ghetto linear voltage regulator from discrete components (p. 73)
02021-01-21 (updated 02021-01-27) (10 minutes)
• Intel engineering positions considered as a dollar auction (p. 78)
02021-01-21 (updated 02021-01-27) (1 minute)
• Duplicating Durham’s Rock-Hard Putty (p. 79) 02021-01-22
(updated 02021-01-27) (1 minute)
• iPhone replacement cameras as 6-μs streak cameras (p. 80)
02021-01-22 (updated 02021-12-30) (2 minutes)
• Compiling machine-code loops to pipelined dataflow graphs (p. 81)
02021-01-23 (updated 02021-01-27) (2 minutes)
• Some preliminary notes on the amazing RISC-V architecture (p.
82) 02021-01-24 (updated 02021-07-27) (29 minutes)
• Trying to design a simple switchmode power supply using
Schmitt-trigger relaxation oscillators (p. 92) 02021-01-26 (updated
02021-01-27) (32 minutes)
• Trying and failing to design an efficient index for folksonomy data
based on BDDs (p. 108) 02021-01-26 (updated 02021-01-27)
(7 minutes)

02021-02

• The use of silver in solar cells (p. 112) 02021-02-02 (updated
02021-09-11) (8 minutes)
• Snap logic, revisited, and four-phase logic (p. 115) 02021-02-08
(9 minutes)
• Can you do direct digital synthesis (DDS) at over a gigahertz? (p.
119) 02021-02-08 (updated 02021-02-24) (30 minutes)
• ASCII art, but in Unicode, with Braille and other alternatives (p.
128) 02021-02-10 (updated 02021-02-24) (9 minutes)
• Skew tilesets (p. 135) 02021-02-14 (updated 02021-02-24)
(7 minutes)
• Threechet (p. 140) 02021-02-16 (updated 02021-02-24) (4 minutes)

• Thumbnail views in a Unicode character-cell terminal with Braille
(p. 142) 02021-02-17 (updated 02021-02-24) (1 minute)
• Energy autonomous computing (p. 143) 02021-02-18 (updated

02021-12-30) (58 minutes)
• How do you fit a high-level language into a microcontroller? Let’s
look at BBN Lisp (p. 160) 02021-02-23 (updated 02021-08-18)
(76 minutes)
• Panelization in PCB manufacturing (p. 193) 02021-02-25 (updated
02021-02-26) (7 minutes)

02021-03

• Some notes on IPL-VI, Lisp’s 01958 precursor (p. 196) 02021-03-02
(4 minutes)
• Refreshing Flash memory periodically for archival (p. 198)
02021-03-02 (1 minute)
• Variable length unaligned bytecode (p. 199) 02021-03-02 (updated
02021-03-03) (4 minutes)
• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Vaughan Pratt and Henry Baker’s COMFY control-flow
combinators (p. 234) 02021-03-04 (updated 02021-03-20)
(8 minutes)
• Generating novel unique pronounceable identifiers with letter
frequency data (p. 239) 02021-03-10 (updated 02021-03-22)
(11 minutes)
• Garbage-collected allocation performance on current computers (p.
245) 02021-03-13 (updated 02021-04-08) (4 minutes)
• How Lao Yuxi painted a cock (p. 247) 02021-03-19 (updated
02021-04-14) (7 minutes)
• Bench supply (p. 250) 02021-03-19 (updated 02021-12-30)
(25 minutes)
• Recursive residue number systems? (p. 259) 02021-03-20 (updated
02021-03-22) (8 minutes)
• Brute force speech (p. 262) 02021-03-21 (updated 02021-03-22)
(7 minutes)
• When is it better to compute by moving atoms rather than
electrons? (p. 265) 02021-03-21 (updated 02021-03-22) (5 minutes)
• Veskeno is a “fantasy platform” like TIC-80 (p. 267) 02021-03-21
(updated 02021-03-22) (3 minutes)
• Some notes on reading Chris Seaton’s TruffleRuby dissertation (p.
269) 02021-03-21 (updated 02021-03-22) (16 minutes)
• .xosm: experimental obvious stack machine (p. 274) 02021-03-21
(updated 02021-03-24) (20 minutes)
• Open coded primitives (p. 283) 02021-03-22 (26 minutes)
• Failing to stabilize the amplitude of an opamp phase-delay oscillator
(p. 298) 02021-03-23 (updated 02021-03-24) (10 minutes)
• Running scripts once per frame for guaranteed GUI responsivity (p.
303) 02021-03-23 (updated 02021-10-12) (7 minutes)
• Minor improvements to pattern matching (p. 306) 02021-03-24
(updated 02021-04-08) (10 minutes)
• Why Bitcoin is puzzling to people in rich countries (p. 312)
02021-03-31 (updated 02021-07-27) (10 minutes)

02021-04

• Statistics on the present and future of energy in the People’s

Republic of China (p. 316) 02021-04-01 (updated 02021-04-08)
(10 minutes)
• Geneva wheel stopwork (p. 321) 02021-04-07 (updated
02021-04-08) (6 minutes)
• A bargain-basement Holter monitor with a BOM under US$2.50
(p. 323) 02021-04-07 (updated 02021-07-27) (33 minutes)
• Locking telescope (p. 333) 02021-04-07 (updated 02021-12-30)
(2 minutes)
• Logarithmic low-power SERDES (p. 334) 02021-04-08 (4 minutes)

• :fq0zl, a normal-order text macro language (p. 336) 02021-04-09
(updated 02021-07-27) (14 minutes)
• Forming steel with copper instead of vice versa (p. 344)
02021-04-16 (updated 02021-06-12) (2 minutes)
• Notes on pricing of locally available oscilloscopes (p. 346)
02021-04-16 (updated 02021-07-27) (2 minutes)
• Can you get JLCPCB to fabricate a CPU for you affordably from
“basic” parts? (p. 347) 02021-04-17 (updated 02021-12-30)
(9 minutes)
• Safe FORTH with the FORTRAN memory model? (p. 351)
02021-04-21 (updated 02021-06-12) (2 minutes)
• Manually writing code in static single assignment (SSA) form,
inspired by Kemeny’s DOPE, isn’t worth it (p. 353) 02021-04-21
(updated 02021-06-12) (3 minutes)
• Diskstrings: Bernstein’s netstrings for single-pass streaming output
(p. 356) 02021-04-21 (updated 02021-07-27) (4 minutes)
• Phased-array imaging sonar from a mesh network of self-localizing
sensor nodes (p. 358) 02021-04-27 (updated 02021-12-30) (8 minutes)

• A boiler for submillisecond steam pulses (p. 361) 02021-04-28
(updated 02021-12-30) (10 minutes)
• Three phase logic (p. 364) 02021-04-30 (updated 02021-07-27)
(9 minutes)

02021-05

• How fast do von Neumann probes need to reproduce to colonize
space in our lifetimes? (p. 368) 02021-05-04 (updated 02021-06-12)
(5 minutes)
• List of random GUI ideas (p. 370) 02021-05-04 (updated
02021-07-27) (6 minutes)
• Thixotropic electrodeposition (p. 372) 02021-05-04 (updated
02021-12-31) (2 minutes)
• Cheap cutting jig (p. 373) 02021-05-06 (updated 02021-12-30)
(1 minute)
• Differential filming (p. 374) 02021-05-07 (updated 02021-12-30)
(1 minute)
• Planetary roller screw worm drive (p. 375) 02021-05-07 (updated
02021-12-30) (4 minutes)
• Fresnel mirror electropolishing (p. 377) 02021-05-08 (updated
02021-12-30) (6 minutes)
• Leaf hypertext (p. 380) 02021-05-08 (updated 02021-12-30)
(3 minutes)
• Weighing an eyelash on an improvised Kibble balance (p. 382)

02021-05-08 (updated 02021-12-30) (3 minutes)
• Precisely measuring out particulates with a trickler (p. 384)
02021-05-09 (updated 02021-12-30) (17 minutes)
• A four-dimensional keyboard matrix made of linear voltage
differential transformers (LVDTs) to get 30 or 180 keys on five pins
(p. 390) 02021-05-12 (updated 02021-12-30) (4 minutes)
• Planetary screw potentiometer (p. 392) 02021-05-12 (updated
02021-12-30) (1 minute)
• 3-D printing in carbohydrates (p. 393) 02021-05-16 (updated
02021-12-30) (10 minutes)
• Clay-filled PLA filament for firing to ceramic (p. 396) 02021-05-17
(updated 02021-12-30) (1 minute)
• Multicolor filament (p. 397) 02021-05-17 (updated 02021-12-30)
(5 minutes)
• Acicular low binder pastes (p. 399) 02021-05-19 (updated
02021-12-30) (1 minute)
• Cutting clay (p. 400) 02021-05-19 (updated 02021-12-30)
(10 minutes)
• Scaling laws (p. 404) 02021-05-19 (updated 02021-12-30)
(8 minutes)
• Selectively curing one-component silicone by injecting water (p.
408) 02021-05-19 (updated 02021-12-30) (2 minutes)
• Clay wire cutter (p. 409) 02021-05-21 (updated 02021-12-30)
(2 minutes)
• Electroforming rivets (p. 410) 02021-05-22 (updated 02021-12-30)
(2 minutes)
• Metal welding fuel (p. 411) 02021-05-23 (updated 02021-12-30)
(6 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• The nature of mathematical discourse (p. 418) 02021-05-27
(updated 02021-12-30) (5 minutes)
• Designing curiosity and dreaming into optimizing systems (p. 420)
02021-05-30 (updated 02021-12-30) (6 minutes)
• Omnidirectional wheels (p. 422) 02021-05-30 (updated
02021-12-30) (1 minute)
• Ghetto electrical discharge machining (EDM) (p. 423) 02021-05-31
(updated 02021-12-30) (5 minutes)

02021-06

• Broken hard disks are the cheapest source of ultraprecision
components (p. 425) 02021-06-02 (updated 02021-06-12) (3 minutes)

• Micro impact driver (p. 427) 02021-06-02 (updated 02021-06-12)
(2 minutes)
• Minkowski deconvolution (p. 428) 02021-06-02 (updated
02021-12-30) (6 minutes)
• Greek operating systems (p. 430) 02021-06-04 (updated
02021-06-12) (4 minutes)
• The algebra of N-ary relations (p. 432) 02021-06-14 (updated
02021-07-27) (4 minutes)
• Nuclear energy is the Amiga of energy sources (p. 434) 02021-06-14
(updated 02021-07-27) (3 minutes)

• Flux-gate downconversion in a loopstick antenna? (p. 436)
02021-06-15 (updated 02021-07-27) (2 minutes)
• PEG-like flexibility for parsing right-to-left? (p. 437) 02021-06-16
(updated 02021-07-27) (2 minutes)
• How little code can a filesystem be? (p. 438) 02021-06-16 (updated
02021-07-27) (1 minute)
• Notes on the PDF file format (p. 439) 02021-06-16 (updated
02021-07-27) (15 minutes)
• Notes on what would be needed to drive a PS/2 keyboard from an
Arduino (p. 447) 02021-06-20 (updated 02021-12-30) (12 minutes)
• Self hosting kernel (p. 452) 02021-06-21 (updated 02021-12-30)
(1 minute)
• Stack syntax (p. 453) 02021-06-22 (updated 02021-07-27)
(4 minutes)
• Bead hypertext (p. 455) 02021-06-22 (updated 02021-12-30)
(1 minute)
• Does USB bitstuffing create a timing-channel vulnerability? (p.
456) 02021-06-22 (updated 02021-12-31) (1 minute)
• Verstickulite (p. 457) 02021-06-23 (updated 02021-07-27)
(3 minutes)
• Simple linear-time linear-space nested delimiter parsing (p. 459)
02021-06-24 (updated 02021-12-30) (1 minute)
• Economic history (p. 460) 02021-06-25 (updated 02021-07-27)
(17 minutes)
• More cements (p. 466) 02021-06-26 (updated 02021-08-15)
(5 minutes)
• Base 3 gage blocks (p. 468) 02021-06-27 (updated 02021-12-30)
(5 minutes)
• Multiple counter-rotating milling cutters to eliminate side loading
(p. 470) 02021-06-27 (updated 02021-12-30) (7 minutes)
• Layered ECM (p. 473) 02021-06-27 (updated 02021-12-30)
(2 minutes)
• A kernel you can type commands to (p. 474) 02021-06-27 (updated
02021-12-30) (1 minute)
• Can you use stabilized cubic zirconia as an ECM cathode in molten
salt? (p. 475) 02021-06-27 (updated 02021-12-30) (3 minutes)
• Electrolytic glass machining (p. 477) 02021-06-28 (updated
02021-12-30) (6 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Glass powder-bed 3-D printing (p. 490) 02021-06-29 (updated
02021-12-30) (20 minutes)
• Rator-port GUIs (p. 496) 02021-06-29 (updated 02021-12-30)
(26 minutes)
• Sulfur jet metal cutting (p. 504) 02021-06-30 (updated
02021-12-30) (6 minutes)
• Powder-bed 3-D printing with a sacrificial binder (p. 506)
02021-06-30 (updated 02021-12-30) (12 minutes)

02021-07

• Stochastically generated self-amalgamating tape variations for
composite fabrication (p. 510) 02021-07-02 (updated 02021-12-30)
(26 minutes)

• Spin-coating clay-filled plastics to make composites with high
anisotropic filler loadings (p. 521) 02021-07-02 (updated
02021-12-30) (4 minutes)
• ECM for machining nonmetals? (p. 523) 02021-07-05 (updated
02021-07-27) (11 minutes)
• Sonic screwdriver resonance (p. 527) 02021-07-06 (updated
02021-12-30) (11 minutes)
• Subnanosecond thermochromic light modulation for real-time
holography and displays (p. 531) 02021-07-06 (updated 02021-12-30)
(8 minutes)
• Notes on Richards et al.’s nascent catalytic ROS water treatment
process (p. 534) 02021-07-07 (updated 02021-07-27) (14 minutes)
• Memory view (p. 539) 02021-07-09 (updated 02021-12-30)
(6 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• Electrolytic berlinite (p. 561) 02021-07-12 (updated 02021-12-30)
(7 minutes)
• Making mirabilite and calcite from drywall (p. 564) 02021-07-12
(updated 02021-12-30) (4 minutes)
• Potential local sources and prices of refractory materials (p. 566)
02021-07-14 (updated 02021-09-11) (9 minutes)
• Faygoo: a yantra-smashing ersatz version of Piumarta and Warth’s
COLA (p. 570) 02021-07-14 (updated 02021-12-30) (17 minutes)
• Firing talc (p. 576) 02021-07-14 (updated 02021-12-30)
(17 minutes)
• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)
• Fiberglass CMCs? (p. 588) 02021-07-15 (updated 02021-07-27)
(8 minutes)
• My ideal workshop (unfinished) (p. 591) 02021-07-16 (updated
02021-07-27) (2 minutes)
• Can you 3-D print Sorel cement by inhibiting setting with X-rays?
(p. 592) 02021-07-16 (updated 02021-07-27) (1 minute)
• Tetrahedral expanded metal (p. 593) 02021-07-16 (updated
02021-07-27) (3 minutes)
• Glass foam (p. 595) 02021-07-16 (updated 02021-08-15)
(17 minutes)
• Leaf vein roof (p. 600) 02021-07-16 (updated 02021-09-11)
(9 minutes)
• Aluminum fuel (p. 603) 02021-07-17 (updated 02021-12-30)
(2 minutes)
• Boosters for self-propagating high-temperature synthesis (SHS) (p.
604) 02021-07-17 (updated 02021-12-30) (4 minutes)
• Compressed appendable file (p. 606) 02021-07-19 (updated
02021-07-27) (5 minutes)
• SHS of magnesium phosphate (p. 608) 02021-07-22 (updated
02021-07-27) (3 minutes)
• Back-drivable differential windlass (p. 610) 02021-07-23 (updated
02021-07-27) (15 minutes)
• Synthesizing reactive magnesia? (p. 615) 02021-07-25 (updated
02021-08-15) (4 minutes)

• Synthesizing amorphous magnesium silicate (p. 617) 02021-07-25
(updated 02021-08-15) (6 minutes)
• Ropes with constant-time concatenation and equality comparisons
with monoidal hash consing (p. 619) 02021-07-27 (15 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)

02021-08

• Dipropylene glycol (p. 687) 02021-08-01 (updated 02021-08-15)
(2 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Arc maker (p. 695) 02021-08-07 (updated 02021-12-30)
(11 minutes)
• Argentine pricing of PEX pipe and alternatives for phase-change
fluids (p. 699) 02021-08-07 (updated 02021-12-30) (2 minutes)
• Power transistors (p. 700) 02021-08-07 (updated 02021-12-30)
(12 minutes)
• Pocket kiln (p. 704) 02021-08-09 (updated 02021-08-15)
(7 minutes)
• Cola flavor (p. 707) 02021-08-10 (updated 02021-08-15)
(2 minutes)
• Constant current buck (p. 708) 02021-08-10 (updated 02021-08-15)
(4 minutes)
• Methane bag (p. 710) 02021-08-10 (updated 02021-08-15)
(8 minutes)
• Iodine patterning (p. 713) 02021-08-11 (updated 02021-08-15)
(1 minute)
• Heating a shower tank with portable TCES? (p. 714) 02021-08-11
(updated 02021-08-15) (6 minutes)
• Subset of C for the simplest self-compiling compiler (p. 717)
02021-08-12 (updated 02021-12-30) (6 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)
• Wiki models (p. 751) 02021-08-19 (updated 02021-12-30)
(1 minute)
• Residual stream windowing (p. 752) 02021-08-21 (updated
02021-09-11) (5 minutes)
• Sandwich panel optimization (p. 754) 02021-08-21 (updated
02021-09-11) (3 minutes)
• Glass wood (p. 755) 02021-08-21 (updated 02021-12-30)
(4 minutes)
• Maximizing phosphate density from aqueous reaction (p. 757)
02021-08-21 (updated 02021-12-30) (8 minutes)
• Lazy heapsort (p. 761) 02021-08-22 (updated 02021-09-11)
(6 minutes)
• Recursive bearings (p. 764) 02021-08-23 (updated 02021-12-30)
(1 minute)
• A construction set using SHS (p. 765) 02021-08-24 (updated
02021-09-11) (5 minutes)

• Sorption vacuum pumps really can’t operate continuously (p. 767)
02021-08-24 (updated 02021-09-11) (5 minutes)
• Electrodeposition welding (p. 769) 02021-08-25 (updated
02021-09-11) (2 minutes)
• Better screw head designs? (p. 770) 02021-08-25 (updated
02021-09-11) (4 minutes)
• Dense fillers (p. 772) 02021-08-25 (updated 02021-12-30)
(7 minutes)
• Selective laser sintering of copper (p. 775) 02021-08-30 (updated
02021-12-30) (6 minutes)
• Negative feedback control to prevent runaway positive feedback in
3-D MIG welding printing (p. 777) 02021-08-30 (updated
02021-12-30) (3 minutes)

02021-09

• Fast electrolytic mineral accretion (seacrete) for digital fabrication?
(p. 779) 02021-09-01 (updated 02021-12-30) (52 minutes)
• Patterning metal surfaces by coating decomposition with lasers or
plasma? (p. 795) 02021-09-03 (updated 02021-12-30) (7 minutes)
• Rock-wool-filled composites (p. 798) 02021-09-03 (updated
02021-12-30) (2 minutes)
• Weighing balance design (p. 799) 02021-09-06 (updated
02021-12-30) (9 minutes)
• Fast-slicing ECM (p. 802) 02021-09-08 (updated 02021-12-30)
(3 minutes)
• Switching kiloamps in microseconds (p. 804) 02021-09-09 (updated
02021-12-30) (1 minute)
• Spot welding (p. 805) 02021-09-09 (updated 02021-12-30)
(8 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)
• A short list of the most useful Unix CLI tools (p. 841) 02021-09-15
(updated 02021-09-16) (2 minutes)
• Three phase differential data (p. 843) 02021-09-22 (updated
02021-12-30) (4 minutes)
• Waterglass “Loctite”? (p. 845) 02021-09-22 (updated 02021-12-30)
(1 minute)
• Qfitzah internals (p. 846) 02021-09-24 (updated 02021-12-30)
(2 minutes)
• Blowing agents (p. 847) 02021-09-29 (updated 02021-12-30)
(4 minutes)
• Compliance spectroscopy (p. 849) 02021-09-29 (updated
02021-12-30) (4 minutes)
• Planning Apples to Apples, instead of Planning Poker (p. 851)
02021-09-29 (updated 02021-12-30) (6 minutes)
• Liquid dielectrics for hand-rolled self-healing capacitors (p. 853)
02021-09-30 (updated 02021-12-30) (3 minutes)

02021-10

• Deriving binary search (p. 855) 02021-10-01 (updated 02021-12-30)
(5 minutes)
• The sol-gel transition and selective gelling for 3-D printing (p. 858)

02021-10-03 (updated 02021-12-30) (6 minutes)
• Some notes on perusing the Udanax Green codebase (p. 860)
02021-10-05 (updated 02021-10-08) (12 minutes)
• Fung’s “I can’t believe it can sort” algorithm and others (p. 864)
02021-10-05 (updated 02021-12-30) (5 minutes)
• Spanish phonology (p. 867) 02021-10-05 (updated 02021-12-31)
(15 minutes)
• Some notes on learning Rust (p. 874) 02021-10-06 (updated
02021-10-10) (39 minutes)
• PBKDF content addressing with keyphrase hashcash: a
non-blockchain attack on Zooko’s Triangle (p. 896) 02021-10-08
(24 minutes)
• Wordlists for maximum drama (p. 904) 02021-10-08 (updated
02021-12-30) (16 minutes)
• The spark-pen pointing device (p. 921) 02021-10-10 (updated
02021-10-12) (1 minute)
• Beyond overstrike (p. 922) 02021-10-10 (updated 02021-12-30)
(13 minutes)
• Pipelined piece chain painting (p. 926) 02021-10-10 (updated
02021-12-30) (23 minutes)
• An algebra of partial functions for interactively composing programs
(p. 933) 02021-10-10 (updated 02021-12-30) (3 minutes)
• Beyond op streams (p. 935) 02021-10-11 (updated 02021-12-30)
(3 minutes)
• Inverse perspective (p. 937) 02021-10-11 (updated 02021-12-30)
(1 minute)
• Ranking MOSFETs for, say, rapid localized electrolysis to make
optics (p. 938) 02021-10-11 (updated 02021-12-30) (8 minutes)
• The relation between solar-panel efficiency for air conditioning and
insulation thickness (p. 941) 02021-10-11 (updated 02021-12-30)
(3 minutes)
• An even simpler offline power supply than a capacitive dropper,
with a 7¢ BOM (p. 943) 02021-10-14 (updated 02021-12-30)
(7 minutes)
• Trying to quantify relative speeds of different digital fabrication
processes with “matter bandwidth” (p. 946) 02021-10-15 (updated
02021-12-30) (5 minutes)
• Balanced ropes (p. 948) 02021-10-16 (updated 02021-12-30)
(7 minutes)
• Flexural mounts for self-aligning bushings (p. 952) 02021-10-18
(updated 02021-12-30) (3 minutes)
• Triggering a spark gap with an exploding wire (p. 953) 02021-10-19
(updated 02021-12-30) (1 minute)
• Triggering a spark gap with low jitter using ultraviolet LEDs? (p.
954) 02021-10-20 (updated 02021-10-23) (8 minutes)
• Binomial coefficients and the dimensionality of spaces of
polynomials (p. 957) 02021-10-20 (updated 02021-12-30) (4 minutes)

• Finite element analysis with sparse approximations (p. 959)
02021-10-20 (updated 02021-12-30) (2 minutes)
• Implementation and applications of low-voltage Marx generators
with solid-state avalanche breakdown? (p. 960) 02021-10-20
(updated 02021-12-31) (39 minutes)
• The astounding UI responsivity of PDP-10 DDT on ITS (p. 972)

02021-10-22 (updated 02021-10-23) (28 minutes)
• Example based regexp (p. 984) 02021-10-24 (updated 02021-12-30)
(5 minutes)
• Adversarial control (p. 987) 02021-10-25 (updated 02021-12-30)
(13 minutes)
• Constant weight dithering (p. 991) 02021-10-28 (updated
02021-12-30) (5 minutes)
• Hashing text with recursive shingling to find duplication efficiently
(p. 993) 02021-10-30 (updated 02021-12-30) (6 minutes)

02021-11

• My Heathkit H8 (p. 996) 02021-11-03 (updated 02021-12-30)
(2 minutes)
• Orthogonal rational vectors (p. 997) 02021-11-04 (updated
02021-12-30) (4 minutes)
• Thread rolling roller screw (p. 999) 02021-11-04 (updated
02021-12-30) (1 minute)
• Viscoelastic probing (p. 1000) 02021-11-04 (updated 02021-12-30)
(2 minutes)
• An aluminum pencil for marking iron? (p. 1001) 02021-11-06
(updated 02021-12-30) (2 minutes)
• Embedding runnable code in text paragraphs for numerical
modeling (p. 1002) 02021-11-06 (updated 02021-12-30) (6 minutes)
• Paeth prediction and vector quantization (p. 1005) 02021-11-06
(updated 02021-12-30) (1 minute)
• Wire brush microscope (p. 1006) 02021-11-06 (updated
02021-12-30) (1 minute)
• New nuclear power in the People’s Republic of China (p. 1007)
02021-11-09 (updated 02021-12-30) (2 minutes)
• Ivan Miranda’s snap-pin fasteners and similar snaps (p. 1009)
02021-11-11 (updated 02021-12-30) (3 minutes)
• Rendering 3-D graphics with PINNs and GANs? (p. 1010)
02021-11-11 (updated 02021-12-30) (10 minutes)
• Aqueous scanning probe microscopy (p. 1013) 02021-11-12 (updated
02021-12-30) (7 minutes)
• Redundancy in self-replicating systems such as hundred-eyed
chickens (p. 1016) 02021-11-12 (updated 02021-12-30) (4 minutes)
• DSLs for calculations on dates (p. 1018) 02021-11-14 (updated
02021-12-30) (1 minute)
• Some notes on reading parts of Reuleaux’s engineering handbook (p.
1019) 02021-11-17 (updated 02021-12-30) (7 minutes)
• A simple 2-D programmable graphics pipeline to unify tiles and
palettes (p. 1022) 02021-11-18 (updated 02021-12-30) (6 minutes)
• Interesting works that entered the public domain in 02021, in the
US and elsewhere (p. 1024) 02021-11-20 (updated 02021-12-30)
(15 minutes)
• At small scales, electrowinning may be cheaper than smelting (p.
1029) 02021-11-21 (updated 02021-12-30) (25 minutes)
• Micro ramjet (p. 1038) 02021-11-22 (updated 02021-12-30)
(3 minutes)
• Vernier indicator (p. 1040) 02021-11-22 (updated 02021-12-30)
(6 minutes)
• Some notes on Bhattacharyya’s ECM book (p. 1043) 02021-11-25

(updated 02021-12-30) (11 minutes)
• Chording commands (p. 1047) 02021-11-26 (updated 02021-12-30)
(7 minutes)

02021-12

• Exotic steel analogues in other metals (p. 1050) 02021-12-01
(updated 02021-12-30) (8 minutes)
• Simplest blinker (p. 1053) 02021-12-01 (updated 02021-12-30)
(9 minutes)
• Capacitive linear encoder sensors (p. 1056) 02021-12-11 (updated
02021-12-30) (7 minutes)
• Two finger multitouch (p. 1059) 02021-12-11 (updated
02021-12-30) (3 minutes)
• The Habitaculum: a modular dwelling machine (p. 1061)
02021-12-13 (updated 02021-12-31) (16 minutes)
• Against subjectivism (p. 1066) 02021-12-15 (updated 02021-12-30)
(36 minutes)
• Solid rock on a gossamer skeleton through exponential deposition
(p. 1076) 02021-12-15 (updated 02021-12-30) (11 minutes)
• 3-D printing in poly(vinyl alcohol) (p. 1080) 02021-12-15 (updated
02021-12-30) (2 minutes)
• Ghetto electrochromic displays for ultra-low-power computing? (p.
1082) 02021-12-16 (updated 02021-12-30) (9 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)
• Layers plus electroforming (p. 1100) 02021-12-16 (updated
02021-12-30) (7 minutes)
• MOSFET body diodes as Geiger counter avalanche detectors? (p.
1103) 02021-12-17 (updated 02021-12-30) (1 minute)
• The user interface potentialities of a barcoded paper notebook (p.
1104) 02021-12-18 (updated 02021-12-30) (6 minutes)
• Aluminum refining (p. 1106) 02021-12-20 (updated 02021-12-30)
(3 minutes)
• Regenerative muffle kiln (p. 1108) 02021-12-21 (updated
02021-12-30) (19 minutes)
• Is liberal democracy’s stability conditioned on historical conditions
that no longer obtain? (p. 1114) 02021-12-22 (updated 02021-12-30)
(16 minutes)
• Xerogel compacting (p. 1119) 02021-12-22 (updated 02021-12-30)
(12 minutes)
• Photoemissive power (p. 1124) 02021-12-23 (updated 02021-12-28)
(15 minutes)
• Toggling eccentrics for removing preload from spring clamps (p.
1129) 02021-12-28 (updated 02021-12-31) (22 minutes)
• Safe decentralized cloud storage (p. 1135) 02021-12-30 (10 minutes)

Topics

• Materials (p. 1138) (59 notes)
• Programming (p. 1141) (49 notes)
• Contrivances (p. 1143) (45 notes)

• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Digital fabrication (p. 1149) (31 notes)
• Manufacturing (p. 1151) (29 notes)
• History (p. 1153) (24 notes)
• Performance (p. 1155) (22 notes)
• Human-computer interaction (p. 1156) (22 notes)
• Physics (p. 1157) (18 notes)
• Electrolysis (p. 1158) (18 notes)
• Mechanical (p. 1159) (17 notes)
• 3-D printing (p. 1160) (17 notes)
• Filled systems (p. 1161) (16 notes)
• Experiment report (p. 1162) (14 notes)
• Algorithms (p. 1163) (14 notes)
• Strength of materials (p. 1164) (13 notes)
• Machining (p. 1165) (13 notes)
• Python (p. 1166) (12 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Ghettobotics (p. 1169) (12 notes)
• Energy (p. 1170) (12 notes)
• Bootstrapping (p. 1171) (12 notes)
• Safe programming languages (p. 1172) (11 notes)
• Math (p. 1173) (11 notes)
• Lisp (p. 1174) (11 notes)
• Assembly-language programming (p. 1175) (11 notes)
• Power supplies (p. 1176) (10 notes)
• Graphics (p. 1177) (10 notes)
• Compilers (p. 1178) (10 notes)
• Clay (p. 1179) (10 notes)
• Aluminum (p. 1180) (10 notes)
• Welding (p. 1181) (9 notes)
• Virtual machines (p. 1182) (9 notes)
• Precision (p. 1183) (9 notes)
• Phosphates (p. 1184) (9 notes)
• Foam (p. 1185) (9 notes)
• ECM (p. 1186) (9 notes)
• Composites (p. 1187) (9 notes)
• Composability (p. 1188) (9 notes)
• Waterglass (p. 1189) (8 notes)
• Small is beautiful (p. 1190) (8 notes)
• Sensors (p. 1191) (8 notes)
• Programming languages (p. 1192) (8 notes)
• Ceramic (p. 1193) (8 notes)
• C (p. 1194) (8 notes)
• Real time (p. 1195) (7 notes)
• Higher order programming (p. 1196) (7 notes)
• Hand tools (p. 1197) (7 notes)
• Falstad’s circuit simulator (p. 1198) (7 notes)
• Facepalm (p. 1199) (7 notes)
• Argentina (p. 1200) (7 notes)
• 2-D cutting (p. 1201) (7 notes)
• Terminals (p. 1202) (6 notes)
• Solar (p. 1203) (6 notes)

• Self replication (p. 1204) (6 notes)
• Systems architecture (p. 1205) (6 notes)
• Protocols (p. 1206) (6 notes)
• Post-teletype terminal design (p. 1207) (6 notes)
• Physical computation (p. 1208) (6 notes)
• Optics (p. 1209) (6 notes)
• Minerals (p. 1210) (6 notes)
• Microcontrollers (p. 1211) (6 notes)
• Metrology (p. 1212) (6 notes)
• Magnesium (p. 1213) (6 notes)
• Instruction sets (p. 1214) (6 notes)
• Independence (p. 1215) (6 notes)
• GUIs (p. 1216) (6 notes)
• End user programming (p. 1217) (6 notes)
• Anisotropic fillers (p. 1218) (6 notes)
• Thermodynamics (p. 1219) (5 notes)
• The future (p. 1220) (5 notes)
• Syntax (p. 1221) (5 notes)
• Steel (p. 1222) (5 notes)
• Small things (p. 1223) (5 notes)
• Security (p. 1224) (5 notes)
• Refractory (p. 1225) (5 notes)
• Powder-bed 3-D printing processes (p. 1226) (5 notes)
• The Portable Document Format (PDF) (p. 1227) (5 notes)
• Parsing (p. 1228) (5 notes)
• Numerical modeling (p. 1229) (5 notes)
• Incentives (p. 1230) (5 notes)
• FORTH (p. 1231) (5 notes)
• Flexures (p. 1232) (5 notes)
• File formats (p. 1233) (5 notes)
• Copper (p. 1234) (5 notes)
• Cements (p. 1235) (5 notes)
• Bytecode (p. 1236) (5 notes)
• Aluminum foil (p. 1237) (5 notes)
• Vermiculite (p. 1238) (4 notes)
• Transactions (p. 1239) (4 notes)
• Sparks (p. 1240) (4 notes)
• Self-propagating high-temperature synthesis (SHS) (p. 1241) (4
notes)
• Scanning probe microscopy (p. 1242) (4 notes)
• Reverse Polish notation (RPN) (p. 1243) (4 notes)
• Reading (p. 1244) (4 notes)
• Poly(vinyl alcohol) (PVA) (p. 1245) (4 notes)
• Program calculator (p. 1246) (4 notes)
• Pascal (p. 1247) (4 notes)
• Operating systems (p. 1248) (4 notes)
• OCaml (p. 1249) (4 notes)
• Memory hardware (p. 1250) (4 notes)
• Life support (p. 1251) (4 notes)
• Input devices (p. 1252) (4 notes)
• Heating (p. 1253) (4 notes)
• Glass (p. 1254) (4 notes)
• Garbage collection (p. 1255) (4 notes)
• Encoding (p. 1256) (4 notes)

• Editors (p. 1257) (4 notes)
• Economics (p. 1258) (4 notes)
• Dynamic dispatch (p. 1259) (4 notes)
• Domain-specific languages (DSLs) (p. 1260) (4 notes)
• Displays (p. 1261) (4 notes)
• Control (cybernetics) (p. 1262) (4 notes)
• Compression (p. 1263) (4 notes)
• Communication (p. 1264) (4 notes)
• Ceramic-matrix composites (CMCs) (p. 1265) (4 notes)
• Caching (p. 1266) (4 notes)
• Weighing (p. 1267) (3 notes)
• Unix (p. 1268) (3 notes)
• Tiled graphics (p. 1269) (3 notes)
• Term rewriting (p. 1270) (3 notes)
• Sugar (p. 1271) (3 notes)
• Sorting (p. 1272) (3 notes)
• Solubility (p. 1273) (3 notes)
• Scheme (p. 1274) (3 notes)
• Roller screws (p. 1275) (3 notes)
• RISC-V (p. 1276) (3 notes)
• Reproducibility (p. 1277) (3 notes)
• Radio (p. 1278) (3 notes)
• Politics (p. 1279) (3 notes)
• Illinois PLATO (p. 1280) (3 notes)
• Poly(lactic acid) (PLA) (p. 1281) (3 notes)
• Patterning (p. 1282) (3 notes)
• Oscillators (p. 1283) (3 notes)
• Natural-language processing (p. 1284) (3 notes)
• Memory models (p. 1285) (3 notes)
• LEDs (p. 1286) (3 notes)
• Kleene algebras (p. 1287) (3 notes)
• Kingery, the father of modern ceramics (p. 1288) (3 notes)
• Keyboards (p. 1289) (3 notes)
• Insulation (p. 1290) (3 notes)
• Hypertext (p. 1291) (3 notes)
• Humor (p. 1292) (3 notes)
• Hashing (p. 1293) (3 notes)
• Glutaraldehyde (p. 1294) (3 notes)
• Forming (p. 1295) (3 notes)
• Flying (p. 1296) (3 notes)
• Fasteners (p. 1297) (3 notes)
• Emacs (p. 1298) (3 notes)
• Control flow (p. 1299) (3 notes)
• COMFY-* (p. 1300) (3 notes)
• Cameras (p. 1301) (3 notes)
• Batteries (p. 1302) (3 notes)
• BASIC (p. 1303) (3 notes)
• Audio (p. 1304) (3 notes)
• ASCII art (p. 1305) (3 notes)
• Art (p. 1306) (3 notes)
• Artificial neural networks (p. 1307) (3 notes)
• Allocation performance (p. 1308) (3 notes)
• Alabaster (p. 1309) (3 notes)
• X rays (p. 1310) (2 notes)

• Wiki (p. 1311) (2 notes)
• Video (p. 1312) (2 notes)
• The Veskeno virtual machine (p. 1313) (2 notes)
• The United States of America (USA) (p. 1314) (2 notes)
• Unicode (p. 1315) (2 notes)
• Toxicology (p. 1316) (2 notes)
• Thixotropy (p. 1317) (2 notes)
• Tcl (p. 1318) (2 notes)
• Talc (p. 1319) (2 notes)
• Stack machines (p. 1320) (2 notes)
• Spreadtools (p. 1321) (2 notes)
• Speech synthesis (p. 1322) (2 notes)
• Space (p. 1323) (2 notes)
• Sonic screwdrivers (p. 1324) (2 notes)
• Snaps (p. 1325) (2 notes)
• Smalltalk (p. 1326) (2 notes)
• Spatial light modulators (SLMs) (p. 1327) (2 notes)
• Silver (p. 1328) (2 notes)
• Silicone (p. 1329) (2 notes)
• Steel Bank Common Lisp (p. 1330) (2 notes)
• Sapphire (p. 1331) (2 notes)
• Sandblasting (p. 1332) (2 notes)
• Ropes (p. 1333) (2 notes)
• Regenerators (p. 1334) (2 notes)
• Refining (p. 1335) (2 notes)
• Randomness (p. 1336) (2 notes)
• Qfitzah (p. 1337) (2 notes)
• Prefix sums (p. 1338) (2 notes)
• Plasma (p. 1339) (2 notes)
• Piezoelectrics (p. 1340) (2 notes)
• Photoemission (p. 1341) (2 notes)
• Perl (p. 1342) (2 notes)
• Parsing expression grammars (PEGs) (p. 1343) (2 notes)
• Passwords (p. 1344) (2 notes)
• The Paeth predictor (p. 1345) (2 notes)
• Memory ownership (p. 1346) (2 notes)
• Overstrike (p. 1347) (2 notes)
• Mathematical optimization (p. 1348) (2 notes)
• Oogoo (p. 1349) (2 notes)
• Ontology (p. 1350) (2 notes)
• Namespaces (p. 1351) (2 notes)
• m4 (p. 1352) (2 notes)
• LuaJIT (p. 1353) (2 notes)
• Lua (p. 1354) (2 notes)
• LiDAR (p. 1355) (2 notes)
• Length (p. 1356) (2 notes)
• Layout (p. 1357) (2 notes)
• Latency (p. 1358) (2 notes)
• The JS programming language (p. 1359) (2 notes)
• JLCPCB (JiaLiChuang) (p. 1360) (2 notes)
• Interrupts (p. 1361) (2 notes)
• Incremental search (p. 1362) (2 notes)
• Household (p. 1363) (2 notes)
• Gradient descent (p. 1364) (2 notes)

• Gears (p. 1365) (2 notes)
• Generative adversarial networks (GANs) (p. 1366) (2 notes)
• Galileo (p. 1367) (2 notes)
• Fiction (p. 1368) (2 notes)
• Enthalpy (p. 1369) (2 notes)
• Employment (p. 1370) (2 notes)
• Electropolishing (p. 1371) (2 notes)
• Electroforming (p. 1372) (2 notes)
• Dreaming (p. 1373) (2 notes)
• Decentralization (p. 1374) (2 notes)
• Debugging (p. 1375) (2 notes)
• Databases (p. 1376) (2 notes)
• Cross linking (p. 1377) (2 notes)
• Command-line interfaces (CLI) (p. 1378) (2 notes)
• China (p. 1379) (2 notes)
• Ccn (p. 1380) (2 notes)
• Carborundum (p. 1381) (2 notes)
• Call by name (p. 1382) (2 notes)
• Block arguments (p. 1383) (2 notes)
• Bicicleta (p. 1384) (2 notes)
• Barcodes (p. 1385) (2 notes)
• Azane (p. 1386) (2 notes)
• AVR8 microcontrollers (p. 1387) (2 notes)
• Arduino (p. 1388) (2 notes)
• Archival (p. 1389) (2 notes)
• Apl (p. 1390) (2 notes)
• Ambiq (p. 1391) (2 notes)

liabilities/LICENSE.ETBook

[This is the copyright notice from the ET Book font Dercuano uses.]

Copyright (c) 2015 Dmitry Krasny, Bonnie Scranton, Edward Tufte.

Permission is hereby granted, free of charge, to any person obtaining a copy of t
his software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, cop
y, modify, merge, publish, distribute, sublicense, and/or sell copies of the Soft
ware, and to permit persons to whom the Software is furnished to do so, subject t
o the following conditions:

The above copyright notice and this permission notice shall be included in all co
pies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIE
D, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGH
T HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTI
ON OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

liabilities/dejavu-copyright

Format: http://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: DejaVu fonts
Upstream-Author: Stepan Roh <src@users.sourceforge.net> (original author),
 see /usr/share/doc/ttf-dejavu/AUTHORS for full list
Source: http://dejavu-fonts.org/

Files: *
Copyright: Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved.
 Bitstream Vera is a trademark of Bitstream, Inc.
 DejaVu changes are in public domain.
License:
 Permission is hereby granted, free of charge, to any person obtaining a copy
 of the fonts accompanying this license ("Fonts") and associated
 documentation files (the "Font Software"), to reproduce and distribute the
 Font Software, including without limitation the rights to use, copy, merge,
 publish, distribute, and/or sell copies of the Font Software, and to permit
 persons to whom the Font Software is furnished to do so, subject to the
 following conditions:
 .
 The above copyright and trademark notices and this permission notice shall
 be included in all copies of one or more of the Font Software typefaces.
 .
 The Font Software may be modified, altered, or added to, and in particular
 the designs of glyphs or characters in the Fonts may be modified and
 additional glyphs or characters may be added to the Fonts, only if the fonts
 are renamed to names not containing either the words "Bitstream" or the word
 "Vera".
 .
 This License becomes null and void to the extent applicable to Fonts or Font
 Software that has been modified and is distributed under the "Bitstream
 Vera" names.
 .
 The Font Software may be sold as part of a larger software package but no
 copy of one or more of the Font Software typefaces may be sold by itself.
 .
 THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT,
 TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME
 FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING
 ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
 THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE
 FONT SOFTWARE.
 .
 Except as contained in this notice, the names of Gnome, the Gnome
 Foundation, and Bitstream Inc., shall not be used in advertising or
 otherwise to promote the sale, use or other dealings in this Font Software
 without prior written authorization from the Gnome Foundation or Bitstream
 Inc., respectively. For further information, contact: fonts at gnome dot

 org.

Files: debian/*
Copyright: (C) 2005-2006 Peter Cernak <pce@users.sourceforge.net>
 (C) 2006-2011 Davide Viti <zinosat@tiscali.it>
 (C) 2011-2013 Christian Perrier <bubulle@debian.org>
 (C) 2013 Fabian Greffrath <fabian+debian@greffrath.com>
License: GPL-2+
 This program is free software; you can redistribute it
 and/or modify it under the terms of the GNU General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later
 version.
 .
 This program is distributed in the hope that it will be
 useful, but WITHOUT ANY WARRANTY; without even the implied
 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE. See the GNU General Public License for more
 details.
 .
 You should have received a copy of the GNU General Public
 License along with this package; if not, write to the Free
 Software Foundation, Inc., 51 Franklin St, Fifth Floor,
 Boston, MA 02110-1301 USA
 .
 On Debian systems, the full text of the GNU General Public
 License version 2 can be found in the file
 /usr/share/common-licenses/GPL-2'.

Fan noise would be less annoying
if intermittent
Kragen Javier Sitaker, 02021-01-03 (updated 02021-01-04) (1 minute)

 Fan noise is painfully irritating in part because it’s constant and
relatively spectrally pure — it’s not a sinusoid, but it’s almost all
harmonics of a particular frequency, so the sonic energy is
concentrated with high Q in a small fraction of all possible
frequencies.

 In experimenting with bytebeat I’ve found that a bit of envelope
modulation at 0.5–2 Hz can go a long way toward reducing the pain
level of tones. Could you do that with a fan? For example, closing
the fan with a baffle for 500 ms every 2 seconds would nearly silence
it.

Topics

• Contrivances (p. 1143) (45 notes)
• Household (p. 1363) (2 notes)

Principled APL redux
Kragen Javier Sitaker, 02021-01-03 (updated 02021-12-31)
(12 minutes)

 Writing rpneact I realized that there are some straightforward ways
to extend such a system toward Bicicleta and the principled variant of
APL I was thinking about, as well as to do performance work.

 One is that inheritance is relatively straightforward:

class Var(namedtuple('Var', ('name',)), Expr):
 def eval(self, vars):
 return vars[self.name].eval(vars)

 If the second vars were a different object, we’d have the equivalent
of invoking an inherited method — any vars referred to by the
formula would come from the different object. (And this is exactly
how inheritance works in Bicicleta and in the ς-calculus it’s based
on.) And of course in Python such inheritance is straightforward to
implement in the vars object by having its __getattr__ delegate to one or
more different mappings.

 There’s code in rpneact for the solver that evaluates a loss formula
at various points along a design variable; it works as follows:

var = design_var.name
original = vars[var]
...

try:
 ...
 vars[var] = Const(b)
 b_obj = objective.eval(vars)
 ...
finally:
 vars[var] = original

 This could be done in a purely functional way instead by the
inheritance mechanism described above.

 Let’s call these “vars” namespace objects that might inherit from
one another “worlds”.

Bitmask caching

 For caching property values in such a system, you’d like to carry
over the cached value of a property to any child worlds that hadn’t
overridden any other property used during its computation.
Moreover, if that value didn’t get cached in the parent but did get
computed in the child entirely from properties unchanged from the
parent, you’d like to propagate those values back to the parent, so that
other children can use them.

 I’m not sure what’s an actually scalable way to implement this, but
an approach that’s reasonable up to a certain extent, with single

http://canonical.org/~kragen/sw/dev3/rpneact.py

inheritance, is to maintain a bitmask of overridden fields in each
world. Each field is assigned an index, starting from the number of
fields in the base class. Each cached result is stored at that index in a
cached result vector associated with each world; each field definition
is stored at that index in a definition vector; and in the bitmask of
overridden fields for an world, the bit is set if the world has its own
private definition of a field, rather than using the parent world’s. And
each cached result is associated with a bitmask of all the fields
consulted during its computation.

 (For the moment I’m going to ignore dependencies on things
outside of the world itself, which were common in Bicicleta but sort
of impossible in the principled-APL approach.)

 These bitmasks can be 64 bits for worlds with 64 fields or less, so
we can operate bitwise on them in a single instruction on a 64-bit
CPU, or 128 bits for worlds with 128 fields or less. In the limit of a
large number of fields, of course, such explicit sets will tend to incur a
large space and time cost.

 To know whether the parent world’s value of a variable can be
safely reused, we can AND the current world’s overridden-field
bitmask with the dependency bitmask for the parent world’s variable;
if the intersection is null, we can just reuse the parent’s value (and
perhaps also cache it locally). Similarly, if we compute a field value
locally, we also compute its dependency bitmask, so we can check in
the same way to see whether it involved any locally overridden values
(although you could imagine that maybe it would be more efficient to
just set a flag during the computation, you have to compute the
dependency bitmask anyway) and then do the same check. This lets
you see how far up the inheritance hierarchy you can push the cached
value.

 When a cached field is consulted during the computation of a field
value, we must OR its dependency bitmask into the dependency
bitmask of the computation, as well as set its bit.

Compilation and duplicate suppression

 In a system compiled without runtime reflection, all of this bitmap
consultation can happen at compile time; only the consultation to see
if a field is already computed, and if so where, and what its value is,
must be deferred to runtime. This in some sense involves compiling a
separate version of each world for each callsite, depending on the
particular overrides provided at that callsite, but in many cases these
worlds will use precisely the same code and can thus be merged, as
with C++ templates. (And runtime reflection can be supported in
such a system by invoking the compiler at runtime.)

 If an override method doesn’t use any other fields of the object it’s
being stuck onto, it could be implemented as a simple delegation to a
thunk. Then all the worlds that differ only by the contents of that
thunk can be merged. For example, in Bicicleta:

prog.if(foo, then={all kinds of stuff}, else={more stuff})

 can be merged with all the other invocations of prog.if that override
only arg0, then, and else.

Field order

 The fields within a world can be topologically sorted to emit a
single sequence of code that computes all of them in dependency
order. In cases where no cached results are possible, for example
when a program starts, if there’s no risk to termination behavior, we
can run all the fields peremptorily in sequence, one after the other. In
other cases, it may be sensible to do a slightly modified version of the
same thing: concatenate the code and put a conditional jump past the
computation of each field. The jump can be based on, for example, a
bitmap of fields whose computation is desired: the abjunction of the
dependencies of a desired-fields bitmap and an
already-computed-fields bitmap. In many cases, we can jump
directly to the first not-yet-computed field, and run straight-line
code from there, perhaps even without such conditional skips.

 Inlining the computations of other worlds’ fields may be
worthwhile, particularly when no references to those other worlds
themselves escape from the computation. The if case above is
paradigmatic: no reference to if world survives, just its output.

 General inlining in a system as late-bound as the original Bicicleta
design would require type specialization using hidden classes. Maybe
a “Triciclo” design could omit the ability to override standard
operators like arithetic, but you could probably get to better
performance than CPython or similar systems by the Ur-Scheme
approach of inlining the implementation of native operators (integer
addition, etc.) with a conditional jump to an exception handler for
cases where an operator is overridden. But this is to some extent
orthogonal to the question of the caching strategy!

Simple compilation

 In simple cases, the strategy is:

• Topologically sort the variables.
• Assign each variable a memory location, not necessarily in sequence.

• Generate the code snippet to compute each variable from the other
variables, fetching from memory and storing into memory as
necessary.
• Divide the topologically-sorted sequence into “basic blocks”
approximating some fixed granularity, say, 256 clock cycles.
• Assign each basic block a memory location for a flag that indicates
whether its results are valid (up-to-date) or not.
• For each basic block, emit a conditional checking to see whether its
results are valid, and if not, executing the concatenated code snippets
for its variables, then setting the flag to indicate that its results are
indeed valid.
• Peephole-optimize each basic block.
• Eliminate memory allocations no longer read after
peephole-optimization, unless they’re final outputs.
• Concatenate the basic blocks.

 So for a full computation from scratch, you clear all the validity
flags, set the inputs, and jump to the beginning of the first basic block.
In cases where you've changed some input, you clear some of the flags

(following the transitive closure of dependency relations between the
blocks) and jump to the beginning of the first one whose validity flag
isn’t set there’s a granularity tradeoff where making the blocks bigger
also increases the amount of redundant computation they do: you
may recompute a variable that didn’t need recomputing because it
was in the same basic block as one that did using larger basic blocks
privileges worst-case computation time (where nothing is cached),
while using smaller ones privileges best-case incremental update time.

 There’s no particular reason that this honking chunk of compiled
code can’t accept a base address argument off which to find its
variables and validity flags, nor, for that matter, two different base
addresses off which to find variables and validity flags that vary
differently. And these “base addresses” can as easily be array indices.
For example, you might have some set of variables that vary by day,
and other variables that are global across all days. The basic blocks for
the per-day variables would use the day index to index into an array
of validity flags, one flag per day per basic block, as well as arrays of
variable values to compute; the basic blocks for the non-per-day
variables would not.

 In the simplest case, the per-day variables are all computed from
the non-per-day variables and not vice versa, but once reductions,
quantifiers, and indexing are involved, the picture gets more
complicated: you might have non-per-day variables computed from
some of the per-day variables, more per-day variables computed from
those, and so on. This affects how you can bundle them into basic
blocks efficiently.

 (Is Datalog-style stratified inference applicable to this problem?)

Transactional arrayification

 Suppose you populate memory with some indepdendent-variable
values and run a hunk of machine code in some kind of valgrind-like
monitoring mode that monitors what memory locations it reads and
writes. After it completes, you can check to see which of your input
values it read; you can then infer that the locations that it wrote
depend at least on the independent variables that it read. For example,
if it read x and y but not z, and wrote a and b, you can conclude that a
and b are dependent on x and y, but maybe not z.

 If you have a set of possibilities in mind for x and y, you can write
each of the possibilities into the x and y memory locations and rerun
the code, thus deriving a and b values for each (x, y) pair. At some
point you may or may not observe a dependency on z as well; if so,
you might have to try all the z values as well.

 You may be able to provide x, y, z, a, and b as closures rather than
memory locations, in which case efficiently noting that they are being
accessed, without slowing down the rest of the computation, becomes
easy. This is the approach taken by, for example, Meteor and
Adapton. Moreover, depending on the degree to which local
memory writes can be controlled, you may be able to use such thunks
to save backtracking state — if x is consulted some time before y, it
may be worthwhile to just roll back the computation to the first
consultation of y to try different y values.

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Safe programming languages (p. 1172) (11 notes)
• Compilers (p. 1178) (10 notes)
• Programming languages (p. 1192) (8 notes)
• Transactions (p. 1239) (4 notes)
• Caching (p. 1266) (4 notes)
• Bicicleta (p. 1384) (2 notes)
• Apl (p. 1390) (2 notes)
• Datalog
• Arrays

First class locations
Kragen Javier Sitaker, 02021-01-04 (3 minutes)

 As mentioned in Layout typescript (p. 29) one of the deficiencies
of the Lisp object-graph memory model is that places aren’t first-class:
object slots (instance variables or record fields), local variables, global
variables, array elements, and so on, can’t be referred to in the
language except indirectly. In that note, I was pondering the
implications for LispM-style “presentations” in a typescript, which
I’d like to make interactively explorable by default, but I’ve also
written about a related question in terms of IMGUI libraries.

 In an IMGUI library, it’s very convenient to be able to say
something like (from [Dear ImGui]):

ImGui::SliderFloat("this field is called f", &f, 0.0f, 1.0f);

 This works in C because we can pass a pointer to the global variable
f to the slider; similarly we can pass pointers to record (struct) fields.
Golang and C++ are similarly empowered. But this is potentially
unsafe, in the sense that we can also pass pointers to local variables, the
callee can save the pointer somewhere, and those local variables can
then go out of scope, leaving a dangling pointer ready to cause
mischief.

 In languages like Pascal, a safe version of this facility is available as
“var parameters”: a parameter which, rather than being a local
variable with a copy of the passed-in value, is an alias to a location
provided by the caller. This preserves the freedom for the compiler to
manage activation records with a stack discipline, while also providing
the ability for SliderFloat or whatever to get the reference it wants.
The callee can pass this reference to other subroutines but cannot
reseat the reference or save it elsewhere. C++’s reference type works
similarly.

 On a modern machine, we could imagine saving activation records
on the heap and capturing references to them inside of, for example,
textual or graphical output, enabling a debugger to go back and trace
the “why” of a given value — as in Bret Victor’s tree demo from
Inventing on Principle, for example. In an IMGUI context we can fake
it by recreating the XXX

Topics

• Programming (p. 1141) (49 notes)
• Human-computer interaction (p. 1156) (22 notes)
• Safe programming languages (p. 1172) (11 notes)
• Programming languages (p. 1192) (8 notes)
• C (p. 1194) (8 notes)
• Terminals (p. 1202) (6 notes)
• Post-teletype terminal design (p. 1207) (6 notes)
• End user programming (p. 1217) (6 notes)

https://youtu.be/8QiPFmIMxFc?t=483
https://youtu.be/8QiPFmIMxFc?t=483
https://youtu.be/8QiPFmIMxFc?t=483

• Pascal (p. 1247) (4 notes)
• Memory ownership (p. 1346) (2 notes)
• Immediate-mode GUIs

Layout typescript
Kragen Javier Sitaker, 02021-01-04 (5 minutes)

 I was watching Kalman Reti demo an (emulated) LispM linked
from a thread on the orange website about REPL-driven
development. Aside from enjoying the printed-book typography of
the user interface, I thought it might be worthwhile to jot down some
notes about the interaction model.

 The Documents as User Interfaces demo of Cedar Tioga on a
SPARCStation is a related promising direction, one that’s viable
today to some extent inside Emacs and web browsers: “Because
buttons are represented just like other document properties, they can
easily be generated by programs. For instance, we created a directory
listing program to generate a button for each file listed. Clicking on
such a button opens the named file.” (4'26")

 I thought the concept of linking text in a typescript (“presentations
of objects I’ve already printed on my typescript”) to live objects to
make it “mouse sensitive” was interesting. What if your “typescript”
consisted entirely of such “live objects”? Is that a viable mode of
interaction?

 That is, what if you could still print(foo) for whatever object foo, but
the result was not merely appending some dumb characters to a
buffer, but rather appending the object denoted by foo to the layout of
a scrollable document capable of interaction? foo could, for example,
be another such typescript, visually nested within the larger one.

 To some extent I think the Lisp object-graph model (used by, say,
Python) may not be ideally suited to this: if you print out, for
example, an integer, an interaction you might want to support is
change that integer. In the Lisp model the best you can do is to do
print an integer-cell object which supports interactions to change its
value; the problem with this is that if what you’re printing is, say, the
x field of some object, it’s unlikely you would have previously
thought ahead to mmake that field an integer-cell object.

 Basically the problem is that in the Lisp memory model values like
integers are first-class, but storage locations such as integer slots are
not first-class. (Common Lisp patches over this to some extent with
the “generalized places” concept of setf, but you still have to write
(defun (setf foo) ... all the time.) See First class locations (p. 27) for
more notes on this.

 But in a situation like that, where you’re changing some value you
maybe used later in a calculation or to display something, you’d
maybe sort of like to redo those calculations or that display. So there’s

https://www.youtube.com/watch?v=o4-YnLpLgtk
https://news.ycombinator.com/item?id=25620256
https://news.ycombinator.com/item?id=25620256
https://www.youtube.com/watch?v=0-_zVkrWCOk

a whole question of spreadsheet-like incremental recomputation
involved. (A key point about Reti's demo is that at one point he
modifies some image data, but because the pixels on the screen are
cached copies of a previous version of the image, they don't update
until he rebuilds the screen from scratch.)

 The LispM sort of doesn’t exploit the full potential of a graphical
terminal; in one of Reti’s examples, at 5'7", he clicks on the “Read
Image File” command from the help and starts typing “linux”, and
the resulting text is

1/17/13 17:34:16 VLM command: Read Image File (from file(s) [default WILSON:>reti
>demo.lisp.newest]) linux

 Which, with the advantage of 40 years of UI research, I strongly
suspect would work better by putting the default filename into the
place where you’re typing, rather than to the left of it. And I suspect
it would be better to show all the arguments for a multi-argument
command at once rather than one at a time.

 (Incidentally, in this particular example, the similarity to Emacs is
very strong; not only does Emacs prompt with the same style, but
he’s also accessing a remote filesystem in the same way as ange-ftp
and TRAMP.)

 The LispM interaction model is somewhat modal; as Reti points
out at 6'14", none of the previously-mouse-sensitive things are
mouse-sensitive at the point that he's being prompted for an image to
load, so it’s still essentially a command-line interface — it isn’t so
much that the various bits of text in the typescript support separate
interactions themselves as that they are (or are not) viable arguments
for the single interaction going on at the moment. Some form of such
modality is apparently unavoidable (consider xmag, xkill, “Inspect
Element”, and screenshots) but it would be nice to keep it quasimodal
rather than fully modal; with modern multitouch displays, this might
be less challenging than previously.

 A potentially interesting thing about building up a typescript as a
layout of objects is that it could start very small on your display and
grow as needed before starting to scroll.

Topics

• Programming (p. 1141) (49 notes)
• History (p. 1153) (24 notes)
• Human-computer interaction (p. 1156) (22 notes)
• Lisp (p. 1174) (11 notes)
• Terminals (p. 1202) (6 notes)
• Post-teletype terminal design (p. 1207) (6 notes)
• Operating systems (p. 1248) (4 notes)
• Emacs (p. 1298) (3 notes)
• Video (p. 1312) (2 notes)
• Layout (p. 1357) (2 notes)

Fibonacci scan
Kragen Javier Sitaker, 02021-01-10 (updated 02021-01-15) (1 minute)

 The Fibonacci sequence is F(0) = 1, F(1) = 1, F(n>1) = F(n-1) + F(n
-2), giving 1 1 2 3 5 8 13 21 34 55 89... and a property I just noticed is
that ΣₙF(n) for 0 ≤ n ≤ m is just F(m + 2) - 1.

 We can observe that this property is true for m = 0: the sum is 1, m
+ 2 = 2, F(2) = 2, so F(2) - 1 = 1. When we advance the sum from m
₀ to m₀ + 1, we are adding F(m₀ + 1) to it. F(m₀ + 3) = F(m₀ + 2) + F(
m₀ + 1), by definition, so if this property is true for some m₀, it is also
true for m₀ + 1. So by induction it is always true.

 In some sense we should expect something like this to be true, since
the Fibonacci sequence grows exponentially, but it was still a bit of a
surprise to me to observe that 1+1+2+3+5+8+13+21+34 = 89-1.

Topics

• Math (p. 1173) (11 notes)
• Prefix sums (p. 1338) (2 notes)

Relayout with heaps
Kragen Javier Sitaker, 02021-01-10 (updated 02021-01-15)
(6 minutes)

 I was just writing a table editor in Python. Modern machines are
fast, so simple brute force was sufficient to instantly recalculate the
typewriter width of each column in the redraw:

def redraw(self, output):
 widths = [max(1, max(len(s) for s in col)) for col in self.contents]
 output.write('\033[2J\033[0H') # clear screen, home
 ...

 Until I loaded a two-megabyte file with 100k rows and 400k cells
into it, anyway, and redraw started taking a noticeable fraction of a
second.

 There are a lot of ways you can change the problem to make it
easier. You can divide your table into pages with independently
varying column widths. You can compute column widths with a
512-row window around the cursor that moves in big jumps with a
little hysteresis. You can require the user to set the column widths
manually. You can render the display immediately with the outdated
column width, recomputing the correct column width in the
background, and update the display again when you’re done. You
can cache the column widths, only recomputing them after a change.

 But most changes — the vast majority, in fact — don’t change a
column width, so you can do better than just recomputing the
column width after a change. If you make a cell narrower, it only
changes the column width if it was previously of the maximal width
in the column, and no other cell is still that maximal width. If you
make it wider, it only changes the column width if it becomes wider
than the previous column width, and then its new width is the new
column width.

 So, even though the column width depends on every cell in the
column (100k cells in this example) a custom cache invalidation
strategy can eliminate most column-width recomputations and make
many others trivial: the new column width is the cell’s new width.
But there’s still a case where you need to do a potentially expensive
computation: where you’re making the cell so narrow that it’s
narrower than the column. You need to figure out what the new
narrow cell is.

 Previously I’ve written about computing such semilattice
reductions incrementally using the standard parallel or incremental
prefix-sum algorithm, which gives you a logarithmic-time way of
finding the new maximum. In this case, for example, you could have
a 17-level perfect binary tree of maximal cell widths, each node
annotated with the larger cell width from its two children, with the
overall maximal width at the base; whenever you increase or reduce a
cell width, you propagate that reduction up the tree, potentially all
the way to the root, requiring only 17 pairwise max operations in the
worst case, but only about two in the average case.

 But it occurred to me that a possibly different approach is to build a
max-heap over the cell widths. If a binary heap (rather than, for
example, a Fibonacci heap), this is also a perfect binary tree, but
because it the widths it keeps in internal nodes are not duplicated in
leaves, it’s half as big, and is thus only 16 levels deep. It also requires
about two operations in the average case, this time comparisons and
conditional swaps.

 One tricky bit is that it isn’t sufficient to just keep the widths
themselves in the heap; we need a bit more metadata in order to be
able to update them. There are a couple of different approaches.
First, we can make the heap items into (width, cellindex) pairs,
inserting a new one every time a cell changes width; and, when we
consult the one at the top of the heap, we we check to see if its width
is still up to date, and if not, we discard it and check the next one.
Second, we can mutate the items within the heap, maintaining an
index into the heap in the cell structure itself, with which to find its
corresponding heap item and sift it up or down as appropriate; this
index must be updated whenever the heap item is shouldered aside by
a larger cell sifting up, or promoted by a smaller cell sifting down, so
the heap item also needs a pointer back to the cell structure in this
case, so it still needs to contain the cellindex, though it no longer
needs to contain the width itself.

 Note that, unless the cellindex is smaller to store than the width,
this eliminates the apparent twofold size advantage of the bin-heap!

 The heap approach also requires a total ordering on its keys, so it’s
less general than the reduction prefix-sum tree, which can work on
more general semilattices as well as other monoids and even I think
semigroups.

 Reasoning in the opposite direction, the semilattice-reduction
prefix-sum tree would seem to provide a viable logarithmic-time
implementation of a priority queue, which will be cheaper if the
items in the priority queue need to be addressable by something other
than priority — process ID, for example, or table cell index. If you
have a hash table of scheduled events, for example, you should be able
to maintain a perfect binary tree of earliest scheduled events in various
2ⁿ-sized subsets of the hash buckets. This will obviously be costly if
most of the hash buckets are empty, but with modern hashing
techniques like cuckoo hashing, the number of empty buckets can be
kept very low.

 So, is there ever a reason to use a binary heap? Heapsort is an
in-place worst-case linearithmic comparison sort, and I don’t think
you can do that with this prefix-sum tree thing. But I think the usual
priority-queue problems can be solved just as well with the
prefix-sum-tree approach.

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Human-computer interaction (p. 1156) (22 notes)
• Algorithms (p. 1163) (14 notes)

• Python (p. 1166) (12 notes)
• Real time (p. 1195) (7 notes)
• Caching (p. 1266) (4 notes)
• Prefix sums (p. 1338) (2 notes)
• Layout (p. 1357) (2 notes)

Transactional editor
Kragen Javier Sitaker, 02021-01-14 (updated 02021-01-15)
(73 minutes)

 I was thinking about the transaction-per-call notes in Derctuo, and
it occurred to me that an Emacs clone might be a fun testbed for some
of the ideas in there, in particular the use of transactions to guarantee
UI responsiveness without presenting a complicated programming
model to ad-hoc editing scripts, and providing easier error recovery.
If updating the screen, syntax-highlighting text, auto-indenting, and
handling keystroke commands are each done in separate transactions,
it should be easy to guarantee rapid screen updates, and even in some
cases rapid keystroke commands.

 The transaction write logging can maybe also be repurposed for
undo, which is a pretty essential feature. Emacs’s local undo is one of
the nicest things about Emacs.

What would I actually need to implement
to get an editor I’d use?

 Here is some of my view-lossage from Emacs while writing this
note, to try to get a handle on which commands I use most and would
therefore miss most if they were missing:

r e p a i n t i n g SPC t h e SPC s c r e e n M-q SPC
a n d SPC C-a M-d u p d a t i n g M-f M-f , SPC s y
<backspace> n <backspace> y n t a x - h i g h l i t
h <backspace> <backspace> g h t i n g SPC t e x t ,
C-x C-s C-e h a n d l i n g SPC k e y s t r o k e s
SPC a r e SPC d o n e SPC i n SPC s e p a r a t e M-q
SPC t r a n s a c t i o n s , SPC C-x C-s C-p C-e <backspace>
SPC c o m m n d s <backspace> <backspace> <backspace>
a n d s M-q M-f SPC e a c h C-x C-s C-e SPC t h e n
SPC C-x C-s <M-backspace> i t SPC s h o u l d SPC b
e SPC e a s y SPC t o SPC g u a r a n t e e M-q SPC
r a p i d SPC s c r e e n SPC u p d a t e s , SPC a
n d SPC p o s s i b l y SPC e v e n SPC r a p i d SPC
k e y s t r o k e SPC c o m m a n d M-b M-b M-b M-b
<M-backspace> M-f SPC i n SPC s o m e SPC c a s e s
C-e s . M-q C-x C-s M-> <return> <return> C-x C-s C-h
l C-x o C-SPC
M-< M-w C-x o C-y C-x C-x C-> C-g C-l C-o C-o C-x 1
H e r e SPC i s SPC s o m e SPC o f SPC m y SPC v i
e w - l o s s a g e SPC f r o m SPC E m a c s SPC w
h i l e SPC r u n <M-backspace> w r i t i n g SPC t
h i s SPC d o c u m e n <M-backspace> p a g e <M-backspace>
n o t e : C-x C-s C-h l C-x o C-p
C-M-v C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p
C-p C-s c - h SPC l C-r M-f C-f C-f C-f C-f C-SPC C-n
C-n C-n C-n C-n C-n M-w C-x o M-> SPC C-y M-^ M-^ M-^
M-^ M-^ M-^ C-/ C-/ C-/ C-/ C-/ C-/ C-f <return> C-x
C-x C-e C-f C-> C-x C-s C-x 1 M-v C-g M-{ M-{ C-n C-p

C-o <return> C-x C-s T h e SPC t r a n s a c t i o
n SPC w r i t e SPC l o g g i n g SPC c a n SPC a l
s o SPC b e SPC r e p u r p o s e d SPC t <backspace>
f o r SPC C-x C-s C-x b s h <return> C-d g r e p SPC
- i SPC q e m a c s SPC . . / d e r c u <tab> m a r
<tab> * <return> C-x C-f M-p M-p M-n <M-backspace>
<M-backspace> <M-backspace> <M-backspace> <M-backspace>
d e r c u <tab> m a r <tab> q e <tab> m <backspace>
a <tab> <return> C-x 3 C-x b C-s <return> C-h l
p e n d i n g SPC p r o p e r l y , SPC M - q SPC l
e a v i n g SPC y o u SPC i n p <backspace> SPC p l
a c e , M-q SPC r e i <backspace> d i s p l a y SPC
t h a t SPC i s n ' t SPC v i s i l <backspace> b l
y SPC s l o w SPC (!) , SPC M - / , SPC c o n t r
l - b a c k s p a c e , M-q SPC M-b M-b M-f <backspace>
o l C-e c o m m a n d SPC <backspace> - g r a n u l
a r i t y SPC u n d o , M-q SPC p r e f i x SPC a r
g u m e n t s , SPC a n d SPC <M-backspace> <backspace>
<backspace> . M-b M-b a n d SPC C-e SPC S-SPC l s <backspace>
<backspace> A l s o SPC s o m e SPC t h i n g s SPC
I S-SPC u s e d SPC t h a t SPC d i c SPC <backspace>
<backspace> d SPC w o r k : M-q SPC C C-h k C-x C-e
C-x o q C-x o C-x o <backspace> g o t o - l i n e ,
SPC y a n k - p o p . M-b M-b <backspace> <backspace>
SPC a n d SPC C-e <backspace> SPC , s a y <M-backspace>
<backspace> , <backspace> <backspace> , SPC s a y .
M-q C-x C-s C-x 1 C-h l
C-x o C-x o C-x o M-< C-s C - h SPC l C-SPC
M-< M-w C-x o M-{ C-y C-x C-x C-> C-x C-s C-x 1 C-x
C-x C-o C-x C-s M-v M-{ M-{ M-{ M-{ M-{ M-} M-} C-p
M-f M-f M-f M-f M-f SPC m a y b e C-e u n d o , SPC
w h i c h SPC i s SPC p a <backspace> <backspace> a
SPC p r e t t y SPC e s s e n t i a l SPC f e a t u
r e . M-q SPC S-SPC E m a c ' <backspace> s ' s SPC
l o c a l SPC u n d o SPC i s SPC o n e SPC o f SPC
t h e SPC n e <backspace> i c e s t SPC t h i n g s
SPC a b o u t SPC E m a c s . M-' M-q C-x C-s <next>
<next> <prior> <prior> <prior> M-{ M-{ M-{ M-{ M-}
C-p C-x b t r a n C-g C-x C-f <M-backspace> <M-backspace>
d e r t <backspace> c t u <tab> m a r <tab> r a n <M-backspace>
t r a n s <tab> <return> C-x C-= C-= C-= <next> M-x
M-p <return> c d SPC . . / d e r c t u <tab> <return>
l s <return> f i r e f o <tab> SPC d e r c t <tab>
- 0 2 <tab> <tab> 1 / n o t <tab> t r a n s <tab> &
<return> C-x 1 C-x b <return> C-x b C-s <return> C-h
l
C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n
M-w C-x o M-> M-{ M-{ M-} C-y C-x C-x C-> C-g C-d C-x
C-s C-x 1 C-v M-} M-{ M-} C-p C-p C-p C-p C-p C-o M-{
C-p C-e <backspace> , SPC t o SPC t r y SPC t o SPC
g e t SPC a SPC h a n d l e SPC o n SPC w h i c h SPC
c o m m a n d SPC <backspace> s SPC I S-SPC u s e M-q
SPC m o s t SPC a n d SPC w o u l d SPC t h e r e f
o r e SPC m i s s SPC m o s t SPC i f SPC t h e y SPC
w e r e SPC m i s s i n g : M-q C-x C-s C-x 2 C-x C-f

<M-backspace> <M-backspace> d e v 3 / d e c o d e -
l <backspace> <backspace> l o s s a g e . p y <return>
! / u s r / b i n / p y t h o n 3 <return> " " <backspace>
<backspace> " " " D e c o d e SPC e m a c s SPC C-x
C-s C-h k C-h l C-x o v i e w - l o s s a g e . C-x
o C-x o C-n C-n C-n C-n C-n C-n C-n C-n C-e C-b C-b
C-b <return> C-x o C-x o C-v C-v C-v C-v M-x o p e
n - d r i <tab> <return> l o s s a g e . <backspace>
M-b t m p . <return> C-h l
C-x o C-r C-r C-r M-f M-f C-f C-f C-SPC C-n C-n C-g
C-r C-r C-r M-< C-SPC M-> C-p C-p M-w C-x o C-x o M->
M-{ C-y C-x C-x C-> C-x C-x C-g C-x C-f t m p . l <tab>
<return> C-n C-n C-x k <return> C-x o q C-x o <backspace>
SPC o u t p u t . " " " <return> C-x C-s M-b M-b M-f
M-f SPC w i t h SPC a n SPC a s s u m e d SPC k e y
m a p C-x C-s M-x d e s c r i b - e <backspace> <backspace>
e - k e y <tab> m <tab> <backspace> <backspace> <backspace>
<backspace> c u r <tab> k e y <tab> m <backspace> <backspace>
<backspace> <backspace> m <M-backspace> <M-backspace>
m <tab> o d <tab> <return> C-x o C-x o C-x o C-v C-v
C-v M-v C-v C-v C-v C-v M-v M-v M-v q C-h l
M-< C-s C - h SPC l C-s C-x C-x C-g
C-x C-x C-g C-r C - h SPC <backspace> C-p C-p C-p C-p
C-p C-p C-p C-p C-p C-a C-p C-p C-f C-f C-SPC C-n C-n
C-n C-n C-n C-n C-n C-n C-n C-n C-n C-e C-f M-w C-x
o C-x o C-y C-x C-x C-> C-x C-s C-x o q C-x o C-x o
C-x o C-g M-v M-v M-v M-v M-v M-v C-x o C-e <return>
<return> w o r <M-backspace> d e f SPC w o r d s M-(
i n f i l e C-e : <return> <tab> f o r SPC l i n e
SPC i n SPC i n f M-/ : <return> <tab> f o r SPC w
o r d SPC i n SPC l i n e . s p l i t () : <return>
<tab> y i e l d SPC w o r d <return> C-x C-s <return>
<return> i f SPC _ _ n a m e _ _ SPC = = SPC ' _ _
m a i n _ _ ' : <return> <tab> p r i n t (l i s t
(w o r d s (s y s . s t d i n))) M-< M-} C-o C-o
i m p r o <backspace> <backspace> o r t SPC s y s C-x
C-s C-h l
C-x o C-x o C-r C-e C-g C-x o C-r
C - h SPC l C-r M-f M-f C-f C-f C-SPC M-> C-p C-p M-w
C-x o C-x o M-} C-y C-x C-x C-> C-g C-x C-s C-d C-x
C-s C-x o q C-x o C-x b C-g M-x M-p C-g M-o C-g M-x
s h e l l <return> c d SPC . . / d e v 3 <return> p
y t h o n SPC d e c o d e l <tab> <return> C-x o C-x
b <return> M-{ C-SPC M-} M-w C-x o C-y C-d <return>
C-d <return> C-c C-d <return> C-d C-d C-c C-p C-v C-v
C-v C-v C-v C-v M-v C-h l
C-x o
C-x o C-x o C-r C-r C-r M-f M-f M-f M-f M-b C-SPC C-n
C-n C-n C-e C-n C-n C-n C-n C-n M-w C-x o C-p C-n C-y
C-x C-x C-> C-l C-x C-s C-x 1 C-x C-x C-o C-f C-x C-s
C-x 2 C-x b C-s C-s <return> M-} M-} C-o <return> p
r e f i x e s SPC = SPC (' C - x ' M-b C-b C-b C-b
(C-e ,) M-b C-b C-b C-b C-b <backspace> [C-e SPC
(' C - c ' ,) , SPC C-x C-s C-x o M-v <prior> <prior>
<prior> <prior> <prior> <prior> <prior> <prior> <next>

<next> C-x o (' E S S <S-backspace> C ') <backspace>
, ' <backspace>)) <backspace>] C-f C-s C-g C-x C-s
C-n C-n C-n C-o C-k C-o <tab> m a i n (s y s s <backspace>
. s t d i n) C-f C-k C-k C-p C-p C-p C-o C-o d e f
SPC m a i n (i n p u t) <backspace> <backspace> <backspace>
<backspace> f i l e) : <return> C-y C-k C-x C-s M-x
c o m p C-g C-x o M-v M-v C-v C-n C-SPC C-v C-n C-n
C-n C-n C-n M-w C-x o M-x M-p <return> M-> C-p M->
M-p M-p <return> C-y C-/ C-x b <return> C-r) SPC C-f
, C-x C-s C-x g q C-h l
C-r C-r <return> M-> C-r C
- h SPC l C-r C-f M-f M-f C-SPC M-> C-p C-e C-p C-e
C-p C-e M-w C-x o C-x o M-} C-y C-x C-x C-> C-d C-x
C-x C-o C-x C-s C-x o q C-x b <return> M-p <return>
C-x o C-f C-SPC M-2 M-0 C-p M-w C-x o C-y <return>
C-d C-d C-x o C-h l
C-x o C-x o C-x o C-r
C-r C-r M-f M-f M-f M-b M-f C-SPC C-n C-n C-n C-n C-n
M-w C-x o C-x o M-} C-y C-x C-x C-> C-d C-x C-s C-x
o C-x o C-x o C-x b C-g C-n C-n C-n C-n C-n C-n C-o
C-x C-s C-x o C-x o C-x 3 C-x b <return> C-n C-n <return>
w <backspace> <tab> f o r SPC w o r d SPC i n SPC M-d
M-d C-d C-e <backspace> <backspace> : <return> C-p
C-o <tab> p r e f i x SPC = SPC () C-n C-n C-e <tab>
C-x C-s p r e f i x SPC = SPC p r f <backspace> e f
i x SPC + S-SPC <M-backspace> <backspace> <backspace>
+ = SPC (w o r d ,) <return> <tab> i f SPC p r e
f i x SPC n o t SPC i n SPC p r e f i x e : <backspace>
s : <return> <tab> p r i n t (p r e f i x) M-b '
SPC ' . j o i n (C-e) <return> <tab> p r e f i x
SPC = SPC () C-x C-s C-h l
C-x o C-x o C-x o C-r C-r C-r M-f M-f
M-f C-SPC M-} M-w C-x o C-x o C-x o C-y C-x C-x C->
C-d C-x C-s C-v C-x o C-x o C-f C-p C-p C-p C-n C-n
C-n C-o <tab> <backspace> <backspace> p r i n t ('
SPC ' . j o i n (p r e f i x)) C-a C-o C-x C-s C-x
o M-p M-p <return> M-p M-p <return> C-d C-d M-v M-v
M-v M-v M-v M-v M-v M-v M-v C-x o C-x o C-x o C-r [
C-d { C-e <backspace> } C-x C-s <return> <return> c
m d s SPC = SPC { <backspace> <backspace> <backspace>
<backspace> t r SPC SPC <backspace> = SPC ' ' ' <return>
C - v SPC C-h k C-v s c r o l l - u p <return> M -
v SPC s c r o l l - d o w n C-h f <return> C-p C-p
C-p C-p C-e C-b , SPC (' C - h , <backspace> ' ,)
C-x C-s C-x o C-x o C-x o C-x o C-n C-n C-n C-n <return>
C - h SPC l SPC v i e w - l o s s a g e <return> C-x
C-s C - x SPC o SPC o t h e r - w i n d o w C-h f <return>
<return> C - r SPC i s e a r c - b a <backspace> <backspace>
<backspace> h - b a c k w a r d C-h f <return> <return>
' ' ' C-x C-s C-h l
C-h f <return> C-h k M-w <M-backspace> <M-backspace>
<M-backspace> <M-backspace> k i l l - r i n g - s a
v e C-x C-s <return> C - p SPC p r e v i o u s - l
n e C-x C-s <backspace> <backspace> i n e C-x C-s <return>
C - y SPC y a n k C-h f <return> <return> C - x SPC

C - x SPC C-h k C-x C-x e x c h a M-/ C-x C-s C-h k
C-x 1 <return> d e <backspace> <backspace> C - x SPC
1 SPC d e l e t e - o t M-/ - w M-/ <M-backspace> w
i n d o w s C-x C-s C-n <return> c m d s SPC = SPC
{ w o r d [<backspace> s [M-b ' SPC ' . j o i n (
C-e : - 1]) : S-SPC w o r d s [- 1] <return> <tab>
f o r SPC l i n e SPC i n SPC C-p C-a C-o C-n C-n C-e
c m d s M-/ . s p l i t (\ <backspace> ' \ n ' (<backspace>
) <return> <tab> f o r SPC w o r d s SPC 9 <backspace>
i n SPC [l i n e . s p l i t ()] <return> <tab>
f o r SPC <M-backspace> i f SPC C-x o M-> p y t h o
n 3 <return> ' \ n ' . s p l i t () <return> M-p M-b
M-b C-b SPC <return> C-x o w C-g C-/ C-x o C-x o w
o r d s } C-x C-s C-h l
C-x o C-x
o C-x o C-r C-r C-r M-< C-f C-f C-SPC M-> C-p C-p M-w
C-x o C-x o C-x o C-y C-x C-x C-> C-g C-x C-s C-x C-x
C-g C-x o C-x o C-f C-v C-n C-l C-n C-n C-o <tab> c
m d SPC = SPC M-d C-d C-e <backspace> <return> C-k
C-n C-o <tab> i f SPC <M-backspace> p r i n t (p r
e f i x , SPC c m d s . g e t (p r e f i x , SPC '
s e l f - i n s e r t - c o m m a n d) <backspace>
')) C-x C-s C-x o C-d M-p M-p M-p M-p M-p <return>
M-p M-p M-p M-p M-p <return> C-d C-c C-p C-v C-x o
C-x o C-x o C-a M-f M-f <M-backspace> c m d M-f M-f
M-f <M-backspace> c m d s <backspace> C-x C-s C-x o
M-> C-d M-p M-p <return> M-p M-p <return> C-d C-c C-c
C-c C-p C-v <next> <down> <down> <down> <down> <down>
<down> <down> <down> <down> <down> <down> <down> <down>
<down> <down> <down> <down> <down> <down> C-x o C-x
o C-h l
C-r C-r C-r M-f M-f M-f C-SPC M-> C-p
C-p M-w C-x o C-x o C-x o C-y C-x C-x C-> C-d C-x C-s
C-x o C-x o M-{ C-x C-s C-p C-p C-p C-p C-n C-n C-n
C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-p C-p
C-e M-b M-b M-b M-d M-d M-d ? ? ? C-x C-s C-x o M->
M-p M-p <return> M-p M-p <return> C-d C-d C-c C-p C-v
C-v C-v C-l C-x o C-x o C-x o C-h k C-> M-v C-l C-n
C-n C-n C-o C - > SPC i n d e n t i <backspace> - r
i g i d l y - 4 <return> C - l SPC C-h k C-l r e c
e n t e r - t o p - b o t t o m C-x C-s <return> C
- x SPC C s - <backspace> <backspace> - s SPC C-h k
C-x C-s s a v e - b u f f e r C-x C-s <return> C -
o SPC C-h k C-o o p e n - l i n e <return> C - f SPC
C-h k C-f f o r w a r d - c h a r C-x C-s C-h k C-x
2 <return> C - x SPC 2 SPC s p l i t - w i n d M-/
<backspace> - M-/ M-/ <M-backspace> v e r M-/ <backspace>
t i c a l l y C-x C-s C-h l
C-x o C-x
o C-x o C-r C-r C-r M-f M-f M-f C-SPC M-> M-p C-p C-p
M-w C-x o C-x o C-x o M-} C-y C-x C-x C-> C-d C-x C-s
C-x o C-x o <return> C - s SPC i e <backspace> s e
a r c h - f o r w a r d C-h k C-s C-h k <return> <return>
< r e t u r n > S-SPC n e w l i n e C-x C-s C-h k M-}
<return> f o r w a r d - p a r a g r a p h C-a M -

} S-SPC C-x C-s C-M-v C-v C-n C-n C-n C-n C-n C-n C-n
C-o <return> f o r SPC c h r SPC i n SPC <backspace>
<backspace> <backspace> <backspace> <backspace> <backspace>
<backspace> _ c SPC i n SPC r a n g e (3 3 , SPC 1
2 7) : <return> <tab> c m d s [c] SPC = SPC ' s
e l f - i n s e r t - c o m m a n d ' C-x C-s C-h
l C-x o C-x o C-x o C-r C-r M-f
M-f M-f C-SPC M-} M-w C-x o C-x o C-x o M-} C-y C-x
C-x C-d C-x C-x C-> C-f C-g C-x C-s C-x o C-x o C-x
o M-> M-p M-p <return> M-p C-x o C-x o C-x o C-a M-f
C-f _ C-x C-s C-x o <return> M-p M-p M-p <return> C-d
C-c C-c C-x o C-x o C-x o C-b c h r (C-f C-f) C-x
C-s C-x o M-p M-p <return> M-p M-p <return> C-d C-c
C-c C-c C-p C-v C-v <next> C-h k C-x b C-x o C-x o
C-x o M-< C-v M-} C-p C-o C - x SPC b SPC i s w i t
c h - b u <backspace> <backspace> <backspace> b - b
u f f e r C-x C-s <return> S P C SPC C-h k SPC s e
l f - i n s e r t - c o m m a n d C-x C-s C-M-v <return>
C - b SPC b a c k w a r d - c h a r C-x C-s C-h k C-v
C-h k C-b C-h l C-x
o C-x o C-x o C-r C-r C-r M-f M-f M-f C-SPC M-> C-p
C-p M-w C-x o C-x o C-x o C-p C-y C-x C-x C-d M-^ C-n
C-a C-SPC M-} C-> C-g C-x C-s M-v C-x o C-x o C-M-v
<return> < p r i o r > S-SPC s c r o l l - u p C-h
k <prior> <backspace> <backspace> d o w n C-x C-s <return>
< n e x t > S-SPC s c r o l l - u p C-h k <next> C-M-v
C-h k <S-backspace> <return> < S - b a k c p s <backspace>
<backspace> <backspace> <backspace> c k s p a c e >
SPC p <backspace> C-x o C-h k <S-backspace> C-x o C-h
k <S-backspace> C-x o C-x o d e l e t e - b a c k w
a r d - c h a r C-x C-s <return> C - g SPC q u i t
C-h k C-g M-b k e y b o a d <backspace> r d - C-x C-s
C-e <return> H <backspace> C-h k C-k C - k SPC k i
l l - l i n e C-x C-s <return> C-h k <tab> < t a b
> S-SPC i n d e n t - f o r - t a b - c o m m a n C-h
C-g d C-x C-s C-h l C-x o C-x o C-x o C-r C-r C-r M-f M-f M-f C-SPC
M-} M-w C-x o C-x o C-x o M-} C-p C-e SPC C-y C-x C-x
C-d C-x C-x C-x C-x C-n C-e C-a C-> C-x C-s C-v M-}
C-x o C-x o C-M-v C-h k <backspace> C-x o C-h k <backspace>
C-x o C-x o C-x o C-p C-p C-p C-a C-k C-k C-y C-y C-p

M-f M-f M-b <M-backspace> C-x C-s C-h l C-x o C-x o C-x o C-r C-r C-r M-f M-f M-f
 C-SPC
C-SPC M-} C-x C-x M-w C-x o C-x o C-x o C-p C-e C-y
C-x C-x C-n C-a C-n C-> C-x C-s C-n C-g C-x o C-x o
C-M-v C-M-v C-h k M-x C-n C-n C-n C-e <return> M -
x SPC e x e c u t e - e x t e n d e d - c o m m a n
d C-x C-s C-M-v C-h k M-p C-x o C-h k M-p C-x o C-x
o C-x o <return> M - p SPC c o m i n t - p r e v i
o u s - i n p u t C-x C-s <return> C - / SPC u n d
o C-h l C-h k M-/ C-h k C-/ <return> M - / SPC d a
b b r e v - e x p a n d C-x C-s C-h l
C-x o C-x o C-x o C-r C-r C-r C-r M-f C-f C-f C-f C-f
C-SPC M-} M-w C-x o C-x o C-x o C-n C-n C-n C-n C-n
C-e C-y C-x C-x C-x C-x C-x C-x C-n C-f C-> C-g C-x

C-s C-x C-x C-x C-x C-g C-u C-SPC C-u C-SPC C-u C-SPC
C-u C-SPC C-x o C-x o C-h k C-x g <return> C - x SPC
g SPC m a g i t - s t a t u s C-x C-s C-M-v C-x o M->
M-p M-p <return> M-p M-p <return> C-d C-c C-c C-h k
M-> C-x o C-x o C-x o <return> M - > S-SPC e n d -
o f - b u f f e r C-x C-s C-x o C-r ? ? C-r C-r M->
C-x o C-x o C-h l
C-r C-r <return> C-r c - h SPC l C-r C-n
C-a C-SPC M-} M-w C-x o C-x o C-x o M-} C-y C-x C-x
C-> C-g C-x C-s C-x o C-x o C-v C-n C-n C-n C-n C-n
C-n C-n C-n C-n C-p C-p C-p C-p C-p C-o <tab> f r e
q s SPC = SPC { } C-f C-n C-x C-s C-n C-p C-p C-o C-n
C-x C-s C-n C-n C-n C-p C-n C-n C-n C-n C-o <tab> M-{
C-o <tab> u n k o n w n s <backspace> <M-backspace>
u n k n o w n s SPC = SPC s e t () M-} M-} C-p C-o
<tab> C-a C-k C-n C-o <tab> i f SPC c m d SPC i n SPC
c m d s : <return> <tab> f r e q <M-backspace> n a
m e SPC = SPC c m d C-p C-p C-p C-n C-n C-n C-p C-p
M-b C-M-S-SPC C-M-S-SPC C-M-S-SPC C-w n a m e C-p <return>
<tab> n a m e SPC = SPC C-y C-n C-n C-a k <tab> i M-b
C-k i f SPC n a m e SPC n o t SPC i n SPC f r e q s
: <return> <tab> f r e q s [n a m e] SPC = SPC 0
<return> <tab> <backspace> f r e q s [n a m e] S-SPC
+ = SPC 1 C-f C-k <return> <tab> i f SPC n a m e SPC
= <M-backspace> c m d SPC n o t SPC i n SPC c m d s
: <return> <tab> u n k n o w n s . a d d (c m d)
C-h l
C-x o C-x o C-x o C-r C-r C-r M-f M-f
M-f C-SPC M-> C-p C-p M-w C-x o C-x o C-x o M-} C-y
C-x C-x C-> C-d C-x C-s C-x o C-x o C-f C-k C-x C-s
C-n C-n C-o <return> <tab> f o r SPC n a m e SPC i
n SPC s o r t e d (f r e q s . k e y s () , SPC k
e y = f r e q s . g e t M-b C-e , SPC r e v e r s e
= T r e u e) <backspace> <backspace> <backspace> <backspace>
u e) : <return> <tab> p r i n t (n a m e M-b ' %
8 d SPC % s ' SPC % S-SPC (f r e q s [n a m e , SPC
<backspace> <backspace>] , SPC C-e)) <return> <return>
<tab> p <backspace> <backspace> p r i n t (" u n k
n o w n s : " " <backspace> , SPC " , SPC " , <backspace>
. j o i n (u n k M-/)) C-x C-s C-h l
 C-x o C-x o C-x o C-r C-r C-r M-f M-f M-f
C-SPC M-} M-w C-x o C-x o C-x o M-} C-y C-x C-x C->
C-d C-x C-s C-x o C-x o C-x o M-p M-p <return> M-p
M-p <return> C-d C-d M-v C-x o C-x o C-x o C-r r e
v M-d M-d <backspace> <backspace> C-x C-s C-x o C-x
o M-} C-SPC M-{ M-w C-x o C-x o C-x o M-> M-p M-n C-x
o C-x o C-x M-< C-g C-x o M-< C-n C-n C-o f r o m SPC
_ - f u t u r <M-backspace> <backspace> _ f u r u t
<backspace> <backspace> <backspace> t u r e _ _ S-SPC
i m p o r t SPC p r i n t _ f u n c t i o n C-x C-s
C-x o M-p M-p <return> C-x o C-SPC M-} M-w C-x o C-x
o C-x o C-y <return> C-d C-d M-v C-v C-h l
k C-d C-x o C-x o C-x o C-x o C-x o C-x o C - d SPC
d e l e t e - c h a r C-h k C-a <return> C - a SPC
m o v e - b e g M-/ - M-/ o f - l i n e C-x C-s C-h

k S-SPC <return> S - S P C SPC s e l f M-/ <return>
C - w SPC k i l l - r e g i o n C-h f <return> C-x
C-s <return> C-h k C-x C-f C - x SPC C - f SPC f i
n d - f i l e <return> C - x SPC C - e SPC C-h k C-z
C-h k C-x C-r C-h k C-x C-e e v a l - l a s t - s e
x p <return> C-x C-s C - u SPC C-h k C-u u n i v e
f s <backspace> <backspace> r s a l - a r g u m e n
t C-x C-s C-h k C-c C-d C-x o C-h k C-c C-d C-x o C-x
o C-x o <return> C - c SPC C - d SPC c o m i n t -
s e n d - e o f <return> C-x C-s M - < S-SPC C-h k
M-< b e g i n M-/ - f M-/ <M-backspace> o M-/ - M-/
M-/ C-x C-s <return> C-h k C-c C-c C-x o C-h k C-c
C-c C-x o C-x o C-x o C - c SPC C - c SPC c o m i n
t - i n t e r r u p t - s u b j o b C-h l
C-x C-s C-x o C-x o C-r C-r C-r M-< C-SPC M-} M-w C-x
o M-} C-y C-x C-x C-> C-g C-x C-s C-x o <return> C-h
k M-0 M - 0 SPC d i g i t - a r g u m e n t <return>
<f3> M - <f4> <backspace> <backspace> <backspace> <f3>
<return> M - <f3> SPC d i g i t - a r g u m e n t <f4>
<f4> <f4> <f4> <f4> <f4> <f4> <f4> <f4> <f4> C-a C-p
C-p C-p C-p C-p C-p C-p C-p C-p C-p C-k C-k C-SPC M-}
C-p M-w C-y C-x C-x M-% M - <return> C - <return> !
C-x C-s C-h l
s - p r o m p t <return> C-x C-s C-h k M-(M - (SPC
i n s e r t - p a r e n t h e s e s C-x C-s <return>
C - x SPC k C-h k C-x k SPC k i l l - b u f f e C-x
C-s <return> <backspace> r <return> C - x SPC C = <backspace>
- = SPC C-h k C-x C-= t e x t - s c a l e - a d j u
s t C-x C-s <return> M - ^ SPC C-h k M-^ d e l e t
e - i n d e n t a t i o n C-x C-s C-h k <down> <return>
< d o w n > S-SPC n e x t - l i n e C-x C-s <return>
C-h k C-x 3 C - x SPC 3 SPC s p l i t - w i n d M-/
- h o r i z o n t a l l y C-x C-s C-h k C-= C-x o C-x
o C-x o M-} C-r C - = C-h k C-M-v C-g C-h k C-M-v C-x
o <return> C - M - v SPC s c r o l l - o t h e r -
w i n d o w C-x C-s C-h k M-' <return> M - ' SPC s
m a r t - a p o s t r o p h e C-x C-s <return> < M
- B <backspace> b a c k s p a c e S-SPC <backspace>
> S-SPC C-h k <M-backspace> b a c k w M-/ - M-/ M-/
M-/ <return> C-h k M-{ C-h l
C-M-v C-g C-h k C-M-v C-x o <return> C - M - v SPC
s c r o l l - o t h e r - w i n d o w C-x C-s C-h k
M-' <return> M - ' SPC s m a r t - a p o s t r o p
h e C-x C-s <return> < M - B <backspace> b a c k s
p a c e S-SPC <backspace> > S-SPC C-h k <M-backspace>
b a c k w M-/ - M-/ M-/ M-/ <return> C-h k M-{ C-h
l C-x o C-x o C-SPC C-r C-r C-g C-SPC C-g C-r c - h
SPC l C-r M-{ C-SPC M-} M-w C-x o C-y C-x C-x C-> C-g
C-x o C-h k M-{ M - { S-SPC b a c k w a r d - p a r
a g r a p h C-x C-s <return> C - h SPC f SPC d e s
c r i b e - f u n c t i o n <return> C - h SPC k SPC
d e s c r i b e - k e y <return> M - q SPC f i l l
- p a r a g r a p h C-h k M-q C-x C-s <return> M -
o SPC C-h k M-o C-g C-g s h e l l C-x C-s <return>
C-h k M-n C-x o C-h k M-n C-x o C-x o C-x o M - n SPC

c o m i n t - n e x t - i n p u t <return> M - d C-h
k M-d SPC k i l l - w o r d C-x C-s C-h k C-g C-h
l
C-x o C-x o C-r C-r <return> C-r c - SPC h <backspace>
<backspace> h SPC l l l <backspace> <backspace> M-<
C-SPC M-} M-w C-x o M-} C-y C-x C-x C-> C-g C-x C-s
C-x o C-x o C-x o C-x o M-} C-SPC M-{ M-w C-x o C-x
o M-> M-p M-p <return> C-y <return> C-d C-d C-x o C-x
o C-x o C-h k C-h C-g C-h k C-x M-< C-h k C-x C-r C-h
k <f3> <return> < f 3 > S-SPC k m a c r o - s t a r
M-/ <backspace> <backspace> - M-/ m a c r o - o r -
i n s e r t - c o u n t e r <return> M - S-SPC <backspace>
% C-h k M-% SPC q u e r y - r e p l a c e <return>
< f 4 > S-SPC C-h k <f4> k m a c r o - e n d - o r
- c a l l - m a c r o C-x C-s C-h l
t a l , SPC C-x C-s M-x M-p <return> M-> M-p M-p <return>
M-p M-p <return> C-d C-d M-v C-x 2 C-x b C-s <return>
M-} <return> S o m e SPC n o t e s SPC o n SPC f r
e q u e n c i e s SPC o f SPC c o m m a M-b M-b M-b
m o s t SPC c o m m o n C-k SPC c o m m a n d SPC f
r e q u e n c i e s : <return> <return> C-x C-s C-x
o M-v C-p C-p C-p C-SPC C-n C-n C-n C-n C-n C-n C-n
C-n C-n C-n C-v C-v C-v M-v M-v C-p M-v C-n C-n C-n
C-n C-n C-n C-n M-w C-x o C-y C-x C-x C-> C-g C-x C-s
C-v C-x 1 C-l M-{ C-p C-e <backspace> . SPC S-SPC O
u t SPC o f SPC C-x C-s C-x b <return> M-> C-x b <return>
5 8 8 2 SPC c o m a <backspace> m a n d s SPC r e c
o r d e d SPC a b o v e SPC a n d SPC <backspace> SPC
s u c c s s <backspace> <backspace> e s s f u l l y
M-q d e c o d <backspace> <backspace> <backspace> <backspace>
<backspace> SPC d e o c <backspace> <backspace> c o
d e d , SPC t h e s e SPC C-f C-n C-SPC M-} M-= C-g
M-{ C-p C-e 2 4 SPC c a <backspace> <backspace> a c
c o u n t SPC f o r SPC C-v C-l M-(M-: M-(* S-SPC
5 8 8 2 SPC . 9 <return> C-/ C-h l
s SPC o b v i o u s l y SPC i s n ' t SPC e v e r y
t h i n g SPC e s s e n t i a l ; SPC M-' C-x C-s i
t ' s SPC m i s s i n g , SPC a m o n g SPC t h e r
SPC t h i n g M-b M-b o C-e s , SPC f i n d - f i l
e SPC a n d M-q SPC C-x C-s <M-backspace> <backspace>
, SPC C-r k i l l C-g C-x b C-s <return> M-v C-l C-x
b <return> y a n k , SPC k i l l - r i n g - s a v
e SPC M-(t h e SPC n e w SPC c o p y - r e g M-/ i
o n - a s k <backspace> - k i l l C-e . C-x C-s C-x
b <return> C-x b <return> <backspace> , SPC C-h k M-:
e v a l - e x p r e s s i o n , M-q SPC C-x C-s C-x
1 M-v <down> <down> C-n C-n C-n C-n C-n C-l C-n C-n
C-n C-n C-n C-n C-n C-n C-n C-e M-{ M-{ M-{ C-n C-n
M-f M-f M-f M-f M-b (<backspace> M-f M-f M-f SPC b
y SPC a SPC j a n k y SPC e r r o <M-backspace> u n
r e l i a b l e SPC c <backspace> s c r i p t M-q M-f
<backspace> <backspace> SPC f l l o w i n g <M-backspace>
f l <M-backspace> <backspace> s e C-x C-s C-h l
C-x o C-r C - h SPC l
M-< C-SPC M-} M-w C-x o M-{ C-y C-x C-x C-> C-g C-v

M-} C-n C-n M-b M-d C-d M-f SPC o f SPC t h e M-q C-x
C-s C-x 1 C-v C-l C-x b C-s <return> <down> <up> <up>
<up> <up> C-x b <return> C-x b <return> <down> <down>
<down> <down> <down> <down> <S-down> <S-down> <S-up>
C-g C-x 2 C-x b <return> M-} C-n C-p C-n M-f M-f M-f
M-f M-f M-f M-f M-f M-f C-o C-o SPC s u c h SPC b a
s i c s SPC a s SPC f o r w a r d - c h a r , M-d M-d
M-d C-d M-q C-n C-x o C-s e x t C-g C-x o C-e SPC n
d SPC e M-b M-b a C-e x e c u t e - e x t e n d e d
- c o m m a n d . C-r M - n C-r C-r C-r C-x C-f C-h
k M-n q C-g C-x b <return> M-v M-v C-r M - n M-f C-f
C-f C-f C-k n e x t - h i s t o r y - e l e m e n t
C-r M - p M-f C-f C-f C-f C-k C-x C-f C-h k M-p q C-g
p r e v i o u s - h i s t o r y - e l e m e n t C-x
C-s C-x b <return> C-x 1 C-v C-v C-v C-h l
C-x o C-r C-r M-> C-r c - h SPC l C-r M-f M-f
M-f C-SPC M-} M-w C-x o M-} C-y C-x C-x C-> C-d C-l
C-v C-x C-s M-} M-} M-} C-x C-x C-g C-x o C-x b <return>
C-u C-SPC C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n
C-n C-v C-l C-p C-p C-p C-p C-p C-p C-o <tab> u s e
d _ k e y s SPC = SPC { } <return> <tab> C-a C-k C-x
C-s C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n
C-n C-n C-o C-o <tab> <backspace> C-a C-k C-o <tab>
<backspace> i f SPC c h d <backspace> <backspace> m
d SPC n o t SPC i n SPC u s M-/ : C-a C-o C-n C-e <return>
<tab> C-p M-b M-d n a m e C-n <tab> u s e M-/ [n a
m e] S-SPC = SPC c m d C-f C-k C-x C-s C-n C-n C-n
C-n C-n C-n C-e C-a M-f M-f M-f M-f SPC (e . g . ,
SPC % s) C-e C-b C-b , SPC u s M-/ [n a m e] C-e
C-x C-s C-h l
C-x o C-r C-r C-r
M-f M-f C-f C-f C-SPC M-} M-w C-x b <return> C-y C-x
C-x C-d C-x C-x C-> C-g C-x C-s C-SPC M-{ M-w M-x M-p
<return> M-> M-p M-p <return> C-y <return> C-d C-d
C-h k <S-up> C-x o C-x b C-s <return> M-v C-l C-n C-n
C-n C-n C-n C-n C-n C-o M - : S-SPC e v a l C-h k M-:
- e x p r e s s i o n C-x o C-x 2 C-x b C-s <return>
C-x o C-x o <return> < S - d o w n > S-SPC C-a C-k
C-k C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p
C-p C-p C-p C-p C-y C-p C-p C-e C-n n e x t - l n e
<backspace> <backspace> i n e C-x C-s C-r u p C-a C-r
C-r C-v C-s C-s C-n C-n C-n C-n C-n C-y C-p C-e <M-backspace>
u p S-SPC <S-backspace> > SPC p r e v M-/ - M-/ M-/
<M-backspace> <M-backspace> C-h k <up> p r e v i o
u s - l i n e <return> < u p > SPC p r e v M-/ - M-/
C-x C-s C-h l
t SPC C-x C-s i f SPC y o u SPC h a v e SPC C-a C-k
T h i s SPC i s SPC p r o b a b l y SPC m o s t SPC
o f SPC w h a t SPC C-a C-k S o SPC w i t h SPC t h
o s e SPC c o m m a n d s , SPC y o u ' d SPC h a v
e SPC <M-backspace> <M-backspace> <M-backspace> i f
SPC m y SPC c u r r e n t SPC e d i t i n g SPC s e
s s i o n SPC w e r e SPC t y p i c a l SPC M-(w h
i c h SPC i t SPC p r o b a b l y SPC i s n ' t M-'
C-e , SPC M-q SPC y o u ' d SPC <M-backspace> <M-backspace>

I ' d SPC r u n SPC M-' i n t o SPC a C-p C-a M-f M-d
SPC i f SPC y o u SPC h a d M-f M-f SPC i m p l e m
e n t e d C-a M-f M-f M-d SPC I M-q C-n C-e C-x s SPC
C-p M-b C-n C-e SPC m i s s i n g SPC s t a i r SPC
o <backspace> a b o u t SPC o n c e SPC o u t SPC o
f SPC e v e r y SPC 1 0 0 SPC c h a r a c t e r <M-backspace>
k e y s t r o k e s . M-q C-x C-s C-h l
m a j o r i t y SPC o f SPC m y SPC k y <backspace>
e y s t r o k e s , SPC M-l M-q C-x C-s C-l C-l C-l
<next> <prior> <down> C-e M-b M-b M-b M-b a n d SPC
h a v i n g SPC h <backspace> j u s t SPC t h e s e
SPC i m p l e m e n t e d SPC o u <M-backspace> w o
u l d SPC m a k e SPC s o m e t h i n g SPC " f e e
l SPC l i k e SPC a n SPC E m a c s " , SPC M-" M-"
M-q C-x C-s <next> <next> <up> <next> <prior> <prior>
<prior> M-> <backspace> , SPC b u t SPC i t SPC s e
e m s SPC l i k e SPC i f SPC I S-SPC i m p l e m e
n t e d SPC * m y * S-SPC M-q SPC i <backspace> s t
a n <M-backspace> m o s t SPC u s e d SPC E m a c s
SPC c o m m a n d s SPC i n s t e a d SPC o f SPC B
e l l a r d ' s , SPC M-' t h e SPC s e t SPC w o u
l d SPC b e SPC e v e n SPC s m a l l e r . M-b M-b
M-b M-b t o SPC g e t SPC t o SPC c o m f o r t SPC
M-q C-x C-s <next> <prior> <prior> <prior> C-h l
C-n C-h f <return> C-n C-h f <return> C-n C-n C-n C-n
M-f M-f M-f C-h f <return> C-n C-h f <return> C-n C-h
f <return> C-p C-h f <return> C-n C-h f <return> C-x
0 a n d SPC d o d <backspace> w n c a s e - w o r d
SPC (! ?) . M-q C-x C-s C-x 1 C-l C-p C-p C-p C-p
C-p M-b M-b <M-backspace> <M-backspace> m o s t SPC
M-q C-x C-s <prior> <next> C-n C-n C-n C-n C-n C-n
C-n C-n C-n C-n C-n C-n M-f M-f M-f M-f SPC E m a <M-backspace>
G N U S-SPC E m a c s SPC i m p l e m e n t s SPC m
o s t M-f M-f M-f M-d M-d M-d C-e M-f M-f C-a M-d M-d
M-d <backspace> M-q M-> C-x C-s C-h f r e c e n t e
r <return> C-x 1 <backspace> S-SPC S-SPC S o m e SPC
o f SPC t h e m SPC <backspace> , SPC l i k e SPC r
e c e n M-/ , M-q SPC a r e SPC t h i n SPC L i s p
SPC v e n e e r s SPC o n SPC t o p SPC o f SPC b u
i l t - <M-backspace> p r i m i t i v e SPC f u n c
t i o n s SPC l i k e SPC r e c e n t e r . M-b M-b
M-d s u c h SPC a s M-q M-> C-x C-s <prior> <prior>
<prior> <prior> <prior> <prior> <prior> <prior> <prior>
<prior> <prior> <prior> <prior> <prior> <prior> C-h
l C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p C-n C-a M-f
, SPC c o n f l i c t i n g SPC w i t h SPC C-x b <return>
M-> <return> | a <tab> b <M-right> <M-S-right> x <S-up>
<S-right> <S-left> <S-up> C-a C-p C-p C-k C-k C-k C-k
C-k C-x C-s C-x b <return> s h i f t - s e l e c t
i o n SPC a n d SPC s o m e SPC o r g - m o d e SPC
b i n d i n g s M-q C-x C-s C-x C-s C-n C-n C-n C-n
C-n M-} C-o <return> T h e r e ' s SPC a SPC t h i
n g SPC c a l l e d SPC [A c e SPC J u m p] [2]
<return> <return> [2] : SPC C-y C-p C-p C-e SPC w
h i c h SPC l e t s SPC y o u SPC j u m p SPC t o SPC

t e x t SPC b y SPC s e a <M-backspace> t y p i n g
SPC i t , SPC e v e n SPC i f SPC i t ' s SPC i n SPC
a n o t h e r SPC w i n d o w M-' . M-q C-x C-s <backspace>
, SPC s i m M-' <M-backspace> s o r t SPC o f SPC l
i k e SPC m o v i n g SPC b y SPC i n c r e m e n t
a l SPC s e a r c h . M-q C-x C-s C-h l
i g n SPC w i t h SPC <M-backspace> w i t h SPC t h
e SPC d i s p l a y SPC d i v i d e d SPC i n t o M-q
SPC v e r t i c a l SPC " t r a c k " S-SPC e a c <M-backspace>
<backspace> <backspace> s " S-SPC e a c h SPC d i v
i d e d SPC i n t o SPC h o r i z o n t a l SPC " w
i n d o w s " M-q M-" M-" M-" M-" SPC m i <backspace>
<backspace> <backspace> C-e SPC m i g h t SPC b e SPC
a SPC C-x C-s <M-backspace> <M-backspace> p r o v i
d e SPC s i m p l e r SPC a n d SPC m o r e SPC p r
e d i c t a b l e SPC b e a v <backspace> <backspace>
h a v i o r . M-q C-x C-s <backspace> SPC t h a n SPC
t h e SPC t r a d <M-backspace> m <backspace> S m t
a l l t <M-backspace> S m a l l t a l k - s t y l e
SPC o v e r a l <backspace> <backspace> l a p p i n
g SPC w i n d o w s . C-x C-s M-> C-p C-p C-p M-b M-b
<M-backspace> <M-backspace> w o n d e r SPC i f SPC
M-q M-> C-x C-s M-v M-v M-v M-v M-v M-v M-v M-v M-v
M-v M-v <next> <next> <next> <next> <next> <next> <next>
<next> <prior> <prior> <down> C-h l C-x
o C-r C - h SPC l M-> C-SPC C-p C-p C-SPC M-< M-w C-x
o M-{ M-{ C-y C-x C-x C-> C-g C-x C-s M-{ C-x 1 M-{
M-{ M-{ M-{ M-{ M-{ <next> <next> <next> <next> <next>
<next> <next> <next> <next> <next> <next> <next> <next>
<next> <next> <next> <next> <next> <next> <next> <next>
<next> <prior> <prior> <next> <next> <next> <next>
<prior> <prior> <prior> <prior> <next> C-x b p y <return>
C-f C-SPC M-v M-v M-{ C-n C-n M-= C-g C-x 2 C-x b <return>
M-> M-v M-v C-v M-v M-v M-v M-} C-o <return> I SPC
u s e d SPC t h i s SPC t a b l e SPC t o SPC g e n
e r a t e SPC t h e SPC b o <M-backspace> <M-backspace>
t h e SPC a b o v e : M-b M-b M-b M-b o f SPC 9 9 SPC
k e y b i n d i n g s SPC C-x C-s C-x o C-SPC C-v C-v
C-v C-v C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n
C-n M-w C-x o C-e <return> <return> C-y C-x C-x C->
C-g C-x C-s C-x C-x C-k C-x C-x M-| s o r t <return>
C-x C-x C-u M-| M-p <return> C-h l
C-x C-> C-x C-x C-o C-r C - h SPC l C-l C-l C-l C-x
C-x C-r C-r C-p C-p C-p C-p C-p C-p C-p C-p C-g C-p
C-p C-p C-p C-p C-p C-p C-p C-p M-f M-f C-f C-f C-SPC
C-p C-p C-p C-p C-p C-p M-b M-b M-b C-w C-x C-s C-h
k M-| M-} C-x o C-x b C-s <return> C-o M - | SPC s
h e l l - c o m M-/ <backspace> <backspace> <backspace>
m M-/ - M-/ <M-backspace> o n - r e g i n <backspace>
o n C-h f <return> C-x o C-x b <return> C-SPC M-{ C-n
M-| ~ / d e v e l / d e v 3 / d e c o d e l <tab> <return>
C-x b C-s <return> C-x C-s C-x b <return> C-x C-x M-|
M-p <return> C-x o M-> C-x o C-x b <return> <return>
C - x SPC 0 SPC C-h C-g C-x 2 C-h k C-x 0 C-x o C-x
o d e l e t e - i <backspace> w i n d o w C-x C-s C-h

k C-x M-< C-h k C-x s C-h k <M-right> <return> < M
- R i g h t > S-SPC f o r w r <backspace> a r d - w
o r d <return> < M - S - R i g h t > C-h k <M-S-right>
SPC f o r w a r d - w o r d C-x C-s C-x b C-g C-x o
C-x o C-r C-g C-p C-p C-p C-p C-p C-SPC C-p C-SPC C-p
M-w C-x o C-x o C-x b <return> C-v C-v C-v C-v C-v
C-v C-v C-v C-v M-v C-p C-p C-y C-p C-> C-x C-s C-h
l
<down> <right> <down> <down> <down> <down> <down> <down>
<down> <down> <down> <down> <down> <down> <down> <down>
<down> <down> <down> <down> <down> <down> <down> <down>
<down> <down> <down> <down> <down> <down> <down> <down>
<down> C-p M-v C-v C-n C-n C-n C-n C-n C-n C-n C-n
C-n C-n C-n C-n C-n C-n C-n C-n C-n C-p C-SPC C-n C-n
C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n C-n
C-n C-n C-n C-n C-n C-n C-e C-x r k C-p C-p C-p C-p
C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p
C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p C-p
C-p C-l C-p M-{ C-n C-e SPC SPC SPC SPC SPC SPC SPC
SPC SPC SPC SPC SPC SPC SPC SPC SPC C-x r y C-x C--
M-{ C-l C-n C-n C-n C-n C-n C-n C-l C-/ C-p SPC SPC
SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC
SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC
SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC
SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC
SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC C-x r y
M-b M-b M-b M-b M-b M-b M-b C-s C-w C-w M-b M-b C-b
C-b C-b C-b C-b C-b C-b C-b C-b C-b C-b C-b C-b C-b
C-b C-b C-b C-b C-b C-b C-b C-b C-b C-b C-k C-p C-k
C-p C-k C-p C-k C-p C-k C-p C-k C-p C-k C-p C-k C-/
C-/ C-/ C-/ C-/ C-/ C-/ C-/ C-/ C-/ C-/ C-/ C-/ C-/
C-/ C-/ C-/ C-/ C-p C-/ C-v C-n C-n C-n C-n C-n C-n
M-} C-SPC M-} C-w C-h l

 Some notes on most common command frequencies. Out of 9014
of the commands recorded above and successfully decoded by a janky
unreliable script, these 21 account for 90% of the commands:

 5632 5632 self-insert-command (e.g., d)
 321 5953 next-line (e.g., C-n)
 297 6250 other-window (e.g., C-x o)
 242 6492 newline (e.g., <return>)
 216 6708 delete-backward-char (e.g., <backspace>)
 210 6918 previous-line (e.g., C-p)
 162 7080 save-buffer (e.g., C-x C-s)
 112 7192 scroll-up (e.g., C-v)
 112 7304 forward-word (e.g., M-f)
 101 7405 scroll-down (e.g., M-v)
 98 7503 isearch-backward (e.g., C-r)
 90 7593 describe-key (e.g., C-h k)
 71 7664 backward-kill-word (e.g., <M-backspace>)
 68 7732 previous-history-element (e.g., M-p)
 67 7799 indent-for-tab-command (e.g., <tab>)
 62 7861 backward-word (e.g., M-b)
 59 7920 end-of-line (e.g., C-e)

 56 7976 forward-paragraph (e.g., M-})
 56 8032 exchange-point-and-mark (e.g., C-x C-x)
 55 8087 set-mark-command (e.g., C-SPC)
 54 8141 keyboard-quit (e.g., C-g)

 Although this is the majority of my keystrokes, and having just
these implemented would make something “feel like an Emacs”, this
obviously isn’t everything essential; it's missing such basics as
forward-char, find-file, yank, kill-ring-save (the new
copy-region-as-kill), eval-expression, and
execute-extended-command. The next 9% (90% of the remainder)
are accounted for by the following 29 commands:

 49 8190 forward-char (e.g., C-f)
 48 8238 delete-char (e.g., C-d)
 46 8284 yank (e.g., C-y)
 45 8329 open-line (e.g., C-o)
 45 8374 view-lossage (e.g., C-h l)
 44 8418 backward-paragraph (e.g., M-{)
 43 8461 dabbrev-expand (e.g., M-/)
 41 8502 iswitchb-buffer (e.g., C-x b)
 41 8543 kill-ring-save (e.g., M-w)
 40 8583 fill-paragraph (e.g., M-q)
 37 8620 end-of-buffer (e.g., M->)
 33 8653 indent-rigidly-4 (e.g., C->)
 30 8683 kill-line (e.g., C-k)
 29 8712 move-beginning-of-line (e.g., C-a)
 24 8736 kill-word (e.g., M-d)
 21 8757 ??? (e.g., <M-S-right>)
 21 8778 recenter-top-bottom (e.g., C-l)
 20 8798 isearch-forward (e.g., C-s)
 16 8814 backward-char (e.g., C-b)
 15 8829 describe-function (e.g., C-h f)
 15 8844 delete-other-windows (e.g., C-x 1)
 14 8858 scroll-other-window (e.g., C-M-v)
 14 8872 beginning-of-buffer (e.g., M-<)
 12 8884 kmacro-end-or-call-macro (e.g., <f4>)
 10 8894 execute-extended-command (e.g., M-x)
 10 8904 undo (e.g., C-/)
 9 8913 smart-apostrophe (e.g., M-')
 8 8921 split-window-vertically (e.g., C-x 2)
 8 8929 delete-indentation (e.g., M-^)

 So if I had those commands implemented, if my current editing
session were typical (which it probably isn’t), I would run into a
missing stair about once out of every 100 keystrokes, probably a
couple of times a minute; still enough to break the spell of suspension
of disbelief, but close to usable. The remaining 24 commands,
though, include some very significant ones:

 7 8936 universal-argument (e.g., C-u)
 7 8943 find-file (e.g., C-x C-f)
 6 8949 comint-interrupt-subjob (e.g., C-c C-c)
 6 8955 smartquote (e.g., M-")

 6 8961 insert-parentheses (e.g., M-()
 5 8966 comint-previous-prompt (e.g., C-c C-p)
 5 8971 shell-command-on-region (e.g., M-|)
 5 8976 next-history-element (e.g., M-n)
 4 8980 kmacro-start-macro-or-insert-counter (e.g., <f3>)
 3 8983 eval-expression (e.g., M-:)
 3 8986 comint-send-eof (e.g., C-c C-d)
 3 8989 mark-sexp (e.g., C-M-S-SPC)
 3 8992 digit-argument (e.g., M-0)
 3 8995 split-window-horizontally (e.g., C-x 3)
 2 8997 magit-status (e.g., C-x g)
 2 8999 delete-window (e.g., C-x 0)
 2 9001 query-replace (e.g., M-%)
 2 9003 eval-last-sexp (e.g., C-x C-e)
 2 9005 kill-buffer (e.g., C-x k)
 2 9007 kill-region (e.g., C-w)
 2 9009 shell (e.g., M-o)
 2 9011 text-scale-adjust (e.g., C-x C-=)
 2 9013 count-lines-region (e.g., M-=)
 1 9014 downcase-word (e.g., M-l)

 My notes on QEmacs from Dercuano noted the things I missed
from Emacs in QEmacs: M-^, M-;, C-k appending properly, M-q
leaving you in place, redisplay that isn’t visibly slow (!), M-/,
control-backspace, command-granularity undo, and prefix
arguments. Also some things I used that did work: goto-line and
yank-pop, say. I was astonished that with only 88 commands it
managed to be pretty usable, but it seems like if I implemented my
most used Emacs commands instead of Bellard’s, the set to get to
comfort would be even smaller, less than 75.

 I used this table of 99 keybindings to generate the above:

<M-Right> forward-word
<M-S-Right> forward-word
<M-backspace> backward-kill-word
<S-backspace> delete-backward-char
<S-down> next-line
<S-up> previous-line
<backspace> delete-backward-char
<down> next-line
<f3> kmacro-start-macro-or-insert-counter
<f4> kmacro-end-or-call-macro
<next> scroll-up
<prior> scroll-down
<return> newline
<tab> indent-for-tab-command
<up> previous-line
C-/ undo
C-0 digit-argument
C-1 digit-argument
C-2 digit-argument
C-3 digit-argument
C-4 digit-argument
C-5 digit-argument

C-6 digit-argument
C-7 digit-argument
C-8 digit-argument
C-9 digit-argument
C-> indent-rigidly-4
C-M-S-SPC mark-sexp
C-M-SPC mark-sexp
C-M-v scroll-other-window
C-SPC set-mark-command
C-a move-beginning-of-line
C-b backward-char
C-c C-c comint-interrupt-subjob
C-c C-d comint-send-eof
C-c C-p comint-previous-prompt
C-d delete-char
C-e end-of-line
C-f forward-char
C-g keyboard-quit
C-h f describe-function
C-h k describe-key
C-h l view-lossage
C-k kill-line
C-l recenter-top-bottom
C-n next-line
C-o open-line
C-p previous-line
C-r isearch-backward
C-s isearch-forward
C-u universal-argument
C-v scroll-up
C-w kill-region
C-x 0 delete-window
C-x 1 delete-other-windows
C-x 2 split-window-vertically
C-x 3 split-window-horizontally
C-x C-= text-scale-adjust
C-x C-e eval-last-sexp
C-x C-f find-file
C-x C-s save-buffer
C-x C-x exchange-point-and-mark
C-x b iswitchb-buffer
C-x g magit-status
C-x k kill-buffer
C-x o other-window
C-y yank
M-" smartquote
M-% query-replace
M-' smart-apostrophe
M-(insert-parentheses
M-/ dabbrev-expand
M-0 digit-argument
M-1 digit-argument
M-2 digit-argument
M-3 digit-argument
M-4 digit-argument

M-5 digit-argument
M-6 digit-argument
M-7 digit-argument
M-8 digit-argument
M-9 digit-argument
M-: eval-expression
M-< beginning-of-buffer
M-= count-lines-region
M-> end-of-buffer
M-^ delete-indentation
M-b backward-word
M-d kill-word
M-f forward-word
M-l downcase-word
M-n next-history-element
M-o shell
M-p previous-history-element
M-q fill-paragraph
M-v scroll-down
M-w kill-ring-save
M-x execute-extended-command
M-{ backward-paragraph
M-| shell-command-on-region
M-} forward-paragraph
S-SPC self-insert-command
SPC self-insert-command

 Notice that 20 of these 99 are just digit-argument. I supplemented
these with self-insert-command bindings for printable ASCII.

 indent-rigidly-4, smartquote, and smart-apostrophe are little
commands I wrote that I often find useful.

 Worth noting is that GNU Emacs implements most of these
commands in Elisp, with a few exceptions: self-insert-command,
other-window, delete-backward-char, forward-word, scroll-up,
end-of-line, scroll-down, delete-char, forward-char, backward-char,
scroll-other-window (!?), delete-other-windows,
execute-exptended-command, kill-buffer, and downcase-word (!?).
Some of them, like recenter-top-bottom, are thin Lisp veneers on top
of primitive functions such as recenter.

Window management

 The Emacs way of handling windows from the keyboard is totally
broken. With two windows on the screen it’s fine. Three is
awkward. Four is unusable. In the above lossage there are strings of
up to six other-window commands in a row. Any number of better
alternatives for window switching have been invented: Win16 LRU
alt-tab; screen/tmux numbering of windows; irssi numbering of
windows with alt-1/alt-2/alt-3 etc. to switch between them and alt-a
to jump to the window that’s demanding attention; modifier keys
which make the arrow keys move you between windows (Hovav
Shacham’s windmove from 1998, inspired by Julian Assange’s
change-windows-intuitively, uses shift by default, conflicting with
cua-mode shift-selection and some org-mode bindings);

iswitchb’s/icomplete’s/ido’s LRU list of buffers with typeahead
filtering; Win16 MDI ctrl-tab/ctrl-f4; etc. Emacs itself has accreted
ace-window (apparently this involves assigning numbers to all the
windows so you can type C-x o 3, and there are other characters for
things like deleting windows, splitting windows, maximizing
windows, etc.), dimitri/switch-window (same), etc.

 Spacemacs uses SPC 1, SPC 2, etc., to switch to windows 1, 2, etc,
and has window-manipulation commands on SPC w.

 There’s a thing called Ace Jump which lets you jump to text by
typing it, even if it’s in another window, sort of like moving by
incremental search.

 A different problem is that many built-in Emacs commands, being
designed for two windows or less, happily replace your window
contents with their own, although in some cases you can appease
them by offering them a sacrificial window. There’s a whole
ecosystem around the display-buffer command that attempts to make
this less frequently annoying.

 I think this is a symptom of a broken user interface design. I’m not
sure what the right design is; maybe something where opening new
things opens new windows by default, which you can then maximize
and unmaximize, or close, or resize. I wonder if the Cedar/Oberon
design with the display divided into vertical “tracks” each divided
into horizontal “windows” might provide simpler and more
predictable behavior than the Smalltalk-style overlapping windows.

Topics

• Programming (p. 1141) (49 notes)
• Human-computer interaction (p. 1156) (22 notes)
• Experiment report (p. 1162) (14 notes)
• Safe programming languages (p. 1172) (11 notes)
• Lisp (p. 1174) (11 notes)
• Transactions (p. 1239) (4 notes)
• Editors (p. 1257) (4 notes)
• Emacs (p. 1298) (3 notes)
• Incremental search (p. 1362) (2 notes)
• Qemacs

https://github.com/syl20bnr/spacemacs/blob/master/doc/DOCUMENTATION.org#window-manipulation-key-bindings
https://www.emacswiki.org/emacs/AceJump
http://ergoemacs.org/emacs/emacs_effective_windows_management.html
http://ergoemacs.org/emacs/emacs_effective_windows_management.html
https://stackoverflow.com/questions/21761971/prevent-emacs-commands-from-showing-new-buffers-in-other-windows
https://stackoverflow.com/questions/21761971/prevent-emacs-commands-from-showing-new-buffers-in-other-windows

Trie PEGs
Kragen Javier Sitaker, 02021-01-15 (4 minutes)

 Reading some hackers talking about Packrat parsers, it occurred to
me that perhaps you could get a huge speedup in Packrat by a
different memoizing approach.

 Normally in Packrat a parsing grammar node (or perhaps a
nonterminal) is invoked at a given position of a given stream and
returns a result, either a parse tree and a new position, or a failure, and
in either case the result is memoized with the (position, grammar
node) pair as the memo table key, or (if the memo table is global or
associated with the grammar rather than the input stream) the (input
stream, position, grammar node) triple. The memo table ensures that
we only ever invoke each parse at most once for each input position.

 To facilitate incremental parsing, the parsers in Darius Bacon’s
parsing sketch additionally return a “far” value: how far ahead they
read in the input stream. This makes it possible to invalidate memo
table entries that depend on changed parts of the text.

 It occurred to me, though, that a much more powerful approach is
possible: instead of using the (position, grammar node) pair as the
key, we can use the actual text examined by the parsing process. Then,
if we try to parse the same text again later in the input stream with
the same production, we can reuse the same memo-table result. So,
for example, when parsing a Python program, every time you find an
argument list in a function declaration that looks like (self):, you can
simply return the same argument list after a memo-table lookup.
Every identifier in a program would only be parsed for real only once
for each character following it; all other attempts to parse them
would find hits in the memo table. So, for example, all the
occurrences of weight(, would have a single memo-table entry, but
weight and weight\n would get their own entries. Every occurrence of
stack.pop()\n or for word in words:\n or if tree is None:\n or i+1] would
share the same memo-table entry.

 This might sound like an unreasonable thing to do that would
result in a huge and slow memo table, and it might be, but also it
might not be. The memo table itself can be stored as a trie rather than
a hash table, for example with Patricia, enabling it to be traversed
relatively quickly and use a relatively manageable amount of space.
And the great advantage it would have over the usual memo-table
approach is that the majority of memo-table entries would be shared
among several different locations in the source text.

 It might also be possible to use this approach to automatically get
incremental reparsing by using the same memo table for more than
one parse. To the extent that the second parse shares text with the
first parse, even in a different order, the old AST nodes will just flop
ready-made out of the memo table.

 The big drawback of this approach is that it loses Packrat’s
linear-time guarantee, because now the process of testing for a memo
table hit potentially involves examining all the subsequent characters
in the input stream. That means the overall parse potentially takes

https://gist.github.com/darius/27acf96e3579b22d17a25c21d74c2b4b
https://gist.github.com/darius/27acf96e3579b22d17a25c21d74c2b4b

quadratic time rather than linear time.

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Algorithms (p. 1163) (14 notes)
• Compilers (p. 1178) (10 notes)
• Parsing (p. 1228) (5 notes)
• Caching (p. 1266) (4 notes)
• Parsing expression grammars (PEGs) (p. 1343) (2 notes)
• Tries
• Packrat

Chat over a content-centric
network
Kragen Javier Sitaker, 02021-01-15 (updated 02021-01-16) (3 minutes)

 What would the simplest usable chat program look like? In 1999
IN wrote a chat server in C in a .signature:

char a[99]=" KJ",d[999][16];main(){int s=socket(2,1,0),n=0,z,l,i;*(short*)a=2;
if(!bind(s,a,16))for(;;){z=16;if((l=recvfrom(s,a,99,0,d[n],&z))>0){for(i=0;i<n;
i++){z=(memcmp(d[i],d[n],8))?z:0;while(sendto(s,a,l,0,d[i],16)<0);}z?n++:0;}}}

 The client is four lines of C:

char a[99]=" KJ";main(int c,char**v){int s=socket(2,1,0);char*p,*t=strchr(*++v
,'@'),*o=a+4;*(short*)a=2;p=t;while(*p)(*p++&48)-48?*o++=atoi(p):0;connect(s,a,
16);strncpy(a,v[1],7);a[7]=':';a[8]=32;if(fork())while((c=read(0,a+9,90))>0)(
write(s,a,c+9)>0)||exit(0);else while((c=read(s,a,99))>0)write(1,a,c);}

 This was for Solaris, where SOCK_DGRAM was 1, rather than 2 as in
Linux <bits/socket.h>. Both the client and the server are vulnerable to
buffer overflows, the server manifests a single chat channel, there are
no private messages, there's no recovery from packet loss, and the
server just keeps sending to disconnected clients forever.
Nevertheless, under favorable circumstances, these two programs do
manifest a usable text chat system over TCP/IP.

 If you have a shared Unix filesystem you can use a three-line shell
script for a client and need no server:

#!/bin/sh
: ${1?"usage: $0 nick [chan]"} ${chan=${2-/tmp/chat}}
sleep 1; tail -f "$chan" & pid=$?; trap "kill $pid" 0
while read t; do echo "<$1> $t"; done >> "$chan"

 This inherits the Unix filesystem’s permissions, the Unix terminal’s
line editing, and whatever networking your filesystem supports, and it
should be reliable up to messages of PIPE_BUF size.

 In 2008 I wrote an IRC client in 40 lines of shell script:

#!/bin/sh
In the grim future of the Debian netinst disk, there is only nc.
And dd and sh, of course.
: ${2?"Usage: $0 ircserver nickname"}
ircserver="$1"
nickname="$2"
grimdir="`dirname "$0"`"
case "$grimdir" in /*) ;; *) grimdir="../$grimdir" ;; esac

tmpdir=".tmp.grimirc.$$"
mkdir "$tmpdir"
cd "$tmpdir"
trap 'cd ..; rm -rf "$tmpdir"' 0

http://canonical.org/~kragen/puzzle2.html
http://canonical.org/~kragen/puzzle2.html
https://web.archive.org/web/20140409022246/http://lists.canonical.org/pipermail/kragen-hacks/2008-February/000480.html

(echo user grimirc hostname "$ircserver" :grimirc user
echo nick "$nickname"
> grimirc-responses
tail -f grimirc-responses &
while read command
 do case "$command" in
 /join*) echo "joining">/dev/tty
 set $command; currentchan="$2"
 echo "$command" > .grimtmp
 dd bs=1 skip=1 < .grimtmp 2>/dev/null;;
 /*) echo "$command" > .grimtmp
 dd bs=1 skip=1 < .grimtmp 2>/dev/null;;
 *) echo "PRIVMSG $currentchan :$command"
 esac
done) | "$grimdir/grimdebuglog" | nc "$ircserver" 6667 | while read response
 do echo "$response"
 case "$response" in
 "PING "*) echo "responding to ping"
 set $response
 shift
 echo "PONG $*" >> grimirc-responses
 esac
done

 So, suppose we want to build a small program that implements
something like Van Jacobson’s CCN, with “interest” packets that get
replied to with matching “data” packets or forwarded to where you
think they might find those packets. That would make it pretty easy
to implement a chat system, wouldn’t it? One that really worked?
How hard would that be to implement?

Topics

• Programming (p. 1141) (49 notes)
• Small is beautiful (p. 1190) (8 notes)
• C (p. 1194) (8 notes)
• Ccn (p. 1380) (2 notes)
• Irc
• Chat

 Some notes on compiling and
notations for grammars, starting
from the inspiring RPN example
in Parson
 Kragen Javier Sitaker, 02021-01-15 (updated 02021-12-31)
(15 minutes)

 Darius Bacon’s Parson parsing library includes a beautiful little
example compiler in 11 lines of code, “eg_calc_to_rpn.py”; quoted in
full:

from parson import Grammar, alter

g = Grammar(r""" stmt* :end.

stmt : ident '=' exp0 ';' :assign.

exp0 : exp1 ('+' exp1 :'add')*.
exp1 : exp2 ('*' exp2 :'mul')*.

exp2 : '(' exp0 ')'
 | /(\d+)/
 | ident :'fetch'.

ident : /([A-Za-z]+)/.

FNORD ~: /\s*/.
""")(assign=alter(lambda name, *rpn: rpn + (name, 'store')))

print ' '.join(g('v = 42 * (5+3) + 2*2; v = v + 1;'))
#. 42 5 3 add mul 2 2 mul add v store v fetch 1 add v store

 As can be seen from the Halp test at the bottom, this is all that’s
needed for Parson to compile an infix grammar to a sequence of
stack-machine operations, although it will go wrong if you use “add”,
“mul”, “fetch”, or “store” as variable names.

 Review of standard properties of Kleene
algebras
 A “Kleene algebra” is an idempotent semiring augmented with an
unary “closure” operator “★” with certain properties. In the
concrete case of regular languages, the + and · operators of the
semiring are alternation and concatenation; that is, if a and b are two
languages, a + b is their union (and equal to b + a, because set union is
commutative), and a·b is sort of their Cartesian product: the set of
strings that can be produced by concatenating a string α ∈ a with a
string β ∈ b to form a || b. (This is only sort of their Cartesian
product because the string boundary is lost, and as a result this

https://en.wikipedia.org/wiki/Semiring

product operator is associative: (a·b)·c = a·(b·c), which is not true with
most formulations of the Cartesian product.) In general b·a is a
different language. We can observe that there is a language 0
containing no sentences that is the identity for +, and the language 1
containing only the empty sentence that is the (left and right) identity
for ·. Multiplication by 0 produces 0: 0·a and a·0 contains no
sentences for any a because there are no sentences to draw from 0 for
the left substring (respectively the right substring) of the product.

 We can also observe that multiplication distributes over addition:
a·b + a·c = a·(b + c), because iff you have a string α ∈ a and a string γ ∈
b + c, then by definition (α || γ) ∈ a·(b + c). Let δ be α || γ. Also by
definition, γ ∈ b ∨ γ ∈ c. In the first case δ ∈ a·b by the definition of ·,
and therefore δ ∈ a·b + a·c. In the second case δ ∈ a·c and so again δ ∈
a·b + a·c. The same chain of reasoning works in reverse and mutatis
mutandis to show b·a + c·a = (b + c)·a.

 These are the semiring properties (+ a commutative monoid
operation, · a monoid operation, distributivity, and annihilation) so
we can conclude that languages are a semiring under such
concatenation and alternation. Importantly, this conclusion is not
limited to, for example, regular languages.

 It happens that, with the union interpretation of addition, a + a =
a, so languages form a so-called “idempotent semiring”, which
induces a partial ordering relation: a ≤ b iff a + b = b. In this case,
this is simply the subset relation ⊆. (I’m not sure what happens in
non-idempotent semirings.)

 (Henceforth I will write multiplication simply as juxtaposition.)

 The usual Kleene closure operation ★ from regular expressions can
be defined in terms of an equation:

x★ = 1 + x x★ (or equivalently 1 + x★ x)

 But the definition used for Kleene algebras, invented not by Kleene
but by Kozen in 1994, is axiomatic rather than equational:

• 1 + aa★ ≤ a★
• 1 + a★a ≤ a★
• ax ≤ x ⇒ a★x ≤ x
• xa ≤ x ⇒ xa★ ≤ x

 A BNF grammar as a set of equations in a
Kleene algebra
 Let’s consider the expression grammar above as a grammar over
tokens, with the semantic actions and tokens stripped out:

g : stmt*.

stmt : ident '=' exp0 ';'.

exp0 : exp1 ('+' exp1)*.
exp1 : exp2 ('*' exp2)*.

https://en.wikipedia.org/wiki/Kleene_algebra

exp2 : '(' exp0 ')'
 | number
 | ident.

 Parson parses PEGs, but we can safely regard this as a CFG because
it doesn’t use any of the extra-CFG features of PEGs; for example, it
doesn’t use negation, and it has no ambiguity of the sort that PEGs
resolve in a non-CFG way. So we can rewrite this as a system of
equations in a Kleene algebra:
g = s★
 s = i '=' e₀ ';'
 e₀ = e₁ ('+' e₁)★
 e₁ = e₂ ('' e₂)★
e₂ = '(' e₀ ')' + n + i*

 We could think of the problem of constructing a parser as the
problem of finding the solution, or at least a least fixpoint, of these
equations. What (infinite, non-regular) language g satisfies this
system of equations? And a mostly satisfactory answer is “The
language recognized by such-and-such a pushdown automaton,” in
general a nondeterministic one. We can always compute such an
answer, and it’s reasonable to think of the parser generation problem
as the problem of solving such sets of equations to compute such an
answer.

 It’s not an entirely satisfactory answer, though, because if the PDA
in question isn’t deterministic, its equivalence to another PDA is
undecidable. (The 1997 proof that the problem is decidable in the
deterministic case won Sénizergues the 2002 Gödel Prize, suggesting
that it may be difficult in practice.)

 We don’t need the whole Kleene algebra to express the system of
equations, though; its semiring operations are enough, and we don’t
even need parentheses in the notation, except as literal strings:
g = s + g s
 s = i '=' e₀ ';'
 e₀ = e₁ + e₁ '+' e₀
 e₁ = e₂ + e₂ '' e₂
e₂ = '(' e₀ ')' + n + i*

 Note that there are three “nonlinear” terms in here, where two
nonterminals (that is, from the equation-solving point of view,
unknowns) are part of a single product. A CFG that cannot do this,
where each concatenation is restricted to at most one nonterminal,
cannot express arbitrarily branching derivations — each parse tree
node can only have a single non-leaf child — but it can still describe
some non-regular languages, for example:
p = '<' p '>' + '⚜'

 But it can’t match parentheses in more than one place, so it can't
express, for example:
q = '{' q '}' + q q + '☮'

 So these “linear” context-free grammars are a class of languages
strictly larger than regular languages, but strictly smaller than CFGs.
There’s probably a well-known name for them.

 Notational alternatives

https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton#Equivalence_problem
https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton#Equivalence_problem
https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton#Equivalence_problem
https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton#Equivalence_problem

 Consider the original grammar again:

stmt* :end.

stmt : ident '=' exp0 ';' :assign.

exp0 : exp1 ('+' exp1 :'add')*.
exp1 : exp2 ('*' exp2 :'mul')*.

exp2 : '(' exp0 ')'
 | /(\d+)/
 | ident :'fetch'.

ident : /([A-Za-z]+)/.

FNORD ~: /\s*/.

 Or the semantics-free version:

stmt*.

stmt : ident '=' exp0 ';'.

exp0 : exp1 ('+' exp1)*.
exp1 : exp2 ('*' exp2)*.

exp2 : '(' exp0 ')'
 | /(\d+)/
 | ident.

ident : /([A-Za-z]+)/.

FNORD ~: /\s*/.

 If we were driven by a mad Tuftean urge to minimize ink on the
page, we could start by shortening the identifiers as I did before:

s*.

s : i '=' e ';'.

e : f ('+' f)*.
f : g ('*' g)*.

g : '(' e ')'
 | /(\d+)/
 | i.

i : /([A-Za-z]+)/.

FNORD ~: /\s*/.

 Then we could omit the (strictly speaking, redundant) colons, and
replace the | with something lighter, such as ,, even though ; would
have a more accurate connotation from Prolog:

s*.

s i '=' e ';'.

e f ('+' f)*.
f g ('*' g)*.

g '(' e ')',
 /(\d+)/,
 i.

i /([A-Za-z]+)/.

FNORD ~ /\s*/.

 If we switch to ; for rule terminators, we could use . to tag
nonterminals, thus eliminating the need for most quotes:

.s*;
s .i = .e ';';
e .f (+ .f)*;
f .g ('*' .g)*;
g '(' .e ')', /(\d+)/, .i;
i /([A-Za-z]+)/;
FNORD ~ /\s*/;

 Hmm, that didn’t pay off quite as well as I was hoping; I could
instead tag the literal tokens with a lighter-weight :, perhaps, unless
they contain whitespace:

s*.
s i := e :; .
e f (:+ f)*.
f g (:* g)*.
g :(e :) , /(\d+)/, i.
i /([A-Za-z]+)/.
FNORD ~ /\s*/.

 We can replace Kleene’s * with a “join” operator, for which we
can use ;, vaguely connected to Perl’s $;; (number; :,) would mean
“one or more numbers separated by commas”, for example,
equivalent to the current (number (:, number)*) construct. Parson
spells this number ** ',' or, in the Python interface, star(number,
separator=','). The idea of ; is that it's lower-noise than ** and it binds
less tightly than concatenation, or , alternation. This gives us:

, s ; .

s i := e :; .
e f ; :+ .
f g ; :* .
g :(e :) , /(\d+)/, i.
i /([A-Za-z]+)/.
FNORD ~ /\s*/.

 This eliminates the multiple references that gave rise to the
necessity for naming f and g, so we can reduce this to:

, s ; .
s i := e :; .
e ((:(e :) , /(\d+)/, i) ; :*) ; :+ .
i /([A-Za-z]+)/.
FNORD ~ /\s*/.

 This is kind of unreadable but it’s also 97 characters. To crunch it
further we can try defining nonterminals inline; instead of saying i :=
e :; . and then only later defining i, we can define it right then and
there by saying <i /([A-Za-z]+)/> := e :; . If we want to refer to i
again, and we do, it's probably more readable to refer to it as <i>,
although that obviously does cost some strokes if we’re playing golf.
This also means that the whole grammar can be inlined into one giant
unreadable expression, so we no longer need any terminating periods.
Meanwhile we can rename FNORD to _, as in a variable you’re
ignoring in Prolog, ML, Python, or Erlang. Then we have this:

, <_ /\s*/> <i /([A-Za-z]+)/> := <e ((:(<e> :) , /(\d+)/, <i>); :*); :+ > :; ;

 That's 80 characters: an infix precedence partner for
possibly-empty sequences of assignment statements in one line of
code.

 I don’t like the colon-delimited tokens, though. It’s too easy to
remove the whitespace following them. So I'm going to add some
noise back in:

,<_ /\s*/> <i /([A-Za-z]+)/> "=" <e (("(" <e> ")", /(\d+)/, <i>); "*"); "+"> ";"
;

 It’s 83 characters now, but I think enormously more readable.

 So those are our means of composition or combination of grammars
to make richer grammars. But it would also be useful to have a lot of
canned primitives with common meanings, not just regular expressions
and constant strings, for common kinds of tokens with common
semantics. For example:

• $a one or more upper and lowercase letters
• $A one or more uppercase letters

• $w one or more digits, upper and lowercase ASCII letters, and
underscores, starting with a non-digit
• $s zero or more spaces, tabs, carriage returns, or newlines (but not
vertical tabs!)
• $S zero or more Unicode whitespace characters, including $s
• $u a single Unicode codepoint encoded in UTF-8
• $U one or more non-ASCII characters
• $d possibly signed decimal integer
• $n decimal integer with no sign
• $r either carriage return, linefeed, or carriage return and then
linefeed
• $R the rest of the line: /.*/ $r
• $x hexadecimal digit
• $f possibly signed decimal floating-point number
• $c C-style double-quoted string with -escaping of doublequotes and
\
• $e Elisp-style double-quoted string with -escaping and possible
embedded newlines
• $q SQL-style apostrophe-quoted string with doubling of embedded
apostrophes
• $# comment to end of line introduced with #
• $^ ASCII control characters in general, including carriage returns,
linefees, tab, and delete, but not including the ISO-8859-1 control
characters after delete, the other Unicode control characters like
ZWNJ, or space (ASCII 32)

 Such an arsenal of preloaded ammunition allows us to reduce the
above expression grammar to 62 characters, about 25%:

,<_ $s> $a "=" <e (("(" <e> ")", $n, $a); "*"); "+"> ";";

 We could even make some reasonable extensions:

,<_ $s, $#> $w "=" <e (("(" <e> ")", $n, $w); "*", "/"); "+", "-"> ";";

 An accommodation especially for precedence parsers would be to
declare that the ; operator associates to the left, allowing us to flatten
the grammar considerably at, perhaps, some cost to readability:

,<_ $s, $#> $w "=" <e "(" <e> ")", $n, $w; "*", "/"; "+", "-"> ";";

 As written, this can accidentally match the empty string an infinite
number of times, which may or may not be a problem depending on
your matching technology. If so, parens help:

,(<_ $s, $#> $w "=" <e "(" <e> ")", $n, $w; "*", "/"; "+", "-"> ";";)

 Because ;x matches zero or more xes, we can rewrite this without
any parens at all:

; <_ $s, $#> $w "=" <e "(" <e> ")", $n, $w; "*", "/"; "+", "-"> ";"

 To compile into Forth, we could maybe try to include snippets of
literal output with {} and use {{}} to mark bits of the input to copy
to the output:

; <_ $s, $#> {{$w}} "="
 <e "(" <e> ")", {{$n}}, {{$w}};
 "*" {"*"}, "/" {"/"}; "+" {"+"}, "-" {"-"}>
{"swap !"} ";"

 The inability to reorder chunks of the input here is a clear
weakness. In this case we not only need a swap, we’re emitting the
operators too early! We can fix this in the conventional way, though
losing the advantage of ;:

; <_ $s, $#> {{$w}} "="
 <e <e2 <e3 "(" <e> ")", {{$n}}, {{$w}}>
 (; "*" <e3> {"*"}, "/" <e3> {"/"})>
 (; "+" <e2> {"+"}, "-" <e2> {"-"})>
{"swap !"} ";"

 If we define a lowest-precedence @@ operator which discards its
right argument, we could write one of the above versions perhaps
more readably as

,($w "=" <e> ";";)
@@
 <_ $s, $#>
 <e "(" <e> ")", $n, $w; "*", "/"; "+", "-">

 Using apostrophes instead of doublequotes:

,($w '=' <e> ';';)
@@
 <_ $s, $#>
 <e '(' <e> ')', $n, $w; '*', '/'; '+', '-'>

 JSON might be (from memory) something like

<v "[" <_ $s> (,(v; ",")) "]"
 , "{" (,(<s $c> ":" <v>; ",")) "}"
 , ("true", "false", "null") !!$s
 , $f
 >

 Hmm, I just checked, and JSON has a slightly more complex
string syntax, and doesn’t actually require whitespace after the
keywords as I claimed above. And my definition above of $s happens

to be perfect for JSON.

<v '[' <_ $s> (,(<v>; ',')) ']'
 , 'true', 'false', 'null'
 , <s '"'
 (;
 !'"' !'\\' !$^ $u,
 '\\' ('"', '\\', '/', 'b', 'f', 'n', 'r', 't', 'u' $x $x $x $x)
) '"'>
 , '{' (,(<s> ':' <v>; ',')) '}'
 , $f
 >

 You might want to add more tags and regex captures to help with
semantic actions:

,(<_ $s, $#> <s $w> "=" <e <t "(" <e> ")", <k $n>, <f $w>;
 <m /([*/])/>; <a /([-+])/>>";";)

 An alternative to ; might be |, as in Haskell list comprehensions,
though that looks awkward without extra whitespace:

,(<_ $s, $#> $w "=" <e "(" <e> ")", $n, $w | "*", "/" | "+", "-"> ";" |)

 Or :, since we aren't using that for anything else and it's less jarring
than | in the absence of whitespace:

,(<_ $s, $#> $w "=" <e "(" <e> ")", $n, $w: "*", "/": "+", "-"> ";":)

 Or * of course, although that visually binds more tightly than ",":

,(<_ $s, $#> $w "=" <e "(" <e> ")", $n, $w * "*", "/" * "+", "-"> ";" *)

 An alternative to would be x: y. This would reduce the ; version
to

,(<_ $s, $#> $w "=" e: "(" e ")", $n, $w; "*", "/"; "+", "-". ";";)

 An alternative use of . would be for canned primitives:

,(<_ .s, .#> .w "=" e: "(" e ")", .n, .w; "*", "/"; "+", "-". ";";)

 Topics

• Math (p. 1173) (11 notes)

• Compilers (p. 1178) (10 notes)
• Syntax (p. 1221) (5 notes)
• Parsing (p. 1228) (5 notes)
• Reverse Polish notation (RPN) (p. 1243) (4 notes)
• Domain-specific languages (DSLs) (p. 1260) (4 notes)
• Kleene algebras (p. 1287) (3 notes)

Can transactions solve the N+1
performance problem on web
pages?
Kragen Javier Sitaker, 02021-01-16 (8 minutes)

 Reading a note on Rust for web APIs I ran across the “n+1”
problem, familiar to anyone who’s done database-backed web sites:
The n+1 problem is something that everyone building web applications should
understand. The gist is: you have a page of photos (1 query). You want to show
the author of each photo. How many queries do you end up with: 1, combining
the photos & authors, or a query per photo to get the author after retrieving the
photos? Or 2 queries, with the second having something like user.id IN ids to fetch
all authors in a single pass and then reconnect them to their photos.

 Now, the most straightforward kind of ORM to write will kind of
push you to having the n+1 problem, but there are a variety of design
approaches to writing an ORM (or other database layer) that make it
possible to avoid it. In Django’s ORM, for example, you'd say
photo.author_id.name to get the field name from the related row in the
authors table, but whether or not this results in an n+1 problem
depends on how photo was fetched. If you did something like for photo
in Photo.objects.all() then by default you have an n+1 problem, but
you can specify for photo in Photo.objects.all().select_related('author') to
do just a single query joining both tables. And Django has a janky
special-purpose author__publisher__country syntax that allows following
multiple levels here, and a prefetch_related that handles one-to-many
relationships in one query per table. Other systems such as Rails have
analogous facilities.

 The trouble with this is that to some extent it violates DRY. You
have to specify twice that you are going to access the photos’ authors:
once when you construct the query, and again later when you use it.
If you don’t so specify, your code will still run and produce the same
results, but it may run two orders of magnitude slower (or more, if
your database is fucked up enough!), which may be better or worse
than just crashing, depending on your situation. When you modify
the set of attributes used from each photo, you must also remember to
modify the query accordingly, which is likely in a different file from
the HTML template where the attributes are used.

 One approach is to build up the prefetch_related set lazily: when an
author object is fetched via one of the photo objects, we can notify the
original query that the photo came from that it was inadequate, and it
needs to add a .prefetch_related('author') and execute it forthwith.

 Also, though, I’ve been enthusiastic about transactions. How can
transactions help?

Maybe we can rerun the query

 Closely related to the “build up prefetch_related lazily” approach is
“abort the transaction whenever it tries to read data that isn’t yet
loaded, and retry it when the data arrives”.

https://macwright.com/2021/01/15/rust.html
https://docs.djangoproject.com/en/dev/ref/models/querysets/#prefetch-related
https://docs.djangoproject.com/en/dev/ref/models/querysets/#prefetch-related

Maybe we can use type inference

 Here’s a wild non-transaction approach.

 If we statically infer the set of attributes required on an argument
passed in to the template, we can use that to build up a query (or
finite number of queries) whose results have the right type. The
“type” in this case is something like a solution to a set of equations
describing a sort of graph:

photo = {url: str, author: α, ..}
α = {name: str, publisher: β, ..}
β = {country: str, ..}

 Here str is a concrete type (an atomic constant of the universe of
types) and the {..} syntax specifies a minimal set of fields (outgoing
graph edge labels) that must be present at the specified node. In this
case the equations are acyclic and so could be directly solved by
substitution:

photo = {url: str, author: {name: str, publisher: {country: str, ..}, ..}, ..}

 If we additionally have a . operator on field labels (analogous to
Django’s __ mentioned above) perhaps we can use a distributive law to
expand this:

photo = {url: str, author.name: str, author.publisher.country: str, ..}

 This sort of distributivity suggests that perhaps we are looking at a
semiring. You could however reasonably argue that the two
statements above are not equivalent: in the second case, the photo
might have two or more authors, one which has a string name and
another of which has a publisher with a string country. But for the
moment I will explore this possibly unsound path of reasoning to see
if there’s some way to chop off its feet to fit it into the semiring bed.

 If we make the additional simplification of replacing “the concrete
type str” (a node in the universe of types) with “a node with the field
str” then really what we have here is

photo = url str + author α
α = name str + publisher β
β = country str

photo = url str + author (name str + publisher (country str))

photo = url str + author name str + author publisher country str

 I’m not quite sure how to interpret the semantics here: are these
really structural types, in the sense of the OCaml lower-type-bound
syntax I’m aping? (Presumably photo here is a different sort of name
than url, author, and str.) Are they relations, with
multiplication/concatenation being interpreted as composition and
addition being interpreted as relational product (and, if so, does it
make sense to bring in Kleene closure, and do we get a Kleene
algebra, and what about the inverse relation)? (Binary relations are

matrices indexed by the relation’s domain and range over the Boolean
semiring, and their matrix multiplication does correspond to
composition, but their matrix addition is of course just simple union,
not relational product; relational product is more closely allied to
intersection.) Does this expression represent a query that could be
evaluated, perhaps over a directed graph or a SQL database, and
return a table with three columns? Is this just Binate again with
different syntax?

 Nevertheless, in some cases the solution is not quite so simple:

x = Guy.objects.get(id=id)
while x.manager_id is not None:
 x = x.manager_id
return x.name

 Type inference here gives us something like:

guy = {manager: guy, name: α ..}

 Which is to say:

guy = manager guy + name α

 Does allowing the nose of Kleene closure into the tent allow us to
solve this equation, with something like the following?

guy = manager* (name α)

 See also Some notes on compiling and notations for grammars,
starting from the inspiring RPN example in Parson (p. 57).

Maybe we can have stuff in RAM already

 One of the claims I was making is that pervasive transactionality
ought to make cache invalidation more straightforward and
performant. So maybe if our database is more like an OODBMS like
ObjectStore or Gemstone, the n+1 query problem stops being a
problem at all: each traversal of an author link from a photo is just a read
of a transactional variable, so it’s not an outrageous cost and doesn’t
necessarily involve a context switch or network round trip.

Maybe we can pipeline

 If all of the n individual fetches of the author of a photo can run
concurrently, with their small queries being pipelined to the database
server and back, then you still have n+1 queries, but only two round
trips, and that might be acceptable.

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Transactions (p. 1239) (4 notes)

Notes on simulating a ZVS
converter (Baxandall converter)
Kragen Javier Sitaker, 02021-01-16 (6 minutes)

 I tried simulating a Baxandall converter ZVS driver circuit with
circuit.js; here's the circuit:

$ 1 1e-7 2.9224283781234943 50 100 43
l 256 64 256 112 0 0.0005 0.025188214463181376

169 224 160 224 112 0 0.000009999999999999999 1 8.881784197001252e-16 6.317123571
343775 6.342311785806956 0.99
c 128 224 384 224 0 1e-7 -40.777875024550454 0.001
w 128 224 128 112 0
w 128 112 224 112 0
w 288 112 384 112 0
w 384 224 384 432 0
R 256 64 256 16 0 0 40 24 0 0 0.5
f 352 384 352 432 32 1.5 0.02
f 160 384 160 432 40 1.5 0.02
w 176 432 256 432 0
w 256 432 336 432 0
g 256 432 256 464 0 0
w 368 432 384 432 0
w 384 224 384 112 0
w 144 432 128 432 0
w 128 432 128 224 0
x 166 -8 353 -5 4 12 Baxandall\sconverter\sZVS\sdriver
w 256 384 256 432 0
w 160 384 336 288 0
r 336 288 384 224 0 10000
r 128 224 192 288 0 10000
w 192 288 352 384 0
34 fwdrop\q3.2 1 9.32e-11 0.042 5.356678529866179 0 1
162 304 384 272 384 2 fwdrop\q3.2 0 0 1 0.1
34 fwdrop\q3.2-2 1 9.32e-11 0.042 5.356678529866179 0 1
162 208 384 224 384 2 fwdrop\q3.2-2 0 0 1 0.1
162 192 384 208 384 2 fwdrop\q3.2-2 0 0 1 0.1
162 320 384 304 384 2 fwdrop\q3.2-2 0 0 1 0.1
162 352 384 320 384 2 fwdrop\q3.2-2 0 0 1 0.1
162 272 384 256 384 2 fwdrop\q3.2 0 0 1 0.1
162 224 384 256 384 2 fwdrop\q3.2-2 0 0 1 0.1
162 160 384 192 384 2 fwdrop\q3.2-2 0 0 1 0.1
o 2 16 0 5123 320 51.2 0 2 2 3

 By itself this produces a somewhat disappointing peak voltage
multiplication of about 3×, or 6× peak to peak, with a resonant peak
about 158 kHz on the FFT, which is high enough for inductive
heating of even non-ferrous metals in some cases. The two strings of
four 3.2-volt blue LEDs limit the gate voltages on the two N-channel
MOSFETs to about 9.9 volts (2.4 volts per LED, which is a bit

https://adammunich.com/zvs-driver/
http://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjOCmC0DsICYB0BOBCAsCAcBmW2YCuGKGuIArAAzjW3kBQANopQGwjsZudhEha1JPWqVBIhJTDZsCMBgztcMsPnaMw7FIkzh2tdD34JBE0fRRXrN2zojYkssAQxgUsekUoIYWrkgqsES4lMEk+LDi7IFYKi7YlNjU2hwSVowAxuA4ujy42DxGZmAw8NAYwrDV2FHUmJQ0GJQ8wl6MAO452Hnd4ALUnX0mvSODXTg9IwXGA0MzvQvkpoMASrxcRWn+QiCViK1mwpSMAGYgoaYLl3u4V6ZgSOJtCGf6tAtaDHd7tI-PkiGLk4yw2oPGYJ+uFwIJ+gwA5pDTFIQdwjvN2D1QUs4fNCot8WMgYpbg9cuCgeSfkQesVBgAPfScaA9UIUaDiYymABCAEN6byAHYAE15zGYAB0AM6ZAD2goAbpAAE4AFxV0oAWgA1ADK0uFyoAlkrlUMURd8RaKV0vpb8jDELJBIxlRdHZN7b0-hZXX1iu5kc6faIgWgnayfF7BiQQKcOobZQAHCUAR1wSAeIBQgV80H45iwVECHHYBB8KGw7HYLh0f007Cu1HyVtgVytcYTyuTaYzKxKEjAjFj8cTKfTmegWZzdz8EDaRcoJer5YQlertZKDeR1FZVr0C1Mo+7477U6O4EH2-A4cPu69R67PYnCHPu3nSCHWnuH3xuGbD6dmOvaTv2fxXt+FxRtcCC-kUQEniBr5gZewhfo2iBtg+aSHghz59heH7ociB5WjhHbHvhoGERBGF2p8t4UU+p7Ue+V6yog+hmNIxAXLBVCPP2yIXIwQA
http://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjOCmC0DsICYB0BOBCAsCAcBmW2YCuGKGuIArAAzjW3kBQANopQGwjsZudhEha1JPWqVBIhJTDZsCMBgztcMsPnaMw7FIkzh2tdD34JBE0fRRXrN2zojYkssAQxgUsekUoIYWrkgqsES4lMEk+LDi7IFYKi7YlNjU2hwSVowAxuA4ujy42DxGZmAw8NAYwrDV2FHUmJQ0GJQ8wl6MAO452Hnd4ALUnX0mvSODXTg9IwXGA0MzvQvkpoMASrxcRWn+QiCViK1mwpSMAGYgoaYLl3u4V6ZgSOJtCGf6tAtaDHd7tI-PkiGLk4yw2oPGYJ+uFwIJ+gwA5pDTFIQdwjvN2D1QUs4fNCot8WMgYpbg9cuCgeSfkQesVBgAPfScaA9UIUaDiYymABCAEN6byAHYAE15zGYAB0AM6ZAD2goAbpAAE4AFxV0oAWgA1ADK0uFyoAlkrlUMURd8RaKV0vpb8jDELJBIxlRdHZN7b0-hZXX1iu5kc6faIgWgnayfF7BiQQKcOobZQAHCUAR1wSAeIBQgV80H45iwVECHHYBB8KGw7HYLh0f007Cu1HyVtgVytcYTyuTaYzKxKEjAjFj8cTKfTmegWZzdz8EDaRcoJer5YQlertZKDeR1FZVr0C1Mo+7477U6O4EH2-A4cPu69R67PYnCHPu3nSCHWnuH3xuGbD6dmOvaTv2fxXt+FxRtcCC-kUQEniBr5gZewhfo2iBtg+aSHghz59heH7ociB5WjhHbHvhoGERBGF2p8t4UU+p7Ue+V6yog+hmNIxAXLBVCPP2yIXIwQA

unrealistic...) so they don't burn out, while the 10k resistors limit the
current through the LEDs to about 5 mA.

 The resonant frequency is of course 1/(2π√(LC)), and in this case
the relevant L is the 10 μH of the inductor, and the C is the 0.1 μF of
the capacitor, 159.1 kHz, which is right. The peak current in the tank
circuit is about 7.5 amps, 1500 times the current through the LEDs.

 If I load the output (parallel to the capacitor) with a resistive load,
then somewhere below about 180 Ω, the output collapses. For it to
recover, the load evidently needs to be 330 Ω or more. It’s possible to
use an inductive load of 82 μH with 33 Ω equivalent series resistance
and have it work:

$ 1 1e-7 2.3728258192205156 50 100 43
l 256 64 256 112 0 0.0000049999999999999996 1.3758031682752978

169 224 160 224 112 0 0.000009999999999999999 1 0 -4.784632558596629 -3.408829390
3213227 0.99
c 128 224 384 224 0 1e-7 33.040933721242446 0.001
w 128 224 128 112 0
w 128 112 224 112 0
w 288 112 384 112 0
w 384 224 384 432 0
R 256 64 256 16 0 0 40 24 0 0 0.5
f 352 384 352 432 32 1.5 0.02
f 160 384 160 432 40 1.5 0.02
w 176 432 256 432 0
w 256 432 336 432 0
g 256 432 256 464 0 0
w 368 432 384 432 0
w 384 224 384 112 0
w 144 432 128 432 0

https://tinyurl.com/y5xtv9us

w 128 432 128 224 0
x 166 -8 353 -5 4 12 Baxandall\sconverter\sZVS\sdriver
w 256 384 256 432 0
w 160 384 336 288 0
r 336 288 384 224 0 10000
r 128 224 192 288 0 10000
w 192 288 352 384 0
34 fwdrop\q3.2-2 1 9.32e-11 0.042 5.9498493010683156 0 0.1
162 208 384 224 384 2 fwdrop\q3.2-2 0 0 1 0.01
162 192 384 208 384 2 fwdrop\q3.2-2 0 0 1 0.01
162 320 384 304 384 2 fwdrop\q3.2-2 0 0 1 0.01
162 352 384 320 384 2 fwdrop\q3.2-2 0 0 1 0.01
162 224 384 256 384 2 fwdrop\q3.2-2 0 0 1 0.01
162 160 384 192 384 2 fwdrop\q3.2-2 0 0 1 0.01
162 304 384 272 384 2 fwdrop\q3.2-2 0 0 1 0.01
162 272 384 256 384 2 fwdrop\q3.2-2 0 0 1 0.01
w 128 112 128 48 0
w 128 48 560 48 0
w 384 112 512 112 0
r 560 112 560 160 0 33
w 512 112 512 160 0
w 512 160 560 160 0
l 560 112 560 48 0 0.000082 0.3059284467964981
x 494 188 623 191 4 12 Inductive\sheater\sload
o 2 16 0 5123 80 6.4 0 2 2 3

 The original Baxandall converer circuit is by Peter Baxandall from
1959.

Topics

• Electronics (p. 1145) (39 notes)
• Ghettobotics (p. 1169) (12 notes)
• Power supplies (p. 1176) (10 notes)
• Falstad’s circuit simulator (p. 1198) (7 notes)

http://www.sophia-electronica.com/Baxandall_parallel-resonant_Class-D_oscillator1.htm

A ghetto linear voltage regulator
from discrete components
Kragen Javier Sitaker, 02021-01-21 (updated 02021-01-27)
(10 minutes)

 I designed this ghetto linear regulator:

$ 1 0.0005 0.41233529972698213 50 5 43
34 fwdrop\q1.7 1 9.32e-11 0.042 2.8457354689914074 0 1
162 48 208 48 240 2 fwdrop\q1.7 0 1 0.5 0.1
g 48 368 48 400 0 0
r 48 208 48 128 0 1000
162 48 240 48 272 2 fwdrop\q1.7 0 1 0.5 0.1
162 48 272 48 304 2 fwdrop\q1.7 0 1 0.5 0.1
162 48 304 48 336 2 fwdrop\q1.7 0 1 0.5 0.1
162 48 336 48 368 2 fwdrop\q1.7 0 1 0.5 0.1
w -64 128 48 128 0
w 48 208 112 208 0
174 112 368 128 208 1 1000 0.21290000000000003 Resistance
g 112 368 112 400 0 0
t 128 288 208 288 0 1 -30.2681886282526 0.561821870800069 100
t 304 288 272 288 0 1 -23.47754064241586 0.6093418296786747 100
w 208 304 240 304 0
w 240 304 272 304 0
r 240 304 240 368 0 470
g 240 368 240 400 0 0
w 208 272 208 208 0
r 208 208 208 128 0 4700
w 208 128 48 128 0
r 272 208 272 128 0 4700
w 272 128 208 128 0
w 272 208 272 272 0
w 304 128 272 128 0
w 496 144 496 304 0
r 496 304 496 384 0 100
g 496 384 496 400 0 0
r 448 144 448 304 0 1000
r 448 304 448 384 0 470
g 448 384 448 400 0 0

https://tinyurl.com/y43n6q42

w 304 288 304 256 0
w 448 144 496 144 0
368 496 144 544 144 0 0
368 48 128 48 64 0 0
w 208 208 320 208 0
t 384 160 416 160 0 -1 29.966570072596046 -0.6789517017645963 100
w 352 128 416 128 0
w 416 128 416 144 0
w 416 176 448 144 0
t 352 208 384 208 0 -1 29.406988463009824 -0.5595816095862212 100
w 384 192 384 160 0
r 352 208 320 208 0 10000
w 384 224 416 224 0
w 416 176 416 224 0
t 400 304 336 304 0 -1 0.8622748285616171 -0.684513215849966 100
w 304 128 304 208 0
r 304 208 304 256 0 1000
w 304 288 336 288 0
g 336 320 336 400 0 0
w 400 304 448 304 0
w 304 128 352 128 0
v -176 128 -64 128 0 1 40 5 32 0 0.5
R -176 128 -224 128 0 6 40 5 0 0 0.5
x 537 350 562 353 4 12 load
x -125 82 -14 85 4 12 shitty\sinput\spower
x -33 271 7 274 4 12 ghetto
x -26 291 -2 294 4 12 LED
x -37 312 19 315 4 12 reference
o 33 2 0 4355 80 51.2 0 2 33 3
o 32 2 0 4355 20 12.8 1 2 32 3

 The LED string at the left provides a constant-voltage reference
(though with a shitty temperature coefficient), the potentiometer to
the right divides it down to get the reference voltage for the
long-tailed pair in the middle which compares the voltage from the
pot reference with a feedback voltage from a PNP emitter follower to
the right, which buffers an unnecessarily hot voltage divider down
from the output. One of the outputs of the differential pair couples
through a 10k base resistor to a PNP darlington pass transistor that
regulates the output as such.

 In this simulation it works really well. The output is regulated very
closely (about 40 dB PSRR). In real life it might not work that well.

 A slightly revised version runs the control loop at much lower
current, which should lead to less heat problems, and works almost as
well in simulation:

https://tinyurl.com/y23ssksn

$ 13 0.0005 0.41233529972698213 50 5 43
34 fwdrop\q1.7 1 9.32e-11 0.042 2.8457354689914074 0 1
162 48 208 48 240 2 fwdrop\q1.7 0 1 0.5 0.1
g 48 368 48 400 0 0
r 48 208 48 128 0 1000
162 48 240 48 272 2 fwdrop\q1.7 0 1 0.5 0.1
162 48 272 48 304 2 fwdrop\q1.7 0 1 0.5 0.1
162 48 304 48 336 2 fwdrop\q1.7 0 1 0.5 0.1
162 48 336 48 368 2 fwdrop\q1.7 0 1 0.5 0.1
w -64 128 48 128 0
w 48 208 112 208 0
174 112 368 128 208 1 1000 0.7178000000000001 Resistance
g 112 368 112 400 0 0
t 128 288 208 288 0 1 -21.88050572375028 0.5151707707652369 100
t 304 288 272 288 0 1 0.5709371172593585 0.601924362557102 100
w 208 304 240 304 0
w 240 304 272 304 0
r 240 304 240 368 0 4700
g 240 368 240 400 0 0
w 208 272 208 208 0
r 208 208 208 128 0 47000
w 208 128 48 128 0
r 272 208 272 128 0 47000
w 272 128 208 128 0
w 272 208 272 272 0
w 304 128 272 128 0
w 496 144 496 304 0
r 496 304 496 384 0 100
g 496 384 496 400 0 0
r 448 144 448 304 0 10000
r 448 304 448 384 0 4700
g 448 384 448 400 0 0
w 304 288 304 256 0
w 448 144 496 144 0
368 496 144 544 144 0 0
368 48 128 48 64 0 0
w 208 208 320 208 0
t 384 160 416 160 0 -1 13.850113221994937 -0.7228391475035494 100
w 352 128 416 128 0
w 416 128 416 144 0
w 416 176 448 144 0
t 352 208 384 208 0 -1 13.246644166661381 -0.6034690553335551 100

w 384 192 384 160 0
r 352 208 320 208 0 10000
w 384 224 416 224 0
w 416 176 416 224 0
t 400 304 336 304 0 -1 4.458376683019007 -0.6122710669745723 100
w 304 128 304 208 0
r 304 208 304 256 0 10000
w 304 288 336 288 0
g 336 320 336 400 0 0
w 400 304 448 304 0
w 304 128 352 128 0
v -176 128 -64 128 0 1 40 5 32 0 0.5
R -176 128 -224 128 0 6 40 5 0 0 0.5
x 537 350 564 353 4 12 load
x -125 82 -13 85 4 12 shitty\sinput\spower
x -33 271 9 274 4 12 ghetto
x -26 291 -3 294 4 12 LED
x -37 312 24 315 4 12 reference
o 33 2 0 4355 80 51.2 0 2 33 3
o 32 2 0 4355 80 51.2 1 2 32 3

 A caveman version using real zeners is this one which will probably
burn out a 1k pot:

$ 1 0.0005 0.5754602676005731 50 5 43
34 zener-6.1 1 1.7143528192810002e-7 0 2.0000000000000084 6.1 1
z 48 304 48 272 2 zener-6.1
g 48 304 48 320 0 0
z 48 272 48 240 2 zener-6.1
z 48 240 48 208 2 zener-6.1
w 48 208 96 208 0
174 96 208 96 304 1 1000 0.6782 Voltage adjustment knob
g 96 304 96 320 0 0
w 112 256 144 256 0
w 144 256 144 128 0
t 144 128 176 128 0 1 -20.9259922632883 0.7095174649350575 100
r 176 144 176 304 0 1000
g 176 304 176 320 0 0
w 48 96 176 96 0
w 176 96 176 112 0
w 176 144 224 144 0
c 0 208 0 304 0 0.00047000000000000004 18.35536628033426 0.001
w 0 208 48 208 0
g 0 304 0 320 0 0

https://is.gd/dumblinreg

368 224 96 256 96 0 0
R -208 96 -304 96 0 6 40 5 0 0 0.5
v -208 96 -96 96 0 1 40 5 30 0 0.5
368 48 96 48 48 0 0
w 0 96 48 96 0
r 0 64 -96 64 0 100
w 224 96 224 144 0
w 224 144 336 144 0
t 384 224 336 224 0 1 -4.3103019007059675 0.7081563777938871 100
w 336 208 336 144 0
g 336 240 336 320 0 0
r 384 224 416 224 0 10000
R 416 224 464 224 0 4 56 5 5 0 0.5
x 297 220 322 223 4 12 load
w 48 96 48 112 0
w 16 112 48 112 0
w 48 112 80 112 0
r 16 112 16 160 0 1000
r 48 112 48 160 0 1000
r 80 112 80 160 0 1000
w 16 160 48 160 0
w 48 160 80 160 0
w 48 160 48 208 0
w -96 64 -96 96 0
w 0 96 0 64 0
r 0 96 -96 96 0 100
o 18 2 0 4355 20 12.8 0 2 18 3
o 21 2 0 4355 40 51.2 1 2 21 3
o 9 2 7 4098 40 0.1 2 1 5
o 26 2 3 4359 10 0.1 3 1

Topics

• Electronics (p. 1145) (39 notes)
• Ghettobotics (p. 1169) (12 notes)
• Power supplies (p. 1176) (10 notes)
• Falstad’s circuit simulator (p. 1198) (7 notes)

Intel engineering positions
considered as a dollar auction
Kragen Javier Sitaker, 02021-01-21 (updated 02021-01-27) (1 minute)

 Reading the comment at
https://news.ycombinator.com/item?id=25861762 I’m reminded of
the grad student dollar auction and the up-and-out rule at top
accounting firms: tenure is well paid, secure, and highly competitive,
and the way you compete for it is by working for many years as a
poorly paid and insecure grad student (and, in some fields, postgrad).
And if you don’t get a professorship or tenure you get kicked out,
first of the university and then possibly out of the university system
entirely, which people respond to by throwing good “money” (in the
form of work) after bad. So in a sense for this guy Intel was grad
school and the bank job was the professorship.

 Dollar auctions are widely known for

 In many countries, up-and-out is illegal, though with an exception
for universities.

Topics

• Incentives (p. 1230) (5 notes)
• Economics (p. 1258) (4 notes)
• Employment (p. 1370) (2 notes)
• Intel

https://news.ycombinator.com/item?id=25861762
https://news.ycombinator.com/item?id=25861762

Duplicating Durham’s Rock-Hard
Putty
Kragen Javier Sitaker, 02021-01-22 (updated 02021-01-27) (1 minute)

 Durham’s Rock-Hard Putty is a popular home repair product in
the US, converting into a cream with water and curing after several
minutes to a rock-hard filler; it consists of 70–80% plaster, 5–15%
talc, 5–9% dextrin, <1% quartz, and <1% ochre. As noted in Derctuo,
alabaster costs US$8 per tonne and calcines to plaster at 100°–150°.
Presumably the dextrin is a thickener and the talc is to make it more
thixotropic, though maybe it has some chemical effect.

 I can’t find dextrin locally but food-grade maltodextrin costs
US$5/kg at retail (AR$600) and carboxymethylcellulose is about
US$9/kg (AR$1400).

Topics

• Materials (p. 1138) (59 notes)
• Pricing (p. 1147) (35 notes)
• Alabaster (p. 1309) (3 notes)
• Thixotropy (p. 1317) (2 notes)
• Talc (p. 1319) (2 notes)

https://www2.pcad.edu/Facilities/health_safety/SDS/3-D Workshop/Durham/Durham's Rock Hard Water Putty.pdf
https://www2.pcad.edu/Facilities/health_safety/SDS/3-D Workshop/Durham/Durham's Rock Hard Water Putty.pdf
https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-gypsum.pdf
https://articulo.mercadolibre.com.ar/MLA-839876793-malto-dextrina-sport-plus-recuperacion-muscular-post-ejerc-_JM
https://articulo.mercadolibre.com.ar/MLA-839876793-malto-dextrina-sport-plus-recuperacion-muscular-post-ejerc-_JM
https://articulo.mercadolibre.com.ar/MLA-898900206-espesante-x-1-kg-cmc-carboximetilcelulosa-_JM
https://articulo.mercadolibre.com.ar/MLA-898900206-espesante-x-1-kg-cmc-carboximetilcelulosa-_JM

iPhone replacement cameras as
6-μs streak cameras
Kragen Javier Sitaker, 02021-01-22 (updated 02021-12-30)
(2 minutes)

 The iPhone 6s specs say it can record 720p video at 240 fps and
1080p video at 120 fps. A friend tells me he bought a replacement
camera for US$8, including the flex cable, but it was the front
camera, which is only 60fps for 720p.

 iPhone cameras are well-known for their rolling-shutter feature,
where they scan each line of the image out at a separate time during
the frame, leading to visual distortions of rapidly moving objects
rather than blur, at least when light is adequate. So rather than
considering the back camera as a 240fps camera, it may be reasonable
to consider it as a 172800-line-per-second camera, although the
gating time (shutter speed) for each line might actually be longer than
the 5.8 μs suggested there. Robert Elder reports success recording 660
frames per second on a US$6 Raspberry Pi camera and 1007 frames
per second on the V2 camera by reading out the same lines over and
over again (so you get a smaller frame at a higher frame rate) but
alternatives include using a glass rod to defocus the camera in Y so
that every line sees almost exactly the same image, or to use two
parallel mirrors to kaleidoscopically replicate a small fraction of the
field of view several times.

 Streak cameras are an extremely important research tool for
investigating all kinds of ultrafast phenomena, such as the time
evolution of an arc in air.

Topics

• Contrivances (p. 1143) (45 notes)
• Metrology (p. 1212) (6 notes)
• Cameras (p. 1301) (3 notes)
• Ultrafast

https://support.apple.com/kb/sp726?locale=en_US
https://stackoverflow.com/questions/50082391/what-are-the-fps-of-the-facetime-camera-for-the-iphone-6s-vs-7-vs-x-vs-ipad-pro
https://blog.robertelder.org/recording-660-fps-on-raspberry-pi-camera/
https://blog.robertelder.org/recording-660-fps-on-raspberry-pi-camera/

Compiling machine-code loops to
pipelined dataflow graphs
Kragen Javier Sitaker, 02021-01-23 (updated 02021-01-27)
(2 minutes)

 Occurred to me that if you have a loop in machine code:

loop: add r0, r1, r2
 mul r3, r2, r4
 sd r3, foo(r0)
 subi r0, 1
 beq r0, zero, loop

 you can reasonably build the loop body into a dataflow graph, then
perhaps run it in a pipelined fashion at maybe as little as one loop
iteration per clock cycle.

 What conditions are necessary for this to work? You don’t
necessarily need a lot of ILP but you do need instructions that aren’t
inside the core critical path from one iteration of the loop to the next.
If it requires a chain of five RTL operations to get the next state of
the loop variables from the current state, you aren’t going to be able
to run the loop at less than five clock cycles per iteration.

 The idea here is that you do a sort of “place & route” either upon
entry to the loop or after figuring out that you’re going to be in the
loop for long enough to justify it. Each value you produce as you go
through the loop gets assigned to a hardware register with a given
ALU function attached to it, with the inputs routed from the inputs
to the operation. All branches of a conditional are computed, though
some care is needed here to prevent Spectre and also faults; the
correct results are selected out with a mux.

 What if the loop body doesn’t fit in the hardware resources? What
about non-innermost loops?

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Assembly-language programming (p. 1175) (11 notes)

Some preliminary notes on the
amazing RISC-V architecture
Kragen Javier Sitaker, 02021-01-24 (updated 02021-07-27)
(29 minutes)

 I’m looking at the RISC-V instruction set. It seems kind of boring,
on purpose, in a good way, kind of like C and Golang. There’s
intentionally very little that’s clever.

 Overall it looks very pleasant, much simpler to learn than amd64,
and maybe not even more verbose. You have 32 int registers (though
x0 is a hardwired zero) and 32 float registers and a load-store
architecture. There’s a nascent assembly programmer’s manual. You
can run it at 400+ MHz in 809 LUTs on a Xilinx 7-series FPGA or
even run it on a Lattice iCE40-HX8K (multiple different designs
even)or in even fewer LUTs with a slower design, or even with Linux
support, and there’s a 1.4 GHz full-custom quad-core dev board, a
software emulator on amd64 with only a 3× slowdown, and a
108MHz GigaDevice GD32VF103 microcontroller with a US$6
Seeed Studios devboard.

 The 145 pages of the user-level instruction set manual plus the 91
pages of the privileged ISA manual, Volume II compare quite
favorably to the 262 pages of the MOSTek MCS6500 family
programming manual or the 332 pages of the Z80 User Manual.

 There are some surprises, though. There’s hardware threading
(“harts”, suggesting that perhaps a memory space should be called a
“forest”), with a concurrency mechanism called “LR/SC” that’s new
to me, and no condition flags. (The opcode listing is not, as I first
thought, omitted from the instruction set manual, but consigned to
the six-page Chapter 19, plus seven privileged instructions in chapter
5 of Volume II.) The lui load-upper-immediate instruction has a
20-bit immediate, so the other immediate-load instructions have only
12-bit immediates. Some of the bit fields in the instruction encoding
are scrambled. And it uses NaN-boxing to support multiple
floating-point formats on the same chip.

ABI

 RISC-V defines a standard ABI as well as the instruction set,
because of their experience that more than just an ISA was needed to
get the benefits of a large software ecosystem. The calling convention
is that the return address is passed in x1, the stack pointer is x2, x3 and
x4 are gp “global pointer” and tp “thread pointer” respectively, x5 to
x7 are caller-saved temporary registers t0 to t2, x8 is the
(callee-saved) frame pointer fp aka s0, x9 is callee-saved s1, x10 to x17
are argument/return registers a0 to a7, x18 to x27 are callee-saved
registers s2 to s11, and x28 to x31 are caller-saved t3 to t6.

 The weird split putting s2–11 after a0–7 is apparently to map the
arguments into the 8 registers most broadly accessible from RVC
compressed instructions (p. 70).

 There are alternative conventions for processors with and without

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://github.com/cliffordwolf/picorv32
https://pingu98.wordpress.com/2019/04/08/how-to-build-your-own-cpu-from-scratch-inside-an-fpga/
https://pingu98.wordpress.com/2019/04/08/how-to-build-your-own-cpu-from-scratch-inside-an-fpga/
https://github.com/grahamedgecombe/icicle
https://github.com/grahamedgecombe/icicle
https://github.com/jens-na/VexRiscv
https://abopen.com/news/a-look-at-the-risc-v-pc-from-sifive/
https://github.com/rv8-io/rv8-io.github.io/blob/master/index.md#benchmarks
https://github.com/rv8-io/rv8-io.github.io/blob/master/index.md#benchmarks
https://github.com/SeeedDocument/Sipeed-Longan-Nano/blob/master/res/GD32VF103_Datasheet_Rev1.0.pdf
https://github.com/SeeedDocument/Sipeed-Longan-Nano/blob/master/res/GD32VF103_Datasheet_Rev1.0.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://archive.org/details/6500-50a_mcs6500pgmmanjan76
https://archive.org/details/6500-50a_mcs6500pgmmanjan76
https://www.zilog.com/docs/z80/um0080.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf

floating-point registers.

 It’s mostly what you’d expect: C on RV64 is LP64, eight
arguments in registers a0 to a7, everything else pushed on the stack,
with the earliest non-register argument pushed last to facilitate C
varargs. There are a few surprises: C char is unsigned. 32-bit
unsigned ints are sign-extended to 64 bits on RV64. Alignment
padding for stack arguments affects assignment of arguments to
registers. Return values of more than two registers are returned in
memory, with a pointer to the memory passed as an extra argument
prepended to the list. The stack pointer must always be 16-byte
aligned even on RV32 and RV64.

Flags and condition codes

 I’m surprised that it has no condition-code flags. The authors
explain that this was one of their reasons for not using the OpenRISC
1000 instruction set (p. 15, 24 of 145 of the instruction set spec):
OpenRISC has condition codes and branch delay slots, which complicate higher
performance implementations.

 Instead there are beq, bne, blt, bltu, bge, and bgeu instructions, which
compare two registers and conditionally jump by an immediate
±4KiB offset (p. 17), as done in PA-RISC and the ESP32’s Xtensa (p.
18, where the alternatives are discussed).

 This seems like it might complicate multi-precision arithmetic; the
authors explain a workaround (p. 13, 25 of 145):
We did not include special instruction set support for overflow checks on integer
arithmetic operations in the base instruction set, as many overflow checks can be
cheaply implemented using RISC-V branches. Overflow checking for unsigned
addition requires only a single additional branch instruction after the addition: add
t0, t1, t2; bltu t0, t1, overflow.
 For signed addition, if one operand’s sign is known, overflow checking requires
only a single branch after the addition: addi t0, t1, +imm; blt t0, t1, overflow. This
covers the common case of addition with an immediate operand.
 For general signed addition, three additional instructions after the addition are
required, leveraging the observation that the sum should be less than one of the
operands if and only if the other operand is negative.

 add t0, t1, t2
 slti t3, t2, 0
 slt t4, t0, t1
 bne t3, t4, overflow

 This would seem to imply that, on a straightforward in-order
machine, addition and subtraction of multi-precision
two’s-complement numbers is almost an order of magnitude slower
than on a conventional machine with condition codes. The MuP21’s
approach of having an extra carry bit in its internal CPU registers (21
bits in the MuP21 case, 33 or 65 bits in the RV32I or RV64I case)
seems perhaps more reasonable; it would eliminate the concern about
complicating higher-performance implementations.

Instruction word format

 There are only a small number of instruction layouts (named with
letters: Register/register, Immediate/register, Store, Upper

immediate, Branch, and Jump), which is refreshing, and the choice to
reserve two bits in the fixed-width 32-bit format to indicate
instruction length brilliantly avoids the complications of ARM
Thumb “interworking” between Thumb code and non-Thumb code.
I haven’t yet tried to compare the code density of the variable-length
RV64IC or RV32IC instruction formats, but I’m optimistic that they
will provide Thumb-2-like code density, which would be a unique
advantage in the 64-bit world, now that Aarch64 has abandoned
Thumb.

 The S-type, B-type, and J-type instructions include immediate
fields in a slightly weird permutation. In response to the observation
that sign-extension was often a critical-path logic-design problem in
modern CPUs, they always put the immediate sign bit in the MSB of
the instruction word, so you can do sign-extension before instruction
decoding is done, but this leads to the J-type format imm[20] ||
imm[10:1] || imm11 || imm[19:12] || rd || opcode, with a ±1MiB
PC-relative range, and an only slightly-less-surprising B-type format,
with a ±4KiB range.

 They justify this by saying (p. 13):
By rotating bits in the instruction encoding of B and J immediates instead of using
dynamic hardware muxes to multiply the immediate by 2, we reduce instruction
signal fanout and immediate mux costs by around a factor of 2. The scrambled
immediate encoding will add negligible time to static or ahead-of-time
compilation. For dynamic generation of instructions, there is some small additional
overhead, but the most common short forward branches have straightforward
immediate encodings.

 U-type instructions, of which there are only two (lui and auipc),
have a 20-bit immediate field, but I-type and S-type instructions
(used for things like addi and slti and, notably, memory loads and
stores) have only a 12-bit immediate field.

ALU instructions

 Surprisingly, there are no bit rotates (they suggest on p. 85 that
these might be added in the “B” extension) and no abjunction, and
multiplication and division are optional extensions.

 It supports floating-point, and it spends 22 pages on this, which I
am going to comprehensively ignore.

Prologues and epilogues

 The hardware calling convention stores the return address in a link
register instead of on the stack, and the standard ABI defines quite a
lot of callee-saved registers, and there’s no ARM-like store-multiple
instruction (p. 72 explains how they considered and rejected this), so
a typical prologue is relatively long, for example:

addi sp, sp, -12
sw ra, 0(sp)
sw a0, 4(sp)
sw s0, 8(sp)

 And the epilogue is similar.

 There’s an intriguing suggestion on p. 16 about factoring this out

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md

with “millicode”:
The alternate link register supports calling millicode routines (e.g., those to save
and restore registers in compressed code) while preserving the regular return
address register. The register x5 was chosen as the alternate link register as it maps
to a temporary in the standard calling convention, and has an encoding that is only
one bit different than the regular link register.

 This suggests you could replace the above with something like jal
prologue_a0_s0, x5 or li t2, 1; li t3, 1; jal prologue_variadic, x5, which
would indeed reduce code size. You could implement ARM-like
bitmap-driven “load multiple” and “store multiple” instructions that
way.

 The S-type encoding used for stores has the same number of bits of
each type as the I-type encoding used for instructions such as addi and
loads, but they are in different places, so that if there’s a destination
register, it’s always indicated in bits 11 to 7, and if there are source
registers, they are always indicated in bits 24 to 20 and 19 to 15. I
guess the idea is to avoid a possible additional level of muxing.

 The “RVC” or “C” extension described later also has a couple of
instruction formats specifically designed to cut the size of these
prologues and epilogues in half.

OS stuff

 There’s a page on the OSDev Wiki with an introduction.

 There’s a scall instruction (now ecall) for trapping into the kernel,
and three privilege modes: User mode, Supervisor mode, and M
achine mode. There are correspondingly three versions of iret: uret
from any mode if you have the “N-extension” (not yet finished, p.
101) to enable user-mode trap handlers, sret from S-mode (or
M-mode), and mret only from M-mode.

 There are 4096 “CSR”s, control/status registers, 1024 per mode
(including 1024 reserved for hypervisors, I guess? There used to be an
“H” mode that has now been removed), and accessing one you aren’t
allowed to will trap. These include things like floating-point
rounding mode and exception state, the trap vector (I guess for setting
up interrupt handlers and other trap handlers?), and cycle counters.
The minimal set of CSRs is like 12 or 16 bits.

 The virtual memory setup seems super simple.

 The smallest protection unit is 4-KiB pages, though there’s some
kind of large page support; there’s an addr_space_id field in the
“SATP” CSR (“supervisor address translation and protection”) that
specifies which address space you’re in so you can context-switch
without flushing your TLB I guess. RV32 has 2 levels of page tables
and 32-bit physical addresses, so I guess that’s 1024-way branching at
each level (Vol. II, p. 68, §4.3.1); RV64 has 3 or 4 levels of 512-way
branching and respectively 39 or 48 virtual address bits (“Sv39” and
“Sv48”), and then there’s something called “RSVD” which may or
may not be another name for RV128.

 An Sv32 (Vol. II, p. 67, §4.3) page table entry is 32 bits; bits 31:20
(12 bits) are “PPN1” (“physical page number”), bits 19:10 (10 bits) are
“PPN0”, there are two bits reserved, and then 8 bits DAGUXWRV.
XWR are permissions; if all are 0, the PTE is a non-leaf PTE. G is 1
if the PTE is global to all address spaces, and U is 1 if the PTE is

https://wiki.osdev.org/RISC-V
https://youtu.be/fxLXvrLN5j
https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

accessible in U-mode. D and A are Dirty and Accessed bits, and “V”
is a “valid” bit. The bottom N bits of the “SATP” CSR are the
“page table root physical page number” for the current task (whose
addr_space_id is more of those bits). This is documented in Vol. II, p.
63, §4.1.12.

 Interestingly, U-mode pages are normally not readable or
executable in supervisor mode, although there’s an override bit to
make them readable.

 There’s also a “physical memory attributes” thing (Vol. II, p. 43,
§3.5) that sounds like MTRRs, and a “physical memory protection”
thing that lets you irreversibly lock some memory regions at boot.

 Trap handlers, including interrupts, page faults, and other
exceptions, are set up with the “xtvec” CSR (for x in U, S, or M, I
guess; vol. II, p. 27, §3.1.7; stvec in particular is documented in vol.
II, p. 57, §4.1.4) pointing to the trap handler address, or optionally to a
table of instructions (if the bottom 2 bits of xtvec are set to 01). There
is an “xcause” CSR that tells you which interrupt it was, even
without the table. And four more related “x*” CSRs. There are
currently nine interrupts defined and 12 exceptions: misaligned
instruction (0), instruction access fault (1), illegal instruction, (2),
breakpoint (ebreak, previously sbreak) (3), load address misaligned (4),
load access fault (5), store address misaligned (6), store access fault (7),
environment call (8), instruction page fault (12), load page fault (13),
and store page fault (15). The misaligned-address faults are present
because, although misaligned fetches are architecturally allowed,
you’re also allowed to implement them with a trap handler instead of
in hardware ☺. (And the same is true of page table traversal.) All the
“store” faults may also be “AMO” faults, which I think is “atomic
memory operation”.

 All this is, I think, specified in the RISC-V privileged-instructions
spec, which is Volume II.

 There’s an S-mode sfence.vma instruction for, I guess, flushing
TLBs — for the current “hart”.

Counters, timing, and nondeterminism

 There’s a 64-bit timer counter (the time CSR, I think, 0xC01, p.
108) that can provide an interrupt at a predetermined wall-clock time;
each hart has its own comparator, configured in M-mode. Reading
the timer CSR is privileged and traps to M-mode (at least in U-mode),
which means you can remove it as a source of nondeterminism from
user processes. I’m not sure if the same is true of the performance
counters like instret, the instructions-retired counter (0xC02), and
cycle (0xC00); they say (p. 36):
We mandate these basic counters be provided in all implementations as they are
essential for basic performance analysis, adaptive and dynamic optimization, and to
allow an application to work with real-time streams. Additional counters should
be provided to help diagnose performance problems and these should be made
accessible from user-level application code with low overhead.

 However, on p. iv of “Volume II: RISC-V Privileged
Architectures”, they explain that one of the changes from version
1.9.1 to version 1.10 was so that “S-mode can control availability of
counters to U-mode”.

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf

 (I don’t know how you can both have a 64-bit timer CSR and have
only 12 or 16 bits of total CSRs... maybe the dude meant RV32E.)

 Hmm, the timer in question actually seems to be the
memory-mapped mtime register (vol. II, p. 32), coupled with mtimecmp
which posts a timer interrupt when mtime exceeds it.

 Aha, here’s the poop on the counter enabling (vol. II, p. 34):
The counter-enable registers mcounteren and scounteren are 32-bit registers that
control the availability of the hardware performance-monitoring counters to the
next-lowest privileged mode. ...
 When the CY, TM, IR, or HPMn bit in the mcounteren register is clear, attempts
to read the cycle, time, instret, or hpmcountern register while executing in S-mode or
U-mode will cause an illegal instruction exception. When one of these bits is set,
access to the corresponding register is permitted in the next implemented privilege
mode (S-mode if implemented, otherwise U-mode).
 [analogously for scounteren]
 Registers mcounteren and scounteren are WARL registers that must be implemented
if U-mode and S-mode are implemented. ...
 The cycle, instret, and hpmcountern CSRs are read-only shadows of mcycle, minstret,
and mhpmcountern, respectively. The time CSR is a read-only shadow of the
memory-mapped mtime register.

 So yes, the OS (or M-mode code) can hide timers from user code
to deny it nondeterministic behavior.

Booting

 Julian Stecklina says QEMU boots RISC-V with OpenSBI
firmware and can load an ELF kernel with qemu-system-riscv64 -M virt
-bios default -device loader,file=kernel.elf.

Hardware threading

 I don’t know what’s going on here but there is a fence instruction
for synchronization betweent threads, a fence.i instruction for JIT, but
apparently no instructions to spawn or terminate “harts”. There’s
some kind of “IPI” interprocess interrupt mechanism for
nonconsensual IPC: you set the USIP bit (or maybe SSIP or MSIP)
in another hart with memory-mapped I/O in M-mode, although this
is tricky when an OS might be concurrently descheduling a hart.

 I never did find anywhere that it says how to start or stop a hart.
There’s a CSR mhartid that tells you what the current hart ID is, so
maybe all the harts are running all the time?

RV32E embedded

 For embedded systems, like maybe soldering irons, 1024 bits of
integer architectural registers might be a lot (??) so they defined a
smaller profile with only 16 registers and no counters. I guess that
means you don’t get a6 and a7, nor s2–11 and t3–6.

 The whole chapter about this is only a page and a half long.

RV64I

 The 64-bit extension is similar to amd64 in that the normal
instructions now work on 64-bit registers, and there are new
instructions like addiw or sltiw which work on only the low 32 bits, and
a lwu instruction that loads a 32-bit value and zero-extends it. addiw rd,
rs, 0, to sign-extend a 32-bit value to 64 bits, has an alias sext.w.

https://x86.lol/generic/2020/01/01/riscv-intro.html
https://x86.lol/generic/2020/01/01/riscv-intro.html

 I suspect that loading a 64-bit non-PC-relative constant will
require using an ARM-style “constant pool” rather than the lui/addi
pair needed for 32-bit constants.

 This is reasonably compatible, but not totally; it might not be
feasible to generate machine code that can do the same thing on either
RV64I or RV32I, aside from having some sort of conditional jump.
But with the exception of slli and sari and the like, most of the
instructions can just ignore the upper 32 bits if you don’t care about
them.

Multiplication and division

 The standard mul operation is only 32×32 → 32, but then there are
mulh, mulhu, and mulhsu operations for various ways of computing the
high 32 bits of the result. RV64 has a mulw as well. Analogously div has
rem, divu, remu, divw, divuw, remw, and remuw, but it does not take a
double-precision dividend.

 Division by zero or divide overflow does not raise an exception.

Atomics

 The atomic instruction set doesn’t provide compare-and-swap, or
even LL/SC, but rather something called
“load-reserved/store-conditional” and an “atomic fetch-and-op”
facility. This part seems to be in flux, related to something called
“RCsc” or “release consistency”.

 LR “registers a reservation” on a memory address and reads a word
from it; SC writes a word to a memory address, “provided a valid
reservation still exists on that address” (p. 40, 52 of 145). I guess if
someone else writes to the address, that demolishes your reservation,
so your later SC will fail; this is an alternative to CAS that avoids
A–B–A bugs, though they say it’s more vulnerable to livelock in
other designs that aren’t RISC-V.

 It’s not clear whether read accesses from another hart to the
reservation will cause it to fail.

 They give the following implementation of CAS in terms of
LR/SC (p. 42):

 # a0 holds address of memory location
 # a1 holds expected value
 # a2 holds desired value
 # a0 holds return value, 0 if successful, !0 otherwise
cas:
 lr.w t0, (a0) # Load original value.
 bne t0, a1, fail # Doesn’t match, so fail.
 sc.w a0, a2, (a0) # Try to update.
 jr ra # Return.
fail:
 li a0, 1 # Set return to failure.
 jr ra # Return.

 (jr rs here is “jump register” (p. 110): jalr x0, rs, 0.)

 The atomic “fetch-and-ops” are atomic swap, add, and, or, xor,

max, maxu, min, and minu (p. 43), which points out the curious fact
that min and max are not provided as standard ALU operations.

 They give a three-instruction example of a critical section using
amoswap.w.aq, bnez, and amoswap.w.rl.

“RVC” compressed instructions

 Chapter 12, p. 67 (79 of 145), explains a Thumb-2-like scheme,
providing a 16-bit version of the instruction when:

• the immediate or address offset is small, or
• one of the registers is the zero register (x0), the ABI link register (x1), or the ABI
stack pointer (x2), or
• the destination register and the first source register are identical, or
• the registers used are the 8 most popular ones.

 It turns out, though, that the last two are actually an “and” rather
than an “or”, and the conditions are actually considerably more
restrictive than the above implies.

 There’s an opcode map on pp. 81–83.

 They point out that the Cray-1 also had 16-bit and 32-bit
instruction lengths, following Stretch, the 360, the CDC 6600, and
followed by not only ARM but also MIPS (“MIPS16” and
“microMIPS”) and PowerPC “VLE”, and that RVC “fetches
25%-30% fewer instruction bits, which reduces instruction cache
misses by 20%-25%, or roughly the same performance impact as
doubling the instruction cache size.” I’m not sure how that’s possible.

 There are eight compressed instruction formats.

 Much to my surprise, the eight registers accessible by the three-bit
register fields in the CIW (immediate wide), CL (load), CS (store),
and CB (branch) formats are not the first eight registers, but the second
eight registers, x8–15! These are callee-saved s0–1 and the first
argument registers a0–5. The CR (register–register), CI (immediate),
and CSS (stack store) formats have full-width five-bit register fields.
(The CJ format doesn’t refer to any registers.)

 Complementing the stack-store format are stack-load instructions
(p. 71) using the CI format with a 6-bit immediate offset, which is
prescaled by the data size (4, 8, or 16 bits). These index only upward
from the stack pointer, institutionalizing the
otherwise-only-conventional downward stack growth. The
immediate-offset field in the stack-store format is also 6 bits and
treated in the same way. And there’s a thing called c.addi16sp which
adds a signed multiple of 16 to the stack pointer, that is, allocates or
deallocates stack space.

 So in a 16-bit instruction you can load or store any of the 32 integer
registers to any of 64 stack slots (if you’ve allocated that many), and
you can do a two-operand operation with either two registers or a
register and an immediate. It’s the more general load, store, and
branch formats (CL, CS, CB) that limit you to the 8 “popular”
registers and only permit 5-bit unsigned offsets (thus 32 slots indexed
by those “popular” registers).

 These general CL and CS formats effectively require the register to
either be used as a base pointer to a struct or contain a memory
address computed in a previous instruction, although you could

reasonably argue that the 12-bit immediate field in the uncompressed
I-type and S-type instructions imposes a similar restriction — 2 KiB is
not very much space for all of your array base addresses!

 Additionally, on RV32C and RV64C, the CIW-format c.addi4spn
loads a pointer to any of 256 4-byte stack slots (specified in an
immediate argument) into one of the 8 popular registers, which you
can then use with a CL or CS instruction to access it.

 Unconditional jumps and calls (to ±2KiB from PC) and branches
on zeroness (to ±256 bytes from PC) are also encodable in 16 bits,
using the CJ format. These are also restricted to the 8 popular
registers. There’s also c.jr and c.jalr indirect unconditional jumps and
calls, which can use any of the 32 registers except, of course, x0.

 There’s a couple of compressed load-immediate instructions with a
6-bit immediate operand, of which the second (c.lui) seems entirely
mysterious.

 16-bit-encoded ALU instructions (subtract, c.addw, c.subw, copy, and,
or, xor, and shifts) are all limited to the 8 popular registers, except for
addition, which can use all 32 registers.

 ebreak (into the debugger) is mapped into RVC, which is pretty
important, but ecall/scall isn’t.

 There doesn’t seem to be a reasonable way to load immediate
memory addresses in 16-bit code except through the deprecated c.jal
.+2 approach, which leaves the current PC in ra, at which point you
can add a signed 6-bit immediate to it with c.addi, thus generating an
address of some constant (or maybe a variable, if your page is mapped
XWR or you don’t have memory protection!) within 32 bytes of
where you are, but then it’s still in x1 and not a popular register.
There’s no compressed version of the auipc instruction, for example.
This is maybe not such a big deal like it would be in Thumb, since
you can freely intersperse 32-bit instructions like that into your 16-bit
code.

 So in pure 16-bit instructions you can freely walk around pointer
graphs, index into arrays, jump around, jump up, jump up, and get
down, add, subtract, and do bitwise operations, but you can’t invoke
system calls or load addresses of global variables or constants.

 So you could almost do a 16-bit-instruction RISC-V hardware core
that emulates other instructions with traps but executes at full speed
when running 16-bit instructions. You’d need to add a few additional
16-bit instructions for accessing CSRs, loading addresses, and
handling traps.

MMX “P”

 On p. 91 they talk about packed SIMD (as in the TX-2 and MMX)
which they have decided to support by reusing the floating-point
registers for integer vectors (as in MMX) and not support for floating
point in favor of Cray-like variable-length vector registers (p. 93).
But evidently the packed SIMD proposal is not ready.

2019 update of instruction set

 All of the above was from looking at the 2017 2.2 spec. The
current version of the user-level ISA spec is 20191213 and is about

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

another hundred pages, 238 pp. in total.

 This answers a bunch of my questions above about hart initiation,
why the RV64I *W instructions are the way they are, etc.

Topics

• Assembly-language programming (p. 1175) (11 notes)
• Instruction sets (p. 1214) (6 notes)
• RISC-V (p. 1276) (3 notes)

Trying to design a simple
switchmode power supply using
Schmitt-trigger relaxation
oscillators
Kragen Javier Sitaker, 02021-01-26 (updated 02021-01-27)
(32 minutes)

 This Schmitt trigger is a relaxation oscillator:

$ 1 0.000005 10.20027730826997 50 5 43
t 128 176 176 176 0 1 -0.2938307156093387 0.33934606572308645 100
t 272 176 240 176 0 1 0.5930756260039916 0.6331767813324252 100
w 176 192 208 224 0
w 240 192 208 224 0
r 208 224 208 304 0 1000
g 208 304 208 336 0 0
w 176 160 176 128 0
w 176 128 272 128 0
w 272 128 272 176 0
w 240 160 240 96 0
w 176 128 176 96 0
r 176 96 176 48 0 1000
r 240 96 240 48 0 1000

https://tinyurl.com/yy8p2ox8

w 176 48 128 48 0
w 176 48 240 48 0
w 240 48 288 48 0
R 96 48 64 48 0 0 40 5 0 0 0.5
w 240 96 288 96 0
368 288 96 320 96 0 0
w 240 96 160 96 0
t 128 96 96 96 0 -1 -0.5925597349297167 -0.6239301896520031 100
w 96 48 96 80 0
w 96 48 128 48 0
r 96 112 96 176 0 1000
c 96 176 96 304 0 0.00001 3.7550188699753013 0.001
g 96 304 96 336 0 0
w 96 176 128 176 0
r 160 96 128 96 0 1000
r 64 176 64 304 0 4700
g 64 304 64 336 0 0
w 64 176 96 176 0
o 18 64 0 36875 10 6.4 0 2 18 3
o 24 64 0 4355 5 0.003125 1 2 24 3

 It oscillates at about 33 Hz with a 31% duty cycle.

 The wire from the differential amplifier’s negative output to its
negative input provides the positive feedback that makes it a Schmitt
trigger, a configuration which I got from the introductory transistor
chapter of Horowitz & Hill, so the transistors in the pair are nearly
always either in saturation or cutoff. When the left transistor (the
positive input) is in saturation, the right one is in cutoff, and so the
PNP switch at the top is also in saturation, so the capacitor discharges
until the positive-input transistor goes into cutoff, the negative input
goes into saturation, and so does the PNP switch, so the capacitor
starts charging.

 When the positive output is high, the voltage down from the
positive power supply to the positive output is nearly 0; the
simulation has up to about 50 pA of leakage current through that
transistor, so up to about 50 nV of drop through its 1kΩ collector
resistor. This keeps the PNP transistor firmly off, allowing the 10μF
timing capacitor to discharge through the 4.7 kΩ resistor at a
milliamp or two. (It’s also bled by the input impedance of the
positive input of the differential pair, but only about 30 μA goes that
way.)

 So we have a discharge time constant of about 47 ms, discharging
down from about 4 V (where does this number come from?) toward
zero to 2.9 V, at which point it’s crossed the 1.1 volts of hysteresis and
the Schmitt trigger fires. 2.9 ÷ 4.0 = 0.725, whose natural log is -0.3,
so this should be about 0.3 time constants, or about 15 ms, but in the
simulation it’s more like 9 ms, so I must be analyzing something
wrong. The discharge current drops from about 2.4 mA to about
0.6 mA during this time, which suggests it’s about 1.4 time constants.
So I’m analyzing both the asymptotic value and the time constant
wrong.

 When the output snaps low, down to about 3.5 volts (where does
this number come from?), this is enough to draw about 0.9 milliamps

through the PNP transistor’s base resistor, driving it into saturation
and charging the capacitor from the 1kΩ–4.7kΩ divider. (We can
ignore the 30–40 mV of saturated-transistor voltage drop.)

 The Thévenin equivalent of the voltage divider is a source of 4.1 V
(5 × 4.7/(1 + 4.7)) with a short-circuit current of 5 mA, and thus a
source impedance of about 800 Ω, the parallel combination of the
1 kΩ and 4.7 kΩ, so we’d expect the charging time constant to be
about 8 ms. (The cutoff base contributes even less here, just -0.1 pA
or so of diode leakage.) The 1.1 volts from 2.9 to 4.0 volts should be
about 11/12 of the total distance, leaving 1/12, which should take
about 2.5 time constants, or about 20 ms.

 So I’m totally confused about everything. But the circuit does
oscillate!

 Where does the 3.5 volts come from? It must be 1.5 mA through
the collector resistor, which also goes through the shared emitter
resistor along with another 0.9 mA from the PNP switch’s base
current (1.5 V - 0.6 V of Vbe on a 1 kΩ resistor) and the
positive-feedback current into the base of the negative-input
transistor, which is about another 0.9 mA. This all adds up to about
3.4 mA and thus 3.4 V in the emitter resistor to ground, plus another
40 mV of Vce. So it’s basically the voltage divider between the
collector resistor and the emitter resistor, perturbed by the additional
base currents.

 The base current on the negative-input transistor is so large because
it’s only limited by the positive-input transistor’s collector resistor. As
long as β > 2.5 we could get by with a smaller base current. Similarly
we only demand about β > 2.2 on the PNP switch and about β > 1.2
on the other transistor of the differential pair. We could introduce a
10-kΩ resistor on all three bases without changing the circuit’s
behavior radically, though it does speed up the oscillation and bring
the duty cycle close to ½ and reduce the hysteresis from about 1.1 V to
about 0.6 V; and the output is then close to 2.9–3.1 V instead of 3.5.
It also increases the amount of time the positive-input transistor is in
forward-active mode and consequently makes the circuit behavior
dependent on its β, although I’m not sure why.

Trying to get higher gain out of the
Schmitt trigger

 If we use larger collector resistors, or a smaller emitter resistor, the
output voltage swing will be larger, though at the expense of lower
input impedance. For example, with 4.7-kΩ collector resistors and a
220-Ω emitter resistor, the output voltage can go down to 430 mV,
though with an input impedance of just over 220 Ω, only about
200 mV of hysteresis, and a threshold around 800 mV. Then maybe
we can get by without the PNP switch for the oscillator? The idea is
that when the positive input transistor switches off, its collector gets
pulled high, and the capacitor on its input starts to charge from there.
Here’s the Schmitt trigger driven from a pot:

https://tinyurl.com/y4to2cxt

$ 1 0.000005 1.3241202019156522 60 5 43
t 144 176 176 176 0 1 -0.30258918619292474 0.3178213755193918 100
t 272 176 240 176 0 1 0.5904473435832114 0.6204105617123166 100
w 176 192 208 224 0
w 240 192 208 224 0
r 208 224 208 304 0 220.00000000000003
g 208 304 208 336 0 0
w 176 128 272 128 0
w 240 160 240 96 0
w 176 128 176 96 0
r 176 96 176 48 0 4700
r 240 96 240 48 0 4700
w 176 48 112 48 0
w 176 48 240 48 0
w 240 48 288 48 0
R 96 48 64 48 0 0 40 5 0 0 0.5
w 240 96 288 96 0
368 288 96 320 96 0 0
w 96 48 112 48 0
g 112 304 112 336 0 0
w 272 128 272 176 0
w 176 128 176 160 0
174 112 304 144 64 1 1000 0.1436 Resistance
o 16 64 0 36875 10 12.8 0 2 16 3
o 4 64 0 4355 2.5 0.0125 1 2 4 3

 At one point, the input voltage is 964 mV and Ib is 601 mA; at
1.113 V Ib is 1.254 mA, thus about 228 Ω for a change of 653 μA over
149 mV; and at 1.204 V Ib is 1.659 mA, so a further 91 mV gives a

further 405 μA, giving 224 Ω. So the input impedance is just over
that of the emitter resistor, because the majority of the emitter
current here is base current, and the collector current is almost
constant. Moving the input 100 mV higher will move the resistor’s
voltage almost 100 mV higher, and thus its current as well. So for
example at 1090 mV input the base current is 1.149 mA, the emitter is
at 464 mV, the collector is at 491 mV, and the emitter resistor is
carrying 2.109 mA from those 464 mV, of which the other 0.960 mA
come from the collector resistor at 4.509 V. But if I bump up the
input to 1113 mV (23 mV higher), the base current goes up to
1.254 mA (as said above, and that’s 0.105 mA more), the emitter
voltage up to 486 mV (22 mV higher), and the collector voltage up to
512 mV (21 mV higher). This diminishes the current through the
collector resistor to 0.955 mA (0.005 mA less), so now the emitter
resistor is carrying 2.209 mA, 0.100 mA more.

Can we make the Schmitt trigger oscillate
without the extra transistor switch?

 So if we rig up an unbuffered capacitor on the input like before, it’s
going to be pulled down by this 220-Ω input impedance whenever
the left-hand transistor is conducting, so it’s going to burn down
pretty fast. But the feedback output is only going to be able to supply
a milliamp or so.

 You might think to rely on just the 220-Ω input impedance to
discharge the capacitor, then charging it through a simple resistive
pullup, but that won’t work — the impedance approaches infinity as
you get close to the threshold, so the cap discharges close to the
threshold but never crosses it, bringing the differential pair into
perfect equilibrium.

 Further efforts in this direction have not proven fruitful:

https://tinyurl.com/y5cy3ln3

$ 1 0.000005 1.3241202019156522 60 5 43
t 144 176 176 176 0 1 -0.9040533288840188 0.5648973225760063 100
t 272 176 240 176 0 1 0.5498868952546583 0.6028520852394035 100
w 176 192 208 224 0
w 240 192 208 224 0
r 208 224 208 304 0 220.00000000000003
g 208 304 208 336 0 0
w 176 128 272 128 0
w 240 160 240 96 0
w 176 128 176 96 0
r 176 96 176 48 0 4700
r 240 96 240 48 0 4700
w 176 48 112 48 0
w 176 48 240 48 0
w 240 48 288 48 0
R 96 48 64 48 0 0 40 5 0 0 0.5
w 240 96 288 96 0
368 288 96 320 96 0 0
w 96 48 112 48 0
g 128 304 128 336 0 0
w 176 128 176 160 0
c 128 176 128 304 0 0.000001 0.889692304649781 0.001
w 128 176 144 176 0
w 128 176 112 176 0
w 112 176 96 176 0
r 64 176 64 304 0 4700
w 96 176 64 176 0
g 64 304 64 336 0 0

r 272 128 272 176 0 4700
w 176 96 64 96 0
r 64 96 64 176 0 4700
o 16 64 0 36875 2.5 1.6 0 2 16 3
o 4 64 0 4355 1.25 0.00625 1 2 4 3
o 20 64 0 4099 2.5 0.0015625 2 2 20 3

 Tweaking this like a mindless monkey, I can’t seem to get it to
actually oscillate. Try as I might, the capacitor just finds a tranquil
equilibrium point. I think what’s happening is that a single RC
circuit isn’t sufficient to create enough phase shift to get this amplifier
to oscillate: I need unity gain or better at 180°, and a single capacitor
only gets me a 90° phase shift. But I don’t understand that stuff at all,
so I might be talking total nonsense here. You’d think that you could
get 180° of phase shift just by using the negative output!

A linear constant-current source

 I was thinking that I could make a constant-current source by
connecting the output of a simple Schmitt-trigger oscillator like these
to some kind of switching transistor, a sense resistor, and some kind of
LC filter or something. A very simple non-switching
constant-current source, based on what I think is a very widely used
design, looks like this:

https://is.gd/dumbampreg

$ 13 0.000005 10.20027730826997 50 5 43
t 256 160 304 160 0 1 -26.012675061853923 0.65192506786543 100
t 304 240 256 240 0 1 -0.65192506786543 0.6059774622652498 100
w 256 160 256 224 0
w 304 176 304 240 0
w 304 240 304 272 0
r 304 272 304 336 0 68
w 256 256 256 336 0
g 256 336 256 352 0 0
g 304 336 304 352 0 0

r 304 48 304 144 0 1000
R 304 48 304 -16 0 1 40 20 30 0 0.5
r 256 160 256 48 0 22000
w 256 48 304 48 0
368 304 144 368 144 0 0
368 304 48 384 48 0 0
368 304 240 352 240 0 0
o 9 64 0 4099 10 0.0125 0 2 9 3
o 14 64 0 4099 80 51.2 1 6 14 3 13 0 13 3 15 0 15 3

 In this simulation, the input voltage across the 1-kΩ load varies
between +10 V and +50 V. The load is grounded through the
collector of the pass transistor, whose emitter has a 68-Ω sense resistor
to ground, which in parallel with the base-emitter junction of a
feedback transistor. The collector of the feedback transistor robs
current from the base of the pass transistor, which is pulled up to the
source with a 22-kΩ resistor. So the feedback transistor maintains the
sense resistor at 600 mV or so (570–620 mV in the simulation) by
reducing its collector current whenever its base voltage starts to drop,
which allows the base voltage on the pass transistor to soar.

 The upshot is that the load current is held constant within about
±5% despite 5× variations in the input voltage, but the pass transistor
burns 2× as much power as the load on average, 4× at peak.

Regulating current efficiently with PWM

 What I was thinking was that if you could feed the pass transistor a
PWM signal, then filter its collector with an LC filter, you could
regulate the load current without dissipating all that power. I can’t
figure out how to connect a constant-current LC filter to a transistor
without either blowing up the transistor with a voltage spike when it
turns off, or blowing it up with a current spike when it turns on, so
for the moment I’m trying to make do with a diode:

https://tinyurl.com/y5m4df72

$ 1 0.000005 0.28339363076941687 50 5 43
t 304 272 336 272 0 1 -5.2088354545247935 -0.000020699986477813047 100
w 336 288 336 352 0
w 336 352 336 384 0
g 336 384 336 400 0 0
a 192 272 256 272 8 5 0 1000000 3.3999999647789307 3.1930000000000005 100000
R 304 48 304 0 0 0 40 5 0 0 0.5
174 304 48 304 112 0 100 0.1337 load
w 320 80 336 80 0
w 336 80 336 144 0
l 336 144 336 224 0 0.047 0.21955359875043728
w 336 224 400 224 0
34 power-schottky 1 0.0001714352819281 0 1.1281915331325552 0 5
d 400 224 400 48 2 power-schottky
w 400 48 304 48 0
w 336 224 336 256 0
174 80 320 96 272 0 1000 0.6386000000000001 current setting
g 80 320 80 400 0 0
w 96 288 192 288 0
R 192 256 144 256 0 3 4000 2.5 2.5 0 0.5
R 80 256 80 224 0 0 40 5 0 0 0.5
r 256 272 304 272 0 100
368 256 272 256 208 0 0
o 9 2 0 4099 5 0.4 0 2 9 3
o 20 2 0 4098 10 6.4 1 2 20 3

 The comparator in this circuit compares the current input setting to
a triangle wave, thus generating a PWM waveform to use to switch a
power transistor between saturation and cutoff. The collector of the

power transistor grounds one end of the inductor some of the time,
while otherwise allowing it to return to the positive voltage supply
through the Schottky diode.

 Thus analyzed, this is just an ordinary buck converter drawn in a
slightly weird way, and its variable-current output isn’t really a
current output at all; with a constant PWM duty cycle and supply
voltage, it will give you a constant voltage, not a constant current. To
avoid unboundedly increasing current, the inductor’s time-averaged
voltage must be zero (ignoring parasitic resistance) so the average
voltages at its two ends must be equal. But that wasn’t what we
wanted; we wanted to set a current and have the sink produce that
current.

A Rube Goldberg linear current sink

 Now, we could achieve that with feedback, as suggested earlier:
adjust the duty cycle of an oscillator according to a current for
example as indicated by the voltage across a sense resistor. But is there
an inherently regulated way?

 Well, a capacitor does have the property that its time-averaged
current is zero, but by itself that doesn’t give you what you want. But
you could reasonably charge a capacitor up to a desired voltage and
then dump it to ground at a variable frequency in order to get a
frequency-to-current converter, or charge it up to a variable voltage
and then dump it to ground at a fixed frequency:

 This circuit does not really work. The idea here is that L1 and C1
smooth the current from the load, while Q1 allows C2 to charge up
to some variable voltage, set by the potentiometer. Then, at some
fixed frequency (4 kHz here), Q2 pulls Q1’s base to ground, turning it
off, and then Q3 shorts C2 to ground. If the potentiometer is at, say,
900 mV, then Q1 will allow C2 to charge to 300 mV, thus
accumulating 3 μC of charge, and so at 4 kHz this circuit should sink
12 mA for a wide range of load impedances. L2 and its flyback diode
are intended to limit the current with which C2 charges, so that when
Q2 turns off and Q1 turns back on, Q1’s collector current isn’t
excessive. The two comparators, the sawtooth, and the voltage

https://tinyurl.com/y2eeqydu
https://tinyurl.com/y2eeqydu

divider handle the sequencing of Q2 and Q3.

 And all of that sort of works in the simulation. The regulation isn’t
perfect: there’s ripple, there’s ringing, there’s a lot of overshoot, and
it can even reverse the voltage to the load (which would often be a
fatal flaw in real life), but the real problem is what happens at Q3.
Because it’s trying to short out a charged capacitor, it has to dissipate
all the energy in the capacitor — whatever base current you give it
will never be enough for it to start out in saturation, because an ideal
capacitor can supply infinite current.

 So this is really just a Rube Goldberg variable linear current sink,
similar to the two-transistor one given earlier, except that it’s burning
up the wasted energy in pulses instead of continuously. And that’s the
big sense in which it doesn’t really work.

 Essentially the problem is that, if this current sink is connected
between the load and ground, and its load terminal is at +3 V dc from
ground, and it’s sinking an average of 12 mA dc, then it’s receiving 48
mW of energy through that terminal. That energy has to go
somewhere; it can’t just disappear.

A slightly less broken Rube Goldberg
switching current source?

 This suggests a straightforward way to solve the problem: instead
of trying to sink current from the load, let’s source current to the load
via Q3! This has the problem that, when we try to dump C2 into the
load via Q3, we aren’t dumping a known amount of charge; we’re
only discharging C2 down to the voltage of the load’s input terminal.
I tried some things here but I’m not confident that it works at all; I
think it may just have fooled me:

$ 1 0.000005 18.278915558614752 40 5 43
R 272 144 272 96 0 0 40 15 0 0 0.5
174 496 272 496 336 0 100 0.8564 load
w 512 304 528 304 0
w 528 304 528 368 0
174 160 320 176 176 0 1000 0.08420000000000001 current setting
g 160 320 160 400 0 0
R 160 160 160 128 0 0 40 15 0 0 0.5
t 224 240 272 240 0 1 -14.954239010668287 -3.889054598302753 100
w 272 224 272 192 0
d 272 192 272 144 2 default
c 272 288 272 352 0 0.00001 3.9348155877184956 0.001
g 272 352 272 400 0 0
w 192 240 176 240 0
w 192 240 192 288 0
t 128 304 192 304 0 1 0.631950629878116 0.6777116192938586 100
w 224 240 192 240 0
w 272 256 272 288 0
w 272 288 240 288 0
w 240 288 240 336 0
t 144 352 240 352 0 1 -3.937246095539954 0.558406250396508 100
g 528 368 528 400 0 0
a 16 304 80 304 8 5 0 1000000 1.6666666666666667 2.8000000408304526 100000
a -64 352 16 352 8 15 0 1000000 3.3333333333333335 2.8000000408304526 100000

g 192 320 192 400 0 0
r 128 304 80 304 0 1000
r 144 352 16 352 0 1000
R -192 192 -192 160 0 0 40 5 0 0 0.5
r -192 192 -192 240 0 1000
r -192 240 -192 288 0 1000
r -192 288 -192 352 0 1000
g -192 352 -192 400 0 0
w -192 288 16 288 0
w -192 240 -112 240 0
w -112 240 -112 336 0
w -112 336 -64 336 0
R -64 208 -64 176 0 4 4000 2.5 2.5 0 0.5
w -64 208 -64 320 0
w -64 320 16 320 0
w -64 320 -64 368 0
l 496 208 496 272 0 0.1 0.00900069879531614
x 245 216 262 219 4 12 Q1
x 214 327 231 330 4 12 Q3
x 169 281 186 284 4 12 Q2
x 279 344 295 347 4 12 C2
x 266 166 281 169 4 12 L1
w 240 368 416 368 0
w 416 368 416 208 0
l 288 144 288 192 0 0.01 1.0027900861914286e-13
w 416 208 496 208 0
w 496 208 576 208 0
w 528 368 576 368 0
d 576 368 576 208 2 default
w 272 192 288 192 0
w 288 144 272 144 0
o 14 1 2 4099 5 0.1 0 3 19 2 7 2
o 3 2 0 4097 5 0.1 1 2 3 3

An approach that will definitely work:
PWM with feedback

 Returning to the previous PWM circuit, it should be
straightforward to make it regulate current rather than voltage by
adding negative feedback.

 Here’s a messy version:

https://tinyurl.com/y3sm6c7m

$ 1 0.0000049999999999999996 0.28339363076941687 50 15 43
t 304 272 336 272 0 1 0.6260511746778811 0.674755596023026 100
g 336 384 336 400 0 0
a 192 272 256 272 8 5 0 1000000 3.800000004678905 4.126251457841372 100000
R 304 48 304 0 0 0 40 15 0 0 0.5
174 304 48 304 112 0 1000 0.8267000000000001 load
w 320 80 336 80 0
w 336 80 336 144 0
w 336 224 336 256 0
w 96 288 192 288 0
R 192 256 144 256 0 3 4000 2.5 2.5 0 0.5
r 256 272 304 272 0 1000
368 256 272 256 208 0 0
r 336 320 336 384 0 47
w 336 288 336 320 0
a 96 336 0 336 9 5 0 1000000 0.8613930098335231 0.8614248813748869 100000
w 0 336 0 384 0
w 96 352 96 384 0
r 96 384 0 384 0 2700
r 96 384 96 432 0 1000
g 96 432 96 448 0 0
R -336 -32 -336 -48 0 0 40 5 0 0 0.5
174 -336 64 -304 -16 1 1000 0.5 Current setting
g -336 64 -336 80 0 0
w -304 16 -80 16 0
r 96 320 336 320 0 1000
r -80 16 96 16 0 1000
c 96 16 160 16 0 1e-7 2.500000000000011 0.001
g 160 16 160 48 0 0
w 304 48 384 48 0
d 384 224 384 48 2 default
w 384 224 336 224 0
l 336 144 336 224 0 0.22000000000000003 0.014864165387393801
d -64 336 -128 336 2 default
c -128 336 -128 432 0 0.000001 2.534996346391612 0.001
g -128 432 -128 448 0 0
w -128 336 -160 336 0

r -160 336 -160 432 0 1000
g -160 432 -160 448 0 0
r 0 336 -64 336 0 33
a -64 176 -208 176 9 5 0 1000000 2.534996346391612 2.500000000000011 100000
w 96 16 96 80 0
w 96 80 48 80 0
w 48 160 -64 160 0
w -128 336 -128 256 0
w -128 256 -64 256 0
w -64 256 -64 192 0
w 48 80 48 160 0
r -208 176 -208 272 0 1000
c -208 272 -208 320 0 0.000001 4.126251457841372 0.001
g -208 320 -208 352 0 0
w -208 272 96 272 0
w 96 272 96 288 0
o 11 2 0 36866 10 6.4 0 2 11 3
o 31 2 0 4099 20 0.1 1 2 31 3
o 15 2 0 4098 10 0.00625 2 2 15 3
o 33 2 0 4099 5 0.0125 3 2 33 3

 I struggled a lot to get this to work, battling lots of unexplained
convergence problems, and hopefully I can do a better version later.

 When the switching transistor is on, it passes the current through
the 47-ohm sense resistor, which converts each milliamp into 47 mV.
The first op-amp multiplies that by 3.7 to get 173.9 mV/mA, and
then a peak-detector diode lops about 520 mV off of that. So 18 mA
gives you 3.1 volts at the output of the opamp, and 2.58 volts at the
output of the diode. (The inrush-limiting 33-Ω resistor adds an
additional error, about 130 mV in this case.) The peak-detecting
capacitor is discharged to ground with a 1-ms time constant, so the
250-μs period of the 4-kHz PWM signal is enough for about a 22%
decay in the worst case of a very low duty cycle, so on average the
voltage here is about, say, 8% lower than the peak. So our 2.4 volts or
so goes to the opamp above to be compared with the set point from
the potentiometer, and this comparison is also filtered with a 1-ms-τ
RC filter. The duty cycle with which the ripply input signal falls
below the set point is then fairly directly used as the duty cycle for the
comparator with the sawtooth.

 This does overshoot and ring, and it has residual error, but it
doesn’t work nearly as badly as it sounds like it ought to. I wanted to
wedge an error integrator in there somewhere in order to eliminate
the residual error, but I kept getting convergence failures in the
solver.

 Another problem with this circuit is that the base current on the
switching transistor is included in the current measurement. This is a
big problem at low duty cycles; in the example circuit, with the load
set at 114 Ω, we achieve about 7–9 mA through the load at about an
8% duty cycle. But when the switching transistor is turned on with a
5-V signal, there’s another 3.8 mA of base current which gets added,
so the sense resistor actually measures 11.5 mA. Turning the load up
to 668 Ω, the duty cycle stabilizes around 30%, with 8.2 mA through
the sense resistor, so we have about 29% residual error due to

proportional control — but the current through the actual load is only
about 4 mA, more like a 50% error!

 This base-current error could be corrected either by running the
sense resistor on the opposite side of the load from the switching
transistor, by putting the sense resistor between the load and the
switching transistor (which would probably require differential
measurement), or by reducing the base current when operating the
load at low currents.

 (And of course the ultimate objective is to simplify the whole
circuit to about seven transistors by using the oscillators presented at
the top of this note, feeding them some kind of signal to modify their
duty cycle, produced through the kind of PI control I totally failed to
achieve in this case.)

Topics

• Electronics (p. 1145) (39 notes)
• Power supplies (p. 1176) (10 notes)
• Falstad’s circuit simulator (p. 1198) (7 notes)
• Oscillators (p. 1283) (3 notes)

Trying and failing to design an
efficient index for folksonomy
data based on BDDs
Kragen Javier Sitaker, 02021-01-26 (updated 02021-01-27)
(7 minutes)

 Suppose you have some tags and want to index them. My URLs
file is only about 4500 URLs, so for an interactive query sequential
search would be fine, but what if it wasn’t, because you had a much
larger database?

 Each item has some set of tags. A tag query consists of some set of
required tags and some set of forbidden tags, and the desired result is
the set of items that have all the required tags and none of the
forbidden tags; usually we want to be able to start iterating over the
result set as soon as possible.

 So far this sounds trivial. What makes it difficult is the Zipf
distribution and non-independence of tags.

 I have about 2200 tags in my 5000-item URLs file, 1100 of which
are used only once; for example:

 1 #3D-XPoint
 1 #Alex-Jones
 1 #random-forest
 1 #dimensional-analysis
 1 #QR-codes
 1 #Data-General
 1 #CCC
 1 #digital
 1 #aurora
 1 #Steven-Universe

 These are easy to handle: if they’re in the required set, a simple
inverted index directs you from the tag directly to its single hit, and if
they’re in the forbidden set, it’s adequately efficient to check each tag
in candidate items against a hash table of forbidden tags.

 But there are some tags that are used frequently:

345 #hardware
254 #paper
217 #politics
174 #history
154 #USA
144 #materials
136 #PDF
133 #pdf
120 #security
118 #toread
112 #video
103 #algorithms

100 #ebook
 91 #human-rights
 91 #energy
 83 #performance

 So, for example, #hardware has about 7% selectivity, and #paper
about 5%. Worse, these tags aren’t independent: only about 5% of all
URLs are tagged #paper, but 72 of the 133 #pdf URLs are, over 50%,
according to

grep '#pdf' urls | perl -lne 'print $1 while /\s(#[-\w]+)/g' |
 sort | uniq -c | sort -n

 The set of all tags commonly grows almost linearly with corpus
size, but my intuition is that the set of popular tags like #politics
grows much more slowly. The first 2200 URLs contain 1366 distinct
tags (4613 total), 0.62 per URL, while all 4578 URLs contain 2175
distinct tags (10269 total), 0.48 per URL.

 Whether this is true depends on how you define “popular”. If we
take an arbitrary cutoff point of 100, the full set had the 13 “popular”
tags above, while the first 2200 had only one “popular” tag (#paper).
If instead we say that a “popular” tag is one with 1% selectivity or
worse, then in the smaller set there were 25 “popular” tags, and in the
larger set there were 30. If we draw the line at 0.5%, it’s 86 and 79.

 We can build a tree over just the “popular” tags that enables
efficient enumeration of query results by a subdivision process. Each
internal node has an associated tag, with one child for a subtree of
items containing that tag, and another child for all other items.
Several nodes may be associated with the same tag. Leaf nodes are
associated with small sets of items.

The greedy approach

 We build the tree as follows. First, if the set of items is too large
for sequential search to be desirable, take the tag that produces the
most even split between hits and misses, the one whose selectivity is
closest to 50%, #hardware above, and split the items. Then repeat the
process recursively on the resulting two subsets. So, for example,
within #hardware we have the following popular tags:

345 #hardware
 26 #simulation
 22 #Arduino
 19 #PDF
 18 #reverse-engineering
 18 #history
 16 #display
 16 #cellphone
 16 #AVR
 15 #RISC-V

 Here, #hardware no longer has useful selectivity (it’s 100%) but
now we have #simulation with 7.5% selectivity, so (if for the sake of
argument 345 is not small enough yet) we subdivide according to

whether #simulation is present or absent.

 In the non-#hardware group, the ordering is pretty much
unchanged, except that the spuriously separate #PDF and #pdf tags
have switched places, #video has moved down the list, and #Trump
has moved up:

242 #paper
217 #politics
156 #history
154 #USA
141 #materials
124 #pdf
117 #PDF
111 #security
107 #toread
103 #algorithms
101 #video
 99 #ebook
 91 #human-rights
 89 #energy
 79 #Trump
 76 #performance

 So we would subdivide with #paper; -hardware +paper is divided
into -pdf and +pdf, while -hardware -paper is divided into -politics
and +politics. -hardware -paper -politics is unsurprisingly divided
into -history and +history, while +hardware +simulation is
unsurprisingly divided into -SPICE and +SPICE. And so on.

 The same tag can occur in more than one place; for example, both
-hardware +paper +pdf and -hardware +paper -pdf +PDF are
divided by the tag #toread.

 To evaluate a query, we begin by querying the inverted index for
all the required tags; if any of them have an adequately small result
set for sequential search to be practical, we iterate over that result set.
If not, then all of our required tags are “popular”, so we begin to
traverse the tree top-down. When the tag associated with a tree node
is in the query, either as a required or a forbidden tag, we only visit
one of its children; otherwise, we visit both.

 Ultimately each of the leaf nodes of this tree contains individually a
reasonable number of items to search, although this doesn’t necessarily
imply that the aggregate total of all the leafnodes to search will
necessarily be reasonable.

Why the greedy approach fails

 A difficulty with this approach is that in some cases we will end up
reading through an entire subtree because a tag, though globally
popular, is unpopular within that subtree. For example, the
intersection of #hardware and the lamentable #Trump tag is empty,
since Trump doesn’t know about hardware, so for the simple query
+Trump, the algorithm will have to sequentially examine all 345
#hardware items. Even if there were one or two #Trump items in
there in a much larger set, it would never be a popular tag within that

context.

A non-greedy approach: BDD-like
consistent choice order

 An alternative is to use a consistent order of tags throughout the
tree: divide the root by #hardware, its two children (if neither is
small enough to be a leafnode) by #paper, their four children (except
small ones) by #politics, and so on. This avoids the catastrophic worst
case described above, but it probably means that the mechanism can't
handle more than about 4–8 popular tags.

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Algorithms (p. 1163) (14 notes)
• Facepalm (p. 1199) (7 notes)
• Databases (p. 1376) (2 notes)
• Folksonomies

The use of silver in solar cells
Kragen Javier Sitaker, 02021-02-02 (updated 02021-09-11)
(8 minutes)

 A significant fraction of global silver production is used for
photovoltaic modules, and this accounts for something like 10% of
their cost, and something like 10% of global silver production, at
present, a number which is likely to grow. The USGS’s silver report
doesn’t mention photovoltaics, but of course photovoltaics aren’t
being produced in the US now. It says apparent consumption in the
US was 6500 tonnes in 02019 out of 27000 tonnes of global world
production.

 (As a side note, it says photography use in the US is down to 3% of
total silver consumption, down from 28% in 01999, which is still
almost 200 tonnes.)

Current situation

 In PV panels, as of 02018, conductive silver paste is used to make
electrical connections to the photocells at a loading of 130 mg Ag per
4.7-watt cell, down from 400 mg in 02007. The Silver Institute
anticipates that cells will grow to 6 watts by 02030 and reduce silver
usage to 65 mg per cell by 02028. (I’m assuming these numbers are
peak watts because that’s how cells are normally sold; the capacity
factor varies wildly depending on where you install them, making it
not only anticommercial but impractical to derate them for an
expected capacity factor.)

 In 02020 about 140 GWp of new PV capacity was installed,
doubling about every three years, bringing the total to about 770
GWp. 130 mg / 4.7 Wp is 28 mg/Wp, so those 140 GWp amount to
3.9 billion grams or 3900 tonnes of silver consumption, 14% of world
silver production. Perhaps some of the anticipated reduction from
02018 has already happened; apparently from 02007 to 02018 the
trend of silver intensity was about a 4.3% decline per year, so if that
had continued for two more years, in 02020 it would be down to 119
mg per cell.

 This 3900 tonnes per year is almost double the 70-million-ounces
number given in the article cited above: “CRU experts forecast silver
demand for the PV industry of around 70 to 80 million ounces per
year until a decline to between 50 and 55 million ounces in the
mid-2020s. Only by 2030 is demand expected to recover, to
approximately 66 million ounces per year.” 70 million troy ounces is
almost 2200 tonnes. They also cite historical figures:
According to a report published by the Silver Institute in April, global industrial
demand for silver grew around 4%, from 5,768 million ounces in 2016 to 5,990
million last year. This spurt was mainly due to the record growth of the PV
industry, which pushed demand for silver as a component of silver pastes for solar
cells, from 79.3 million ounces in 2016, to 94.1 million ounces in 2017 –
year-on-year growth of around 19%.

 In SI units, 5768 million troy ounces is 179400 tonnes, almost seven
times the number the USGS gives for global annual silver production,
including that sold to investors and that used for non-industrial uses

https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-silver.pdf
https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/silver/880300.pdf
https://www.pv-magazine.com/2018/07/06/amount-of-silver-needed-in-solar-cells-to-be-more-than-halved-by-2028-silver-institute-says/
https://www.pv-magazine.com/2018/07/06/amount-of-silver-needed-in-solar-cells-to-be-more-than-halved-by-2028-silver-institute-says/
https://en.wikipedia.org/wiki/Growth_of_photovoltaics
https://www.pv-magazine.com/2018/04/23/demand-for-silver-in-global-pv-industry-rose-19-in-2017-says-silver-institute/

such as jewelry; 5990 million troy ounces is 186300 tonnes; 79.3
million troy ounces is 2470 tonnes; and 94.1 million troy ounces is
2930 tonnes. (If we were to go further into SI units, 2930 tonnes per
year is 92.7 grams per second.)

 Clearly the article is in error about global industrial demand for
silver, both because it’s an order of magnitude too high and because
an increase of 222 million ounces per year cannot be “mainly due to”
an increase of 15 million ounces per year.

 2930 tonnes ÷ (130 mg / 4.7 Wp) gives an estimate of 106 GWp of
PV cells manufactured in 02016, which is of the right order of
magnitude but about 38% higher than the Wikipedia estimate cited
above of 76.8 GWp of new PV capacity installed in 02016. One or
the other number seems likely to be in error; there’s no way that 28%
of the year’s global PV manufacturing product was stored in
warehouses or in transit at the end of the year. (Or, one supposes, on
jobsites.)

 Though, as I write this, silver prices have spiked to about
US$26/troy ounce (US$0.85/g), the average price for several years
has been closer to US$16/troy ounce (≈US$0.50/g). As of
02021-01-27 a polycrystalline solar module in China costs
US$0.167/Wp on the spot market (one-week average). (PVXchange
cites €0.16/Wp for “low cost” modules; at €1.20/US$ that’s
US$0.19/Wp, about 15% higher.) Multiplying out US$16/troyounce
× 119 mg / 4.7 Wp gives US$0.013/Wp of silver, which is about 7.8%
of the spot price of the entire module. The cost of mono PERC
modules and poly PERC modules are given as US$0.183/Wp and
US$0.190/Wp, while the corresponding cell prices are given as
US$0.086/Wp and US$0.116/Wp, suggesting that the rest of the
module costs in the range of 7¢-10¢ per watt, including the silver
paste.

Expected outcomes

 There will be continued growth in solar PV will increase global
silver demand; the expected 25% or so growth in PV installations in
02021 (continuing the trend of doubling every three years) would
increase total global silver demand by about 4% this year, but if
doubling were to continue at this rate, PV would consume all of
current world silver consumption by the early 02030s.

 For a few years investors may cushion the price effects of such
demand increases, but the price will probably go higher.

 Because, like indium and gallium, most silver is not mined from
silver mines, but rather as a byproduct of other mining, it’s likely to
have a fairly inelastic supply; the price would have to go extremely
high before the minimal amounts of silver produced as a byproduct
in, for example, a zinc mine, would justify increasing the mine’s
production. So silver prices can probably go quite high before
increased mining limits their rise.

 Solar cells that can accept the lower efficiencies that accompany the
use of copper-filled conductive paste rather than silver-filled paste
will do so, due to copper’s much lower price and much more elastic
supply. More efficient solar cells using silver will increase in price and
experience continued pressure to reduce silver usage.

https://archive.fo/XxifD
https://www.solarserver.de/pv-modulpreise/

 Old solar cells with larger amounts of silver will become
increasingly attractive recycling targets thanks to their high content of
now-more-valuable silver. Even at today’s US$26/troy ounce price,
the 400 mg in a solar cell from 02007 is worth US$0.33, almost half
the price of a replacement module (assuming both use 4.7-watt cells).
If prices shoot up to US$50 per troy ounce, the silver in the module is
probably worth more than the module itself, even aside from the
additional possible profits from recycling the silicon; at US$100 per
troy ounce there will be bandits roaming the countryside to mine
silver from solar cells.

 Ultimately silver will probably be abandoned in favor of more
sophisticated patterning techniques than screen printing, which will
permit the use of copper or aluminum with no loss in efficiency.
Fractal-like branching patterns and conductors with high aspect ratios
(height divided by shadow width) require more precise control over
manufacturing, but can reduce the shadow and surface recombination
losses to almost arbitrarily low levels.

Topics

• Materials (p. 1138) (59 notes)
• Pricing (p. 1147) (35 notes)
• Manufacturing (p. 1151) (29 notes)
• Energy (p. 1170) (12 notes)
• Solar (p. 1203) (6 notes)
• Minerals (p. 1210) (6 notes)
• The future (p. 1220) (5 notes)
• Economics (p. 1258) (4 notes)
• Silver (p. 1328) (2 notes)

Snap logic, revisited, and
four-phase logic
Kragen Javier Sitaker, 02021-02-08 (9 minutes)

 In Derctuo I wrote a note about “majority DRAM logic” about
logic elements consisting of two CMOS inverters in a latch, shorted
by a pass transistor, as a sort of differential ampifier. It occurred to me
today, though, that if for some reason you had to build digital logic
out of discrete components, a simpler version involving two
transistors rather than five might be more useful: an RTL latch.

 The NPN version of this is rather simple: Vcc-(100k-b-NPN[Q1,
C=a]||82k-a-NPN[Q2, C=b])-GND, where a and b are two points
to which the collectors of the opposing resistors connect. In Falstad’s
circuit simulator:

$ 1 0.000005 10.20027730826997 66 5 43
R 192 96 192 32 0 0 40 5 0 0 0.5
r 192 96 192 192 0 100000
t 304 304 384 304 0 1 -0.519462912774937 0.02791600975110754 100
r 384 96 384 192 0 82000
t 288 304 192 304 0 1 0.519462912774937 0.5473789225260445 100
w 192 192 192 288 0
w 384 192 384 288 0
w 288 304 384 192 0
w 304 304 192 192 0
g 192 320 192 352 0 0
g 384 320 384 352 0 0
R 384 96 384 32 0 0 40 5 0 0 0.5
s 384 192 464 192 0 1 true
g 464 192 464 352 0 0
s 112 192 192 192 0 1 true
g 112 192 112 352 0 0
o 6 64 0 4097 1.25 0.000390625 0 4 6 3 5 0 5 3

 This simple simulation, just two resistors and two transistors, had a
metastability problem where both transistors were on in
forward-active mode. If either ever gets into saturation, for example
because you press the other transistor’s switch, it pulls the base voltage
of the other down into cutoff, which supplies further base current to
the already-saturated transistor. But it doesn’t find its way there if it's
ever in this initial balanced DC operating point.

 (This is somewhat worrisome, because I’d like to ensure that this
equilibrium, which must of course exist, is an unstable one: the
positive feedback coefficient around the operating point ought to be
more than 1. But I suspect that is not the case, and my attempts to
solve it by aimlessly adding resistors have failed. It is of course
possible to solve the problem with more transistors, but I feel that it
should be possible to fix it with resistors...)

 This basic flip-flop element has fairly strong current-sinking
capability (as an output) and fairly weak current-sourcing capability,

https://tinyurl.com/y2dsytfc
https://tinyurl.com/y2dsytfc

differing by a factor of β. 5 volts over 100kΩ gives us 44 μA of pullup
current, which the presumed β=100 of the transistors amplifies to 4.4
mA. These can be equalized somewhat with emitter resistors, and
flip-flops of various strengths can be made; in the case where driving
a strong one from a weak one is desired, an inverting buffer of the
same nature (NPN[C=1k-Vcc], or even a Darlington) can be
interposed.

 The LGP-30 approach mentioned in the earlier note, in which
flip-flop Set and Reset inputs are driven by separate signals, is likewise
applicable.

 One interesting clocked-logic approach from the 1960s is
Autonetics’s four-phase logic, recently explained by Ken Shirriff in
his explorations of the 1969 Sharp EL-8 pocket calculator, which was
pretty interesting. In PMOS a clocked four-phase-logic inverter was
three transistors, one of which was just used as a diode, and the clock
signals were the only power connections to the gates.

 Here’s a working-in-simulation bipolar-logic version of the
four-phase inverter Shirriff explains, along with a four-phase clock
generator:

$ 1 0.000005 2.5790339917193066 65 5 43
R -112 144 -144 144 0 4 40 2.5 2.5 0 0.5
a -32 400 64 400 9 5 0 1000000 0 1.7540000000326756 100000
w -112 144 -32 144 0
w -112 144 -112 224 0
w -112 224 -112 304 0
w -112 304 -112 384 0
w -112 384 -32 384 0
w -112 304 -32 304 0
w -112 224 -32 224 0
R -64 112 -64 80 0 0 40 5 0 0 0.5
r -64 112 -64 176 0 100000
r -64 176 -64 256 0 100000
r -64 256 -64 336 0 100000
r -64 336 -64 416 0 100000
w -64 416 -32 416 0
g -64 416 -64 432 0 0
w -64 336 -32 336 0
w -64 256 -32 256 0
w -64 176 -32 176 0
a -32 320 64 320 9 5 0 1000000 1.2500000000148503 1.7540000000326756 100000
a -32 240 64 240 9 5 0 1000000 2.500000000006107 1.7540000000326756 100000
a -32 160 64 160 9 5 0 1000000 3.7500000000030536 1.7540000000326756 100000
I 64 320 160 320 0 0.5 5
150 160 336 272 336 0 2 0 5
w 64 400 160 400 0
w 160 400 160 352 0
I 64 240 160 240 0 0.5 5
150 160 256 272 256 0 2 5 5
w 160 272 160 352 0
w 64 240 64 192 0
150 160 176 272 176 0 2 0 5
w 64 192 64 112 0
w 64 112 272 112 0

http://www.righto.com/2020/12/reverse-engineering-early-calculator.html
http://www.righto.com/2020/12/reverse-engineering-early-calculator.html
http://www.righto.com/2020/12/reverse-engineering-early-calculator.html
https://tinyurl.com/yxeeksny
https://tinyurl.com/yxeeksny

I 64 160 160 160 0 0.5 5
w 64 192 160 192 0
207 272 336 272 368 4 φ1
207 272 256 272 288 4 φ2
207 272 176 272 208 4 φ3
207 272 112 272 144 4 φ4
d 368 112 464 112 2 default
w 464 112 528 112 0
c 528 112 528 176 0 1e-8 7.368162603581507 0.001
g 528 176 528 208 0 0
t 432 272 464 272 0 1 -7.368162450073534 -0.022391121926448803 100
R 368 208 368 176 0 0 40 5 0 0 0.5
s 368 208 368 272 0 1 false
r 368 272 368 368 0 100000
g 368 368 368 384 0 0
207 368 112 368 144 4 φ1
w 464 288 464 336 0
t 448 352 464 352 0 1 0.5146280159592591 0.5325562677671504 100
207 400 352 400 384 4 φ2
207 464 416 464 448 4 φ1
r 464 368 464 416 0 100
207 528 112 576 112 4 /Q
r 368 272 432 272 0 1000000
r 400 352 448 352 0 100000
d 464 112 464 256 2 default
207 368 272 336 272 4 Q\sinput
o 35 64 0 4098 5 0.05 0 2 35 3
o 36 64 0 4098 10 0.05 0 2 36 3
o 37 64 0 4098 5 0.00009765625 0 2 37 3
o 38 64 0 4098 5 0.00009765625 0 2 38 3
o 54 64 0 4099 10 0.00009765625 1 2 54 3

 This inverter is powered from phases φ1 and φ2; the φ1 pulse
charges its output capacitor, and then φ2 discharges it if the input is
high. The circuit is φ1->-/Q-(10nF-GND||>-x),
Q-1M-NPN[Q1, C=x]-y, φ2-100k-NPN[Q2, C=y]-100-GND. So
φ1 charges up the /Q output through a diode when φ1 is high; a
capacitor to ground then holds the output high when φ1 goes low,
unless point x pulls the capacitor down through a second diode
(unnecessary in the PMOS version, but necessary to prevent the
base-collector junction on the input transistor from going into
forward conduction.) Point x is pulled to ground via the input NPN
transistor Q1, which sees the input through a 1MΩ base resistor, and
whose emitter goes to the collector of Q2. Q2's base is connected to
φ2 via a 100kΩ resistor, and its emitter is connected to φ1 via a 100Ω
resistor, so Q2 only pulls Q1's emitter to ground when φ2 is high and
φ1 is low. Then the circuit’s output is valid during φ3 and φ4.
Whew!

 As it happens φ2 (the “sample phase”) is never low when φ1 (the
“precharge phase”) is high, so the diode nature of Q2’s base-emitter
junction is not relevant here; a relay winding between the two phases
would also work. Similarly Q1 would work just as well being a relay,
but of course wouldn't be able to run at 60kHz like in the original
calculator.

 Series-parallel combinations of input transistors can provide
arbitrary monotonic logic functions before the inversion, at a cost of
one extra transistor (and perhaps base resistor) per input, and of course
you can use diodes too.

 φ3 and φ4 work in exactly the same way as φ1/φ2, and you can
additionally use the same design with φ1/φ3 and φ3/φ1, although in
that case it does matter that Q2 stays off when the sample phase goes
low, reverse-biasing its base-emitter junction. Otherwise the circuit
is exactly the same.

Topics

• Electronics (p. 1145) (39 notes)
• Falstad’s circuit simulator (p. 1198) (7 notes)
• Physical computation (p. 1208) (6 notes)
• Four-phase logic

 Can you do direct digital synthesis
(DDS) at over a gigahertz?
 Kragen Javier Sitaker, 02021-02-08 (updated 02021-02-24)
(30 minutes)

 I watched a GreatScott! video recently in which he designed and
built a direct-digital synthesis waveform generator going up to a few
MHz, using a waveform-generator chip which mostly consists of a
28-bit counter driving a sin() ROM attached to a DAC through a
mux. When you want a sawtooth wave instead, the mux selects the
counter instead of the ROM output, and when you want a square
wave, it just selects the MSB.

 (I haven’t tried any of what is described below, even in simulation,
so it wouldn’t be unsurprising if there are fatal flaws in my
calculations.)

 GreatScott’s designs
 In the video, he compares his €600 Siglent SDG 2082 X, which
goes up to 80 MHz and generates 1.2 gigasamples per second; his €70
Ascel Æ20125, which goes up to 10 MHz but only up to ±5 V; the
above-mentioned cascade of three LM318N circuits, which only
operates over about 1.7 kHz to 40 kHz with the passives he chose, and
of course has a nasty temperature coefficient; a €6 kit built around
the analog XR-2206 monolithic function generator, which goes up to
1 MHz; and his own €50 design built around the AD9833 DDS
function generator IC (which IC goes for US$10.04 on Digi-Key in
quantity 1), which goes from DC to a bit past 12 MHz.

 He points out the AD9833 gives better results than a popular
pure-analog three-opamp circuit which configures the first opamp as
a relaxation oscillator and the other two as integrators, in large part
because the relaxation oscillator output has shitty RC-decay edges.

 The LM318N is pretty fast; TI’s LM318N datasheet claims 15MHz
“small-signal bandwidth” (typical, not minimum) and 50V/μs slew
rate; their plot of unity-gain bandwidth suggests 15MHz at ±5V and
25° increasing to 19MHz at ±20V. Digi-Key lists them for US$1.13
in quantity 10. Its open-loop gain is claimed to drop off from 110dB
below 100 Hz at the usual 20dB per decade, so at GreatScott’s desired
10MHz it only has about 5dB left. The circuit in question is maybe
not very demanding of the op-amp’s open-loop gain, since each
opamp is just amplifying its own output or the output of the previous
stage. The slew rate should also be okay. It should be fine for a sine
wave — I think 10MHz is a radian per 16 μs, so at Scott’s desired
±12V, the maximum slew rate of a sine wave is 24V/16μs, or
1.5V/μs — and even a 10MHz square wave shouldn’t be too
trapezoidal at 0.5 μs of rise or fall time followed by 50 μs of high or
low time. I conclude the opamp is fine and the circuit design is at
fault. Probably a Schmitt trigger to clean up the square-wave
transitions and careful control of parasitics would yield totally
acceptable results.

https://www.youtube.com/watch?v=Y1KE8eAC9Bk
https://www.youtube.com/watch?v=Y1KE8eAC9Bk
https://www.digikey.com/en/products/detail/analog-devices-inc/AD9833BRMZ-REEL/993964
https://www.digikey.com/en/products/detail/analog-devices-inc/AD9833BRMZ-REEL/993964
https://www.ti.com/lit/ds/symlink/lm318-n.pdf
https://www.digikey.com/en/products/detail/texas-instruments/LM318N-NOPB/6180
https://www.digikey.com/en/products/detail/texas-instruments/LM318N-NOPB/6180

 Microcontroller-based DDS
 At lower frequencies, you might as well just use a microcontroller.
A 108MHz GD32 can, in theory, happily spit out 54 megasamples per
second of digital data on one of its 16-bit I/O ports, and if you feed
that to a simple R-2R DAC feeding an amplifier, you can easily get 6
bits of precision, or 8 bits with careful trimming. And, on the similar
STM32F103C8 from ST, StackOverflow user SirSpunk was able to
achieve one output word per two clock cycles, which would give the
above 54 megasamples per second, though this required some
trickiness like keeping the samples in CPU registers. (Chips like the
STM32F103 and the GD32F103 also include a 12-bit DAC with
supposedly about 10 bits of precision, but the DAC cannot run nearly
this fast.) A dedicated DAC chip could improve precision, but
improving the sample rate would require using a faster
microcontroller. Moreover, even this data rate may not be achievable
if the data samples need to come from somewhere else, like an
arithmetic operation or fetching from RAM. ST’s appnote 4666
details achieving sustained data rates of 8 to 10 megasamples per
second using DMA on some other STM32-family microcontrollers,
but I don’t think the STM32F103 or GD32F103 supports DMA for
GPIO.

 Up to 1 MHz, 54 megasamples per second is a buttload of samples,
technically speaking. The tenth harmonic would be 10 MHz, and its
Nyquist frequency 20 MHz, so you should be able to get nice sharp
edges on your 1 MHz square and sawtooth waveforms. At 10 MHz,
they’ll start to look pretty darn fuzzy, though: you only have 5.4
samples per cycle, so you’re going to have slow transitions, a lot of
ringing, or most likely both, depending on how you set up the analog
output filtering.

 Adjusting the clock speed is a potential approach to avoiding
computation in the inner loop of slamming the samples out; for
example, if you can store 8 samples in 8 CPU registers, you can
produce those 8 samples in a tight loop, getting a 6.75MHz arbitrary
waveform at 54Msps; and by producing them once forward and once
in reverse, you can get a 3.375MHz arbitrary symmetrical waveform.
But producing an arbitrary 6MHz waveform would be much easier to
do if you can lower the CPU clock to 96MHz.

 The great advantage of using a microcontroller is that you can
potentially output a very flexible set of waveforms: not just square,
sawtooth, triangle, and sine, but also for example AM, FM, QPSK,
white noise, and filtered weighted sums of any of the previous ones.
But what good is that if your waveform comes out shoddy?

 For square waves in particular you may be able to use a separate
analog data path with different filtering (sharpening edges with a
Schmitt trigger and relying on clamping to the power-supply rails,
say), but that doesn’t help with other waveforms containing sharp
edges.

 Non-microcontroller logic
 Parallel SRAM
 Well, what if you hook up a DAC (R-2R or IC) to the output of

https://www.gigadevice.com/datasheet/gd32f103xxxx-datasheet/
https://www.gigadevice.com/datasheet/gd32f103xxxx-datasheet/
https://stackoverflow.com/a/59905461
https://stackoverflow.com/a/59905461
https://stackoverflow.com/a/59905461
https://www.st.com/resource/en/application_note/dm00169730-parallel-synchronous-transmission-using-gpio-and-dma-stmicroelectronics.pdf

a RAM chip? Digi-Key sells the obsolete CY62256NLL-70ZRXIT
for US$0.58, which is a 28-pin 70ns SRAM chip with 8-bit-wide
output and 15 address lines; if you gang up two of these mothers you
get 16-bit-wide output. As long as they’re in read mode, every time
you change the value on the address bus, you get your data out 70ns
later (or 55ns later in some other grades of the chip, according to
Cypress’s datasheet). They used to even sell them in DIP and SOIC
forms. Too bad it hit end-of-life in 02017. I don’t know how glitchy
the output is, so you might need external tristate buffering, and also it
uses TTL thresholds, so you may need level shifters. (Also, since you
need to load the data on the same data bus you’re using for the DAC,
you might want external tristate buffering to disable the DAC while
you’re loading that data.)

 70ns isn’t fast enough, though; if you didn’t need any extra time
to switch addresses you would only get 14.3Msps that way, and so a
maximum sine-wave speed of 7.1MHz, and a maximum square-wave
speed somewhere in the neighborhood of 1 MHz.

 A much more modern, but still obsolete, part is the 80¢ Cypress
CY7C1021BN-12ZXC, which has 16 address lines, 16 data lines, 44
pins, and a 12-ns access time. The CY7C1021BN datasheet, which is
for the 15-ns version, claims that it’s basically otherwise identical to
the older chip, except that it has separate byte-high-enable and
byte-low-enable inputs so you can use it with an 8-bit bus if you
want.

 So this is starting to sound decent; you should be able to get 60
megasamples per second out of such a chip once you’ve loaded the
waveform into it. And you can load up to 65536 samples into it, or
131072 if you just use 8 bits of data and use the /BHE and /BLE lines
as an additional address bit; or you could tie some address lines to
ground in order to save I/O pins.

 A CPLD or something could be configured as a counter to
generate the addresses at a higher clock speed than the
microcontroller can manage. In the case where the carry chain is
becoming too slow, you can use an LFSR instead of a normal binary
counter, with the XOR gates interposed between successive register
bits, thus getting your critical path delay down to a single XOR’s
propagation delay.

 Non-obsolete parallel memory parts that could be used similarly
include the following:
 Part number Price, qty 1 Access time Maximum clock speed
Address lines Data lines Package Voltage
CY62136EV30LL-45ZSXIT US$1.11 45ns (async) 17 16
44TSOP II 2.2–3.6V
CY7C1020D-10VXI US$3.94 10ns (async) 15 16 44-BSOJ
4.5–5.5V
CY7C1329H-133AXC US$2.30 (N/A) 133MHz 16 32
100-TQFP 3.15–3.6V
CY7C1360C-166BZC US$4.56 (N/A) 166MHz 18 36
165-FBGA 3.135–3.6V
CY7C1360C-200AJXC US$4.18 (N/A) 200MHz 16 36
100-TQFP 3.135–3.6V

 The other 5-volt part also shares the annoying TTL thresholds.

https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CY62256NLL-70ZRXIT/1205300
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CY62256NLL-70ZRXIT/1205300
https://www.cypress.com/file/43841/download
https://www.cypress.com/file/43841/download
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CY7C1021BN-12ZXC/1205573
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CY7C1021BN-12ZXC/1205573
https://www.cypress.com/file/38791/download
https://www.cypress.com/file/38791/download
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CY62136EV30LL-45ZSXIT/1543737
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CY7C1020D-10VXI/1543809
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CY7C1329H-133AXC/1839383
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CY7C1360C-166BZC/1839408
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CY7C1360C-200AJXC/1205794

 The CY7C1329H and CY7C1360C “include[] a two-bit internal
counter for burst operation” when you hold the /ADV line low,
which suggests that you could feed it an externally-generated address
every four samples, which means you could even use a cheap
microcontroller to do the address generation, since you need no more
than 50 million addresses per second. Amusingly, it even has an
“interleaved” mode (selected by tying the MODE pin to VDD) in
which it can count either 0123, 3210, 1032, or 2301 rather than the
usual 0123, 1230, 2301, and 3012 alternatives; this would be useful for
time-reversing a part of a waveform.

 These parts, being synchronous, of course produce output data
starting in the following clock cycle rather than as soon as possible.

 For such synchronous memories, you might need some external
glue logic to gate off the memory control lines faster than the
microcontroller can do it on its own.

 You’d think that someone would have sub-nanosecond SRAM by
now, and Cypress used to make a line of what purported to be
sub-nanosecond SRAM, but no longer, and anyway it was
synchronous at speeds of 200MHz or less. If you want
“subnanosecond” RAM today you have to go with DRAM, and none
of it can support random write accesses in less than 15ns. Digi-Key
has 42 Winbond W971GG6SB-18 chips in stock for US$4 each;
these are a gibibit organized 16 bits wide with a 533MHz DDR2-1066
clock. Its CAS latency is 6 clocks (11.3 ns), its write recovery time is
15 ns, and if I understand correctly, there are various other latencies
related to random accesses that bring its random access latency up near
100 ns. But if you just want to spew out a sequential stream of data, it
can totally give you 16 fresh bits every 940 picoseconds for a good
long while.

 The async parts would still need some kind of external counter
logic to drive their address lines faster than the microcontroller can
manage. You could do this with a two- to four-bit counter on the
low-order address lines or by wiring up the whole address bus to the
thing.

 CPLDs and PLDs as counters
 One approach here would be to use a generic programmable-logic
chip like the US$0.94 Altera MAX V 5M40ZE64C5N
40-(one-bit)-logic-element 7.5-ns CPLD, which can run its output
buffers at up to 3.6 volts and run a 16-bit counter at up to 118.3 MHz;
the US$1.44 Lattice “ispMACH” 4000ZE-series
LC4032ZE-7TN48C 32-macrocell 7.5-ns CPLD, which can also do
3.3-volt output and I think is similar in speed or perhaps could
manage up to 260MHz; the US$1.80 Atmel ATF1502ASV-15AU44
32-macrocell 15-ns CPLD, which runs at 3.3 volts natively and I
think can reach 77 MHz; or maybe an old-fashioned PLD like the
US$2.06 22V10, which comes in a 10-ns grade and astoundingly even
a US$2.14 5-ns grade these days, and of course run on 5 volts and have
annoying TTL thresholds, but in theory can run at up to 166MHz.
Since even a two-bit counter would be enough to lower the burden
on the microcontroller by a factor of four, we could even consider
smaller PLDs like a 16R4 or 16V4, but they are all obsolete.

 Amusingly, the Altera chip also contains an 8192-bit block of Flash

https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CYDD09S36V18-167BBXC/1206282
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CYDD09S36V18-167BBXC/1206282
https://www.digikey.com/en/products/detail/winbond-electronics/W971GG6SB-18/5125231
https://www.digikey.com/en/products/detail/intel/5M40ZE64C5N/2499440
https://www.digikey.com/en/products/detail/intel/5M40ZE64C5N/2499440
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/max-v/mv51003.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/max-v/mv51003.pdf
https://www.digikey.com/en/products/detail/lattice-semiconductor-corporation/LC4032ZE-7TN48C/2751416
https://www.digikey.com/en/products/detail/lattice-semiconductor-corporation/LC4032ZE-7TN48C/2751416
http://www.latticesemi.com/~/media/LatticeSemi/Documents/Solutions/Packaging Solutions/ispMACH4000ZE Family Data Sheet1022.pdf
http://www.latticesemi.com/~/media/LatticeSemi/Documents/Solutions/Packaging Solutions/ispMACH4000ZE Family Data Sheet1022.pdf
https://media.digikey.com/pdf/Data Sheets/Atmel PDFs/ATF1502ASV.pdf
https://media.digikey.com/pdf/Data Sheets/Atmel PDFs/ATF1502ASV.pdf
http://www.pldworld.com/html/technote/Tour_of_PLDs.htm
https://www.digikey.com/en/products/detail/microchip-technology/ATF22V10C-10JU/1008554
https://www.digikey.com/en/products/detail/microchip-technology/ATF22V10C-10JU/1008554
https://www.digikey.com/en/products/detail/microchip-technology/ATF22V10C-5JX/1027056
https://www.digikey.com/en/products/detail/microchip-technology/ATF22V10C-5JX/1027056

with auto-increment addressing, so if your waveform data is smaller
than that and never changes, you don’t need an external RAM chip!

 And obviously with an FPGA like a Lattice UltraPlus ICE40UP5K
(US$6, 5280 4-LUTs, 120 kibibits of block RAM, 1 mebibyte of
SPRAM, eight 16-bit multipliers, capable of running a 16-bit counter
at 100 MHz, fully supported by IceStorm) or a Lattice
LFE5UM5G-45F-8BG381C (US$31, 85k 4-LUTs, 72 18-bit
multipliers, four 5Gbps SERDES channels, running some functions at
up to 400 MHz) you can do all the DDS you want entirely inside the
chip, as long as it’s not above a couple hundred megahertz.

 Dedicated counter ICs
 There are various popular counters like the 72¢ 4-bit 90MHz
74AC161, the 54¢ 14-bit 65MHz 74HC4060, the 38¢ dual-4-bit
107MHz 74HC393, and the 50¢ 4-bit 167MHz 74HC161; all of these
can use a wide variety of supply voltages. Ripple counters like the
[42¢ 12-bit 210MHz 74VHC4040][22] would not work for this.

 But what about memories with built-in counters?

 Serial memories
 Microcontrollers are commonly used with memories with
bit-serial interfaces, either SPI, I²C, dual SPI, or quad-SPI. Typically
you can write these memories in true bit-serial mode and read them
in quasi-parallel mode, but even when not, it would be practical to
gang up several of them (4, 5, 8, or 10 chips, say), write to several of
them one at a time, then read from them all at once; typically they
permit reading an entire sector with a single command. Almost
invariably these are Flash — serial SPI SRAM like the 23K256 exists
but only up to 45MHz. Some of these SPI Flash memories are too
slow to be useful for this kind of application, but others are plenty
fast. Specimens of this genre include the US$2.07 166MHz quad-SPI
Winbond W25N512GVEIG, the 30¢ 100MHz dual-SPI GigaDevice
GD25D05CTIGR, and the 31¢ 85MHz quad-SPI Adesto
AT25SF041B-SSHB-B.

 Taking the GigaDevice device as typical, we find in its datasheet
that it not only permits bit-serial writing, it requires it. Puzzlingly it
claims to permit reads at 160Mbps but a 100MHz clock (see below).
It holds half a mebibit of data, divided into 16-page sectors of
256-byte pages. The data-rate doubling is implemented by making its
serial input pin bidirectional.

 A single READ command (0x03, or 0x0B for fast read, followed
in either case by three address bytes) will eventually read the whole
memory if CS# is held low for enough clock cycles. There are no
dummy bits, start bits, stop bits, or command bits in the timing
diagram once the data stream starts.

 The “AC characteristics” table clarifies the clock speed mystery:
“fast read” 0x0b can happen at 100MHz, but regular read (0x03,
which appears to be otherwise identical) and dual-output read (0x3b)
can only happen at 80MHz.

 Because it’s Flash, programming a new waveform into the chip is
slow (700 μs per page, about 300 times slower than reading), and can
only be done some 100k times before risking burning the chip out.

https://github.com/tinyvision-ai-inc/UPduino-v3.0
https://www.digikey.com/en/products/detail/lattice-semiconductor-corporation/ICE40UP5K-SG48I/7785190
https://github.com/oskirby/logicbone
https://github.com/oskirby/logicbone
https://www.digikey.com/en/products/detail/lattice-semiconductor-corporation/LFE5UM5G-45F-8BG381C/6173744?s=N4IgTCBcDaIDIDECiBWAqgWRQcQLQBYUFcAOAIWwGYSBGAYRAF0BfIA
https://www.digikey.com/en/products/detail/texas-instruments/CD74AC161M96/1691776
https://www.digikey.com/en/products/detail/texas-instruments/CD74AC161M96/1691776
https://www.digikey.com/en/products/detail/stmicroelectronics/M74HC4060RM13TR/591945
https://www.digikey.com/en/products/detail/nexperia-usa-inc/74HC393PW118/1230333
https://www.digikey.com/en/products/detail/nexperia-usa-inc/74HC393PW118/1230333
https://www.digikey.com/en/products/detail/on-semiconductor/MC74HC161ADG/2305548
https://www.digikey.com/en/products/detail/winbond-electronics/W25N512GVEIG/12143334
https://www.digikey.com/en/products/detail/winbond-electronics/W25N512GVEIG/12143334
https://www.digikey.com/en/products/detail/gigadevice-semiconductor-hk-limited/GD25D05CTIGR/9484665
https://www.digikey.com/en/products/detail/gigadevice-semiconductor-hk-limited/GD25D05CTIGR/9484665
https://www.digikey.com/en/products/detail/adesto-technologies/AT25SF041B-SSHB-B/12808415
https://www.digikey.com/en/products/detail/adesto-technologies/AT25SF041B-SSHB-B/12808415
https://www.gigadevice.com/datasheet/gd25d10c/

This seems like an acceptable tradeoff.

 Normal SPI uses three pins on your master chip plus one per slave:
SCK (“SCLK”), MOSI (“SI”), MISO (“SO”), and one /CS
(“CS#”) per slave. (This chip additionally has a “WP#” pin which
must be high for writes, which I suppose is intended to prevent
accidental erasure due to EMI or software bugs, but it would
probably be acceptable to tie it low.) But if we’re going to use various
memory chips’ SO pins to directly drive a DAC, they can’t all be tied
to each other as they normally would be.

 Ganging up 8 GD25D05Cs in this way could be achieved most
simply by just not routing the MISO pins back to the master — that is,
configuring the memory chip as write-only memory, with their
output pins connected only to the DAC. This would prevent the
program from reading the status register, or reading back waveforms
to verify them, but that’s not necessary for the waveform generator to
work. Then all that remains is to drive the SCK inputs of the slaves
from a free-running 100MHz clock on command from the slower
master, so you need a 100-MHz 2-mux on the clock line; SCK,
MOSI, and mux-select pins on the master for all slaves; and eight
/CS pins on the master, one per slave. When issuing a “fast read”
command, the master would broadcast it to all slaves at once.

 And that way you get 100Msps of waveform-generation output.

 The Adesto chip seems to be very similar, down to using the same
opcode bytes and the same pins for dual-output reads, but also
supports four-bit-per-clock output by co-opting the /WP pin and a
/HOLD pin the GD25D05C lacks; also its multi-bit reads run at full
speed, and it has the option of clocking in the address bits on multiple
pins as well, and clocking in the data bits on multiple pins when
writing the chip.

 Augmenting the circuit to support reading from the memory chips
without using more pins on the microcontroller is relatively simple: a
pullup resistor per memory chip, plus an 8-input AND, NAND, or
parity chip; or alternatively pulldowns and an OR, NOR, or parity.
Another way to implement this is with diode logic: one diode down
from the shared microcontroller pin to each memory chip’s MISO
pin, and a pullup resistor on the master side, which can be internal on
most popular microcontrollers. Or you can just use a separate
microcontroller pin for each MISO line, bringing the total to 19
GPIOs for 8 memory chips.

 Augmenting these circuits to support the use of multi-bit outputs
is potentially more difficult if you don’t have all those GPIOs: the
MOSI line becomes bidirectional, and you want the master to be able
to send bits to any of the slaves, but you don’t want the slaves’ drivers
to be able to fight each other. This is similar to the problem of a
bidirectional level shifter, which is in fact a thing you might want in
this case anyway.

 If not, though, one approach is a pullup on each slave MOSI pin, a
diode from each slave MOSI pin to the shared master MOSI pin, and
a pulldown on the master MOSI pin. When all the involved pins are
tristated, a weak current will flow through the diodes, maintaining all
the relevant pins in an indeterminate state which probably wastes a lot
of power. If the master pulls its pin low and the slaves are tristated,

this will bring all the slaves’ pins to a diode drop above ground, which
hopefully is low enough to count as “low”; if it pulls its pins high,
this will overwhelm its pulldown and allow the slaves’ pullups to pull
their inputs high. If the master tristates its pin and some slave pulls its
pin high (because MOSI has become part of a multi-bit bus that the
slave is writing to), the master’s pin will rise to a diode drop below V
CC, which is safely HIGH at most voltages; if the slave pulls its pin
low, overwhelming its pullup, then the master’s pullup will pull its
pin all the way to ground. And in no case can two slaves’ outputs
fight each other.

 (Incidentally, this kind of thing would also be useful for spewing
out canned bitstreams at higher rates than your microcontroller can
manage, too: generate the bitstream at your leisure in the serial
memory, then spew out bits at high speed, possibly repeatedly and
into a SERDES.)

 Toward a gigahertz
 Unfortunately, none of the above approaches get us close to being
able to synthesize gigahertz signals. In fact, most of them top out
(with easily available hardware, anyway) around 100Msps, where the
top sine frequency you could manage would be around 50 MHz, and
the top frequency with reasonably sharp edges would be in the
neighborhood of 5 or 10 MHz. So I guess that’s why “GreatScott”
picked that US$10 Analog Devices chip; you can do better, but it’s
not easy.

 To manage hundreds of megahertz with an arbitrary waveform, let
alone a gigahertz, we’d need a different approach. I think it’s feasible
without reaching for exotica like indium phosphide, though. AD and
TI both have analog-switch ICs reaching from DC up to 1 GHz or
more; ADG902-EP (4.5GHz, US$3.39 from Digi-Key, 17-ns on+off
switching time), ADG919 (4GHz, US$3.34, 19.5-ns on+off switching
time) TMUX1072 (1.2GHz, US$1.18, 260000-ns on+off switching
time), and TMUX136 (6GHz, US$0.98, 600-ns on+off switching
time) are representative examples. These are MOSFET switches; the
more common PIN-diode type typically takes over a microsecond.

 MOSFETs have an intermediate “ohmic mode” of conduction, in
between “saturated” fully on and “subthreshold” fully off; as can be
seen from the above figures, they have much higher bandwidth
through the channel than they do for turning the gate on and off. By
precisely controlling the gate voltage, you can control the impedance
a signal sees going through the channel, and thus its attenuation. This
phenomenon is not extremely linear in the gate voltage (especially if
you don’t subtract the threshold voltage, but even then), and the
current isn’t even all that linear in the drain-to-source voltage VDS.
But it’s a reasonably good approximation when VDS isn’t too high and
VGS isn’t too low. And, as we will see, in this application we can
correct for the nonlinearity in gate voltage in software.

 With two such pseudo-variable-resistors, you can make a voltage
divider from an output signal terminal, through a MOSFET channel,
to an input signal terminal, through a second MOSFET channel to
ground, such that the total input impedance seen by the input signal
terminal is some constant impedance such as 500Ω. If a short pulse

arrives on the input terminal, some attenuated version of the pulse
will be seen at the output terminal. If the upper MOSFET is nearly
saturated at 10Ω, the lower MOSFET to ground ought to be nearly
off, at about 24500Ω, for the input to see 500Ω. If the upper
MOSFET is at 250Ω, then the lower MOSFET should be at 500Ω,
and the signal will be attenuated by half (6 dB). If the upper
MOSFET is at 400Ω, then the lower MOSFET should be at 125Ω,
and the signal will be attenuated by ⅘ (14 dB).

 The key point here is that this configuration allows you to
selectively attenuate a pulse train. Moreover, a similar
voltage-divider arrangement allows you to selectively steer them with
reasonably low insertion loss! If the input signal is to be divided
evenly between two 500Ω outputs without losing impedance
matching, then a MOSFET to each of them operating in the ohmic
region with a 250Ω resistance will do the job, wasting only four ninths
of the signal energy (3.6 dB), and this is the worst case; by
reconfiguring the gate voltages to pass more of the signal to one side,
this loss is reduced.

 For example, if the MOSFET channel resistance to the left output
is 50Ω, then the MOSFET channel resistance to the right input
should be 5kΩ. The voltage on the left channel will be 500/550 of the
input voltage, or 91%, and the power 83% of the original, a loss of
about 0.8 dB. The voltage on the right channel is 500/5500 of the
original, or 9.1%, and the power 0.83% (21 dB attenuated).

 (The pulse passing through to the MOSFET source will, if
positive, reduce VGS temporarily, creating distortion; adding
capacitance across those terminals should push that problem out to a
long enough timescale that this nonlinearity doesn’t provoke
harmonic distortion and reflections.)

 Multi-way splits with impedance matching are higher-loss than
two-way splits; for example, if we split the signal into four equal
parts with 500Ω each, we need 1500Ω of series resistance on each
branch, thus losing ¾ of the voltage and burning 15/16 of the power
in the resistors, a 12 dB loss. (XXX is that right? That can’t be right.)

 Such attenuated pulse trains can be passed over microstrip (or
stripline if necessary) and summed with a resistor network (at the cost
of further attenuation), following variable delays imposed by variable
lengths of microstrip. Configuring the set of attenuations for each
delay, by way of setting the gate voltage on the various MOSFETs,
amounts to configuring a convolution kernel in the time domain,
which is to say, a single iteration of a waveform; a pulse train at the
desired fundamental frequency is then all that is needed to synthesize
the desired waveform. If the delays are regularly spaced, thus forming
a regular sampling, a spurline filter can notch out the sampling
frequency and its harmonics.

 So then the problem of gigahertz DDS reduces to the problem of
setting the gate voltages on all these MOSFETs and producing a pulse
train at the desired fundamental frequency.

 How much microstrip are we talking about? Crudely speaking,
about 150 mm per nanosecond, so perhaps on the order of a meter for
signals with a fundamental frequency down to a few hundred

megahertz.

 How should we distribute the delays to the customizable
attenuators? If we distribute them evenly over the maximum possible
interval — for example, 20 attenuators distributed every 250 ps out to
5 ns — then we will have effectively many fewer data points at even
fractions of that interval. That is, if we emit a pulse every 190 ps,
we’re pretty okay — the first attenuator provides a pulse image at 60
ps from the beginning of a pulse interval, the second at 120 ps, then
180 ps, 50, 110, 170, 40, 100, 160, 30, 90, 150, 20, 80, 140, 10, 70, 130,
0, and finally 60 again, so we have a nice 10-ps effective sampling
interval, just scrambled. But if we increase the pulse interval to 200
ps, we suddenly have only four samples per cycle: 50, 100, 150, and 0.

 Distributing them at random is of course one possibility, which
would be about as good or bad at all frequencies.

 If we have room to make our microstrip 20 ns long, which is only
about a meter and a half serpentined onto a PCB, we might have time
to reconfigure the transistors between one pulse and the next, perhaps
using one of the parallel-memory approaches described above, so at
this magic point we have no lower frequency limit. AD’s existing
chips claim to achieve turning their pass transistors fully on and off
within 20 ns, so this is apparently physically feasible.

 Topics

• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Microcontrollers (p. 1211) (6 notes)
• Communication (p. 1264) (4 notes)
• Radio (p. 1278) (3 notes)

ASCII art, but in Unicode, with
Braille and other alternatives
Kragen Javier Sitaker, 02021-02-10 (updated 02021-02-24)
(9 minutes)

 There are a variety of Unicode graphics drawing character sets,
similar to the Large Character Microvector Set ROM from the HP
2640 series, which let you draw each character from a “3×3 matrix of
smaller characters”.

 I was thinking it might be fun to abuse some of these character sets
for asciinema plotting and the like.

Unicode math character pieces

 These are used to build up large math symbols over several
character cells. I don’t know where they come from but I suspect
they’re in Unicode for round-tripping compatibility.

 (loop for i from #x239b to #x23b3 do (insert i))

⎛⎜⎝⎞⎟⎠⎡⎢⎣⎤⎥⎦⎧⎨⎩⎪⎫⎬⎭⎮⎯

 You can use them like this:

⎛ ⎞ ⎡ ⎤ ⎧ ⎫ ⎰ ⎱
⎜⎛ ⎞⎟ ⎢ ⎥ ⎪ ⎪ ⎧ ⎱ ⎰
⎜⎜()⎟⎟ ⎣ ⎦ ⎨ ⎬ ⎮ x² dx
⎜⎝ ⎠⎟ ⎪ ⎪ ⎭ ⎲
⎝ ⎠ ⎩ ⎭ ⎳

Box drawings

 This is the set from U+2500 to U+257F from Videotex mosaic
characters:

 (loop for i from #x2500 to #x257f do (insert i))

─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟
┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿
╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟
╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿

 This contains light, heavy, and double line weights in horizontal
and vertical orientations, though not all combinations of these, plus
double, triple, and quadruple-dashed variants of light and heavy
straight lines, plus light diagonals, plus rounded corners. With these
you can do arbitrary combinations of vertical and horizontal lines in
half-character-cell increments. I think all the combinations of light
and heavy lines are provided; that would be 3⁴ = 81 characters, which
are the ones from U+2500 to U+254B inclusive except U+2504 to
U+250B inclusive, plus the ones from U+2574 to U+257F: (+ (- (-
#x254C #x2500) (- #x250c #x2504)) (- #x2580 #x2574)) gives 80,

https://www.curiousmarc.com/computing/hp-264x-terminals
https://www.curiousmarc.com/computing/hp-264x-terminals

so either I miscounted or one is missing. All three combinations of
diagonal lines are provided, but most of the light–double
combinations and all of the heavy–double combinations are missing.

 So with these Videotex characters you can do things like this:

╭──────┒ ╲╳╱ ╱╲ ╔══════╗
│ ┃ ╱╲ ╟──────╢
┕━━━━━━┛ ╱╲ ║ ║
 ╚══════╝

Quadrant characters

 There’s a 2018 “Graphics for Legacy Computing” proposal to add
64 sextant characters to Unicode starting at U+1FB00 compatible
with the TRS-80 “pseudopixel” or “semigraphics” set, or teletext
systems including Minitel. But since 1991 Unicode has contained
“quadrant” characters, like the Sinclair ZX-80 and ZX-81 or the
Commodore line, with four pseudopixels per character cell, from
U+2596 to U+259F:

 (loop for i from #x2596 to #x259f do (insert i))

▖▗▘▙▚▛▜▝▞▟

 This is visibly missing the all-empty and all-full configurations (■,
which follows them, is not the all-full configuration), but normally a
space can be used with or without inverse video.

 For monochrome or 2-color graphics, these characters plus inverse
video permit doubling the character grid resolution, with full color
freedom.

Eighth blocks and scan lines

 This is the set from U+2580 to U+2590, in “Blocks” (now “Block
Elements”):

 (loop for i from #x2580 to #x2590 do (insert i))

▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐

 These characters allow you to divide character cells vertically or
horizontally (but not both) into two colors with a resolution of ⅛ cell.
They’re commonly used, for example, for plotting sparklines. They
are clearly designed for use with inverse video (^[[7m in ANSI).

 This is particularly useful for bar plots, as provided by
UnicodePlots.jl, where the blocks divided left to right can provide
640 pixels of horizontal precision for your bars on an 80-character
screen. This includes stacked bars in which different colors divide a
bar horizontally and may include inline legends. However,
experimentation seems to show that my terminal here renders them
incorrectly, with some unfilled space above them in the character cell:

▊▋▌▍▎▏▐
▊▋▌▍▎▏▐

https://www.unicode.org/L2/L2018/18235-terminals-prop.pdf
https://www.unicode.org/L2/L2018/18235-terminals-prop.pdf
https://github.com/Evizero/UnicodePlots.jl
https://github.com/Evizero/UnicodePlots.jl

▊▋▌▍▎▏▐

 Similar are the “horizontal scan line” characters, of which there are
only four starting at U+23BA:

⎺⎻⎼⎽

 These are explained in Frank da Cruz’s proposal L2/00-159 as
being for round-trip compatibility with some old terminals:

 E0D6 Scan 1 DSG 06/15, H19 07/10, WG3 05/00, TVI 09/00, IBM SV300400
 E0D7 Scan 3 DSG 07/00, WYA 01/01, WG3 05/00, IBM SV300200
 E0D8 Scan 5 DSG 07/01, WYA 02/02, IBM SV300300, IBM SM920000
 E0D9 Scan 7 DSG 07/02, WYA 01/03, WG3 05/01, IBM SV300100
 E0DA Scan 9 DSG 07/03, H19 07/11, WG3 05/01, TVI 09/01, IBM SV300600

 They’re intended to join up with U+23B8 “⎸” and U+23B9 “⎹”
to make boxes in a similar way to the Videotex box-drawing
characters above, and there are supposed to be five of them, but this
does not work in my current font:

�⎽��⎺��⎻��⎼�

 These can be used for sparklines in a similar way to the
vertically-divided eighth blocks, but with half the resolution.
Sometimes U+2500 is considered a part of the set, but at least in the
font I’m using at the moment, it doesn’t fit:

⎺⎻─⎼⎽

 The proposed “legacy computing” characters would augment these
with, among other things, 8-position horizontal and vertical lines.

Edge box drawing

 As sort of noted above, the characters � U+23B9 and ⎺ U+23BA
link up:

�⎺�⎺�⎺⎺⎺⎺⎺⎺⎺
 �⎺�⎺�⎺⎺⎺⎺⎺⎺⎺⎺

 In my current font, successive rows of � don’t quite link up the
way they’re supposed to, but successive columns of ⎺ do. From the
“eighth blocks” area we have another couple of characters (or actually
various pairs of characters) that can potentially be applied in the same
way:

▁▏▁▁▏▁▁▏▁▁▏
▁▏▁▏▁▏▁▏▁▏

 These also fail to link up from one line to the next in my current
font.

 The aforementioned “Graphics for Legacy Computing” proposal
includes more such characters, including four corners intended to link

https://www.unicode.org/L2/L2000/00159-ucsterminal.txt

up with the above “eighth blocks”:

 (loop for i from #x1fb7c to #x1fb7f do (insert i))

��������

 In theory, with three printable characters like this plus a space, you
could lay out a grid of thin lines with the resolution of the character
grid, with the lines beginning and ending at, say, the upper left-hand
corner of each character cell. This would be potentially more
parsimonious than the box-drawing characters we did get, which can
end and join at the center of each character cell, but be interrupted at
half-character-cell intervals, a relatively useless ability. But for this
ability we need 15 graphics characters (for a single line width) rather
than 3.

Shade characters

 The three “shade” characters from U+2591 to U+2593 can be used
to dither between a foreground color and a background color; really
you only need two of them if you have inverse video or full liberty in
color choice:

░▒▓

 This doesn’t increase the resolution of your display any, though.

Braille provides the best resolution, though
not without drawbacks

 The Braille block from U+2800 to U+28FF offers a full selection
of 256 binary patterns of 8 pixels:

 (loop for i from #x2800 to #x28ff do (insert i))

⠀⠁⠂⠃⠄⠅⠆⠇⠈⠉⠊⠋⠌⠍⠎⠏⠐⠑⠒⠓⠔⠕⠖⠗⠘⠙⠚⠛⠜⠝⠞⠟
⠠⠡⠢⠣⠤⠥⠦⠧⠨⠩⠪⠫⠬⠭⠮⠯⠰⠱⠲⠳⠴⠵⠶⠷⠸⠹⠺⠻⠼⠽⠾⠿
⡀⡁⡂⡃⡄⡅⡆⡇⡈⡉⡊⡋⡌⡍⡎⡏⡐⡑⡒⡓⡔⡕⡖⡗⡘⡙⡚⡛⡜⡝⡞⡟
⡠⡡⡢⡣⡤⡥⡦⡧⡨⡩⡪⡫⡬⡭⡮⡯⡰⡱⡲⡳⡴⡵⡶⡷⡸⡹⡺⡻⡼⡽⡾⡿
⢀⢁⢂⢃⢄⢅⢆⢇⢈⢉⢊⢋⢌⢍⢎⢏⢐⢑⢒⢓⢔⢕⢖⢗⢘⢙⢚⢛⢜⢝⢞⢟
⢠⢡⢢⢣⢤⢥⢦⢧⢨⢩⢪⢫⢬⢭⢮⢯⢰⢱⢲⢳⢴⢵⢶⢷⢸⢹⢺⢻⢼⢽⢾⢿
⣀⣁⣂⣃⣄⣅⣆⣇⣈⣉⣊⣋⣌⣍⣎⣏⣐⣑⣒⣓⣔⣕⣖⣗⣘⣙⣚⣛⣜⣝⣞⣟
⣠⣡⣢⣣⣤⣥⣦⣧⣨⣩⣪⣫⣬⣭⣮⣯⣰⣱⣲⣳⣴⣵⣶⣷⣸⣹⣺⣻⣼⣽⣾⣿

 At the expense of a little dottiness, background bleedthrough, and
spacing jitter, this can be used to get 8× character cell resolution for
things like plotting points and lines on a character display; 15360
pixels in a standard 80×24 terminal window. This is better resolution
than even the proposed sextant characters, and the pseudopixels are
usually squarer. The bit positions within the character cell, with x
increasing right and y increasing down, are (0, 0), (0, 1), (0, 2), (1, 0),
(1, 1), (1, 2), (0, 3), and (1, 3), in that order.

 For example, you can plot this circle:

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡤⠤⠴⠒

⠒⠒⠒⠒⠒⠢⠤⠤⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠖⠋⠁⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠓⠦⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠴⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠲⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠔⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⠦⣄⡀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠖⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠒⠢⠤⢤⣀
⣀⣀⣀⣀⣀⣠⠤⠤⠖⠚⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀

 (Some terminals display this suboptimally with the non-active
Braille dots also drawn, as empty circles.)

 I did that with this simple Python program:

from __future__ import division, print_function
import sys

bitpos = [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (0, 3), (1, 3)]

try:
 unichr
except NameError:
 unichr = chr

class Canvas:
 def __init__(self, text_cols, text_rows):
 assert text_rows > 0
 self.pixels = [[0 for x in range(text_cols * 2)]
 for y in range(text_rows * 4)]

 def pixelsize(self):
 return len(self.pixels[0]), len(self.pixels)

 def pset(self, x, y):
 try:
 self.pixels[y][x] = 1
 except IndexError:
 pass # clip silently

 def render(self):
 p = self.pixels
 ww, hh = self.pixelsize()
 return '\n'.join(''.join(
 unichr(0x2800 + sum(1 << i if p[y+by][x+bx] else 0
 for i, (bx, by) in enumerate(bitpos)))
 for x in range(0, ww, 2)
) for y in range(0, hh, 4))

 def write(self, fileobj):
 fileobj.write(self.render() + '\n')

def draw_circle(canvas):
 ww, hh = canvas.pixelsize()
 mindim = min(ww, hh)
 cx, cy = ww/2, hh/2
 r = mindim/2 - 1
 x, y = r, 0
 for i in range(1000):
 canvas.pset(int(round(x + cx)), int(round(y + cy)))
 x -= y * .01
 y += x * .01

if __name__ == '__main__':
 import cgitb; cgitb.enable(format='text')
 canvas = Canvas(80, 24)
 draw_circle(canvas)
 canvas.write(sys.stdout)

Triangle characters

 These probably are not useful as mosaic characters like the ones in
the “Graphics for Legacy Computing” item above; faced with the
choice between making them mate properly for mosaicing and giving
them 45° angles, font designers have typically chosen the latter:

◢◣
◥◤

Topics

• Programming (p. 1141) (49 notes)
• Python (p. 1166) (12 notes)
• Graphics (p. 1177) (10 notes)
• Terminals (p. 1202) (6 notes)
• ASCII art (p. 1305) (3 notes)
• Art (p. 1306) (3 notes)
• Unicode (p. 1315) (2 notes)

Skew tilesets
Kragen Javier Sitaker, 02021-02-14 (updated 02021-02-24)
(7 minutes)

 Some ideas about tile-based media for constructing systems.

Historical background

 After writing ASCII art, but in Unicode, with Braille and other
alternatives (p. 128) I remembered a graphics program called
SYMED on the Zenith Z-100, capable of drawing, for example,
extensive circuit schematics, despite the machine only possessing
128KiB of RAM, a sub-MIPS processor, sub-megabyte floppies, and
totally unaccelerated graphics. (I suspect that this program is totally
unrelated to the Mentor Graphics program of the same name;
although they are used for related purposes, there is no similarity in
how the programs work.) In SYMED you defined a tileset, as with
Nintendo games, and placed tiles from the tileset to form your
drawing. SYMED arranged these into the machine’s framebuffer for
display (8 colors at 640×225, which works out to a hefty 54KB of
video RAM) but stored the tile definitions and tile indices.

 I forget how big the tiles were, but if we suppose they were 8×8 (a
common size for such things) you might be able to get a creditable
representation of a diode or capacitor, or half a resistor or inductor,
into one — you could repeat the “symbol” for the other half of the
resistor. Vertical and horizontal wires, four corners, four junctions,
four diodes, two resistor sections, two inductor sections, two
capacitors, a four-way intersection, a crossover, and a battery might
add up to 23 symbols; you could probably do a real circuit with
around 64 symbols. The definitions of those 64 symbols, if
monochrome, would occupy 512 bytes, and each screenful of 80×28
tiles would occupy 2240 bytes at one byte per tile, so a screenful
might be a 3-KB file, quite a lot of compression compared to the 54K
of a raw framebuffer dump, and still smaller than a 6K monochrome
dump. If the tiles were full color, 64 of them would be 1.5 KiB, so a
full-color screen-sized drawing would be almost 4K. (You could do
bit-packing tricks with such a small number of tiles, packing 8 tile
indices every 6 bytes, but I don’t know if SYMED did.)

 In theory it would be easy to do PLATO-like or APL-like
overstrike with such tiles, or Nintendo-like sprites composited in at
arbitrary places, although I don’t think SYMED could do this. I
don’t remember if it even supported text annotations.

 For things like schematics you wouldn’t need to separately draw
and store the four orientations of diodes; you could generate them
algorithmically with rotations. This would cut the 23 separate
symbols above to 10 and additionally let you reorient the battery as
you wished. Nowadays this is interesting not to save space on
400-kibibyte floppy disks but to make the system a more fluent
medium for creation, because you don’t have to make parallel
modifications to various copies of your sprites.

 Here’s a somewhat similar set of symbols from the Unicode box

http://www.computinghistory.org.uk/det/44090/Zenith-Z-100/

drawing set, although this does not represent a coherent schematic for
anything and lacks the circles indicating wire joins:

 ┌╫───┐
 ┌───┬┘╭┤├─┤
 └─▶├┼─╯ │
 └╮ ▼
 ╰╮ ┬
 ╰┄┄┈┘

 Still, it would be nice to have a more parsimonious set of tiles.
Perhaps this Commodore BASIC program from the Commodore 64
User’s Guide is relevant:

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

 This outputs a “maze” like the following:

╲╲╱╲╲╲╱╱╲╲╱╲╱╱╲╲╱╲╲╱╲╲╱╲╱╱╲╲╲╲╱╲╲╲╲╱╱╲╱╲
╲╱╲╲╱╱╲╲╲╱╲╲╲╱╱╲╱╱╱╲╲╱╱╱╲╲╲╱╲╲╲╲╱╲╲╱╱╲╱╱
╲╲╱╲╲╱╲╱╱╱╱╱╲╱╲╲╱╲╱╱╲╱╲╱╲╱╱╱╲╲╲╲╱╱╱╲╱╲╱╱
╱╲╲╲╲╲╲╱╲╱╲╱╲╱╱╲╲╲╲╱╱╱╲╲╲╱╱╲╱╱╱╱╱╱╲╲╱╲╱╱
╱╲╲╲╱╱╱╱╱╱╲╲╱╲╱╲╱╱╲╱╲╱╲╱╲╱╱╲╱╲╱╱╱╲╲╲╱╲╲╱
╲╱╱╲╲╱╱╱╱╲╱╱╱╲╱╲╲╲╲╲╲╱╲╲╱╱╱╲╱╱╱╲╲╱╱╲╲╲╱╱
╱╱╲╱╲╱╲╲╲╲╱╱╱╱╲╱╱╱╱╲╱╲╲╲╲╱╱╱╲╲╱╲╲╱╱╱╲╱╲╲
╲╲╲╱╱╲╱╲╲╲╱╱╲╲╱╲╱╲╱╲╲╲╲╱╲╲╱╲╱╲╱╲╱╲╲╱╲╱╲╲
╱╲╱╱╲╱╲╲╲╱╲╲╲╱╲╱╲╱╱╱╲╱╱╱╱╲╱╲╲╱╱╲╲╲╱╲╱╲╱╲
╱╲╲╱╲╱╲╱╱╲╱╲╱╲╱╲╱╲╲╱╱╲╲╲╲╲╱╱╲╲╱╱╲╲╲╱╲╱╱╱
╱╱╱╲╲╲╱╱╲╲╲╱╲╱╲╲╲╲╱╲╲╱╲╲╲╱╲╱╱╱╱╲╱╱╲╱╲╲╱╲
╲╱╲╱╱╲╲╲╱╱╱╲╲╱╱╱╱╲╲╱╲╲╲╲╲╱╲╲╱╲╲╱╱╱╲╱╱╲╲╲
╲╲╱╱╲╱╲╱╱╱╲╲╱╲╱╲╲╲╲╱╱╱╲╲╱╲╲╱╲╲╱╱╱╱╲╱╲╲╲╲
╲╲╲╲╱╲╱╲╱╲╲╱╱╱╲╱╲╲╲╱╱╱╲╱╱╱╲╲╲╱╱╱╲╱╱╲╱╱╲╱
╲╱╲╲╲╱╲╱╲╱╲╱╲╱╱╱╲╲╲╱╲╲╱╲╱╲╲╱╲╲╱╲╱╲╲╲╱╱╱╱
╲╲╲╲╱╲╱╱╱╱╱╱╱╲╲╱╱╱╲╱╲╱╲╱╲╲╲╲╲╲╱╱╲╱╱╱╱╲╲╲
╲╱╲╱╲╱╲╱╱╱╲╱╲╲╲╲╱╱╲╱╲╲╱╲╱╲╲╲╱╱╲╲╲╱╱╲╲╲╲╱
╱╲╱╱╱╲╲╱╱╲╱╲╱╱╲╲╲╲╱╲╲╱╱╱╱╲╱╲╲╱╱╱╲╲╱╲╲╲╱╱
╱╱╲╲╲╲╱╱╲╱╱╱╱╲╱╱╲╱╱╲╲╱╲╲╱╲╲╱╲╲╱╲╱╱╱╲╲╱╱╲
╲╱╱╱╲╱╱╲╱╲╱╱╲╲╱╲╱╲╱╲╲╱╱╲╱╲╱╱╱╲╲╱╲╲╱╲╲╲╱╲

 (I generated the above in Python 3:

for _ in range(20):
 print(''.join(chr(random.randrange(0x2571, 0x2573))
 for _ in range(40)))

)

 This uses a smaller tileset, only two tiles, to produce an interesting
range of topologies, though the passages don’t branch. On the
Commodore, with its square character cells, the lines were
perpendicular to each other, just not to the edges of the display. In
addition to the diagonal-line characters 205 and 206 above, it also had
a crossed-diagonal-lines character 214 (╳ in Unicode, U+2573, BOX
DRAWINGS LIGHT DIAGONAL CROSS), and of course a space character.

 By adding these additional tiles, we can get branching passageways,

which is most interesting when the amount of branching is close to
the critical percolation threshold:

for _ in range(20):
 print(''.join(' ' if random.random() < .2 else
 '╳' if random.random() < .1 else
 '╲' if random.random() < .5 else
 '╱' for _ in range(80)))

 ╲╱╱ ╱ ╲╱ ╱╱╱╲ ╳╱ ╲╲ ╱╲╲╲╲╱╱╱╱╱╲ ╳╱╱ ╱╱ ╲╲ ╱╲╲╲╳╲╲╲
╲╱╱╲╲╱╲╲ ╲╱╱╲╱╱╱╲╳╳╱╳ ╲╱╲╳╱

╲╱╳╱╲╱╱╱╲ ╱╲╲╱ ╲╱╲╲╲╱╱╲╲╲╳╲╲╳╲╱ ╲╱╲╲╱╲ ╲╱╱ ╱╱╲╱╱╲
╳╳╳╲╱ ╱╳╲╱╱╱╱╲╱╱ ╱╱╱╱╲╱╲╱╱╱╲╲

╳ ╲╱╲╱╱ ╲ ╱╱╱╱╲╱╲╱╲╳╱╳╳╱╲ ╲ ╳╲╱╱╱ ╲╱╱╲╱╲ ╲╲╱╲╲╱ ╲╱
╲╲ ╱ ╱ ╲╲ ╲╲ ╱ ╲ ╲╲╱╲ ╱ ╱╱╲╱

╱╱╳╲╱╳╲╲╲╲ ╱╲╱╲╲ ╲╲╳ ╲╲╱╲╲╳╱╲╲╱ ╱ ╲╱ ╱╲╲╲ ╲╲ ╲╲ ╱╲╲
 ╱╲╱╲ ╱ ╱╱ ╱╱ ╲╱ ╲╲╲╲ ╱╱ ╲╲

╱╱ ╲╱╱╲╱╱╲╲╳╱╲ ╱╳╲╳╲╱╲╲╳╲╲╱╳╱ ╲╲╱╱╳ ╳╱╳╱ ╲╳╱ ╲╲
╲╱╱╱╲╱╳╱ ╲ ╲╲╲ ╲╱╲╱╱╱╱╲╲ ╲╲╲

╲╱ ╲ ╱╳╲╲╲╱╱╲╱╲╱ ╲ ╲╲╲╲╱╳╱ ╱╲╱╱╱╱ ╱╲ ╲╲╲╱╲╳ ╱╱╲╲ ╳
╲ ╱╲ ╱ ╲╳ ╱╱╲╲╲╱╱╲╱╲╱╱╱╱╱╱╲╳╱

╲ ╱╱ ╲╲╲ ╲╲ ╲╱╲ ╲╱╲ ╱╲ ╱╲╲╱╱╱╲╲╲╲╱╱╳╳ ╱╲╳╱ ╳╱╲ ╱ ╱╱
╱ ╱╱╱╲╲╲╲ ╲╲╱╲╲ ╲╲╳╲ ╱ ╲╱╱

╱╲╱ ╱╱ ╲╱╲╱╱ ╱╱╲╱╱╲╲ ╱╱╲╲╱╱╱╲╲╲╳╱╲╳╱╱ ╲╲╱╳╲╲╱ ╱╲╱
╱╲ ╱ ╱╱╲╲╲╲╳ ╱╳╱╱ ╲╱╲╲╳╲╲╱ ╱╲

╱ ╱╲╱╱╳╲╲╲╱╲╲ ╱╱╲ ╱ ╳╱╲╱╲ ╲ ╳ ╲ ╱╲╱╳╲╲╳ ╱╲╲╱╳ ╲╱ ╱╱
╳╱╲ ╲╱╱╱╲╲ ╲╳ ╱ ╱╱╳ ╱ ╲╳╱╲╲

╱ ╳╲ ╱╱╱ ╲ ╲╳╳ ╲ ╲╱╱╳╲╲╳╳ ╲╱╲ ╱╳╳╲ ╲ ╲╳╳╱╲╱╲╱╱╲╱╲╱
╱╱╱╲╱╱ ╱╳╲╲╲ ╱╱╱╱╱╲╱ ╳╲╱

 ╲╱╱ ╲╱╱ ╱╲╱╲ ╲╱╲╱╲╲ ╱╲╲╳╱ ╲ ╱ ╱╱╱╱╱ ╱╲╲╲╲╲╱╲╲╲ ╲
╱╱╱╳╱╱╲╱╱╲╲╱ ╲╳╳╱╱╱╲╳╱╲╲ ╱╱

╲╱ ╲ ╲╱╲ ╲ ╲ ╱╲╱ ╱ ╱╲ ╲╲ ╲╲╱╲╱╲╱ ╲╳╲╳╲ ╲╱╱╲ ╲╱╲ ╱ ╲
╱╲╱╲ ╱ ╱╱╲ ╳╲╲╱╱╲╱ ╲ ╱╲╱

╲╲╲╱ ╱╱╱╲╱ ╲╱╲╱╱ ╲╱╲╱╱╲ ╲╲╱╱╲╲╱╲ ╲ ╳╲╱ ╱ ╲ ╱╲╱╱
╲╱╳╲╲╱╲╲ ╲╱ ╲ ╲╲╱╳╱ ╱╲╱╲╱ ╱

╱╱ ╱╱╲╲╲╱╲ ╱╲╱╲ ╱ ╲╱╱╳╱╲╱╱ ╳ ╳ ╲ ╱ ╱╱╲╲╱╱╲╲╲╱ ╲
╱╱╲╲╱╲╳╲╱╱╲╲╲╲╲ ╳╲╲╱ ╱╲╱╱╲

╳╱╲╲╱ ╱ ╱ ╱╳╲╲╱ ╲╲ ╱╲ ╲╲╲ ╱ ╱╲╲╲╲ ╱ ╲ ╲╱╲ ╳╱╱╲╱╲╱
╲╲ ╲ ╲╲╱╲ ╱ ╱ ╳╲╱ ╱╳╱╲╱╲╱

 ╲╳ ╲ ╱╲ ╳╲ ╱ ╱ ╱╲╱╲╱╱╱╲╱╱ ╳ ╱ ╱╲╲ ╲╳╱╲╱ ╱╱ ╱ ╲ ╱ ╱
╲╲╱ ╲ ╲ ╲╲╱ ╲╲╲╲╱╲╲ ╲╲╲

╲╱╳╲ ╲╱╳╱╳╱╳╲╲╲╱╲╲╲╱╲ ╱╱╲ ╲╳╲ ╱ ╳╲╲╲╲╱╱ ╲ ╱╱╲ ╲ ╲
╱ ╲ ╲╳╱╳╱╱╲╱╱╱ ╲╲╱╱╲╱╱╱╲ ╱

╱╲ ╲╱╱╲ ╲╲╳╳╲╱╱ ╱╲╲╲╱╱╱╲╳╲╲╲╳╱ ╲╲╲╱╱╲╱ ╱╱╲ ╲╱ ╱╲
╳╱╲╱╲ ╳ ╱ ╲╲ ╲╱ ╲ ╲╲╲╲╲╲╱ ╲╱╲

╲╲╲╱╱╲╱╲╱╱╲╲ ╲╳╲ ╳ ╱╱╱╲ ╲╲╲ ╲╲╱ ╲╲ ╱╱╲╳╱╱ ╲╲╱╲╲╲╱
╲╲╲╳╳╲ ╲╱╱╱╲╱╱ ╲╲╱ ╲ ╱╲╲╳ ╱╳╱

╱ ╳ ╱╲ ╳╱╲╲╲ ╱╱╲╱╱╱╲╱╲╱╲╲ ╳╲╱╱╱ ╱╲ ╱ ╳╱╱╲╱╱ ╲╲╲ ╲
╲╱ ╱╲╱╲╱╱╲╱ ╲╲╲╱╱╲╱╱ ╱╱╱╲ ╲

 If you make the tiles square and rotate 45°, boxes like this:

╱╲
╲╱

 become boxes like this:

┌─┐
│ │
└─┘

 Correspondingly this

╳╳
╳╳

 becomes this:

 ╷
 ┌┼┐
╶┼┼┼╴
 └┼┘
 ╵

 What you give up is the ability for the lines to begin or end on any
grid point; now they can only begin and end on half of the grid
points, the ones corresponding to the black squares on a chessboard.
In exchange, for line drawings, you only need one bit per grid point
instead of 4, and you only need to draw four tiles including space, or
three if rotation is automatic, instead of 16 (or six if rotation is
automatic: ─ ┐ ┤ ╷ ┼ plus space).

Paraxial parallelograms

 Now, suppose we divide our board into square or parallellogram
tiles whose diagonals are vertical and horizontal:

╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲
╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱
╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲

╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱
╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲
╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱
╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲
╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱
╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲
╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱
╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲
╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱╲╱

 In each of these tiles we can place a horizontal line, a vertical line,
both, or neither, or some other component, such as a resistor or diode.
If they’re square, you can automatically generate multiple rotated tiles
from a single master, so you only need to draw, for example, one
diode instead of four.

 This skew-tile approach reduces the number of tiles, but with some
drawbacks. Unless supplemented with sprites, if you do want to, for
example, render three-way intersections differently (for example with
a dot), you need not just one new tile but two or more, containing the
different parts of the dot. In the simplest approach, this also requires
the user to replace four tiles when they want to place such an
intersection, but there are various possible approaches to avoiding this,
including Wang-tile-like approaches. And inserting or deleting rows
or columns of tiles is no longer so simple.

Isometric grids

 A uniform grid of equilateral triangles can tile the plane, and the
isometric projection measures along just such a grid. QBert and
Zaxxon (from 01982) take place on such an isometric grid. Marble
Madness (01984, by Mark Cerny, running on a 68010) used an
isometric projection, but included lines that deviated from the grid
for things like sloped surfaces.

 One approach to creating a tileset for such a grid is to pick one of
the three isometric planes and draw tiles for the parallelograms in that
plane. This can display integer displacements perpendicular to that
plane as long as the displacements are quantized.

 Ugh, I guess I should implement these things to see how well they
work.

Topics

• History (p. 1153) (24 notes)
• Python (p. 1166) (12 notes)
• Graphics (p. 1177) (10 notes)
• Composability (p. 1188) (9 notes)
• Tiled graphics (p. 1269) (3 notes)
• Illinois PLATO (p. 1280) (3 notes)
• BASIC (p. 1303) (3 notes)
• ASCII art (p. 1305) (3 notes)
• Overstrike (p. 1347) (2 notes)

Threechet
Kragen Javier Sitaker, 02021-02-16 (updated 02021-02-24)
(4 minutes)

 Truchet tiles are squares divided into a black right isosceles triangle
and a white one, and by tiling a surface with them at various
orientations you can achieve a wide variety of interesting patterns, as
observed by Truchet in 1722 (and earlier in briefer papers published in
1704 and 1707, it seems).

 A variant of the Truchet tile introduced by Cyril Stanley Smith in
1987 has two quarter-circles connecting the centers of its square sides,
and can occur in two orientations; Smith comments early on:
Truchet's patterns are superficially similar to those used in the construction of the
mosaic tiles so prominent in Islamic architecture, the construction and philosophy
of which, based on the intersection of circles of differing radii, has been so well
treated by Keith Critchlow, but the principles are more fundamental.

 Then later, introducing his variant:
Of course, there are many other tile shapes with interesting properties, for example
the non-periodic tilings described by Martin Gardner. Then, more Truchet-like,
are hexagons divided into two tetragons which assemble to give vertices of average
valence 4 if uncolored or 5 if colored with a single internal line, and the square tiles
of Fig. 19 with eight vertices and three internal polygons the boundaries of which
on assembly in any orientation generate nothing but quadrivalent vertices and form
continuous lines extending or closing on any desired scale. As with any net of
quadrivalent vertices, the first selection of one of two colors for one polygon
determines the pattern of contrast throughout.

 (This is, I think, very poorly explained, like the entire paper.)

 These Fig. 19 “polygons” made of arcs are the patterns shown in
Adrian Likins’s 1998 xscreensaver hack “Truchet”, along with a
variant that replaces the quarter-circle arcs with straight diagonal
lines.

 (The Gardner reference is evidently to “Extraordinary
non-periodic tilings that enrich the understanding of tiles,” SciAm
236, No. 1, 110–221 (01977), which seems to have been about Penrose
tilings, (certainly the cover depicts a Penrose tiling) but I don’t have
the article.)

 It occurred to me that, instead of dividing each side of the square
tile into two equal parts with an arc, you could divide each divide
them into three parts with two points of division, perhaps with the
center part being smaller or larger than the other two. If we letter the
sides clockwise A, B, C, D and number the two points of division
clockwise as 0 and 1, then we have eight points of division (in
clockwise order: A0, A1, B0, B1, C0, C1, D0, D1), which we can
connect with arcs, or not. One obvious possibility is A1-B0, B1-C0,
C1-D0, D1-A0, and another is A0-A1, B0-B1, C0-C1, D0-D1. More
interesting, perhaps, is A1-B0, A0-B1, which (unless we allow
intersections or unconnected points) forces the connections C0-C1,
D0-D1, and even that is only possible if the center interval isn’t too
long. This tile has four rotations. Allowing straight lines as well as
arcs gives us another pair of tiles: A0-C1, A1-C0, B0-B1, D0-D1,
and its 90° rotation. The lines on all of these (if, unlike Smith, we

https://archive.org/details/methodepourfaire00doua
https://archive.org/details/methodepourfaire00doua
https://blogs.scientificamerican.com/guest-blog/the-top-10-martin-gardner-scientific-american-articles/
https://blogs.scientificamerican.com/guest-blog/the-top-10-martin-gardner-scientific-american-articles/
https://www.scientificamerican.com/magazine/sa/1977/01-01/

omit the tile boundaries) join to form closed curves with no sharp
angles and no intersection or branching.

 Using two points of division per side enables us to also use a regular
triangular tile, with division points A0, A1, B0, B1, C0, C1, and tiles
including A0-A1, B0-B1, C0-C1; A1-B0, B1-C0, C1-A0; and
possibly A1-B0, A0-B1, C0-C1 and its other two rotations. But this
last tile is only free of intersections if the middle interval is fairly
small.

 A regular hexagonal tile with only a single point of division per side
has only one obvious base tile: A-B, C-D, E-F, with two rotations.
If we permit straight lines we also have A-B, C-F, D-E and its other
two rotations.

Topics

• History (p. 1153) (24 notes)
• Math (p. 1173) (11 notes)
• Graphics (p. 1177) (10 notes)
• Composability (p. 1188) (9 notes)
• Art (p. 1306) (3 notes)

Thumbnail views in a Unicode
character-cell terminal with
Braille
Kragen Javier Sitaker, 02021-02-17 (updated 02021-02-24) (1 minute)

 Braille Unicode characters fit 8 square pixels per character cell. We
can make a thumbnail view of a text file (such as a C program) by
mapping its character cells to these pixels; if we reduce 8× linearly,
then each Braille character cell represents 8 columns of 8 lines with its
2×4 pixels. This maps 4 columns of 2 lines to each pixel. Some kind
of threshold for how much text needs to be in this area to light up the
pixel ought to work reasonably well to give a thumbnail view; if you
can fit 40 lines of text on the screen then you can fit thumbnails of
320 lines of text, which is a lot; 410 out of the 443 "source files" (*.c
*.cc *.h *.ml *.java *.py *.lisp *.html) in ~/dev3 are shorter than this.
Also the thumbnail will only take up 10 columns at a standard
80-column width, so maybe you can do multiple columns of
thumbnail.

 Alternatively you could scroll horizontally by pages/columns, and
put the thumbnailed pages at the top or bottom of the screen. This
would take up 5 lines out of the 40.

Topics

• Graphics (p. 1177) (10 notes)
• ASCII art (p. 1305) (3 notes)
• Unicode (p. 1315) (2 notes)
• Temrinals

 Energy autonomous computing
 Kragen Javier Sitaker, 02021-02-18 (updated 02021-12-30)
(58 minutes)

 I spent some time trying to figure out what it would take to be
able to read, write, and interactively compute, without a connection
to a power grid, with maximal autonomy. A big part of this is power
usage, and it looks like it should be possible to get a self-sufficient
computing environment that runs on under a milliwatt and doesn’t
need batteries, though batteries might enable orders of magnitude
more computational power. See also How do you fit a high-level
language into a microcontroller? Let’s look at BBN Lisp (p. 160) for
thoughts on how to design a software environment for such a
computer.

 In particular, it seems like with Sharp Memory LCDs, several of
Ambiq’s new line of subthreshold microcontrollers, amorphous solar
panels, and supercaps, you should be able to do a low-resolution
black-and-white GUI on the order of what you could do on a
PowerMac 7100, SPARC 5, or 486DX2/66, without a battery, on
0.5 mW, with an average write bandwidth to your SD card of some
10 kilobytes per second (say, 10 megabytes per second at an 0.1% duty
cycle). You could run a Web browser and PDF viewer, though not
DHTML apps like Slack and Fecebutt, because it would only have a
few megabytes of RAM across all the CPUs, and PDFs might be
difficult to read at the low resolution of the screen. The whole
computer might weigh 100 grams.

 It would take a week to discharge when not in sunlight, but need
only an hour or so of sunlight per day, or a few seconds of being
plugged in, to stay fully charged. By scaling the clock frequency of
the CPUs and turning more of them on, within a few milliseconds
you could scale up to a billion instructions per second (comparable to
a turn-of-the-millennium Pentium III or iMac G4, or an iPad 2 from
02011, or the original Raspberry Pi), though this would be limited by
your available energy, since it would use close to 50 milliwatts.

 Computation needs
 Although computation isn’t the only power cost in a computer, it’s
a fundamental one. But how much computation do you need?
About 0.1 DMIPS for a minimal responsive computing environment
(Apple][, Commodore 64, SDS 940); about 1 DMIPS for a
reasonably comfortable one with a lightweight GUI and IDE (VAX
11/785, HP 9000/500, IBM PC/AT, Sun 3/60); maybe 10 DMIPS
for workstation-class performance (SPARC 2, 386/40); maybe 100
DMIPS for browsers and rich GUIs (SPARC 20, RS/6000 250,
PowerMac 7100, Pentium 120).

 Historical computer performance: a 1-MHz 6502 was
a bit less than 0.1 DMIPS
 A Commodore 64 or Apple][were also capable of running the
VisiCalc spreadsheet, the Berkeley Softworks GEOS GUI and
geoPaint and whatnot, and Contiki, though not, say, the GEM

desktop. The 5MHz and sub-MIPS Apple Lisa was capable of
running a non-janky GUI, but even on the Macintosh (7.8 some
MHz, 16-bit ALU, 0.40–0.52 Dhrystone MIPS even though some
68000 machines were faster) it was slow enough that you could see
the order in which the lines of dropdown menus got painted, top to
bottom. With GEOS on the Commodore 64, though, you can see
that it paints each line of the dropdown menu left to right, even with
a memory expander cartridge, and in geoWrite, typing onto the end
of a short line of centered text makes it flicker quite noticeably as it
gets erased and repainted left to right in the new position.

 The Magic-1 4-MHz homebrew microcoded TTL minicomputer
gets 506 Dhrystone repetitions per second, while the same page says
the Mac 512 gets 625. I guess those work out to (mapcar (lambda (x) (/ x
1757.0)) '(506 625)) 0.29 and 0.36 respectively. 0.36 is a little lower than
the 0.40–0.52 range in the netlib page cited above, but it's pretty close.
The same page reports that a 2.5-MHz Z-80 did 91 Dhrystones per
second, which is 36.4 Dhrystones per second per MHz, and that an
Apple IIe only squoze 37 Dhrystones per second out of its 1.02 MHz
65C02, which by the same calculation is (/ 37 1757.0) = 0.021 DMIPS,
and thus 0.021 DMIPS/MHz. And so that seems to be close to the
minimum CPU power to run a usable GUI.

 So the STM32F1 does about 50 (!) times as much Dhrystone work
per clock cycle, and about 4–5 times as many instructions per clock
cycle, so it’s doing about 10–12 times as much Dhrystone work per
instruction. This is substantially larger than the factor of 2 I had
guesstimated for the 8-bit vs. 32-bit difference, and I suspect it’s
unrealistically large — an artifact of trying to benchmark the
C-unfriendly 6502 with a C program, and perhaps using a lousy
compiler to boot.

SRI’s oN-Line System ran on an SDS 940 system at
around 0.1 DMIPS
 The Mother of All Demos, demonstrating the mouse, windowing,
networked hypertext, multimedia computerized documents including
images, and IDEs, was done in 01968 on an SDS 940 (one of some 60
ever built, over a third of which were sold to Tymshare) which
supported 6 concurrent users, using specialized analog hardware for
video compositing. The system’s interactive response slowed notably
when more than one person was using it actively. The SDS 940 had a
24-bit CPU and up to 64 kibiwords of 24-bit memory. An integer
add instruction on its predecessor the 930 took 3.5 μs, and the
memory’s cycle time was 1.75 μs, so we can estimate it roughly at
200,000 instructions per second, about the same as the 1-MHz 6502 in
the Commodore 64; but they were 24-bit instructions instead of
8-bit instructions, so it might have been perhaps twice as fast as the
C64.

 The 940 they were running NLS on was exactly the same in those
respects: 0.7-μs memory access time, 1.75-μs cycle time, 3.5-μs
“typical execution time” for integer addition “(including memory
access and indexing)”, and 7.0 μs for integer multiply.

 The manual/brochure for the machine, which was built for the
Berkeley Timesharing System under which NLS ran, says:

https://duino4projects.com/using-nokia-3310-84x48-lcd-arduino/
https://en.wikipedia.org/wiki/Instructions_per_second
https://en.wikipedia.org/wiki/Instructions_per_second
https://youtu.be/gnFavusEwVE?t=1146
https://youtu.be/gnFavusEwVE?t=1146
https://youtu.be/gnFavusEwVE?t=1146
http://www.homebrewcpu.com/new_stuff.htm
http://www.homebrewcpu.com/new_stuff.htm
https://en.wikipedia.org/wiki/NLS_(computer_system)
https://en.wikipedia.org/wiki/SDS_9_Series#SDS_930
https://en.wikipedia.org/wiki/SDS_9_Series#SDS_930
http://archive.computerhistory.org/resources/access/text/2010/06/102687219-05-08-acc.pdf
http://archive.computerhistory.org/resources/access/text/2010/06/102687219-05-08-acc.pdf

 System response times are a function of the number of active users. Typical times
are:
 6 active users 1 second
 20 active users 2 seconds
 32 active users 3 seconds

 It's very unlikely that anybody ever ran Dhrystone on the SDS
940; its successor the SDS 945 was announced in 01968, and that was
the last of the whole SDS 9 line; SDS continued to introduce
upgrades to the 32-bit SDS Sigma series until 01974 (though that
series began earlier, in 01966), until Xerox sold them to Honeywell in
01975. I think the last operational SDS 940 probably got
decommissioned in the mid-1970s. (These things weren't cheap to
run; the SDS 940 manual cited above says it used 3 “Kva”, which is
roughly kilowatts.) But Dhrystone wasn’t written until 01984.

 Amusingly, some former SDS employees refounded the company
in 01979. Guess what CPU their new computer used?

 A 6502A.

 The vague handwaving argument above that the 1-MHz 6502’s
0.02-DMIPS number is a little lower than would be realistic, along
with the estimate that the SDS 940 was probably about twice as fast,
combine to form a vaguer, even more handwaving argument that the
SDS 940 was about 0.1 DMIPS, which was barely able to support 6
concurrent users with specialized analog display hardware.

 This reinforces the above argument that 0.1 Dhrystone MIPS is
close to the minimum practical for an interactive computing system.

 Estimating the necessary performance for basic
interactive computation: 0.1 DMIPS
 My previous estimate in Dercuano was that basic interactive
computation like word processing takes about 7500 32-bit instructions
per keystroke. At one point, I said, “WordStar on a 2MHz
(≈0.5MIPS) 8-bit CPU would sometimes fall behind your typing a
bit,” but then later calculated that a Commodore 64 (now AR$12000
= US$80) or Apple][would only do about 200 000 8-bit instructions
per second and were usable for word processing, and a 32-bit
instruction is roughly equivalent to two 8-bit instructions, so you
need about 0.1 32-bit MIPS, and you might be typing like 160 wpm
(13.3 keystrokes per second), which works out to about 7500
instructions per keystroke.

 Also in Dercuano, I estimated that painting text in a framebuffer
fast enough that it doesn’t slow down reading at 350wpm might take
about 50 bytes of I/O per glyph and 100 instructions / glyph × 350
wpm × 6 glyphs / word × 1 minute / 60 seconds = 3500
instructions/second. But that’s orders of magnitude lower than the
computations I discussed above. Indeed, old computers like the
Sinclair ZX-81 with its 3.25-MHz Z-80, lacking an external
framebuffer, would use the CPU to repaint the screen 50 times a
second.

 Modern microcontrollers run at around 1 Dhrystone
MIPS per MHz
 How fast are modern microcontrollers? dannyf compiled

https://en.wikipedia.org/wiki/SDS_Sigma_series
https://en.wikipedia.org/wiki/Dhrystone
https://en.wikipedia.org/wiki/Scientific_Data_Systems#A_new_start
https://en.wikipedia.org/wiki/Scientific_Data_Systems#A_new_start
https://articulo.mercadolibre.com.ar/MLA-896239873-computadora-commodore-64-c-funciona-liquido-dream-_JM

Dhrystone 2.1 with a modern compiler and got 921 repetitions per
second per MHz on an STM32F1 with what I guess is the vendor
compiler, or 736 with GCC; to convert that into Dhrystone MIPS I
think we divide by 1757, so that’s 0.52 and 0.42 DMIPS/MHz.
However, other commenters say the ARM Cortex-M0+ used in the
STM32F1 is 0.93 DMIPS per MHz, and the
STM32F103x8/STM32F103xB datasheet says it's actually “1.25
DMIPS/MHz (Dhrystone 2.1)”. And apparently a CoreMark is
about half a DMIP.

 Computational energy consumption
 How much battery you need, and whether you need a battery at
all, and what other kind of power source you need, depends on how
much power you need. So, how much power do computers need?

 Laptops need tens of watts and often run off old 18650s

 My “new” HP laptop’s /sys/class/power_supply/BAT0/power_now produces
numbers ranging from about 11 million to about 32 million, with
CPU usage seeming to be the biggest determinant. (I’m guessing
these are microwatts.) Its battery (four 18650 cells, I think) is so shot
that it only runs for about an hour and a half on it, which suggests a
capacity in the 60–180 kJ range, probably close to 100 kJ. The (HP
V104) notebook battery is labeled as “14.8 V” and “41Wh” (though
the broken off-brand spare says “2200mAh/33Wh”), and
/sys/class/power_supply/BAT0/energy_full_design says 23206000, and bizarrely
so does energy_full, and energy_now approaches that level (20364000 at
the moment). cycle_count reports 208, but then after popping the
battery out and back in, only 200. The docs say that energy is
reported in μWh; power_now is not documented there but SuperUser
says it’s in μW, and indeed 23 watt-hours divided by 15 watts is about
an hour and a half. I suspect the battery is worn out down to 57%
capacity and just doesn’t report its design capacity. 23 Wh at 14.8 V is
1600 mAh, which is in a reasonable range for the half-worn-out
18650s it presumably contains.

 It can do something like 10 or 15 billion instructions per second, so
this is something like 2000–3000 pJ per instruction, including the
monitor.

 An HPC paper from 02011 found that these numbers were typical
of the most efficient large processors from the 02000s and 02010s: the
Lenovo ThinkPad X201s i7-640LM (15 W idle, 33 W run, 13917.89
Dhrystone MIPS, 2400 pJ/“insn”), the Dell Inspiron 910 Atom N270
(7 W idle, 10 W run, 4683.57 Dhrystone MIPS, 2100 pJ/“insn”), and
the SHARP PC-Z1 i.MX515 (2.2 W idle, 4.4 W run, 1184.58
Dhrystone MIPS, 3700 pJ/“insn”). Many other contemporary
processors they tested (Pentium D, MV88F5281-D0, Xeon E5530,
Core 2 Quad) were less efficient by an order of magnitude or even
more.

 Ereaders use on the order of 200 mW; maybe
reprogram one?
 The Amazon Swindle 2 uses a 3.7V-1530 mAh battery (20 kJ),

https://www.eevblog.com/forum/microcontrollers/dhrystone-2-1-on-mcus/
https://www.eevblog.com/forum/microcontrollers/dhrystone-2-1-on-mcus/
https://en.wikipedia.org/wiki/Dhrystone#Results
https://en.wikipedia.org/wiki/Dhrystone#Results
http://linuxgizmos.com/hifive-unmatched-sbc-showcases-new-fu740-risc-v-soc/
http://linuxgizmos.com/hifive-unmatched-sbc-showcases-new-fu740-risc-v-soc/
https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
https://superuser.com/questions/808397/understanding-the-output-of-sys-class-power-supply-bat0-uevent
https://superuser.com/questions/808397/understanding-the-output-of-sys-class-power-supply-bat0-uevent
https://ipsj.ixsq.nii.ac.jp/ej/?action=repository_action_common_download&item_id=78048&item_no=1&attribute_id=1&file_no=1
https://en.wikipedia.org/wiki/Amazon_Kindle#Kindle_2

which reportedly lasts 7 days after Amazon tweaked the firmware,
which I think is based on some nominal usage level per day — 
Amazon shill sites claim it’s only 15 hours of active use, and people say
they normally charge their e-readers around once a week or every
32–64 hours of use or so, with 6–8 weeks of standby time. So this is
about 100–300 mW during active use. Other e-ink-based “ereaders”
have similar battery lives. All of them have much higher display
resolution than a Nokia cellphone display (typically 300 dpi instead of
like 20 dpi), but evidently they also use two orders of magnitude
more power, a problem which may not be entirely fixable in software.

 Reprogramming and possibly rewiring an ereader (Amazon or
otherwise) might be a reasonable approach. Since the Swindle Touch
in 02011, most of them have touchscreens, and since the Paperwhite
in 02012, most have backlights or frontlights, which can be turned off.
New, these cost on the order of US$150 here, but older models are
available used and supposedly working for AR$7000–10000
(US$50–70), 86% Amazon-branded (344 out of 398 current listings).
Older devices tend to have more I/O options, while newer ones tend
to be waterproof. An already-jailbroken Swindle is currently for sale
for AR$17000 (US$115; Paperwhite 3, 1072×1448, 300dpi, LED
frontlit, 1GHz CPU, 0.5 GiB RAM, “4/3” GB Flash, touchscreen).
Non-Amazon ereaders like the Noblex ER6A15 (AR$12500, US$85)
tend to run Android and have SD card slots, which have been
removed from more recent models of the Swindle — though that one
in particular has no data radios.

 Some Swindles have LCDs instead of e-ink displays, and these
have larger batteries; the Swindle Fire HD 7’s is reportedly 4440
mAh, bringing its weight to 345 g, for example.

 The Kobo seems to have the best reputation for hackability and
can run the portable open-source ereader firmware “KOReader”
(though there aren’t many for sale; Forma 8 and Clara HD seem to
be the options, but one Aura N514 remains, at AR$16000), and at
least some models of the Barnes & Noble Nook pair a small, fast LCD
with a large e-ink display, enabling you to have both rapid feedback
and low power use, but none of them on sale now have this.

 Report on rooting the Aura:
 I had read that some newer models had the NAND flash soldered onto the board,
but mine is a Sandisk sdcard in a slot. So I pulled the card out, dd copied it, and I
can restore if I do anything really bad that makes it stop booting.
 There is a well-marked ttl level serial port on the back. uboot is accessible and
allows for interrupting boot. You can log into a root shell onto the running system
without a password. It's basically open for business.

 The Kobo company does have some despicable practices you have
to protect yourself from.

 The Kobo Clara is reputedly pretty easy to program without
needing to jailbreak. It uses the same .kobo/KoboRoot.tgz firmware
upgrade process earlier Kobos did.

 Jailbreaking the Swindle is quite a pain by contrast, because
Amazon keeps causing trouble.

 Lower-power computing: low-power MCUs use 200

https://ceklog.kindel.com/2009/11/24/longer-battery-life-for-the-kindle-2/
https://www.pickmyreader.com/long-will-kindle-battery-last/
https://www.pickmyreader.com/long-will-kindle-battery-last/
https://www.goodreads.com/topic/show/19252863-battery-draining-quickly
https://archive.fo/bg5vd
https://archive.fo/bg5vd
https://en.wikipedia.org/wiki/Amazon_Kindle#Kindle_Touch
https://computacion.mercadolibre.com.ar/tablets-accesorios/e-readers/usado/_PriceRange_0-10000
https://articulo.mercadolibre.com.ar/MLA-902119551-kindle-paperwhite-3ra-generacion-como-nuevofundajailbreak-_JM
https://articulo.mercadolibre.com.ar/MLA-902119551-kindle-paperwhite-3ra-generacion-como-nuevofundajailbreak-_JM
https://articulo.mercadolibre.com.ar/MLA-869689729-noblex-er6a15-e-reader-6-memoria-4gb-luz-micro-sd-funda-_JM
https://www.devicespecifications.com/en/model-battery/e1a32e23
https://www.devicespecifications.com/en/model-battery/e1a32e23
https://github.com/koreader/koreader
https://articulo.mercadolibre.com.ar/MLA-904536370-ereader-_JM
https://computacion.mercadolibre.com.ar/tablets-accesorios/e-readers/barnes-noble/
https://www.mobileread.com/forums/showthread.php?t=281817
https://www.mobileread.com/forums/showthread.php?t=223155
https://www.mobileread.com/forums/showthread.php?t=223155
https://www.mobileread.com/forums/showthread.php?t=314032
https://www.mobileread.com/forums/showthread.php?t=314032
https://yingtongli.me/blog/2018/07/30/kobo-telnet.html
https://yingtongli.me/blog/2018/07/30/kobo-telnet.html
https://blog.the-ebook-reader.com/2018/03/17/list-of-hacks-mods-and-add-ons-for-kobo-ereaders/

pJ/insn, Ambiq uses 30
 Ordinary microcontrollers (without a monitor) are comparable to
the laptop’s 2000–3000 pJ/intruction power usage, or a bit lower, or
much worse for floating-point or SIMDable computations, but
low-power microcontrollers like the STM32L0 or the Atmel SAMD
picoPower ARM chips are in the 150–250 pJ/insn range, and the
MSP430 just a little higher (though only 16-bit).

 Recent reports are that the new RISC-V-based microcontroller
line “GD32V” are better by another factor of 3 or so. The datasheet
for the GD32VF103 doesn’t yet provide a lot of detail on lowest
possible power consumption, but the numbers they do give say that it
uses about 2.1 mW/MHz at 2 MHz, which drops to 0.7 mW/MHz at
36–48 MHz and 0.6 mW/MHz at 72–108 MHz, at 3.3 V, executing
from Flash, with all peripherals off. You can probably improve this
by running at 2.6 V, which is still kind of sad because the RISC-V
core itself is running at 1.2 V. (The datasheet and user manual claim
it’s a Harvard architecture, so you probably can’t execute from RAM,
and executing from RAM does improve power consumption on
ARM microcontrollers.) If we assume that’s about one instruction per
clock cycle, 0.6 mW/MHz is also 0.6 mW/MIPS (not Dhrystone
MIPS!), which works out to 600 pJ per instruction. This is a little
better than the STM32F0 (which I think is 12 mA at 3.6 V and 48
MHz: 900 pJ/instruction) but a lot worse than the STM32L0.

 Ambiq has apparently finally brought to market subthreshold
computing, Sparkfun sells an Ambiq Apollo3 devboard for US$15
with a 48MHz Cortex-M4F with 1MB Flash and 384k SRAM on the
chip, running at 6 μA/MHz at 3.3V, which I think is roughly 5
μA/DMIPS, plus floating point. The 6μA figure is running a while
loop, though; more typically the datasheet says it’s supposed to weigh
in at around 10 μA/MHz, which works out to 33 pJ/instruction, plus
68 μA overhead. This is higher than the 3pJ/insn research
subthreshold processors I mentioned in file low-power-micros in
Dercuano, but it’s dramatically lower than the STM32L0, a
dramatically less capable processor. Direct from Ambiq, the chip costs
US$4.21.

 XXX I uh have gotten confused between μA and μW in most of
the rest of this note and need to redo a lot of calculations which are
off by a factor of 3.3 now

 0.1 MIPS at 1000 pJ/insn works out to 0.1 milliwatts, and at 33
pJ/insn it’s 3.3 μW; 1 MIPS would be 33 μW; 10 MIPS would be
330 μW. It’s worth noting that these are average figures; a 10-MIPS
80386-40 couldn’t go any faster than 10 MIPS, but the Apollo3 can
reportedly “burst” to 96MHz occasionally for Pentium-Pro-like
responsiveness while averaging 100 μW.

 Display energy consumption
 At such low power levels, the processor might not be what
consumes most of the power. For example, unless the UI is purely
audio, you need a display, and it's easy for the display to use much
more than that. In modern hand computers such as cellphones, it's
common for the display to use the majority of the power.

 My estimate from Dercuano was that updating an e-paper display

http://www.gd32mcu.com/en/product/risc
http://www.gd32mcu.com/en/product/risc
https://www.gigadevice.com/datasheet/gd32vf103xxxx-datasheet/
https://www.gigadevice.com/datasheet/gd32vf103xxxx-datasheet/
https://www.sparkfun.com/products/15170
https://cdn.sparkfun.com/assets/c/1/b/7/6/Apollo3_Blue_MCU_Data_Sheet_v0_10_0.pdf
https://www.ambiq.top/en/mcu-1/apollo3
https://www.ambiq.top/en/mcu-1/apollo3

takes about 25 μJ per glyph; at 350 wpm and thus 35 glyphs per
second, this works out to 875 μW, which is several times more than
the 0.1 MIPS or even 10 MIPS. My friend Eric Volpe tells me that
he’s gotten old Nokia SPI screens (like the 84×48 Nokia 3310 screen,
about 25 words of text) to maintain their display on less than 1 mA at
3.3 volts (though others say it needs 6–7 mA, and he reports that it
consumes more when you’re updating it, too). They’re readable
without backlight in direct illumination, but if you use it, he says the
backlight also uses nearly a milliamp.

 But now there are displays with much lower power consumption
than that. Adafruit is selling a Sharp LS013B7DH05 memory LCD
breakout board for US$25; it’s 168×144 pixels in 24.5 mm × 21 mm
(174 dpi), and they claim it draws 4 μA at 3.3V “with 1Hz data
refresh”, so 13 μW. The datasheet says you can write individual lines
of data to it with a serial protocol at up to 1Mbps, but it’s write-only,
and the maximum frame rate is 60fps. The datasheet provides no
information at all about power consumption, so I guess Adafruit’s
testing is all we have to work with. Delightfully, they’ve used a ZIF
socket and double-stick tape so you can take the module off the
breakout board without desoldering anything. Like cellphone screens,
it’s readable in sunlight. Sharp’s brochure from 02015 says its power
consumption is “60 μW*” and gives the power consumption of
similar-sized displays as “10 μW static, 45 μW dynamic” and “15 μW
static, 150 μW dynamic”.

 Although it’s out of stock, in theory Adafruit also sells a bigger
Memory LCD for US$45, 400×240 pixels and 58.8 mm × 35.3 mm
(173 dpi), which I guess is the LS027B7DH01A, running on 5 V and
“50 μW static, <175 μW dynamic”, and which is monochrome but
transflective. This is the display the Playdate handheld console (press
blurb with demo video) is planning to use, according to the
Wikipedia article. This resolution would give you 40 lines of 114
characters at 3.5×6 or 30 lines of 80 characters, which is quite
comfortably usable. In Adafruit’s demo video it seems to be at least
30fps.

 A fellow named Mike made a video in 02011 with one of these
400×240 displays; he reported that you can update a single 400-pixel
line at a time, and that he measured the power draw at 5 μA to hold a
static display, or 3–4 μA if your “frame signal” is at its minimum
speed of 4 Hz (max is 100 Hz). He also said the datasheet says you can
clock pixel data in at 2 MHz, but he’s been able to clock it up to
6 MHz with success, updating the whole screen in 40–50 ms. Also,
interestingly, for the reflective (not transflective) ones, he suggests the
interesting possibility of bouncing light off them for a projector,
which could help with the small physical size of these displays.

 There’s also an EEVblog video from 02019 and forum thread
about using these memory LCDs for “super” low-power design.

 Digi-Key also has in stock a 320×240 LS044Q7DH01 Sharp
Memory LCD for US$70, which is a 4.4-inch diagonal, and the tiny
184×38 LS012B7DD01 for US$16, demonstrated in the EEVblog
video.

 The smallest we can practically make readable English text is about
6 pixels tall and 3.5 pixels wide, in a proportional font, giving 24 lines

https://duino4projects.com/using-nokia-3310-84x48-lcd-arduino/
https://www.adafruit.com/product/3502
https://cdn-shop.adafruit.com/product-files/3502/Data+sheet.pdf
https://www.mouser.de/pdfdocs/Sharp_Memory_LCD_Brochure_2015746065.PDF
https://www.adafruit.com/product/4694
https://www.adafruit.com/product/4694
https://www.sharpmemorylcd.com/2-7-inch-memory-lcd.html
https://play.date/
https://www.theverge.com/2020/8/12/21365535/playdate-handheld-game-console-doom-release-date-new-games-update
https://www.theverge.com/2020/8/12/21365535/playdate-handheld-game-console-doom-release-date-new-games-update
https://en.wikipedia.org/wiki/Playdate_(console)
https://en.wikipedia.org/wiki/Playdate_(console)
https://www.youtube.com/watch?v=eAoC818Mxy4
https://www.youtube.com/watch?v=XoHkE4xgaFA
https://www.eevblog.com/forum/blog/eevblog-1242-memory-lcdsupercapslow-power-design/
https://www.digikey.com/en/products/detail/sharp-microelectronics/LS044Q7DH01/5054070
https://www.digikey.com/en/products/detail/sharp-microelectronics/LS044Q7DH01/5054070
https://www.digikey.com/en/products/detail/sharp-microelectronics/LS012B7DD01/5054063
https://www.digikey.com/en/products/detail/sharp-microelectronics/LS012B7DD01/5054063

of 48 characters in 168x144; more traditional than proportional 3.5×6
is fixed-width 5×8, as used in lots of terminals in the 01970s and
01980s, which would give 18 lines of 33 characters. Either of these
would qualify as “barely usable”, I think. If we guess that Adafruit’s
13 μW measurement is 10 μW of static power plus 3 μJ to refresh the
whole screen, then Sharp's 60 μW* rating would be at 16.7 fps, but
updating an 8-pixel line of text on the display would cost 170 nJ, two
orders of magnitude less than my 25000 μJ Dercuano estimate for
e-paper. (The datasheet says you can update a line at a time, but
Adafruit says you have to update the whole screen.)

 Doing this 35 times per second would cost 6 μW on top of the base
10 μW for a total of 16 μW. But my “35 glyphs per second” was to
keep ahead of someone reading, not typing; that’s really one line of
text per second, and you probably don’t have to redraw it 35 times!
So it’s more like 10.2 μW under the assumptions above. Basically,
updating the display at full text reading speed probably costs an
insignificant amount more than the display’s static power
consumption.

 Suppose we have the 400×240 display consuming 100 μW, and an
Ambiq CPU consuming another 100 μW, probably providing about
40 DMIPS, 400 times the minimum above, and closer in speed to an
i860, an Alpha 21064, a SPARC 5, a 486DX2/66, or a PowerMac
7100/66, than to a Commodore 64 or an SDS 940. You’d have less
RAM (more like an Amiga, a Mac, or a 386 than like these late-90s
CPUs) but you can leverage enormous amounts of fast Flash to make
the RAM feel bigger. These 0.2 mW are then plenty to get a really
good responsive interactive computation environment. Smalltalk,
GUIs, spreadsheets, IDEs, the whole works. Just, not modern web
browsers, not without a lot more memory.

 Memory energy consumption
 Generally you probably want some kind of memory besides
on-chip RAM, both so you don’t lose your data when you run out of
energy, and because it allows you to have more data than fits in
on-chip RAM.

 And you probably want a lot more than the few hundred K of
on-chip RAM these microcontrollers give you. CP/M machines used
for development work typically had dual 8-inch floppy drives,
holding half a meg or a whole meg per disk, with a disk storage
cabinet with 16–256 of these floppies in them, for a total capacity in
the tens to hundreds of megs; a Commodore 64 might have a
170-KiB 1541 drive, but, again, a stack of hundreds of floppies, for
tens of megs of space. A Sun-3 in the late 01980s might have 16 MiB
of RAM (the base US$12000 models came with 4 MiB, while mine
had 48 MiB, but that’s because I bought it in the late 01990s after
RAM was cheap); an internal disk of 71, 141, 327, or 654 MiB; and
access to an NFS server with more than a gibibyte. That’s what was
needed to be comfortably productive with these machines.

 Having a few hundred K of RAM on-chip, like the Ambiq chip
does, can ease the cost of using such memory enormously. The kinds
of paging and swapping schemes considered in How do you fit a
high-level language into a microcontroller? Let’s look at BBN Lisp

https://en.wikipedia.org/wiki/Instructions_per_second#Timeline_of_instructions_per_second
https://en.wikipedia.org/wiki/Instructions_per_second#Timeline_of_instructions_per_second
https://ipsj.ixsq.nii.ac.jp/ej/?action=repository_action_common_download&item_id=78048&item_no=1&attribute_id=1&file_no=1
https://frc.ri.cmu.edu/~hpm/book97/ch3/processor.list.txt
https://frc.ri.cmu.edu/~hpm/book97/ch3/processor.list.txt
http://www.bitsavers.org/pdf/sun/Sun_Price_List_Dec88.pdf

(p. 160) need much less off-chip traffic, and thus power usage, when
most of their working set fits in the chip’s own RAM.

 This involves much less of a speed cost than accessing data in
external memory in the historical systems I talked about above.
Paging, swapping, or overlaying on floppies was painfully slow, with
access times around a second and bandwidths of a few kibibytes per
second, and even on hard disks access times were in the tens of
milliseconds and bandwidths under a mebibyte per second. Modern
spinning-rust hard disks can manage latencies in the milliseconds and
bandwidths in the tens of mebibytes per second. By contrast, the
forms of memory discussed here have latencies in the 10ns to
100_000ns ranges (except for writing to NOR, which takes tens of
ms) and bandwidths in the range of 2–32 MiB/s, while the
microcontrollers we’re talking about can only access their internal
SRAM at speeds around 64–128MiB/s. So it’s much more a question
of the energy hit.

 Suppose we’re willing to spend another 200 μW on accessing
external memory on average. With crude factor-of-2
approximations, this gives us these fairly stringent, floppy-disk-like
bandwidth limits (though, as with computation, these limits are
averages rather than peaks):
 read a byte write a byte read BW write BW cost per megabyte

 SPI SRAM 10 nJ 10 nJ 20kB/s 20kB/s US$20
 parallel SRAM 5 nJ 5 nJ 40kB/s 40kB/s US$5
 NOR Flash 0.5 nJ 2_000 nJ 400kB/s 0.1kB/s US$0.50
 NAND Flash 1 nJ 10 nJ 200kB/s 20kB/s US$0.01 (or
US$0.0001 as an SD card)
 Ambiq MCU (!) 0.05 nJ 0.05 nJ 4MB/s 4MB/s US$5

 If instead we’re willing to splurge 10 mW (average) on accessing
external memory, it becomes a much more appealing option, though
we are more often limited by interface speeds:
 read BW write BW
 SPI SRAM 2MB/s 2MB/s
 parallel SRAM 2MB/s 2MB/s
 NOR Flash 20MB/s 5kB/s
 NAND Flash 10MB/s 1MB/s
 Ambiq MCU 50MB/s 50MB/s

 Even with this expanded power budget, we can still read faster
from Flash than from parallel SRAM because the Flash chips use so
little power.

 The standby currents of the memories are in almost all cases
insignificant.

 Details follow.

 SD cards
 SD cards and even eMMC memory are very cheap nowadays, and
Flash does not use energy to maintain data the way SRAM or DRAM
does. Matthew Green tells me current Sandisk MicroSD cards can
handle 90MB/s of write traffic and 2000 iops for a few minutes, but
then start to have multi-second garbage collection pauses, and can
deliver 200MB/s of read traffic. Sandisk 32GiB MicroSD cards,

possibly of this speed and possibly not, are locally available for
AR$925, which is US$5.

 NOR Flash
 For things that get written rarely but need instant random-access
reads, NOR is an option. You can get surprisingly cheap and fast SPI
flash, as outlined in Can you do direct digital synthesis (DDS) at over
a gigahertz? (p. 119): the 30¢ GD25D10C contains half a mebibit of
NOR flash and can read it at 160 megabits per second. It uses about
0.1 μA (0.33 μW) in standby — you’d have to cut its power line with a
MOSFET or something if you want to avoid that. Actively reading
from it at this 160Mbps speed is supposed to cost 2.5 mA (8.25 mW),
and writing costs 20 mA (66 mW) and is also slow as dogshit. After a
snowstorm! Doing the math, reading a byte (of a long stream of
them) at that speed costs about 400 pJ, plus whatever the processor
spends on frobbing the SPI lines.

 (How slow is writing? 100 000 000 ns (a suspiciously round
number!) to erase a 4KiB sector (thus 24 000 ns to erase each byte),
30 000 ns to program the first byte, and 2500 ns to program each
subsequent byte. This staggering total of 10 300 000 ns to write an
erased sector brings the total time to 110 000 000 ns to erase and
rewrite it, or 27 000 ns per byte, and the energy to write the byte to
some 1800 nJ, on the order of executing 3000 instructions.)

 SRAM
 CMOS SRAM uses a little energy, but much less than DRAM;
for example, the Cypress CY62136EV30LL-45ZSXIT is a 2-mebibit
(256-kibibyte) 45-ns asynchronous parallel SRAM chip for US$1.11
that claims it typically uses 1 μA at 2.2–3.6 V to retain its data when
in standby mode. The big problem with SRAM is that fast SRAM is
all parallel-interface, so you need at least to spend at least 26 pins to
talk to this chip, though this is less of a problem if you spend a 27th
pin to pull its /CE line high — you can share the pins with other
signals as long as they go to other things that also have some kind of
/CE-like mechanism.

 Still, spending 3 μW to get an extra quarter-mebibyte of 45ns
SRAM seems pretty cheap. But that goes up to 6600 μW/MHz
when you’re actively frobbing it (2 mA at 1 MHz, says the datasheet
front page.) That’s, I guess, 3300 pJ per off-chip SRAM access, which
is kind of high when we recall that we’re only paying on the order of
500 pJ per instruction (or much less with Ambiq) and 400 pJ per byte
read from SPI NOR Flash. Accessing the SRAM once costs as much
as running 7 instructions, or 100 Ambiq instructions. You can write a
byte of SRAM in 45 ns instead of the Flash’s average 27 000 ns, and
spending 6600 pJ instead of the Flash’s 1 800 000 pJ, and it really is
random access both for reading and writing, which the Flash very
much is not.

 The CY7C1020D-10VXI also mentioned therein is a smaller
parallel CMOS SRAM with 10-ns access time and fifteen times
higher cost per byte. But it’s enormously more power-hungry, too:
3 mA rather than 1 μA in standby, according to the datasheet, and
80 mA when being accessed at 100 MHz, which (at 5 V) is 400 mW.
That’s still less energy per access when going full tilt — 4000 pJ per

https://articulo.mercadolibre.com.ar/MLA-886634828-microsd-32gb-sandisk-ultra-100mbs-clase-10-_JM
https://articulo.mercadolibre.com.ar/MLA-886634828-microsd-32gb-sandisk-ultra-100mbs-clase-10-_JM
https://articulo.mercadolibre.com.ar/MLA-886634828-microsd-32gb-sandisk-ultra-100mbs-clase-10-_JM
https://www.gigadevice.com/datasheet/gd25d10c/
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CY62136EV30LL-45ZSXIT/1543737

byte instead of 6000 pJ — but the 3000-times-higher high quiescent
draw means this chip has no place in milliwatt computing.

 Another option is SPI SRAM chips like the US$1.20 Microchip
23K256, which has 32 kibibytes of SRAM, a 20MHz SPI interface,
and runs on 3.3V; it uses 10 mA (33 mW) reading at 20 MHz
(20Mbps) and idles at 1 μA (typical). The datasheet doesn’t specify
the write power usage; if we assume it’s the same as the read power
usage, then they’re both around 1700 pJ per bit, or 13 000 pJ per
(sequential) byte. (Random access costs four times as much.)

 “Quad SPI” chips like the US$2.10 Microchip 23LC1024, with
128 KiB, are generally faster. It runs at 2.5–5 V and up to 20 MHz,
purporting to use only 3 mA (10 mW at 3.3 V) reading at 20 MHz.
Moreover, it can transfer data at 80Mbps instead of 20Mbps, so this
ends up being 120 pJ/bit or 1000 pJ/byte, nearly as low as reading the
GD SPI NOR Flash above. Typical standby current is higher at 4 μA,
but not so high as to matter here.

 NAND Flash
 NAND Flash requires orders of magnitude less energy than NOR
to write to, and it also costs orders of magnitude less per byte to buy
it.

 SD cards have NAND flash on them and can normally write with
bandwidths of several megabytes per second, with latencies in the tens
of μs.

 Four promising bare NAND chips are the US$3 104MHz quad
SPI 128-mebibyte Winbond W25N01GVZEIG TR, the US$2.50
120MHz quad-SPI 128-mebibyte GigaDevice GD5F1GQ4RF9IGR,
the US$1 45-ns/25000-ns 48-pin parallel 128-mebibyte Cypress
S34MS01G200TFI900 (whose datasheet has been memory-holed
from Cypress’s site but I found a datasheet for a clone on Mouser via
Yandex after filling out a captcha in Cyrillic), and the US$2.30
50MHz quad-SPI 128-mebibyte Micron
MT29F1G01ABBFDWB-IT:F TR whose datasheet I found the same
way.

 The SkyHigh Memory datasheet for the S34MS01G2 claims SLC,
25 μs (max) for random access, but 45 ns (min) for sequential access,
and there are versions with 8-bit and 16-bit I/O buses (this is the
8-bit version); for writing, it takes 300 μs to program a 2048+64-byte
page and 3 ms to erase a 64-page block. It uses the same 8-bit or
16-bit bus for address and data bits, so I have no idea why it has 48
pins; only 23 are used in the 8-bit version, and 31 in the 16-bit
version, and 8 of those are power pins! So you only need 15 GPIO
pins to talk to it.

 To access the memory, first you clock in 1–4 command bytes, and
then you feed in the address on the bus in four successive clock cycles
while signaling the desired operation with some other control lines. A
read command copies a page from the Flash into a buffer (in 25000 ns,
apparently), signaled by the “ready/busy” pin going high, and then
you can read out a word (8 bits on this chip, but 16 bits on 16-bit
parts) every 45 ns, as you choose to toggle the read-enable pin.

 Writing the memory may fail and need to be retried — at a different
page address, probably. Also typically NAND chips have about 2%

https://www.digikey.com/en/products/detail/microchip-technology/23K256-I-P/2001112
https://www.digikey.com/en/products/detail/microchip-technology/23K256-I-P/2001112
https://www.digikey.com/en/products/detail/microchip-technology/23LC1024-I-SN/3543084
https://www.digikey.com/en/products/detail/winbond-electronics/W25N01GVZEIG-TR/5803931
https://www.digikey.com/en/products/detail/winbond-electronics/W25N01GVZEIG-TR/5803931
https://www.digikey.com/en/products/detail/gigadevice-semiconductor-hk-limited/GD5F1GQ4RF9IGR/9484745
https://www.digikey.com/en/products/detail/gigadevice-semiconductor-hk-limited/GD5F1GQ4RF9IGR/9484745
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/S34MS01G200TFI900/4833856
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/S34MS01G200TFI900/4833856
https://ru.mouser.com/datasheet/2/980/002-03238-1669830.pdf
https://ru.mouser.com/datasheet/2/980/002-03238-1669830.pdf
https://www.digikey.com/en/products/detail/micron-technology-inc/MT29F1G01ABBFDWB-IT-F-TR/6135561
https://www.digikey.com/en/products/detail/micron-technology-inc/MT29F1G01ABBFDWB-IT-F-TR/6135561
https://www.digikey.com/en/products/detail/micron-technology-inc/MT29F1G01ABBFDWB-IT-F-TR/6135561
https://datasheet.octopart.com/MT29F1G01AAADDH4-IT:D-Micron-datasheet-11572380.pdf
https://datasheet.octopart.com/MT29F1G01AAADDH4-IT:D-Micron-datasheet-11572380.pdf

bad bits.

 It supports prefetching pages so you can overlap the 25000-ns
copying-into-buffer with your reading of the previous page, and
similarly you can send it data you’re planning to write to another page
while it’s still burning in the data you sent before.

 So it looks like kind of a pain to talk to, but still easier than you’d
think from the 48-pin package; but how much power does it use?

 It runs on 1.8 volts, and it claims to use 15 mA typical, 30 mA max,
for all of read, program, and erase! That can’t possibly be correct.
(Can it?) And 10 μA typical standby current (“(CMOS)”, whatever
that means).

 But if that were correct, it would work out to 27 mW for 22
million bytes read per second, assuming the 25000-ns overlap thing
works out. So that’s 1.2 nJ per byte, three times the cost of reading
from NOR. Writing 131072 bytes (not counting the 64) supposedly
requires 21.2 ms at the same 27 mW, plus 5.9 ms to clock them into
the device, potentially overlapping, which would be only 4.4 nJ per
byte. Avinash Aravindan of Cypress explains that this two orders of
magnitude faster erasure, using much lower power, is characteristic of
NAND, and Edouard Haas has an insightful article on the same
subject, where he points out among other things that NOR permits
single-byte write operations, and in his QSPI NAND article he points
out that NOR uses 100 times more energy for erase+write than
NAND.

 The “obsolete” GD5F1GQ4RF9IGR is another 1.8 V
128-mebibyte NAND Flash, but this time SPI/dual-SPI/QSPI, with
broadly similar performance: 400 μs (700 μs max) to program a
(2048+128)-byte page, 3000 μs to erase a 64-page block, 80 μs to read
a page, using 40 mA maximum active current (again, for all of read,
program, and erase, so I guess that can be real) and 90 μA standby
current. It has internal ECC, so you don’t have to worry about bad
bits. It actually looks like higher bandwidth than the 8-bit parallel
chip — 120 MHz and quad-SPI gives you 60 megabytes a second
instead of 22 — but its internal slowness more than compensates. It
doesn’t seem to have the pipelining feature the Cypress part has to
overlap fetches with reads, or burns with loads. The Digi-Key page
linked above is the 8×6mm 8-VLGA package.

 This works out to 72 mW and 80+34 μs = 114 μs to read a page, so
56 ns and 4 nJ to read each byte (again, disregarding the “extra data”);
writing a 131072-byte block takes 3 ms to erase, 25.6 ms to program
(plus 34 μs per page to clock in the data, which might add another
2.2 ms) for 28.6 ms: 220 ns per byte, which means 16 nJ per byte.

 I’m going to assume the other two gibibit NAND chips are
similar.

 More Ambiq MCUs
 This is a pricey option, but for RAM, it might actually be the most
reasonable one. Ambiq doesn’t make memory chips, but for 68 μA
you can stick another Ambiq Apollo MCU next to the first one and
get another 384K of SRAM, and then you can communicate with it
at tens of megabytes per second, though the capacitive load of traces
in between the chips can become a problem. Charging 1 pF of

https://www.embedded.com/flash-101-nand-flash-vs-nor-flash/
https://www.embedded.com/flash-101-nand-flash-vs-nor-flash/
https://www.embedded.com/flash-101-nand-flash-vs-nor-flash/
https://www.jblopen.com/nor-vs-nand-so-you-think-you-know-the-music/
https://www.jblopen.com/nor-vs-nand-so-you-think-you-know-the-music/
https://www.jblopen.com/qspi-nand-intro/

parasitic capacitance to 3.3 volts costs 5.4 pJ; doing it at 10 MHz (and
then dumping the charge to ground) costs 54 μW, and in this context
that is a significant cost. Still, I think we can estimate that
communicating a byte between the processors will cost on the order
of 50 pJ. This is at least an order of magnitude cheaper than anything
offered by conventional CMOS memory chips.

 This suggests that, although we probably want at least NAND
flash in our low-power system both for mass storage and for stable
memory, it may be more effective to add more RAM by turning it
into a cluster rather than by adding RAM chips. Making it a cluster
costs a little more, and it makes writing the software more
complicated, but it also offers a lot of opportunities for reducing
costly off-chip communication.

 In addition to the Apollo3 Blue microcontroller on the Sparkfun
board above, there's apparently also an Apollo3 Blue Plus with
768KiB of RAM for US$4.82, but only as a BGA. That’s about the
same price per byte as dedicated SRAM chips in conventional
CMOS, although those are much faster.

 Batteries
 Maybe you need batteries. If so, what kinds of batteries are there,
and what are their advantages and disadvantages?

 Lead-acid batteries: 9–36 kJ/US$ at retail, mostly
around 20 kJ/US$
 Lead-acid batteries are generally cheaper than the lithium-ion
type, even in 02021. At the very low end joules per buck drops
dramatically; a 1.3-amp-hour 12V HiStarX LA612 battery goes for
AR$900; at AR$147/US$ that’s US$6.10 for 56 kJ, or 9.2 kJ/US$.
By contrast, a 2-kg 7-amp-hour Risttone battery goes for AR$1220,
US$8.30, 300 kJ, 36 kJ/US$. A 24-amp-hour deep-cycle golf-cart
Press PR12240D goes for AR$9000, US$61, which is getting low
again: 17 kJ/US$; while car starter batteries are in theory much
cheaper, like a Rosler 65-amp-hour starter goes for AR$4900, US$33,
84 kJ/US$, but of course you can only use a fraction of that before
you start killing the battery. Even with starter batteries, prices per
joule go way up at the low end: a Yuasa 5.3-amp-hour 1.5kg
12N5-3B 12-volt motorcycle starter battery (230 kJ) is sold for
AR$2500 (US$17, 13 kJ/US$).

 Digging further suggests higher-capacity options like the 2.8-kg
9-amp-hour Moura 12MVA-9 for AR$2500 (US$17, 390 kJ, 23
kJ/US$), or, in the extreme, the Ultracell UCG 100-12
100-amp-hour deep-cycle gel cell for AR$38400 (4.3 MJ, US$261, 17
kJ/US$).

 Low-power lithium-ion batteries are more expensive
at 3–16 kJ/US$
 Lithium-ion batteries are trickier to buy because of the profusion
of fakery, but this Sanyo NCR20700b cell is specified at 4250mAh
and 3.7V for AR$2500, which would be US$17 and 57 kJ, or only 3.3
kJ/US$. (The seller falsely claims it’s an 18650. It’s tested at 3.7–4.2
amp hours at 0.2–15 amps of discharge rate by what I think is an

https://www.ambiq.top/en/apollo3-blue-plus-mcu-768kb-108pin-bga
https://www.ambiq.top/en/apollo3-blue-plus-mcu-768kb-108pin-bga
https://articulo.mercadolibre.com.ar/MLA-904920119-bateria-de-gel-12v-13ah-recargable-luz-emergencia-ups-_JM
https://articulo.mercadolibre.com.ar/MLA-904920119-bateria-de-gel-12v-13ah-recargable-luz-emergencia-ups-_JM
https://articulo.mercadolibre.com.ar/MLA-871599822-bateria-de-gel-12v-7a-amper-sistema-alarmas-cerco-electrico-_JM
https://articulo.mercadolibre.com.ar/MLA-671410956-bateria-12v-24ah-press-ciclo-profundo-moto-carros-golf-_JM
https://articulo.mercadolibre.com.ar/MLA-671410956-bateria-12v-24ah-press-ciclo-profundo-moto-carros-golf-_JM
https://articulo.mercadolibre.com.ar/MLA-856727008-bateria-12x65-super-oferta-nueva-_JM
https://www.yuasa.es/batteries/moto-e-powersport/convencional-de-12-voltios/12n5-3b.html
https://www.yuasa.es/batteries/moto-e-powersport/convencional-de-12-voltios/12n5-3b.html
https://articulo.mercadolibre.com.ar/MLA-853988819-bateria-moto-yuasa-12n5-3b-motomel-c-110-0518-_JM
https://articulo.mercadolibre.com.ar/MLA-853988819-bateria-moto-yuasa-12n5-3b-motomel-c-110-0518-_JM
https://articulo.mercadolibre.com.ar/MLA-867421155-bateria-moura-12v-9ah-gel-ups-alarmas-paneles-solares-_JM
https://articulo.mercadolibre.com.ar/MLA-867421155-bateria-moura-12v-9ah-gel-ups-alarmas-paneles-solares-_JM
https://articulo.mercadolibre.com.ar/MLA-852742149-bateria-ciclo-profundo-gel-12v-100ah-ultracell-ppanel-solar-_JM
https://articulo.mercadolibre.com.ar/MLA-852742149-bateria-ciclo-profundo-gel-12v-100ah-ultracell-ppanel-solar-_JM
https://articulo.mercadolibre.com.ar/MLA-756391264-panasonic-sanyo-ncr20700b-4250mah-10a-20700-ion-litio-37v-_JM
https://articulo.mercadolibre.com.ar/MLA-756391264-panasonic-sanyo-ncr20700b-4250mah-10a-20700-ion-litio-37v-_JM
https://lygte-info.dk/review/batteries2012/Sanyo NCR20700B 4000mAh (Red) UK.html
https://lygte-info.dk/review/batteries2012/Sanyo NCR20700B 4000mAh (Red) UK.html

independent tester, who weighed it at 61 g; this 53 kJ then works out
to 870 kJ/kg.) But there are a lot of fake lithium-ion batteries like this
UltroFite GH 18650 “6800 mAh” which sells for AR$427, which
would be 91 kJ, US$2.90, and 31 kJ/$, nearly an order of magnitude
cheaper and up in the lead-acid price range. (Lithium-ion batteries
are already immensely cheaper per watt or amp rather than per joule,
but so are capacitors.) USB “power banks” are even less controlled,
but much more convenient to use; this Tedge H555 claims 10
amp-hours for AR$1700, US$11.50, 180 kJ, 16 kJ/$, and it probably
has 18650s inside, which could be replaced, while this offbrand
Libercam powerbank claims 20 amp-hours for AR$1500 and is too
thin to contain 18650s. I'm guessing it’s fake.

 My “10050 mAh” powerbank (180 kJ) can recharge my phone
about four times, which can keep it alive for about a week.

 High-power lithium batteries are down around 1.4–1.6
kJ/US$ but 25 W/US$
 I thought maybe the motorcycle starter batteries were about to get
murdered by lithium, since lithium is so great at rapid discharge, but
it’s not so clear. The Yuasa 12N5-3B above is only 35 or 39 cold
cranking amps, depending on who you believe, which is only like 450
watts (26 W/US$). At 3.7 volts and 15 amps the Sanyo cell, which is
the same US$17 price, delivers only 56 watts; you’d need 9 of them
(9 times the price!) to deliver the same starter power as the lead-acid
beast, though admittedly the resulting 0.550 kg of lithium battery is
noticeably lighter the 1.5 kg of the Yuasa battery.

 However, 4 amp hours and 15 amps is a discharge rate of only
“3.75C”, and lithium-ion batteries for drones come in “C ratings” of
“15C”, “20C”, “25C”, “30C”, and even “50C”, though at a
substantial penalty in joules per buck. Does this make them
competitive for starting motorcycles? Well, a Blomiky SDL-853562
7.4V 1600mAh 25C radio-controlled car battery, for example, is
listed for AR$6900 (US$47) and hypothetically ought to hold only 43
kJ (0.91 kJ/US$) but be able to deliver 40 amps. But that’s still only
300 watts, and it costs more than twice as much as the lead-acid
battery. Cheaper drone batteries like this Kitch Tech 30C 7.5-V
1200-mAh YZ-803063 for AR$3500 come closer — if real, that’s 32
kJ for US$24 (1.4 kJ/US$), 36 amps, and 270 watts, but lead-acid still
beats it by a substantial factor. This Zippy 25C 2200mAh 11.1V drone
battery can purportedly deliver 610 watts (or 850 watts, 35C, in
bursts) and is listed at only AR$4700 (US$32, 2.7 kJ/US$). 850 W /
US$32 is 27 W/US$, within a stone’s throw of the Yuasa price — but
far from dramatically undercutting it.

 Moreover, advertised C ratings are often fake, even outside
Argentina.

 Lithium thionyl chloride batteries might last decades
 Lithium thionyl chloride batteries are really good at low
self-discharge (0.5%–1% per year, self-discharging about 20% in 9
years — according to their plot, if you discharge their battery in 1500
hours at 2 mA, you get 2.6 Ah, and if you discharge it at 25 μA, it
takes 80000 hours, or 9 years, and yields 2.1 Ah, so about 20% of its
capacity was lost to self-discharge) and high energy density

https://articulo.mercadolibre.com.ar/MLA-816550268-pila-bateria-recargable-18650-6800mah-37v-para-linterna-_JM
https://articulo.mercadolibre.com.ar/MLA-795347543-cargador-bateria-portatil-powerbank-2-usb-10000-mah-tedge-_JM
https://articulo.mercadolibre.com.ar/MLA-795347543-cargador-bateria-portatil-powerbank-2-usb-10000-mah-tedge-_JM
https://articulo.mercadolibre.com.ar/MLA-856270207-power-bank-cargador-portatil-20000-mah-celular-micro-usb-_JM
https://articulo.mercadolibre.com.ar/MLA-856270207-power-bank-cargador-portatil-20000-mah-celular-micro-usb-_JM
https://electronica.mercadolibre.com.ar/drones-accesorios-repuestos-baterias/
https://articulo.mercadolibre.com.ar/MLA-843144652-bateria-lipo-74v-1600mah-25c-t-connector-blomiky-_JM
https://articulo.mercadolibre.com.ar/MLA-843144652-bateria-lipo-74v-1600mah-25c-t-connector-blomiky-_JM
https://articulo.mercadolibre.com.ar/MLA-873577542-bateria-pila-lipo-yz-803063-1200mah-75v-30c-drone-drones-_JM
https://articulo.mercadolibre.com.ar/MLA-873577542-bateria-pila-lipo-yz-803063-1200mah-75v-30c-drone-drones-_JM
https://articulo.mercadolibre.com.ar/MLA-741554734-bateria-lipo-zippy-compact-2200mah-3s-25c-111v-xt60-_JM
https://articulo.mercadolibre.com.ar/MLA-741554734-bateria-lipo-zippy-compact-2200mah-3s-25c-111v-xt60-_JM
https://oscarliang.com/lipo-battery-c-rating/
https://oscarliang.com/lipo-battery-c-rating/
https://www.jauch.com/blog/en/advantages-and-special-features-of-lithium-thionyl-chloride-batteries/

(710 Wh/kg). About 0.175% of them fail each year, according to
Tadiran’s brochure. “High cost and safety concerns limit use in
civilian applications. Can explode when shorted. Underwriters
Laboratories require trained technician for replacement of these
batteries,” says Wikipedia.

 Sadly, it seems that they are not available on MercadoLibre.

 Strategies for avoiding batteries
 XXX

 Batch processing can wait until the sun is shining
 For batch processing, it might make sense to wait until the
daytime: an average watt of batch-processing power might be 7 watts
during the 15% of the time that the sun is shining full force, and 7 Wp
of solar panels only costs US$2.30, which is a lot less than US$6.60.
Also you don’t need a high-power battery charge controller.

 Lower power opens up alternative power sources and
stores, like supercaps
 As I pointed out in Dercuano, a pullstring can yield 500 mm of
pull at 50 N, which is 25 J, which (if harnessed with a dynamo) would
run the laptop for a second or two, but that’s enough to run a
10-milliwatt computer for 40 minutes, or a 100-milliwatt Swindle for
4 minutes. For that you don’t need a battery; a capacitor will do.

 You might think to go with ceramics, but that’s still impractical
for a pocket computer or laptop. Although you can get a 25V 4.7μF
X5R 0805 Samsung cap for 2.2¢ or a 25V 10μF X5R 0805 Taiyo
Yuden cap for 4.1¢, either in quantity 1000, ½CV² at the rated voltage
works out to 1.5 mJ and 3.1 mJ respectively, so you’d need thousands
of caps.

 Getting to 25 J at under 50 V requires 10000 uF, and for that you
need electrolytics or supercaps. You can get 22000-μF TDK
electrolytics for a buck fifty, but those caps are only 16V, so you’d
need five of them (or 18 of them to have a comfortable 2× margin on
the voltage rating), and they’re a bit bulky: 30 mm diameter, 32 mm
tall.

 Electrolytics are really optimized for charge/discharge frequencies
of 60Hz up to a few kHz, though. This application has frequencies
closer to a millihertz, albeit kind of sawtoothy. So a supercap like the
US$4 5.5V 5F Illinois Capacitor DGH505Q5R5, the US$5 5V 1.5F
Maxwell BMOD0001 P005 B02, or the US$2.50 5.5V 1.5F Illinois
Capacitor DGH155Q5R5 would probably work; these are rated at 75
J, 18 J, and 22 J, respectively, and they’re pretty small, in the last case
12 mm × 17 mm × 8.5 mm.

 Supercaps are notorious for leakage, but that’s in different
contexts; the Maxwell supercap, for instance, is rated for 5 μA, which
is a loss of 12 mV per hour, so it will lose its charge in a matter of
weeks.

 Another reason to use two or more is to allow faster
charging — the Maxwell cap is only rated for 3.1 A of one-second
surge current, and the DGH155Q5R5 for 2.8 A, so your pull-cord

https://tadiranbatteries.de/pdf/Technical-Brochure-LTC-Batteries.pdf
https://tadiranbatteries.de/pdf/Technical-Brochure-LTC-Batteries.pdf
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21A475KAQNNNE/3886902
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21A475KAQNNNE/3886902
https://www.digikey.com/en/products/detail/taiyo-yuden/TMK212BBJ106KG-T/2714163
https://www.digikey.com/en/products/detail/taiyo-yuden/TMK212BBJ106KG-T/2714163
https://www.digikey.com/en/products/detail/epcos-tdk-electronics/B41231C4229M000/3493609
https://www.digikey.com/en/products/detail/epcos-tdk-electronics/B41231C4229M000/3493609
https://www.digikey.com/en/products/detail/illinois-capacitor/DGH505Q5R5/7387525
https://www.digikey.com/en/products/detail/illinois-capacitor/DGH505Q5R5/7387525
https://www.digikey.com/en/products/detail/maxwell-technologies-korea-co-ltd/BMOD0001-P005-B02/946807
https://www.digikey.com/en/products/detail/maxwell-technologies-korea-co-ltd/BMOD0001-P005-B02/946807
https://www.digikey.com/en/products/detail/illinois-capacitor/DGH155Q5R5/7387513
https://www.digikey.com/en/products/detail/illinois-capacitor/DGH155Q5R5/7387513

charge would need to take a few seconds. The DGH505Q5R5 is rated
for 8.4 A, though. Smaller supercaps might include the US$1 1F 2.7V
Eaton HV0810-2R7105-R, which is rated to hold 3.6 J, but rated for
1.1 amps of pulse current, 8 mm in diameter, 13.5 mm long, and 1.2
grams. You’d need to use about 8–16 of these, giving you 8.8–17.6
amps of pulse current at up to 2.7 V, which would probably be
enough for the pull cord.

 Me, I’d be tempted to vastly oversize the capacitor bank, but that
could be dangerous.

 At 3.1 A, 5.0 V, and 1.5 F, you could fully charge the 3.4 g
Maxwell supercap (datasheet) to its 18.8 J full charge (5.5 J/g) in
2.4 seconds. It’s rated for 500,000 cycles, 4 years shelf life uncharged,
or 10 years DC life at room temperature. I think all of these are
typical of supercaps.

 To charge the capacitor from the pull cord you need not just a
dynamo but also something like a MPPT buck converter that
regulates its output voltage to just above the present voltage of the
capacitor bank (any voltage drop from the capacitor bank’s ESR is,
after all, wasted, and produces heat), then varies it a bit to do MPPT
on the pull-cord dynamo. At some point, if overloaded as I did with
the regenerative braking on Trevor Blackwell’s scooter, it might need
to just open-circuit the dynamo or connect it to a power resistor
instead, but smoothly feathering into that by easing off of the
maximum power point would be better than suddenly releasing all
mechanical resistance. (That is what the scooter did, falling out from
under me, but I think the mechanism was that I blew a fuse.)

 Prospects for energy-independent
computing
 So I was thinking it might be worthwhile to buy a 12-volt gel cell
like those mentioned above and rig up some power supplies for offline
computation. The AR$1200 7-amp-hour Risttone battery mentioned
above ought to be able to run this laptop at 15 watts for 6 hours (given
appropriate boost conversion), or recharge this cellphone about 6
times, and there might be better deals out there too. Two or three
such batteries, or a single larger battery, could perhaps power the
laptop, or a fan, through a long night.

 Standard photovoltaic solar panel modules are 990 mm ×
1650 mm or thereabouts, deliver 200–400 Wp, and, at retail in
Argentina, cost AR$12000–AR$24000 (US$80–160), on the order of
30¢–40¢/Wp. Smaller panels like this AR$3200 20-Wp jobbie do
exist but cost more per watt (US$22, US$1.09/Wp in this case).

 Suppose the solar capacity factor for residential solar panels here is
15%, so 100 Wp delivers 15 watts average. (It’s fairly sunny here in
Buenos Aires, but we get more clouds than California and Arizona
deserts with their 29% and 25% capacity factors, and also residential
panels may have to deal with shadows and suboptimal angling.) And
suppose we want 24 hours of “autonomy”, meaning, we can keep
computing even when it’s super cloudy; so a watt of average usage
requires 24 watt-hours (86 kJ) of battery.

 So each watt of usage requires 86 kJ of battery, which at 20

https://www.digikey.com/en/products/detail/eaton-electronics-division/HV0810-2R7105-R/3878078
https://www.digikey.com/en/products/detail/eaton-electronics-division/HV0810-2R7105-R/3878078
https://web.archive.org/web/20210415110650/https://www.maxwell.com/images/documents/5_0_1_5F_Module_ds_datasheet.pdf
https://articulo.mercadolibre.com.ar/MLA-882723840-panel-solar-solamerica-260w-tipo-250w-270w-280w-12v24v-_JM
https://articulo.mercadolibre.com.ar/MLA-898045941-panel-solar-jinko-solar-mono-perc-405w-media-celda-_JM
https://articulo.mercadolibre.com.ar/MLA-718610857-panel-pantalla-solar-20w-watts-policristalino-111-amper-amp-_JM

kJ/US$ costs US$4.30, plus 7 Wp of solar panel, about US$2.30 at
retail, for a total of US$6.60, plus some amount of power electronics.
So running the laptop all the time at 15 watts would cost a bit over
US$100 of equipment; at 32 watts we’re talking US$210. I paid
AR$50k (at the time, about US$320) for the laptop a couple months
ago. So powering it autonomously nearly doubles its cost! Also, 32
watts average at a 15% capacity factor means 213 watts of solar panel,
which is a whole square-meter panel. It would occupy a significant
fraction of the balcony and might attract unwanted attention.

 In file garden-light-panel.md in Derctuo, I tested a 38-mm-square
amorphous panel at 8 mW in full sunlight, though a more careful
MPPT calibration might yield more, and I didn’t measure the “full”
sunlight. Surprisingly, unlike some other amorphous panels, I wasn’t
able to get a usable amount of power from it under indoor lighting
conditions.

 Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Ghettobotics (p. 1169) (12 notes)
• Energy (p. 1170) (12 notes)
• Solar (p. 1203) (6 notes)
• Systems architecture (p. 1205) (6 notes)
• Microcontrollers (p. 1211) (6 notes)
• Independence (p. 1215) (6 notes)
• Memory hardware (p. 1250) (4 notes)
• Displays (p. 1261) (4 notes)
• RISC-V (p. 1276) (3 notes)
• Batteries (p. 1302) (3 notes)
• Ambiq (p. 1391) (2 notes)
• Ereaders

 How do you fit a high-level
language into a microcontroller?
Let’s look at BBN Lisp
 Kragen Javier Sitaker, 02021-02-23 (updated 02021-08-18)
(76 minutes)

 I’ve been thinking a lot about how to do low-power computing
systems, like around 10 mW (see Energy autonomous computing (p.
143)), and I think I have a handle on how to do a reasonable
interactive computing environment in that energy budget. This note
mostly focuses on prospects for fitting reasonable software into the
hardware constraints of such low power. See Energy autonomous
computing (p. 143) for details on other aspects of the issue.

 I skimmed Bobrow’s 01966 “The Structure of a Lisp System using
Two-Level Storage” the other day, and I was struck by his claim that
BBN LISP was fast enough to be usable, even on an 18-bit PDP-1
(one of 53 ever made! And possibly the first!) with a 17–33 milli
second drum memory (5–10 μs per word sequential read) and a
16-kibiword core memory (5 μs per random word access, four times
the standard size), even for 2–3 concurrent users. This is about half
the speed of a Commodore 64 and only 36 KiB of RAM, but the
drum was 88 kibiwords and much faster than a Commodore floppy. I
thought I’d go back and read it in greater depth to see how this was
possible.

 Having read it, I think a number of modern techniques,
particularly compressed oops, index registers, lexical scoping,
bytecode, JIT compilation, and generational garbage collection,
should make it possible to build a system with considerably more bang
per computron than Bobrow had to settle for. Also, modern
low-power microcontrollers have amounts of RAM comparable to
the PDP-1’s, but are on the order of 1000 times faster, and have on
the order of 1000 times more secondary storage available, which is
about 100 times faster than the PDP-1’s; this should allow real,
comfortable self-hosting microcontroller development. All of this can
run on about ten milliwatts.

 Review of Bobrow’s paper
 He allocated 4 KiW of core to compiled code (mostly in a
3400-word “ring buffer”), 4 KiW to the system (“supervisor and
permanent code”, divided into six overlays), and the other 8 KiW to
the stack and heap, and used two-word CONS cells. When paging a
256-word page of compiled Lisp in from the drum, the system linked
(“relocated”) it.

 It seems like the system could manage at most some 6000 calls per
second:
 Closed subroutine references to an in-core word through the [virtual memory
page] map takes approximately 170 microseconds (because of the poor set of
operation codes on the machine, and the lack of an index register).

 Also, p. 16 (20/26) characterizes performance; it says that what we

https://apps.dtic.mil/dtic/tr/fulltext/u2/647601.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/647601.pdf
https://en.wikipedia.org/wiki/PDP-1

might now call the “cache hit rate” for RAM was about 97.5%, with
only 2.5% of CAR and CDR operations going to the drum. This
consumed only 10% of system time, presumably because all parts of
the system were unbelievably slow: 31k CONSes and 150k CDR and
CARs in 35 minutes, thus about 5000 of these operations per minute
or 90 per second.

 This seems to have been the paper that first published shallow
binding (though in a strange way that uses pointers into the call
stack), tagged pointers for small integers (“offset by 300,000 octal”,
both positive and negative) and a form of BIBOP typing. I thought it
also used CDR-coding, which I thought was the most interesting, but
it doesn’t really.

 The primary objective of the BIBOP typing was to avoid having
to reach out to the drum for type tests, especially for symbols (where
both of the usual predicates can be answered without waiting for a
drum reference, namely ATOM and EQ) and so a contiguous chunk
of the 17-bit (!) virtual address space was assigned to almost every
type: value cells† starting at 0o150_000, property list cells†, full
words (large integers), pushdown list (the call stack) starting at
0o200_000, function cells†, print-name pointers†, print-names, and
“hash table”, which last runs from 0o270_000 (0x17000) to
0o300_000, although all of this this seems to conflict with the earlier
statement that small ints from -32767 to +32767 were offset by
0o300_000, which would have them occupy the “address space” from
0o200_000 to 0o400_000. The virtual addresses from 0o10_000 to
0o150_000 are shared between “list structure” (shown growing down)
and “compiled code” (shown growing up); although I have no idea
how you would then distinguish a code pointer from a CONS,
perhaps code pointers as such weren’t first-class values.

 (A secondary benefit not mentioned is that CONS cells occupied
two words instead of three, because they don’t need a type tag, but I
guess devoting an entire word to type tags for dotted pairs was not
considered as an option.)

 He says this static allocation is preferred to “provid[ing] an in-core
map of storage areas” because it reduces resident memory pressure (at
the expense of virtual memory space efficiency). I suppose the 12
KiW of physical core being used for paging amounts to 48 pages,
which is indeed pretty tight. If you divided the 17-bit address space
up to 0o400_000 into “storage areas” of 0o4_000 homogeneous
words, your type map would have 64 entries. If you could get by
with a 3-bit type code for each “storage area”, you could squeeze 6 of
them into each memory word; 4 per word would require 16 words of
memory for the BIBOP map. They must have been pretty desperate
to save 16 words of memory. But then, a static type allocation avoids
writing code for dynamic allocation, too.

 Above there are four items marked with “†”; these are the four
virtual memory areas associated with symbols (“each literal atom”).
Each is 0o10_000 in size, so I guess the system supported a maximum
of 4096 symbols, and these were in essence parallel arrays. “A pointer
to an atom* points to its value cell.” They’re separated in virtual
memory because accesses to them tend to be not merely uncorrelated
but actually negatively correlated — symbols used for functions tend

not to be used for variables (“value cells”), almost nothing uses
property lists, and print-name pointers are not normally used during
actual computation. 4096 words is 16 256-word pages, so I guess
you’d page in a sixteenth of the symbols’ value cells or function cells
or whatever at a time.

 * They did also consider numbers to be “atoms”, just not “literal
atoms”.

 Aha, here’s the resolution to the dilemma above about overlapping
memory areas: although the call stack starts at 0o200_000, followed
by function cells, print-name pointers, print names, and the hash
table, none of these are first-class values! If you want to refer to a
symbol, you point to its value cell, not its function cell or print name,
so it’s totally kosher to use the addresses at 0o200_000 and up for
small ints. Moreover the sequence simplifies some other type tests:
anything over 0o150_000 was an “atom” (symbol or number), but
anything over 0o170_000 was an integer, and anything over
0o200_000 was a small integer. So the boundaries were chosen with
an eye to subset relations.

 The “CDR-coding” didn’t actually use less space; the CDR
pointers were still fully materialized! It just attempted to maximize
locality by allocating (cons x y) on the first possible of y’s page, x’s page,
some page in core, or some swapped-out page. This used a per-page
free list and an in-core map of per-page free lists, which I suppose
must have used 192 words (!!) for the 49152 words of virtual memory
available for “list structure”.

 They also mention an “additional scheme for dumping onto
secondary storage (magnetic tape)” which I thought might have done
the full CDR-coding thing, but it doesn’t seem to have done so. This
is referenced to “Storage Management in LISP”, Bobrow, in
preparation, Proc. IFIP Conf. on Symbol Manipulation Languages,
and “A LISP Garbage Collector Algorithm Using Serial Secondary
Storage”, Minsky, AIM-58, 01963.

 Minsky’s paper seems to be scanned in full but with the page order
askew; it contains the longest program I’ve ever seen written in the
M-expression dialect of LISP, which is not very long at all: 27 lines
of code. It focuses on writing a sequence of (x, y, z) triples out onto
the drum, which, when read back in, put the dotted pair (y . z) into
register (memory location) x. So a linked list of 20 addresses stored in
the cars of 20 consecutive dotted pairs will need 60 words on the
drum, even more than in BBN LISP. Minsky comments:
Collect has the additional feature that all cdr sequences end up linearly packed!
There are probably some important applications of this.

 But I think compaction was his main focus, and I don't think of
that as a hard problem, so I haven’t taken the time to grok collect in
fullness.

 Prospects for microcontroller systems
 An STM32F103C8 as used in a Blue Pill runs about 72 MIPS, 64
or usually 128 KiB of Flash, and 20 KiB of SRAM; the preassembled
board costs about US$2. This chip uses about 1.5 nJ per 32-bit
instruction (32.8 mA at 72 MHz, mostly one instruction per cycle, at
2.5 V, is 83 mW, or 1.1 nJ per clock cycle; but this is the datasheet’s

https://dspace.mit.edu/bitstream/handle/1721.1/6080/AIM-058.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/6080/AIM-058.pdf

max current consumption at 85° with all peripherals disabled; and
lower voltages and higher clock speeds may be doable), and it can run
ARM code from SRAM. But 20 KiB isn’t a lot of space, so you need
some external memory.

 As mentioned in Energy autonomous computing (p. 143) and Can
you do direct digital synthesis (DDS) at over a gigahertz? (p. 119),
you can get a variety of memory chips to interface to the STM32; a
rough outline of chips I think may be representative follows:
 read write
 type Cost ns/byte nJ/byte ns/byte nJ/byte bytes
nUS$/byte GPIOs needed
 GD25D10C 2SPI NOR 30¢ 50 0.4 27000 1800 512Ki 4600
 4? (SPI)
 CY62136EV30 SRAM 111¢ 45 6 45 6 256Ki 4200 25?
(parallel)
 23LC1024 QSPI SRAM 210¢ 100 1 100 1 128Ki 16000 4?
(SPI; 6 if QSPI)
 S34MS01G2 SLC NAND 100¢ 45 1.2 160 4.4 128Mi 7.5
15? (parallel NAND)
 GD5F1GQ4 QSPI NAND 250¢ 56 4 220 16 128Mi 19 4?
(SPI; 6 if QSPI)

 The parallel SRAM could actually be used in 16-bit-wide mode
and get double the bandwidth and half the power usage, but use 7–8
more GPIO pins.

 In theory it should be possible to gang up a bunch of SPI RAMs or
SPI flash memories (of the same type!) and read from them in parallel,
whether or not you can write to them in parallel. This would allow
you to address them with a one-pin address bus.

 NAND Flash must be read and written a page at a time — the two
NAND chips profiled above use a 2048-byte page size. It’s very
appealing as a form of secondary storage, especially for
frequently-written data: the energy cost per byte written is lower
than anything but a (volatile!) SPI SRAM, and the dollar cost per byte
of capacity is about three orders of magnitude lower than the
alternatives. The access latency doesn’t show up in the table, but it's
on the order of 50–100 μs, which is nearly 1000 times slower than the
50–200 ns of the other memory types, coincidentally almost precisely
in inverse proportion to the price per byte.

 NAND also comes conveniently packaged with a ready-made
FTL and SPI interface in the form of SD cards and MicroSD cards,
but I imagine there might be power costs as well as the well-known
reliability problems introduced by shitty FTLs.

 Writing frequently-read data to a NOR Flash might actually save
power as well, but this is an extreme measure: you'd have to read a
given byte from NOR instead of the 23LC1024 SRAM 3000 times
before paying for the cost of writing it into the NOR.

 So, suppose we have a system consisting of an STM32F103C8
microcontroller, a 23LC1024 QSPI SRAM, and a GD5F1GQ4 QSPI
NAND chip. When idle it’s using 20 μA at 2.5 V in the MCU, 4 μA
at 2.5 V in the 23LC1024, and 90 μA at 1.8 V in the NAND unless we
turn it off with a transistor — 162 μW for the Flash and another
60 μW for the rest of the system. A 2048-byte major page fault

would initially take 114 μs at 72 mW in the Flash, working out to
8200 nJ, and about 34 μs at, I don’t know, 20 mA and 2.5 V in the
MCU, so 50 mW and another 1700 nJ, total about 9900 nJ. At that
point it’s occupying one of the 10 page slots in the MCU’s internal
SRAM. Evicting that page to the SRAM (you might want to evict a
subpage instead) would take another 200 μs and 10 000 nJ in the
CPU, plus 2000 nJ in the SRAM, which brings up the very
interesting point that low-power SPI SRAM stops being so
low-power if it keeps the CPU busy longer!

 (The above numbers may be too optimistic about the MCU; it’s
more like 30 mA at full speed than 20 mA, according to the datasheet,
though that’s the worst case at 85°.)

 A tiny QSPI controller like the Raspberry Pi Pico’s “pioasm”
coprocessors that allowed the CPU to page while continuing to
compute would be super helpful. The STM32F103C8 does have a
7-channel DMA controller which can run its two hardware SPI
peripherals, so that might actually be doable. The SPI peripherals
support dual SPI but not quad SPI, so instead of 100 ns and 56 ns per
byte, it would be 200 ns and 112 ns per byte, perhaps with
correspondingly increased power usage in the peripherals — but you
could power down the CPU or have it work on something else. This
might increase the cost of major page faults to 16 μJ, with a latency of
150 μs, and decrease the cost of minor ones to 4 μJ, with a latency of
400 μs.

 Paging out a dirty page to NAND would also take about 400 μs.

 At this rate you could do 2500 minor page faults (plus evictions
and pageouts) or 6700 major page faults per second, but the first
would cost 10 mW and the second would cost 110 mW. 2500 page
faults is about 20 times what you can do on spinning rust.

 (Uh, but actually the SPIs on this MCU are only good up to
18 Mbit/s... maybe parallel memory isn’t such a bad option? Or a
beefier chip?)

 Bigger microcontrollers
 The STM32F103C8 mentioned above costs US$5 in the usual
venues when it’s not out of stock, though evidently the Blue Pill
makers have found cheaper chips. But 20 KiB of internal SRAM is
small enough to be restrictive. What about bigger STM32F chips, or
maybe an ESP32? The STM32F line goes up to 512KiB SRAM.
Beefier chips might also help to speed up off-chip communication
and thus get it over with faster, perhaps saving energy. To my
surprise, many of them also use less power!
 Chip SRAM size Price Power draw at 72MHz
 STM32F103C8T6 20 KiB US$5 30 mA?
STM32F410C8U6 32 KiB US$3.50 8 mA?
STM32F401RCT6TR 64 KiB US$5.50 9 mA?
STM32F730V8T6 256 KiB US$6 28 mA?
STM32F765IGT6 512 KiB US$15 28 mA?
ATSAMG53N19B-AU 96 KiB US$1.50 7.2 mA (but only goes
up to 48MHz)
CY9AF156NPMC-G-JNE2 64 KiB US$2 ⸘no datasheet‽
M481ZE8AE 64 KiB US$2.50 ⸘no datasheet‽

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/5177/instruction-timings---arm-cortex-m3
https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/5177/instruction-timings---arm-cortex-m3
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32F410C8U6/6166913
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32F401RCT6TR/5268281
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32F730V8T6/9453365
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32F765IGT6/6137836
https://www.digikey.com/en/products/detail/microchip-technology/ATSAMG53N19B-AU/5057262
https://www.digikey.com/en/products/detail/cypress-semiconductor-corp/CY9AF156NPMC-G-JNE2/7362398
https://www.digikey.com/en/products/detail/nuvoton-technology-corporation-of-america/M481ZE8AE/12337367

 Some of these, like the STM32F730 and STM32F765, have
built-in memory controllers designed to interface to external SRAM,
SDRAM (!!), NOR Flash, and even NAND Flash.

 See also Energy autonomous computing (p. 143) for notes on the
Ambiq chips, which are both much lower power and have more
RAM.

 Full context switching and deep power
down
 Suppose that we want to save the whole RAM state of the
microcontroller in stable memory, like the NAND Flash, either
because we want to shut the whole system down or because we want
to switch to a totally different task. (Maybe we don’t even want to
save, just reboot.) How expensive is that?

 Using the STM32F103C8 and the S34MS01G2 numbers above,
writing 20 KiB at 160 ns per byte and 4.4 nJ per byte is 3.2768
milliseconds and 90 μJ. Reading it at 45 ns per byte and 1.2 nJ is
900 μs and 24 μJ. The S34MS01G2 claims 10 μA “typical standby
current”. The STM32F103C8 uses another 20 μA at idle (not
“standby”! “Stop,” with the RTC.) So you can drop power usage by
95% by powering off the NAND but not the microcontroller. Saving
the microcontroller’s state this way might cost 9 seconds of the
NAND’s standby energy usage, or 3 minutes of the processor
“stopped”, which is 3 milliseconds of running the processor flat out at
30 mW or so.

 So it should be energy-affordable to checkpoint the
microcontroller’s state this way on the order of 20 times per second
during continuous computation, if that’s a useful thing to do. And it
might make sense to cut power to the NAND when it’s okay for it to
be unresponsive for a while — it claims to need 5 ms to get back to
operational when you power it back on, and 3 ms to erase a page, so it
might make sense to power it down with a MOSFET whenever it’s
been idle for tens of milliseconds, thus cutting power use by a third
and extending battery life by 50%.

 When you’re handling 90wpm keystrokes, we’re talking about
like 110 ms on average between keystrokes. If we need 48000
instructions per keystroke, which seems grossly excessive, that’s 1
millisecond of computation, so about a 1% duty cycle. This might add
500 μW of power usage, 50 μJ per keystroke, which is strikingly close
to the cost of reloading the microcontroller’s entire state from the
NAND! Still, it’s probably better to leave the NAND powered
down most of the time.

 The STM32F103C8 has a lower-power shutdown mode called,
confusingly, “standby”, where it uses two or three μA instead of the
20 in the “stop” mode discussed above, which would extend idle
battery life by a factor of 6–10. It’s harder to wake from, it takes
65 μs to wake instead of 5 μs, and the SRAM loses its contents, so if
you go into standby mode you do have to reload the whole system
from NAND or whatever. This seems reasonable for events like
keystrokes where 6 ms is an acceptable response time, but still,
rebooting could cost tens of microjoules if it involves reloading the

full context. The 30 μW “stop mode” uses this much about once a
second, so when keystrokes are coming in more frequently than that,
it’s cheaper to just stop and not reboot for every keystroke.

 For handling 1kHz mouse movements (125 Hz is a more typical
mouse sampling rate) these deep power-down modes clearly don’t
make sense.

 The STM32L line includes microcontrollers like the
STM32L011x3/4 with even lower power usage: 0.54 μA in “stop”
mode rather than 20, and at full speed, 1950 μA at full speed (though
that’s only 16 MHz) instead of 29000 μA. It might make sense to use
a processor like this as a “supervisor” processor for the whole system,
always on, and powering the other hardware up only when needed.
That chip in particular has only 2KiB of SRAM, but to the extent
that that’s sufficient for a user interaction, the rest of the system could
remain turned off.

 The 23LC1024 SRAM, if present, uses another 4 μA of standby
current. It’s 128 KiB, so saving it to the NAND Flash (in preparation
for unplugging it) would take almost 600 μJ and 21 ms at 4.4 nJ and
160 ns per byte. Leaving it unplugged for a minute (at 4 μA and
2.5 V) would pay back that energy cost, so unplugging it that way is
only worthwhile when its idle time, or potential idle time, is up in the
tens of seconds to minutes.

 The upshot of all this is that it should be possible to reduce the
system’s idle power consumption from some 35 μA (and nearly
100 μW) down to 20 μA with just the STM32F103C8, or down to
0.54 μA with an STM32L011, while keeping
latency-to-full-responsiveness well under 10 ms. Even when actively
editing text or browsing hypertext, it should be possible to stay below
500 μW, only leaping up to the full 83000 μW figure mentioned
earlier when you’re actually computing something new, and maybe
when you have the thing plugged in.
 Power store 1 μW 50 μW 100 μW 500 μW 83000 μW
 2 J supercap 23 days 11 hours 5 hours 67 minutes 24 seconds
 25 J pull on a pullstring 10 months 6 days 3 days 14 hours 5
minutes
 2.2 kJ CR2032 coin cell 70 years† 17 months 8 months 7 weeks
7 hours
 4250 mAh Li-ion 20700 (57 kJ) 1800 years† 36 years† 18 years†
43 months 8 days
 2-kg 7Ah 12V lead-acid (300 kJ) 9500 years† 190 years† 95
years† 19 years† 6 weeks

 † A CR2032 or 20700 only has a shelf life of about 10 years, so it
will not last 18 years, much less 9500.

 Compact in-memory representations
 The NAND Flash discussed above is huge compared to everything
else; the only penalty for bloated data representations in it is power
usage and memory bandwidth usage. But for storing data in the
microcontroller’s RAM, it’s crucial to represent it efficiently. Lisp
data is pretty convenient to compute on but takes up a lotta fricking
bytes.

 Backwards CDR-coding stacks occurred to me, but
that’s probably dumb
 What I originally thought when I skimmed Bobrow’s paper was
that he was going to CDR-code lists in something like the following
fashion. When some datum z produced by (cons x y) is placed on a
page different from its cdr, it gets allocated a shortish buffer, with a
counter and length packed into a word at its beginning:

|-----+---+---+---+---+---+---|
| 2/7 | y | x | - | - | - | - |
|-----+---+---+---+---+---+---|

 If later we execute (let ((w (cons a z))) ...) the first thing we check
is to see whether there’s more space available in z’s buffer. There is,
so we stuff a into it:

|-----+---+---+---+---+---+---|
| 3/7 | y | x | a | - | - | - |
|-----+---+---+---+---+---+---|

 Now, if we later cons something else onto w, like b, we may well
be able to pack that into the same buffer:

|-----+---+---+---+---+---+---|
| 4/7 | y | x | a | b | - | - |
|-----+---+---+---+---+---+---|

 Eventually the buffer gets full, or we try to cons two things onto
the same thing, so then we allocate a new buffer, ideally on the same
page. If the buffer got full we might want to allocate a bigger buffer.

 This is all assuming there’s some sensible way to represent and
dereference pointers into these buffers, and of course it would make
RPLACD (set-cdr!) quite tricky.

 With a buffer size of 8 words, like the above, we can store 6 cons
cells in it, which would normally take 12 words, which is a best-case
savings of 33%; as the buffer size grows, this approaches 50%. The
worst-case inflation for 8 words is 4× (300%) but most lists are longer
than that. The break-even point is at 4-item lists.

 A quick Scheme program to count the lengths of lists, applied to
itself, found 2 lists of length 0, 3 lists of length 1, 33 lists of length 2,
22 lists of length 3, 12 lists of length 4, and one list of length 5, which
was the whole program and therefore possibly should not be counted.
This is clearly not a fully representative sample of the data structures
Lisp programs manipulate but it’s probably true that lists of length 2
and 3 are much more common than other lengths. (Also, none of the
lists were improper.)

 So, possibly a more optimal solution would be to use an initial
buffer of size 4, and use a header bit to indicate whether the list is

NIL-terminated or improper (or continued elsewhere). Then a
2-item list would be 4 words, the break-even point:

|---------+---+-------------+---+
| NIL/2/3 | 1 | delete-char | - |
|---------+---+-------------+---+

 And a 3-item list would also be 4 words, a 33% saving over the
standard approach:

|---------+-----+-----+--------------|
| NIL/3/3 | end | beg | make-overlay |
|---------+-----+-----+--------------|

 If we initially allow such buffers (“obstacks”? “arenas”?) to extend
to the end of their page, only capping them off at a bit over their
current capacity when we want to allocate something else, we can
reduce the number of spills. For example, consider parsing this
Scheme into lists through recursive descent:

(define (freq-update vec n)
 (let ((vec (vector-grow-init vec (1+ n) 0)))
 (vector-set! vec n (1+ (vector-ref vec n)))
 vec))

 Here’s the conventional dotted-pair representation, as outlined for
example in “A Command Structure for Complex Information
Processing” from 01958 (p. 11, 13/54):
 Each word is divided into two parts, a symbol and a link. ... The link is an address;
if the link of a word a is the address of word b, then b is adjacent to a. That is, the
link of a word in a simple list is the address of the next word in the list.

 (See Some notes on IPL-VI, Lisp’s 01958 precursor (p. 196) for
more notes on this amazing paper.)

 In Graphviz:

digraph fu {
 node [shape=record, label="<car>|<cdr>"]
 {
 rank=same;
 1 [label="define|<cdr>"];
 1:cdr -> 2;

http://bitsavers.org/pdf/rand/ipl/P-1277_A_Command_Structure_For_Complex_Information_Processing_Aug58.pdf
http://bitsavers.org/pdf/rand/ipl/P-1277_A_Command_Structure_For_Complex_Information_Processing_Aug58.pdf

 2:cdr -> 6;
 6 [label="<car>|Λ"];
 }
 2:car -> 3;
 {
 rank=same;
 3 [label="freq-update|<cdr>"];
 4 [label="vec|<cdr>"];
 5 [label="n|Λ"];
 3:cdr -> 4;
 4:cdr -> 5;
 }
 6:car -> 7;
 {
 rank=same;
 7 [label="let|<cdr>"];
 7:cdr -> 8;
 8:cdr -> 10;
 10:cdr -> 12;
 12 [label="vec|Λ"];
 }
 8:car -> 9;
 9 [label="<car>|Λ"];
 9:car -> 13;
 {
 rank=same;
 13 [label="vec|<cdr>"];
 13:cdr -> 14;
 14 [label="<car>|Λ"];
 }

 14:car -> 15;
 {
 rank=same;
 15 [label="vector-grow-init|<cdr>"];
 15:cdr -> 16;
 16 [label="vec|<cdr>"];
 16:cdr -> 17;
 17:cdr -> 18;
 18 [label="0|Λ"];
 }

 17:car -> 19;
 {
 rank=same;
 19 [label="1+|<cdr>"];
 19:cdr -> 20;
 20 [label="n|Λ"];
 }

 10:car -> 21;
 {
 rank=same;
 21 [label="vector-set!|<cdr>"];
 21:cdr -> 22;

 22 [label="vec|<cdr>"];
 22:cdr -> 23;
 23 [label="n|<cdr>"];
 23:cdr -> 24;
 24 [label="<car>|Λ"];
 }

 24:car -> 25;
 {
 rank=same;
 25 [label="1+|<cdr>"];
 25:cdr -> 26;
 26 [label="<car>|Λ"];
 }

 26:car -> 27;
 {
 rank=same;
 27 [label="vector-ref|<cdr>"];
 27:cdr -> 28;
 28 [label="vec|<cdr>"];
 28:cdr -> 11;
 11 [label="n|Λ"];
 }
}

 With recursive descent, the first cons we do is of vec onto '(),
creating a new buffer:

|-----------+-----+-----
| NIL/1/256 | vec | ...
|-----------+-----+-----

 Then we start a totally new list by consing n onto '(), so we cap off
this one with a little room to grow and start a new one:

|---------+-----+---+-----------+---+-----
| NIL/1/2 | vec | - | NIL/1/252 | n | ...
|---------+-----+---+-----------+---+-----

 Then we cons vec and vector-ref onto that:

|---------+-----+---+-----------+---+-----+------------+-----
| NIL/1/2 | vec | - | NIL/3/252 | n | vec | vector-ref | ...
|---------+-----+---+-----------+---+-----+------------+-----

 Then we cap off that entire list and cons it onto '() followed by 1+:

|---------+-----+---+---------+---+-----+------------+---+---+-----------+----+--
--+-----

| NIL/1/2 | vec | - | NIL/3/5 | n | vec | vector-ref | - | - | NIL/2/246 | #6 | 1
+ | ...

|---------+-----+---+---------+---+-----+------------+---+---+-----------+----+--
--+-----

 So far we have 6 conses in 12 words, which is a singularly
uninspiring performance.

 A depth list
 A maybe more interesting representation of the above S-expression
might annotate a flat list of atoms with their depths:

(define (freq-update vec n) (let ((vec (vector-grow-init vec ...
 1 2 2 2 2 4 5 5

 but of course this is not only just as many words of memory, it
does not contain enough information to reconstruct the S-expression!

 An RPN operation stream
 An RPN approach to reconstructing it might intersperse a series of
N-ary operators on the symbol list:

1+ vector-ref vec n 3! 2! vec 4!

 which at least compresses the six conses above down to 7 words
instead of 12. For functions of fixed arity the N-ary operators are,
strictly speaking, unnecessary — forward Polish notation is sufficient,
so you could imagine representing that S-expression with the
following whitespace-separated tokens:

define(freq-update vec n){
 let(vec vector-grow-init vec 1+ n 0){
 vector-set! vec n 1+ vector-ref vec n
 vec
 }
}

 That successfully represents the function code in 23 words, rather
than 28 conses and thus 56 words, but at the cost of pushing most of
the arity information into the symbols instead of the conses, which
makes it quite awkward to compute with.

 Algebraic data types, or variant records
 In the particular case that what you want to represent is something
analogous to Scheme source code, a structier approach may work

better, using ML-like pattern-matching and constructors, but
Golang-like slices for things like argument lists. That is, while you’re
building up an argument list, by all means use a cons list, but once
you’re done building it, freeze it into a counted array, which you can
comfortably cdr down with a slice. So, for example, let here takes
some variable-initializer pairs and some body expressions, in this case
one of the first and two of the second; and a function call takes a
function expression and some number of argument expressions.

 Here’s a thing that might look like in Graphviz:

digraph x {
 node [shape=record]
 func [label="<head>def|{name|freq-update}|<args>args|<body>body"]
 func:args -> funcargs:head;
 funcargs [label="<head>2|vec|n"]
 func:body -> let:head;

 let [label="<head>let|<vars>vars|<body>body"];
 let:vars -> vars:head;
 vars [label="<head>1|{vec|<init1>}"];
 vars:init1 -> vecinit:head;
 vecinit [label="<head>call|{rator|vector-grow-init}|<rands>rands"];
 vecinit:rands -> vrands:head;
 vrands [label="<head>3|vec|<incn>|0"]
 vrands:incn -> incn:head;
 incn [label="<head>call|{rator|1+}|<rands>rands"];
 incn:rands -> incnrands:head;
 incnrands [label="<head>1|n"];

 let:body -> body:head;
 body [label="<head>2|<1>|vec"];
 body:1 -> x:head;
 x [label="<head>call|{rator|vector-set!}|<rands>rands"];
 x:rands -> y:head;
 y [label="<head>3|vec|n|<z>"];
 y:z -> z:head;
 z [label="<head>call|{rator|1+}|<rands>rands"];
 z:rands -> zz:head;

 zz [label="<head>call|{rator|vector-ref}|<rands>rands"];
 zz:rands-> zrands:head;
 zrands [label="<head>2|vec|n"];
}

 It looks better rendered with Graphviz dot, but Graph::Easy
manages a crude ASCII-art rendition which I’ve cleaned up here:

 +---
----------+

 |
 |

 | +------+--------+--------------+-------+------+ +-----
+------+-------+ +---
---+-----+----+

 | | def | name | freq-update | args | body | --> | let
| vars | body | | 2
 | vec | n |

 | +------+--------+--------------+-------+------+ +-----
+------+-------+ +---
---+-----+----+

 | |
 | ^

 | |
 | |

 v v
 v |

 +----+-------+--------+ +------+------+----+
 +-----+-------+--------+ +------------------+--------+-------------+----
---+

 | 2 | | vec | | 2 | vec | n |
 | 1 | vec | | | call | rator | vector-ref | ran
ds |

 +----+-------+--------+ +------+------+----+
 +-----+-------+--------+ +------------------+--------+-------------+----
---+

 |
 | ^

 |
 | +--
------------+

 v
 v
 |

 +------+--------+--------------+-------+
 +-------+--------+-------------------+--------+
 |

 | call | rator | vector-set! | rands |
 | call | rator | vector-grow-init | rands |
 |

 +------+--------+--------------+-------+
 +-------+--------+-------------------+--------+
 |

 |
 |
 |

 |
 |
 |

 v
 v
 |

+------+--------+-----+-------+ +------+------+----+------
+ +------+--------+--------+-------------------+--------+-------------+----
---+-----+ |

call	rator	1+	rands		3	vec	n
---->	call	rator	1+	rands	3	vec	
0							

+------+--------+-----+-------+ +------+------+----+------
+ +------+--------+--------+-------------------+--------+-------------+----
---+-----+ |

 ^ |
 | |
 |

 | |
 | |
 |

 | v
 | |
 |

 | +------+--------+
 | |

 |

 | | 1 | n |
 +--+-
------------+

 | +------+--------+
 |

 |
 |

 +--
---+

 Here “rator”, “rands”, “vars”, and “body” are just field labels;
they don’t occupy space on their own behalf, but they’re associated
with pointers which do. The type-tags “def”, “let”, and “call” might
possibly be able to be erased to some degree at runtime, or possibly
handled in a BIBOP fashion. The “vars” of “let” are special in that
the list is a list of 2-tuples, one of them in this case. If the type-tags
are not erased, by my count this is 44 words of memory, which is
better than 56 but still not great.

 If we can erase the type-tags (but not the vector lengths), that
drops us by 7 to 37 words. Also, in most cases, the vectors could be
tacked onto the end of their parent record, eliminating a pointer,
although this might conflict with type-tag erasure (since they’d be
allocated within the same page as their parent record) as well as
mutability (since this would necessitate copying them if another such
record wanted to “reference” them, which would also be a possible
solution to the erasure problem); the exceptions are func:args and
let:vars. This reduces the space cost to 31 words.

 (I notice one error in this diagram: the vector-ref call is being
referenced directly from a rands field rather than by way of a
1-element vector. This makes 44 46, 37 39, and 31 32.)

 32 memory words is 43% less space than 56. The ASCII Scheme
version, which is inconvenient for computation, is 133 bytes, while 32
32-bit words is slightly smaller at 128 bytes — not counting the
print-names of the symbols, which are shared with all of their other
occurrences.

 I think this sort of thing, inspired by ML ADTs, is likely to
actually be more convenient for programming than S-expressions, as
well as more space-efficient.

 BIBOP tagging for variant record tags
 A possible BIBOP-alternative approach to handling type-tags,
which still doesn’t require wasting an entire word in every object, is
to store them on a separate page. Suppose we do embed the “rands”
into call records, so their size depends on the number of arguments:
two words if no arguments, three words if one argument, four words
if two arguments, and so on; and suppose we use an allocator that
allocates a page or subpage for each allocation size to prevent

fragmentation (which of course conflicts with the
locality-of-reference objective...). A 2048-byte page of 4-byte words
has 512 words on it; if it’s divided into four-word objects, there will
be 128 of them. Perhaps the memory allocator maintains a 128-bit
bitmap of them elsewhere. Perhaps on a type-tag page there are 128
bytes that tell us the types of those 128 four-word objects: some may
be two-argument calls, while others are single-expression-body lets,
and others are single-expression-body defs. (This presumes that there
are no more than 256 total type tags for four-word objects, and may
lead to “read amplification” where we fault in an entire type-tag page
even though 15 of the 16 pages it maps are swapped out.)

 Probably a more reasonable approach is to dedicate pages to
particular types of objects, such as calls, and subdivide them by size.
So a 2048-byte page of calls might have 512 bytes (128 words, 64
objects) of two-word zero-argument calls; 512 bytes (42 objects) of
three-word one-argument calls; 512 bytes (32 objects) of
two-argument calls; and 512 bytes (25 objects) of three-argument
calls. This allows you to minimize fragmentation and still do
type-tests without faulting any pages in or limiting your number of
types.

 An immutable vector, or packed tuple, per list
 A different memory representation, much closer to the Lisp
approach, would be to just replace lists with vectors. You can see that
the Scheme code contains 10 lists and 19 atom references, for a total of
28 conses; here’s the code again:

(define (freq-update vec n)
 (let ((vec (vector-grow-init vec (1+ n) 0)))
 (vector-set! vec n (1+ (vector-ref vec n)))
 vec))

 (Or you can calculate it with this dumb code:

(define (atom-count sexp)
 (cond ((null? sexp) 0)
 ((pair? sexp) (+ (atom-count (car sexp))
 (atom-count (cdr sexp))))
 (#t 1)))

(define (cons-count sexp)
 (cond ((null? sexp) 0)
 ((pair? sexp) (+ 1
 (cons-count (car sexp))
 (cons-count (cdr sexp))))
 (#t 0)))

(define (nil-count sexp)
 (cond ((null? sexp) 1)
 ((pair? sexp) (+ (nil-count (car sexp))
 (nil-count (cdr sexp))))
 (#t 0)))

)

 If you were to replace each list with a counted vector, these 28
conses in 10 lists would be only 38 words:

|---+-------------+-----+---+ +---+----+---|
| 3 | freq-update | vec | n | | 2 | 1+ | n |
|---+-------------+-----+---+ +---+----+---|

 And if you were to segregate these vectors or tuples into pages or
subpages by size, you could then omit the count fields (except on
vectors too long to belong to a whole category of same-sized vectors,
which would still need counts). Then instead of 38 words they would
be 28 words. Optimal! All we had to sacrifice was mutability and tail
sharing.

 A Graphviz visualization looks like this:

digraph fu {
 node [shape=record, style=filled, fillcolor=white, color="#7f7f7f"]
 graph [style=filled, fillcolor=lightgrey, color="#7f7f7f"]
 root [shape=oval];
 root -> 6;

 subgraph cluster_1 {
 label="1-tuple space";
 5 [label="<0>"];
 }

 subgraph cluster_2 {
 label="2-tuple space";
 2 [label="{1+|n}"];
 4 [label="{vec|<1>}"];
 9 [label="{1+|<1>}"];
 }

 subgraph cluster_3 {
 label="3-tuple space";
 1 [label="{freq-update|vec|n}"];
 6 [label="{define|<1>|<2>}"];
 10 [label="{vector-ref|vec|n}"];
 }

 subgraph cluster_4 {
 label="4-tuple space";
 3 [label="{vector-grow-init|vec|<2>|0}"];
 7 [label="{let|<1>|<2>|vec}"];
 8 [label="{vector-set!|vec|n|<3>}"];
 }

 3:2 -> 2;
 4:1 -> 3;
 5:0 -> 4;
 6:1 -> 1;
 6:2 -> 7;
 7:1 -> 5;
 7:2 -> 8;
 8:3 -> 9;
 9:1 -> 10;
}

 An astonishing thing is that these 28 words are smaller than the 32
words taken up by the ML-like data structure outlined above, and
under much less dubious assumptions.

 This is clearly a broadly applicable data representation for things
like syntax trees, binary search trees, and hash tables; and because you
can do random access within the counted array it’s a reasonable
structure for things like binary search and (non-in-place, because
immutable) quicksort as well.

 Several approaches to efficiently CDRing down such vectors
 First, we could use ordinary pointers into the vectors as the iterator
states. Unsafe cdr would then just be a pointer increment, but the
null test would then require decoding the pointer’s bit representation
and doing some kind of lookup to figure out what size the vector was,
and maybe doing a modulo by the vector size (3 or 5 or something) to
find the offset into the vector. This sounds like it would make cdring
down a list spectacularly slow.

 Second, we could use some kind of fat-pointer representation of
iterators/ranges, like a base pointer and an offset, or an iterator
pointer and an upper-bound pointer. CDR and NULL? are then fast
but their argument no longer fits in a register; it needs two registers.
(And, in the case of CDR, the result.) This has the additional
advantage that you can efficiently refer to any range of a list, not just
suffixes, and algorithms like binary search in the list also become more
natural to express. With a Lua-like calling convention this isn’t
necessarily a big practical problem for programming but it does add
complexity, and you need list→iter and perhaps iter→list functions of
some kind. list→iter in particular has to figure out how big the list is,

through the kinds of pointer decoding and lookup that NULL?
would have had to do in the previous option, but fortunately without
the division operation.

 Third, we could try to cram the fat-pointer representation into a
single word somehow. For example, we could 8-byte-align all our
vector pointers and use the three low-order bits to indicate an offset
from 0 to 7, and chain together vectors to make lists of more than 8
items.

 Fourth, we could maybe burst the vector into a conventional pile
of dotted pairs when we start iterating over it, in some kind of very
cheap garbage collection nursery or something. This obviously
sacrifices mutability, which we already sort of did, but also damages
EQ on lists, and it adds to the load on the GC.

 Fifth, we could use a stateful generator coroutine, which is in some
sense another version of “fat pointers”.

 Incrementing a pointer in a loop, testing it against an end pointer,
to do a linear search for a key, looks like this in reformatted GCC
listing output for amd64, with the loop preamble removed:

 25 0010 4883C708 .L8: addq $8, %rdi # increment pointer

 27 0014 4839FE cmpq %rdi, %rsi # compare against end point
er

 28 0017 7405 je .L2 # (fused with previous) exi
t loop

 31 0019 483907 .L6: cmpq %rax, (%rdi) # compare against search ke
y in %rax
 32 001c 75F2 jne .L8 # loop while not found
 33 .L2:

 So it’s about 3–5 RISC instructions or micro-ops — and zero data
memory accesses! — per loop iteration.

 A context switch to a stateful generator coroutine can be as simple
as an indirect jump or call, followed by another indirect jump or
return later; but more generally you should expect to pay nearly the
usual procedure entry/exit cost, because a lower cost would imply
partitioning the register file between the generator and the consumer.
Whatever registers the consumer clobbers aren’t available to maintain
generator state, and whatever registers the generator clobbers aren’t
available to maintain consumer state. The generator can keep its stack
frame around from one yield to the next, but it still has to save any
relevant callee-saved registers upon resuming and restore them on
yielding, and vice versa for caller-saved registers.

Not CDRing down packed vectors
 Many lists — though few in the above example — are used as
fixed-arity tuples rather than variable-length lists, and for these lists
we’re probably most interested in pattern-matching them against
patterns of the same arity, rather than iterating over their members.
This is clearly much more efficient to do with these packed tuples

than with linked lists of dotted pairs.

 Building such packed-tuple vectors
 If you knew how many things are going to be in your output list,
you could maybe preallocate it. MAPCAR, for example, could do
this.

 But the usual kind of Lisp code doesn’t know in advance how big a
list it’s building, and knowing would make it more complicated.
Consider this example (part of my solution to an exercise from
Essentials of Programming Languages):

(define (set-subtract includes excludes)
 (cond ((null? includes) '())
 ((member (car includes) excludes) (set-subtract (cdr includes) excludes))
 (#t (cons (car includes) (set-subtract (cdr includes) excludes)))))

 You could quibble with the crude coding style and the O(MN)
algorithm, but I think it’s fair to say that writing recursive definitions
of that sort and having them run with reasonable efficiency is a big
part of the appeal of Lisp. But how do you write such a recurrence in
this natural way, without losing the space-efficiency benefits of the
packed vector representation?

 One thing you could of course do is have a function that converts
explicitly from the unpacked chain-of-dotted-pairs form into the
packed form, and invoke it after the final recursive call:

(define (set-subtract includes excludes)
 (list->packed
 (let recur ((includes includes))
 (cond ((null? includes) '())
 ((memb (ca includes) excludes) (recur (cd includes)))
 (#t (cons (ca includes) (recur (cd includes))))))))

 Exposing the difference to the user in this way would eliminate
the necessity for the ordinary functions car and at least cdr and so on to
handle both vector iterators (whatever their form) and dotted-pair
iterators, which might make them run faster. (However, if they’re
doing a run-time safety check, I think the extra cost to fall back to a
more general dispatch when the expected-type check fails is probably
insignificant.)

 Alternatively, you could let the garbage collector take care of it:
when it copies a linked list of immutable dotted pairs out of the
nursery, it can count its length and copy it as a packed tuple into the
appropriate packed tuple bucket, instead of copying the dotted pairs
individually. This does require cdr to check which representation is in
use at any given moment, though. And sometimes it’s important for
both space and time to preserve some tail sharing (though you can
always restructure algorithms to do their sharing via the car).

 Such approaches were inconceivable before the invention of
generational garbage collection in the mid-01980s.

 (It might even be worthwhile to include the list length in the

dotted pairs when you create them; although this fills up the nursery
faster, it means the GC doesn’t have to pretraverse the list to count its
length before packing it.)

 As a third alternative you might consider explicit mutability:

def set_subtract(includes, excludes):
 result = []
 for item in includes:
 if item not in excludes:
 result.append(item)

 return result

 But this doesn’t really help with the problem at hand; CPython
has to preallocate a bunch of extra slack space for result, probably
several times, and the last time most of it never gets used. If you say
return tuple(result) you eliminate this space waste at the cost of an
extra copy, similar to the list->packed approach.

 It sure is a lot less fucking code than the Scheme, though, isn’t it?

 In this particular case an additional angle on the problem is to
consider set-subtract as a potentially lazy sequence transformer, usable
for example as a generator coroutine:

def set_subtract(includes, excludes):
 for item in includes:
 if item not in excludes:
 yield item

 If you want to materialize it, though, that still doesn’t help; the
consumer of the generated sequence can do whatever they want with
it, including packing it into a vector, but they don’t know in advance
how big it is either!

 Locality through duplication
 The packed-tuple representations above eliminate tail sharing by
duplicating the shared list tails, which is valid for immutable
structures; the only question is whether it is more or less wasteful
than representing the lists with materialized dotted pairs (in the words
of “A Command Structure for Complex Information Processing”
from 01958:
 A list structure can be established in computer memory by associating with each
word in memory an address that determines what word is adjacent to it, so far as all
the operations of the computer are concerned. We pay the price in memory space
of an additional address associated with each word, so that we can change the
adjacency relation as quickly as we can change a word of memory.

 One of the benefits of copying these shared tails is that it ensures
that each list is on the same memory page as its tail, so no additional
page faults are incurred in walking down the list. But this is not the
only relevant locality criterion; we would also like the contents of the
list to be on the same page, as BBN LISP’s allocation strategy
attempts (see above about “CDR-coding”). With immutable list

http://bitsavers.org/pdf/rand/ipl/P-1277_A_Command_Structure_For_Complex_Information_Processing_Aug58.pdf
http://bitsavers.org/pdf/rand/ipl/P-1277_A_Command_Structure_For_Complex_Information_Processing_Aug58.pdf

contents and the gigantic resources of NAND, we can achieve this to
a significant extent by peremptorily copying immutable referents
when we construct lists.

 Compressed oops
 So far everything described has been described in terms of
“words”, but I think the “Large Object-Oriented Memory”
approach may be suitable for this kind of microcontroller system.
Load and store instructions to internal SRAM on ARM Cortex-M3
microcontrollers commonly take 2 clock cycles, though sometimes
this can be pipelined, so I’m guessing this would be 28 ns on the
STM32F103C8 at 72 MHz, or 7 ns per byte. This is around 8–32
times faster than the access times to any of the other memories
considered above, and consumes almost proportionally less energy, so
avoiding off-chip access as much as possible would seem to be
paramount.

 The LOOM Smalltalk paper used 32-bit ordinary object pointers
(“oops”) on disk, but 16-bit “compressed oops” in RAM. An
in-RAM object table kept track of the correspondence. Such an
approach could probably nearly double the effective capacity of the
20-KiB RAM on such a microcontroller. 20 KiB is enough to hold
20480 bytes, 10240 16-bit compressed oops, or 5120 32-bit oops or
two-element vectors of 16-bit compressed oops. Moreover, for the
NAND Flash sizes I was talking about above, you might want 40-bit
or 48-bit uncompressed oops!

 Even the largest low-power microcontrollers considered above
have only 96 KiB of on-chip SRAM: 98304 bytes, 49152 compressed
oops, 24576 dotted pairs or two-element vectors made of compressed
oops, or 12288 32-bit oops. So clearly a 16-bit field is enough to
address all the objects that will fit into SRAM at a time.

 Compare these to the 4096 symbols and 0o140_000 = 49152 words
devoted to compiled code and list structure in Bobrow’s paper: that’s
also 24576 dotted pairs! But shared only with compiled code, not
with symbols and integers and whatnot. We can take some comfort
in being able to page things in 6000 times a second instead of 30 times
a second — but in proportion to CPU speed this swapping rate is
actually much slower. Bobrow’s 17-ms average rotational latency was
only about 1000–2000 machine instructions, while 150 μs is about ten
thousand instructions for our CPU. However, we can expect even
much faster performance than that: Bobrow was only getting 6000
subroutine calls per second, about 15 instructions per call, which he
attributes to the weaknesses of the PDP-1’s instruction set, but we
ought to be able to get something like two or three times that
amount.

 LOOM supposedly paged objects in and out one at a time, but I
can’t imagine that working very well for things like disk or NAND.
Evicting individual objects would be fine for things like external
SRAM, and faulting in individual objects would be fine for things like
NOR.

 Compressed oops in secondary storage
 You might also be able to use the compressed-oop approach

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/5177/instruction-timings---arm-cortex-m3
https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/5177/instruction-timings---arm-cortex-m3
https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/5177/instruction-timings---arm-cortex-m3

advantageously within memory pages in NAND storage. With
40-bit uncompressed oops, a 2048-byte NAND page can contain only
409 pointers, or 204 dotted pairs, enough for a list of 204 things, or a
counted vector of 408 things. Suppose that we allocate 1024 bytes of
the page to a “link table” of 204 uncompressed oops, and the other
1024 bytes to 682 12-bit ultracompressed oops, organized into up to
682 tuples of various sizes, plus a little metadata. The 4096 slots in
the 12-bit address space for these ultracompressed oops are divided
among the 204 external pointers, the 682 or less internal objects, small
integers, other popular objects like nil, and perhaps some objects
cataloged on other “indirect pages”. We can still make a list of 204
external things, occupying a counted packed tuple in 206 of these
1024 bytes, but we can also represent quite complex data structures
within this space. In a near-typical case where it’s entirely allocated
to 3-item packed tuples mostly pointing within the page, the 409
uncompressed oops would have bought us 136 of them, but this
compressed layout buys us 227 of them, a 67% increase in capacity, or
from another point of view, a 40% decrease in the number of pages
required. This 40% reduction in bulk reduces the number of page
faults to fault in a given set of objects by some amount less than 40%,
but that depends on the locality with which the objects are allocated:
in the extreme case of no locality of reference, you still have one page
fault per object, but in the extreme case of purely sequential access,
you’d have a 40% reduction in page faults.

 (Weirder representations are plausible too, like variable-size link
tables and 10-bit ultracompressed oops; you could imagine, say, a
page with 512 3-item packed tuples on it, packed 10 bits per
ultracompressed oop, and a table of 25 uncompressed oops.)

 Remember that faulting in this 2048-byte NAND page costs us
around 10 μJ, which is worth around 7000 instructions at 1.5 nJ per
instruction. We also another 10 nJ or so to write it back if we dirty it.
So decreasing the number of pages needed by 40%, and the number of
page faults by, say, 20%, is worth spending a fair number of
instructions on decompression, though only 5 instructions or so per
object.

 In the microcontroller’s SRAM, it isn’t useful to try to maintain
this ultracompressed representation, because the expense of
maintaining three copies of each oop (uncompressed,
ultracompressed, and 16-bit compressed) is greater than the savings
from the ultracompressed version; moreover, the uncompressed oops
are likely to be duplicated between pages in the working set.

 By promiscuously duplicating immutable list structure onto such
ultracompressed pages, we can both conserve their uncompressed-oop
slots and improve locality of reference further; probably this is a very
difficult problem to solve optimally, but admits robust heuristics that
very frequently do much better than a totally naïve algorithm.
Greedy depth-first packing, for example. This potentially also
permits glomming objects together into a page in whatever order is
convenient for paging things out, rather than along with whatever
objects they previously shared a page with, thus perhaps improving
the write-amplification problem common to all paging systems.

 One variant of such an ultracompressed page containing the

freq-update definition used above as an example might look like this in
hex, using 8-bit indices instead of 12-bit for ease of reading and
understanding:

09 00 ; link table of 9 40-bit uncompressed oops
01 01 00 ; followed by one 1-tuple, starting at index 9
02 03 00 ; three 2-tuples, starting at index 0a
03 03 00 ; three 3-tuples, starting at index 0d
04 03 00 ; three 4-tuples, starting at index 10
00 ; and nothing else
f0 ad 55 27 ff ; uncompressed oop for symbol `define` (index 0)
20 ae 55 27 ff ; uncompressed oop for symbol `freq-update`
50 ae 55 27 ff ; vec
80 ae 55 27 ff ; n
b0 ae 55 27 ff ; vector-ref, index 4
e0 ae 55 27 ff ; let
80 b0 55 27 ff ; vector-grow-init
20 b1 55 27 ff ; vector-set!
b0 b1 55 27 ff ; 1+, index 8
0a ; 1-tuple at index 9 refers to first 2-tuple
02 10 ; 2-tuple at index 0a refers to symbol vec and first 4-tuple
08 0d ; 1+ and first 3-tuple
08 03 ; 1+ n, index 0c
04 02 03 ; first 3-tuple: vector-ref vec n
00 0f 11 ; second 3-tuple: define <last 3-tuple> <second 4-tuple>
01 02 03 ; last 3-tuple: freq-update vec n

06 02 0c f0 ; first 4-tuple: vector-grow-init vec <third 2-tuple> 0, inde
x 10
05 09 12 02 ; let <1-tuple> <last 4-tuple> vec
07 02 03 0b ; vector-set! vec n <second 2-tuple>

 If I haven’t screwed this up, this is a 15-byte header, a 45-byte link
table of uncompressed oops, and 28 bytes of list structure, which
would be 42 bytes in the 12-bit representation suggested above.
15+45+42 = 102 bytes, about 3.6 bytes per oop or per cons, 10 bytes
per list, a number which should go down as the number of oops in a
page rises from 28 up to 300–600. In SRAM the list structure might
occupy 56 bytes of 16-bit compressed oops, if we’re content to forget
about the origin of each packed tuple, but if not, we might need an
additional 50-byte-or-more chunk of the in-SRAM uncompressed
oop table to remember where each of these 10 vectors came from.

 This last consideration suggests that such compressed pages should
list not only outgoing references in a link table, but also “labels” for
incoming references. The idea is that labeled objects in the compressed
page would be assigned an uncompressed oop so they could be
referenced from outside the page, while unlabeled objects (necessarily
immutable) can only be copied, not referenced. This might also allow
us to use multi-gigabyte Flash effectively with uncompressed oops
weighing only 32 bits rather than 40.

 Consider a 256-gibibyte SD card, containing 2³⁸ bytes, which is
currently near the ceiling for what’s easily available as an SD card
(though 512 gibibytes isn’t unheard of, even 256 gibibytes costs

US$40, 32 gibibytes is more common at around US$5, and 16
gibibytes is now under US$3 at retail). If our uncompressed oops
were only 32 bits, the average object size would have to be 64 bytes,
which is too big for cons cells or 3-tuples. If it’s divided into
2048-byte pages, it has 2²⁷ pages; 32-bit uncompressed oops would
give us 32 labels per page. (You might want some kind of extra layer
of indirection somewhere so that the oop numbers don’t directly give
you physical block numbers, though). It’s easily plausible that you
could get down to 32 externally-referenced atoms or chunks of list
structure per 2048-byte page.

 Bytecode
 Bobrow doesn’t mention bytecode at all. Given the killer
advantages of bytecode for what he’s doing, this surprised me, but
apparently compiling to bytecode interpreters started with Wirth and
Weber’s EULER in 01965, where it was presented not as a hack to
reduce memory usage but an alternative to the λ-calculus for formally
defining programming-language semantics, so it wasn’t a well-known
technique at the time (p. 56):
 The definition of the compiling system consists of the parsing algorithm, given in
paragraph III.B.1., a set of syntactic rules, and a set of corresponding interpretation
rules by which an EULER text is transformed into a polish string. The definition
of the executing system consists of a basic interpreting mechanism with a rule to
interpret each symbol in the polish string.

 Where introduced, the “bytecode” in question didn’t have a
defined representation as a sequence of bits or numbers, so it’s maybe
okay to call it “p-code” but not than “bytecode”; however, the
appendices of the TR do include a full program listing in Burroughs
B5500 Extended Algol, evidently written by Wirth and Bill
McKeeman† in 01964 and 01965. Stanford’s scan is badly corrupted,
and I’m not sure my understanding is entirely correct, but it doesn’t
seem to try to pack operands into bytecode bytes, or indeed even pack
operators into single bytes. (The family resemblance to the current
Oberon compiler is remarkably close!) I may be misunderstanding
something but it looks like the “bytecode” was actually an array of
records named PROGRAM with record fields named AFIELD, BFIELD and CFIELD.
BFIELD was used for “immediate operands” for loading numbers and
symbols onto the stack. These seem to be defined as follows, making
me think they may be bitfields in the B5500’s 48-bit words:

DEFINE AFIELD=[39:9]#,BFIELD=[9:30]#,CFIELD=[1:8]#;

 So, as implemented, it wasn’t so much a bytecode as a
“wordcode”.

 However, Zork, old versions of Multiplan and Excel (especially on
the Macintosh), GNU Emacs, and Smalltalk systems get a lot of
mileage out of bytecode virtual machines, which allow them to
squeeze a lot more code into very small computers than you would
think possible. This command from my .emacs is 16 lines of code, but
it compiles to 44 bytes of Elisp bytecode, plus some tables of constants
and external references (literals, symbols):

http://i.stanford.edu/pub/cstr/reports/cs/tr/65/20/CS-TR-65-20.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/65/20/CS-TR-65-20.pdf

(defun markdown-tt-word ()

 "Hit N times to enclose previous N chunks of nonwhitespace in `` (for Markdown)
."
 (interactive)
 (if (looking-back "`")
 (save-excursion
 (backward-char)

 (search-backward "`")
 (delete-char 1)

;; (backward-word) previously
 (search-backward-regexp "\\S-")
 (search-backward-regexp "\\s-")
 (forward-char)

 (insert "`"))
 (progn
 (insert "`")
 (save-excursion
 (backward-word) ; should this use the same simpler approach?
 (insert "`")))))

 I think it’s atypically dense to get just 3 bytes of bytecode per line
of code; 6 bytes per line is probably closer.

 Here’s a disassembly of the 44 bytes. You can see that they use a
stack bytecode with a single operand — usually packed into the same
byte, much like Smalltalk bytecode, but in the case of goto-if-nil it
seems to have a two-byte immediate operand following the bytecode.
The operands packed into constant and varref bytecodes are indexes
into pools of such things, again as in Smalltalk. Specific opcodes are
allocated to popular Emacs operations like save-excursion, forward-char,
and forward-word.

byte code for markdown-tt-word:
 args: nil
 interactive: nil
0 constant looking-back
1 constant "`"
2 call 1
3 goto-if-nil 1
6 save-excursion
7 constant -1
8 forward-char
9 discard
10 constant search-backward
11 constant "`"
12 call 1
13 discard
14 constant delete-char
15 constant 1
16 call 1

17 discard
18 constant search-backward-regexp
19 constant "\\S-"
20 call 1
21 discard
22 constant search-backward-regexp
23 constant "\\s-"
24 call 1
25 discard
26 constant nil
27 forward-char
28 discard
29 constant "`"
30 insert
31 unbind 1
32 return
33:1 constant "`"
34 insert
35 discard
36 save-excursion
37 constant -1
38 forward-word
39 discard
40 constant "`"
41 insert
42 unbind 1
43 return

 Let’s see how our example code from earlier fares:

(define (freq-update vec n)
 (let ((vec (vector-grow-init vec (1+ n) 0)))
 (vector-set! vec n (1+ (vector-ref vec n)))
 vec))

 In Elisp that’s spelled:

(defun freq-update (vec n)
 (let ((vec (vector-grow-init vec (1+ n) 0)))
 (aset vec n (1+ (aref vec n)))
 vec))

 Emacs compiles the code part of this to 18 bytes of bytecode, 4½
per line; this is a lot less than 28 compressed oops (56 bytes).

byte code for freq-update:
 args: (vec n)
0 constant vector-grow-init
1 varref vec
2 varref n
3 add1

4 constant 0
5 call 3
6 dup
7 varbind vec
8 varref n
9 varref vec
10 varref n
11 aref
12 add1
13 aset
14 discard
15 varref vec
16 unbind 1
17 return

 It’s a little bit unfair not to count the argument list and constants
vector here, because they allow the references to vec and n and
vector-grow-init to fit into a few bits of a byte, while normally they
would require 8 bytes, as the elements of the argument list and
constants vector do. Only a little unfair, though.

 It is surely not at all coincidental that the ultracompressed-oop
stuff in the previous section looks very much like this bytecode
structure. The argument list and constants vector are very similar to
the “link table” for a page, but the link table is shared among the
several hundred ultracompressed oops on that page, rather than just
the several dozen bytecodes of an Emacs function.

 There exists previous work on this. PICBIT was a bytecoded
Scheme for PIC microcontrollers, but its bytecode was an order of
magnitude fatter than the 6 bytes per line of code I suggested above;
it was a successor to the slimmer BIT, which fit the R4RS Scheme
library into under 8000 bytes of bytecode.

 Immutable list structure can be productively represented by a sort of
bytecode as well, but this probably isn’t worthwhile. Given the same
“link table” vector of 9 atoms as above in the section on “compressed
oops in secondary storage”, in Elisp notation [define freq-update vec n
vector-ref let vector-grow-init vector-set! 1+], we could represent our
example Scheme definition as the 39-byte string
“(0(123)(5((2(62(83)@)))(723(8(423)))2))”. Here “(” is the “nest”
bytecode, “)” is the “nil” bytecode which terminates a list, the ASCII
digits are indices into the link table, and “@” is the small-integer 0;
pointers into the list structure are represented by pointers before its
bytes. null? is straightforward (is a pointer pointing before a “)”?) and
car either decodes the byte following the pointer or, in the case of “(“,
returns an incremented pointer, which is the same distinction atom?
must make. Only cdr is tricky, since it must increment the pointer
past either an atom or an arbitrary-length list. A table of minimal
nesting depth per 8-byte chunk would probably make this adequately
efficient by enabling cdr to rapidly skip over large, deeply-nested
chunks:

(0(123)(0
5((2(62(2

83)@)))(2
723(8(42 2
3)))2)) 1

 You could assign better bytes, but this is probably not worthwhile.
Not counting the link table, this bytecoded list structure uses 39 bytes
(as opposed to the 18 bytecode bytes for the compiled code), 44
including the skip table, while in its packed-tuple form it occupies
only 28 oops: 56 bytes in the 16-bit case, 42 bytes in the 12-bit case.
If we were to use 8-bit compressed oops (as the above bytecode
implicitly does), limiting the bytecode to only 256 referents, they
would be 28 bytes, which is less than 39. Also, the packed tuples are
more efficient to traverse and can support mutation.

 It probably is worthwhile to burn large amounts of bytecode into
the microcontroller’s Flash and interpret it from Flash; that way you
don’t have to spend precious RAM on code. (128 KiB would hold
about 20,000 lines of high-level code by the above estimate — the
whole VPRI STEPS complexity budget — but of course the system
has to use some memory too.) It’s probably okay for loading a new
application to take a good fraction of a second if that frees up RAM
for data. Most modern microcontrollers support pagewise
reprogramming of their internal (NOR, painfully slow) Flash during
operation, so this kind of thing should be acceptable even for
exploratory interactive development.

 † McKeeman also evidently invented peephole optimization in
01965, differential testing in 01998, and was Hehner’s advisor’s
advisor, but he wasn’t credited in the TR.

 JIT compilation
 In a memory-constrained environment, it’s surely worthwhile to
compile all code to bytecode like the above, rather than interpreting
directly from dotted pairs as BBN LISP did (or from packed tuples).
Compiling into machine code is a more dubious proposition, since
machine code tends to be much bulkier than bytecode, but the typical
interpretive slowdown is a factor of 10–40, which in this case could
translate to 10–40 times shorter battery life for compute-bound tasks.

 Ur-Scheme uses a very simple and dumb compilation scheme (the
same one as Bigforth, the one Crenshaw uses in “Let’s Make a
Compiler”) for expressions, and open-codes the common cases of
built-in operations, preceded by a dynamic type check (typically
provided by “millicode”, though I didn't know the name at the time).
The consequence is that it compiles its own 1553 lines of Scheme into
90168 bytes of i386 code (plus 45K of data, mostly read-only), almost
60 bytes of machine code per source line, doing things like this:

 call *%ebx
 pop %eax
 push %eax
 movl $2 + 256<<2, %eax # Ur-Scheme’s representation of nil
 .section .rodata
 # align pointers so they end in binary 00

 .align 4
_parse_eofP_9: # in-memory read-only representation of string
 .long 0xbabb1e
 .long 3
 .ascii " ()"
 .text
 push %eax
 movl $_parse_eofP_9, %eax
 # get procedure
 push %eax
 movl (_parse_string_1), %eax
 # apply procedure
 call ensure_procedure
 movl 4(%eax), %ebx
 movl $1, %edx # argument count
 call *%ebx
 # get procedure
 push %eax
 movl (_emit_malloc_n_4), %eax

 This compiles to something like the following:

 805d9f4: ff d3 call *%ebx
 805d9f6: 58 pop %eax
 805d9f7: 50 push %eax
 805d9f8: b8 02 04 00 00 mov $0x402,%eax
 805d9fd: 50 push %eax
 805d9fe: b8 48 2f 06 08 mov $0x8062f48,%eax
 805da03: 50 push %eax
 805da04: a1 74 95 06 08 mov 0x8069574,%eax
 805da09: e8 58 a7 fe ff call 8048166 <ensure_procedure>
 805da0e: 8b 58 04 mov 0x4(%eax),%ebx
 805da11: ba 01 00 00 00 mov $0x1,%edx
 805da16: ff d3 call *%ebx
 805da18: 50 push %eax
 805da19: a1 24 94 06 08 mov 0x8069424,%eax

 These 40 bytes of machine code in 14 instructions (one invoking a
millicode routine) are part of the compilation results from this line of
code, which invokes no macros:

(assert-equal (parse-string " ()") '())

 It’s easy to do a little better than this with peephole optimization,
but I think doing much better requires not just register allocation (at
least in an extremely stupid form) but also some kind of static type
system so we can avoid the endless type tests. I mean you could
imagine the above getting compiled to the following:

 movl $_parse_eofP_9, %eax # load string pointer
 call _parse_string_2

 xor %ecx, %ecx # load nil

 And that would be 12 bytes instead of 40, and 3 instructions instead
of 14 (plus the 5 instructions in ensure_procedure). But for that you’d
have to know statically that parse-string was a procedure (and not a
closure or, say, an integer) and that it took one argument. To avoid
additional redundant checks inside of it, you’d also need to know that
that argument was a string.

 By contrast, the source code would be four oops of list structure,
and it compiles to 4 bytes of Elisp bytecode out of these 7:

byte code for test-assert-equal-parse-string:
 args: nil
0 constant assert-equal
1 constant parse-string
2 constant " ()"
3 call 1
4 constant nil
5 call 2
6 return

 As a very crude sort of estimate:
 form weight
 unoptimized i386 code 40 bytes
 source text 25 bytes
 dotted pairs, 16 bit 16 bytes
 optimized i386 code 12 bytes
 packed tuples, 16 bit 8 bytes
 packed tuples, 12 bit 6 bytes
 bytecode 4 bytes (plus constant vectors, etc.)

 I haven’t tried it on ARM or RISC-V but I think the results will
probably be about the same as i386, maybe a bit smaller. So we should
expect easily generated machine code to be around 4 times the size of
the list-structure source code, reasonable machine code to be about
the same size as the source code, and bytecode to be smaller than that
by a factor of 2–4.

 When compiled with itself, Ur-Scheme, despite the slowdown
factor of 4–8 evident in the above code, executes only 678,737,113
userland instructions to compile itself a second time (180 ms, only ⅔
in userland), about 437 instructions per line of source code. The
executable contains 29355 instructions, so generating each output
instruction takes about 23 instructions. Presumably it would be about
30 kilobytes of code and 8000 instructions, and need to run about 128
instructions per source line, if it were compiled with a decent
compiler — but also generate a smaller amount of output code, so the
23-instruction ratio stays the same. Being such a decent compiler
might slow it back down to 512 instructions per source line or, say,
128 instructions per output instruction. (Then again, it might speed it
up.)

 This suggests that, when you can execute from RAM, the iteration
count at which a JIT compilation pays off timewise is on the order of

4–32. If you have a straight-line chunk of bytecode that can be
JIT-compiled to a sequence of 32 instructions, then doing that
compilation (at 128 compiler instructions per output instruction)
might cost you 4096 instructions. Each time you interpret the
bytecode at an interpretation slowdown of 16×, you spend 512
instructions on interpretation, so after 8 repetitions you’ve wasted the
4096 instructions you could have used on compiling it. If it’s possible
to cut the compilation time down to 24 compiler instructions
executed per compiled instruction output, then the breakeven point is
1½ iterations!

 So, particularly if decent static type information is available, you’d
get a pretty good reduction in battery usage by compiling most
bytecode to machine code, even if you had to discard the compiled
machine code after a small number of executions. It might even be
worthwhile to always JIT-compile the bytecode. This approach, in
turn, reduces the pressure on bytecode to be fast to unpack, so you
can use bytecode representations that require more computation to
understand, enabling you to fit more bytecode in RAM at once. For
example, you could use variable-length instruction and operand
encodings.

 Compiled machine code that is executed many times is a good
candidate for promotion to the microcontroller’s flash to free up
RAM. Since this is NOR, we can expect to pay on the order of
2000 nJ per byte to erase and program it, so “many times” means
something on the order of 4096 = 2¹² times — but perhaps it should
also outweigh whatever compiled code must be evicted to make room
for it, since we can only erase and reprogram Flash pages 100k ≈ 2¹⁷
times or so. Otherwise we are going to wear out a Flash that can hold
2¹⁶ instructions after something like 212+17+16 = 2⁴⁵ instruction
executions. That’s about an hour.

 Topics

• Programming (p. 1141) (49 notes)
• History (p. 1153) (24 notes)
• Performance (p. 1155) (22 notes)
• Safe programming languages (p. 1172) (11 notes)
• Lisp (p. 1174) (11 notes)
• Virtual machines (p. 1182) (9 notes)
• Microcontrollers (p. 1211) (6 notes)
• Bytecode (p. 1236) (5 notes)
• Reverse Polish notation (RPN) (p. 1243) (4 notes)
• Memory models (p. 1285) (3 notes)

Panelization in PCB
manufacturing
Kragen Javier Sitaker, 02021-02-25 (updated 02021-02-26)
(7 minutes)

 PCB contract manufacturers like JLCPCB (“CMs”) can not only
cut out your circuit board to specified shapes with a router (2-mm
endmill), but also score it with V-grooves on one or both sides, so you
can break it into panels. Looking at the Boréas Technology
evaluation board, I see that it’s scored this way on one side to be able
to break it into three boards, but has traces across the scoring on the
opposite side of the board, so until you do break it into panels this way,
it’s a single board; but once you do, you can reconnect the
previously-connected pieces at a distance using a cable, or use them
separately. Among other things, this approach is useful for testability.

 Other forms of panelization include routing that leaves tabs
(“tab-routing”) and drilling a series of holes, called “mouse bites,”
most often used to weaken a tab, avoiding the need to score it with a
knife, cut with diagonal cutters, or use a depaneling nibbler. Mouse
bites in particular can create curved breakaway edges, and they leave a
rough edge on the board after breaking, which can be useful or
harmful. JLCPCB in particular is willing to do some amount of
tab-routing without increasing their price of US$2 for 10 boards of
100 mm × 100 mm. There are established panelization guidelines.

 SparkFun has a whole “ProtoSnap” product line based on this idea;
their ProtoSnap Pro Mini, for example, had an Arduino Pro Mini
SBC already wired up to a USB-to-serial converter, two actuators,
two sensors, and a prototyping area, and their LilyPad ProtoSnap Plus
has a LilyPad similarly preconnected to several sensors and actuators
and conductive-thread connectors, which can then be broken apart at
the tabs and reconnected elsewhere, like in your clothes.

 LED tape often comes with similar cut points, where you can cut it
with scissors to a given length, but if you don’t, the whole tape can be
hooked up to from 2–4 wires. (Such tapes might cost US$19 for 5 m,
US$43 for 5 m, or US$17 for 4½ m at retail here in Argentina.) “Flat
flex PCBs” are printed on thin Kapton and commonly used as
connector cables, and can be cut with scissors in a similar fashion.

 And, of course, prototyping perfboard is pretty easy to cut along
the perforation lines.

 There’s also a technique to allow electrical continuity across
V-scores cut on both sides of a board: a plated-through hole that the
V-score runs through, so the plating in the hole electrically bridges
the V-score.

 Circuit board “edge connectors” are interesting to mention in this
connection: ISA cards, PCI cards, DIMMs, and many USB-A
devices have no separate connector, just exposed copper, either on one
side of the board or both. (Zebra-strip, Z-tape, and pogo-pin
“connectors” on PCBs are also commonly just exposed copper.) Such
connectors can be provided at a place that’s exposed by snapping at

https://www.eevblog.com/forum/projects/snap-off-pcb-sections-mouse-bites-vs-solid-tabs/msg3383966/
https://www.electronicdesign.com/technologies/boards/article/21801451/pcb-designers-need-to-know-these-panelization-guidelines
https://www.sparkfun.com/products/retired/10889
https://www.sparkfun.com/products/14346
https://articulo.mercadolibre.com.ar/MLA-787222000-tira-de-led-pixel-5v-5050-30-ledxm-inteligente-ws2812-ip20-_JM
https://articulo.mercadolibre.com.ar/MLA-787221816-tira-de-led-pixel-5v-5050-60-ledxm-inteligente-ws2812-ip20-_JM
https://articulo.mercadolibre.com.ar/MLA-825408790-tira-led-luces-colores-autoadhesivas-exterior-control-remoto-_JM
https://www.youtube.com/watch?v=V5BDcEqEaKg
https://www.youtube.com/watch?v=V5BDcEqEaKg

such V-grooves.

 You could imagine designing a circuit board that works as a whole,
but can also be broken into smaller circuit boards, or cut with scissors,
to get more reconfigurability.

 Custom PCB manufacturing is amazingly cheap; TrickyNekro
reports €10 for 100 boards of 38 mm × 18 mm each, plus normally
US$20 for “shipping”. And if the panel size is exactly 100 mm ×
100 mm, they used to not charge anything for V-scoring (though
reportedly that was only if all the boards in the panel were identical,
and they now charge something like US$8 for V-scoring, while
others report problems getting JLC to V-score), although I don’t
know if there was a limit to how many lines you could request on
your “board outline layer (*.GKO)”. In the same thread, georges80
reports 3–4 day turnaround to the US West Coast, paying:

• US$20 for “the protos” (???)
• US$32 for “10 pieces with 3 [2-layer] boards on a panel with ‘jlpcb’
panelization which is v-scored”
• US$68 for 25 165 mm × 75 mm panels of 10 [2-layer] boards each,
including paying extra white solder mask

 And blazini36 reports getting 10 100 mm × 75 mm prototyping
boards for US$27, including shipping and an extra US$8 for the
boards being blue, in 3 days, on several occasions, while OSH Park
wanted to charge them US$300 and delay 12 days. Battlecoder
reports that they paid US$12 for 10 prototype boards, and had to wait
a month, because JLCPCB doesn’t have free shipping to their
(unspecified) country.

 Nobody in the thread is sure if they can do V-scores at arbitrary
angles as well as straight across.

 It occurs to me that this sort of thing might also be useful for
mechanical construction, although the shapes you can V-score are even
more limited than the shapes you can laser-cut — no sharp curves or
inside corners. JLCPCB uses a cutting wheel to cut the V-scores so
you can’t even do curves. But if you can get some slots routed out in
addition to the V-scores, you could get a pretty productive
“construction set” pretty cheap. (You’d have to wear gloves to keep
the fiberglass out of your fingers.) And then you can solder the joints
to hold the assembled pieces in place, like the FR4 mill.

 If you could get a 100-mm-square panel panelized with V-scores
into a hundred 10-mm-square pieces, which would take 18 V-scores
(higher than the usual 5 or so, but not by that much) it seems like you
could get a pretty large set of circuit components. With
2.54-mm-spaced holes along the edge (which I think normally costs
extra) you could have six
breadboard-compatible/Dupont-cable-compatible pins on each such
microboard. Backing off a little bit, if you only panelized the panel
into 50 10 mm × 20 mm pieces (13 V-scores), you could have 6
breadboard pins along each edge and a 4-pin USB-A connector at one
end of the board.

 Going to the extreme, SparkFun sells a US$8 perfboard totally
crisscrossed with V-scores so you can break it into 1250 pieces.

https://www.eevblog.com/forum/projects/jlcpcb-opinions-and-more/
https://www.eevblog.com/forum/projects/jlcpcb-opinions-and-more/
https://www.youtube.com/watch?v=iYrUztOn3dU
https://www.youtube.com/watch?v=iYrUztOn3dU
https://www.youtube.com/watch?v=iYrUztOn3dU
https://old.reddit.com/r/PrintedCircuitBoard/comments/a9mgfk/how_to_indicate_vcuts_for_jlcpcb/
https://old.reddit.com/r/PrintedCircuitBoard/comments/a9mgfk/how_to_indicate_vcuts_for_jlcpcb/
https://www.sparkfun.com/products/13268
https://www.sparkfun.com/products/13268

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Manufacturing (p. 1151) (29 notes)
• Composability (p. 1188) (9 notes)

Some notes on IPL-VI, Lisp’s
01958 precursor
Kragen Javier Sitaker, 02021-03-02 (4 minutes)

 Reading “A Command Structure for Complex Information
Processing” from 01958, and it’s pretty astonishing.

 It talks about a memory made of dotted pairs in the same year as
LISP, and a CPU without arithmetic decades before Steele’s Scheme
chip.

 They hadn’t invented garbage collection yet, so they tried to use a
“responsibility bit” to distinguish the “owning” pointer to a
substructure, with the intent of giving their system a purely
hierarchical structure like a hard-link-free Unix filesystem. They
didn’t know about symlinks, though, and they only associated this bit
with car, not cdr (pp. 17–18 (19–20/54)):
The single bit, e, is an essential piece of auxiliary information. The address, d, in a
symbol [“symbol” here means what LISP calls car] may be the address of another
list structure. The responsibility code in a symbol occurrence [car] indicates
whether this occurrence is “responsible” for the structure designated by d. If the
same address, d, occurs in more than one word, only one of these will indicate
responsibility for d. ...The need for a definite assignment of responsibility can be
seen by considering the process of erasing a list. ...although a system that will
handle merging lists also requires a responsibility bit on the link [cdr] f.

 Their design is a two-stack machine significantly before Forth; the
operand stack is “L0, Communication List” and the return stack is “L2,
List of Current Instruction Addresses (CIA)” (p. 14).

 They had the idea of a generator coroutine or OO or thunking or
lazy evaluation or duck typing too. p. 7:
Without breakout devices [this is difficult to gloss], this format would ... permit
the operand [argument] of a process [subroutine] to be specified only by giving its
address. ...these limitations are removed... by allowing the address for an operand
to refer either to the operand itself or to any process that will determine the
operand.

 Note that this was before thunking was invented for ALGOL-60
call by name! On p. 8 we see duck typing, coroutines, and laziness:
Identity of Data with Programs
 In current computers, the data are considered “inert.” They are symbols to be
operated upon by the program. All “structure” of the data is ... encoded implicitly
into the programs that work with the data. The structure is embodied in the
conventions that determine what bits the processes will decode, and so on.
 An alternative approach is to make the data “active.” All words in the computer
will have the instruction format; there will be “data” programs, and the data will
be obtained by executing these programs. ... a list of data, for example, may be
specified by a list of processes that determine the data. Since data are only desired
“on command” by the processing programs, this approach leads to a computer that,
although still serial in its control, contains at any given moment a large number of
parallel active programs, frozen in the midst of operation and waiting until called
upon to produce the next operation or piece of data. This identity of data with
program can be attained only if the processing programs require for their operation
no information about the structure of the data programs — only information about
how to receive the data from them.

http://bitsavers.org/pdf/rand/ipl/P-1277_A_Command_Structure_For_Complex_Information_Processing_Aug58.pdf
http://bitsavers.org/pdf/rand/ipl/P-1277_A_Command_Structure_For_Complex_Information_Processing_Aug58.pdf

Topics

• Programming (p. 1141) (49 notes)
• History (p. 1153) (24 notes)
• Lisp (p. 1174) (11 notes)
• Memory ownership (p. 1346) (2 notes)

Refreshing Flash memory
periodically for archival
Kragen Javier Sitaker, 02021-03-02 (1 minute)

 Consider the family of hardware designs explored in How do you
fit a high-level language into a microcontroller? Let’s look at BBN
Lisp (p. 160). Could you use these for centuries-long data retention?

 Flash chips are typically specified for 10-year data retention. That
means the 4.4 or 16 nJ cited in that note to write each byte aren’t
forever; that’s per byte per decade. If we want to keep 128 mebibytes
refreshed indefinitely, as discussed in “Egg of the Phoenix”, we need
0.6–2 J per decade, which is 2–7 nW, or about 40 nW per gibibyte.
So the STM32L011 mentioned in How do you fit a high-level
language into a microcontroller? Let’s look at BBN Lisp (p. 160),
with its microwatt of stop-mode power, uses about as much power as
keeping 25 gibibytes.

 If you coupled that chip with 64–256 GiB of NAND Flash, all
you’d need is a power source that reliably provides 3–10 μW for
decades or centuries. No conventional battery can do this;
alternatives include an Atmos-clock-style air-pressure energy
harvesting system, as I suggested in Dercuano (where I calculated that
the daily barometric variation of a few hundred pascals amounts to a
theoretical maximum of a few μW per liter, though Atmos clocks are
reported to only use about 250 nW), or perhaps something like the
Clarendon Dry Pile. This is much less than the 160 μW for 100 GB I
estimated in Dercuano.

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Memory hardware (p. 1250) (4 notes)
• Archival (p. 1389) (2 notes)

Variable length unaligned
bytecode
Kragen Javier Sitaker, 02021-03-02 (updated 02021-03-03)
(4 minutes)

 Instruction set design for hardware has a different value system
from instruction set design for software emulation; sometimes the
tradeoffs that improve an instruction set for hardware implementation
worsen it for software.

 For example, for software emulation, instructions trailed with
variable-length operands, like the 8086, are no problem, and
inconsistency from one instruction encoding to the next is no
problem, but bitfields are a terrible problem. For hardware, bitfields
are just wires, but layout inconsistency adds layers of multiplexor
delay; for software, bitfields require bit shifting, which requires a
loop if your CPU lacks a barrel shifter or has registers too short for
the numbers you’re shifting.

 I was prototyping a virtual machine in C today on my phone, using
an unsigned byte array as the VM’s memory. I was pleased to see that
clang supports GCC’s pointers-to-labels extension and generates
decent code for it; my goto dispatch; at the end of each case even
resulted in duplicating the code dispatch: goto *tbl[mem[pc++]]; in every
case, which is one or another variant of

ldrb r2, [r4, r6]
add r1, r6, #1
ldr r3, [r5, r2, lsl #1]
bx r3

 Duplicating this code allows each case to have its own BTB entry,
which is helpful for branch prediction, and saves a wasteful
unconditional jump. So, the virtual machine bytecode dispatch
overhead is only about a factor of 5, and all seemed good in the world.
But then I looked at unaligned memory access.

 My code to store a 32-bit value in the memory was:

#define byt(x) ((x) & 255)
#define store_tet(val, p) do { \
 mem[p] = byt(val); \
 mem[(p)+1] = byt((val) >> 8); \
 mem[(p)+2] = byt((val) >> 16); \
 mem[(p)+3] = byt((val) >> 24); \
} while (0)

 I figured that this was a portable, #ifdef-free way of marshalling a
little-endian 32-bit value, but the phone’s ARM processor (a
Qualcomm MSM8939 ARMv7l) is running in little-endian mode, so
Clang would recognize this and convert it to a simple store. Imagine
my surprise at seeing the assembly:

strb r7, [r4, #3]
strb r7, [r4, #2]
strb r7, [r4, #1]
strb r7, [r4]

 ARMv7 supports unaligned access but possibly the compiler is not
generating ARMv7 code; it’s not using Thumb, for example,
although /proc/cpuinfo says it’s supported. (-march=armv7 doesn’t help.)
(Older ARM versions mostly ignored the low-order bits, but had
strange behavior in ldr and unpredictable behavior in ldrh and ldrd.
ARMv11 has an even larger set of possibilities.) But there’s an option
in ARMv7 to trap on unaligned accesses! So you can’t rely on it.
Also, as a side note, it doesn’t seem to be doing the specified bit shifts;
in other cases it says things like

lsr r0, r3, #24
...
strb r0, [r1, #-1]
lsr r0, r3, #16
strb r0, [r1, #-2]
lsr r0, r3, #8
strb r0, [r1, #-3]

 which is sort of reasonable, although I’m not sure what happened
to r3’s least significant byte. Except it’s not reasonable: a single virtual
machine instruction to store a 32-bit value in RAM is going to take 7
instructions on the underlying machine this way, plus dispatch
overhead.

 So I was happily replacing my byte array with an array of uint32_t
(it’s a prototype! I can do things like that!) and started using mem[p/4]
and byt(mem[p/4] >> (p & 3)) before I realized that I’d just replicated the
whole unaligned-memory-access problem. If an instruction contains
an unaligned 4-byte immediate operand, rounding down p/4 is not
going to fetch that immediate successfully!

 So, unless I’m going to require the instructions to be aligned, which
probably means mostly not using variable-length instructions, the
multiple shifts and loads are going to be happening. Even if you have
“hardware support” for unaligned accesses, that doesn’t mean you
aren’t paying a speed penalty, or that it’s less than the above code — it
might be implemented by trapping to the kernel, making it hundreds
of times slower.

 So this is a case where I thought hardware and software were more
different than they actually are.

Topics

• Performance (p. 1155) (22 notes)
• Assembly-language programming (p. 1175) (11 notes)
• Virtual machines (p. 1182) (9 notes)
• Instruction sets (p. 1214) (6 notes)
• The ARM Acorn RISC Machine

https://archive.fo/aWFc7
https://archive.fo/kDlnI
https://archive.fo/kDlnI

A survey of imperative
programming operations’
prevalence
Kragen Javier Sitaker, 02021-03-02 (updated 02021-09-11)
(61 minutes)

 Veskeno needs to be able to fluently (and, above all,
deterministically) express the ingredients of software. But what are
those ingredients? What are the things we want to be able to express?

What does normal code consist of?
According to our data, a typical procedure consists of 8 or 9 assignment statements,
4 calls to other procedures, 3 IF statements, 1 loop, and 1 escape (RETURN or
EXITLOOP). Two of the assignment statements simply assign a constant to a
scalar variable, one assigns one scalar variable to another, and 3 or 4 more involve
only one operand on the right hand size. The entire procedure probably contains
only 2 arithmetic operators. Two of the three conditions in the IF statements
involve only a single relational operator, probably = or ≠.

 (Tanenbaum, 01978, “Implications of Structured Programming for
Machine Architecture”; note how no records, arrays, or other data
structures are mentioned)

 I thought I’d go and look at a variety of random code in different
languages to get an idea of what random code looks like. After all,
maybe my own personal preferences and practices aren’t typical!
Maybe I tend to focus on some small niche area of the wide world of
programming. After all, I do write code mostly in Python nowadays.
For better or worse, I’m focusing on languages I do know pretty well.
I looked at random bits of code in 12 languages.

 Modulecounts says npm (JS) is growing at 940 modules a day,
Maven Central (Java) 234, PyPI 217, nuget (.NET) 181, Packagist
(PHP) 102, crates.io (Rust) 58, and RubyGems 19. Everything else is
below 10 new modules per day. I sampled the top three of these, plus
another 9 that aren’t hip. TIOBE gives C, Java, Python, C++, C#
(.NET), Visual Basic (.NET), JS, PHP, SQL, and assembly as its top
10; I included five of these including the top four; GitHub ranks JS,
Python, Java, TypeScript, C#, PHP, C++, C, shell, and Ruby, and I
included six of these, including the top three. (PHP and C# are the
big omissions.) Stack Overflow lists JS, Python, Java, bash, C#, PHP,
TypeScript, C++, C, and Golang.

 So, hopefully I’m getting a pretty broad range of programming
styles, although all these languages except m4 are pretty similar.

Scheme

 First consider this chunk of code from Ur-Scheme:

(define interned-symbol-list '())
(define (intern symbol)
 (interning symbol interned-symbol-list))

http://www.modulecounts.com/
https://www.tiobe.com/tiobe-index/
https://octoverse.github.com/
https://insights.stackoverflow.com/survey/2020

(define (interning symbol symlist)
 (cond ((null? symlist)
 ;; XXX isn't this kind of duplicative with the global variables stuff?
 (set! interned-symbol-list
 (cons (list symbol (new-label)) interned-symbol-list))
 (car interned-symbol-list))
 ((eq? symbol (caar symlist)) (car symlist))
 (else (interning symbol (cdr symlist)))))
(define (symbol-value symbol) (cadr (intern symbol)))

 I think this is more or less normal code. It has some definitions, an
assignment, a loop, a mutable variable, some immutable arguments,
some comparisons, some conditionals, some invocations of some
primitive functionality (mostly to access container objects), and some
calls to high-level functions. It contains an unusually small amount of
mutation (one assignment), an unusually small number of constants
(just one, nil), and an unusually small amount of sequencing (just the
sequence of two consequents of null? symlist and the top-level
sequence of definitions). You can’t tell from looking, but it invokes
two macros: both define and cond are defined as macros in Ur-Scheme.

Python

 Here’s some more code that is also pretty normal, from
bzrlib.plugins.gtk:

class LockDialog(Gtk.Dialog):

 def __init__(self, branch):
 super(LockDialog, self).__init__()

 self.branch = branch

 self.set_title('Lock Not Held')

 self.get_content_area().add(
 Gtk.Label(label=(
 'This operation cannot be completed as '
 'another application has locked the branch.')))

 self.add_button('Break Lock', RESPONSE_BREAK)
 self.add_button(Gtk.STOCK_CANCEL, RESPONSE_CANCEL)

 self.get_content_area().show_all()

 This has a class definition with inheritance and a constructor, a
superclass constructor invocation, some arguments, some references to
free variables (imported from other modules in this case), some
constant strings, a sequence of method calls, and even an object
instantiation and a named argument. The only primitives used, other
than those mentioned above, are attribute access.

C

 Here’s some slightly less normal code, from gpsd/json.c:

json_debug_trace((1, "JSON parse of '%s' begins.\n", cp));

/* parse input JSON */
for (; *cp != '\0'; cp++) {
json_debug_trace((2, "State %-14s, looking at '%c' (%p)\n",
 statenames[state], *cp, cp));
switch (state) {
case init:
 if (isspace(*cp))
 continue;
 else if (*cp == '{')
 state = await_attr;
 else {
 json_debug_trace((1,
 "Non-WS when expecting object start.\n"));
 return JSON_ERR_OBSTART;
 }
 break;
case await_attr:
 if (isspace(*cp))
 continue;

 I would have included the whole function, but it’s 454 lines long.
This includes three calls to a C macro, which invokes a variadic
function called json_trace; a couple of character constants; a loop; a
couple of integer constants; three string constants; an assignment; a
passel of sequencing; pointer arithmetic, including mutation by
postincrement; indexing into an array by the enum; a switch
statement on an enum; some early exits; lots of primitive operations;
and a couple of invocations of isspace, from the standard library,
which could be a subroutine but is probably a macro.

JS

 Here’s some more fairly normal code, this time from a JS version of
Python’s bisect binary search library, included in a package called
“crossfilter”. I’ve removed the comments but they already didn’t say
who the author was:

function bisect_by(f) {
 function bisectLeft(a, x, lo, hi) {
 while (lo < hi) {
 var mid = lo + hi >>> 1;
 if (f(a[mid]) < x) lo = mid + 1;
 else hi = mid;
 }
 return lo;
 }

 function bisectRight(a, x, lo, hi) {
 while (lo < hi) {
 var mid = lo + hi >>> 1;
 if (x < f(a[mid])) hi = mid;
 else lo = mid + 1;
 }

 return lo;
 }

 bisectRight.right = bisectRight;
 bisectRight.left = bisectLeft;
 return bisectRight;
}

 This has some functions with parameters; conditionals; a couple of
loops; comparisons; a few assignments; a little bit of arithmetic
(unlike the others!), including a bit shift; a higher-order function
taking a functional argument and returning closures; some
assignments to attributes; and indexing into arrays.

Java

 Here’s some more code that isn’t very normal at all, from Mako, “a
simple stack-based virtual game console, designed to be as simple as
possible to implement”, but mostly another copy of Forth:

public void tick() {
 int o = m[m[PC]++];
 int a, b;

 switch(o) {
 case OP_CONST : push(m[m[PC]++]); break;
 case OP_CALL : rpush(m[PC]+1); m[PC] = m[m[PC]]; break;
 case OP_JUMP : m[PC] = m[m[PC]]; break;
 case OP_JUMPZ : m[PC] = pop()==0 ? m[m[PC]] : m[PC]+1; break;
 case OP_JUMPIF : m[PC] = pop()!=0 ? m[m[PC]] : m[PC]+1; break;
 case OP_LOAD : push(load(pop())); break;
 case OP_STOR : stor(pop(),pop()); break;
 case OP_RETURN : m[PC] = rpop(); break;
 case OP_DROP : pop(); break;
 case OP_SWAP : a = pop(); b = pop(); push(a); push(b); break;
 case OP_DUP : push(m[m[DP]-1]); break;
 case OP_OVER : push(m[m[DP]-2]); break;
 case OP_STR : rpush(pop()); break;
 case OP_RTS : push(rpop()); break;
 case OP_ADD : a = pop(); b = pop(); push(b+a); break;
 case OP_SUB : a = pop(); b = pop(); push(b-a); break;
 case OP_MUL : a = pop(); b = pop(); push(b*a); break;
 case OP_DIV : a = pop(); b = pop(); push(b/a); break;
 case OP_MOD : a = pop(); b = pop(); push(mod(b,a)); break;
 case OP_AND : a = pop(); b = pop(); push(b&a); break;
 case OP_OR : a = pop(); b = pop(); push(b|a); break;
 case OP_XOR : a = pop(); b = pop(); push(b^a); break;
 case OP_NOT : push(~pop()); break;
 case OP_SGT : a = pop(); b = pop(); push(b>a ? -1:0); break;
 case OP_SLT : a = pop(); b = pop(); push(b<a ? -1:0); break;
 case OP_NEXT : m[PC] = --m[m[RP]-1]<0?m[PC]+1:m[m[PC]]; break;
 }
}

 This has a method definition; a switch statement; some constants;

a bunch of method calls; a bunch of arithmetic primitives (including
bitwise operators, which we haven't seen before); indexing into
arrays; conditionals; lots of assignment and other mutation; and a
number of numeric constants.

 Here's some more normal code, also in Java, reformatted from the
OpenJDK; this code is compilation output from some kind of macro
processing, and it implements a FIFO of double-precision
floating-point numbers:

public DoubleBuffer asReadOnlyBuffer() {
 return new HeapDoubleBufferR(hb, this.markValue(), this.position(),
 this.limit(), this.capacity(), offset);
}

protected int ix(int i) { return i + offset; }
public double get() { return hb[ix(nextGetIndex())]; }
public double get(int i) { return hb[ix(checkIndex(i))]; }

public DoubleBuffer get(double[] dst, int offset, int length) {
 checkBounds(offset, length, dst.length);
 if (length > remaining())
 throw new BufferUnderflowException();
 System.arraycopy(hb, ix(position()), dst, offset, length);
 position(position() + length);
 return this;
}

 This contains a number of method calls with varying protection,
lots of type declarations (including methods overridden by type
signature), lots of method calls, a little attribute access, some implicit
self-instance-variable access, object instantiation, array indexing, a
little bit of arithmetic (two additions and a comparison), a
conditional, some mutation, and an exception.

Perl
 Here’s some more pretty normal code, this time in Perl, from
Net::DBus::Binding::Message::Error:

=item my $error = Net::DBus::Binding::Message::Error->new(
 replyto => $method_call, name => $name, description => $description);

Creates a new message, representing an error which occurred during
the handling of the method call object passed in as the C<replyto>
parameter. The C<name> parameter is the formal name of the error
condition, while the C<description> is a short piece of text giving
more specific information on the error.

=cut

sub new {
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my %params = @_;

 my $replyto = exists $params{replyto} ? $params{replyto} : die "replyto param
eter is required";

 my $msg = exists $params{message} ? $params{message} :
 Net::DBus::Binding::Message::Error::_create
 (
 $replyto->{message},
 ($params{name} ? $params{name} : die "name parameter is required"),

 ($params{description} ? $params{description} : die "description paramete
r is required"));

 my $self = $class->SUPER::new(message => $msg);

 bless $self, $class;

 return $self;
}

 This is a method definition including properly marked-up
documentation. It contains five conditionals, six local variables, no
mutation, three exceptions, a bunch of hash table lookups by string
(like Python, Perl uses string-indexed hash tables instead of record
types), a method call (on the superclass), deeply nested namespaces,
and lots and lots of invocations of primitives, including shift, ref, exists
, @_, and bless. It has a lot of string literals if we count the
parameter/attribute names and the package names, but otherwise the
only constants are some string literals for error messages.

Elisp

 Here’s some more pretty normal Lisp code, this time in Elisp, from
Eric Ludlam’s Speedbar package:

(defun speedbar-add-supported-extension (extension)
 "Add EXTENSION as a new supported extension for speedbar tagging.
This should start with a `.' if it is not a complete file name, and
the dot should NOT be quoted in with \\. Other regular expression
matchers are allowed however. EXTENSION may be a single string or a
list of strings."
 (interactive "sExtension: ")
 (if (not (listp extension)) (setq extension (list extension)))
 (while extension
 (if (member (car extension) speedbar-supported-extension-expressions)
 nil
 (setq speedbar-supported-extension-expressions
 (cons (car extension) speedbar-supported-extension-expressions)))
 (setq extension (cdr extension)))
 (setq speedbar-file-regexp (speedbar-extension-list-to-regex
 speedbar-supported-extension-expressions)))

 This function contains two conditionals, four assignments, a loop,
properly formatted documentation, one to three constants (nil and
two strings) depending on how you count, lots of calls to primitives,

and a call to another function in the same package.

Lua

 Here’s some more pretty normal code, this time in Lua from
NMap, slightly reformatted. This is from Patrik Karlsson’s interface
to get packets from WinPcap:

 -- Holds the two supported authentication mechanisms PWD and NULL
 Authentication = {
 PWD = {
 new = function(self, username, password)
 local o = {
 type = 1,
 username = username,
 password = password,
 }
 setmetatable(o, self)
 self.__index = self
 return o
 end,

 __tostring = function(self)
 local DUMMY = 0
 return bin.pack(">SSSSAA", self.type, DUMMY, #self.username,
 #self.password, self.username, self.password)
 end,
 },

 Her we have three levels of nesting of Lua tables (dictionaries),
...Authentication.PWD.new. There are a couple of functions (which are
methods on a metatable object; one is a constructor), a couple of local
variable declarations, an assignment to the __index attribute, a few
accesses to attributes, invocation of the # length primitive, a call to a
function from another module, and the construction of a new table o.
There are three constants, one of which is a string in a binary
serialization little language. There is a sequence of four statements in
new.

C++

 Here’s some more much less normal code, this time in C++, from
OpenSCAD’s ColorModule (slightly reformatted):

#include "colormap.h"
AbstractNode *ColorModule::instantiate(const Context *ctx,
 const ModuleInstantiation *inst,
 const EvalContext *evalctx)
const
{
 ColorNode *node = new ColorNode(inst);

 node->color[0] = node->color[1] = node->color[2] = -1.0;
 node->color[3] = 1.0;

 AssignmentList args;

 args += Assignment("c", NULL), Assignment("alpha", NULL);

 Context c(ctx);
 c.setVariables(args, evalctx);

 Value v = c.lookup_variable("c");
 if (v.type() == Value::VECTOR) {
 for (size_t i = 0; i < 4; i++) {
 node->color[i] = i < v.toVector().size()
 ? v.toVector()[i].toDouble()
 : 1.0;
 if (node->color[i] > 1)
 PRINTB_NOCACHE("WARNING: color() expects numbers between"
 " 0.0 and 1.0. Value of %.1f is too large.",
 node->color[i]);
 }
 } else if (v.type() == Value::STRING) {
 std::string colorname = v.toString();

 Here we see an #include, (the beginning of) a method definition, lots
of parameters and other local variables, lots of type declarations, some
object instantiations, lots of accesses to attributes (“instance variables”
or “fields”), constness, lots of constants (numeric, string, and enum),
arithmetic (using postincrement mutation) to step through an array
and check numeric ranges, a loop, four conditionals, pseudo-RAII (
Context’s constructors and destructors maintain a context stack for
lookup_variable — it isn’t so much that they acquire resources so much
as that they automatically release them), operator overloading, lots of
method calls, array indexing, macros, and floating point.

Bourne shell
 Here’s a shell script from eglibc’s test suite:

common_objpfx=$1
run_program_prefix=$2
objpfx=$3

LC_ALL=C
export LC_ALL

Create the domain directories.
mkdir -p ${objpfx}domaindir/de_DE/LC_MESSAGES
mkdir -p ${objpfx}domaindir/fr_FR/LC_MESSAGES
Populate them.
msgfmt -o ${objpfx}domaindir/de_DE/LC_MESSAGES/multithread.mo tst-gettext4-de.po
msgfmt -o ${objpfx}domaindir/fr_FR/LC_MESSAGES/multithread.mo tst-gettext4-fr.po

GCONV_PATH=${common_objpfx}iconvdata
export GCONV_PATH
LOCPATH=${common_objpfx}localedata
export LOCPATH

${run_program_prefix} ${objpfx}tst-gettext4 > ${objpfx}tst-gettext4.out

exit $?

 This has very little in common with the other examples, although
we can identify parameters ($1, $2), variables, sequencing, string
constants, primitives (export, exit), invocation of library functionality
analogous to library functions (mkdir, msgfmt), containers of data
(directories), and nested namespaces.

 It’s not entirely coincidental that this shell script lacks conditionals,
loops, and subroutines (other than the whole script). It’s pretty
common for shell scripts to be just straight sequences like that: just a
sequence of mutations, slightly parameterized.

Tcl
 Here’s some fairly normal Tcl code from the ArsDigita
Community System, somewhat reformatted:

calendar-defs.tcl
by philg@mit.edu late 1998
for the /calendar system documented at /doc/calendar.html

proc calendar_system_owner {} {
 return [ad_parameter SystemOwner calendar [ad_system_owner]]
}

proc calendar_footer {} {
 return [ad_footer [calendar_system_owner]]
}

ns_share ad_user_contributions_summary_proc_list

if { ![info exists ad_user_contributions_summary_proc_list]

 || [util_search_list_of_lists $ad_user_contributions_summary_proc_list "/calen
dar postings" 0]
 == -1 } {
 lappend ad_user_contributions_summary_proc_list \
 [list "/calendar postings" calendar_user_contributions 0]
}

 Again we see invocations of “primitives” (if, lappend, list); two
subroutine definitions (which could have had parameters but don’t);
variables; invocations of non-primitive functionality like
util_search_list_of_lists and ad_parameter; string constants (all over the
place), some of which are also integer constants; sequencing; and a
couple of conditionals.

 Tcl is kind of close to shell scripts in a lot of ways — its only data
type is ostensibly strings — though it’s imported some aspects of Lisp.
The ACS codebase is probably less shell-scripty than most Tcl
codebases. I think of this script from the OpenTitan project as being
more typical of Tcl:

Copyright lowRISC contributors.
Licensed under the Apache License, Version 2.0, see LICENSE for details.
SPDX-License-Identifier: Apache-2.0

source ./tcl/sta_common.tcl

set overall_rpt_file "${lr_synth_rpt_out}/timing/overall"
timing_report $lr_synth_clk_input $overall_rpt_file $lr_synth_sta_overall_paths

set lr_synth_path_group_list [list]

setup_path_groups $lr_synth_inputs $lr_synth_outputs lr_synth_path_group_list

foreach path_group $lr_synth_path_group_list {
 puts $path_group
 set path_group_rpt_file "${lr_synth_rpt_out}/timing/$path_group"
 timing_report $path_group $path_group_rpt_file $lr_synth_sta_paths_per_group
}

exit

 Here we have variables (which are in some sense parameters, since
they occur free), a loop, and sequencing, but no conditionals. There’s
technically an assignment in the loop but the mutation to that variable
is kind of nonessential. However, since it’s almost purely a sequence,
mutation is the only way for it to do anything useful.

 Tcl and shell are both very easy to get started with, like keyboard
macros, but very bug-prone and kind of hard to understand. Part of
the problem is that much of their semantics is based on string
interpolation.

m4

 Speaking of which, what does typical m4 look like? Dennis
Ritchie’s m4 is a Turing-complete macro language, in which (unlike
in bash and Tcl, like in Make) the results of macro substitution are
subject to further macro substitution, which allows you to write a
loop by writing a macro that conditionally expands to invoke itself.
For example, although it has a built-in len operation that gives the
length of a string, we can also define a new one recursively in terms of
its built-in ifelse, incr, and substr operations:

define(`length',`ifelse(,$1,0,`incr(length(substr($1,1)))')')

 I adapted this from this example found on the Softpanorama page
about m4:

define(len,`ifelse($1,,0,`eval(1+len(substr($1,2)))')')

 This definition, however, has a bug in it: the 2 should be 1, a bug
introduced in an earlier version of this example in Kernighan and
Plauger’s Software Tools in 01976 (p. 280). It took me quite a while to
debug it because the definition line doesn’t quote len, so my attempts
to redefine it were (apparently) silently ignored; I was instead
defining a macro named 0:

$ m4
define(len,`ifelse($1,,0,`eval(1+len(substr($1,2)))')')len(wotcha)
3

http://www.softpanorama.org/Tools/m4.shtml
http://www.softpanorama.org/Tools/m4.shtml

len(half)
2
define(len,`ifelse($1,,0,`eval(1+len(substr($1,1)))')')len(wotcha)
3
len(huh)
2
len(why does nothing make sense)
13
define(`len',`ifelse($1,,0,`eval(1+len(substr($1,1)))')')len(wotcha)
6

 The built-in len macro, by contrast, doesn’t get substituted unless
you offer it arguments (though this behavior is a GNU extension),
which permitted the first definition to succeed.

 This accidentally-defined macro 0 can't be invoked by normal
means because its name isn’t “a word”, but it does exist:

0(wibbling)
0(wibbling)
indir(0,wibbling)
5

 The output can build up macro names through concatenation,
either intentionally or unintentionally, which means that both the
input† and the output of the macro are subject to macro expansion. I
think that is actually sufficient to construct conditionals without the
ifelse builtin, but I haven’t figured out how.

define(foo,l$1)foo(en)(something)
9
foo(e)n(something)
9

 In Software Tools (p. 281) Kernighan and Plauger warn:
As you can see this is not the most transparent programming language in the world.
...you get the hang of it. But beware of becoming too clever with macros. In
principle, macro [the early version of m4 presented in the book] is capable of
performing any computing task, but it is all too easy to write unreadable macros
that cause more trouble than they save work.

 Hopefully this gives some flavor of both m4’s capabilities and its
nightmarish bug-proneness.

 Most current use of m4 is by way of autoconf. Here’s part of the
autoconf script for an old version of libart:

dnl AM_PATH_LIBART([MINIMUM-VERSION, [ACTION-IF-FOUND [, ACTION-IF-NOT-FOUND]]])
dnl Test for LIBART, and define LIBART_CFLAGS and LIBART_LIBS
dnl
AC_DEFUN([AM_PATH_LIBART],
[dnl
dnl Get the cflags and libraries from the libart-config script
dnl

AC_ARG_WITH(libart-prefix,[--with-libart-prefix=PFX Prefix where LIBART is in
stalled (optional)],

 libart_prefix="$withval", libart_prefix="")

AC_ARG_WITH(libart-exec-prefix,[--with-libart-exec-prefix=PFX Exec prefix where
 LIBART is installed (optional)],
 libart_exec_prefix="$withval", libart_exec_prefix="")

AC_ARG_ENABLE(libarttest, [--disable-libarttest Do not try to compile and
 run a test LIBART program],
 , enable_libarttest=yes)

 m4 is a templating language with dangerous delusions of grandeur,
capable of not only Turing-complete computation but higher-order
programming; but, as you can see, autoconf has managed to build its
own castle on that swamp, turning m4 into an entirely separate
programming language. Unfortunately I don’t know enough about
autoconf to know what those ugly names mean and how they work
together.

 Here’s an excerpt from what claims to be a typical 02005 use of m4
for configuring Sendmail, which is a lot closer to vanilla m4. You’ll
note that it has a lot of dnl invocations; these are to prevent spurious
newlines from being emitted, but they are completely unnecessary in
this case because of the leading divert(-1); it’s just cargo-cult code:

divert(-1)
include(`/usr/share/sendmail-cf/m4/cf.m4')
VERSIONID(`linux setup for my Linux dist')dnl
OSTYPE(`linux')
define(`confDEF_USER_ID',``8:12'')dnl
undefine(`UUCP_RELAY')dnl
undefine(`BITNET_RELAY')dnl
define(`PROCMAIL_MAILER_PATH',`/usr/bin/procmail')dnl
define(`ALIAS_FILE', `/etc/aliases')dnl
define(`UUCP_MAILER_MAX', `2000000')dnl

 D. Robert Adams gives this motivating example in his
introduction to m4, sometime prior to 02006:

define(`PAGE_HEADER',
`<table border="0" background="steel.jpg" width="100%">
 <tr>
 <td align="left">$1</td>
 <td align="right">$2</td>
 </tr>
</table>
<div align=right>
 Last Modified: esyscmd(`date')
</div>
')

 I probably should have included PHP, another templating language
with dangerous delusions of grandeur, but I don’t have anything that
I think is “typical PHP” code handy.

 † Macro argument are macro-expanded by default, but you can

https://www.ibm.com/developerworks/library/l-metaprog1/index.html
https://www.ibm.com/developerworks/library/l-metaprog1/index.html
https://web.archive.org/web/20060907073945/www.csis.gvsu.edu/~adams/Blosxom/Scholarship/Papers/m4.asc

quote them. Kernighan and Plauger make this change in the middle
of their chapter in Software Tools about m4, saying, “for common uses
like replacing symbolic parameters, the two methods produce the
same result,” and it contributes considerably to m4’s already
impressive bug-proneness.

Forth

 Unfortunately I don't have a lot of confidence that this represents
“typical” Forth, but it’s one of the few Forth programs I’ve actually
used and didn’t write:

\ tt.pfe Tetris for terminals, redone in ANSI-Forth.
\ Written 05Apr94 by Dirk Uwe Zoller,
\ e-mail duz@roxi.rz.fht-mannheim.de.
\ Look&feel stolen from Mike Taylor's "TETRIS FOR TERMINALS"
\
\ Please copy and share this program, modify it for your system
\ and improve it as you like. But don't remove this notice.
\ ...

: draw-pit \ --- ; draw the contents of the pit
 deep 0 do i draw-line loop ;

: show-key \ char --- ; visualization of that character
 dup bl <
 if [char] @ or [char] ^ emit emit space
 else [char] ` emit emit [char] ' emit
 then ;

: show-help \ --- ; display some explanations
 30 1 at-xy ." ***** T E T R I S *****"
 30 2 at-xy ." ======================="
 30 4 at-xy ." Use keys:"
 32 5 at-xy left-key show-key ." Move left"
\ ...
 ;

: update-score \ --- ; display current score
 38 16 at-xy score @ 3 .r
 38 17 at-xy pieces @ 3 .r
 38 18 at-xy levels @ 3 .r ;

 Here we have three subroutines, one of which takes a parameter;
they contain a conditional and a loop; they invoke primitives like @, or
, [char], and emit. This excerpt barely uses variables, score, pieces, and
levels; i is not really a variable, though it’s variable-like. The
parameter to show-key is not a variable. deep and left-key are constants.
There’s a little arithmetic (on ASCII codes for keys). There are lots
of places where one subroutine invokes another; draw-line and show-key
are parts of the Tetris game. at-xy comes with PFE.

 I think this program uses less variables and longer subroutines than
is typical for Forth, but it shows how you can use high-level Forth
words to script at whatever level is comfortable for your application.

What do these things look like compiled?

 The execution model for all of the above, except m4, are actually
fairly similar. They’re eager imperative languages, equipped with
closed subroutines and primitive facilities for arithmetic and
constructing and accessing composite data structures. They’re all
equipped with textual namespaces to use for describing dataflow
connections by connascence of name. Though not all the control flow
shown above is single-entry single-exit, it is all “structured” in the
truer sense. None of them have pattern matching or strong static type
checking, much less dependent types. None of them (except m4)
have an outlandish execution model like Prolog, Erlang, Haskell,
Miranda, SNOBOL, or Icon, although Python and Lua do have one
or another kind of coroutine, and most of them can use threads.

 There are some major practical differences. Python lists don’t
support efficient FP-persistent incremental construction like my
initial example from Ur-Scheme used, and we lack garbage collection
entirely in C, C++, and Forth. JS supports higher-order functions
with closures, a feature pioneered in Scheme but missing from C,
C++, Forth, and Elisp, and much less used in the other languages
than in JS and perhaps Lua. Elisp, C, C++, Forth, Java, and Scheme
don’t support the effortless
digraph-of-dictionaries-referencing-each-other memory structure
that characterizes Python, Perl, Lua, and JS, so I had to write (caar
symlist) instead of the more transparent sym.name. Tcl, m4, and the
Bourne shell don’t support references at all, except by name.

 Their scoping differs — Elisp has a single global namespace where it
temporarily binds local variables; Scheme has a single global
namespace and then lexically-nested block scopes within it; C has
three nested kinds of namespace (extern, file-static, and block scope,
which nests arbitrarily); Forth word scopes extend from declarations
forward until something hides the declaration, such as a change of
wordlist; and there are nested hierarchical namespaces in JS, Lua,
Java, Perl, and Python. (I forget how scoping works in Tcl and m4.)
But for the most part these scoping differences disappear before
execution time.

 Elisp, Forth, Scheme, Tcl, the Bourne shell, m4, and C don’t have
a concept of “object scope”, “class scope”, or “methods”, while Java,
Python, C++, JS, Lua, and Perl all have varying concepts. All of
these languages have some way to invoke a function whose identity is
not known until runtime, although in Tcl and the Bourne shell this is
done with a string referencing a function in the global namespace, and
in C you have to do extra work to invoke a closure. Java and C++
mostly treat objects as primary and methods as mere details of objects,
leading to things like the Callable interface, while functions are
first-class objects in Elisp, Scheme, Python, JS, Lua, and Perl.

 But most of these differences are sort of details.

The Elisp implementation in more depth

 Consider that initial example:

(define interned-symbol-list '())
(define (intern symbol)
 (interning symbol interned-symbol-list))

(define (interning symbol symlist)
 (cond ((null? symlist)
 ;; XXX isn't this kind of duplicative with the global variables stuff?
 (set! interned-symbol-list
 (cons (list symbol (new-label)) interned-symbol-list))
 (car interned-symbol-list))
 ((eq? symbol (caar symlist)) (car symlist))
 (else (interning symbol (cdr symlist)))))
(define (symbol-value symbol) (cadr (intern symbol)))

 We can translate this into Elisp as follows:

(defvar interned-symbol-list '())

(defun ur-intern (symbol)
 (interning symbol interned-symbol-list))

(defun new-label ()
 (gensym))

(defun interning (symbol symlist)
 (cond ((null symlist)
 (setq interned-symbol-list
 (cons (list symbol (new-label)) interned-symbol-list))
 (car interned-symbol-list))
 ((eq symbol (caar symlist))
 (car symlist))
 (t
 (interning symbol (cdr symlist)))))

(defun ur-symbol-value (symbol)
 (cadr (ur-intern symbol)))

 This byte-compiles as follows, with the unprintable bytes removed:

(defalias 'ur-intern #[(symbol) "(redacted)"
 [symbol interned-symbol-list interning] 3])
(defalias 'new-label #[nil "(redacted)" [gensym] 1])
(defalias 'interning
 #[(symbol symlist) "(redacted)"
 [symlist symbol interned-symbol-list x new-label interning]
 4])
(defalias 'ur-symbol-value #[(symbol) "(redacted)"
 [symbol x ur-intern] 3])

 The redacted bytecodes disassemble as follows:

byte code for ur-intern:
 args: (symbol)
0 constant interning
1 varref symbol
2 varref interned-symbol-list
3 call 2

4 return

byte code for new-label:
 args: nil
0 constant gensym
1 call 0
2 return

 Those two are very simple, just some eager nested expressions. But
interning contains conditionals, and a recursive loop, although its
tail-call nature is not visible in the bytecode:

byte code for interning:
 args: (symbol symlist)
0 varref symlist

1 goto-if-not-nil 1 ; forward jump past the first cond case
; note the double negation
4 varref symbol
5 constant new-label
6 call 0
7 list2 ; build a 2-item list
8 varref interned-symbol-list
9 cons

10 dup ; one reference for the variable, the o
ther for return value
11 varset interned-symbol-list
12 car
13 return
14:1 varref symbol ; second case:
15 varref symlist
16 dup

17 varbind x ; note, not varset; this creates a loca
l binding

18 car ; `caar` compiles into two successive `
car` bytecodes
19 car
20 unbind 1 ; discard useless x binding
21 eq
22 goto-if-nil 2 ; jump to the else
25 varref symlist
26 car
27 return
28:2 constant interning ; set up the recursive call
29 varref symbol
30 varref symlist
31 cdr ; reduce toward the base case
32 call 2
33 return

 max-lisp-eval-depth defaults to 500, and it does kill functions like this

in my version of Emacs when they tail-recurse too deeply, whether
byte-compiled or not. That is, Elisp doesn’t have tail-call elimination
as Ur-Scheme does.

 If you want a loop in Elisp, you need to use an explicit looping
construct, such as while, which gets compiled to goto-if-not-nil
bytecodes like the ones above, just backwards instead of forwards.

byte code for ur-symbol-value:
 args: (symbol)
0 constant ur-intern
1 varref symbol
2 call 1
3 dup
4 varbind x
5 cdr
6 car
7 unbind 1
8 return

 Except for the special forms define, cond, and setq, the Lisp source
makes no distinction between primitive operations like cdr and null,
one one hand, and invocations of ordinary functions like interning and
new-label, on the other. But the bytecode compiler certainly does, as an
efficiency hack; it has special bytecodes for the basic Lisp functions
(in this case, list, cons, car, eq, null (merged with the cond), and cdr), as
well as lots of Emacs-specific operations like save-excursion, forward-char,
insert, and forward-word, which don’t occur here. This makes the
bytecode very compact, though it still carries around a “constant
vector” for opcodes like constant and varref to index into. It just
doesn’t have to indirect through the constant vector and look up a
function binding every time you invoke car, so it runs, reportedly,
about four times faster.

 (In the case of interning, the constant vector is 6 items, so
presumably 56 more bytes including a count field; there's also a
“bytecode object” that ties the bytecode to the arguments, constant
vector, etc. It doesn’t seem to have been designed for minimum
memory usage, despite the admirable compactness of the bytecode
itself.)

 The exec_byte_code function in the Emacs source code that executes a
bytecode-compiled function like the above is about 1500 lines of C.

 The interning bytecode above is pretty short, 34 bytes. Here’s the
implementation of the Bvarref bytecode that begins the interning
function, as well as its cousins:

CASE (Bvarref7):
 op = FETCH2;
 goto varref;

CASE (Bvarref):
CASE (Bvarref1):
CASE (Bvarref2):
CASE (Bvarref3):
CASE (Bvarref4):

CASE (Bvarref5):
 op = op - Bvarref;
 goto varref;

/* This seems to be the most frequently executed byte-code
 among the Bvarref's, so avoid a goto here. */
CASE (Bvarref6):
 op = FETCH;
varref:
 {
 Lisp_Object v1, v2;

 v1 = vectorp[op];
 if (SYMBOLP (v1))
 {
 if (XSYMBOL (v1)->redirect != SYMBOL_PLAINVAL
 || (v2 = SYMBOL_VAL (XSYMBOL (v1)),
 EQ (v2, Qunbound)))
 {
 BEFORE_POTENTIAL_GC ();
 v2 = Fsymbol_value (v1);
 AFTER_POTENTIAL_GC ();
 }
 }
 else
 {
 BEFORE_POTENTIAL_GC ();
 v2 = Fsymbol_value (v1);
 AFTER_POTENTIAL_GC ();
 }
 PUSH (v2);
 NEXT;
 }

 I guess this means that the Elisp definition of “the binding of a
variable” is sort of complicated.

 FETCH isn’t a constant; it’s defined as *stack.pc++, and FETCH2 is
similar but fetches two bytes. But in this case none of that comes into
play.

 There are several other such groups of 8 opcodes: 6 with the
operand packed into the low three bits of the byte, and two
“breakouts” that consume one or two immediate bytes to get the real
operand. stack-ref, varref, varset, varbind, call, and unbind all work this
way; there are also four fixed-arity versions of the list function plus a
variable-arity version, three fixed-arity versions of the concat function
plus a variable-arity version, and some others. There are 173
bytecodes defined in all, so it’s about 9 lines of code per bytecode, but
48 of the bytecodes are these groups of 8.

In SBCL

 The same Elisp code is valid as Common Lisp code, and SBCL
(1.0.57.x) compiles interning as follows for amd64. You will note that
it is noticeably more than 34+56 = 90 bytes, more like 439 bytes; our
sweet innocent 9-line Lisp function has exploded into 131 assembly

instructions:

* (compile 'interning)

INTERNING
NIL
NIL
* (disassemble 'interning)

; disassembly for INTERNING

; 02A2FBF7: 4881FE17001020 CMP RSI, 537919511 ; no-arg-parsing en
try point
; BFE: 744B JEQ L2
; C00: 8BC6 MOV EAX, ESI
; C02: 240F AND AL, 15
; C04: 3C07 CMP AL, 7
; C06: 0F8559010000 JNE L11
; C0C: 488BC6 MOV RAX, RSI
; C0F: 488B48F9 MOV RCX, [RAX-7]
; C13: 8BC1 MOV EAX, ECX
; C15: 240F AND AL, 15
; C17: 3C07 CMP AL, 7
; C19: 0F854D010000 JNE L12
; C1F: 488B49F9 MOV RCX, [RCX-7]
; C23: 4939C8 CMP R8, RCX
; C26: 750A JNE L1
; C28: 488B56F9 MOV RDX, [RSI-7]
; C2C: L0: 488BE5 MOV RSP, RBP
; C2F: F8 CLC
; C30: 5D POP RBP
; C31: C3 RET
; C32: L1: 488B7E01 MOV RDI, [RSI+1]
; C36: 498BD0 MOV RDX, R8

; C39: 488B0540FFFFFF MOV RAX, [RIP-192] ; #<FDEFINITION obj
ect for INTERNING>
; C40: B904000000 MOV ECX, 4
; C45: FF7508 PUSH QWORD PTR [RBP+8]
; C48: FF6009 JMP QWORD PTR [RAX+9]
; C4B: L2: 488D5424F0 LEA RDX, [RSP-16]
; C50: 4883EC18 SUB RSP, 24

; C54: 488B052DFFFFFF MOV RAX, [RIP-211] ; #<FDEFINITION obj
ect for NEW-LABEL>
; C5B: 31C9 XOR ECX, ECX
; C5D: 48892A MOV [RDX], RBP
; C60: 488BEA MOV RBP, RDX
; C63: FF5009 CALL QWORD PTR [RAX+9]
; C66: 480F42E3 CMOVB RSP, RBX
; C6A: 488B75F0 MOV RSI, [RBP-16]
; C6E: 4C8B45F8 MOV R8, [RBP-8]
; C72: 488BFA MOV RDI, RDX
; C75: 498BD0 MOV RDX, R8
; C78: 49896C2440 MOV [R12+64], RBP

; C7D: 4D8B5C2418 MOV R11, [R12+24]
; C82: 498D5B20 LEA RBX, [R11+32]
; C86: 49395C2420 CMP [R12+32], RBX
; C8B: 0F86E0000000 JBE L13
; C91: 49895C2418 MOV [R12+24], RBX
; C96: 498D5B07 LEA RBX, [R11+7]
; C9A: L3: 488BC3 MOV RAX, RBX
; C9D: 488950F9 MOV [RAX-7], RDX
; CA1: 4883C010 ADD RAX, 16
; CA5: 488940F1 MOV [RAX-15], RAX
; CA9: 488978F9 MOV [RAX-7], RDI
; CAD: 48C7400117001020 MOV QWORD PTR [RAX+1], 537919511
; CB5: 49316C2440 XOR [R12+64], RBP
; CBA: 7402 JEQ L4

; CBC: CC09 BREAK 9 ; pending interrupt
 trap

; CBE: L4: 488B05CBFEFFFF MOV RAX, [RIP-309] ; 'INTERNED-SYMBOL-
LIST
; CC5: 488B5021 MOV RDX, [RAX+33]
; CC9: 498B1414 MOV RDX, [R12+RDX]
; CCD: 4883FA61 CMP RDX, 97
; CD1: 7504 JNE L5
; CD3: 488B50F9 MOV RDX, [RAX-7]
; CD7: L5: 4883FA51 CMP RDX, 81
; CDB: 0F84A7000000 JEQ L14
; CE1: 49896C2440 MOV [R12+64], RBP
; CE6: 4D8B5C2418 MOV R11, [R12+24]
; CEB: 498D4B10 LEA RCX, [R11+16]
; CEF: 49394C2420 CMP [R12+32], RCX
; CF4: 0F8693000000 JBE L15
; CFA: 49894C2418 MOV [R12+24], RCX
; CFF: 498D4B07 LEA RCX, [R11+7]
; D03: L6: 49316C2440 XOR [R12+64], RBP
; D08: 7402 JEQ L7

; D0A: CC09 BREAK 9 ; pending interrupt
 trap
; D0C: L7: 488959F9 MOV [RCX-7], RBX
; D10: 48895101 MOV [RCX+1], RDX

; D14: 488B1575FEFFFF MOV RDX, [RIP-395] ; 'INTERNED-SYMBOL-
LIST
; D1B: 488B4221 MOV RAX, [RDX+33]
; D1F: 49833C0461 CMP QWORD PTR [R12+RAX], 97
; D24: 7406 JEQ L8
; D26: 49890C04 MOV [R12+RAX], RCX
; D2A: EB04 JMP L9
; D2C: L8: 48894AF9 MOV [RDX-7], RCX

; D30: L9: 488B0559FEFFFF MOV RAX, [RIP-423] ; 'INTERNED-SYMBOL-
LIST
; D37: 488B4821 MOV RCX, [RAX+33]
; D3B: 498B0C0C MOV RCX, [R12+RCX]

; D3F: 4883F961 CMP RCX, 97
; D43: 7504 JNE L10
; D45: 488B48F9 MOV RCX, [RAX-7]
; D49: L10: 4883F951 CMP RCX, 81
; D4D: 7455 JEQ L16
; D4F: 8BC1 MOV EAX, ECX
; D51: 240F AND AL, 15
; D53: 3C07 CMP AL, 7
; D55: 7552 JNE L17
; D57: 488B51F9 MOV RDX, [RCX-7]
; D5B: E9CCFEFFFF JMP L0
; D60: CC0A BREAK 10 ; error trap
; D62: 02 BYTE #X02

; D63: 18 BYTE #X18 ; INVALID-ARG-COUNT
-ERROR
; D64: 54 BYTE #X54 ; RCX
; D65: L11: CC0A BREAK 10 ; error trap
; D67: 04 BYTE #X04

; D68: 02 BYTE #X02 ; OBJECT-NOT-LIST-E
RROR
; D69: FE9501 BYTE #XFE, #X95, #X01 ; RSI
; D6C: L12: CC0A BREAK 10 ; error trap
; D6E: 02 BYTE #X02

; D6F: 02 BYTE #X02 ; OBJECT-NOT-LIST-E
RROR
; D70: 55 BYTE #X55 ; RCX
; D71: L13: 6A20 PUSH 32
; D73: 4C8D1C2570724200 LEA R11, [#x427270] ; alloc_tramp
; D7B: 41FFD3 CALL R11
; D7E: 5B POP RBX
; D7F: 488D5B07 LEA RBX, [RBX+7]
; D83: E912FFFFFF JMP L3
; D88: L14: CC0A BREAK 10 ; error trap
; D8A: 02 BYTE #X02

; D8B: 1A BYTE #X1A ; UNBOUND-SYMBOL-ER
ROR
; D8C: 15 BYTE #X15 ; RAX
; D8D: L15: 6A10 PUSH 16
; D8F: 4C8D1C2570724200 LEA R11, [#x427270] ; alloc_tramp
; D97: 41FFD3 CALL R11
; D9A: 59 POP RCX
; D9B: 488D4907 LEA RCX, [RCX+7]
; D9F: E95FFFFFFF JMP L6
; DA4: L16: CC0A BREAK 10 ; error trap
; DA6: 02 BYTE #X02

; DA7: 1A BYTE #X1A ; UNBOUND-SYMBOL-ER
ROR
; DA8: 15 BYTE #X15 ; RAX
; DA9: L17: CC0A BREAK 10 ; error trap
; DAB: 02 BYTE #X02

; DAC: 02 BYTE #X02 ; OBJECT-NOT-LIST-E
RROR
; DAD: 55 BYTE #X55 ; RCX

 (See Open coded primitives (p. 283) for a more complete dissection
of some SBCL output.)

 I’m not quite sure where to start with this. This looks like a type
test, with the type tag 7 in the low four bits of a pointer, and the place
it’s jumping to claims to signal an
“OBJECT-NOT-LIST-ERROR”:

; C00: 8BC6 MOV EAX, ESI
; C02: 240F AND AL, 15
; C04: 3C07 CMP AL, 7
; C06: 0F8559010000 JNE L11

 So I guess SBCL is hoisting a type test from the various conditional
branches, all of which demand that the symlist be either null or a
cons, up to the top of the function. Actually the null test may be the
thing above, so this might just be a pair test:

; 02A2FBF7: 4881FE17001020 CMP RSI, 537919511 ; no-arg-parsing en
try point
; BFE: 744B JEQ L2

 Maybe 537919511 (0x20100017) is SBCL’s representation of NIL,
and RSI is the second argument. If so, it looks like it would pass that
LISTP test too, ending in a 7 as it does. The consequent of that test is
this horrendous basic block, which looks like it’s doing the right thing
as it starts by allocating some stack space and loading in
NEW-LABEL in RAX. Why SBCL opted to put this down near
the end of the function I’m not sure; maybe it decided that symlist
(RSI) was almost never going to be NIL.

; C4B: L2: 488D5424F0 LEA RDX, [RSP-16]
; C50: 4883EC18 SUB RSP, 24

; C54: 488B052DFFFFFF MOV RAX, [RIP-211] ; #<FDEFINITION obj
ect for NEW-LABEL>
; C5B: 31C9 XOR ECX, ECX

 I guess that means ECX (not RCX!) has the argument count (0)
we’re going to pass to NEW-LABEL? I did something similar in
Ur-Scheme, but it’s nice to not have to pass and check argument
counts at run time. (Notice that interning doesn’t in fact check its
argument count!)

; C5D: 48892A MOV [RDX], RBP

 That’s storing RBP into the stack; this is Intel operand order.

; C60: 488BEA MOV RBP, RDX

 That way it can overwrite it with the new frame pointer. Why it’s
allocating a new frame in the middle of a function I don’t know.

; C63: FF5009 CALL QWORD PTR [RAX+9]

 Presumably this is loading the pointer to NEW-LABEL's code from 9
bytes past the beginning of its FDEFINITION object, not actually
jumping there.

; C66: 480F42E3 CMOVB RSP, RBX

 Now, I’m not sure what’s going on here. We expect NEW-LABEL to
have passed us back some kind of return status in the flags? So that
we can decide whether or not to ... clobber the stack pointer with
RBX‽ Maybe this is how SBCL handles errors? Anyway, then we set
up some registers from things stored in the stack frame, one of which
is presumably NEW-LABEL’s return value:

; C6A: 488B75F0 MOV RSI, [RBP-16]
; C6E: 4C8B45F8 MOV R8, [RBP-8]
; C72: 488BFA MOV RDI, RDX
; C75: 498BD0 MOV RDX, R8
; C78: 49896C2440 MOV [R12+64], RBP

 Okay, now we’re saving our frame pointer at an offset from... R12‽

; C7D: 4D8B5C2418 MOV R11, [R12+24]
; C82: 498D5B20 LEA RBX, [R11+32]
; C86: 49395C2420 CMP [R12+32], RBX
; C8B: 0F86E0000000 JBE L13

 Okay, at this point I have no idea what’s going on.

; D71: L13: 6A20 PUSH 32
; D73: 4C8D1C2570724200 LEA R11, [#x427270] ; alloc_tramp
; D7B: 41FFD3 CALL R11
; D7E: 5B POP RBX
; D7F: 488D5B07 LEA RBX, [RBX+7]
; D83: E912FFFFFF JMP L3

 Ohhh, it was checking to see if the nursery was full. I guess R11 is
the allocation limit, and R12 is the allocation pointer. Maybe 32 is
how many bytes we’re going to allocate. So if we ran out of space in
the nursery we invoke a minor GC before continuing:

; C8B: 0F86E0000000 JBE L13 ; (duplicated conte
xt instruction above)
; C91: 49895C2418 MOV [R12+24], RBX
; C96: 498D5B07 LEA RBX, [R11+7]

 So maybe it’s actually RBX that’s the allocation pointer? I don't

know. But I think we’re in the middle of an open-coded
implementation of two-argument LIST.

; C9A: L3: 488BC3 MOV RAX, RBX
; C9D: 488950F9 MOV [RAX-7], RDX

 So now our newly allocated cons pointer is in RAX. 16 sounds like
the size of a dotted pair on a 64-bit machine. So we stored... RDX
into it? That originally came from [RBP-8], so maybe it was
new-label’s return value.

; CA1: 4883C010 ADD RAX, 16
; CA5: 488940F1 MOV [RAX-15], RAX
; CA9: 488978F9 MOV [RAX-7], RDI

 Okay, so we’re creating a second cons, and poking its address into
the CDR of the previously allocated one, and now poking RDI
(maybe our first argument, symbol?) into the car.

; CAD: 48C7400117001020 MOV QWORD PTR [RAX+1], 537919511

 And this is our magic number again that might mean NIL, and
we’re poking it into what looks like the CDR of our second cons.
One problem with the above hypotheses: the putative symbol and
putative new label are in the wrong order in the list.

; CB5: 49316C2440 XOR [R12+64], RBP
; CBA: 7402 JEQ L4

; CBC: CC09 BREAK 9 ; pending interrupt
 trap

 Aha, this is some runtime safety code to verify that RBP still (or
again) has the same value it had when we saved it earlier ... because if
it doesn’t, we have a pending interrupt‽ Anwyay, normally we’ll
jump over that BREAK and into the code that sets up to call CONS:

; CBE: L4: 488B05CBFEFFFF MOV RAX, [RIP-309] ; 'INTERNED-SYMBOL-
LIST
; CC5: 488B5021 MOV RDX, [RAX+33]
; CC9: 498B1414 MOV RDX, [R12+RDX]
; CCD: 4883FA61 CMP RDX, 97
; CD1: 7504 JNE L5

 So we’re using PC-relative addressing to get to the value cell of
this global variable, and then we ... follow a couple of pointers in
ways I don’t understand, and expect to get 97. What is that? The
ASCII code for `? If that's not what we got, we jump to L5. L5?

; CD1: 7504 JNE L5
; CD3: 488B50F9 MOV RDX, [RAX-7]
; CD7: L5: 4883FA51 CMP RDX, 81
; CDB: 0F84A7000000 JEQ L14

 Well apparently if it wasn't 97, now we look someplace else to see
if we have an 81 (ASCII Q)? I’m not sure what all this has to do with
consing the new list onto interned-symbol-list and sticking it in
interned-symbol-list?

; D88: L14: CC0A BREAK 10 ; error trap
; D8A: 02 BYTE #X02

; D8B: 1A BYTE #X1A ; UNBOUND-SYMBOL-ER
ROR
; D8C: 15 BYTE #X15 ; RAX

 Oh, apparently the value 81 in the word before a symbol’s value
cell signifies that the signal is unbound? Because that is a possibility,
after all. And the next thing we need to do is get the actual value of
the symbol to pass it to cons. Still, I’m not sure why it makes sense to
jump from finding that RDX is 97 to checking to see whether it’s 81.
So, what does the happy path look like?

; CDB: 0F84A7000000 JEQ L14
; CE1: 49896C2440 MOV [R12+64], RBP
; CE6: 4D8B5C2418 MOV R11, [R12+24]
; CEB: 498D4B10 LEA RCX, [R11+16]
; CEF: 49394C2420 CMP [R12+32], RCX
; CF4: 0F8693000000 JBE L15

 This looks like another open-coded allocation with R11 and R12,
and saving off a copy of RBP again to check later if it’s been
scroggled. But now we’re using RCX, so evidently the allocation
pointers aren’t kept persistently in registers; they live at these weird
offsets from R11 and R12. Actually maybe just from R12, since that's
where we loaded R11 from. (R12 remains sacrosanct throughout.)

; D8D: L15: 6A10 PUSH 16
; D8F: 4C8D1C2570724200 LEA R11, [#x427270] ; alloc_tramp
; D97: 41FFD3 CALL R11
; D9A: 59 POP RCX
; D9B: 488D4907 LEA RCX, [RCX+7]
; D9F: E95FFFFFFF JMP L6

 That seems right, although it seems kind of goofy to have all this
duplicated machine code hanging around, differing only in the
registers used and the address we jump back to. So, what if allocation
succeeded?

; CF4: 0F8693000000 JBE L15
; CFA: 49894C2418 MOV [R12+24], RCX
; CFF: 498D4B07 LEA RCX, [R11+7]
; D03: L6: 49316C2440 XOR [R12+64], RBP
; D08: 7402 JEQ L7

; D0A: CC09 BREAK 9 ; pending interrupt
 trap

 In the happy path we’ve stored [R12+24]+16 back into [R12+24], thus
allocating an additional cons cell. We’re gonna open-code CONS! And
now we overwrite RCX with, I guess, an address somewhere in the
middle of the cons. And check again to see if our base pointer has
gotten cabbaged.

 (I think the weird +7 stuff is because 7 is the type tag for dotted
pairs and NIL (and maybe value cells for global variables too?), so
SBCL just uses immediate offsets of +1 and -7 to access the CDR and CAR
respectively.)

 I’m guessing that what comes next is that we’re going to store
interned-symbol-list’s value into the CDR of our new cell, and the LIST we
constructed earlier (or maybe its reversal?) into the CAR?

; D0C: L7: 488959F9 MOV [RCX-7], RBX
; D10: 48895101 MOV [RCX+1], RDX

; D14: 488B1575FEFFFF MOV RDX, [RIP-395] ; 'INTERNED-SYMBOL-
LIST
; D1B: 488B4221 MOV RAX, [RDX+33]
; D1F: 49833C0461 CMP QWORD PTR [R12+RAX], 97
; D24: 7406 JEQ L8

 Bingo! RBX, remember, was set to R11+7 when we were allocating
the list. And RDX was the thing we fetched from INTERNED-SYMBOL-LIST
previously, which we were concerned might be 81 or 97. (It wasn’t
81.) Now we’re checking again to see if something or other related to
interned-symbol-list is 97 for some reason. Why? We already have its
value! It’s already in the CDR!

; D26: 49890C04 MOV [R12+RAX], RCX
; D2A: EB04 JMP L9
; D2C: L8: 48894AF9 MOV [RDX-7], RCX

; D30: L9: 488B0559FEFFFF MOV RAX, [RIP-423] ; 'INTERNED-SYMBOL-
LIST
; D37: 488B4821 MOV RCX, [RAX+33]
; D3B: 498B0C0C MOV RCX, [R12+RCX]
; D3F: 4883F961 CMP RCX, 97
; D43: 7504 JNE L10

 Well, I guess if [R12+RAX] wasn’t 97, we’re going to store our new
CONS pointer there. But if it was, we’re going to store the new list
pointer back at interned-symbol-list.

 Hmm, maybe this 97 thing is some sort of garbage collector write
barrier?

 Anyway, then we again check to see if something indexed off RCX
related to interned-symbol-list is 97.

; D43: 7504 JNE L10
; D45: 488B48F9 MOV RCX, [RAX-7]
; D49: L10: 4883F951 CMP RCX, 81
; D4D: 7455 JEQ L16

 I feel like I’m in a loop. This is Groundhog Day. Time has no
meaning. Now we’re loading the value of interned-symbol-list again to
see if it’s 81, again. Even though we just set it. To an address that
probably ends in a 7.

; DA4: L16: CC0A BREAK 10 ; error trap
; DA6: 02 BYTE #X02

; DA7: 1A BYTE #X1A ; UNBOUND-SYMBOL-ER
ROR
; DA8: 15 BYTE #X15 ; RAX

 And if it was 81, we again have an UNBOUND-SYMBOL-ERROR. But how does
that make any sense? Ohhh, now we’re past the mutation! Now
we’re in the next line of code, where we return its CAR!

 Well, if so, we should fetch from [RCX-7] next, then return.

; D4F: 8BC1 MOV EAX, ECX
; D51: 240F AND AL, 15
; D53: 3C07 CMP AL, 7
; D55: 7552 JNE L17
; D57: 488B51F9 MOV RDX, [RCX-7]
; D5B: E9CCFEFFFF JMP L0

 Yes! We fetched the CAR! And we put it in RDX! After checking the
type tag to make sure it was a list. That is what we were checking,
right?

; DA9: L17: CC0A BREAK 10 ; error trap
; DAB: 02 BYTE #X02

; DAC: 02 BYTE #X02 ; OBJECT-NOT-LIST-E
RROR
; DAD: 55 BYTE #X55 ; RCX

 Yup. Okay, what’s L0? Are we going to clean up our stack frame
and return?

; C2C: L0: 488BE5 MOV RSP, RBP
; C2F: F8 CLC
; C30: 5D POP RBP
; C31: C3 RET

 Yup, exactly. Also we carefully clear the carry flag first, in case our
caller is going to pull the same kind of CMOVB trick we did when we
called NEW-LABEL. Apparently leaving the carry flag set means some kind
of exceptional condition or something in SBCL’s calling convention.
So that was the compilation of these four lines of code:

 ((null symlist)
 (setq interned-symbol-list
 (cons (list symbol (new-label)) interned-symbol-list))
 (car interned-symbol-list))

 So, how about if it wasn’t nil? Back to the top:

; 02A2FBF7: 4881FE17001020 CMP RSI, 537919511 ; no-arg-parsing en
try point
; BFE: 744B JEQ L2
; C00: 8BC6 MOV EAX, ESI
; C02: 240F AND AL, 15
; C04: 3C07 CMP AL, 7
; C06: 0F8559010000 JNE L11

 So, once we get past the JNE L11 guardian of the bridge, we know
RSI is a list, or at any rate NIL or a dotted pair. Our next case is the
name-match case:

 ((eq symbol (caar symlist))
 (car symlist))

 I suppose now we’re going to fetch [RSI-7] (the CAR), do the same
type-test on it, and then return its CAR?

; C0C: 488BC6 MOV RAX, RSI
; C0F: 488B48F9 MOV RCX, [RAX-7]
; C13: 8BC1 MOV EAX, ECX
; C15: 240F AND AL, 15
; C17: 3C07 CMP AL, 7
; C19: 0F854D010000 JNE L12
; C1F: 488B49F9 MOV RCX, [RCX-7]
; C23: 4939C8 CMP R8, RCX
; C26: 750A JNE L1

 Looks like it, although there’s an extra apparently useless register
move in there. (L12 is indeed another OBJECT-NOT-LIST-ERROR trap). And
now we’re using an open-coded eq to check that caar against... R8?
Could it be that symbol, our first argument, gets passed in R8? But in
the other branch we overwrote R8 without checking, and used the
value in RDX... hmm, well, what happens next if they are equal?

; C28: 488B56F9 MOV RDX, [RSI-7]
; C2C: L0: 488BE5 MOV RSP, RBP
; C2F: F8 CLC
; C30: 5D POP RBP
; C31: C3 RET

 We load the CAR from RSI (symlist), which we’ve already verified was
a list so we don’t need to check again, and fall into the return path,
returning RDX as before.

 So that’s what SBCL has decided is the “happy path” for the
function; it’s only 20 instructions. Unfortunately SBCL is wrong
about this; this is just the second of the two base cases for the
recursion (search failure, then search success). The inner recursive
loop is the part we haven’t seen yet:

 (t
 (interning symbol (cdr symlist)))))

 Starting from L1:

; C32: L1: 488B7E01 MOV RDI, [RSI+1]
; C36: 498BD0 MOV RDX, R8

; C39: 488B0540FFFFFF MOV RAX, [RIP-192] ; #<FDEFINITION obj
ect for INTERNING>
; C40: B904000000 MOV ECX, 4
; C45: FF7508 PUSH QWORD PTR [RBP+8]
; C48: FF6009 JMP QWORD PTR [RAX+9]

 ...that’s... it? We load an argument count of 4 (‽ Maybe it’s
doubled?) into ECX, set up the function object in RAX in case the
function is a closure, set RDI to be the CDR of RSI, set RDX to be R8 (which
apparently is somehow symbol, our first argument). Then we push
something on the stack (‽) and do a tail call by making a jump. So
apparently whatever lurks at that address is expecting its arguments in
(RDX, RDI), not (RSI, R8) as we received them. But this whole tail call is
only 6 instructions.

 So the inner recursive loop is 21 instructions, and the likely initial
misprediction due to SBCL getting the cases in the wrong order
probably only costs a single branch prediction error per program
restart, before the CPU learns to guess the branch correctly.

 Of the total of 131 assembly instructions, in fact, only 92 are on any
of the three control paths that are present in the source; the other 39
instructions and pseudo-instructions are exception handlers tagged
onto the end of the function in case of type errors or running out of
memory.

 Wait! That’s not all! It also included this bit of dead code in case
the arg count is wrong. (Maybe some code somewhere else jumps to
it.)

; D60: CC0A BREAK 10 ; error trap
; D62: 02 BYTE #X02

; D63: 18 BYTE #X18 ; INVALID-ARG-COUNT
-ERROR
; D64: 54 BYTE #X54 ; RCX

 Upon reading on the web, it seems that SBCL doesn’t have
user-level write barriers, so I’m not sure what this 97 stuff is. The
SBCL Internals Manual has a Calling Convention section which
probably answers some of the questions I had above; in particular Full
Calls explains the calling convention:
Basically, we use caller-allocated frames, pass an fdefinition, function, or closure in
EAX, argcount in ECX, and first three args in EDX, EDI, and ESI. EBP points to just past the
start of the frame (the first frame slot is at [EBP-4], not the traditional [EBP], due in
part to how the frame allocation works). The caller stores the link for the old
frame at [EBP-4] and reserved space for a return address at [EBP-8]. [EBP-12] appears to
be an empty slot that conveniently makes just enough space for the first three
multiple return values (returned in the argument passing registers) to be written

http://115.28.130.42/sbcl/sbcl-internals/Calling-Convention.html#Calling-Convention
http://115.28.130.42/sbcl/sbcl-internals/Calling-Convention.html#Calling-Convention
http://115.28.130.42/sbcl/sbcl-internals/Full-Calls.html#Full-Calls
http://115.28.130.42/sbcl/sbcl-internals/Full-Calls.html#Full-Calls

over the beginning of the frame by the receiver. The first stack argument is at
[EBP-16]. The callee then reallocates the frame to include sufficient space for its local
variables, after possibly converting any &rest arguments to a proper list. ... The
above scheme was changed in 1.0.27 on x86 and x86-64 by swapping the old frame
pointer with the return address and making EBP point two words later:

 No idea what’s going on with R8 still.

 Also, “Unknown-Values Returns” explains the carry-flag thing:
For a single-value return, we load the return value in the first argument-passing
register (A0, or EDI), reload the old frame pointer, burn the stack frame, and
return. The old convention was to increment the return address by two before
returning, typically via a JMP, which was guaranteed to screw up branch-
prediction hardware. The new convention is to return with the carry flag clear.
 For a multiple-value return, we pass the first three values in the
argument-passing registers, and the remainder on the stack. ECX contains the
total number of values as a fixnum, EBX points to where the callee frame was,
EBP has been restored to point to the caller frame, and the first of the values on the
stack (the fourth overall) is at [EBP-16]. The old convention was just to jump to the
return address at this point. The newer one has us setting the carry flag first.
 The code at the call site for accepting some number of unknown- values is fairly
well boilerplated. If we are expecting zero or one values, then we need to reset the
stack pointer if we are in a multiple-value return. In the old convention we just
encoded a MOV ESP, EBX instruction, which neatly fit in the two byte gap that was
skipped by a single-value return. In the new convention we have to explicitly
check the carry flag with a conditional jump around the MOV ESP, EBX instruction.

 But I suppose the CMOVB is a better alternative.

 Since interned-symbol-list is essentially a private variable for interning,
I added a declaration to tell SBCL to not worry so much about type
checking, although maybe truly-the is the real ticket:

(defvar interned-symbol-list '())

(defun new-label ()
 (gensym))

(defun interning (symbol symlist)
 (declare (optimize (safety 0)))
 (cond ((null symlist)
 (setq interned-symbol-list
 (cons (list symbol (new-label)) interned-symbol-list))
 (car interned-symbol-list))
 ((eq symbol (caar symlist))
 (car symlist))
 (t
 (interning symbol (cdr symlist)))))

 Now the whole function is only 90 instructions, and the short path
(success) is down to 11 instructions, and the inner loop (the recursive
path) 12 instructions:

; disassembly for INTERNING

; 029F972D: 4881FE17001020 CMP RSI, 537919511 ; no-arg-parsing en
try point
; 734: 7430 JEQ L2

; 736: 488B46F9 MOV RAX, [RSI-7]

http://www.sbcl.org/sbcl-internals/Unknown_002dValues-Returns.html#Unknown_002dValues-Returns

; 73A: 488B48F9 MOV RCX, [RAX-7]
; 73E: 4939C8 CMP R8, RCX
; 741: 750A JNE L1

; 743: 488B56F9 MOV RDX, [RSI-7]

; 747: L0: 488BE5 MOV RSP, RBP
; 74A: F8 CLC
; 74B: 5D POP RBP
; 74C: C3 RET

; 74D: L1: 488B7E01 MOV RDI, [RSI+1]
; 751: 498BD0 MOV RDX, R8

; 754: 488B0565FFFFFF MOV RAX, [RIP-155] ; #<FDEFINITION obj
ect for INTERNING>
; 75B: B904000000 MOV ECX, 4
; 760: FF7508 PUSH QWORD PTR [RBP+8]
; 763: FF6009 JMP QWORD PTR [RAX+9]

; 766: L2: 488D5424F0 LEA RDX, [RSP-16]
; 76B: 4883EC18 SUB RSP, 24

; 76F: 488B0552FFFFFF MOV RAX, [RIP-174] ; #<FDEFINITION obj
ect for NEW-LABEL>
; 776: 31C9 XOR ECX, ECX
; 778: 48892A MOV [RDX], RBP
; 77B: 488BEA MOV RBP, RDX
; 77E: FF5009 CALL QWORD PTR [RAX+9]

; 781: 480F42E3 CMOVB RSP, RBX
; 785: 488B75F0 MOV RSI, [RBP-16]
; 789: 4C8B45F8 MOV R8, [RBP-8]
; 78D: 488BFA MOV RDI, RDX
; 790: 498BD0 MOV RDX, R8
; 793: 49896C2440 MOV [R12+64], RBP
; 798: 4D8B5C2418 MOV R11, [R12+24]
; 79D: 498D5B20 LEA RBX, [R11+32]
; 7A1: 49395C2420 CMP [R12+32], RBX
; 7A6: 0F86B3000000 JBE L11

; 7AC: 49895C2418 MOV [R12+24], RBX
; 7B1: 498D5B07 LEA RBX, [R11+7]

; 7B5: L3: 488BC3 MOV RAX, RBX
; 7B8: 488950F9 MOV [RAX-7], RDX
; 7BC: 4883C010 ADD RAX, 16
; 7C0: 488940F1 MOV [RAX-15], RAX
; 7C4: 488978F9 MOV [RAX-7], RDI
; 7C8: 48C7400117001020 MOV QWORD PTR [RAX+1], 537919511
; 7D0: 49316C2440 XOR [R12+64], RBP
; 7D5: 7402 JEQ L4

; 7D7: CC09 BREAK 9 ; pending interrupt

 trap

; 7D9: L4: 488B05F0FEFFFF MOV RAX, [RIP-272] ; 'INTERNED-SYMBOL-
LIST
; 7E0: 488B5021 MOV RDX, [RAX+33]
; 7E4: 498B1414 MOV RDX, [R12+RDX]
; 7E8: 4883FA61 CMP RDX, 97
; 7EC: 7504 JNE L5

; 7EE: 488B50F9 MOV RDX, [RAX-7]

; 7F2: L5: 49896C2440 MOV [R12+64], RBP
; 7F7: 4D8B5C2418 MOV R11, [R12+24]
; 7FC: 498D4B10 LEA RCX, [R11+16]
; 800: 49394C2420 CMP [R12+32], RCX
; 805: 766F JBE L12
; 807: 49894C2418 MOV [R12+24], RCX
; 80C: 498D4B07 LEA RCX, [R11+7]

; 810: L6: 49316C2440 XOR [R12+64], RBP
; 815: 7402 JEQ L7

; 817: CC09 BREAK 9 ; pending interrupt
 trap

; 819: L7: 488959F9 MOV [RCX-7], RBX
; 81D: 48895101 MOV [RCX+1], RDX

; 821: 488B15A8FEFFFF MOV RDX, [RIP-344] ; 'INTERNED-SYMBOL-
LIST
; 828: 488B4221 MOV RAX, [RDX+33]
; 82C: 49833C0461 CMP QWORD PTR [R12+RAX], 97
; 831: 7406 JEQ L8

; 833: 49890C04 MOV [R12+RAX], RCX
; 837: EB04 JMP L9

; 839: L8: 48894AF9 MOV [RDX-7], RCX

; 83D: L9: 488B0D8CFEFFFF MOV RCX, [RIP-372] ; 'INTERNED-SYMBOL-
LIST
; 844: 488B4121 MOV RAX, [RCX+33]
; 848: 498B0404 MOV RAX, [R12+RAX]
; 84C: 4883F861 CMP RAX, 97
; 850: 7504 JNE L10

; 852: 488B41F9 MOV RAX, [RCX-7]

; 856: L10: 488B50F9 MOV RDX, [RAX-7]
; 85A: E9E8FEFFFF JMP L0

; 85F: L11: 6A20 PUSH 32

; 861: 4C8D1C2570724200 LEA R11, [#x427270] ; alloc_tramp
; 869: 41FFD3 CALL R11

; 86C: 5B POP RBX
; 86D: 488D5B07 LEA RBX, [RBX+7]
; 871: E93FFFFFFF JMP L3

; 876: L12: 6A10 PUSH 16
; 878: 4C8D1C2570724200 LEA R11, [#x427270] ; alloc_tramp
; 880: 41FFD3 CALL R11

; 883: 59 POP RCX
; 884: 488D4907 LEA RCX, [RCX+7]
; 888: EB86 JMP L6

 I think this is mostly the same except for all the elided type checks.

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Experiment report (p. 1162) (14 notes)
• Python (p. 1166) (12 notes)
• Safe programming languages (p. 1172) (11 notes)
• Virtual machines (p. 1182) (9 notes)
• C (p. 1194) (8 notes)
• Instruction sets (p. 1214) (6 notes)
• FORTH (p. 1231) (5 notes)
• Bytecode (p. 1236) (5 notes)
• Scheme (p. 1274) (3 notes)
• The Veskeno virtual machine (p. 1313) (2 notes)
• Tcl (p. 1318) (2 notes)
• Perl (p. 1342) (2 notes)
• m4 (p. 1352) (2 notes)
• Lua (p. 1354) (2 notes)
• The JS programming language (p. 1359) (2 notes)
• The Bourne shell
• Java
• Elisp

Vaughan Pratt and Henry Baker’s
COMFY control-flow
combinators
Kragen Javier Sitaker, 02021-03-04 (updated 02021-03-20)
(8 minutes)

 I read Henry Baker’s columns about COMFY-65 and COMFY-80
and found them very interesting. He credits the approach to Pratt in
the early 01970s, which is pretty interesting; combined with
top-down operator precedence — not PEG or TDPL, but a different
linear-time top-down parsing algorithm with better space and time
bounds — it seems like Pratt totally reinvented compilers in a different
way in the 01970s and nobody noticed!

 The COMFY-65 approach is “structured control flow” in the
sense that larger pieces of code are built up from smaller pieces of
code using a fixed set of forms of composition, but they aren’t the
same forms as the Kleene set of sequence, alternation, and closure
used in the Böhm-Jacopini theorem. The key difference is that
Pratt’s/Baker’s pieces of code have one entry and two exits (“win”
and “lose”) instead of one, so they can directly represent arbitrary
control-flow graphs. In COMFY-65 his forms of composition are seq
, alt, if, while, not, and loop, which are similar to the usual constructs
but not the same.

Re-expressing the COMFY approach with
constraint satisfaction

 I suspect that constraint satisfaction is a productive way to
formulate compilation problems in general, so here’s an attempt to
formulate Baker’s constructs logically as sets of constraints in a
hypothetical hierarchical constraint language supporting the
definition of infix operators, using yes and no rather than win and lose.
Starting with loop:

(loop X):
 entry = X.entry = X.yes
 no = X.no

 This is an abbreviation for

(loop X).entry = X.entry = X.yes
(loop X).no = X.no

 The remaining constructs can be defined as follows:

(A; B): # sequence
 entry = A.entry
 A.yes = B.entry
 yes = B.yes
 no = A.no = B.no

https://josephoswald.nfshost.com/comfy/summary.html
http://crockford.com/javascript/tdop/tdop.html
http://crockford.com/javascript/tdop/tdop.html

(A || B) = !(!A; !B) # alternation

(!X): # negation
 entry = X.entry
 yes = X.no
 no = X.yes

(A ? B : C): # general conditional
 entry = A.entry
 A.yes = B.entry
 A.no = C.entry
 no = B.no = C.no

(while A: B):
 entry = A.entry
 A.yes = B.entry
 B.yes = A.entry
 yes = A.no
 no = B.no

 Baker’s compiler compiles these constructs recursively, providing
yes and no (win and lose) as concrete numbers when compile is invoked.
It does this by filling memory with instructions starting from the end,
such that each of these exit points (the yes and no items) generally refer
to things that have previously been compiled and will follow them in
memory — possibly immediately, in which case manifesting the
required control flow doesn’t require a jump instruction. In that
context, though, I’m not totally sure how he handles loops, which
necessarily need a jump back to the beginning of the loop, which is at
a location unknown when the loop body is being compiled. I need to
look at his code.

 But not right now!

 An alternate definition of alt:

(A || B):
 entry = A.entry
 A.no = B.entry
 no = B.no
 yes = A.yes = B.yes

 Given a program pass which does nothing and just passes control to
its yes, we could define loop as:

loop X = (while pass: X)

 We could define fail, which does nothing and just passes control to
its no, as !pass, we could define sequencing as a conditional:

(A; B) = (A ? B : fail)

 Here's a totally revised, terser version, using some symbols from
Baker’s 1976 note, the above constructions, a Python-like respelling

of the conditional, and C-like blocks instead of Python indentation.
I’m also changing “entry” to “go” (on your mark, get set,...) and
defining ¬X in terms of the conditional, as Darius did in his
“Language of Choice”. Actually, it occurs to me that COMFY is
very closely related to binary decision diagrams, but its control graph
isn’t constrained to be acyclic...

pass { go = yes }
fail { go = no } # do not pass go
(B if A else C) { go = A.go, A.yes = B.go, A.no = C.go, no = B.no = C.no }
(while A: B) { go = A.go, A.yes = B.go, B.yes = A.go, yes = A.no, no = B.no }

(¬X) = (fail if X else pass)
(A; B) = (B if A else fail)
(A / B) = (pass if A else B)
(X∞) = (while pass: X)

 I was going to try to unpack a small program in this notation into a
flat pile of constraints, but I’m getting confused about the
class/instance distinction when I try.

 A particular instruction might fit into this framework in a form like
the following:

pushq_rbp { mem[go] = 0x55, yes = go + 1 }

 (Since pushq %rbp doesn’t use its no exit, it imposes no constraints on
no.)

 More generally, I think straight-line code as cons-lists of bytes can
be emitted as follows:

straight([]) = pass
straight(A::B) { mem[go] = A, T = straight(B), T.go = go + 1, yes = T.yes }

 There’s a semantic lacuna in the above, though; something like
pushq_rbp / pushq_rbp will fail, because there’s no place to insert the
necessary jumps. (Also, because pushq_rbp can’t fail, the second
alternative could be entirely optimized out.)

Dissection of Baker’s Elisp

 Here’s the part of Baker’s Elisp code concerned with compiling
loops. It turns out to work more or less the way you’d expect if you
know it compiles things recursively, starting from the end of
memory:

(defun compile (e win lose)
 (cond ((eq (car e) 'loop)
 (let* ((l (genbr 0)) (r (compile (cadr e) l lose)))
 (ra l r)
 r))
 ((eq (car e) 'while) ; do-while.
 (let* ((l (genbr 0))
 (r (compile (cadr e)
 (compile (caddr e) l lose)

 win)))
 (ra l r)
 r))))

 So, it begins by generating a branch to 0 at the end of the loop,
saving the address of the jump instruction in l; then it compiles the
contents of the loop (possibly including jumps to lose and, in the while
case, win). It saves the address of the beginning of the loop in r, and
then it runs (ra l r):

(defun ra (b a)
 ;;; replace the absolute address at the instruction "b"
 ;;; by the address "a".
 (let* ((ha (lsh a -8)) (la (logand a 255)))
 (aset mem (1+ b) la)
 (aset mem (+ b 2) ha))
 b)

 So this just backpatches the jump; ha and la are the high and low
bytes of the address, and it stores them two bytes after and one byte
after the address of the jump instruction, which is generated as
follows:

(defun genbr (win)
 ;;; generate an unconditional jump to "win".
 (gen 0) (gen 0) (gen jmp) (ra f win))

 And that’s in terms of gen, which is:

(defun gen (obj)
 ;;; place one byte "obj" into the stream.
 (setq f (1- f))
 (aset mem f obj)
 f)

 Modifying mem and f:

(defvar mem (make-vector 10 0)
 "Vector where the compiled code is placed.")

(setq mem (make-vector 100 0))

(defvar f (length mem)
 "Compiled code array pointer; it works its way down from the top.")

 The semantic lacuna mentioned above is filled in this case with an
explicit genbr call followed by the backpatching. But the win and lose
addresses (which Baker calls continuations) are passed in to compile
the snippets of code within the loop, which in many cases bottom out
in emit, which begins by inserting a call to the genbr above if necessary:

(defun emit (i win)
 ;;; place the unconditional instruction "i" into the stream with
 ;;; success continuation "win".

 (cond ((not (= win f)) (emit i (genbr win)))
 ...))

 That is, if the next address to execute is not the address
immediately following where we’re going to be compiling, then first
we genbr a jump so that it is.

Naming

 What should you call something derived from Baker’s system, but
different? Antonyms for “comfy” include cold, cool, disagreeable,
dissatisfied, hard, strict, troubled, uncomfortable, unfriendly,
unhappy, unpleasant, unsuited, destitute, poor, discontented, needy,
hopeless, miserable, neglected, pitiable, upset, and wretched,
according to Roget’s. Synonyms include snug, cozy, cushy, homey,
and soft. Lojban has “kufra” for “foo is comfortable with bar”.

Topics

• Programming (p. 1141) (49 notes)
• History (p. 1153) (24 notes)
• Lisp (p. 1174) (11 notes)
• Compilers (p. 1178) (10 notes)
• Program calculator (p. 1246) (4 notes)
• Control flow (p. 1299) (3 notes)
• COMFY-* (p. 1300) (3 notes)
• Constraints

 Generating novel unique
pronounceable identifiers with
letter frequency data
 Kragen Javier Sitaker, 02021-03-10 (updated 02021-03-22)
(11 minutes)

 From Project Gutenberg’s edition of “War and Peace”, we get
etaonihsrdlucmwfgypbvkxqzj, which is pretty close to the
etaonrishdlfcmug...qz I remember from Zim’s “Codes and Secret
Writing” and the etaoinshrdlu of the Linotype. Interestingly, capital
letters are ITAPHNBMRSWECDFOGYKVLXJUZQ, a quite
different distribution.

perl -lne '$f{$&}++ while /./g; END {for (sort {$f{$b} <=> $f{$a}} keys %f) { pri
nt "$_ $f{$_}" }}' war-and-peace-2600.txt
 514911
e 312990
t 219591
a 199239
o 191245
n 180561
i 166351
h 163027
s 159906
r 145373
d 116274
l 95814
u 65180
c 59520
m 58395
w 56319
f 52950
g 50024
y 45000
, 39891
p 39014
b 31052
. 30805
v 25970
k 19230
" 17970
I 7933
' 7529
T 6817
A 6575
P 6519
- 6308
H 4378
! 3923
x 3711
N 3614

B 3606
M 3251
? 3137
R 3057
S 2987
W 2888
q 2295
z 2280
j 2266
E 2259
C 2107
D 2017
F 1946
O 1635
G 1303
Y 1265
K 1201
; 1145
V 1116
: 1015
L 713
X 673
) 670
(670
1 392
J 308
* 300
U 254
8 193
0 179
2 147
Z 108
3 61
6 57
5 55
7 40
Q 35
9 35
/ 29
4 23
$ 2
= 2
@ 2
[1
% 1
1
] 1

 The first version of this Perl used for instead of while and
consequently got the wrong answer.

 It occurs to me that you could represent a pretty reasonable
language model by dividing a suffix array of War and Peace into
some 1024 to 16384 equal bins and listing the boundary elements of

the bins.

 If you break the letters down by binary order of magnitude in
frequency, you get etaonihs rdl ucmwfgy pbv k ' x qzj. Lower-case
letters in etaonihs are about 3–4 bits of entropy; letters in rdl are
about 4–5; ucmwfgy, 5–6; pbv, 6–7; k, 7–8; x, 9–10; qzj, 10–11.
For capital letters, it’s ITAPH NBMRSWECD FOGYKV LX JU 0
Z Q, I presumably being frequent because of its use in Roman
numerals. The intersection of the least common 13 in both groups is
fgyvkxqzj.

 Generating novel strings for identifiers
 This suggests that if you want to generate a sequence of letters that
rarely occurs in English, letters like X and K buy you almost twice as
much entropy as letters like C and D. However, it isn’t enough to
just say “qqqq”, because although that’s very unlikely to occur in
English, it’s fairly likely under other language models. And, for
example, in base64-encoded gzipped data, “xzqj” occurs in one out of
every 2²⁴ positions, just like every other four-byte string consisting of
valid base64 characters, rather than once every 2⁴⁰ positions as the
above naïve character frequency model would predict, or the even
lower frequency a more accurate English model would predict.

 Including digits and punctuation is a time-honored way of
increasing apparent randomness, especially higher digits — though “8”
and “0” in this corpus occur more often, because it has a lot of dates
in the early 1800s, both “7” and “9” occur nearly an order of
magnitude less commonly than “1”, which is itself six times less
common than any lowercase letter. Digits, though, also occur in
base64 with frequency equal to that of letters. Including a
punctuation character (other than + and /, the final two base64 digits,
or , as in RFC3501, or - and _ as in RFC4648 §5) can avoid collisions
in these cases, even if search engines aren’t good at picking them up.
The least objectionable candidates would seem to be ., : and !, though
all of these are used by uuencode.

 If there were 10 billion monkeys in the world constantly banging
away on typewriters at 10 keystrokes per second each, evenly
distributed over a 32-letter alphabet including our chosen glyphs, how
long would it take them on average to produce a chosen string of any
given length? That’s 10 picoseconds per character:
 length probability occurs every example existing meaning
 1 2⁻⁵ 320 ps y years, a combinator, etc.
 2 2⁻¹⁰ 10240 ps yg rapper, Korean record label, etc.
 3 2⁻¹⁵ 0.0003 ms ygf graph format, record label, Yamaha guitar,
etc.
 4 2⁻²⁰ 0.01 ms ygf6 “yellow swim stormy flower” beach bag
 5 2⁻²⁵ 0.34 ms ygf6v occurs in uuencoded EDGAR filings and
leaked email
 6 2⁻³⁰ 10.7 ms ygf6vq occurs in one EDGAR filing in 02018 and
some URLs
 7 2⁻³⁵ 340 ms ygf6vq6 an autogenerated email address
 8 2⁻⁴⁰ 11.0 s ygf6vq62 a spammer domain
 9 2⁻⁴⁵ 6 minutes ygf6vq624 no results
 10 2⁻⁵⁰ 3.1 hours ygf6vq6244
 12 2⁻⁶⁰ 130 days ygf6vq624483

https://www.roxy.com/tropical-vibe-printed-beach-bag-ERJBT03097.html

 14 2⁻⁷⁰ 370 years ygf6vq624483.v
 15 2⁻⁷⁵ 12000 years ygf6vq624483.v2

 In practice, we seem to escape from the existing human universe in
this case around three or four characters, so we ought to be able to
generate unique identifiers pretty reliably with four letters chosen
from, say, “dfogykvlxjuzq”, a digit that isn’t 1, and a punctuation
character chosen from “.:!”. We have to be careful not to generate
too many digits, because although digits occur at less than one in 8192
in my sample text above, they occur at 1 in 10 in other contexts, and
so any five-digit number will occur in many places. In Python:

[m[:q] + random.choice('234567890') + m[q:]
 for _ in range(8)
 for m in [l[:p] + random.choice('.:!') + l[p:]
 for l in [''.join(random.choice('dfogykvlxjuzq')
 for _ in range(5))]
 for p in [random.randrange(1, len(l))]]
 for q in [random.randrange(1, len(m))]]

 This generates for example ['uly2q:k', 'k:9jzok', 'j!xjx9y', 'z9l!qjy',
'uoj5:dq', 'kd0:quy', 'xg!k6ou', 'gf!x2xj']. These do indeed seem to be
unique, but search engines like Google and Startpage.com find false
hits for them because they treat the punctuation as a word separator
and find documents that spuriously contain each of the two “words”.
So a better approach for search engines is to put the punctuation
always at the beginning:

[m[:q] + random.choice('234567890') + m[q:]
 for _ in range(8)
 for m in [random.choice('.:!') + l
 for l in [''.join(random.choice('dfogykvlxjuzq')
 for _ in range(5))]]
 for q in [random.randrange(1, len(m))]]

 This yields [':dxg0uj', '.2glqud', '!2qkvdf', '.k0yokg', '!xv8gdl',
'.g3llgl', '.yd4uxu', ':vg2zqy']. Some of these yield no search-engine
results, while others yield a small number of obviously spurious
results; none of them can occur in base64 with the punctuation, and
none of the search results have the punctuation either. The code as
written can only produce 3×5×9×13⁵ = 50 124 555 different
identifiers, so it’s not particularly random! You sure wouldn’t want
to use this to choose passwords. And if you use it to choose six or
seven thousand identifiers, it’ll probably produce a collision, thanks to
the birthday paradox.

 But evidently even four such letters and a digit are enough to
escape from the universe of already-chosen global names:

[m[:q] + random.choice('234567890') + m[q:]
 for _ in range(4)
 for m in [random.choice('.:!') + l
 for l in [''.join(random.choice('dfogykvlxjuzq')
 for _ in range(4))]]

 for q in [random.randrange(1, len(m)+1)]]

 This yields ['.k5zyy', '!f2zxx', '.fyf9d', ':guu6x'] none of which seem
to have an existing meaning.

 If you want pronounceable random strings, the easiest approach is
probably CV syllables, and you probably need a third vowel, such as u,
and you probably want to eliminate k and g as possibly sounding the
same as q and j:

[''.join(c+v for _ in range(n)
 for c in [random.choice('dfyvlxjzq')]
 for v in [random.choice('uoi')])
 for n in range(5)]

 This has only 30 possible syllables, but yields ‘zi’ (master
philosopher, ZoomInfo, zero infrastructure, a dozen different
Wikipedia articles, etc.), ‘jiji’ (a Spanish laugh, a Nigerian classifieds
site, a Taiwanese hostel system), 'vuqojo' (no occurrences, though
there's a guy in Uganda named Pius Vukojo), 'qivufozo' (no
occurrences found), and 'qiyilifizi' (no occurrences found). This
suggests that three or four syllables of this form is enough to generate
a unique name on most runs of this approach.

 A slight improvement here might be to expand the consonants
slightly and use g rather than j:

[''.join(c+v for _ in range(n)
 for c in [random.choice('wdfgypvlxzq')]
 for v in [random.choice('uoi')])
 for n in range(5)]

 This yields ‘yu’ (arrows, English second-person singular pronoun,
and dozens of other meanings), ‘qufo’ (an Italian food retailer; also,
there’s an Albanian TV channel named Çufo), ‘yiyogu’ (the
nickname of a person on Facebook, Yiyo Gu), ‘qupizuqi’ (apparently
unique), and ‘qilixopoqi’ (apparently unique). This approach easily
generates many somewhat-pronounceable apparently-unique names
like quzodupogu, zofopu, voxopidi, poyodipi, gopiwixu, and xiwoyifo. Many of
the three-syllable names it generates are taken, but few of the
four-syllable names.

 If we add an easy nasal syllable coda in some cases, we might get
more unique names at three syllables:

[''.join(c+v+(random.choice('nm') if not random.randrange(3) else '')
 for _ in range(3)
 for c in [random.choice('wdfgypvlxzq')]
 for v in [random.choice('uoi')])
 for _ in range(5)]

 This yields ‘qozuqu’ (apparently a Tajik and Georgian word),

‘xinfowo’ (unique), ‘donxowom’ (unique), ‘lolomyom’ (unique,
though there’s a tumor called a “lolomyoma”, which I imagine is less
amusing than it sounds), and ‘dolonwu’ (unique). (Some of these do
appear in lists of randomly or exhaustively generated words similar to
the above.)

 Adding V syllables (with no onset) gives us:

[''.join(c+v+(random.choice('nm') if not random.randrange(3) else '')
 for _ in range(3)
 for c in [random.choice([''] + list('wdfgypvlxzq'))]
 for v in [random.choice('uoi')])
 for _ in range(5)]

 This produces ‘impufu’ (a hill in South Africa and also a
YouTuber), ‘xonvulu’ (unique), ‘quqifin’ (a village in Syria), ‘zoliom’
(“zona libre ordenanzas municipales”), and ‘zinvixi’ (unique). So this
change seems to be counterproductive, perhaps unsurprising as it not
only shortens the words but also increases the relative frequency of
vowels in them, which are generally higher-frequency letters.

 If we use a somewhat more difficult set of codas, we get

[''.join(random.choice('wdfgypvlxzq')
 +random.choice('uoi')
 +(random.choice('mfz') if not random.randrange(3) else '')
 for _ in range(3))
 for _ in range(5)]

 This gives us ‘xiqilo’ (a brand of blinking sneakers), ‘lofwili’
(unique), ‘yimlugu’ (unique), ‘figimzu’ (unique), and ‘gizxiwu’
(unique but unpronounceable).

 Topics

• Programming (p. 1141) (49 notes)
• Experiment report (p. 1162) (14 notes)
• Python (p. 1166) (12 notes)
• Natural-language processing (p. 1284) (3 notes)
• Randomness (p. 1336) (2 notes)
• Perl (p. 1342) (2 notes)

Garbage-collected allocation
performance on current computers
Kragen Javier Sitaker, 02021-03-13 (updated 02021-04-08)
(4 minutes)

 Originally posted at
https://news.ycombinator.com/reply?id=26441466&goto=threads%3
Fid%3Dkragen%2326441466

 I guess you aren’t trolling; you’re just confusing the part of
programming that you know about with the whole field. But there
are more things in heaven and earth, Horatio, than are dreamt of in
your philosophy…

 You said, “If you allocate a a few bytes at a time, it will top out in
the ballpark of 10 million per second per core.” In my link above, I
demonstrated a one-line program which, allocating a few bytes at a
time, tops out at 150 million allocations per second per core; if the
memory stays in use long enough to survive a minor GC, that drops
to 100 million allocations per second per core. It’s using the same
allocator SBCL uses for everything (except large blocks), and these
performance numbers include the time for deallocation. It takes into
account all of the things that make memory allocation problematic for
performance.† But it does an order of magnitude more allocations per
second than you’re saying is possible. Even LuaJIT 2.0.5 on this same
laptop manages 42 ns per allocation, 23 million per second:

function nlist(n)
 local rv = nil
 for i = 1, n do
 rv = {i, rv}
 end
 return rv
end

function mnlist(m, n)
 print('m='..m..' n='..n)
 for i = 1, m do nlist(n) end
end

mnlist(500000, 2000)

 It’s true, as you say, that the way it works is similar to “adding
[small numbers] to the size of a C++ vector with a large capacity on
each iteration of a loop.” (It’s not “adding 1” because allocations of all
sizes are served from the same nursery; interspersing different
open-coded allocation sizes affects performance only a little.) But just
doing that doesn’t save you from writing a garbage collector and
implementing write barriers, or alternatively doing MLKit-style static
reasoning about lifetimes the way you do to allocate things on a
per-frame heap in C++.

 It’s also true that, as you say, “memory allocation is often huge low

https://news.ycombinator.com/reply?id=26441466&goto=threads?id=kragen#26441466
https://news.ycombinator.com/reply?id=26441466&goto=threads?id=kragen#26441466
https://news.ycombinator.com/reply?id=26441466&goto=threads?id=kragen#26441466

hanging fruit for optimization.” You aren’t going to get this kind of
performance out of HotSpot or a malloc implementation, not even
mimalloc. So if you’re using one of those systems, memory allocation
is an order of magnitude more expensive. And, if you’re concerned
about worst-case performance—latency, rather than throughput, as
HFT people and AAA game programmers are—probably no kind of
garbage collection is a good idea, and you may even need to avoid
allocation altogether, although recent versions of HotSpot make some
remarkable claims about worst-case latency, claims which may be
true for all I know.

 Of course, even when it comes to throughput, there is no free
lunch. An allocator design so heavily optimized for fast allocation
necessarily makes mutation more expensive—SBCL notoriously uses
segfaults for its write barrier so that writes into the nursery are as fast
as possible, a cost that would be intolerable for more
mutation-oriented languages like Java or C++; and heavy mutation
is generally a necessary evil if latency is important. (Also, I think
there are algorithms, especially in numerical computation, where the
best known mutation-based algorithms have a logarithmic speedup
over the best known pure functional algorithms.)

 You can find a more detailed discussion of some of the issues in
https://archive.fo/itW87 (Martin Cracauer’s comparison of
implementing memory allocation in LLVM and SBCL, including
years of experience running SBCL in production and extensive
discussion of the latency–throughput tradeoff I touch on above) and
the mimalloc technical report,
https://www.microsoft.com/en-us/research/publication/mimalloc-f
ree-list-sharding-in-action/. The mimalloc report, among other
things explains how they found that, for mimalloc, BBN-LISP-style
per-page free-lists (Bobrow & Murphy 1966, AD647601,
AFCRL-66-774) were faster than pointer-bumping allocation!

 † This build of SBCL does have multithreading enabled, and the
allocation benchmark takes the same amount of time running in a
separate thread, but on my machine it doesn’t get a very good
speedup if run in multiple threads, presumably due to some kind of
allocator contention.

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Lisp (p. 1174) (11 notes)
• Real time (p. 1195) (7 notes)
• Facepalm (p. 1199) (7 notes)
• OCaml (p. 1249) (4 notes)
• Garbage collection (p. 1255) (4 notes)
• Allocation performance (p. 1308) (3 notes)
• Steel Bank Common Lisp (p. 1330) (2 notes)
• LuaJIT (p. 1353) (2 notes)

https://archive.fo/itW87
https://archive.fo/itW87
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/

How Lao Yuxi painted a cock
Kragen Javier Sitaker, 02021-03-19 (updated 02021-04-14)
(7 minutes)

 At first I did not understand this folk tale at all. I cannot trace its
origin, though there are many tellings on the web, so I will add
another version, which is of course a lie from beginning to end.

 In the days of the Ming, after the barbarian invaders lost the
Mandate of Heaven, in the twenty-third year of the Hongwu
Emperor, there lived an artist named Lao Yuxi. Lao had studied with
the nameless masters in Fujian, but now he lived alone in Suzhou, on
the shore of Lake Tai, near the canals. There he cooked xiaolong bao
for himself, and painted, speaking to few. In his garden he cultivated
the fragrant suzi plant which gives Suzhou its name, which is called
सिलाम or silam. Once a year he made the long trek across the
enormous, ancient city to the tall stone Yunyan Temple on top of
Tiger Hill, which was not as tall in those days, but had already begun
to lean. The painter Lao was said to be a greater painter than the
Hanlin Yuan painters, greater even than Shangguan Boda’s painters at
the Palace of Virtue and Knowledge, who wore the golden
girdle — even though the painter Lao did not have to pay a fine for
each error in his paintings.

 The Hongwu Emperor aspired to restore the artistic glory the Song
had achieved before the barbarian invasion. That summer, when the
magnolias were in bloom, hearing of the painter Lao, he called him to
his court at the Capital of the South (which is pronounced “Nanjing”
in Chinese) and commissioned him to paint a cock crowing at dawn.
Lao took a fortune in gold and bronze back to his home in Suzhou, on
the shore of Lake Tai, near the canals, where he painted.

 A month later, the Hongwu Emperor sent for the painting of the
cock, but the painter Lao was eating xiaolong bao, which burst in
your mouth when you bite them. He sent back word that the
painting was not done yet. So the Emperor waited.

 Summer gave way to autumn, and when the tree limbs were bare
against the sky, again the Hongwu Emperor sent for the painting of
the cock. The painter Lao was weeding among the fragrant suzi in his
garden, and he sent back word that the painting was not done yet. So,
still, the Emperor waited.

 Autumn became winter and then spring, and in the summer, when
the lotus began to bloom, the mighty Hongwu Emperor sent for the
painting of the cock a third time. When the Emperor’s messenger
arrived at the house of the painter Lao in Suzhou, on the shore of
Lake Tai, near the canals, Lao was not there. The messenger waited
impatiently until it was dark, and finally the painter Lao returned
from the tall stone Yunyan Temple on top of Tiger Hill. He gave the
hungry messenger xiaolong bao, which burst in his mouth when he
bit it. But, again, the painter Lao sent back word that the painting
was not done yet. The Emperor knew patience from his days as a
monk, and he knew the value of mercy from the years he had
wandered as a beggar, and so, still, the Hongwu Emperor waited.

https://www.lefthanded-design.de/en/ertzahlung.html

 That autumn, the leaves turned yellow and orange, then deep red.
The Hongwu Emperor had given the land of many nobles to peasants,
and those nobles went to speak with the general Lan Yu, the
Emperor’s oldest friend, the personal tutor of the Crown Prince.
When the Hongwu Emperor found ten thousand of the finest
Japanese swords secreted in Lan’s house in Anhui, he knew Lan had
betrayed him, so he put to death his oldest friend, Lan Yu. Then, the
Emperor put to death fifteen thousand more men the Embroidered
Uniform Guard said were loyal to Lan.

 But the painter Lao was at his house in Suzhou, on the shore of
Lake Tai, near the canals. He cooked xiaolong bao for himself, and
they burst in his mouth when he bit them.

 That spring, when the mimosas bloomed, the Hongwu Emperor
punished the Embroidered Uniform Guard for abusing their
authority during the investigation. Times were very difficult. The
Emperor put to death tens of thousands more people, including three
of his favorite concubines.

 It was two more years before the Hongwu Emperor paid attention
to artistic matters, and then he was furious. He did not want to wait
any longer. He went to the house of the painter Lao in Suzhou, on
the shore of Lake Tai, near the canals. As the sun set over Lake Tai,
he burst through Lao’s door and demanded the painting he had paid
such a fortune for.

 The painter Lao put down his plate of xiaolong bao. He picked up
his brush and his inkstone, and with a few deft strokes, he created the
most beautiful painting of a cock the Hongwu Emperor had ever
seen, so lifelike it was impossible to believe human hands had painted
it. Not a single brushstroke was wasted, and the cock looked ready to
walk off the paper and peck the Hongwu Emperor. Somehow the
dawn in the painting seemed to glow. The Emperor felt he could not
breathe when the painter Lao handed him the painting.

 But this evidence of the incomparable excellence of the painter Lao
did not appease the Hongwu Emperor. After he recovered from his
astonishment, he was angrier than before. “You have kept me
waiting three years while you ate xiaolong bao,” he roared, “for a
painting you could paint in twenty minutes?” His bodyguard stirred
uneasily outside the door in his embroidered uniform.

 The painter Lao showed no fear and spoke no word. He slid open
his closet door. Ten thousand paintings of cocks avalanched onto the
floor. Many of them were terrible, even ridiculous. Some were good.
But the best painting of all was the one in the Emperor’s hand.

 The Hongwu Emperor was ashamed. Silent, he left with the
twenty-minute painting on which the painter Lao had spent three
years of his life, and he returned to Nanjing. For the rest of his life
the painting was his most precious possession.

Topics

• Art (p. 1306) (3 notes)
• Fiction (p. 1368) (2 notes)

• Learning

Bench supply
Kragen Javier Sitaker, 02021-03-19 (updated 02021-12-30)
(25 minutes)

 One thing I’ve been procrastinating on for years is building a
proper bench power supply. Minimally it needs a galvanically isolated
single-ended DC output voltage adjustable from 0 V to 15 V with an
adjustable current limit of up to at least a few hundred milliamps,
some kind of readout that tells you what it’s delivering, and precision
of ±10% or better over most of that range. Bipolarity supplies, larger
voltages, very precise regulation, linear regulation, foldback current
limiting, high efficiency, and thermal protection would be nice but
are less essential.

A super ghetto flyback design

 The standard design for this kind of thing involves a lot of analog
components, but computers are cheaper than transistors now, so it
might be better to use an analog circuit that’s as simple as possible and
pushes as much complexity as possible into software.

 So ideally you’d like some kind of transformer-isolated switching
buck–boost converter. Like a flyback converter, which I’ve drawn
here being driven from a discrete-component PWM generation
circuit instead of a microcontroller:

$ 1 1e-8 16.817414165184545 50 5 43 5e-11
R 208 160 160 160 0 3 40000 2.5 2.5 0 0.5
R 96 -48 96 -80 0 0 40 5 0 0 0.5
a 208 144 272 144 9 5 0 1000000 0.027999984128133537 0.025000000000000005 100000
174 96 192 112 64 1 1000 0.005 Resistance
g 96 192 96 224 0 0
w 112 128 208 128 0
368 272 144 272 64 0 0
t 320 144 352 144 0 1 -12.72087652079897 -0.20438741318712572 100 default
r 272 144 320 144 0 100
R 384 -16 384 -80 0 0 40 5 0 0 0.5
T 384 128 448 -16 0 0.000004 1 -3.0191582567340447e-10 -0.12340456006778311 0.999

https://tinyurl.com/yzhw2r6e

d 496 -16 448 -16 2 1N5712
c 496 -16 496 128 0 0.000009999999999999999 -0.40177526518551265 0.001
w 496 128 448 128 0
w 496 -16 560 -16 0
w 496 128 560 128 0
r 560 -16 560 128 0 100
w 560 -16 624 -16 0
w 560 128 624 128 0
p 624 128 624 -16 1 0 0
w 96 64 96 -48 0
t 352 160 384 160 0 1 -12.516489107611845 0.2043871144711009 10 default
w 384 144 384 128 0
w 352 128 384 128 0
g 384 176 384 224 0 0
b 320 256 21 -103 0
x 112 280 210 283 4 12 PWM\sgeneration
b 332 -104 531 260 0
x 373 278 481 281 4 12 Flyback\sconverter
o 6 128 0 4099 10 6.4 0 2 6 3
o 19 128 0 4098 20 0.1 0 1

 The actual flyback converter itself is four components: an npn
darlington grounding one end of the primary of a transformer, a
schottky, and a capacitor. Well, and a base resistor for the darlington
if the input signal is voltage-mode PWM instead of current-mode
PWM, so that’s five components. (Horowitz & Hill suggest a zener
snubber across the primary to limit the voltage spike from the primary
leakage inductance: a rectifier and a TVS zener, in opposite
directions, so it’s more like seven. But I didn’t simulate that. In their
example the leakage inductance is about 5% of the total.)

 Here’s the values I chose in the above simulation:

• a 5-volt supply;
• 40 kHz;
• a 100Ω base resistor;
• β=100 for the first transistor and β=10 for the second;
• a 1:1 transformer with a 4 μH primary inductance and a coupling
coefficient of 0.999;
• a 1N5712 schottky with a forward voltage around 290 mV;
• a 10μF output smoothing cap;
• a 100Ω load.

 With these values I get about:

• ±1% output ripple with a high output voltage, around 17 V and
170 mA (2.9 W);
• ±2% output ripple near the middle of the range, around 13 V and
130 mA,;
• ±1% output ripple near the bottom of the range (around 1.4 V and
14 mA);
• ±1% output ripple at the bottom of the range (0.5% duty cycle)
(around 80 mV and 0.8 mA).

 At the top of the range (99.5% duty cycle) the output voltage is
actually lower with this load.

 It can drive thirstier loads like 10Ω at the cost of more ripple, for
example 260–330 mV (±6%) but then it tops out at around 2.5–3.2 V
(±6%), at which point it's pushing 300 mA (≈1 W). So you’d
probably want a bigger output cap. τ = 10Ω·10μF = 100 μs, and the
PWM period here is only 25 μs.

 This design has a serious problem, though. At high output
voltages, and especially when increasing the output voltage rapidly,
the power transistor sucks up a lot of power, like tens to hundreds of
watts. It seems that it’s not getting enough base current. At one
point, for example, its Vce is 3.2 volts and its Ic is a rather alarming
33.6 amps, which wouldn’t be so bad if it had a nice saturated Vce of
0.2 volts or so, but noo, it’s forward active! It’s “only” getting 3.4
amps of base current, you see, because the other transistor is also
forward active, because it’s only getting 33 mA of base current and so
it’s “only” passing 3.4 amps of Ic. This is in part because both
transistors have a relatively high Vbe at this point of almost 900 mV,
reducing the voltage on the base resistor to only 3.3 V.

 Reducing the base resistor value to 47 Ω helps a bit with the
problem, but that’s demanding a lot of current on the PWM input.
Even the 38 mA or so this circuit can demand is kind of a lot. Really
probably what we need is an additional amplifier stage. Also it’s
probably hard to find a transistor that can actually handle 3.4 amps of
Ic but has β=100. A better alternative might be to use a pnp signal
preamp (β=100) to drive an npn power darlington (β=10 × β=10);
that way we avoid stacking more Vbes and can also use a beefy power
transistor there. But using a power MOSFET, and maybe driving the
whole circuit from a 12-volt supply instead of 5 volts so it can use
lower currents, is maybe a better idea.

 Doing the pnp-preamp thing driven from the PWM voltage input
signal through a 470-Ω base resistor does indeed help keep the
switching transistor's Vce from going above a volt or so, so it would
dramatically reduce the power-dissipation problems. (It also inverts
the sense of the PWM signal.)

 I think the transformer’s inductance imposes an inherent limit on
the power this circuit can deliver at a given frequency, which in this
simulation is about 3 watts, as we can see above. The energy per cycle
is ½LI². But what determines the maximum current? It’s not clear to
me — the current’s derivative clearly is inversely proportional to the
inductance, but it need not fall to 0 each cycle. Mindlessly banging on
the simulator didn’t yield any ready answers; altering the transformer
inductance, PWM frequency, and transformer coupling losses, even
over orders of magnitude, didn’t get my output voltage over 20 volts,
although there are higher voltages floating around the circuit,
sometimes over 100 volts. I said I only needed 15 volts, but I’d like to
understand what the invisible limit is here.

 OH, interesting — switching the diode model to a 1N4004 did the
trick, and now I can get 120V output. Maybe the Schottky’s reverse
leakage was the limit! Changing just the diode model gives us
potentially much higher output voltages, like over 100VDC, because
now our reverse leakage is like 18 nA instead of ...0.7 nA with the
1N5712? No, that can’t be it.

 Oh, yes, it is — the simulation says that once it has about 20.8 volts

of reverse bias it starts passing 60 mA in reverse (or probably any
quantity at all, whatever’s needed to keep it from going below -21.)

 So suppose you do build such a device; how do you regulate the
output? You need some way to measure the output voltage and
current so you can react to them. One way to deal with this is to try
to move those analog quantities across the galvanic barrier, for
example with analog optocouplers or pulse transformers, putting the
microcontroller on the non-floating part of the circuit. A different
approach is to float the microcontroller, although you probably don’t
want to try to run the microcontroller off 80 mV; you need a
separate isolated power supply for the microcontroller, probably using
a separate transformer. Then you can hook its analog inputs up
directly to the output circuit with relatively little fear, and use a single
pulse transformer or ordinary on/off optocoupler to transmit the
information back over to the non-isolated side. That sounds simple!

 Probably you’ll want a sense resistor, say 1Ω, one side of which is
connected to the microcontroller's ground. At 300mA it would
produce 300mV, which is a very reasonable amount to measure,
about 25% of full scale (256 counts) on an AVR’s 1.1V internal
reference. You’ll need to divide down the actual output voltage, and
maybe not suck more than 100μA into the bargain; if it’s 20V that
means a 200kΩ divider, which is pretty reasonable, and you can
divide it down, say, with 220kΩ and 6.8kΩ. Then 20V on the power
supply output works out to 600mV on the microcontroller’s input.
The smallest change you can reliably measure with a raw AVR is
probably about 5 mV, which works out to about 170 mV at the
output — not ideal but not terrible. Multiple sensing ranges attached
to multiple input pins may be a good idea here.

 The output doesn’t need to be regulated for a constant DC voltage.
With a center-tapped primary and an additional transistor switch, you
can generate an AC voltage on the output instead, with an arbitrary
waveform limited only by the PWM frequency. (You could just use
a DC-blocking capacitor on the output, but then you could only use it
as an AC supply, instead of changing mode under software control.)

A slightly better flyback design

 Here’s a revised version with 12V, 100kHz, leakage inductance
simulation and protection, a higher-breakdown Schottky, and a
MOSFET switch driven through an npn level-shifter:

https://tinyurl.com/yfgumxxy

$ 1 3.0000000000000004e-9 2.008553692318767 46 5 43 5e-11
R -96 112 -96 80 0 0 40 5 0 0 0.5
a 0 192 80 192 9 5 0 1000000 2.986054403507636 4.678 100000
174 -96 112 -96 224 1 10000 0.06440000000000001 Voltage knob
w -80 176 0 176 0
368 80 192 80 112 0 0
R 320 -48 320 -112 0 0 40 12 0 0 0.5
T 352 96 416 -48 0 0.000004 1 -2.3850875119357795e-7 6.800005003526621e-10 0.999
34 power\sschottky 0 6.8e-10 12 1.003 150 0
d 464 -48 416 -48 2 power\sschottky
c 464 -48 464 96 0 0.0000022 -15.440326076997223 0.001
w 464 96 416 96 0
w 464 -48 528 -48 0
w 464 96 528 96 0
r 528 -48 528 96 0 100
w 528 -48 592 -48 0
w 528 96 592 96 0
p 592 96 592 -48 1 0 0
w 352 176 352 160 0
w 320 160 352 160 0
g 352 208 352 256 0 0
x -61 300 37 303 4 12 PWM\sgeneration
x 250 300 358 303 4 12 Flyback\sconverter
l 352 160 352 96 0 2.0000000000000002e-7 -2.38508751092964e-7 0
d 320 160 320 96 2 power\sschottky
34 fwdrop\q0.806 1 1.7143528192810002e-7 0 2.0000000000000084 50 1
z 320 16 320 96 2 fwdrop\q0.806
w 320 16 320 -48 0
w 80 192 128 192 0
x 408 134 576 137 4 12 primary\sleakage\sinductance
368 432 176 480 176 0 0
w 352 176 432 176 0
w 352 -48 320 -48 0
t 176 192 208 192 0 1 0.6242259399470127 0.7204676364540711 100 default
r 128 192 176 192 0 1000
w 208 96 256 96 0
w 256 96 256 192 0
f 256 192 352 192 32 3 0.4
r 208 16 208 96 0 100
c 256 192 256 240 0 3.7e-10 0.09624169650705836 0.001
g 256 240 256 256 0 0
x 269 236 296 239 4 12 gate
x 269 251 342 254 4 12 capacitance
x 367 209 410 212 4 12 IRF630
g 208 208 208 256 0 0
x 126 232 192 235 4 12 gate\sdriver
w 208 16 320 16 0
w 208 96 208 176 0
g -96 240 -96 256 0 0
w 0 208 0 224 0
R 0 224 -32 224 0 3 100000 2.5 2.5 0 0.5
b -144 48 106 280 0
b 112 -80 514 280 0
o 4 128 0 4099 20 12.8 0 2 4 3
o 15 128 0 4354 40 0.1 0 1

o 27 32 0 4099 320 204.8 1 2 27 3
o 34 32 7 xa1013 80 0.4 1 2 640 20 0 23 7 640 20 0

 Pulling up the IRF630’s gate with a resistor makes it turn on
somewhat slowly, but this is not really important, because its drain
current ramps up slowly from zero anyway. You could probably use a
slower resistor and save some power. The strong npn pulldown slams
it off quickly, and that may be important, because when it turns off, it
may be carrying 15 amps! However, the IRF630 doesn’t have
excellent on-resistance — even when fully turned on, at 15 amps, the
ST datasheet says its Vds is about 7 volts, about half an ohm. Beefier
parts like the IRF540 would make that part of the circuit cooler, more
efficient, and perhaps more reliable; so too would a GaN part like the
EPC2036.

Inductor current feedback

 I was thinking about the current-sensing problem today, stimulated
by Chris Glaser’s note on high-side current sensing for LED lighting
using the voltage drop across the switching power MOSFET. I was
driven to revisit a thought I’d had previously about high-side current
sensing: if you’re using a microcontroller, maybe you could sense the
current intermittently by using an inductor to hold the current
constant while you divert it?

 Here’s an example of this current-feedback scheme, where the
switching P-MOSFET of a standard buck converter is fed from an
LC low-pass filter, so its source experiences a significant positive
voltage excursion every time it switches off, whose initial slope and
peak voltage value should tell us rather precisely how much current
the buck converter is drawing.

$ 1 1e-8 0.9487735836358526 50 5 43 5e-11
R -112 -16 -112 -80 0 0 40 5 0 0 0.5
l -112 -16 -16 -16 0 0.00009999999999999999 0.009476973841339323 0
l 112 -16 224 -16 0 0.00009999999999999999 0.007763234883748598 0

https://e2e.ti.com/blogs_/b/powerhouse/posts/efficiently-dim-your-led-without-a-sense-resistor
https://tinyurl.com/ygfffcj6

f 48 48 48 -16 41 1.5 0.02
w -16 -16 32 -16 0
c -16 -16 -16 96 0 1e-9 4.82585135926864 0.001
g -16 96 -16 128 0 0
R 48 48 48 96 0 2 40000 2.5 2.5 0 0.1
174 336 -16 384 112 1 1000 0.9158000000000001 Resistance
c 224 -16 224 112 0 4.7000000000000005e-7 4.827958335480461 0.001
g 224 112 224 128 0 0
g 384 48 384 128 0 0
w 224 -16 336 -16 0
368 -16 -16 -16 -80 0 0
w 112 -16 64 -16 0
d 112 96 112 -16 2 1N5711
g 112 96 112 128 0 0
403 80 -112 208 -48 0 2_64_0_4103_10_0.1_0_2_2_3
403 240 -112 368 -48 0 12_64_0_4353_5_0.1_0_2_12_3
403 240 16 304 128 0 9_64_0_4354_10_0.05_0_2_9_3
o 13 4 0 4098 10 6.4 0 3 7 0 7 3

 In simulation this sort of works, but not as well as I had hoped.
When the load is drawing 5.3 mA, the input voltage jounces up to
7.191 V, because at the point the transistor cuts off, the input 100μH
inductor is carrying 6.34 mA. But when the load is drawing 50.0 mA,
the input voltage jounces up to 9.109 V, because the input inductor
was carrying 54.1 mA. Physically this seems wrong; in the 6.34 mA
case the inductor holds 2.0 nJ of energy, but the input 1 nF capacitor
would contain 25.9 nJ at 7.191 V, while at the nominal 5 V it would
contain 12.5 nJ, a gain of a lot more than 2.0 nJ; this could be
explained if the voltage on the capacitor was already 6.91 V at the
point where the voltage starts climbing. In the 54.1 mA case the
100 μH inductor contains 146 nJ, and at 9.109 V the 1 nF cap contains
41.5 nJ, which is a mystery in the other direction.

 This is partly explained by my inept circuit design: I was trying to
cut off the P-MOSFET (whose Vth is simulated as -1.5V) by putting
its gate at 5 V, but of course as soon as the inductor drives its source
up past 6.5 V it starts conducting again. Nevertheless I think it proves
out the underlying principle. (This mechanism might actually be a
useful way to limit the peak voltage to something safe, if you’re
measuring the current using the rate of voltage rise rather than the
peak voltage.)

 The appeal of this complicated mechanism over a sense resistor (or
using the MOSFET on-resistance) is that in theory you should be able
to get more precise measurements at lower energy loss and regulation
instability for a given precision of voltage measurement.

 Suppose your switching MOSFET is a 2N7000: can handle 200
mA (and dissipate up to 400 mW) and block 60 V with 1.9 Ω of
on-resistance, switched with 2 nC of gate charge with about a 3 V
threshold voltage. (According to Can you get JLCPCB to fabricate a
CPU for you affordably from “basic” parts? (p. 347) JLCPCB will
solder a 2N7002, a lower-power version, onto your surface-mount
project, for 1.23¢ for the part plus 0.45¢ for the three terminals.
According to file jellybeans in Dercuano, Digi-Key sells the 2N7002
for 2.958¢ in quantity 1000, and local merchants here in Argentina sell

the 2N7000 for 12¢.) And suppose you’re building a tiny adjustable
power supply with one or more of these, supplying up to 200 mA and
up to 12 volts, working from a 12-volt supply, and you’re using a
single-ended ADC with ±0.2% error over the range 0 to 1.1 volts.
(For now I’ll assume your voltage reference is better than that.)

 The 2N7000 has low enough on-resistance that, if it's being
operated in the fully-on or fully-off states, it will never come close to
its 400 mW limit. The surface-mount 2N7002 has higher
on-resistance (7 Ω) and max current (115 mA) but I think is actually
more able to dissipate heat than its through-hole progenitor, so I think
the max current is the only limit here.

 Suppose you’re doing high-side sensing with a 1 Ω sense resistor,
just using the ADC directly rather than some kind of differential
amplifier or flying-capacitor setup. You need to use some kind of
resistive dividers to divide the 12 V signal down into the 1.1 V range,
say 100kΩ and 10kΩ
(GND-10kΩ-t-100kΩ-x-1Ω-y-100kΩ-u-10kΩ-GND, and the ADC
measures the voltages at points t and u in order to measure the current
between points x and y). You’ll have some gain error between the
two ends of the sense resistor, but that’s easy enough to calibrate out.
Then your 200 mA maximum current generates 200 mV, which gets
divided down to a difference of 18.2 mV (1.091 V on the high end,
1.073 V on the low end). ±0.2% error on your 1.1 V signal would be
±2.2 mV, which is ±24 mA, or ±12% error on your current reading
even at max scale. If you actually care about whether your circuit is
using 10 mA or 30 mA, it’s hopeless.

 If you use a 4.7Ω sense resistor instead, those 200 mA becomes a
85 mV signal (1.005 V vs. 1.091 V), and your ±0.2% error now
translates to ±5.1 mA, which is ±2.5% on your full-range current
measurement, which is not good but not completely useless. But such
a large sense resistor means that at 200 mA output the sense resistor is
eating almost a whole volt; not only is your 12 V circuit running at
11.06 V, if you’re feeding the load 200 mA at 1 V, the high side of the
resistor has to be at 1.94 V (and burning 200 mW, which is not good
for precision). That’s potentially pretty unhealthy for the load if it
suddenly drops from 200 mA to 10 mA — output capacitance
upstream of the sense resistor could raise the load voltage up from 1 V
to 1.89 V instantly. Capacitance across the load, downstream of the
sense resistor, could prevent this, at the cost of creating similar
uncontrolled and unmeasured current excursions when the load
impedance suddenly drops instead of suddenly rising.

 If you use a low-side sense resistor instead, you avoid the need for
the 11× divider, and your current-measuring precision
correspondingly improves by a factor of 11. This also doubles your
data rate and eliminates the need to calibrate out the gain difference
between the dividers on the high side and low side of the sense
resistor. But now the load isn’t grounded; it’s floating above ground,
potentially by as much as 0.94 V in the above 4.7Ω scenario. And the
sense resistor is still burning 184 mW at maximum output current.
For an isolated supply maybe this doesn’t matter. But this would give
us ±0.2% error on the maximum current, i.e. ±400 μA.

 Consider instead the situation where we use an LC circuit

upstream of the switching transistor. We should be able to arrange
for the full-scale C voltage at 12V output to be 48 V or so, and an
0.2% error in measuring that voltage should be 96 mV, which would
be an 0.27% error in the 36V ΔV, which corresponds to an 0.54%
error on the energy, which corresponds to an 0.27% error in the
200 mA current, ±540 μA. We can take multiple data points on the
voltage curve as it rises, which allows us to eliminate any offset error
in the ADC, and we don’t have to deal with calibrating out gain
differences between different dividers, because we have only one
divider to worry about. We could quite plausibly take 20 data points
for our measurement with a 1Msps ADC like the one on the STM32
series in 20 μs...

 Ugh, but that means that if we want to only be doing this
measurement 10% of the time, we can only run the buck converter at
5kHz, which is horrible. I was hoping to come up with a happy story
here like "so, you see, we can divert an arbitrarily small amount of our
power to measurement, and still get a very precise measurement!" but
that's not going to be true with an ADC. So it looks like we’d have
to do some analog RF electronics to measure the peak current level.
Maybe a flyback winding on the input inductor or something.

Topics

• Electronics (p. 1145) (39 notes)
• Ghettobotics (p. 1169) (12 notes)
• Power supplies (p. 1176) (10 notes)
• Falstad’s circuit simulator (p. 1198) (7 notes)

Recursive residue number systems?
Kragen Javier Sitaker, 02021-03-20 (updated 02021-03-22)
(8 minutes)

 As I wrote in https://news.ycombinator.com/item?id=26525837
residue number systems with many small bases are not well suited to
day-to-day human use; they’re more confusing than systems with a
smaller number of bases. So, for example, the Maya tzolk’in residue
number system calendar uses bases 13 and 20, necessitating at least 20
digits (though in fact the Maya used different digits for the two
cycles, one being an ordinary numeral and the other being the name
of one of 20 natural phenomena). Small bases also tend to vary a lot
from digit to digit; in that post I suggested using bases 5, 6, 8, 9, and
11, but that means that you need at least 11 digits, but can only use 5 of
them in the fastest-cycling digit, wasting more than a whole bit of
encoding space.

 The conventional way to solve this problem is to use another
number system for the individual digits. For example, the 13 day
numbers of the Maya were �� �� �� �� �� �� �� �� �� �� �� �� ��,
which are written in base 5 (and 1-origin — Dijkstra would not
approve), and the Babylonians used up to 14 cuneiform strokes to
form their sexagesimal digits: up to five “ten” strokes, and up to nine
“one” strokes. And Wilhelm Fliess wrote his cocaine-fueled
biorhythm numbers, counting days modulo 23 and 28, pairs of
Western Arabic digits, as do modern biorhythm scammers, adding a
33-day cycle. So day 10000 of a person’s life might be represented as
18(P), 4(E), 1(I), because 10000 % 23 = 18, 10000 % 28 = 4, and 10000
% 33 = 1, although it’s more common for biorhythm scammers to just
plot some sine waves.

Applying the RNS principle recursively

 This is a fascinating alternative. For example, suppose we have 16₁₀
digits, like the corners of a tesseract, or conventional sexadecimal
symbols. With two of them we can represent a number mod 240₁₀
with its moduli relative to 15₁₀ and to 16₁₀:

00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee
f0 01 12 23 34 45 56 67 78 89 9a ab bc cd de
e0 f1 02 13 24 35 46 57 68 79 8a 9b ac bd ce
d0 e1 f2 03 14 25 36 47 58 69 7a 8b 9c ad be
c0 d1 e2 f3 04 15 26 37 48 59 6a 7b 8c 9d ae
b0 c1 d2 e3 f4 05 16 27 38 49 5a 6b 7c 8d 9e
a0 b1 c2 d3 e4 f5 06 17 28 39 4a 5b 6c 7d 8e
90 a1 b2 c3 d4 e5 f6 07 18 29 3a 4b 5c 6d 7e
80 91 a2 b3 c4 d5 e6 f7 08 19 2a 3b 4c 5d 6e
70 81 92 a3 b4 c5 d6 e7 f8 09 1a 2b 3c 4d 5e
60 71 82 93 a4 b5 c6 d7 e8 f9 0a 1b 2c 3d 4e
50 61 72 83 94 a5 b6 c7 d8 e9 fa 0b 1c 2d 3e
40 51 62 73 84 95 a6 b7 c8 d9 ea fb 0c 1d 2e
30 41 52 63 74 85 96 a7 b8 c9 da eb fc 0d 1e
20 31 42 53 64 75 86 97 a8 b9 ca db ec fd 0e
10 21 32 43 54 65 76 87 98 a9 ba cb dc ed fe

https://news.ycombinator.com/item?id=26525837

 Now we apply the recursive step, bottom up. An additional such
pair can represent the number mod 239: 00 00, 11 11, 22 22, ... dc dc,
ed ed, fe 00, 00 11, 11 22, ... ed dc, fe ed, 00 00. This lets us represent
57’360₁₀ numbers in four digits. A second recursive step represents a
number in this way directly and also modulo 57’359₁₀, so that
following ed dc ed dc, we have not fe ed fe ed but fe ed 00 00. This
can represent numbers up to 3’290’112’240₁₀ in eight digits: 31.6 bits
of information, only 1.2% less than a binary place-value notation.

Extension to multiple precision

 It also has a straightforward rule for abbreviating small numbers: to
extend a small positive number to a longer version, the longer version
of the number just has more copies of the same number, in a way
analogous to zero-extending or sign-extending in conventional
place-value systems. So 3 can be validly represented, for example, as
33, 33 33, or 33 33 33 33, and a4 is the same as a4 a4 or a4 a4 a4 a4. In
the notation used in the above counts, I am extending numbers to the
right rather than, as is conventional, on the left, but the extension
algorithm is the same either way.

Sign testing is straightforward and efficient

 The rule to determine the sign of a number, which is an enormous
problem with residue number systems in general, is easy but not
totally trivial. You subtract the two halves of the number from one
another and use the sign of the result. So, for example, ed dc is
negative, because dc - ed = fe, which is negative because e - f = f,
which is negative because I said so. You can choose where to put the
window where positive numbers wrap around to negative, but as long
as you have at least some negative numbers this approach will give you
the right subtraction sign if you do the arithmetic with sufficient
precision.

I’m not sure how to do ordinary arithmetic
though!

 I thought the usual digit-by-digit methods of residue number
systems would apply in a trivial way here because of the simple
recursive construction, but they don’t. 05 a8 5a fd multiplied by a4 3e
a4 3e, for example, is 05 15 c2 ca: 320’000₁₀ × 6154₁₀ =
1’969’280’000₁₀. For the first two digits we can just multiply
corresponding digits: 0·a = 0, 5·4 = 5 (mod 15₁₀). But to compute
that a8·3e (218₁₀·179₁₀) should give us ‘15’ (mod 239; 65₁₀), we cannot
just multiply a·3 mod 16₁₀ and 8·e mod 15₁₀, which would give us e7,
the wildly different number 142₁₀. That’s because 218₁₀·179₁₀ =
39’022₁₀, which is 163₁₀·239₁₀ + 65₁₀ or 162₁₀·240₁₀ + 142₁₀.
 To put it another way, a8 a8 · 3e 3e = e7 15. But how do we
calculate that “15”? It happens that 15 - e7 = 65₁₀ - 142₁₀ (+ 239) =
162₁₀, because each lap around the racetrack, the mod-239₁₀ number
gained one on the mod-240₁₀. So if we could somehow calculate that
it took 162₁₀ = 2c laps to get to e7, we could add those differences
back in and get the right answer: 2c + e7 = 15, where the first digits

add mod 16₁₀ and the second digits add mod 15₁₀.
 But how on Earth do you calculate that within the RNS without
falling into an infinite regress of four-digit multiplications?

 For addition, I think the problem may be easier. Let’s divide
positive from negative numbers as equally as possible, rather than
taking advantage of the window-choosing freedom I described above.
Then, if we add two numbers of the same sign and get a number of
the opposite sign, I think we can conclude that we’ve lapped around
the racetrack, going one way or the other — but only once.

Topics

• Algorithms (p. 1163) (14 notes)
• Math (p. 1173) (11 notes)
• Facepalm (p. 1199) (7 notes)

 Brute force speech
 Kragen Javier Sitaker, 02021-03-21 (updated 02021-03-22)
(7 minutes)

 I just read the 100 most popular words from the British National
Corpus out loud, one at a time, with pauses in between:
 the of and to a in it is was that i for on you he be with by at have are this not but
had his they from as she which or we an there her were do been all their has would
will what if one can so no who said more about them some could him into its then
up two time my out like did only me your now other may just these new also
people any know first see well very should than how get most over back way our
much think between years go er

 This took 114 seconds, or 1.14 seconds per word, so probably the
first 1000 words would take me about 20 minutes, and the first 10000
words about three or four hours.

 These 100 words comprise 50.56% of the words in the BNC (“the”
being about 6.87%, and “er” being about 0.1%), or at any rate the part
of it that is represented in my frequency table, so if you had
recordings of them (as LPC-10 or whatever) you could only
synthesize about half of the words in typical text. Here’s an overview
of how that number changes:
 Word Rank Cumulative % Self % Time to record
 this many To miss one
 word in
 much 95 50.05% 0.10% 2 minutes 2
 er 100 50.56% 0.10% 2 minutes 2
 married 1261 75.005% 0.0083% 24 minutes 4
 colonel 4407 87.5004% 0.0020% 1½ hours 8
 cdna‽ 10445 93.7500% 0.0006% 3½ hours 16
 capitals 10446 93.7506% 0.0006% 3½ hours 16
 stabilise 20104 96.87494% 0.00019% 6½ hours 32
 pasha 33275 98.43748% 0.00007% 11 hours 64
 lessens 43350 99% 0.00004% 14 hours 100
 pizzicato 60386 99.5% 0.00002% 19 hours 200
 superfields 76770 99.75% 0.000011% 24 hours 400

 After the first 8000 words or so, the ordering starts to be somewhat
dubious, as reverse alphabetization sets in due to small corpus size.

 Brute-force recording the whole English lexicon seems like a
surprisingly approachable, if boring, project, from this point of view.
In a few days of work you could compile enough recordings that your
computer could read most text understandably, if not naturally.

 I analyzed (an earlier version of) this note using these frequencies.
It contained two known words less common than #65536: “BNC”
and “superfields”; four words less common than #32768:
“synthesize”, “pasha”, “lessens”, and “pizzicato”; three words less
common than #16384: “pauses”, “stabilise”, and “approachable”,
plus some HTML tags; and 8 words less common than #8192:
“corpus”, “comprise”, “cumulative”, “cdna”, “capitals”, “brute”,
“lexicon”, and “compile”.

 Here’s the full analysis:

unknown

 100 114 1 14 1000 20 10000 100 50 56 6 87 0 1 LPC 10 95 50 05 0 10 2 2 100
 50 56 0 10 2 2 1261 75 005 0 0083 24 4 4407 87 5004 0 0020 1 8 10445 93 7500
 0 0006 3 16 10446 93 7506 0 0006 3 16 20104 96 87494 0 00019 6 32 33275 98
 43748 0 00007 11 64 43350 99 0 00004 14 100 60386 99 5 0 00002 19 200 76770
 99 75 0 000011 24 400
1
 the the the the the the the the the the the
2
 of and and of and of of of of of of
4
 a in to a in it in it in in to To in a In a
8
 I is was that i for on you he that is you you that you that
16
 from at with be with by at have are this not but had his they from as she
 which This at had as this from this
32
 one or we an there her were do been all their has would will what if one can
 so no who said more about them some could him into its then up two or so
 would about about or about about or so if them or could about an one if
 could
64
 just most out time between time my out like did only me your now other may
 just these new also people any know first see well very should than how get
 most over back way our much think between years go er first take me first
 three These being er being any my only Here how Time many much er like work
128
 British National took four part number point days
256
 read words word probably words minutes words hours words words rate table
 half words table Word word minutes minutes minutes hours hours hours hours
 hours hours hours hours table whole English seems view few enough
512
 popular per whatever s changes record miss force project
1024
 typical text married
2048
 seconds seconds represented frequency th th th th Self th th recording
 surprisingly
4096
 loud recordings overview Rank br br colonel boring recordings
8192
 Corpus comprise Cumulative cdna capitals Brute lexicon compile
16384
 pauses tr tr td td td td td td tr td td td td td td tr td td td td td td tr
 td td td td td td tr td td td td td td tr td td td td td td tr td stabilise
 td td td td td tr td td td td td td tr td td td td td td tr td td td td td
 td tr td td td td td td approachable
32768
 synthesize pasha lessens pizzicato
65536
 BNC superfields

 So, with 16384 words, which could be recorded in a day or two,

plus numbers and initialisms, only “pauses” and “approachable”
would have been missed in a text-to-speech of a note like this one, if
we leave out the words deliberately chosen to be uncommon. Even
with only a 512-word vocabulary, the note would be comprehensible.

 Other notes in Dernocua are not so fortunate. The 7500-word
note on energy-autonomous computing (p. 143), for example,
includes 1790 words not in the BNC at all; about half of these are
real English words such as Github, Kobo, joule, touchscreens, ebook,
and 80Mbps, plus many Spanish words and initialisms. The most
common 512 words would have covered a bit over 3000 of its 7500
words.

 Topics

• Programming (p. 1141) (49 notes)
• Experiment report (p. 1162) (14 notes)
• Audio (p. 1304) (3 notes)
• Speech synthesis (p. 1322) (2 notes)

When is it better to compute by
moving atoms rather than
electrons?
Kragen Javier Sitaker, 02021-03-21 (updated 02021-03-22)
(5 minutes)

 Electrons move fast because they are very light and very strongly
charged.

 A classroom Van de Graaff generator might charge its sphere to 100
kilovolts. The capacitance to infinite space of a sphere of radius r is 4
πε₀r, about 11 pF for a 10-cm-radius sphere, so this voltage would be
about 1.1 μC of charge, about 6.9 trillion electrons. Because an
electron weighs about 5.5 × 10⁻⁴ atomic mass units, which is 9.1 ×
10⁻³¹ kg, this quantity of electrons weighs 6.3 × 10⁻¹⁸ kg, 6.3
femtograms. If such a mass were to fall a meter off the Van de Graaff
generator onto the table under the force of gravity, it would gain 62
attojoules by falling, dissipating it in the impact (or, more likely, from
air resistance). But if these electrons instead “fall” through this
100-kilovolt potential, they gain 111 millijoules, 111 quintillion
attojoules, about 2 quintillion (2 × 10¹⁸) times as much. So, in the
absence of air resistance, they would tend to impact going about a
billion times as fast.

 The acceleration due to gravity is a pretty normal acceleration in
our world, although there are stronger accelerations like hitting things
with hammers (100 gees or more) and weaker ones like things rolling
down slopes. And 100 kilovolts is a pretty reasonable kind of voltage
for electostatic machines, though a bit on the high side for
electromagnetic machines and especially for semiconductor devices.
So, in general, electrons tend to move around a few thousand times to
a billion times faster than macroscopic objects.

 This is why electronics are so useful for computing.

 The advantage becomes smaller when we’re only limited by
energy. With a joule, you can accelerate 10 trillion carbon atoms (200
picograms) up to about 0.01 of c, 3200 km/s. If you apply that joule
over a micron, then you will move them over that micron in 0.6
picoseconds. But if you’re accelerating just their electrons, well, those
are only 0.11 picograms (110 femtograms), so classically you’d expect
to be able to accelerate them to 0.45 of c, 135’000 km/s, so classically
you could cross that micron in 0.0074 picoseconds, 7.4 femtoseconds.
(Relativistic effects increase this by a few femtoseconds.)

 Of course you can’t normally apply a joule to 200 picograms of
anything, much less 110 femtograms — not without the thing ceasing
to be a thing. 4.184 joules per gram, a calorie per gram, heats up water
by a kelvin. So a joule per 200 picograms ends up being 1.2
gigakelvins, about six orders of magnitude hotter than temperatures at
which solid matter exists, even solid matter with a somewhat higher
specific heat than water. Duly derating the above numbers by six
orders of magnitude of energy and thus three of velocity, it seems that

you can move groups of atoms micron-scale distances at nanosecond
timescales, or you can move groups of electrons micron-scale
distances at picosecond timescales. If you must remain near room
temperature, it takes several nanoseconds or several picoseconds.

 However, Drexler has suggested that if you’re computing with
solids, you may not need to move them as far, because Heisenberg’s
uncertainty principle σₓσₚ ≥ ½ħ means that their location can be
defined to higher resolution. Here p is the momentum, x is the
position, and σ is the standard deviation; so increasing the mass
2000× with a given uncertainty of velocity would increase the
uncertainty of momentum by the same 2000×, so decreasing the
(possible) uncertainty of position by the same 2000×. So perhaps you
have to move some electrons by 1 nm to resolve the result with a
given certainty, which seems to be what chip manufacturers do these
days, but if you were moving some atoms to encode the same result
with the same certainty, you could move them 2000 times less
distance, 500 fm.

 This seems rather challenging since, for example, the lattice spacing
of silicon atoms is around 200 picometers, so you’d be deforming the
lattice by about 0.3% of a single atom spacing. LIGO successfully
measures such small displacements every day, but it still seems
daunting.

 Still, if that approach works out, then instead of comparing moving
some atoms by a micron, to moving some electrons by a micron 45
times as fast, we’d be comparing moving some atoms by 0.5
picometers, to moving some electrons 2000 times as far, 1000
picometers, 45 times as fast. This suggests that in fact computing by
moving around atoms should be about 45 (= 2000 ÷ 45) times as fast
at a given level of uncertainty, at least if you can bring similar energies
to bear rather than similar electric field strengths.

Topics

• Physics (p. 1157) (18 notes)
• Mechanical (p. 1159) (17 notes)
• Physical computation (p. 1208) (6 notes)

Veskeno is a “fantasy platform”
like TIC-80
Kragen Javier Sitaker, 02021-03-21 (updated 02021-03-22)
(3 minutes)

 Writing about Veskeno, it occurred to me that the nearest
equivalent might not be Chifir, the Universal Machine of the Cult of
the Bound Variable, Lorie’s UVM, or even Brainfuck, but rather
TIC-80 and CHIP-8, or in general video game consoles:
TIC-80 is a FREE and OPEN SOURCE fantasy computer for making, playing
and sharing tiny games.
 CHIP-8 programs are run on a CHIP-8 virtual machine. It was made to allow
video games to be more easily programmed for [01970s 8-bit RCA 1802]
computers. ... In 1990, a CHIP-8 interpreter called CHIP-48 was made for HP-48
graphing calculators so games could be programmed more easily.

 And Cowgod say:
Chip-8 is a simple, interpreted, programming language which was first used on
some do-it-yourself computer systems in the late 1970s and early 1980s.

 PICO-8, 2:
PICO-8 is a fantasy console for making, sharing and playing tiny games and other
computer programs. ... A fantasy console is like a regular console, but without the
inconvenience of actual hardware. PICO-8 has everything else that makes a
console a console: machine specifications and display format, development tools,
design culture, distribution platform, community and playership. It is similar to a
retro game emulator, but for a machine that never existed.

 The most crucial thing here is the “cartridge format”, an image file
format that includes everything a game needs to run, and that the
peripherals are fully specified, which is the case for Chifir but not for
the UM or Brainfuck. This is true of consoles like the Nintendo, too:
you can write a game and, if it works on one Nintendo, you can be
reasonably sure it will work on other Nintendos too. You don’t have
to worry that maybe some Nintendo can’t handle as many sprites, or
runs some instructions faster and screws up the game’s timing, or has
less RAM, or has a TSR installed that’s stealing cycles, or has a
garbage collection that’s too conservative and causes your game to run
out of memory and crash halfway through, or doesn’t interpret the
cartridge format in the same way.

 The challenge for Veskeno is achieving this, for a “console
emulator” written by someone born after this body dies, who doesn’t
have access to a working Veskeno implementation, while enabling the
format to support applications that are sufficiently powerful to do
things like run Linux and Windows at a speed sufficient for artifact
preservation, if not everyday use.

 To do this, it needs to specify the behavior of the peripherals used
for the user interface at a level of detail sufficient to permit real usage;
CHIP-8, for example, specifies the keyboard layout used by the
COSMAC VIP, designed by CHIP-8’s author, and Norbert
Landsteiner explains that the most difficult part of getting the PDP-1
emulation for Spacewar! usable was emulating the afterglow of the P7
phosphor used on the CRT, an aspect Steve Russell specifically called

https://github.com/nesbox/TIC-80
https://github.com/nesbox/TIC-80
https://en.wikipedia.org/wiki/CHIP-8
http://devernay.free.fr/hacks/chip8/C8TECH10.HTM#1.0
https://www.lexaloffle.com/pico-8.php?page=faq
https://www.lexaloffle.com/pico-8.php
https://www.masswerk.at/spacewar/
https://www.masswerk.at/spacewar/

out for praise in his comments.

Topics

• History (p. 1153) (24 notes)
• Safe programming languages (p. 1172) (11 notes)
• Virtual machines (p. 1182) (9 notes)
• Instruction sets (p. 1214) (6 notes)
• File formats (p. 1233) (5 notes)
• Reproducibility (p. 1277) (3 notes)
• The Veskeno virtual machine (p. 1313) (2 notes)
• Emulation
• CHIP-8
• Chifir
• Brainfuck

Some notes on reading Chris
Seaton’s TruffleRuby dissertation
Kragen Javier Sitaker, 02021-03-21 (updated 02021-03-22)
(16 minutes)

 I recently learned about Chris Seaton’s dissertation on
TruffleRuby, an efficient implementation of Ruby he wrote — 90% of
the performance of C in some cases. It’s built on top of Graal, which
is now free software, and I thought taking some notes would be
worthwhile.

Really great stuff

 The dissertation itself is not a great pleasure to read, but it has a lot
of really first-class information in it.

 He mentions “value profiling” where TruffleRuby observes that a
particular edge in the dataflow graph is usually a constant value and so
partially evaluates the rest of the graph with respect to it. And he has
a generalized “inline cache” mechanism (“dispatch chains”,
introduced p. 101, ch. 5) that caches the results of expensive reflection
mechanisms, such as calling a method determined by a selector
argument, and checks to see if they are still valid. Both of these seem
highly relevant to Bicicleta.

 He mentions SubstrateVM, a feature of Graal which I hadn’t heard
of, but which aims at ahead-of-time compilation for, mostly, JVM
applications.

 On p. 90 he mentions the ExactMath class from Graal, which throws
an exception on arithmetic overflow of integers, allowing the
TruffleRuby implementation to transparently fall back to bignums
upon overflow. This seems like an interesting technique; in a
COMFY-style

 If we suppose that the diagram of “a conventional PIC” on p. 104 is
literally correct, it may explain why Ur-Scheme got such (relatively
speaking) reasonable performance with such simple techniques: the
PIC diagrammed here doesn’t inline Fixnum#div or Double#div,
but instead invokes them through a conventional call-return
mechanism! (Though he does say “or possibly inlined” beneath it.)

 The PSD.rb he mentions in his blogpost was also one of his early
evaluation benchmarks (p. 108).

 His name for “specialization” seems to be “splitting”, or perhaps
splitting is a certain kind of specialization.

Rails support

 On p. 93 of the dissertation, he says TruffleRuby doesn’t run Rails
yet, even though a lot of his motivating examples about what makes
Ruby difficult to implement efficiently come from Rails. But
https://github.com/oracle/truffleruby says TruffleRuby does run
Rails now:
TruffleRuby can run Rails and is compatible with many gems, including C

https://github.com/oracle/truffleruby
https://github.com/oracle/truffleruby

extensions. However, TruffleRuby is not 100% compatible with MRI 2.7 yet.
Please report any compatibility issues you might find. TruffleRuby passes around
97% of ruby/spec, more than any other alternative Ruby implementation.
 TruffleRuby might not be fast yet on Rails applications and large programs.
Notably, large programs currently take a long time to warmup on TruffleRuby and
this is something the TruffleRuby team is currently working on. Large programs
often involve more performance-critical code so there is a higher chance of hitting
an area of TruffleRuby which has not been optimized yet.

 Apparently he got hired by Shopify, which uses Rails, but not to
make this happen. There he confesses:
Baseline memory is often pretty high, and it takes memory to run our
optimisations, but TruffleRuby when it’s running then has optimisations to reduce
memory used for each request, such as removing object allocations, zero-copy
strings, and so on. Realistically TruffleRuby is designed for larger deployments
serving many users, and probably isn’t suite for a 500 MB $5 instance, this is true.

Disappointments

 He kind of begs off evaluation of warmup time, startup
performance, and memory usage, saying that he doesn’t know how to
evaluate them, that they aren’t important for his purposes, and
anyway he wants to trade them off for higher peak performance. It
would seem to me that in order to trade something off you would
need to know how much of it you have and how much of it you’re
paying in order to know if it’s a good tradeoff. Overall I think this is
sort of a problem with the JVM in general.

 A disappointing thing about the dissertation is that it scales all the
reported performance results by an opaque fudge factor, so none of
them are individually falsifiable, are comparable to other published
results, and none provide even an order-of-magnitude estimate of
performance that could be used for other purposes. For example,
perhaps an alpha-blending algorithm is reported, and in TruffleRuby
it can alpha-blend 2.7 times as many pixels per second as in MRI and
2.3 times as many as in Rubinius. Does that mean it is alpha-blending
2700 pixels per second, 2.7 million, or 2.7 billion? This information is
nowhere to be found, not in Figure 5.4 or anywhere else in the
dissertation.

 It’s profoundly disappointing to find this statement on p. 94:
Another advantage is that [microbenchmarks] are typically very well understood
by researchers which allows new implementations to be quickly tuned to run them
well, but they are highly unrepresentative of real Ruby code. For example, nobody
is making money by running a web service in Ruby to provide solutions to n-body
problems.

 This implicit equation of “real Ruby code” with “making money”
perhaps explains some of the previous disappointments: he seems to
consider code to solve physics problems to be ‘fake code’ because
what he values is making money, not whatever else you might be able
to achieve by solving physics problems, such as understanding things
more deeply. And I guess nobody was paying him to polish this
dissertation... but I wouldn’t say that made it a “fake dissertation”.
But maybe that’s why it says things like this (pp. 75–76):
This means that adding additional cores will not reduce the response time for a
single customer. [sic] Increasing the memory capacity of a server is more easy as
the limit [sic] on the quantity of memory that can be attached to a server is very
high and a single sequential process [sic] can take advantage of all memory attached
to a system.

https://discuss.rubyonrails.org/t/plans-for-truffleruby-support/75381
https://discuss.rubyonrails.org/t/plans-for-truffleruby-support/75381

Memory usage and performance

 Overall the statistical performance evaluation that is the
centerpiece of the dissertation’s presented results is sort of
disappointing. Not only does he give up on reporting any absolute
performance numbers that would be comparable to other
publications, but also he throws up his hands at statistical significance
testing, taking independent sample measurements, and in general on
quantifying the sources of error in his measurements. (“However,
there are also natural reasons why there may be a visual pattern [in a
Kalibera–Jones lag plot] — some benchmarks just appear to be cyclic
in nature, no[] matter how long they are given to warm up.” (p. 87),
though he seems not to have actually included any lag plots of his
own data in the dissertation; the plots on this page are from the
Kalibera and Jones paper.)

 This gives me more appreciation for why he didn’t post any details
of allocation cost in the HN thread at the level of detail I was looking
at: he’s considering systems that are so complex and poorly
understood that it would be misleading to say, “this is the code the
compiler generates in this case,” because that is very dependent on an
immense and delicate web of circumstances. Moreover, he was
mostly chasing large and obvious speedups, not small and subtle ones,
so even a very vague idea of what was going on would be sufficient.

 He says it’s “easier to scale memory than processor power”, which
is true in a sense — if your request latency is limited by memory usage,
in 02021 or even in 02014 when he wrote the dissertation, it’s much
easier to get a machine you can jam twice as much RAM into as to get
a machine running at twice the clock speed.

 But “scaling” generally isn’t about latency but about throughput:
for a network service, cutting your latency from 100 ms to 10 ms is
excellent, from 10 ms to 1 ms is useful, from 1 ms to 100 μs is
sometimes good, from 100 μs to 10 μs is pointless, and from 10 μs to
1 μs is probably unobservable. Scalability of latency is a non-goal.
(Seaton seems to be aiming lower than this, though: in one case (p.
86) he compares a hypothetical 1-second latency to a hypothetical
100-second latency, which is a dispiriting order of magnitude to be
considering.)

 By contrast, throughput is eminently scalable. If your Ruby web
service serves 10 requests per second on one EC2 m5.xlarge instance,
it will probably serve 1000 requests per second on 100 of them, and if
you set up some readslaves (or let Amazon do it) you can probably get
100,000 requests per second on 10,000 m5.xlarge instances, and maybe
you can scale to a million or ten million requests per second. There
are some network services that do more, though usually not that
inefficiently. In general, you can often usefully scale by several orders
of magnitude more than you can scale latency.

 So it makes sense to ask what the limiting resource is for scaling the
throughput of a given application: CPU? Memory? Memory
bandwidth? L1 cache? Disk bandwidth? Network bandwidth? Disk
latency, or rather its reciprocal? There is almost surely one limiting
resource at any given time, and increasing the other resources — or,
equivalently, using them more efficiently — will not increase
throughput. Seaton implicitly points this out when he says (p. 80):

...the application may create caches that are only cleared when there is memory
pressure. This makes us consider whether optimising for low memory usage is
even a desirable goal. If we have memory available in the system, why not use it?

 This is a sensible question if the limiting resource is something
other than memory, such as CPU time, or if your evaluation
objective is latency rather than throughput. But a very common case
in everyday web services is for memory rather than the other
possibilities above to be the limiting resource. httpdito can handle
some 25’000 HTTP requests per second on my laptop in part because
it only uses one 4KiB page of memory per concurrent request. AWS
Lambda usage is presently billed at seventeen nanodollars per gibibyte
millisecond, starting at 128 MiB; a “lambda function” that uses one
gibibyte costs eight times as much to run per millisecond as one that
uses 128 mebibytes. (Though AWS does claim they scale CPU
availability proportionally.)

 A typical sort of situation is a frontend host dynamically generating
a web page using a few dozen SQL queries sent to a remote database
server, perhaps spending 64 ms in all waiting on SQL replies. During
these 64 ms, the frontend host can spend its CPU time serving other
concurrent web page requests, but it cannot spend its RAM on those
other requests — the RAM is tied up until it gets the response back.
Perhaps each request only take 2 ms of computation, so if it is
CPU-bound, each core can do the computation for 32 other web
pages while it’s waiting for the SQL responses. If it has 4 cores, its
response times will remain consistent until it’s processing 128
concurrent requests, about 1900 requests per second.

 But, if processing each of those requests is using 256 mebibytes of
RAM, it needs 32 gibibytes of RAM to reach this level of
concurrency. The m5.xlarge instance type has 4 (virtual) 3.1GHz
Xeon Platinum 8175M cores but only 16 gibibytes of RAM, so at this
performance level, its CPU couldn’t be more than 50% utilized in this
scenario. If the amount of time spent waiting on I/O is higher, even
smaller memory usage becomes a problem; by contrast, faster I/O,
like SSDs, reduces memory demands proportionally. Typically SSDs
are around 128 times lower latency than spinning rust — typical
NAND Flash chips take 16–128 μs to read a 2048-byte page rather
than the 8192 μs typical of spinning rust (p. 143), so there is the
opportunity to redesign the system architecture for higher throughput
by getting better CPU efficiency at the expense of RAM efficiency.

 Actually, this shift seems like maybe a big opportunity for things
like TruffleRuby.

Conflating metaprogramming with reflection

 Frequently the dissertation says “metaprogramming” when it
means “reflection” or even specifically “reflection” or even more
specifically “dynamic method invocation”; though, in places (§5.2, p.
102) it acknowledges that macro expansion and runtime code
generation are also metaprogramming, in others it contradicts this:
However metaprogramming has not received the same research attention and is
often not optimised, even in mature language implementations. ... In Ruby,
probably more so than in other languages, metaprogramming should not be viewed
by implementers as a side-channel that does not need to be optimised, but instead
as just another form of dispatch. (p. 101)
 This is a good example of metaprogramming being used to make the program

simpler (from the perspective of the Ruby community) but the dynamism not
actually being needed in practice. (p. 108, emphasis mine)

Dispatch chains

 Chapter 5 outlined how dispatch chains in TruffleRuby work, and
presented measurements showing that in some cases they produce
good performance, but it sort of handwaves about how this happens;
all the magic remains behind Graal’s curtain:
Our second contribution in this chapter is to observe that the structures we have
described above are trees, and so can be implemented using the same nodes as we
use to implement the Ruby AST. Each condition in the chain is implemented as a
node with a child node for the cache-miss case, and a child node for the cache-hit
case, in the case of first level of caching, or a reference to the method to be called in
the case of the second level of caching. ... we rely entirely on the partial evaluation
in Truffle’s Graal backend to remove the degree of freedom in the method name if
we are not using it. ... we have confidence in the partial evaluation phase of
Truffle’s Graal backend to propagate that constant and entirely constant fold and
remove the logic in the dispatch chain that handles varying method names. (pp.
106–7).

 It would be useful to see the output of the partial evaluation phase
of Truffle’s Graal backend, or of the entire backend, in order to
understand whether this confidence is justified, and if so, under what
circumstances. Instead all we get are execution-time boxplots from
which the absolute units of time have been carefully erased.

Topics

• Performance (p. 1155) (22 notes)
• Safe programming languages (p. 1172) (11 notes)
• Compilers (p. 1178) (10 notes)
• Virtual machines (p. 1182) (9 notes)
• Garbage collection (p. 1255) (4 notes)

.xosm: experimental obvious stack
machine
Kragen Javier Sitaker, 02021-03-21 (updated 02021-03-24)
(20 minutes)

 This is an unfinished twigman outline of a simple
computer — more complex than its inspiration Calculus Vaporis, but
perhaps more practical.
The foolish fill their coffee cups to the brim, in their greed unable to forgo a single
drop unless the cup cannot hold it, and thus scald their hands when slightly jostled.
The wise use slightly bigger cups.

 The .xosm is a virtual machine design with byte-addressable RAM,
eight 32-bit architectural registers (X Y Z T PC CP S D), and 16-bit
instruction words. It is intended to be nearly as minimal as possible,
but leave enough space at the top of the cup to avoid being
penny-wise and pound-foolish, to mix a metaphor. Here are some of
the pitfalls I’m hoping to steer this ship between, to add two more
incompatible metaphors to this witch’s brew of too many cooks, with
attempted operationalizations:

• It should not be too hard to implement — it should take less than a
day, or 132 source lines of C, working from the spec and test suite, for
which purpose it should have less than 100 instructions;
• It should not be too slow to interpret — not more than 16 clock
cycles per bytecode instruction on a modern superscalar CPU;
• It should not be too slow if compiled — not more than 2 clock cycles
per bytecode instruction on a modern superscalar CPU;
• It should not be too large if implemented in hardware — more than
4096 logic gates;
• It should not be too awkward to program for by hand — not more
than twice as much assembly code as for amd64, though probably
more than twice as many instructions;
• It should not be too hard to compile C to, imposing neither an
enormous performance penalty nor ridiculously complicated bytecode
nor extremely complicated compilation tactics — no more than, say,
four times worse than handwritten bytecode.
• It should not be too hard to debug programs for.

 16-bit instruction words are a compromise. They occupy about
50% more space than 8-bit instructions (like Elisp or the 6502), but
less than 32-bit instructions (like MIPS, SPARC, Lua, ARM, or
RISC-V without the C extension). The instruction word consists of
an opcode byte and an operand byte, but most opcodes do not use
operands.

 Compared to 8-bit encoding, 16-bit encoding reduces the number
of cases where an instruction is followed by an immediate operand,
and it allows the use of 16-bit-wide memory without alignment
efficiency concerns; 32-bit immediates can be fetched in two memory
operations rather than the 4 that would be needed with 8-bit
alignment. The opcode byte can use a simpler encoding that
simplifies instruction decode.

 Compared to 32-bit encoding, 16-bit encoding uses a lot less space.

Operand registers

 The .xosm has a four-register operand stack, whose registers are
called X, Y, Z, and T (for time — introduced in the HP-35). X can
be usefully thought of as the CPU’s accumulator. Most instructions
take implicit arguments on this stack and return results there; for
example, the x += y instruction (0x2b) adds Y to X, and the x -= y
instruction subtracts Y from X. Each of these instructions also pops
the stack. Popping the stack consists of overwriting Y with Z and Z
with T. Oddly, T, rather than retaining its value as you would
expect, gets the old value of X, as explained below in the section
about reversibility. There is a ; instruction that just pops the stack
without doing anything else.

 Some instructions push the stack instead before whatever other
actions they take. Pushing the stack consists of overwriting T with Z
(losing the previous value of T), Z with Y, and Y with X. For
example, the x = *s instruction (see below) pushes the stack before
overwriting X with a value loaded from memory at the address in
index register S. The y = x or dup instruction only pushes the stack
without doing anything else. Immediate-load instructions like x = 1
push the stack before setting X to a constant. There are two
immediate-load opcodes, one which sets X to the operand byte, and
one which is followed by a 32-bit immediate argument to set X to.

 Single-operand ALU instructions like x = ~x, x++, and x /= 2 neither
push the stack nor pop it; they merely overwrite the X register with
their result.

 The four-level operand stack permits the evaluation of even
relatively complex nested arithmetic expressions before having to
fetch and store temporaries in memory, as well as providing a more
convenient way to pass up to four parameters to subroutines than is
common in assembly languages.

 Here’s a tentative full list of ALU/operand-stack instructions:

 x += y
 x -= y
 x &= ~y
 x &= y
 x ^= y
 x = ~x
 x = y # ;
 y = x # dup
 x = 0
 x++
 x--
 x += x # x <<= 1
 x <<= 3
 x /= 2 # x >>= 1
 x /= 8 # x >>= 3
 x = k8 # 8-bit immediate
 x = k32 # 32-bit immediate

 These are 17 ALU instructions, which seems like a reasonable set

compared to 16 in Wirth-the-RISC, 6 in Chifir, 21 in LuaJIT, 4 in
SWEET-16 if we categorize the comparisons as control-flow
instructions, and 7 in the MuP21 or F21.

 XXX maybe provide rotates instead of shifts?

Pointer registers

 XXX from looking at the RTL this is still a little muxier on the
hardware side than having a single architectural A register like the
MuP21, and of course involves more instructions, although maybe it’s
better for software. Maybe you could have a “wielded pointer
register” and an “alternate pointer register”.

 The .xosm has two 32-bit pointer or index registers, S and D. S is
used for reading from memory (loads), while D is used for writing to
memory (stores). Normal load instructions push the stack and store
the result in operand register X, though there are two “leap”
instructions that store it instead in S or D; all the store instructions
write the contents of register X to memory before popping the
operand stack. Commonplace address arithmetic can be done within
the S and D registers rather than requiring the use of the operand
stack; there are instructions for bumping them by small (8-bit)
immediate constants (“creep”), adding them to large (32-bit)
immediate constants, adding the program counter to them, shifting
them left by 2 bits, and “leap”ping with the d = *s and s = *s
instructions.

 There are two instructions x <=> d and x <=> s to transfer the index
registers to and from the operand stack. These instructions exchange
X with, respectively, D and S, without pushing or popping the
operand stack.

 This segregation into fetch and store registers means that if you
need a call stack (as C does!) you need to allocate a memory address to
store your call stack pointer at. So it might be worthwhile to add an
SP register and three instructions for it.

 Tentatively here’s the index-register instruction set:

*d = x
x = *(u32*)s # if we go to 16-bit words then this can have an offset field
x = *(char*)s
d = *s # leap d
s = *s # leap s
s += k8 # immediate constant; 8-bit and 32-bit formats
s += k32
d += k8
d += k32
s += pc
d += pc
s <<= 2
d <<= 2
x <=> d
x <=> s

 That’s 15 opcodes.

Control flow

 Like MIPS or RISC-V, there are no conditional flags, because the
conditional instructions work on the contents of the operand stack;
RISC-V chose this because it eases superscalar implementations, but
for my purposes the big advantage is that software implementations
don’t have to bend over backwards to compute lots of data that’s
never used, which is a really bug-prone thing to do.

 The .xosm has two architectural registers for control flow, the
program counter PC and the continuation pointer CP, and a single
control-flow operation yield, which swaps them, and can thus
function as either a procedure call or return instruction. There are
three yield instructions: unconditional (else), conditional on x == 0 (if
(x)), and conditional on x >= 0 (if (x < 0)). The conditional instructions
pop the operand stack. To enable control flow that goes beyond just
two coroutines yielding back and forth, there’s an x <=> cp instruction
which exchanges CP and X, which simultaneously loads in a new
continuation pointer (for example, pointing to another location
within the same subroutine) and puts the old one in a location where
you can save it to memory.

 XXX do conventional short jumps too?

 This approach is inspired by Henry Baker’s COMFY-65 compiler
and the Warren Abstract Machine, although it’s also related to
Calculus Vaporis. A very simple function like Forth’s : triple dup dup
+ + ; might be implemented as nothing more than dup dup + + else; a
nonrecursive function that calls other functions might save CP to a
static memory location on entry and restore it before yielding on exit.
I’d need more experience with the .xosm to really get a feel of what
prologues and epilogues to use.

 Instruction 0x00 is the “halt” instruction, because if you’re
executing uninitialized memory that’s a bug. I don’t know what it
should do exactly.

 Tentative control-flow instruction set:

if (x) ...
if (x < 0) ...
else
halt

 4 opcodes.

Reversibility

 For debugging, backwards execution and efficient tracing and
checkpointing are obviously very desirable. So many of the .xosm’s
operations are defined to erase as little information as possible,
reducing the volume of information that must be logged for a
reverse-executable trace. The yield instructions erase only one bit of
information — whether the previous instruction execution was a yield
or not, and thus whether the previous program counter is in PC-1 or
in CP-1 — and because the two-operand ALU instructions save both
the result and one of the operands (the previous value of X, which is
saved in T) they are fully reversible as well if the underlying ALU
operation is. The various register-swap instructions are also fully

reversible. The non-reversible operations are:

• Everything that pushes the operand stack, including loads from
memory and immediate-load instructions. Immediate-load
instructions not only erase the previous T value but also, when the
immediate is not embedded in the opcode byte, the previous value of
PC — some suffix of the immediate constant might also be a valid
instruction.
• Store instructions.
• Irreversible ALU operations such as x &= y.
• dup, which you could consider an “irreversible ALU operation”.

 This may also have implications for efficient hardware
implementation, as the tsunami in advance of the Landauer-limit
earthquake seems to be arriving already.

Twigman evaluation

 This is 17+15+4 = 36 opcodes, which seems perhaps a bit more
oversimplified than I would like, but will probably grow to the size I
want when I get some experience with its deficiencies.

 A couple of sample instruction implementations in an interpreter
on a 64-bit machine might be:

xor:
 tmp = y;
 y = z;
 z = t;
 t = x;
 x ^= tmp;
 goto *opcodes[mem[pc++] & 0xff];
leap_d:
 d = mem[s];
 goto *opcodes[mem[pc++] & 0xff];

 These probably work out to 9 and 6 instructions respectively,
including a jump with a failed prediction, so I think I’m within my
target performance zone for interpretation of 16 clock cycles per
bytecode. It’s also 5 lines of C per opcode, but some of that can and
should be factored out into an inline function, and then it will
probably be within my lines-of-code complexity budget.

xor:
 x ^= pop_operand_stack();
 goto dispath;

 8 architectural registers is a good, practical, 8080ish size; we’d also
need a non-architectural instruction register I, a memory-address
register A, a memory-read register M, and some kind of microcycle
state machine. 32 bits may be a bit excessive for simple hardware
implementation; one flip-flop per bit means we need 256 flip-flops
for just the architectural registers. If you implement it with an 8-bit
ALU and 8-bit data paths you can probably hit the 4096-gate target I
set at the top at the expense of a slowdown of 4× or so.

 A rough sketch of the RTL:

X <= ALU-output if ALU-instruction else
 operand-byte if load-immediate-8 else
 M if fetching-into-X else
 S if s-swapping else
 D if d-swapping else
 CP if cp-swapping else
 XXX if load-immediate-32 else
 X

Y <= X if pushing else
 Z if popping else
 Y

Z <= Y if pushing else
 T if popping else
 Z

T <= Z if pushing else
 X if popping else
 T

PC <= CP if yielding else
 PC+6 if immediate-32 else
 PC+2

CP <= PC+2 if yielding else
 X if cp-swapping else
 CP

S <= M if s-leaping else
 X if s-swapping else
 s-effective-address if s-creeping else
 S << 2 if s-shifting else
 S

D <= M if d-leaping else
 X if d-swapping else
 d-effective-address if d-creeping else
 D << 2 if d-shifting else
 D

A <= s-effective-address if loading else
 d-effective-address if storing else
 PC if fetching else
 0

ALU-output = sum if adding else
 diff if subtracting else
 abj if abjuncting else
 conj if anding else
 xor if xoring else
 negated if negating else
 Y if discarding else
 0 if zeroing else
 incremented if incrementing else

 decremented if decrementing else
 double if doubling else
 octuple if octupling else
 half if halving else
 eighth if eighthing else
 tristate

sum = X + Y # N - ½ full adders
diff = X - Y # same
abj = X & ~Y # N AND gates
conj = X & Y # same
xor = X ^ Y # N XOR gates
negated = ~X # N NOT gates
incremented = X + 1 # N half adders
decremented = X - 1 # same
double = X << 1 # just wires
octuple = X << 3
half = X >> 1 # also just wires. unsigned
eighth = X >> 3

yielding = unconditional-yield ∨
 zero-conditional ∧ X == 0 ∨
 sign-conditional ∧ X[31]

 The “XXX if load-immediate-32” case and the A register point
out that sometimes extra cycles will be needed during which almost
all of the above will be paused, because it’s fetching an immediate
32-bit value (possibly unaligned). If I want to build up an RTL
design incrementally I probably want to start with those troublesome
cases so the control state machine starts out as complicated as it’s
going to get.

 But I think we can sort of reasonably estimate the above as about
27 N-wide 2-muxes or tristate buffers for control and another 14 for
ALU result selection, and another 9 or so for things I haven’t thought
of yet, 50 in all; here “N-wide” means whatever width the internal
data paths for 32-bit data are, which might be 32 bits for a fast
implementation or 4 or 8 bits for a small one. The ALU needs about
16N gates, maybe a bit more for lookahead carry. We can sort of
reasonably ballpark this at 400 gates of muxing for an 8-bit
implementation, plus 128 gates of ALU, which seems like an
unreasonably small ALU by comparison. With 32-bit data paths
these would be 1600 gates of muxing and 512 gates of ALU.

 There’s a separate N-wide AND for the X == 0 condition and some
more muxes and adders for effective address computation, something
like this:

s-effective-address = S + operand-byte if s-creeping else
 S + PC if pc-relative else
 S
d-effective-address = D + operand-byte if d-creeping else
 D + PC if pc-relative else
 D

 The instruction decode logic depends on the instruction encoding,

but the above strawman has it and the microcycle logic producing the
following control bits: ALU-instruction, fetching-into-X, load-immediate-32,
load-immediate-8, s-swapping, d-swapping, cp-swapping, pushing, popping, yielding,
imm32, imm8, s-leaping, s-creeping, s-shifting, d-creeping, d-shifting, loading,
storing, fetching, adding, subtracting, abjuncting, anding, xoring, negating,
discarding, zeroing, incrementing, decrementing, doubling, octupling, halving,
eighthing, unconditional-yield, zero-conditional, and sign-conditional. That’s
38 control signals, and probably something like 9×38 = 342 two-input
AND gates to compute them, if that’s how it’s done, or possibly a
much smaller number of wider AND gates.

 So we’ve only accounted for about 1600+512+342 ≈ 2500 gates of
an internally-32-bit implementation, ten thousand transistors. The 8
architectural registers and 3 non-architectural registers add 352
flip-flops, probably another 3000 transistors, for a total of 13000. If
that were the whole story, this design’s transistor count would be
between the 9000-transistor 8-bit 6809 and the 29000-transistor
16-bit 8086, both from 01978, nowhere near the 68000-transistor
68000, which was 32-bit architecturally but 16-bit internally, much
less the 190k-transistor 68020 (01984) or the 275k-transistor i386
(01985). It’s even substantially smaller than the ARM 1 (25000
transistors, 01985), but it’s close to Chuck Moore’s 16-bit Novix
NC4016 (16000 transistors, also 01985). Most likely I just haven’t
noticed the majority of the transistors that are needed to make the
.xosm actually run. Where are they?

 (However, Moore’s later 21-bit MuP21 design (01994), one of the
design inspirations for for the .xosm, was only 7000 transistors,
including an NTSC-generation coprocessor.)

 It probably isn’t extremely useful to keep a general-purpose CPU
much smaller than 16384 transistors, like 4096 2-input NAND gates,
unless your RAM is a drum or an acoustic delay line or something.
The COSMAC VIP, the early personal computer where we get the
CHIP-8 videogame virtual machine design, shipped with 2 KiB of
RAM, which was probably 6T SRAM: 16384 bits and 98304
transistors of RAM. Now we’d use 16384 capacitors and 16384
transistors of DRAM, plus 128 6-transistor sense amplifiers along the
edge. But Wozniak thought 4 KiB was the minimum to run a usable
BASIC on the Apple, and he was likely right, although the x18
GreenArrays cores make do with 64 words of RAM (and 64 of
ROM) per core, forcing you to split all but the smallest programs
across multiple of the 144 cores on the chip. If you already have
32768 components in your RAM, then whatever benefit you get from
reducing your CPU from 16384 components to 8192 is probably not
worth the sacrifices required.

 Some preliminary notes on the amazing RISC-V architecture (p.
82) mentions that Claire Wolf’s PicoRV32 RISC-V design can be
configured to run in 761 slice LUTs on a Xilinx 7-series FPGA, uses
48 LUTs as memory, and also 442 slice registers; I think those are
4-LUTs, which can compute any arbitrary 4-input Boolean function,
so that’s roughly equivalent to 2300 2-input NAND gates and 500
flip-flops, which seems pretty comparable to the .xosm, actually, but
supporting interrupts and a wider range of operations and stuff. I
should check out Wolf’s design.

https://en.wikipedia.org/wiki/Transistor_count

 picorv32.v is 1913 unique lines of Verilog so I’m not sure where to
start! It’s enormous. I think the interrupt controller is compiled out
in the small configuration I mentioned above, though.

Topics

• Virtual machines (p. 1182) (9 notes)
• Instruction sets (p. 1214) (6 notes)
• Stack machines (p. 1320) (2 notes)
• MuP21

Open coded primitives
Kragen Javier Sitaker, 02021-03-22 (26 minutes)

 As I was reading Chris Seaton’s dissertation, I was thinking about
compilation strategies for late-bound languages. I think there’s a
straightforward ahead-of-time compilation strategy that would
maybe give a significant fraction of optimal (CPU) performance,
maybe 30%, while retaining full dynamic-dispatch semantics.

Experience from Ur-Scheme

 My toy compiler Ur-Scheme got surprisingly good performance.
About 20% of GCC on the dumb fibonacci microbenchmark at the
time (though see below about how GCC has improved!), and about
250% of Chicken’s performance on itself compiling itself, i.e., when
compiled with Chicken, it took 2½ times as long to compile itself as
when compiled with itself. One technique it used for this was to
open-code primitive operations following a type check. For example,
each call to the string-length function was converted into the following
code:

 # string-length inlined primitive
 call ensure_string
 lea 8(%eax), %ebx
 push %ebx
 movl 4(%eax), %eax
 pop %ebx
 sal %eax
 sal %eax
 inc %eax

 This was generated by this Scheme code:

(define (inline-string-length nargs)
 (assert-equal 1 nargs)
 (comment "string-length inlined primitive")
 (extract-string)
 (asm-pop ebx)
 (native-to-scheme-integer tos))

 The ensure_string millicode routine could also have been open-coded
and perhaps should have:

ensure_string:
 # test whether %eax has magic: 0xbabb1e
 # first, ensure that it's a pointer, not something unboxed
 test $3, %eax
 jnz k_2
 # now, test its magic number
 cmpl $0xbabb1e, (%eax)
 jnz k_2
 ret

 But on modern CPUs, this is a fetch, four ops after macro-op
fusion, and no mispredicted branches or cache misses, so it’s not
extremely expensive. In Ur-Scheme, the handling of failed type
checks like these is nasty, brutal, and short; the program just spews
out an error to stderr and peremptorily exits.

 .section .rodata
 # align pointers so they end in binary 00
 .align 4
_stringP_4:
 .long 0xbabb1e
 .long 20
 .ascii "error: not a string\n"
 .text
k_2:
 movl $_stringP_4, %eax
 jmp report_error
report_error:
 call ensure_string
 lea 8(%eax), %ebx
 push %ebx
 movl 4(%eax), %eax
 # fd 2: stderr
 movl $2, %ebx
 movl %eax, %edx
 pop %ecx
 movl $4, %eax
 int $0x80
 movl $1, %ebx
 movl $1, %eax
 int $0x80

 But, at the point that this happens, the address of the failing code is on
the stack. You could look at it and see what operation it was trying to
apply, then fall back to a generic method dispatch, then jump back to
where the result from string-length was expected.

 If you open-code the check, such fallbacks would be a little more
complicated, because i386 and amd64 don’t have the conditional call
instructions their predecessor the 8080 had, so you can't just blithely
jump to k_2 — you’ll never get back! You’d have to jump to a
trampoline generated for just that callsite, which, as we’ll see later, is
what SBCL and OCaml do.

 In some cases I did open-code the dynamic type checks. The code
(char->integer #\0), for example, gets compiled as follows:

 push %eax
 movl $2 + 48<<2, %eax
 test $1, %eax
 jnz not_a_character
 test $2, %eax
 je not_a_character
 cmpl $2 + 256<<2, %eax
 jnb not_a_character
 dec %eax

 This code is obviously kind of stupid; among other things, we
know #\0 is a character because it's a compile-time character constant,
and furthermore the whole expression should just constant-fold to
something like movl $193, %eax.

 So it surprised me that this kind of nonsense was still faster than
what most Scheme compilers were doing: the extra 5 or 6 (!)
instructions and the millicode calls and returns are still faster!
However, Chez Scheme has been open-sourced since then, and both
it and probably Ikarus likely generate higher-quality code.

SBCL: almost twice as fast as Ur-Scheme,
before adding declarations

 SBCL does do the whole thing I was saying above where you could
open-code your type check followed by open-coding the primitive
operation. Here we see how it handles cdr on what it hopes is a list:

This is SBCL 1.0.57.0.debian, an implementation of ANSI Common Lisp.
...
* (defun mylen (lst) (if (null lst) 0 (mylen (cdr lst))))

MYLEN
* (mylen '(3 5 1))

0
* (mylen '(3 5 . 1))

debugger invoked on a TYPE-ERROR in thread
#<THREAD "main thread" RUNNING {1002978D43}>:
 The value 1 is not of type LIST.
...
(MYLEN 1)
0] 0

 So when we invoked it on an improper list, cdr crashed. What does
the underlying code look like?

* (disassemble 'mylen)

; disassembly for MYLEN

; 029B5D48: 4881FE17001020 CMP RSI, 537919511 ; no-arg-parsing en
try point
; 4F: 7508 JNE L0

 That ridiculous number, 0x20100017, is NIL. This is what the (if
(null lst) ...) compiled to.

; 51: 31D2 XOR EDX, EDX
; 53: 488BE5 MOV RSP, RBP
; 56: F8 CLC
; 57: 5D POP RBP
; 58: C3 RET

 That’s “return 0”. In SBCL the integer type-tag is 0 in the low bit,
so 0 as an integer is really 0 (in EDX), and in SBCL’s bizarre calling
convention, the carry flag needs to be clear to indicate that this isn’t a
multiple-value return.

 Now we are going to see what cdr looks like. First we check to see
if the argument is a list:

; 59: L0: 8BC6 MOV EAX, ESI
; 5B: 240F AND AL, 15
; 5D: 3C07 CMP AL, 7
; 5F: 751E JNE L1

 So that’s the open-coded type test, four instructions, then a
predicted-not-taken branch to an error-handling trampoline welded
onto the end of the function. When there are multiple such checks in
a function, each check gets its own trampoline. So now we have the
open-coded implementation of cdr itself:

; 61: 488BC6 MOV RAX, RSI
; 64: 488B5001 MOV RDX, [RAX+1]

 That’s it, that’s all of cdr. Actually half of that was just a totally
unnecessary register move. So then all that's left is the function’s tail
call:

; 68: 488B0581FFFFFF MOV RAX, [RIP-127] ; #<FDEFINITION obj
ect for MYLEN>
; 6F: B902000000 MOV ECX, 2
; 74: FF7508 PUSH QWORD PTR [RBP+8]
; 77: FF6009 JMP QWORD PTR [RAX+9]

 Then we have two error trampolines on the end of the function,
the first of which has no visible callers:

; 7A: CC0A BREAK 10 ; error trap
; 7C: 02 BYTE #X02

; 7D: 18 BYTE #X18 ; INVALID-ARG-COUNT
-ERROR
; 7E: 54 BYTE #X54 ; RCX

 But the other is the one we invoked above:

; 7F: L1: CC0A BREAK 10 ; error trap
; 81: 04 BYTE #X04

; 82: 02 BYTE #X02 ; OBJECT-NOT-LIST-E
RROR
; 83: FE9501 BYTE #XFE, #X95, #X01 ; RSI

 The trap instruction here is followed by five bytes that the trap

handler presumably can load, by indexing off the program counter the
BREAK saves on the stack, and interpret as it wishes.

 Perhaps a more illuminating function for these purposes would be
something that conses, because when it conses it has to have an
“exception handler” for the nursery being full, in which case it
beseeches the garbage collector for memory, similar to falling back to
generic method dispatch. We’ll just wrap the built-in cons function.

* (defun mycons (a d) (cons a d))

MYCONS
* (cons 'x '(30 2))

(X 30 2)
* (disassemble 'mycons)

; disassembly for MYCONS

; 02A2D7E8: 49896C2440 MOV [R12+64], RBP ; no-arg-parsing en
try point

 That instruction has to do with SBCL’s “pseudo-atomic” handling
of interrupts during memory allocation. I think R12 is where SBCL
keeps a pointer to thread-local data (from a note on Steve Losh’s blog
and a note on Paul Khuong’s blog) and that [R12+64] in particular is
thread.pseudo-atomic-bits.

 Next we load the (thread-local!) allocation pointer
thread.alloc-region into L11 and bump it by 16 bytes:

; 7ED: 4D8B5C2418 MOV R11, [R12+24]
; 7F2: 498D4B10 LEA RCX, [R11+16]

 But now we need to see if the new candidate allocation pointer is
still within the nursery:

; 7F6: 49394C2420 CMP [R12+32], RCX
; 7FB: 7628 JBE L2

 If not, we jump off the fast path to the garbage-collection
trampoline at L2; but normally we continue on the fast path:

; 7FD: 49894C2418 MOV [R12+24], RCX
; 802: 498D4B07 LEA RCX, [R11+7]

 So now we have our newly allocated dotted pair; it cost us six
instructions, plus the following three instructions for deferred
interrupt handling:

; 806: L0: 49316C2440 XOR [R12+64], RBP
; 80B: 7402 JEQ L1

; 80D: CC09 BREAK 9 ; pending interrupt
 trap

https://stevelosh.com/blog/2018/05/fun-with-macros-gathering/
https://pvk.ca/Blog/LowLevel/VM_tricks_safepoints.html

 The L0 there is where the slow path rejoins the main flow of the
program. Normally we expect the value at [R12+64] to be
unchanged from when we stored RBP there earlier, but if not, we
handle the pending interrupt here.

 Now that we’re done with the open-coded memory allocation, all
that’s left is the open-coded initialization of cons itself and then the
function epilogue:

; 80F: L1: 488959F9 MOV [RCX-7], RBX
; 813: 48897901 MOV [RCX+1], RDI
; 817: 488BD1 MOV RDX, RCX
; 81A: 488BE5 MOV RSP, RBP
; 81D: F8 CLC
; 81E: 5D POP RBP
; 81F: C3 RET

 And then we have the exception handlers that are welded onto the
end of the function:

; 820: CC0A BREAK 10 ; error trap
; 822: 02 BYTE #X02

; 823: 18 BYTE #X18 ; INVALID-ARG-COUNT
-ERROR
; 824: 54 BYTE #X54 ; RCX

 And here’s the one we came for, beseeching the garbage collector
for 16 precious bytes for our cons:

; 825: L2: 6A10 PUSH 16
; 827: 4C8D1C2570724200 LEA R11, [#x427270] ; alloc_tramp
; 82F: 41FFD3 CALL R11
; 832: 59 POP RCX
; 833: 488D4907 LEA RCX, [RCX+7]
; 837: EBCD JMP L0

 Although SBCL doesn’t, you could use precisely the same
approach, with the inlined primitive fast path and falling back to a
slow path, for generic method dispatch.

 (Above I’ve said that I think the allocation pointer is thread-local,
but I haven’t observed wonderful scalability running allocation-heavy
code in multiple SBCL threads.)

 SBCL does about 57 million dumbfib leaf calls per second on this
laptop without declarations, dispatching all its arithmetic through
generic functions:

* (defun dumbfib (x) (if (< x 2) 1 (+ (dumbfib (1- x)) (dumbfib (1- (1- x))))))

DUMBFIB
* (mapcar #'dumbfib '(0 1 2 3 4 5 6 7))

(1 1 2 3 5 8 13 21)
* (time (dumbfib 35))

Evaluation took:
 0.263 seconds of real time
 0.264016 seconds of total run time (0.264016 user, 0.000000 system)
 100.38% CPU
 734,384,636 processor cycles
 0 bytes consed

14930352

The surprising comparison with GCC (11× as fast) and
Ur-Scheme (half as fast as SBCL)

 GCC by comparison does about 650 million leaf calls per second, 11
times as fast.

$ cat fib.c
/* ... */
__attribute__((fastcall)) int fib(int n)
{
 return n < 2 ? 1 : fib(n-1) + fib(n-2);
}
main(int c, char **v) { printf("%d\n", fib(atoi(v[1]))); }
$ gcc -O3 fib.c -o fib
fib.c:7:1: warning: ‘fastcall’ attribute ignored [-Wattributes]
fib.c: In function ‘main’:

fib.c:10:25: warning: incompatible implicit declaration of built-in function ‘pri
ntf’ [enabled by default]

 (The compiler is warning us here that fastcall here is not relevant
on amd64 — it gives the compiler permission not to use the shitty
inefficient calling convention specified by the standard i386 ABI.)

: user@debian:~/devel/dev3; time ./fib 40
165580141

real 0m0.254s
user 0m0.252s
sys 0m0.000s

 However, comparing Ur-Scheme, I got a nasty surprise!
Ur-Scheme’s code presumably is the same as when I wrote it 13 years
ago in 02008, but now it SUCKS compared to GCC — it’s even
slower than SBCL!

$ cat fib.scm
;; Dumb Fibonacci picobenchmark
(define (fib n) (if (< n 2) 1 (+ (fib (1- n)) (fib (1- (1- n))))))
(display (number->string (fib 35))) (newline)
$./urscheme-compiler < fib.scm > fib.s
: user@debian:~/devel/urscheme; gcc fib.s -o dumbfib
fib.s: Assembler messages:
fib.s:5: Error: operand type mismatch for `push'
...

$ gcc -m32 fib.s -o dumbfib
$ time ./dumbfib
14930352

real 0m0.661s
user 0m0.552s
sys 0m0.000s

 That’s only 27 million leaf calls per (user) second. Now instead of
20 percent of GCC’s performance, it’s getting one twentieth, or five
percent. Actually four percent. I’m guessing that the shitty code it
emits is a lot worse at exploiting modern superscalar OoO processors
because it’s unceasingly full of dependencies. The 20% number was
on my 700MHz Pentium III! Valgrind says it runs “2,851,829,048”
instructions, so that’s about two instructions per cycle.

 It’s clear that I don’t know much and should spend some time
taking measurements!

 Hmm, it looks like GCC went pretty hard in on the optimization
here... the above one-line C fib function compiled to 169 instructions.
I think GCC inlined it into itself 13 times! But -fno-inline only makes
it slightly slower:

$ gcc -fno-inline -O3 fib.c -o fib
fib.c:7:1: warning: ‘fastcall’ attribute ignored [-Wattributes]
fib.c: In function ‘main’:

fib.c:10:25: warning: incompatible implicit declaration of built-in function ‘pri
ntf’ [enabled by default]
$ time ./fib 40
165580141

real 0m0.390s
user 0m0.388s
sys 0m0.000s

 I mean that’s still 430 million leaf calls per second, and some of
those are real calls, although GCC still seems to have removed half of
the recursion by realizing that integer addition is associative:

 400570: 55 push %rbp
 400571: 53 push %rbx

 400572: 89 fb mov %edi,%ebx # argument n
is in rdi (...rsi, rdx, rcx...)
 400574: 48 83 ec 08 sub $0x8,%rsp
 400578: 83 ff 01 cmp $0x1,%edi # n < 2?
 40057b: 7e 1f jle 40059c <fib+0x2c> # otherwise:

 40057d: 31 ed xor %ebp,%ebp # initialize
loop accumulator to 0
 40057f: 90 nop

 400580: 8d 7b ff lea -0x1(%rbx),%edi # edi ← n-1 (
set up argument)

 400583: 83 eb 02 sub $0x2,%ebx # ebx ← n-2 (
callee-saved!)

 400586: e8 e5 ff ff ff callq 400570 <fib> # (recursive
call)

 40058b: 01 c5 add %eax,%ebp # add return
value to accumulator

 40058d: 83 fb 01 cmp $0x1,%ebx # loop termin
ation test

 400590: 7f ee jg 400580 <fib+0x10> # loop back t
o the lea

 400592: 8d 45 01 lea 0x1(%rbp),%eax # add one fin
al 1 to the accumulator for return

 400595: 48 83 c4 08 add $0x8,%rsp # function ep
ilogue
 400599: 5b pop %rbx
 40059a: 5d pop %rbp
 40059b: c3 retq

 40059c: b8 01 00 00 00 mov $0x1,%eax # base case a
lmost never aken
 4005a1: eb f2 jmp 400595 <fib+0x25>

OCaml allocation

 I wrote this code in OCaml:

let rec nlist n cdr = if n = 0 then cdr else nlist (n-1) (n::cdr)
let rec mnlist m n = if m = 0 then [] else (ignore (nlist n []); mnlist (m-1) n)
let m = 2000*1000 and n = 500 ;;

print_endline ("m=" ^ (string_of_int m) ^ " n=" ^ (string_of_int n)) ;
mnlist m n

 This ran in about 2.3 seconds, thus consing a billion list nodes in 2.3
nanoseconds each. Here’s the disassembled machine code of nlist:

Dump of assembler code for function camlTimealloc2__nlist_1030:
 0x0000000000403530 <+0>: sub $0x8,%rsp
 0x0000000000403534 <+4>: mov %rax,%rsi
 0x0000000000403537 <+7>: cmp $0x1,%rsi
 0x000000000040353b <+11>: jne 0x403548 <camlTimealloc2__nlist_1030+24>
 0x000000000040353d <+13>: mov %rbx,%rax
 0x0000000000403540 <+16>: add $0x8,%rsp
 0x0000000000403544 <+20>: retq
 0x0000000000403545 <+21>: nopl (%rax)
=> 0x0000000000403548 <+24>: sub $0x18,%r15
 0x000000000040354c <+28>: mov 0x21780d(%rip),%rax # 0x61ad60

 0x0000000000403553 <+35>: cmp (%rax),%r15
 0x0000000000403556 <+38>: jb 0x403577 <camlTimealloc2__nlist_1030+71>
 0x0000000000403558 <+40>: lea 0x8(%r15),%rdi
 0x000000000040355c <+44>: movq $0x800,-0x8(%rdi)
 0x0000000000403564 <+52>: mov %rsi,(%rdi)
 0x0000000000403567 <+55>: mov %rbx,0x8(%rdi)
 0x000000000040356b <+59>: mov %rsi,%rax
 0x000000000040356e <+62>: add $0xfffffffffffffffe,%rax
 0x0000000000403572 <+66>: mov %rdi,%rbx
 0x0000000000403575 <+69>: jmp 0x403534 <camlTimealloc2__nlist_1030+4>
 0x0000000000403577 <+71>: callq 0x411898 <caml_call_gc>
 0x000000000040357c <+76>: jmp 0x403548 <camlTimealloc2__nlist_1030+24>
End of assembler dump.

 The allocation fast path is just these five instructions, rather than
the nine used by SBCL:

=> 0x0000000000403548 <+24>: sub $0x18,%r15
 0x000000000040354c <+28>: mov 0x21780d(%rip),%rax # 0x61ad60
 0x0000000000403553 <+35>: cmp (%rax),%r15
 0x0000000000403556 <+38>: jb 0x403577 <camlTimealloc2__nlist_1030+71>
 0x0000000000403558 <+40>: lea 0x8(%r15),%rdi

 Here our allocation pointer moves down and is kept in %r15.

 Ooh, I just learned that with ocamlopt -S I can coax the raw assembly
out of ocamlopt, so here’s the relevant part of the function:

.L102: subq $24, %r15
 movq caml_young_limit@GOTPCREL(%rip), %rax
 cmpq (%rax), %r15
 jb .L103
 leaq 8(%r15), %rdi

 That’s the chunk I quoted twice above. Then the new cons node
gets initialized:

 movq $2048, -8(%rdi)
 movq %rsi, (%rdi)
 movq %rbx, 8(%rdi)

 Then it builds up the arguments for the tail call:

 movq %rsi, %rax

 addq $-2, %rax # n - 1, in OCaml's weird tagged integer representa
tion
 movq %rdi, %rbx
 jmp .L101

 Finally, this is the “allocation trampoline”, six instructions in the
SBCL code:

.L103: call caml_call_gc@PLT

.L104: jmp .L102

 In this case we just restart the allocation instead of asking the GC to
do it for us.

C pointer-bump allocation

 I tried the OCaml approach in C, getting even higher speeds:

kmregion *p = km_start(km_libc_disc, &err);
if (!p) abort();
struct n { int i; struct n *next; } *list = NULL;

for (size_t j = 0; j < 5000; j++) {
 struct n *q = km_new(p, sizeof(*q));
 q->i = j;
 q->next = list;
 list = q;
}

...
km_end(p);

 Here km_new is defined in the header file as follows:

static inline void *
km_new(kmregion *r, size_t n)
{
 n = (n + alignof(void*) - 1) & ~(alignof(void*) - 1);
 size_t p = r->n - n;
 if (p <= r->n) {
 r->n = p;
 return r->bp + p;
 }

 return km_slow_path_allocate(r, n);
}

 This manages to allocate 520 million list nodes per second, 1.94
nanoseconds per allocation (and initialization), 40% faster than
OCaml despite not allocating a register for the allocation pointer.
km_slow_path_allocate, which is separately compiled and thus not
inlineable, invokes malloc through a function pointer from km_libc_disc
, 32 kibibytes at a time, plus occasionally also invoking it to store the
array of block pointers, and also invoking longjmp in case of allocation
failure. Since all this happens one out of every 2048 allocations, the
performance cost is normally insignificant:

void *
km_slow_path_allocate(kmregion *p, size_t n)
{
 if (n > block_size / 4) return km_add_block(p, n);
 void *block = km_add_block(p, block_size);
 if (!block) return NULL;
 p->bp = block;
 p->n = block_size;

 return km_new(p, n);
}

 GCC does a better job than I would have done at optimizing the
inner loop, scrambling it into a strange order that saves an
unconditional jump per iteration:

 call km_start
 testq %rax, %rax
 movq %rax, %rbp # %rbp = kmregion pointer
 je .L21
 xorl %ebx, %ebx # j = 0
 xorl %r13d, %r13d # list = NULL
 jmp .L6
.L23:
 movq 8(%rbp), %rax # load base pointer
 movq %rdx, 0(%rbp) # store allocation counter
 addq %rdx, %rax # offset base pointer with allocation
.L8: # pointer to get address
 movl %ebx, (%rax) # store j in list node
 addq $1, %rbx # increment j
 movq %r13, 8(%rax) # store list pointer into list node
 cmpq $5000, %rbx # loop counter termination test
 je .L22
 movq %rax, %r13 # point list pointer at new list node
.L6:
 movq 0(%rbp), %rcx # load allocation counter
 leaq -16(%rcx), %rdx # decrement it
 cmpq %rdx, %rcx # check against its old value
 jae .L23 # if it decreased it didn’t underflow

 movl $16, %esi
 movq %rbp, %rdi
 call km_slow_path_allocate
 jmp .L8
.L22:

 The fast-path allocation here is 7 instructions, split between movq
leaq cmpq jae at the end of the loop, then movq movq addq at the
beginning. The slow-path call is glued onto the end of the loop, thus
saving the unconditional jump, but maybe welding it onto the bottom
of the function as OCaml and SBCL do would be a better idea.

Failover in overflow cases

 A number of late-bound languages (Smalltalk and Lisps, mostly,
but also recent versions of Python, as well as Ruby, naturally) handle
fixnum overflow transparently by failing over to bignum arithmetic,
which surely causes difficulty with both type inference and
performance predictability, but is sometimes worth the pain and
suffering.

 Above we saw OCaml compile (n-1) to

 addq $-2, %rax

 and we saw GCC compile the addition of two Fibonacci return
values to

 40058b: 01 c5 add %eax,%ebp # add return
value to accumulator

 You could imagine following such a single-instruction operation
being followed by a conditional jump on overflow to a fixup
trampoline welded onto the end of the function:

 addq $-2, %rax
 jo .tramp304
 ...
.tramp304:
 movq $-2, %rdi
 movq %rax, %rsi
 call addition_overflow_handler
 jmp .resume305

 The COMFY-6502 “win/lose” mechanism is tempting here: we
might be tempted to just treat such overflow traps as “lose
continuations”, but the fact is that we need to weld on a separate
trampoline for each of them — they’re more like conditionals. But
they may never rejoin the original fast-path control flow: it may be
convenient to preserve the property that all the integer values on the
fast path are fixnums, so that we don’t have to test their tags
repeatedly. So the simple COMFY one-entry two-exits approach
may not work as well as one might hope.

 Alternatively, it may be perfectly adequate to just do the type test
every time, though not as inefficiently as Ur-Scheme does; this might
result in compiling n - 1 to fast-path code like this:

 test $1, %rax # use the low bit as the type tag
 jz .tramp303 # using 1 as the fixnum type tag, like OCaml
 addq $-2, %rax
 jo .tramp304
.resume305:
 ...

 Note that the trampoline at .tramp303 isn’t limited to doing bignum
arithmetic; it can do a fully general object-oriented dispatch, use an
inline cache (polymorphic or not), and so on. This is probably not
going to make your dynamic object-oriented system run as fast as C
or OCaml — maybe 30% as fast — but it’ll probably be substantially
faster than SBCL.

Generic arithmetic with an open-coded
fixnum path, and other fast paths

 If you want to abjure overflow-to-bignum but still support generic
arithmetic operations, just open-coding the common fixnum fast
path, it’s a little more lightweight:

 test $1, %rax # use the low bit as the type tag
 jz .tramp303 # using 1 as the fixnum type tag, like OCaml
 addq $-2, %rax
.resume305:
 ...

 We should expect this tag test and conditional bailout to be similar
in cost to the allocation guard instructions in my allocation loop
above:

 cmpq %rdx, %rcx # check against its old value
 jae .L23 # if it decreased it didn’t underflow

 We have an upper bound on that cost: the whole loop runs in 1.94
ns per iteration. And valgrind says this code runs about 6.7 billion
instructions when running 100'000 km_regions of 5000 nodes each:
about 13.4 instructions per loop iteration, so it's probably on the order
of 300 ps per such test.

 There are probably a couple dozen methods or operators to which
you’d want to give an open-coded primitive path like this for normal
code; depending on the language, perhaps integer arithmetic (+ - ×
÷ // % == < > <= >= == 1+ 1-), bit operations (^ & | << >>
>>> &^), floating-point arithmetic, if-then-else, range iteration,
container iteration, array indexing, car/cdr, some kind of
polymorphic list append, identity tests, field lookup, field access,
string concatenation, substring testing, string element access, pointer
arithmetic, pointer dereference, string length, array length, set
arithmetic (union, intersection, subtraction, elementwise
construction, membership testing), dictionary access (membership
testing, insertion, lookup, deletion), and pattern matching. As I
count, that’s a bit over 50 operations (see A survey of imperative
programming operations’ prevalence (p. 201)), but probably any
given language would get most of the benefit from only the few of
them that are most used in that language. (I think Ur-Scheme, for
example, implements about 13 of them at all.)

 The logic of this is that, even if, say, you have printf-style string
formatting built into your language as a built-in operator that’s also
used in other contexts for a fundamental arithmetic operation, as
Python does, actually executing that operation involves copying
enough characters around that doing a full method dispatch to get
there is only a little extra work. So it might take, say, 100 ns to
format the string† and an extra 3 ns to do the full method dispatch, so
avoiding the dispatch might speed up your program by 3%. But if
you can cut that 3 ns down to 0.3 ns when the operation is, say, an
0.3-ns multiplication instruction, you’ve sped up your program by
5×, a 400% increase. So if you have to choose, it’s usually better to
speed up some programs by 400% than others by 3%. It means that at
least your language can do some things fast, while the other choice is
for it to do everything slowly.

 This approach will give better performance if you design the
language to avoid the case where multiple different types implement
the same operation in ways that are all important to optimize in this
way; the usual suspects are integer and floating-point arithmetic,

both of which can be very fast on modern machines, but which
commonly use the same operators, such as + and *. OCaml instead
uses +. and *. for floating-point arithmetic, but other alternatives
include doing your floating-point math with numpy-like vector types
which can amortize the dispatch overhead over a number of array
members.

 †I just did a test with snprintf in C and it took more like 400 ns per
iteration to fill a 100-byte buffer! A small format string change cut it
to 150 ns, producing different output.

Topics

• Performance (p. 1155) (22 notes)
• Experiment report (p. 1162) (14 notes)
• Lisp (p. 1174) (11 notes)
• Assembly-language programming (p. 1175) (11 notes)
• Compilers (p. 1178) (10 notes)
• OCaml (p. 1249) (4 notes)
• Garbage collection (p. 1255) (4 notes)
• COMFY-* (p. 1300) (3 notes)
• Allocation performance (p. 1308) (3 notes)
• Steel Bank Common Lisp (p. 1330) (2 notes)
• Ur-Scheme

Failing to stabilize the amplitude
of an opamp phase-delay oscillator
Kragen Javier Sitaker, 02021-03-23 (updated 02021-03-24)
(10 minutes)

 I was playing with Falstad’s simulator and managed to rig up an
analog oscillator with a single op-amp and a phase-delay network.

$ 1 0.0000049999999999999996 9.384708165144016 72 5 43 5e-11
r 144 368 208 368 0 1000
c 208 368 208 432 0 0.00001 1.2650021009105155 0.001
g 208 432 208 464 0 0
368 208 368 208 304 0 0
r 208 368 288 368 0 1000
c 288 368 288 432 0 0.00001 1.5479202079950323 0.001
g 288 432 288 464 0 0
368 288 368 288 304 0 0
368 512 384 512 320 0 0
w 512 384 592 384 0
w 592 384 592 224 0
a 400 384 512 384 9 15 -15 1000000 1.3636380375651858 1.5479202079950323 100000
w 400 400 400 432 0
w 288 368 400 368 0
w 592 384 592 432 0
r 592 432 400 432 0 10000
r 400 432 400 496 0 1000
g 400 496 400 512 0 0
c 144 224 592 224 0 0.0000056 -14.316394194122497 0.001
r 144 368 144 448 0 1000
g 144 448 144 464 0 0
w 144 224 144 368 0
r 592 384 688 384 0 22000
d 688 384 752 384 2 default
c 752 384 752 480 0 4.7000000000000004e-8 14.452075111159305 0.001
g 752 480 752 512 0 0
w 752 384 816 384 0
r 816 384 816 480 0 1000000
g 816 480 816 512 0 0
368 752 384 752 320 0 0
o 3 64 0 4099 2.5 3.2 0 2 3 3
o 7 64 0 4099 2.5 3.2 1 2 7 3
o 8 64 0 4099 20 25.6 1 2 8 3
o 29 64 0 4099 20 25.6 2 2 29 3

 The big issue here is that the waveform is not very controllable; it
spontaneously starts oscillating in what is at first a nice exponentially
growing sinusoid, but rapidly hits the opamp rails, at which point it
continues to oscillate nicely but no longer sinusoidally. So I was
thinking I could maybe rig up a peak detector and use that to control
a MOSFET to control the loop gain. I was scared to use a
low-impedance peak detector, since the impedances in the rest of the

https://tinyurl.com/yf4ralng
https://tinyurl.com/yf4ralng

circuit are kind of high, but now I realize that was silly since the peak
detector is directly connected to the op-amp output... so even 100Ω
and 1μF don’t load the simulated circuit.

 So the idea is to decrease the amplifier gain when the peak detector
voltage is too high, and increase it when it’s too low. An
N-MOSFET in the ohmic region decreases its resistance when its
gate voltage goes high, and increases it when it's low. So if I add an
N-MOSFET into the negative feedback path for the op-amp, I
would want to add it where the gain goes up when its resistance goes
up, which is to say, between the inverting input and the output. This
has the complicating factor that the source of the MOSFET won’t be
at ground but rather somewhere near the input, which could result in
modulating the gain with the waveform.

 This almost works:

$ 1 0.0000049999999999999996 58.69854309417089 72 5 43 5e-11
r 144 368 208 368 0 1000
c 208 368 208 432 0 0.00001 0.2588422704884921 0.001
g 208 432 208 464 0 0
368 208 368 208 304 0 0
r 208 368 288 368 0 1000
c 288 368 288 432 0 0.00001 0.19461855112354048 0.001
g 288 432 288 464 0 0
368 288 368 288 304 0 0
368 512 384 512 320 0 0
w 512 384 592 384 0
w 592 384 592 224 0
a 400 384 512 384 9 15 -15 1000000 0.19460053421583465 0.19461855112354048 100000
w 400 400 400 432 0
w 288 368 400 368 0
w 592 384 592 432 0
r 496 432 400 432 0 8200
r 400 432 400 496 0 1000
g 400 496 400 512 0 0
c 144 224 592 224 0 0.0000056 -1.4716772955110715 0.001
r 144 368 144 448 0 1000
g 144 448 144 464 0 0
w 144 224 144 368 0
r 592 384 688 384 0 100

https://tinyurl.com/yzesfbka

d 688 384 752 384 2 default
c 752 384 752 480 0 0.000001 4.174094771849374 0.001
g 752 480 752 512 0 0
w 752 384 816 384 0
r 816 384 816 480 0 1000000
g 816 480 816 512 0 0
368 752 384 752 320 0 0
f 544 464 544 432 32 3 0.02
w 560 432 592 432 0
w 496 432 528 432 0
c 496 528 496 432 0 0.00001 3.928413464834166 0.001
w 496 528 544 528 0
w 544 528 544 464 0
r 544 528 656 528 0 470000
w 656 528 752 384 0
r 496 528 496 608 0 270000
g 496 608 496 624 0 0
R 624 464 656 432 0 0 40 15 0 0 0.5
r 624 464 544 528 0 1000000
o 3 256 0 4099 5 6.4 0 2 3 3
o 7 256 0 4099 2.5 3.2 1 2 7 3
o 8 256 0 4355 20 25.6 1 2 8 3
o 29 256 0 4355 20 25.6 2 2 29 3
o 33 256 0 4355 5 0.0001953125 3 2 33 3

 At startup, this version of the circuit oscillates between the rails
until the peak detector charges up enough to push the AGC
MOSFET into its linear region. But this leaves the gain slightly too
low, and the gain stays too low until the oscillations die away (the Q
is about 2 I think). The gain then rises so that over two or three
oscillations the wave grows from 10 mV to 15 V peak amplitude and
saturates again, at which point the cycle starts over.

 There are different things I could try to improve this situation.
When it’s oscillating successfully, the channel resistance is about
50–900Ω, and 900Ω is about the point where it explodes and saturates
again; I could try to make the gain respond more rapidly to changes
in the channel resistance by ensmallening the fixed resistors in the
feedback path. I could try to reduce the AGC control loop delay,
although it seems like it would be difficult to solve the problem
entirely that way. I think I’ll try the ensmallening approach first;
instead of 1kΩ and 8.2kΩ I’ll try 100Ω and 820Ω. That does reduce
the problem a bit but doesn’t eliminate the problem.

 The particular way that the problem manifests is that, as the
waveform is growing, at some point the MOSFET is carrying so
much current (about 6.5 mA) that it goes past its linear region into
saturation. At this point, just as surely as in cutoff, the opamp can
raise its output voltage with no effect on the voltage it sees on its
inverting input — and so its voltage immediately shoots to the positive
rail.

 Further tweaking doesn’t solve the problems:

$ 1 0.0000049999999999999996 28.90693621245522 72 5 43 5e-11
r 144 368 208 368 0 1000

https://tinyurl.com/yzwaaz3p

c 208 368 208 432 0 0.000001 0.011752762198423625 0.001
g 208 432 208 464 0 0
368 208 368 208 304 0 0
r 208 368 288 368 0 1000
c 288 368 288 432 0 0.000001 0.00350939848442611 0.001
g 288 432 288 464 0 0
368 288 368 288 304 0 0
368 512 384 512 320 0 0
w 512 384 592 384 0
w 592 384 592 224 0

a 400 384 512 384 9 15 -15 1000000 0.003509064780051761 0.00350939848442611 10000
0
w 400 400 400 432 0
w 288 368 400 368 0
w 592 384 592 432 0
r 496 432 400 432 0 819.9999999999999
r 400 432 400 496 0 100
g 400 496 400 512 0 0
c 144 224 592 224 0 5.599999999999999e-7 -0.006312701073670032 0.001
r 144 368 144 448 0 1000
g 144 448 144 464 0 0
w 144 224 144 368 0
r 592 384 688 384 0 100
d 688 384 752 384 2 default
c 752 384 752 480 0 6.8e-7 5.6158121109211905 0.001
g 752 480 752 512 0 0
368 752 384 752 320 0 0
f 544 464 544 432 32 3 0.02
w 560 432 592 432 0
w 512 432 528 432 0
c 496 528 496 432 0 0.000006799999999999999 4.810690328360631 0.001
w 496 528 544 528 0
w 544 528 544 464 0
r 544 528 656 528 0 220000.00000000003
w 656 528 752 384 0
r 496 528 496 608 0 270000
g 496 608 496 624 0 0
R 624 464 656 432 0 0 40 15 0 0 0.5
r 624 464 544 528 0 1000000
w 512 432 496 432 0
o 3 128 0 4099 2.5 3.2 0 2 3 3
o 7 128 0 4099 1.25 1.6 1 2 7 3
o 8 128 0 4355 20 12.8 1 2 8 3
o 26 256 0 4355 20 25.6 2 2 26 3
o 30 256 0 4355 10 0.0001953125 3 2 30 3

Topics

• Electronics (p. 1145) (39 notes)
• Falstad’s circuit simulator (p. 1198) (7 notes)
• Facepalm (p. 1199) (7 notes)

• Oscillators (p. 1283) (3 notes)

Running scripts once per frame for
guaranteed GUI responsivity
Kragen Javier Sitaker, 02021-03-23 (updated 02021-10-12)
(7 minutes)

 User interfaces are real-time programs. David Liddle says:
The programming world was not designed for the kind of programming we were
doing. These graphical user interfaces — that's real-time computing, okay? And so
all the programming languages that were in existence had been spawned, intended
to do batch-like computing. All real-time stuff that was out there — it was all
written in machine language! I mean it was just hard coded, you know!
Honeywell’s probably still selling Sigma 7s [the final SDS computer, bought by
Xerox and then sold to Honeywell during Liddle’s tenure at Xerox], because there
were a bunch of countries in Latin America that all got together and wrote flight
simulators for the Sigma 7, okay? And nobody wanted to pay to move that stuff,
and it was all machine language, as all real-time [code] was back then!
 Well, we were doing real-time computing! We were tracking the mouse and
moving windows and all that kind of stuff. You know how frustrating it is and
there's even a short delay from a manual input. So we had no choice. ... After 80
milliseconds, it’s cold pizza, man. You know? I mean, you can tolerate a veerrry
tiny lag, okay? But, you know, the human being wants to operate at, you know,
12½ hertz or go home.

 Suppose you want to run some arbitrary scripts in an interactive
display system, like a game, using a flexible programming language
like Lisp, but you want to ensure that those scripts don’t cause it to
use more memory or become unresponsive. One possible way to
handle this is to run the scripts once per frame, allocating only from a
per-frame arena heap which gets nuked before the next frame, similar
to the nursery of a generational garbage collector. The difference is
that any permanent effects need to go through some kind of
“interprocess communication” eye of the needle which will not pass
references into the per-frame heap — so you can pass, say, byte strings,
or maybe JSON-serializable objects, but not, say, mutable data
structures. There is no automatic copying out of retained objects
when the nursery is full.

 An advantage of doing things this way is that, to the extent that
you can contain any side effects from script execution inside a
“transaction” of some kind, you have the option of fearlessly aborting
a script at any point, either because it’s run out of time, because it ran
out of memory, or because it detected an error. Changes within the
per-frame heap are entirely exempted from this because they will get
vaporized when the script ends, whether succeeding or failing.

 If you run the pending event handlers in a frame starting from the
highest-priority ones, you can ensure that if anything fails to run
because you ran out of time, it’s the lowest-priority scripts. Often, in
interactive systems, the handling of an event can be separated into
several parts which can to some extent fail independently:

• Bottom-half handlers. Some kind of minimal state update that
provides feedback that the event has happened; for example, a bullet
hitting a player might make the screen go red, or a keystroke might
put a letter on the screen.

https://youtu.be/k79rIfcNDfg

• Background tasks. Some kind of cascading state changes that
happen as a result; for example, a keystroke might update an editor
buffer, which might cause a lot of text to get re-syntax-highlighted,
or a player entering a new region might h spawn a bunch of mobs,
which then begin pathfinding to attack the player.
• Isochronous tasks. Some kind of logic to generate a screen image
from the current internal state.

 Normally you would like #3 to run after #1 and #2, so that it takes
into account the latest events, but generally #3 has a hard deadline to
generate some pixels, and if it doesn’t complete in time, the program
will miss a frame, which is not ok. So if something has to get aborted
it should be a background task, #2. But there isn’t a clearly obvious
time at which that should happen; if the frame is due at 8.3
milliseconds, say, and the current time is 5.2 milliseconds, should we
abort scripts from #2 or not? And the answer depends on whether #3
needs more or less than 3.1 milliseconds to reliably run to completion.

 One plausible way to handle this is to analyze the isochronous code
in #3 for its worst-case execution time (WCET) and use that to
compute the deadline, so the deadline will always be hit. A different
alternative is to measure how long it takes, and how variable that
timing usually is, and use something like the mean of the last 30
execution times, plus, say, three standard deviations. This will
sometimes miss frames, but perhaps rarely enough to be acceptable for
interactive applications.

 Computing WCET is harder when there are interrupts, because
interrupts can happen during the isochronous code. You need some
kind of bound on how frequently they can happen and how long the
(top-half) handler can take to run.

 Any time left over at the end of the frame can be used to run
(bottom-half) handlers and background tasks.

 In general it is totally okay for the script’s ephemeral heap to
contain pointers to things outside of it, just not the other way around.
But, if writing within the ephemeral heap is supported, the system
needs to be able to distinguish these potentially-external pointers
from heap-internal pointers.

 When a new event comes in, it would be undesirable for any
currently-running background script to yield the CPU to the
bottom-half handler. This can be achieved by aborting it and
resetting the allocation pointer or by running the handler on a
different heap. If you have multiple cores you presumably want to
try to run background tasks on all of them, so you’ll probably have to
suspend or abort one of them.

 Pointer-bumping allocators can be very quick.

Topics

• Human-computer interaction (p. 1156) (22 notes)
• Safe programming languages (p. 1172) (11 notes)
• Real time (p. 1195) (7 notes)
• GUIs (p. 1216) (6 notes)

• Transactions (p. 1239) (4 notes)
• Allocation performance (p. 1308) (3 notes)
• Latency (p. 1358) (2 notes)
• Interrupts (p. 1361) (2 notes)

Minor improvements to pattern
matching
Kragen Javier Sitaker, 02021-03-24 (updated 02021-04-08)
(10 minutes)

 Reading EOPL I enountered their variant-case structure. The idea is
that if you have, say, a tree made out of interior records and leaf
records defined as (p. 80, §3.4.1)

(define-record interior (symbol left-tree right-tree))
(define-record leaf (number))

 then you can define, say (p. 81, §3.4.2, slightly tweaked):

(define (leaf-sum tree)
 (variant-case tree
 (leaf (number) number)
 (interior (left-tree right-tree)
 (+ (leaf-sum left-tree) (leaf-sum right-tree)))
 (else (error "leaf-sum: Invalid tree" tree))))

Polymorphic variants in OCaml

 This is pretty closely analogous to polymorphic variants in OCaml,
except that the fields are named; in the last case, the symbol field is
unused and so not mentioned. In OCaml we can define this without
defining the record types first, but the fields are named only
positionally:

let rec leaf_sum = function `Leaf n -> n | `Interior (_, left, right) -> leaf_s
um left + leaf_sum right ;;
val leaf_sum : ([< `Interior of 'b * 'a * 'a | `Leaf of int] as 'a) -> int =
 <fun>
leaf_sum (`Interior (`Leaf 4, `Interior (`Leaf 5, `Leaf 6)));;
Characters 9-60:
 leaf_sum (`Interior (`Leaf 4, `Interior (`Leaf 5, `Leaf 6)));;
 ^^^
Error: This expression has type
 [> `Interior of
 [> `Leaf of int] *
 [> `Interior of [> `Leaf of int] * [> `Leaf of int]]]
 but an expression was expected of type
 [< `Interior of 'b * 'a * 'a | `Leaf of int] as 'a
 Types for tag `Interior are incompatible
leaf_sum (`Interior ("foo", `Leaf 4, `Interior ("bar", `Leaf 5, `Leaf 6)));;
- : int = 15

 The type inferred is not actually fully general, because it requires
the type for a given tag to be consistent:

leaf_sum (`Interior ("foo", `Leaf 4, `Interior (3.14, `Leaf 5, `Leaf 6)));;
Characters 9-73:
 leaf_sum (`Interior ("foo", `Leaf 4, `Interior (3.14, `Leaf 5, `Leaf 6)));;
 ^^
Error: This expression has type
 [> `Interior of
 string *
 ([< `Interior of string * 'a * 'a | `Leaf of int > `Leaf]
 as 'a) *
 [> `Interior of float * [> `Leaf of int] * [> `Leaf of int]]]
 but an expression was expected of type 'a
 Types for tag `Interior are incompatible

Named fields for terser code

 Usually you have more than one function operating on a given
type, so it occurred to me that the Scheme code is somewhat
redundant; as long as it’s only dispatching on record types, it could be
written as follows:

(define (leaf-sum tree)
 (variant-case tree
 (leaf number)
 (interior (+ (leaf-sum left-tree) (leaf-sum right-tree)))
 (else (error "leaf-sum: Invalid tree" tree))))

 Moreover the error could be implicit as it is in OCaml.

 This way of doing things requires you to name your fields in a type
declaration, and only accommodates the simplest pattern-matches,
but those are nevertheless the most commonly used ones. (It also has
the disadvantage that adding fields to a record type could silently
change the meaning of existing code, instead of just breaking it as it
normally does.) So you could imagine saying, for example:

a tree:
 a leaf:
 n: int
 a interior:
 sym: symbol
 left-tree: tree
 right-tree: tree

to leaf-sum:
 on leaf:
 n
 on interior:
 leaf-sum left-tree + leaf-sum right-tree

Pointer-bit variant discrimination

 Another vaguely related pattern-matching note is that if your
record types are all non-polymorphic sum types like the above, and
you do full type erasure, as is normal in ML, then in most cases you

can get away with discriminating them entirely with pointer tag bits,
avoiding embedding a tag field in the record itself. tree above, for
example, needs only one tag bit, to distinguish leaf from interior; very
many such sum types need only 2–4. You could provide an
“overflow tag”, say, when all the pointer-tag bits are 1, which
indicates that the record does indeed contain a tag field further
discriminates the record type, but only types with 8 or more variants
will need it if your pointers are 64-bit aligned.

 Here are the last few sum types I defined. These are from porting
μKanren to OCaml:

type var = Var of Index.t (* the index is a counter typically from call_fresh *)
type term = Vart of var | Const of int | Pair of term * term
type 'a stream = Cons of 'a * 'a stream | Thunk of (unit -> 'a stream) | Mzero
type state = State of env * Index.t (* index of the next variable to create *)

 This is from an incomplete port of COMFY-65 to OCaml; the
real type would have about five more variants:

type ast = If of ast * ast * ast | Not of ast | Seq of ast list | Const of int

 This is also sort of an example:

type num = Int of int | Float of float
type expr = Sum of expr * expr | Product of expr * expr | Const of num

 This was also sort of an example:

type test_item = Hematocrit of int | Creatinine of float | Glucose of int
type test_items = EmptyTest | TestCons of test_item * test_items
type test = Test of (int * float * test_items)
type int_tag = HematocritT | GlucoseT
type float_tag = CreatinineT
type by_type_tag = EmptyBTT
 | BTTConsInt of (int_tag * int * by_type_tag)
 | BTTConsFloat of (float_tag * float * by_type_tag)
type int_item = HematocritI | GlucoseI
type float_item = CreatinineI
type item = IntItem of int_item * int | FloatItem of float_item * float
type maps_test = MTest of (int IntMap.t * float FloatMap.t)
 type item = Int of K.int_key * int
 | Float of K.float_key * float
 type int_key = Hematocrit | Glucose
 type float_key = Creatinine

 This was from Neel Krishnaswami:

type 'a exp =
 | Var of string
 | App of 'a exp * 'a exp
 | Lam of string * 'a

 This is a regular expression engine, based on a remark by Dave
Long, which I cut down to use polymorphic variants in order to

minimize the amount of code:

let rec any = function `N -> false | `C (h, t) -> h || any (t ())
and map f = function `N -> `N | `C (a, b) -> `C (f a, fun () -> map f (b ()))
and iota m n = if m = n then `N else `C (m, fun () -> iota (m+1) n)
let rec splits s = let n = String.length s in
 map (fun i -> String.sub s 0 i, String.sub s i (n-i))
 (iota 0 (n+1))
and matches s = function `Lit t -> s = t
 | `Cat (h, t) -> any (map (fun (a, b) ->
 matches a h && matches b t) (splits s))
 | `Alt (a, b) -> matches s a || matches s b
 | `Star r -> s = "" || matches s (`Cat (r, `Star r))

 This uses two types, which could be defined in the conventional
way as

type stream = Cons of bool * (unit -> stream) | Nil

type regex = Alt of regex * regex | Cat of regex * regex | Star of regex | Lit of
 string

 And here are some types from Bicicleta:

type methods = NoDefs
 (* name, body, is_positional ... *)
 | Definition of string * bicexpr * bool * methods
and bicexpr = Name of string
 | Call of bicexpr * string
 | Literal of string option * methods
 | Derivation of bicexpr * string option * methods
 | StringConstant of string
 | Integer of int
 | Float of float
 | NativeMethod of (lookup -> bicobj)
and userdata = UserString of string
 | UserInteger of int
 | UserFloat of float
 (* name, selfname, body, env *)
and bicmethod = string * string option * bicexpr * lookup
and bicobj = ProtoObject
 | BaseObject of lookup
 (* Derive of positional method names, methods, parent, cache *)
 | Derive of string list * bicmethod list * bicobj
 * (string, bicobj) Hashtbl.t option ref
 | UserData of userdata
 | Error of string * string
and lookup = Phi | Add of string * bicobj * lookup ;;

 So, in reverse order, these types have 2, 5, 1, 3, 8, 2, 4, 2, 3, 1, 2, 2, 1,
2, 1, 2, 3, 1, 2, 1, 2, 3, 3, 2, 4, 1, 3, 3, and 1 variant. So in most cases
you could distinguish them entirely with pointer bits, even if you
only had two pointer bits to play with.

 A more aggressive way to handle this is to represent references of a

given type as integers, some of whose bits indicate which variant the
object belongs to, while the other bits index an array of all objects of
that variant. For example, the high 16 bits of a 32-bit oop might
indicate whether an object is a ProtoObject, a BaseObject, a Derive, a
UserData, or an Error, while the low 16 bits index an array of Derives
or BaseObjects or whatever. For really simple generational garbage
collection you could allocate a second set of typecodes for nursery
ProtoObjects, nursery BaseObjects, and so on, where the “index” bits
directly indicate an offset into the nursery (probably bit-shifted by
whatever your nursery allocator alignment is.)

The regexp engine revisited

 The regex engine above in OCaml with polymorphic variants
consists of 547 non-indentation characters. We could rewrite it in the
above notation:

a stream:
 a cons:
 car: bool
 cdr: unit -> stream
 a nil

a regex:
 a literal:
 content: string
 a catenation:
 head: regex
 tail: regex
 a alternation:
 a: regex
 b: regex
 a closure:
 content: regex

to any:
 on nil:
 false
 on cons:
 head or any (tail())

to map f:
 on nil:
 nil
 on cons:
 cons (f head) λ().map f (tail())

to iota m n:
 nil if m == n else cons m λ().iota (m+1) n

to splits s:
 n ← #s
 map (λi.s[0:i], s[i:n-i]) (iota 0 (n+1))

to matches s:

 on literal:
 s == content
 on catenation:
 any (map (λa b.matches a head and matches b tail) (splits s)
 on alternation:
 matches s a or matches s b
 on closure:
 s == "" or matches s (cat content (star content))

 That’s 646 non-indentation characters, 15% larger. You could
imagine that if you had more than one function on regexps, you
could start winning:

to can_be_empty:
 on literal:
 s == ""
 on catenation:
 can_be_empty head and can_be_empty tail
 on alternation:
 can_be_empty a or can_be_empty b
 on closure:
 true

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Lisp (p. 1174) (11 notes)
• Programming languages (p. 1192) (8 notes)
• Syntax (p. 1221) (5 notes)
• OCaml (p. 1249) (4 notes)
• Scheme (p. 1274) (3 notes)
• Pattern matching

Why Bitcoin is puzzling to people
in rich countries
Kragen Javier Sitaker, 02021-03-31 (updated 02021-07-27)
(10 minutes)

 Originally posted at
https://news.ycombinator.com/item?id=26238410. Slightly edited at
https://news.ycombinator.com/item?id=26654767,
https://news.ycombinator.com/item?id=27337189, and
https://news.ycombinator.com/item?id=27448744.

 I’m not in El Salvador, but I do have some experience with how
Bitcoin gets used in practice in low- and middle-income countries,
despite the transaction fees sometimes being high. I don’t have
experience with Strike or Lightning in general, so while in theory
they should help a lot with the transaction-fee issue, I don’t know
how they work out in practice.

 I’ve been using Bitcoin to get paid for a couple of years at this point
where I live here in Argentina. It’s currently 13 years after Bitcoin’s
invention, and some people think it’s regressing instead of progressing.
Well, 13 years after the internet’s invention was 01982; not only
couldn’t you get so much as a weather report online, much less IRC,
but many of the early interesting experiments like NLS at SRI had
shut down, and more and more places were disabling guest access to
their hosts—you couldn’t run so much as a game of ADVENT
without getting a username. And a password. Things were seriously
regressing. The only people you could talk to on the internet were
other people who really bought into the subculture.

 If you live in a country with a highly functional banking system
and no kleptocracy, Bitcoin is probably a bit puzzling unless you have
family in Cuba. But it’s not puzzling at all for those of us who live
somewhere in the middle of the broad spectrum between Switzerland
and Somalia, because most places have a little kleptocracy. Argentina
is a stable democracy, far from being “a failed state,”† but if you want
to send US$500 abroad via non-Bitcoin means it’s basically
impossible, and the only broadly available savings vehicle is real estate
(“ahorrar en ladrillos”), which of course grossly inflates real-estate
prices, with a substantial part of the capital city occupied by empty
apartments someone bought “as an investment”. Historically,
Argentines have saved by buying dollars, but that’s limited to US$200
a month now, and then only if you have a non-under-the-table job
(about a third of total employment is under the table):

https://www.ambito.com/finanzas/dolares/cronologia-del-cepo-ca
mbiario-se-cumple-un-ano-la-restriccion-impuesta-macri-n5129832

 You can see that in September 02019 when this measure was
imposed the price of a dollar was AR$63.50; now it’s AR$155. So
whatever savings you had in pesos in 02019 have lost 59% of their
value to peso devaluation.

 In 02001 a lot of Argentines had saved dollars in their

https://news.ycombinator.com/item?id=26238410
https://news.ycombinator.com/item?id=26238410
https://news.ycombinator.com/item?id=26654767
https://news.ycombinator.com/item?id=27337189
https://news.ycombinator.com/item?id=27337189
https://news.ycombinator.com/item?id=27448744
https://news.ycombinator.com/item?id=27448744
https://www.ambito.com/finanzas/dolares/cronologia-del-cepo-cambiario-se-cumple-un-ano-la-restriccion-impuesta-macri-n5129832
https://www.ambito.com/finanzas/dolares/cronologia-del-cepo-cambiario-se-cumple-un-ano-la-restriccion-impuesta-macri-n5129832
https://www.ambito.com/finanzas/dolares/cronologia-del-cepo-cambiario-se-cumple-un-ano-la-restriccion-impuesta-macri-n5129832

dollar-denominated bank accounts. This did not preserve their
savings through the financial crisis that year; the cash-strapped
government limited withdrawals to a trickle, then converted dollar
deposits to pesos at a one-to-one rate, then released the exchange-rate
peg, at which point peso went overnight from being worth US$1 to
being worth US$0.25 before settling at about US$0.31 for the next
few years. The US did something similar in 01933.

 Some might suggest using “alternatives to banks like credit unions
where customers—as owners—hold more power,” but Credicoop
depositors suffered the same two-thirds confiscation of savings as
depositors in for-profit banks. And they pay the same 3% tax on bank
transactions including checks. That’s more than a fast Bitcoin
transaction fee of US$15 for transactions over US$500.

 But we’re not a failed state. There are no gangs of bandits roving
the streets in Argentine cities (though there are some pretty bad slums
where you’ll get robbed if you wander in without knowing anybody).
Courts, free public hospitals, and roads continue to function, though
there are more potholes than a year ago. Argentine infant mortality is
10 per 1000 live births, down from almost 20 in the late 01990s and
the same as the late 01980s in the US; life expectancy at birth is 77
years, worse than Switzerland’s 84, but the same as China and
Hungary, and better than Saudi or Mexico. (Somalia is 54.)

 Most of the world, and notably El Salvador, is worse off than
Argentina, although not necessarily in such a statistically transparent
fashion. About one fourth of the people in the world are unbanked,
51% here in Argentina, 70% in El Salvador; even advanced countries
like Russia, Hungary, and Uruguay have roughly a quarter of the
population unbanked:

https://www.gfmag.com/global-data/economic-data/worlds-most-
unbanked-countries

 And if your family lives in a country like Iran or Venezuela subject
to US sanctions, and you live in the US? Good luck sending them an
ACH, instant or otherwise!‡ It’s well known that Bitcoin is very
popular in Venezuela, which kind of is a failed state, so one of the
Venezuelan governments is trying to tax Bitcoin remittances at 15%.

 https://archive.fo/ZRXzS

 Bitcoin handles a few billion dollars per year in such remittances,
which are the lifeblood of the Salvadoran economy. A few billion
dollars a year might seem like a trivial amount of money to someone
in a rich country, but in poor countries, it’s enough to keep several
million people alive.

 Even in the US, it’s common for the police to confiscate large
amounts of paper currency just because they can (“civil forfeiture”);
US bank accounts are probably fine for US$100K but probably
somewhat risky for US$10M if the bank thinks you don’t seem like
the kind of person who ought to have it. US$10M in US$100 bills fits
in a box you can wheel around on a dolly, but Bitcoin is a lot more
practical. (And of course US$10M in dollar bills loses about US$200k
per year to inflation.) The problems with official corruption in El
Salvador are reputed to be dramatically worse than in the US, and
Bitcoin should help a lot with that.

https://www.gfmag.com/global-data/economic-data/worlds-most-unbanked-countries
https://www.gfmag.com/global-data/economic-data/worlds-most-unbanked-countries
https://www.gfmag.com/global-data/economic-data/worlds-most-unbanked-countries
https://archive.fo/ZRXzS

 Transaction fees are usually high enough that you wouldn’t want
to use Bitcoin to pay for a can of Red Bull or even a restaurant dinner.
But it’s extremely practical as an alternative to Western Union or
US$100 bills or gold, even with the current very high transaction fees.
At the moment, the Bitcoin transaction fee is very low—the median
Bitcoin transaction fee in the last block was 0.0495 millibitcoins,
which is US$1.72:

https://btc.com/0000000000000000000c28aea6e8c073e44e249460e8
e16cfc4a46f3b47d536b?page=60&order_by=fee&asc=1

 When I last checked a week ago, it was 0.00678 millibitcoins,
which is US$0.25:

https://btc.com/0000000000000000000778ef382c1697706e34634696
ece8d3243eb061e896d9?page=59&order_by=fee&asc=1

 Three months ago it was at what I think of as a more normal rate
of 0.31 millibitcoins, US$11, which is lower than the 3.4% spread
you’d pay to a jeweler or black-market money changer for
transactions over US$350:

https://btc.com/00000000000000000000476ab57eea9be8ada36e2680
3130287eb75c7e99797d?page=72&order_by=fee&asc=1

 So, Bitcoin doesn’t have to be a cypherpunk utopia to be a big
improvement on the status quo ante. For those of you living in stable
countries where your worries are things like “instant and extremely
low-fee ACHs” and “decentralized utopia”, this may be very
confusing, but try to remember that most of the world lives in places
with much more pressing concerns, concerns that Bitcoin helps a lot
with. And you may live there too, soon—the loyal subjects of Kaiser
Wilhelm in 01913 certainly didn’t expect that in 15 years they’d be in
the middle of a hyperinflation episode that remains legendary a
century later.

 I think that, by providing workarounds to the people who need
them, cryptocurrencies probably not only ameliorate the most
immediate and pressing concerns of poor parts of the population like
Venezuelan immigrants and MS-13 victims, but probably also adjust
the power balance in a more liberal and democratic direction. This
will improve the chance of those concerns being ameliorated by
public policy over the next decades as well. But it’s hard to tell what
will really happen. The potential disaster scenario is that, by making
most taxation impossible, cryptocurrencies destroy the modern
welfare state without providing anything to replace it. So the public
hospitals close, the enormous police force starts to support itself by
extracting tribute, and the infrastructure decays. Pretty similar to
what’s happened in the US over the last 50 years, in fact, only more
so.

 However, at this point I think the modern welfare state is already
doing a good enough job of destroying itself without any significant
help from cryptocurrencies—as evidence, I can point to Maduro,
Macri, Bolsonaro, Trump, and Brexit, and metonymically to the
social changes they betoken. So at this point I’m more worried about
cushioning the collapse than preventing it.

https://btc.com/0000000000000000000c28aea6e8c073e44e249460e8e16cfc4a46f3b47d536b?page=60&order_by=fee&asc=1
https://btc.com/0000000000000000000c28aea6e8c073e44e249460e8e16cfc4a46f3b47d536b?page=60&order_by=fee&asc=1
https://btc.com/0000000000000000000c28aea6e8c073e44e249460e8e16cfc4a46f3b47d536b?page=60&order_by=fee&asc=1
https://btc.com/0000000000000000000778ef382c1697706e34634696ece8d3243eb061e896d9?page=59&order_by=fee&asc=1
https://btc.com/0000000000000000000778ef382c1697706e34634696ece8d3243eb061e896d9?page=59&order_by=fee&asc=1
https://btc.com/0000000000000000000778ef382c1697706e34634696ece8d3243eb061e896d9?page=59&order_by=fee&asc=1
https://btc.com/00000000000000000000476ab57eea9be8ada36e26803130287eb75c7e99797d?page=72&order_by=fee&asc=1
https://btc.com/00000000000000000000476ab57eea9be8ada36e26803130287eb75c7e99797d?page=72&order_by=fee&asc=1
https://btc.com/00000000000000000000476ab57eea9be8ada36e26803130287eb75c7e99797d?page=72&order_by=fee&asc=1

 † We’ve remained democratic since 01983, electing presidents from
three different political parties (UCR, PJ, and PRO), and there’s no
serious insurgency. It’s the economy and government policy that are
ruinously unstable, to a point that seems satirical to anyone
accustomed to the US, but is lamentably common worldwide. Rich
people sometimes say they don’t know of legitimate uses of Bitcoin
outside of “failed states”.

 ‡ Family remittances are specifically exempted from the US
sanctions on Iran, but good luck finding a US bank that’s willing and
able to take that risk:
https://www.wiggin.com/wp-content/uploads/2019/09/26580_advi
sory-family-remittances-from-us-to-iran-not-prohibited-by-iranian-
transactions-regulations-martini-glasser-november-2011.pdf

Topics

• History (p. 1153) (24 notes)
• Argentina (p. 1200) (7 notes)
• Incentives (p. 1230) (5 notes)
• Economics (p. 1258) (4 notes)
• Politics (p. 1279) (3 notes)
• Bitcoin

https://www.wiggin.com/wp-content/uploads/2019/09/26580_advisory-family-remittances-from-us-to-iran-not-prohibited-by-iranian-transactions-regulations-martini-glasser-november-2011.pdf
https://www.wiggin.com/wp-content/uploads/2019/09/26580_advisory-family-remittances-from-us-to-iran-not-prohibited-by-iranian-transactions-regulations-martini-glasser-november-2011.pdf
https://www.wiggin.com/wp-content/uploads/2019/09/26580_advisory-family-remittances-from-us-to-iran-not-prohibited-by-iranian-transactions-regulations-martini-glasser-november-2011.pdf
https://www.wiggin.com/wp-content/uploads/2019/09/26580_advisory-family-remittances-from-us-to-iran-not-prohibited-by-iranian-transactions-regulations-martini-glasser-november-2011.pdf

Statistics on the present and future
of energy in the People’s Republic
of China
Kragen Javier Sitaker, 02021-04-01 (updated 02021-04-08)
(10 minutes)

 I was surprised to learn that China built more wind-powered
electrical generating capacity last year than coal, and also more solar
than coal. I posted about this on the orange website.

 Specifically, in 02020, the People’s Republic of China installed
71.7 GW of new wind capacity, 48.2 GW of new solar capacity
(which was already larger than the rest of the world combined), and
38.4 GW(e) of coal capacity. Assuming typical capacity factors of
40% for wind, 25% for solar, and 60% for coal, that would add up to
23 GW average new coal, 29 GW average new wind, and 12 GW
average new solar. (But China’s capacity factors are lower; see
below.) New solar installations worldwide double on average every
three years, which has slowed down from every two years in the
02010s.

 Solar capacity factors vary widely by region. In California they’re
28.1%, but in Germany and the Netherlands only 10%.

 For scale, total German energy use was about 3800 TWh/year over
02007–02013, including things like transport fuels. This works out to
about 430 GW. Of this, 576 TWh/year (65.7 GW) was produced as
electrical energy, which had reduced to (+ 60.94 81.94 35.56 59.08
131.69 50.7 45.45 18.27) = 484 TWh/year (55 GW) by the year 02020.

 But China is a larger country than Germany. Chinese marketed
energy consumption was 28 PWh/year (3.2 TW) in 02010, of which
3.9 PWh/year (440 GW) was electric. In 02019 they produced 7330
TWh electric calculated as (+ 4554 233 148 349 1270 32 405 224 113)
rounded to three places. That’s 836 GW. (The 32 TWh of
pumped-storage hydro may be double-counted.) In 02019 224
TWh/year (26 GW) was produced from solar and 405 TWh/year
(46 GW) from wind, using 204 GW of solar capacity (capacity factor
13%) and 209 GW of wind capacity (capacity factor 22%). Also the
4554 TWh/year from coal (519.5 GW) is on a 1.041 TW basis, so
their capacity factor is only 50.0%. Hopefully they’ll start installing
their energy plants in more propitious places, like the Gobi, and the
capacity factor will go up.

 So probably last year’s new installations of 38.4 GW (coal),
71.7 GW (wind), and 48.2 GW (solar) will produce on average
19.2 GW (coal), 16 GW (wind), and 6.3 GW (solar). The resulting
22 GW (average) of renewable energy added last year amounts to
2.6% of the total current electric energy use of China. If we assume
that China’s total energy use has increased by 90% since 02010, just as
their electrical energy use did by 02019, it would now be 6.1 TW, and
22 GW is 0.36% of it.

https://www.reuters.com/article/us-china-energy-climatechange-idUSKBN29Q0JT
https://www.reuters.com/article/us-china-energy-climatechange-idUSKBN29Q0JT
https://www.reuters.com/article/us-china-coal-idUSKBN2A308U
https://news.ycombinator.com/item?id=26227823
https://en.wikipedia.org/wiki/Renewable_energy_in_China
https://en.wikipedia.org/wiki/Energy_in_Germany
https://en.wikipedia.org/wiki/Energy_in_Germany
https://en.wikipedia.org/wiki/Energy_policy_of_China
https://en.wikipedia.org/wiki/Energy_policy_of_China
https://en.wikipedia.org/wiki/Electricity_sector_in_China
https://en.wikipedia.org/wiki/Electricity_sector_in_China

 Even though wind turbines have a lower cost per kilowatt and
higher capacity factors, I think solar is the more interesting thing here,
because it lasts for many decades and taps a much larger resource, so
I’m going to focus on solar.

 The relation between new installations and existing installations
gives us an estimate of the growth rate of solar capacity in China: it’s
increasing by 48/204 = 23.5% per year, giving a 3.3-year doubling
time, similar to the way new solar capacity in the world has doubled
every three years over the last couple of doublings; we can expect this
to remain roughly exponential for a while. We can estimate the
current installed capacity as 204 + 48 = 252 GW, or 0.252 TW. We
can also perhaps estimate that China’s total and electrical energy usage
each continue to grow at the same exponential rate they have been;
7.4% per year gives us the 90% increase we seem to be observing from
02010 to 02019. We can write this model down as follows:

installed = 0.252
cf = 0.13 # capacity factor
electric_usage = 0.836
total_usage = 6.1
fmt = '| %5s | %7s | %7s | %8s | %8s |'
print(fmt % ('', 'solar', 'solar', 'electric', 'total'))
print(fmt % ('year', 'TWp', 'TW', 'TW', 'TW'))
for i in range(40):
 print(fmt % ('%05d' % (i + 2021),
 '%.3f' % (installed * 1.235 ** i),
 '%.3f' % (installed * 1.235 ** i * cf),
 '%.3f' % (electric_usage * 1.074 ** i),
 '%.3f' % (total_usage * 1.074 ** i),
))

 With this model, China’s solar energy production exceeds its 02021
current electrical energy consumption of 836 GW in 02037, but
doesn’t exceed its contemporary electrical energy consumption until
02045 (at which point we extrapolate that it will use 4.6 TWe) and
finally catches up to its total energy consumption in 02059 at 92 TW.

	solar	solar	electric	total
year	TWp	TW	TW	TW
02021	0.252	0.033	0.836	6.100
02022	0.311	0.040	0.898	6.551
02023	0.384	0.050	0.964	7.036
02024	0.475	0.062	1.036	7.557
02025	0.586	0.076	1.112	8.116
02026	0.724	0.094	1.195	8.717
02027	0.894	0.116	1.283	9.362
02028	1.104	0.144	1.378	10.054
02029	1.364	0.177	1.480	10.799
02030	1.684	0.219	1.589	11.598
02031	2.080	0.270	1.707	12.456
02032	2.569	0.334	1.833	13.378
02033	3.173	0.412	1.969	14.368
02034	3.918	0.509	2.115	15.431
02035	4.839	0.629	2.271	16.573

02036	5.976	0.777	2.439	17.799
02037	7.380	0.959	2.620	19.116
02038	9.115	1.185	2.814	20.531
02039	11.257	1.463	3.022	22.050
02040	13.902	1.807	3.246	23.682
02041	17.169	2.232	3.486	25.434
02042	21.203	2.756	3.744	27.316
02043	26.186	3.404	4.021	29.338
02044	32.340	4.204	4.318	31.509
02045	39.940	5.192	4.638	33.840
02046	49.326	6.412	4.981	36.344
02047	60.917	7.919	5.350	39.034
02048	75.233	9.780	5.745	41.922
02049	92.913	12.079	6.171	45.025
02050	114.747	14.917	6.627	48.356
02051	141.713	18.423	7.118	51.935
02052	175.015	22.752	7.644	55.778
02053	216.144	28.099	8.210	59.906
02054	266.938	34.702	8.818	64.339
02055	329.668	42.857	9.470	69.100
02056	407.140	52.928	10.171	74.213
02057	502.818	65.366	10.923	79.705
02058	620.981	80.727	11.732	85.603
02059	766.911	99.698	12.600	91.937
02060	947.135	123.128	13.532	98.741

 Extrapolating an exponential trend over 40 years is very likely to be
wrong, particularly when the trend has only been in effect for a few
years. If we look back to 01993, 28 years ago, we see a significantly
faster exponential trend in worldwide photovoltaic installations: 508
GW (peak, DC, nameplate capacity) in 02018, grown from maybe
130 MW in 01993, which works out to 39% growth per year,
arithmetic mean, which is a 2.1-year doubling rate. [The estimate for
02019] was 627 TW, though, which is only 23.4% higher than the
02018 estimate, in line with China’s growth rate.

 If China’s photovoltaic installations were to suddenly start growing
at this faster rate, the model looks like this instead. They’re
generating all their electrical energy from solar by 02034 instead of
02045 and all their energy from solar by 02042. Their total
production in 02050 is 480 TW, 80 times more than their current
energy consumption, 25 times more than the current world marketed
energy consumption of some 18 TW, and an order of magnitude
larger than their projected energy consumption at that time.

installed = 0.252
cf = 0.13 # capacity factor
electric_usage = 0.836
total_usage = 6.1
ygps = 39.2 # yearly growth percent, solar
ygpt = 7.4 # yearly growth percent, total
fmt = '| %5s | %10s | %10s | %8s | %8s |'
print(fmt % ('', 'solar', 'solar', 'electric', 'total'))
print(fmt % ('year', 'TWp', 'TW', 'TW', 'TW'))
for i in range(40):

https://commons.wikimedia.org/wiki/File:PV_cume_semi_log_chart_2014_estimate.svg
https://commons.wikimedia.org/wiki/File:PV_cume_semi_log_chart_2014_estimate.svg

 print(fmt % ('%05d' % (i + 2021),
 '%.3f' % (installed * (1 + ygps/100) ** i),
 '%.3f' % (installed * (1 + ygps/100) ** i * cf),
 '%.3f' % (electric_usage * (1 + ygpt/100) ** i),
 '%.3f' % (total_usage * (1 + ygpt/100) ** i),
))

	solar	solar	electric	total
year	TWp	TW	TW	TW
02021	0.252	0.033	0.836	6.100
02022	0.351	0.046	0.898	6.551
02023	0.488	0.063	0.964	7.036
02024	0.680	0.088	1.036	7.557
02025	0.946	0.123	1.112	8.116
02026	1.317	0.171	1.195	8.717
02027	1.833	0.238	1.283	9.362
02028	2.552	0.332	1.378	10.054
02029	3.552	0.462	1.480	10.799
02030	4.945	0.643	1.589	11.598
02031	6.883	0.895	1.707	12.456
02032	9.581	1.246	1.833	13.378
02033	13.337	1.734	1.969	14.368
02034	18.566	2.414	2.115	15.431
02035	25.843	3.360	2.271	16.573
02036	35.974	4.677	2.439	17.799
02037	50.076	6.510	2.620	19.116
02038	69.706	9.062	2.814	20.531
02039	97.030	12.614	3.022	22.050
02040	135.066	17.559	3.246	23.682
02041	188.012	24.442	3.486	25.434
02042	261.713	34.023	3.744	27.316
02043	364.304	47.359	4.021	29.338
02044	507.111	65.924	4.318	31.509
02045	705.898	91.767	4.638	33.840
02046	982.611	127.739	4.981	36.344
02047	1367.794	177.813	5.350	39.034
02048	1903.969	247.516	5.745	41.922
02049	2650.325	344.542	6.171	45.025
02050	3689.252	479.603	6.627	48.356
02051	5135.439	667.607	7.118	51.935
02052	7148.531	929.309	7.644	55.778
02053	9950.756	1293.598	8.210	59.906
02054	13851.452	1800.689	8.818	64.339
02055	19281.221	2506.559	9.470	69.100
02056	26839.460	3489.130	10.171	74.213
02057	37360.528	4856.869	10.923	79.705
02058	52005.856	6760.761	11.732	85.603
02059	72392.151	9410.980	12.600	91.937
02060	100769.874	13100.084	13.532	98.741

 Of course no exponential curve representing a real-world
phenomenon can go on forever. China is only 9.6 million square
kilometers; conservatively assuming a 35% “capacity factor” for its
sunlight, thus 350 W/m², China only receives 3.4 petawatts of
sunlight, which this projection would have it crossing in 02056.

Covering all of China’s territory with 21%-efficient solar panels
would produce only 700 TW, which this projection would have it
crossing in 02052. Continuing to increase energy production past this
level would require putting the solar panels somewhere that isn’t
currently China, such as on the ocean, on the Moon, or in orbit
around the Earth or the Sun.

Topics

• Python (p. 1166) (12 notes)
• Energy (p. 1170) (12 notes)
• Solar (p. 1203) (6 notes)
• The future (p. 1220) (5 notes)
• China (p. 1379) (2 notes)

Geneva wheel stopwork
Kragen Javier Sitaker, 02021-04-07 (updated 02021-04-08)
(6 minutes)

 Watching the “Clickspring” series of videos on hobby clockwork, I
came across the section about the “stopwork”, which stops the
mainspring from being wound by more than, say, five turns.

 The way this is done is very simple. A pair of defective gearwheels
mesh; one is held in place only by light friction applied by a spring,
and has five teeth, with the rest of the gear solid out to the tip of the
teeth (the addendum circle), so if it were to be meshed with another,
non-defective wheel, it would only be able to rotate a fraction of a
rotation before locking, as the teeth of the other wheel crash into the
edge of the solid disc where no teeth have been cut.

 However, it is instead meshed with a gearwheel that has been filed
down to just the base circle, except for a single tooth that remains
protruding. So, for most of each rotation, this single-toothed wheel
doesn’t contact the counter wheel at all, but when it does, it advances
the counter wheel by a single tooth — unless the counter wheel has
already rotated all five teeth, in which case the single tooth crashes
into the solid disc much as the teeth of an ordinary gearwheel would
have done.

 Thus an up/down counter is provided, one which blocks further
motion upon reaching the end of its count. Its memory is retained in
an entirely analog fashion by friction, although the count being
remembered is essentially digital.

 It occurred to me that a different approach to solving this problem
is to use a “Geneva drive” mechanism (aka “Maltese cross”, “Geneva
stop”, or sometimes “Geneva wheel”) which is similarly defective,
with one of the slots for the drive pin being blocked, so the drive
wheel can only spin three, or four, or six rotations, or whatever.

 This is apparently the original use of the Geneva drive!

 The Geneva drive does not depend on friction and thus is
invulnerable to vibrations, and moreover is susceptible to being
chained in a way that ordinary gear wheels are not, which requires
further explanation.

 The defective gear wheels in the stopwork mechanism
demonstrated by Clickspring have the property that the “mechanical
advantage” is fairly accurately 1 during the moment when they are
engaged, since they happen to have the same pitch diameter, 0 when
they are not engaged, and then ∞ when they are locked. This
contrasts with the simplest straightforward stopwork mechanism in
which a drive pinion spins a larger wheel which encounters a stop at
some point in its rotation; if the drive pinion is to be allowed to turn
8 times, for example, we might drive a 73-tooth wheel with an
8-tooth pinion, occupying 9/73 of its rotation with a stop. But this
stop needs to resist 8 times the torque applied to the drive pinion.
The defective-wheel mechanism does not have this problem.

 But the Geneva drive permits carrying this further: not only can
we arrange for its mechanical advantage to average 1 during the

http://emweb.unl.edu/Mechanics-Pages/em373honors-S2001/em373/geneva/geneva.htm

driving part of the cycle, but we can use one such wheel to drive
another, which drives another. (Hmm, maybe that’s not such a big
difference after all; the one-tooth driver can do the same if it’s
driving an ordinary gearwheel, after all.)

 A single Geneva wheel can be made with arbitrarily many slots, at
the cost of pushing the duty cycle up toward 50% with a single drive
pin. In the limit of 50% you have an intermittent-motion version of a
rack and pinion, with the possibility of endstops.

 In the Geneva wheel’s original use as a stopwork, it was in fact a
limit on differential rotation: it limited not the absolute rotation of the
inner shaft of the mainspring or its outer barrel but their relative
rotation.

 By rotating one or more disc sectors in a plane parallel to the
Maltese cross, it is possible to obstruct the entry of the drive pin into
the slot. But perhaps a more interesting possibility for logic is axial
displacement; in the usual construction, the drive wheel has a ward in
the form of a partial circle that nestles into the Maltese cross to keep it
from turning when the drive pin is not engaged, with a cutout in the
circular ward around the drive pin to allow the Maltese cross to rotate
when the drive pin is engaged. But the circular ward could be made
from part of a solid round shaft, along which the Maltese cross can be
slid; if the cutout does not extend along its entire length, then sliding
the cross up it by the thickness of the cutout and enough to clear the
pin, the cross can be exempted from being incremented or
decremented by the next passage of the pin.

 This potentially gives us a clocked-logic system similar to Drexler’s
rod logic or Merkle’s buckling-spring logic, though probably less
suitable for miniaturization than the latter, since it relies heavily on
not only contact but sliding contact.

Topics

• Contrivances (p. 1143) (45 notes)
• Mechanical (p. 1159) (17 notes)
• Physical computation (p. 1208) (6 notes)
• Gears (p. 1365) (2 notes)

A bargain-basement Holter
monitor with a BOM under
US$2.50
Kragen Javier Sitaker, 02021-04-07 (updated 02021-07-27)
(33 minutes)

 I think you ought to be able to take a weeks-long EKG
(Elektrokardiogramm) from a person with an easy-to-fabricate
electronic device that could retail under US$25. A bargain-basement
Holter monitor.

 Specifically, you should be able to hook up some low-noise analog
amplifiers to a couple of electrodes on your skin to amplify the
millivolt-level EKG signals by 60dB, digitize the resulting signals of a
volt or two with any old ADC (as long as it doesn’t produce too
much noise) at about 1 ksps and 8–12 bits deep, and record the results
in NAND Flash. You want to pot the whole thing so it doesn’t get
eaten by your sweat, then tape it to your chest for a week or a month.
When your cellphone is nearby, you can copy over the resulting data
wirelessly for offline analysis.

 I think the overall BOM can probably be kept under US$2.50,
auguring a total retail cost under US$25. The total energy budget is
about 1 mW.

 This outline is almost feasible:

|---------------------+--------------------+----------------------------|
| Item | BOM cost (qty 100) | Average power dissipation |
|---------------------+--------------------+----------------------------|
[CR2032 cell][25]	37¢	1 μW (internal resistance)
ATTiny1614 μC	65¢	
(sampling)		240 μW
(communicating)		320 μW
MCP6401 opamp	27¢	120 μW
S34MS01G2 Flash	104¢	35 μW
4×1μF bypass caps	6.1¢	0.03 μW
4×0.1μF bypass caps	2.2¢	(probably less)
---------------------+--------------------+----------------------------		
Total	241¢	716 μW
---------------------+--------------------+----------------------------		

 (It’s suffering from the fact that the microcontroller doesn’t have
enough pins to operate the Flash, it may be entirely too weak, the
resistors for the opamp feedback aren’t included, the opamp may need
to be an inamp, and you probably need another 0.01-μF cap or
something for the antialiasing filter. Maybe it would be best to build
a prototype with more generously specified parts first before trying to
cost-optimize it.)

BOM outline

 You need a battery, some kind of communication, a

microcontroller, an ADC, an amplifier or two, maybe some Flash,
maybe a voltage reference, maybe a linear regulator or two, maybe a
crystal, and maybe a few passives. It might be possible to shrink this
down to a battery, a mixed-signal microcontroller with an onboard
oscillator, a NAND Flash chip, and a couple of bypass caps, plus a
loop of wire for bit-banged NFC or BLE communications to your
phone.

 My thought with the Flash is that 1 ksps for a month is 2.6 billion
samples, and 2.6 gigabytes of Flash uses a lot less power and costs a lot
less than 2.6 gigabytes of SRAM, and costs less and uses enormously
less power than 2.6 gigabytes of DRAM. And maybe you can get by
with less Flash than that if you can send data to your phone more
often.

 I don’t know much about mixed-signal microcontrollers, so I don’t
know which ones to use.

Skin electrodes

 ENIG, a common PCB finish, deposits an 0.1-μm layer of gold (or
a bit less) on top of a 6-μm layer of nickel on top of exposed PCB
copper. Gold is safe for skin contact; nickel is safe for 80% of the
population. You can fab a 2-layer PCB with exposed ENIG pads as
skin-contact electrodes a few centimeters apart. Certain lead-free
solders might be a more robust nontoxic alternative: tin, silver, zinc,
indium, and (for most people) bismuth and copper are acceptable
ingredients, but antimony, nickel, cobalt, cadmium, and lead are
toxic, and a small number of people are allergic to copper, and a few
more to bismuth. So, for example, SAC305 should be fine, being
96.5% tin, 3% silver, and 0.5% copper; the eutectic is 95.6:3.5:0.9.
ASTM96TS eliminates the copper, and KappAloy9 is instead the
eutectic of 91% tin, 9% zinc.

 It should be possible to connect the skin-contact pads to printed
traces that are covered with solder mask, and which run to
plated-through vias a safe distance away from the exposed pads
themselves to connect them to the other side of the board.

 Hypo-allergenic metals commonly used for skin contact jewelry
include gold, silver, titanium, aluminum, tantalum, niobium,
rhodium, platinum, and palladium.

Power, storage, and communication

 A CR2032 lithium coin cell contains about 2.2 kJ of energy (233
mAh at 2.7 V is 2.3 kJ). If we’re aiming for a useful life of a month,
that gives us a power budget of about 840 μW; 1 mW gives us 25
days. If we want to collect data continuously, we can’t turn the
amplifiers on and off, so they need to be low power enough to use
only a fraction of that.

 Probably the right NAND strategy is to buffer up on the order of
2048–65536 samples in the microcontroller’s onboard SRAM before
applying some kind of lossless data compression to them, powering up
the Flash, and writing a sector or ten to the Flash.

 As a ballpark on processing cost, the STM32L0 uses about 230 pJ
per instruction, so if it were using the whole 1 mW power budget it

https://www.eurocircuits.com/che-niau-or-enig-electro-less-nickel-immersion-gold/
https://www.eurocircuits.com/che-niau-or-enig-electro-less-nickel-immersion-gold/
https://en.wikipedia.org/wiki/Solder_alloys
https://www.embedded.com/how-much-energy-can-you-really-get-from-a-coin-cell/
https://www.embedded.com/how-much-energy-can-you-really-get-from-a-coin-cell/

would be averaging 4.3 MIPS continuously. The popular STM32F
chips use more like 1500 pJ/insn, which would be more like 0.67
MIPS. It’s probably best to shoot for something like 0.07 MIPS,
105 μW. The devices also use about 1 μW in stop-with-RTC mode,
which takes 5 μs to wake up, and can thus usefully do a
100-instruction quantum of work before going back to sleep; so
waking up 500 times a second would work, and even 1000 times a
second isn’t out of the question.

 Writing to NAND costs on the order of 10 nJ/byte, but can usually
only be done a 2048-byte sector at a time. If we assume that our
compression takes us from 12 bits per sample down to 3, and we’re
taking 1000 samples per second, the average NAND power would be
about 4 μW.

More detailed design options

 So, we have a 2.7-volt coin cell driving a low-power
microcontroller with an onboard ADC, fed from a low-power
differential amp connected to the person through some 100kΩ
resistors or something, storing data in some NAND Flash at around
1 Hz, and occasionally talking to a phone with BLE or NFC. Maybe
there’s an antialiasing RC filter in between the opamp and the ADC,
and each of the three chips has a couple of bypass caps. The
microcontroller has additional bypassing on its Vdda to reduce the
power-supply noise introduced by digital electronics.

 So what chips should we use?

 Hopefully no discrete voltage regulators at all are necessary with
the appropriate choice of parts.

Microcontroller: STM32?

 The STM32F103 seems to be the default microcontroller these
days, though it’s probably too expensive (US$3+). I’m looking at the
short version of its 117-page datasheet, DocID 13587 revision 17.

 The most common one, the STM32F103C8, runs at up to 72 MHz,
has dual 1Msps 12-bit ADCs, 64 or 128 KiB of Flash, and 20 KiB of
SRAM, with a single-cycle 32-bit multiplier, and runs on 2.0–3.6 V.
It has an internal voltage reference rated to be between 1.16 V and
1.24 V (±3.4%) at -40°–85° with a 100-ppm/° tempco. I’m thinking
that this is really quite excessive accuracy for our purposes since
sticking the device in a slightly different place would probably
attenuate its voltage more than that.

 The power consumption part of the datasheet is extensive. At an
externally-clocked 72 MHz, where it’s most efficient, it draws
32.8 mA at 85° with all peripherals disabled; at 2.7 V that’s 89 mW or
1200 pJ per cycle, which is pretty close to 1200 pJ per instruction. At
36 MHz, half the clock speed, it uses 19.8 mA, 53 mW, 1500 pJ per
cycle, which would be a lot easier on a coin cell. You might get a 5%
improvement by dropping the temperature to 25°. In Stop mode,
with the regulator in Run mode, it claims to use more like 24 μA
(65 uW), though that’s without the oscillators. Using the internal
RC oscillator instead, at 36 MHz it’s 14.1 mA.

 The ADCs, which are connected to the second APB, use 17.5 and
16.07 μA/MHz. The APB2 bridge uses another 3.75 μA/MHz (p. 51,

table 19). If these are clocked at 2 MHz then ADC2 would use 32 μA
or 87 μW at 2.7 V and the APB would use 8 μA = 20 μW more for a
total of 107 μW.

 The reference manual RM0008 (Rev 20, 1134 pp.) goes into more
detail. It explains (p. 215) that the ADC is successive-approximation
and can’t be clocked (ADCCLK) over 14 MHz, so I’m guessing it
needs 14 clocks per sample. It’s rated only down to 2.4 V even
though the rest of the device works down to 2.0 V.

 The cheapest in-stock STM32 on Digi-Key (other than the
STM32G031J6M6) is the STM32L011F3P6 at US$1.40 in quantity
100. It runs at 32 MHz. Its reference manual (RM0377, DocID
025942 rev. 8) explains that it has a 12-bit successive-approximation
ADC with up to 256× hardware oversampling that can run at up to
1.14 Msps at 12 bits, and it can run down to 1.65 V. Its clock can run
at a lower speed than the APB clock (figure 33, p. 278) using a
prescaler (1×-256×) from an independent clock source, or by dividing
the APB clock by 1, 2, or 4. It supports DMA (§13.2, p. 272; §13.5.2,
p. 290; §13.5.5, “Managing converted data using the DMA”, p. 291).

 Oh, but maybe I made an error above: in STM32 Stop mode the
clocks are stopped, so I’m not sure the ADC can run. To leave the
ADC running, maybe you need to use sleep or low-power sleep mode
(p. 144). But maybe not; the HSI16 16MHz oscillator can still run in
Stop mode (§6.3.9, p. 151) and you can run the ADC from it (§7.2, p.
166; also Table 57 in §13.3.5 on p. 279) and it looks like you can run
the AHB PRESC off the HSI16 oscillator and the APB{1,2} PRESC
off the AHB PRESC (Figure 17, clock tree, p. 168), so maybe you can
use the ADC in Stop mode. Not sure about whether the DMA
controller works in Stop mode.

 HSI16 is factory calibrated to ±1% which may be too loosey-goosey
for communications.

 Looking at the 119-page datasheet (DocID 027973 rev. 5) the
STM32L011x3/4 runs at up to 32MHz, uses 0.29 μA in Stop mode
(0.8 μW at 2.7 V) and “down to” 76 μA/MHz in Run mode
(200 μW/MHz, 200 pJ/cycle). It only has 2KiB SRAM, limiting the
possibilities for pre-storage compression, and 16 KiB Flash. In sleep
mode at 16 MHz, the device uses 1000 μA (2700 μW), which clearly
isn’t acceptable (§3.1, p. 14) but maybe if you can clock it at 4MHz or
2MHz with a clock prescaler it would be okay. The wakeup time
from Stop mode is 3.5 μs, which is fine (56 clock cycles at 16MHz).

 This StackOverflow question implies that running the ADC in
Stop mode is impossible on an STM32L4.

Microcontroller: STM32G?

 The STM32G031J6M6 mentioned above seems to be new as of
02019. It’s very interesting: 64MHz, 8 KiB RAM, 32 KiB Flash,
2.5Msps 12-bit ADC, which can run up to 4.38Msps at 6-bit
precision. The US$1.30 package is an 8-pin SOIC, but it comes in
other packages with up to 32 pins (STM32G031K, US$2.78) or even
48 (STM32G031C, US$2.98). It seems like an evolution of the
STM32F chips: slightly tighter tolerances on Vrefint (±2.5%), lower
Vrefint tempco (30 ppm/°) and Vddcoeff of 250 ppm/V. Energy
consumption is similar to the STM32L line: 5.2 mA at 64 MHz and

https://www.digikey.com/en/products/detail/stmicroelectronics/STM32L011F3P6/6166957
https://stackoverflow.com/questions/53173447/optimize-power-consumption-with-stm32l4-adc
https://stackoverflow.com/questions/53173447/optimize-power-consumption-with-stm32l4-adc
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32G031J6M6/10300265
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32G031K8T6/10300267
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32G031C6T6/10300268

25° running from Flash, which at 2.7 V is 220 pJ per cycle and
probably per instruction. Low-power run mode at 2 MHz running
from SRAM is 146 μA, 197 pJ per cycle.

 The STM32G031J seems like it would probably be a superior
choice to the STM32F or STM32L011 chips for this device, at least if
software support is adequate.

Microcontroller: CKS32F?

 CKS makes a line of STM32 replacement chips such as the
CKS32F051C8T6 (US$1.08 in quantity 100 from LCSC). This is a
drop-in compatible replacement for the STM32F051C8T6, which
would cost more than twice as much at Digi-Key except that it’s out
of stock. (Digi-Key does have a 36-WLCSP version, the
STM32F051T8Y6TR, for US$2.43 in quantity 100.)

 Section 5.3.5 of the CKS datasheet, which is entirely in Chinese
except for some plots they probably copied from the ST datasheet, is
power consumption; table 24 on p. 42 says that running from Flash
on the HSI oscillator at 32 MHz and 25° it uses 15.5 mA, which at
2.7 V would be 1300 pJ per cycle, quite comparable from the
STM32F figures.

 I feel like this kind of thing would probably be about the same as
using an STM32F, but neither CKS nor GD seem to have an
STM32L or STM32G equivalent.

Microcontrollers: AVRs? The ATTiny1614 can
maybe do 240 μW for 65¢

 There are some very cheap AVRs out there that don’t use a lot of
energy, but for example the 30¢ ATTiny25V-15MT only has 128
bytes of RAM, and in general AVRs are too power-hungry for this
application.

 The ATTiny1614, which seems to be new since 02018, is 65¢ in
quantity 100 and has 2KiB of SRAM and an ADC. I think you can
get it to work if you don’t try to run the ADC continuously, but it
will suck up a quarter of the whole power budget.

 According to its 598-page datasheet (DS40002204A), it runs at
20MHz (though only 5 MHz at 2.7 V or less), runs anywhere from
1.8V to 5.5V, and has dual 10-bit 115-ksps ADCs and 12 GPIOs. It
belongs to the “tinyAVR 1-series”. It has a couple of FPGA-style
3-LUTs on the chip with it (“configurable custom logic”), and an
analog comparator, but no opamps or differential ADCs.

 Active power consumption at 5MHz and 3V is given as 3.2mA
(table 36-4, §36.4, p. 508), which works out to a lamentable 1900 pJ
per cycle — particularly lamentable considering these are 8-bit
instructions. “Standby” power consumption at 3V is given as about
0.7 μA with a 32kHz oscillator running (internal or external);
“power-down” consumption, with all peripherals stopped, is given as
0.1 μA (table 36-5). These numbers are quite adequate. But “idle”
power consumption would be 0.6 mA at 5 MHz and 3V, which is far
too much.

 However, no figures are given for “standby” with a high-speed
oscillator running!

https://lcsc.com/product-detail/Other-Processors-and-Microcontrollers-MCUs_CKS-CKS32F051C8T6_C556574.html
https://lcsc.com/product-detail/Other-Processors-and-Microcontrollers-MCUs_CKS-CKS32F051C8T6_C556574.html
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32F051T8Y6TR/5806782
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32F051T8Y6TR/5806782
https://www.digikey.com/en/products/detail/microchip-technology/ATTINY25V-15MT/1914688
https://www.digikey.com/en/products/detail/microchip-technology/ATTINY1614-SSNR/7354616

 So, if we can stay in “standby” or “power-down” most of the time,
this chip might be a cheaper but less efficient alternative to the
STM32. The question is, can it wake up 1000 times a second to take a
sample, or leave the ADC running while in “standby”?

 §10.3.4.1.1 says the internal OSC20M 16/20MHz oscillator starts up
in “the analog start-up time plus four oscillator cycles”. There’s also a
32.768 kHz internal oscillator (OSCULP32K, §10.3.4.1.2) which can
be used as a clock source (CLKSEL[1:0] = 0x1, §10.5.1; see also the
block diagram in Figure 10-1, §0.2.1, p. 75); I suspect that might be
fast enough for the ADC.

 §11 describes the sleep controller. §11.3.2.1 says, “SleepWalking is
available for the ADC module,” but doesn’t explain further, but
Table 11-1 says the ADCs can be enabled in idle or standby mode, but
not power-down mode; the RTC, PTC (“peripheral touch
controller”), TCBn (“timer/counter type B #n”), BOD, and WDT
can too. Moreover the ADC/PTC interrupts can wake the CPU.
Wakeup time is 6 main clock cycles, which is totally insignificant,
plus possibly time to restart the clock, which could probably be
avoided here, although table 36-6 in §36.5 on p. 509 says 10 μs. That’s
still fine though.

 §30.1 says the ADC has “accumulation of up to 64 samples per
conversion,” which I think means oversampling (giving 13 bits of
precision), and “interrupt available on conversion complete”, which
would wake up the CPU. I don’t think there’s any DMA, but with
6-clock-cycle wakeup I don’t think we need it.

 §30.3.2.2 (p. 431) shows the ADC clock prescaler dividing CLK_PER
by anything from 2 to 256 to get CLK_ADC. So if CLK_PER were 5 MHz
(maybe from dividing OSC20M by 4) we could run CLK_ADC at
anywhere from 19.5 kHz to 2.5 MHz, both of which are outside the
50 kHz–1.5 MHz range demanded on that page “for maximum
resolution”. A normal conversion takes 13 CLK_ADC cycles (§30.3.2.3, p.
432) so if we want 1ksps with 64× oversampling then we want CLK_ADC
to be about 832 kHz; probably the best compromise is setting CLK_ADC
to CLK_PER/8 = 625 kHz (by setting the PRESC field in CTRLC to
0x2, §30.5.3, p. 440) and using 32× oversampling for 1.502 ksps (by
setting the SAMPNUM field in CTRLB to 0x5, §30.5.2, p. 439).

 So then I guess every 666 μs we get an ADC interrupt, wake up
another microsecond later, store the conversion result in RAM, and
then go back to standby? Probably setting the ADC to “free-running
mode” would be best so the clock doesn’t ever get turned off — but
see below for why this isn’t viable.

 If we were stuck with a 32.768-kHz oscillator for CLK_PER then
CLK_ADC would be, at best, 16.384 kHz, which the datasheet says is too
slow for full accuracy; but then we’d get 1.260 ksps without any
oversampling.

 Table 36-7 in §36.6 (p. 510) says the ADC itself uses 325 μA at
50ksps or 340 μA at 100ksps. That is, by itself, 0.92 mW at 2.7 V,
which is probably enough to blow our 1-mW power budget. Also,
OSC20M uses 125 μA. So, free-running mode is far too
power-hungry.

 A more exotic “compressed sensing” approach might be viable.
Instead of sampling the signal every 1000 μs, sample it at a random

time within each 1000-μs interval, awoken by TCB0. You need 10 μs
to come out of standby mode, 8 μs to start up OSC20M (table 36-12,
§36.9, p. 512), running with CLK_PER at 5 MHz because we’re at 2.7V,
and with CLK_ADC configured as 5 MHz/4 = 1.25MHz, another 10.4 μs
to take the sample. This works out to 28.4 μs or a 2.84% duty cycle,
so the 8.4 mW when active averages out to 240 μW: suboptimal but
possibly acceptable.

 Actually if you do the antialiasing filter on the analog side, like
with a simple passive RC filter, you can just sample every 1000 μs
using that same approach. So, 240 μW it is.

 There are also things like the AVR32DA28T with 4 KiB of RAM
and running on 4.7 mA at 24 MHz, anywhere from 1.8V to 5.5V,
with different power-down modes ranging from 650 nA to 2.3 mA.
Despite the name, it’s an 8-bit AVR, but it costs US$1.20 in quantity
100 anyway!

Discrete amplifiers

 We don’t care much about signals above about 500 Hz or below
about 0.1 Hz, so the amp or amps don’t need to be fast, low-offset,
chopper-stabilized, or any of that good stuff. But we do need a lot of
gain and pretty low power. We can bias the signal to be halfway
between our rails, so we don’t need rail-to-rail inputs or outputs.
And we only need one differential amp if we only have two
electrodes. The input impedance is the skin contact resistance;
without gel this is standardly modeled as 1.5 kΩ but can easily be up
to 1 MΩ or so, so our input bias current needs to be about 1 nA or less.

 500 Hz bandwidth and a closed-loop gain of 1000 means we need at
least half a MHz of gain-bandwidth product.

 My first thought was that this needs to be high precision, so an
instrumentation amp is in order.

 The MCP6N11 is Digi-Key’s cheapest in-stock INA. But it costs
US$1.42 in quantity 1, just about blowing out our hopes for a US$2
BOM in a single shot. It’s 35 MHz GBW (about two orders of
magnitude more than we need), 10 pA input bias, rail-to-rail output,
and uses 800μA, which would also just about blow out our power
budget.

 Also, though, the excellent properties of INAs are useless here.
Input impedance matching? Don’t need it, no RF here. Low drift?
Irrelevant. Low noise? Well, our input signal isn’t actually all that
tiny. High CMRR? The whole circuit is floating so this doesn’t
matter at all.

 Digi-Key’s cheapest in-stock opamp in quantity 1 is the
MCP6001RT-I/OT, which costs US$0.24 in quantity 1 or US$0.18
in quantity 100. It’s a teensy little SOT23-5 with 1 MHz GBW, 1 pA
input bias, 4.5 mV input offset voltage, drawing 100 μA of power at
down to 1.8 V, so it seems like it might be adequate. The 50-page
MCP6001 datasheet has lots of data, including an 86dB PSRR, 88dB
open-loop gain, 6 mA output short-circuit current even at 1.8 V,
50–170 μA quiescent current, and 6.1-μV input noise voltage.
Though it claims 28 nV/√Hz, which would be only 0.6 μV in the
500-Hz bandwidth of interest, the 1/f knee in figure 2-12 on p.8

https://www.digikey.com/en/products/detail/microchip-technology/AVR32DA28T-I-SO/12663969
https://www.digikey.com/en/products/detail/microchip-technology/MCP6N11-100E-SN/2802058
https://www.digikey.com/en/products/detail/microchip-technology/MCP6001RT-I-OT/562449
https://www.digikey.com/en/products/detail/microchip-technology/MCP6001RT-I-OT/562449
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP6001-1R-1U-2-4-1-MHz-Low-Power-Op-Amp-DS20001733L.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP6001-1R-1U-2-4-1-MHz-Low-Power-Op-Amp-DS20001733L.pdf

(“Input noise voltage density vs. frequency”) is around 1 kHz, so
almost all this noise is actually in range.

 However, in quantity 100, Digi-Key also has in stock (at the
moment) the Diodes Inc. AZ4558CMTR-G1 dual op-amp for only
16.7¢, or 11¢ in quantity 500. But in quantity 1, they’ll charge you 40¢
for the damn thing. It has 5.5 MHz GBW and lower input noise of
10 nV/√Hz, but because it’s bipolar, it uses 2500 μA of supply current
(typical! The max is 4500!), making it far too power-hungry for this
application—it works up to ±20 V supply and 60 mA output.

 A TI LM358LVIDDFR dual op-amp is just as cheap (19¢ in
quantity 100, 10.1¢ in quantity 1000, 41¢ in quantity 1) and uses even
less power (90 μA per channel), and also has 1 MHz of GBW. It has a
lower input offset voltage, which we don’t care about (1 mV) and a
higher 15 pA input bias current, which still isn’t high enough to cause
problems. It has about the same noise (5.1 μV peak-to-peak,
40 nV/√Hz) which is probably plenty low. One drawback is that it's
only specced to run down to 2.7 V instead of the Microchip’s 1.8 V.
The LM321 single-device package of the same opamp might be a
better fit—half the quiescent current—but costs slightly more, 20¢ in
quantity 100.

 There are much lower-power opamps than that, though. TI’s
OPA379 claims 2.9 μA, but isn't suitable—it only has 90 kHz GBW
and costs US$1.24 in quantity 1, 86¢ in quantity 100, or 59¢ in
quantity 1000. This astonishingly low power usage is the very first
thing in the datasheet title: “1.8V, 2.9μA, 90kHz Rail-to-Rail I/O
OPERATIONAL AMPLIFIERS”.

 Another possible option, though, is Microchip’s MCP6401 at 27¢
(37¢ in quantity 1), which runs on 1.8–6 V and 45 μA (70 μA max),
delivering 1 MHz GBW and 3.6 μV p-p input noise. Its open-loop
gain at 500 Hz is supposedly still about 65 dB.

 If we’re looking for one of the “basic components” at JLCPCB,
maybe the MCP6002T-I/SN would work — it's the only
“low-power opamp” in that category. It’s the same MCP6001
circuit, with its 1-MHz GBW and 100μA at 1.8–6V, but has two
op-amps on the chip, so it actually sucks 200 μA. JLCPCB wants to
charge you 34.9¢ for it I think, though LCSC would charge 45.1¢ in
quantity 10.

NAND Flash

 We need to be able to buffer up some EKG data during times
when the user’s phone is out of communication range. If we’re
recording 1000 samples per second and can manage to use 8 bits per
sample, that’s 1000 bytes per second; 2048 bytes of RAM only buffers
up 2 seconds’ worth. 24 hours’ worth would be 86.4 megabytes of
data. The only practical way to buffer up so much data at under a
milliwatt is nonvolatile memory, of which NAND Flash is the
cheapest and also takes the least power to write.

 Something like the “obsolete” GigaDevice GD5F1GQ4RF9IGR
might be a good start. It’s 128 mebibytes of NAND Flash in an
8-LGA with an SPI/dual-SPI/quad-SPI interface that can run at
100MHz. In quantity 100, it costs a dismaying US$2.21, instantly
torpedoing any hopes of the US$2 BOM cost mentioned above. Its

https://www.digikey.com/en/products/detail/diodes-incorporated/AZ4558CMTR-G1/5306054
https://www.digikey.com/en/products/detail/texas-instruments/LM358LVIDDFR/10715375
https://www.digikey.com/en/products/detail/texas-instruments/LM321LVIDBVR/9685426
https://www.digikey.com/en/products/detail/texas-instruments/OPA379AIDCKR/1572627
https://www.digikey.com/en/products/detail/texas-instruments/OPA379AIDCKR/1572627
https://www.digikey.com/en/products/detail/microchip-technology/MCP6401UT-E-OT/2332835
https://www.lcsc.com/product-detail/Low-Power-OpAmps_Microchip-Tech-MCP6002T-I-SN_C7377.html
https://www.digikey.com/en/products/detail/gigadevice-semiconductor-hk-limited/GD5F1GQ4RF9IGR/9484745

top voltage is 2V, so it would need an external linear regulator.
Parallel-interface NAND Flash chips like the S34MS01G2 (also 128
MiB) are cheaper but require lots of I/O lines. Like 15. It uses 10 μA
at idle.

 2-gibibit Flash seems to start at US$2.60 in quantity 100 with
things like the Micron MT29F2G08, with no datasheet available, or
US$2.79 with the Kioxia TC58BVG1S3HTA00, which runs on
2.7–3.6 V, uses 30 mA in operation and 50 μA in standby, and has a
serial interface. Programming a 2048+64-byte page takes 330 μs,
erasing a 64-page block takes 2.5 ms, and despite its 48 pins it looks
like you can run it on 15 GPIOs or less. Doing the math, erasing takes
19 ns per byte, writing takes 161 ns per byte, and the total 180 ns at
30 mA and 2.7 V takes 15 nJ per byte. This is a bit higher than the
4.4 nJ number I computed for the S34MS01G2, but not ridiculous.
1000 bytes per second at 15 nJ is 15 μW, which is adequately small.
(NOR Flash takes about 100× as much power to write, which would
blow our power budget.)

 The Kioxia part seems to be specced for 40MHz, but probably
8MHz is a more realistic speed for driving it from a cheap
microcontroller. This adds another 256 μs or so of time to write each
page, which might or might not double its power usage, but either
way it’s fine.

 Although Kioxia’s pricing suggests that maybe 1-gibibit NAND is
already at or above the linear pricing region, Digi-Key only stocks
one 512-mebibit NAND chip, the Winbond W25N512GVEIG,
which is actually more expensive than the gibibit chips.

 30 mA across the battery’s internal resistance of 15 Ω or so would
produce almost half a volt of power rail droop, which could be a big
problem not only for analog measurements but maybe even for digital
circuit stability.

 The NAND is probably also the heaviest current draw, so it might
give us an idea of how much capacitance we need. If we wanted to
handle 30 mA for 2.5 ms without dropping the voltage by more than,
say, 0.3 V, we’d need 250 μF. Ouch! Not gonna find a cheap ceramic
cap with that.

Bypass caps

 Something like the 30¢ Vishay TMCMA0G227MTRF tantalum
might work to keep the NAND from harrowing the battery; it’s a
1206 4-V 220-μF tantalum. But if we leave it connected all the time
it will leak about 30 μA, 81 μW — not out of the question, but several
times as much as the NAND itself.

 We probably can’t get by without bypassing, and to get down
below 1 mW, we need at least 10kΩ leakage resistance in all the
bypass caps put together. This is a sufficiently undemanding spec that
I think random ceramics will be fine; we don’t need to go for 30V or
100V caps, which would be a way to cut down bypass losses further.

 Sufficiently beefy bypass caps might make a coin-cell battery last
longer by preventing current draw at the battery from spiking to
30 mA or more during normal use.

 The 0.55¢ Samsung X5R CL05A104KA5NNNC seems like a
reasonable 0.1μF bypass cap, though the datasheet doesn’t specify

https://www.digikey.com/en/products/detail/kioxia-america-inc/TC58BVG1S3HTA00/5226306
https://www.digikey.com/en/products/filter/ceramic-capacitors/60
https://www.digikey.com/en/products/filter/ceramic-capacitors/60
https://www.digikey.com/en/products/detail/vishay-sprague/TMCMA0G227MTRF/10107301
https://hackaday.com/tag/nfc/

leakage, and, e.g., the Yageo X5R 0201 1.52¢ Yageo
CC0201MRX5R5BB105 is probably adequate for a 1-μF bypass cap.
Its datasheet suggests insulation resistance of 10 GΩ “or Rins × Cr ≥
50Ω.F, whichever is less,” which works out to just 1 GΩ. So it
exceeds requirements by four orders of magnitude in this case.

 XXX maybe 0.001 μF too? And maybe dump the 1μF one?

Bluetooth Low Energy

 Wikipedia say BLE give 0.27–1.37 Mbps of “application
throughput” for 0.01–0.50 W and under 15 mA. Suppose this means
we can get 1 Mbps for 40 mW (15 mA at 2.7 V), which seems
plausible. Well, that’s 40 nJ per bit, or 320 nJ/byte. It’s about an
0.8% duty cycle if we’re producing 1000 bytes per second of sample
data, as suggested above, but that still works out to 320 μW, which is
not impossible but is a major part of our energy budget.

 Transmitting a full 128-MiB Flash chip load of EKG data would
take almost 20 minutes at 1 Mbps, which is annoyingly slow but not
infeasible.

 It may be feasible to bitbang BLE on an ATTiny24 and an
nRF24L01+, at least for transmitting but this is probably not really
viable without using BLE hardware.

Near-field communication

 Lots of cellphones and other hand computers now support
ISO/IEC 18000-3 13.56 MHz NFC, at 106–424 kbps, and also under
15 mA; because the data rate is five times slower, the cost per bit is
probably about five times higher, or 1.5 mW.

 Wikipedia claims NFC communication can be added for 10¢, but I
don’t know how to do that. It seems to be popular. One popular
NFC chip is the NXP PN532, which I guess is an 8051 with NFC
hardware, but it seems to cost more like 700¢; even a cheaper
alternative like the NXP 512 is still almost US$4. Nobody seems to
be bitbanging it successfully either. ST sells a US$1.33 8-SOIC called
the M24LR64E-RMN6T/2, which is a pretty complete
energy-harvesting RFID tag that also supports I²C, but it seems like
that’s only to read and write its memory, not to use it as a transceiver.

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Manufacturing (p. 1151) (29 notes)
• Energy (p. 1170) (12 notes)
• Microcontrollers (p. 1211) (6 notes)
• Memory hardware (p. 1250) (4 notes)
• Communication (p. 1264) (4 notes)
• Radio (p. 1278) (3 notes)
• STM32 microcontrollers
• Skin electrodes
• Healthcare

https://www.makerfabs.com/pn532-nfc-module-v3.html
https://www.makerfabs.com/pn532-nfc-module-v3.html
https://en.wikipedia.org/wiki/Bluetooth_LE
https://dmitry.gr/?r=05.Projects&proj=11. Bluetooth LE fakery
https://dmitry.gr/?r=05.Projects&proj=11. Bluetooth LE fakery
https://en.wikipedia.org/wiki/Near-field_communication
https://en.wikipedia.org/wiki/Near-field_communication
https://hackaday.com/tag/nfc/
https://www.makerfabs.com/pn532-nfc-module-v3.html
https://www.digikey.com/en/products/detail/nxp-usa-inc/PN5321A3HN-C106-55/2296486
https://www.digikey.com/en/products/detail/nxp-usa-inc/PN5120A0HN-C1-518/11515556
https://www.digikey.com/en/products/detail/stmicroelectronics/M24LR64E-RMN6T-2/4156627

Locking telescope
Kragen Javier Sitaker, 02021-04-07 (updated 02021-12-30)
(2 minutes)

 Looking at a telescoping antenna today it occurred to me that there
was a way to stabilize telescoping mechanisms for the purpose of, for
example, folding bicycles, with a bayonet-connector-like approach.

 Specifically, given two coaxial tubes, one inside the other, you have
two or more pegs in one of them (say, the inner) which engage slots in
the other (say, the outer) when they’re close to the fully extended
position; by rotating the tubes relative to one another, the pegs move
into channels that move the tubes into a really fully extended position,
working against a spring, and when the rotation is continued, the
channel allows the pegs to slip into a detent, allowing the spring to
relax slightly. The only difference from a BNC connector is that the
action is reversed: the pegs engage when the tubes are nearly apart
instead of nearly together, resisting compression on the column
formed by the two joined tubes instead of tension. (If you need to
resist tension you can do that better with a cable, which can be
tensioned to hold the strut in compression.)

 Optionally you can include a second analogous set of channels to
lock the tubes in the fully collapsed position as well, or any number of
other positions.

 In this way a telescoping tube can provide a strong structural
member that can be easily collapsed for storage or transport.

Topics

• Contrivances (p. 1143) (45 notes)
• Mechanical (p. 1159) (17 notes)
• Connectors

Logarithmic low-power SERDES
Kragen Javier Sitaker, 02021-04-08 (4 minutes)

 I think the usual way to make a SERDES is with a shift register.
Let’s consider the deserialization case, where we want to, say, convert
a 2Gbps serial connection into a 31.25 MHz 64-bit parallel interface.
We use a shift register with 64 bits in it clocked at 2GHz, toggling on
average 32 bits per cycle and thus 64 gigatoggles per second. Every 64
cycles, we latch its current state into a 64-bit output register, also
toggling 32 bits on average, but this only pushes us from 64 to 65
gigatoggles per second.

 A different way to do this is with a logarithmically slowing series of
stages, like a DSP polyphase filter. Initially we have a 2-bit shift
register which is clocked at 2GHz as usual. Every 2 cycles, its output
gets shifted into the low bits of two more 2-bit shift registers, which
are thus clocked at 1GHz. Every two shifts, their 4 bits of output are
shifted into the low bits of four 2-bit shift registers, which are clocked
at 500MHz. And similarly for 16 bits clocked at 250MHz, 32 bits
clocked at 125MHz, 64 bits clocked at 62.5MHz, and finally a 64-bit
output latch register clocked at 31.25MHz. This gives us 2 × 1
gigatoggles + 4 × 500 megatoggles + 8 × 250 megatoggles + 16 × 125
megatoggles + 32 × 62.5 megatoggles + 16 × 31.25 megatoggles × 2
= 10 gigatoggles per second, 6.5 times lower power consumption than
the straightforward shift register approach. Moreover, it’s possible
that the stages after the first 2 or 4 bits can be driven at lower voltage
or built in a simpler fashion, because they don’t need to run nearly as
fast.

 Instead of 128 latches, now we need 190, but that’s less than 50%
overhead. It’s probably useful to stagger the phases of the 7 different
clocks to smooth out the load current and thus keep the voltage rails
more constant.

 (You can of course just time-reverse this to get a serializer instead
of a deserializer.)

 A slightly different way to design the device is as a binary tree of
127 flip-flops. The flip-flop at the root of the tree is clocked at
2GHz, fed directly from the incoming data stream. Each of its
children is clocked at 1GHz, but on alternate 2GHz clock cycles,
latching in the root's output. Each 2GHz clock cycle, one of the four
latches at the next level of the tree is clocked, and so on. So on each
2GHz clock cycle, the bits shift along some 7-bit path from the root
of the tree down to one leaf, but which leaf changes every cycle. This
way the number of flip-flops clocked per cycle is constant at 7, and
there are on average 3½ toggles per cycle.

 However, this is sort of cheating, because an output bit still changes
every 500 ps. If you want to read it at 31.25MHz, that probably isn’t
okay, so you probably need another 64 bits to latch the output,
bringing this design back up to 191 latches, and clocking all the output
latches once every 64 cycles.

 A different approach is to distribute the input signal using pass
transistors or write-enable bits or something instead of flip-flops.

This approach is exactly like the binary-tree approach, except
without all the intermediate tree levels: the input signal is buffered
and possibly latched at 2GHz and driven onto the inputs of 64 leaf
flip-flops, but only one of those flip-flops is clocked each cycle. In a
sense this requires 64-way fanout, which requires a fairly beefy buffer
for it to be fast.

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Energy (p. 1170) (12 notes)

:fq0zl, a normal-order text macro
language
Kragen Javier Sitaker, 02021-04-09 (updated 02021-07-27)
(14 minutes)

 Textual macro replacement languages like m4 are famous for being
easy to implement and eliminating artificial barriers to factoring out
duplication. They also have a very low barrier to entry for new
programmers. However, they also have a lot of problems.

 m4 is notoriously hard to use, although it’s often effective. Part of
the problem is that data is re-executed both on its way into and on its
way out of macro invocations, so you often need
quoting — confusingly, multiple levels thereof. Worse, if you are
missing a level of quoting, your code will often appear to work until
some previously inert data happens to have a macro invocation in it.

 m4’s design has a number of other avoidable defects. It’s
whitespace-sensitive in a way that impairs readability. Often m4
macros collide with ordinary words, resulting in accidental macro
invocations that corrupt the text. Since it was defined, the ASCII
apostrophe has been redefined as a terrible symmetrical typewriter
glyph, depriving m4’s default quote characters of their symmetry.
And m4’s parameter-passing mechanism is so purely positional that, as
in Forth, you can’t even name your arguments.

 Can we define a text macro language that retains the basic
processing paradigm of m4, m6, and cpp, but has a better balance of
power and usability?

Existing macro languages

 TeX is a pure macro-expansion system, perhaps the most successful
attempt, but I suspect we can do better. Tcl is semantically mostly a
macro-expansion language, and although it’s somewhat limited it’s at
least usable. Mooers’s TRAC is hard to find information about.
MediaWiki templates, sh, make, PHP, ES6, Perl, cpp, macro
assemblers, and many other languages implement string interpolation
in more or less central ways.

Normal-order macro expansion

 If macro output is not subject to macro expansion, we have
“applicative-order macro expansion”, and m4 loses its
Turing-completeness, making it much more comprehensible (all the
macro invocations that will be expanded are explicitly present in the
input file) but also much less useful. (m4’s predecessor m6†, which
was included with early versions of Unix, offered the call-time option
to expand a macro in this fashion by terminating the call with a
semicolon.)

 On the other hand, if macro input is not subject to macro
expansion, much of the need for quoting disappears, but
Turing-completeness remains. This is “normal-order macro
expansion”. Done naïvely, there are cases where it will take

exponentially longer than m4’s strategy, but I think these can be
mostly avoided in practice, and a more sophisticated implementation
can optimize them away. Make's standard $(variable) mechanism
works this way, though without the ability to define parameterized
macros.

 Tcl, instead, doesn’t rely on macro expansion for computational
power; its proc mechanism is not defined in terms of macro expansion
producing an enormous string, just the construction of the arguments
to a Tcl command.

 † “the program contains about 25 subroutines, totaling about 600
executable statements,” according to the Bell Labs Computing
Science Technical Report #2 about m6 in 01971.

Lexical syntax for :fq0zl

 m6† used “warning characters” to delimit macro invocations, a
feature that is present in a certain sense in cpp and has been added
again in GNU m4. In standard m4 we can write this and get 6:

define(`mylen',`ifelse($1,,0,`eval(1+mylen(substr($1,1)))')')dnl
mylen(kanawa)

 But, in m6, where the quote characters were <> and the default
warning characters were #:, I think you would have written:

#def,mysize,<#if,#seq,$1,:,0,1,<#add,1,#mysize,#substr,$1,1:::>:>:
#mysize,kanawa:

 (As mentioned above, replacing : with ; yielded applicative-order
expansion, in which the macro’s output would not be expanded
further.)

 Here #seq,$1,: tests whether the first argument to mylen was
string-equal to the empty string, in which case the invocation of the
builtin #if macro returns 0; otherwise it invokes #eval to recurse. I
think the inner <> are necessary to prevent the recursion from being
evaluated infinitely before invoking #if.

 In GNU m4, if changeword is enabled, I think we can get a similar
effect like this, but I don’t have m4 compiled with that at the
moment to test:

changequote(<,>)changeword(<#\([_a-zA-Z0-9]*\)>)
#define(<mylen>,<#ifelse($1,,0,<#eval(1+#mylen(#substr($1,1)))>)>)#dnl
#mylen(kanawa)

 Overall this is all pretty nasty and unreadable to my eyes. I'd rather
separate arguments with arbitrary amounts of whitespace and use an
explicit, nestable, and visually symmetrical circumfix syntax for
macro invocation. Single ASCII characters only offer a few choices:

<mylen kanawa>
[mylen kanawa]
(mylen kanawa)
{mylen kanawa}

‘mylen kanawa’ # formerly ASCII, now sabotaged by aping MS-DOS

 Of these, I like <mylen kanawa> best — it most strongly implies that it's
a placeholder — but that would run into a lot of trouble if you started
trying to macro-expand C programs that say things like #include
<string.h> and for (size_t i=0; i<result->len; ++i) all over the place, not
to mention PDF files with hex strings like
<668531e8e73e8ee1503359167219ef43>, and of course SGML, HTML, and
XML — unless you pass undefined macro invocations through
unchanged. But I want undefined macro invocations to crash.

 So, to avoid these problems, with SGML, HTML, and XML, you
must precede the macro name with :, as in <:mylen kanawa>.

 Just as in m4 and m6, there’s the problem of how to embed the
argument separator within an argument, which is more urgent when
the separator is whitespace. You could use the same delimiters in such
a case, or something like <:q this text is a single argument>, but I think
it’s best to expropriate more delimiters in a way analogous to m6’s use
of <> — but only in the context of macro arguments. And I think the best
delimiters to use here are braces {}, backslashing } and backslash inside
them if you need unbalanced braces.

 And I think named arguments are pretty important. So instead of

define(`mylen',`ifelse($1,,0,`eval(1+mylen(substr($1,1)))')')

 we might write

<:def <:mylen s>
 <:ifelse %s {} 0 <:eval 1+<:mylen <:substr %s 1>>> >
>

 No quoting is needed here because we’re using normal-order
macro-expansion; the <:mylen s> and <:ifelse ...> calls are parsed so we
can see where they end, avoiding the need for extra {}, but they aren’t
macro-expanded until and unless they end up in a strict context, such
as a top-level output stream or the argument of <:eval ...>. And %s
expands to the parameter s, as in MS-DOS batch files or in SGML
parameter entities:

<!ENTITY crap "#PCDATA | %font | %phrase | %special | %formctrl">

 However, in :fq0zl, the substitution is only carried out on the text
of a macro definition, and only using the parameters that are lexically
within scope — it’s not done throughout the rest of the file, as in an
SGML DTD (the above SGML defines &crap; to expand to all that
crap, with %font and the like additionally expanded, anywhere in any
document ruled by this DTD).

 As in SGML, you can optionally terminate the parameter name
with a ;, which is useful for contexts that would otherwise be a
problem:

<:def <:mylen %s>
 <:ifelse %s; {} 0 <:eval 1+<:mylen <:substr %s; 1>>> >
>

 Consider, for example, this definition from the Hammer parsing
library:

#define HAMMER_FN_DECL_NOARG(rtype_t, name) \
 rtype_t name(void); \
 rtype_t name##__m(HAllocator* mm__)

 We can define the equivalent in :fq0zl as follows:

<:def <:hammer_fn_decl_noarg rtype_t name> {
 %rtype_t %name(void);
 %rtype_t %name;__m(HAllocator* mm_);
}>

 Without the disambiguating ; we would have %name__m, which
would abort with an error, since there is no parameter in scope named
name__m.

 Named parameters can have defaults, and you can pass parameters
by name. So, for example, corresponding to this MediaWiki markup
with its named parameters:

{{Infobox laboratory equipment
|name = Holter monitor
|image = HolterAFT1000.jpg
|caption = Holter monitor

|inventor = [[Norman Holter]] and Bill Glasscock at Holter Research Laborator
y
}}

 we might have

<:infobox-laboratory-equipment
 name = {Holter monitor}
 image = {HolterAFT1000.jpg}
 caption = {Holter monitor}

 inventor = {[[Norman Holter]] and Bill Glasscock at Holter Research Laborator
y}
>

 The spaces around the = are optional, so parsing this from left to
right requires retconning name from being a parameter value “name” to
being a parameter name. When we define the macro we can provide
it with default parameter values:

<:def <:infobox-laboratory-equipment
 name caption inventor image={} model={}>
...>

 It’s reasonable to question having two separate replacement
mechanisms, one for macros <:s> and the other for parameters %s. You

could of course provide parameters as locally-defined macros, but my
intuition is that bloating references to what are really just local
variables to a minimum of four characters is excessive and would
make :fq0zl clumsy to use.

Static function arguments

 By defining a macro that expands to a <:def ...> we can do
imperative programming, but what about higher-order functional
programming?

 In m4 we can pass function arguments by name:

define(parenthesize,`($1)')dnl
define(bracize,`{$1}')dnl
define(hello,`$1(h)$1(e)$1(l)$1(l)$1(o)')dnl
hello(`bracize')
hello(`parenthesize')

 The hello macro invokes the macro whose name is passed in as an
argument, so we get:

{h}{e}{l}{l}{o}
(h)(e)(l)(l)(o)

 It took me about half an hour, and rereading much of the GNU
m4 manual, to figure out that the reason this wasn’t working was that
I had forgotten to quote the argument to hello. In :fq0zl we can do
precisely the same thing, but quoting is unnecessary:

<:def <:parenthesize x> (%x)
><:def <:bracize x> {{%x}}
><:def <:hello f> <:%f h><:%f e><:%f l><:%f l><:%f o>
><:hello parenthesize>
<:hello bracize>

 If we change the definition in m4, we can pass in a curried function
instead; this produces the same output:

define(wrap, `$1$3$2')dnl
define(hello, `$1,h)$1,e)$1,l)$1,l)$1,o)')dnl
hello(`wrap(`(',`)'')
hello(`wrap({,}')

 However, though this works in this case, it is clearly monstrous; it's
incompatible with the previous hello definition, and not only is the
definition of hello unreadable (you can’t even see the nesting
structure), it’s buggy when you pass it alphanumerics:

define(wrap, `$1$3$2')dnl
define(hello, `$1,h)$1,e)$1,l)$1,l)$1,o)')dnl
hello(`wrap(_,_')

 This produces the output

_h_wrap(_,_,e)_l_wrap(_,_,l)_o_

 Two of the five calls to the callback argument got cabbaged
because when the scanner got to them they’d undergone token
pasting. The m6/:fq0zl design is somewhat safer here, but this is far
from the only such problem with macro expansion.

 It’s not impossible to fix this bug within m4:

define(wrap, `$1$3$2')dnl
define(hello, `$1,h)`'$1,e)`'$1,l)`'$1,l)`'$1,o)')dnl
hello(`wrap(_,_')

 This produces the desired output:

_h__e__l__l__o_

 But the definition is, if possible, even uglier than before.

 The straightforward equivalent definition in :fq0zl would use the
same definition of :hello as above:

<:def <:wrap l r m> %l;%m;%r;
><:def <:hello f> <:%f h><:%f e><:%f l><:%f l><:%f o>
><:hello {wrap ()}>
<:hello {wrap \{ \}}>

 But first we should explore the question of expansion semantics in
more detail.

Expansion semantics

 A big problem with make, sh, and m4 is that they tend to have
subtle bugs when handling “special characters”: make totally fails on
filenames with spaces. sh by default re-splits the results of $variable
and `command` expansion to “help” you use shell variables and
command output as arrays of filenames instead of individual
filenames. The m4 behavior I exploited above to pass in a curried
function as an argument is not only pretty unreadable in this context,
it’s also an abundant source of bugs.

 Another problem with the m4 semantics is that they’re slow: the
macro output must be rescanned character by character in case the
token boundaries have moved.

 We have to scan the macro arguments when we first encounter
them in order to figure out where they end. The right solution is to
store the resulting list structure and treat that as primary, rather than
the character-by-character syntax. This need not diminish the
abstraction power of the language.

 Consider a macro invocation like this:

<:foo %a b %c>

 It is desirable that we can statically know that this invocation
invokes foo with three arguments, the second of which is the string b,
which is a positional parameter. It is not desirable for b to be the

second or third argument depending on the value of a.

 I’ll handwave over actually establishing semantics here for now,
though.

Lambda-lifting to construct data structures
out of curried functions

 With this ability to construct and invoke curried functions, we can
define naturals, booleans, and Lisp-style lists in the λ-calculus fashion,
even though we don’t have anonymous functions. To examine a
natural, we invoke it with two continuations, one to return if the
natural is zero, and another to invoke with the number's predecessor if
it is nonzero:

<:def <:zero ifzero ifsucc> %ifzero>
<:def <:succ n> {succ2 %n}>
<:def <:succ2 n ifzero ifsucc> <:%ifsucc %n>>

 Given this definition, we can define addition recursively: 0+y is
just y, and succ(n)+y is succ(n+y):

<:def <:add x y> <:%x ifzero=%y ifsucc={add2 %y}>>
<:def <:add2 y n> <:succ <:add %n %y>>>

 Comparing a number to zero is fairly trivial:

<:def <:eq0 x> <:%x ifzero=true ifsucc=eq01>>
<:def <:eq01 _> false>

 However, what are true and false? We can define them in the same
way, as functions that invoke different continuations:

<:def <:true iftrue iffalse> %iftrue>
<:def <:false iftrue iffalse> %iffalse>

 Now we can compare two naturals with the same recursive
approach we used for addition. If the left argument is zero, then we
get the result by checking to see if the right argument is zero:

<:def <:eq x y> <:%x ifzero=<:eq0 %y> ifsucc={eq2 %y}>>

 Otherwise,

<:def <:eq2 y x1> <:%y ifzero=false ifsucc={eq %x1}>>

<:def <:nil ifnil ifpair> %ifnil>
<:def <:pair car cdr ifnil ifpair> <:%ifpair %car %cdr>>
<:def <:mapcar f list> <:%list nil {mapcar2 %f}>
<:def <:mapcar2 f car cdr> <:pair <:%f %car> <:mapcar %f %cdr>>>
<:def <:append xs ys> <:%xs %ys {append2 %ys}>>
<:def <:append2 ys car cdr> <:pair %car <:append %cdr %ys>>>

Topics

• Programming languages (p. 1192) (8 notes)
• End user programming (p. 1217) (6 notes)
• m4 (p. 1352) (2 notes)
• Macros

Forming steel with copper instead
of vice versa
Kragen Javier Sitaker, 02021-04-16 (updated 02021-06-12)
(2 minutes)

 Resistance welding with copper electrodes is the standard way to
spot-weld steel; for high duty cycles they are water-cooled, but low
duty cycles are often just solid copper. You’d think this would totally
fail because copper melts at 1084.62° while steel typically melts
around 1500°, so the copper would melt long before the steel. In fact,
though, at room temperature, copper has an electrical resistivity of
about 16.8 nΩ m, while 1010 carbon steel is more like 143 nΩ m, and
copper’s thermal conductivity of 400 W/m/K is also greater than
carbon steels’ of around 30–100 W/m/K.

 So the same current density running through copper and steel
generates 8.5 times as much heat per unit volume in the copper, and
the copper can conduct it away from the point of generation 4–12
times as fast, so the temperature rise in the copper tends to be about
30–100 times less. These numbers change at higher temperatures but
I think the overall tendency remains the same. In EDM, even with
the ultra-high temperatures of the arcs, copper electrodes are
considered to be “free of wear”.

 Of course the heat equation tells us that the copper and steel in
contact immediately form a continuous temperature distribution, so
what you’re really doing is melting steel under the surface, while the
surface steel remains solid, chilled by the copper to under 1000°.

 It occurs to me that you could use this same approach for forming
the steel instead of welding pieces of it together: by locally melting it
with a pulse of current, it can be formed by pressing even a soft
copper ball into it. By doing this repeatedly while moving the copper
ball around to precise positions in three dimensions, you can achieve
arbitrarily complex surface geometry without the high side loads and
noise of a mill or lathe, and regardless of how hard the steel is. If it’s a
high-carbon steel, the forming process will inherently case-harden the
product, as each melt is quenched by the mass of the steel. With
proper planning of the toolpaths, especially the finishing toolpath, it
should be possible to keep heat-induced distortion of the workpiece
small by keeping the heating very localized.

Topics

• Contrivances (p. 1143) (45 notes)
• Manufacturing (p. 1151) (29 notes)
• Physics (p. 1157) (18 notes)
• Strength of materials (p. 1164) (13 notes)
• Machining (p. 1165) (13 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Self replication (p. 1204) (6 notes)

https://en.wikipedia.org/wiki/Copper
https://en.wikipedia.org/wiki/Steel#Material_properties
https://en.wikipedia.org/wiki/Steel#Material_properties
https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity#Resistivity_and_conductivity_of_various_materials
https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity#Resistivity_and_conductivity_of_various_materials
https://en.wikipedia.org/wiki/List_of_thermal_conductivities
https://en.wikipedia.org/wiki/List_of_thermal_conductivities

• Steel (p. 1222) (5 notes)
• Copper (p. 1234) (5 notes)
• Forming (p. 1295) (3 notes)

Notes on pricing of locally
available oscilloscopes
Kragen Javier Sitaker, 02021-04-16 (updated 02021-07-27)
(2 minutes)

 Scoping out oscilloscopes again.

02021-04-16

 The dollar is currently at AR$140.

 A Hantek 6022be USB scope goes for AR$13900 (US$99): 20
MHz, 8 bits, 48Msps, two channels, new, two probes, up to 5V, or
50V with the probes set to 10×. It’s fully supported in sigrok and
loads its firmware over USB. That’s a seller in Chacarita, and several
other sellers have similar prices.

 Several sellers sell the toy single-channel DSO138 200kHz for less,
like AR$8000 (US$50).

 Used analog oscilloscopes are the other option; a 20MHz
2-channel Hitachi V-212 in Rosario for AR$20k (but no shipping), a
20MHz 2-channel Protomax ??? missing its probes in Buenos Aires
for AR$13800, a 20MHz 2-channel Pintek PS-200 in Haedo for
AR$28000, a 20MHz 2-channel Beckman 9102 in Martínez for
AR$50k, a 20MHz single-channel GW GOS-3310 missing its probes
and maybe not working in Tres Lomas for AR$9000, an 8MHz
single-channel Monfrini missing its probes and maybe not working in
Lomas de Zamora for AR$8900, a 20MHz 2-channel Pintek PS-200
for AR$14500 in Santa Rosa, San Luis, and so on.

 None of the analog oscilloscopes are all three of ① complete and
working, ② possessed of two channels, and ③ cheaper than the
Hantek scope by more than a trivial amount. Most of them are
simultaneously more expensive and less capable. And there don’t
seem to be any USB scopes that are significantly cheaper.

 But I don’t know if it’s really worth spending US$100 on. Maybe I
should wait to see if something cheaper comes along.

Topics

• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Argentina (p. 1200) (7 notes)

https://articulo.mercadolibre.com.ar/MLA-882482509-osciloscopio-hantek-6022be-usb-2-canales-20mhz-_JM
https://sigrok.org/wiki/Hantek_6022BE
https://articulo.mercadolibre.com.ar/MLA-871812119-osciloscopio-dso138-dso-138-display-24-gabinete-acrilico-_JM
https://articulo.mercadolibre.com.ar/MLA-913824257-osciloscopio-hitachi-v-212-_JM
https://articulo.mercadolibre.com.ar/MLA-913824257-osciloscopio-hitachi-v-212-_JM
https://articulo.mercadolibre.com.ar/MLA-909975567-osciloscopio-analogico-protomax-20-mhz-_JM
https://articulo.mercadolibre.com.ar/MLA-909975567-osciloscopio-analogico-protomax-20-mhz-_JM
https://articulo.mercadolibre.com.ar/MLA-909400529-osciloscopio-pintek-ps-200-sin-detalle-una-semana-de-uso-_JM
https://articulo.mercadolibre.com.ar/MLA-911490316-osciloscopio-analogico-beckman-ind-9102-doble-base-dtiempo-_JM
https://articulo.mercadolibre.com.ar/MLA-901921275-osciloscopio-gw-usado-_JM
https://articulo.mercadolibre.com.ar/MLA-884987606-osciloscopio-monfrini-industria-argentina-_JM
https://articulo.mercadolibre.com.ar/MLA-884987606-osciloscopio-monfrini-industria-argentina-_JM
https://articulo.mercadolibre.com.ar/MLA-881106240-osciloscopio-analogico-pintek-_JM

Can you get JLCPCB to fabricate
a CPU for you affordably from
“basic” parts?
Kragen Javier Sitaker, 02021-04-17 (updated 02021-12-30)
(9 minutes)

 JiaLiChuang PCB will fab ten tiny prototype boards for you for
US$2. They also offer a service where they will stuff the board for
you with certain components, ones from LCSC’s “LCSC assembled”
list, which has about 30k components. I have a couple of questions
about this:

• How much does it cost?
• What are the parts most suitable for building a CPU?
• How big would such a CPU be?

 Electronoobs reports on his experience. He was paying €0.0035 and
€0.0097 for precision 0805 resistors, €0.0559 for large bright blue
LEDs, €0.0530 for his WS2811 LED drivers, etc., all of which were
“extended” parts; and €0.0031 for some 0805 180Ω 1% resistors,
€0.0670 for some SOT-23 P-MOSFETs (AO3401A), and €0.0155 for
some 0.1μF X7R 50V 0805 caps, which were selected from among
their 689 “basic” components that don’t require a US$3
per-component-type fee. However, I guess JLCPCB was paying him
to pay them. He was building 30 7-segment displays with 57 LEDs
on them, 80 components total, for about US$2.90 each (€79.30 or
US$85 for 30 PCBs is US$2.83⅓ each), controlled by some WS2811
8-SOICs. They were 2-layer boards with plated-through vias.

 He reports that the stuffing service only supports SMD, and only
on one side, and only for 2-layer and 4-layer green boards.
Apparently since then JLCPCB has added 6-layer and some other
colors of solder mask.

 Roughly estimating, 10,000 SOT23 transistors would be enough for
a CPU, which would be 100×100 transistors. You could maybe
bit-slice a CPU across multiple boards, since I think JLC has a
minimum of 5 or 10 boards per prototype order.

 There’s a third-party parametric search engine for the parts library,
which has a cached zip file of JSON listing the parts, which is 260
mebibytes.

So, what do the 689 “basic” parts include?

 Most of the parts are not in stock at any given time, a common
source of frustration among forum posters.

 Roughly half the “basic” parts are resistors. Some of these are very
small; the 0.34¢ Uniroyal 4D02WGJ0102TCE is an array of four 1kΩ
5% resistors in a 1 mm × 2 mm package, which I guess is twice the
size of an 0402. That brings the cost per resistor down to 0.085¢, plus
0.3¢ for soldering. 10kΩ, 4.7kΩ, 470Ω, and 33Ω are also available in
this form, or 4 in an 0603 (0.43¢ or maybe 0.38¢). Other

https://electronoobs.com/eng_circuitos_tut41.php
https://jlcpcb.com/smt-assembly
https://github.com/yaqwsx/jlcparts
https://yaqwsx.github.io/jlcparts/data/cache.zip

denominations included in small form factors include 4.7MΩ, 2.2MΩ,
1.5MΩ, 1.2MΩ, 1MΩ, 620kΩ, 300kΩ, 270kΩ, 100kΩ, 75kΩ, 49.9kΩ,
40.2kΩ, 24kΩ, 22kΩ, 8.2kΩ, 6.8kΩ, 6.2kΩ, 5.6kΩ, 5.1kΩ, 4.3kΩ,
3.9kΩ, 2.2kΩ, 1.2kΩ, 1kΩ, 750Ω, 680Ω, 360Ω, 330Ω, 300Ω, 240Ω,
120Ω, 100Ω, 75Ω, 56Ω, 33Ω, 22Ω, 10Ω, 2.2Ω, 1Ω, etc.; these are about
0.3¢ for (rare) 1206s (¼W!), 0.2¢ for 0805s, 0.1¢ for (rare) 0603s, or
0.05¢ for 0402s, and ±1% is typical tolerance. This means the discrete
0402s are actually cheaper than the resistors in the arrays (usually) but
take up twice as much space.

 Much of the remainder is MLCCs: roughly 1.3¢ for a 1206,
whether C0G, Y5V, or X7R, 0.4¢ for an 0603, or 0.1¢ for an 0402.
With MLCCs there’s a tradeoff between size, voltage, capacitance,
and precision.

 In logic and quasi-logic, we have the 555 timer (7.58¢); the
74HC244 octal tristate buffer (12.87¢); the 74HC14 hex inverting
Schmitt trigger (7.64¢); the 74HC04 hex inverter (9.11¢); the 8-bit
74HC164 serial-to-parallel (9.04¢) and 74HC165 parallel-to-serial
(10.1¢) shift registers, as well as the 8-bit (?) 74HC595
serial-to-parallel latched-output shift register (10.84¢); the 74HC08
quad AND gate (9.85¢); the 74HC138 3-to-8 decoder (9.15¢); the
8-channel analog mux/demuxers CD4051 (15.01¢), CD4052 (14.56¢),
and CD4053 (14.35¢); the 74HC573 tristate octal transparent latch
(22.14¢); the 74LVC4245 tristating bidi 3–5 volt octal level shifter
(32.46¢); and the 74HC245 tristating bidi octal buffer (18.13¢).

 I think the combination of a 74164 and a CD4051 gives you an
async 3-LUT for 24.05¢ plus 4.5¢ for assembly (14 74164 pins and 16
CD4051 pins), 28.55¢ total: you shift your LUT bits into the 74164
and feed them into the CD4051’s 8 inputs, then drive its
channel-select inputs from the logic signals you actually want to
compute on. If one of your logic signals is available in inverted form
as well, you can gang together two such combos (wiring the CD4051
outputs together and connecting the fourth logic input to INH on
one CD4051 and inverted to INH on the other) to get a 4-input
LUT.

 Even with a decoder, the 74244 would not work for this because it
only has two output enable pins, controlling four bits each; the 74573
only has one.

 There’s also the 7-darlington 16-pin ULN2003 (13.64¢ + 2.4¢
assembly = 16.04¢) and the 18-pin 8-darlington ULN2803 (50.32¢), so
the ULN2003 costs 2.29¢ per transistor as long as you don’t mind all
the emitters being tied together. Discrete transistors cost less, though:
a SOT-23-3 P-MOSFET like the Leshan Radio Company
LBSS84LT1G is 1.34¢ (+0.45¢ assembly), and the Changjiang
Electronics Tech SOT-23-3 2N7002 (a N-MOSFET, of course) is
1.23¢ (+0.45¢). Bipolar transistors are even cheaper — the SOT-89-3
PNP B772 from Changjiang is 5.38¢ (+0.45¢), but the SOT-23-3
Changjiang NPN S9013 is only 1.13¢ (+0.45¢) or possibly 0.929¢?, and
its complementary PNP S9012 is 1.16¢ or maybe 0.891¢, and their
PNP S9015 is only 0.98¢ (+0.45¢) or 0.909¢, and the CJ MMBT3904
NPN is 0.87¢ (+0.45¢) or 0.682¢.

 SOT-23 seems to be the smallest discrete transistor they have in
“basic”. SOT-89 is a bit larger, 4.5 mm × 4.1 mm.

 The ULN2003 is packaged in an SOIC-16, which is 10 mm ×
6 mm, which works out to 8.57 mm² per transistor, very nearly the
same as an SOT-23 per transistor.

 No connectors at all are included among “basic” parts.

 They do have LEDs among “basic” parts: 1.63¢ for yellow 0603s,
1.54¢ (or maybe 0.909¢?) for red 0805s, 1.82¢ for green, 1.1¢ for blue
0603s, 0.75¢ or 0.57¢ for blue 0805s, and 0.78¢ or 0.56¢ for white
0805s. This suggests a price of around US$20 per kilopixel if you’re
into that kind of thing.

 10ppm SMD 8MHz crystals are 22.78¢ or maybe 18.27¢ in quantity
1 in an “SMD-5032_2P” package.

 Power diodes cost 0.5¢, Schottkys 2.15¢ (or maybe 1.32¢), zeners
1.35¢ (or maybe 0.96¢) (5.6V and 3.3V only), fast recovery rectifiers
0.74¢ or maybe 0.6¢, 1N4148Ws 0.78¢ (or maybe 0.77¢), and 5.8V
TVSs 2.91¢ (or maybe 2.94¢).

CPU size estimation

 If we estimate a basic CPU as being 1000 gates, evenly split
between AND and NOT, that would be 84 74HC14s in and 125
74HC08s, all in SOIC-14s. An SOIC-14 is 6 mm × 8.6 mm, so these
chip packages alone would be 10784 mm², about 100 mm × 100 mm,
or 1078 mm² on each of 10 boards, 33 mm square. I think the parts
would cost US$8.82 for the 74HC14s, US$9.00 for the 74HC08s,
plus US$4.39 to solder the 2926 joints, for a total of US$22.21. In
practice you’d need about twice that much space, and of course you’d
have registers and things in there too.

 If we estimate a basic CPU as being 500 3-LUTs, that’s 500 74164s
(in SOIC-14) and 500 CD4051s (in SOIC-16), which would be
US$142.75. An SOIC-16 is 60 mm² so this is (51.6 + 60) × 500 =
55800 mm². If divided into 10 square boards, each would be 75 mm
square, or more realistically a bit bigger than that.

 If we estimate a basic CPU as being 10,000 transistors, each with
two resistors, each SOT-23 transistor is about 3 mm × 3 mm, and
each 0402 resistor is 1.0 mm × 0.5 mm, for a total of 10 mm² per
transistor-plus-resistors. This would give us a total of 100000 mm² or
10 100 mm × 100 mm boards. If the transistors are half 2N7002s
(1.23¢) and half LBSS84LT1Gs (1.34¢) and the resistors all cost 0.05¢,
then we have US$10 for 20,000 resistors, US$61.50 for 5000
2N7002s, US$67 for 5000 LBSS84LT1Gs, and US$105 for all the
SMD soldering, for a total of US$243.50.

 All of the above omits the costs of things like voltage regulation
and bypass capacitors, but I think those would probably be a minority;
also it omits the cost of the PCB fabrication itself.

Conclusions

 SSI random logic chips are probably the most suitable way to build
such a CPU, which would probably cost under US$50 through
JLCPCB’s service and be less than 150 mm square; if it’s 16 layers
thick, it should fit into a 40 mm cube. Some hand-soldering will be
needed to connect multiple boards together.

Topics

• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Digital fabrication (p. 1149) (31 notes)
• Manufacturing (p. 1151) (29 notes)
• Bootstrapping (p. 1171) (12 notes)
• Independence (p. 1215) (6 notes)
• JLCPCB (JiaLiChuang) (p. 1360) (2 notes)

Safe FORTH with the
FORTRAN memory model?
Kragen Javier Sitaker, 02021-04-21 (updated 02021-06-12)
(2 minutes)

 What if we use the Fortran memory model in Forth? With bounds
checking? No more free access to memory. Like, a segmented kind
of thing.

 Create a scalar variable x with value 3:

3 value x

 Set it to 4:

4 to x

 Create an array a containing the values 0, 1, 4, 9, 16:

create a 0 , 1 , 4 , 9 , 16 ,

 Load 9 from its position 3, with bounds checking:

a 3 @

 Store -4 in its position 2, overwriting 4:

-4 a 2 !

 Define a word “cons” that allocates two cells and stores values on
the stack in them:

: cons create , , ;

 Use it:

3 4 cons mycon

 Define a word “cdr” that loads the second field, and use it:

: cdr 1 @ ;
mycon cdr

 Define a different word “cons” that defines words that push the
two values on the stack when run:

: cons create , , does> dup 0 @ swap 1 @ ;

 Define a word that creates a one-dimensional array of cells of a
given size:

: array create cells allot ;

 Use it:

10 array xs 500 xs 3 ! xs 3 @ \ retrieves the 500

 For multi-dimensional arrays and for things like dynamically
allocating conses, we probably need pointer arithmetic. But we can
bounds-check the pointer arithmetic with fat pointers. That allows us
to say, for example:

0 value this
: 2darray create dup , * cells allot \ save Y-dimension
 does> to this this 0 @ * cells this + 1+ ;

 This lets us get a pointer to the Nth row of the 2darray, and we can
then use that row as a normal 1-D array, but with weaker
bounds-checking:

32 64 2darray tile 5 tile \ get pointer to row 5 of 32
100 @ \ will work even though the row is smaller than that

 Similarly, this allows us to allocate cons cells from an arena that we
can later garbage-collect. Address arithmetic within the arena is fine;
trying to index out of your arena will fail.

 You can also have allocate if you want to be able to create new
“segments” at run-time.

 One problem I’ve run into with the similar semantics in C is that
it’s impossible to write memmove.

Topics

• Programming (p. 1141) (49 notes)
• Safe programming languages (p. 1172) (11 notes)
• Programming languages (p. 1192) (8 notes)
• FORTH (p. 1231) (5 notes)
• Memory models (p. 1285) (3 notes)

Manually writing code in static
single assignment (SSA) form,
inspired by Kemeny’s DOPE, isn’t
worth it
Kragen Javier Sitaker, 02021-04-21 (updated 02021-06-12)
(3 minutes)

 Darius mentioned DOPE, Kemeny’s predecessor to BASIC, and it
occurred to me that you could simplify it further by unifying
destination variables with line labels.

 In DOPE each line of the program was similar to a line of
assembly, with implicit variable declarations and explicit line numbers
and inputs and outputs. So to calculate -b+√(b²-4ac) you might say:

10 * 4 a d # d := 4 * a
20 * d c d # d := c * d
30 * b b q # q := b * b
40 - q d d # d := q - d
50 sqr d d # d := √d
60 - d b d # d := b - d

 The line numbers permit gotos. If we require destination variables
to be unique, we could have just as much goto messiness with less
verbosity, and you could also shift the operand one position to the
right to improve readability slightly:

d: 4 * a # d := 4 * a
d2: d * c # d₂ := d * c
q: b * b
d3: q - d2
d4: d3 sqr
s: d4 - b

 Labels can be omitted for statements executed for side effects.
Conditionals and loops would require some equivalent of SSA φ
functions. DOPE used FORTRAN-style arithmetic IF (an opcode
named “C” with 4 operands), but we can avoid such abominations
with conditional jump or conditional skip; for absolute value, for
example:

pos: x > 0
 pos → r # jump to r if x is positive
xn: 0 - x # negate x into xn
r: x \/ xn # set r to either x or xn, whichever is most recent

 A different approach, though it doesn’t subsume the need for
jumps, is a conditional operator:

pos: x > 0

https://en.wikipedia.org/wiki/DOPE_(Dartmouth_Oversimplified_Programming_Experiment)

xn: 0 - x
r: pos ? x xn

 Here’s a dot-product routine for nonzero-length vectors without a
high-level FOR construct:

init: 0
i0: 0
i: i0 \/ i'
s: init \/ t
ai: a @ i
bi: b @ i
p: ai * bi
t: s + p
i': i + 1
cont: i < n
 cont → i

 Changing it to handle zero-length vectors makes it two lines
longer:

init: 0
i0: 0
i: i0 \/ i'
s: init \/ t
stop: i = n
 stop → end
ai: a @ i
bi: b @ i
p: ai * bi
t: s + p
i': i + 1
 → i
end: nop

 For writing to arrays, you’d probably need some kind of
side-effecting indexed-store operator, like a ! i x or something.

 However, all of this is pretty shitty compared to Forth — harder to
write and harder to read — and Forth is probably just as easy to
implement, if not to optimize. These versions are 2–10× smaller,
depending on how you count, and I think more readable, though still
worse than infix:

0 b - b b * 4 a * c * - sqrt +
x 0 < if 0 x - else x then
0 s ! n 0 do i a @ i b @ * s +! loop s @

Topics

• History (p. 1153) (24 notes)
• Assembly-language programming (p. 1175) (11 notes)

• Facepalm (p. 1199) (7 notes)
• FORTH (p. 1231) (5 notes)
• BASIC (p. 1303) (3 notes)

Diskstrings: Bernstein’s netstrings
for single-pass streaming output
Kragen Javier Sitaker, 02021-04-21 (updated 02021-07-27)
(4 minutes)

 Bernstein’s netstrings are a sort of TLV encoding with
arbitrary-precision L and without the T: foo is encoded as 3:foo, and
3:foo,3:bar, is encoded as 12:3:foo,3:bar,,. The intent is to make
protocols easy to parse reliably without making them non-textual.
(One assumes that he considered and rejected Fortran’s 12H3Hfoo.3Hbar..
.)

 Though they’re self-delimiting, they’re not fully self-describing;
you need some external schema information to distinguish a netstring
containing more netstrings from a netstring containing just a blob. So
you could, for example, precede each netstring with a type byte:
d12:s3:foo,s3:bar,, might represent JSON’s {"foo":"bar"}. Unlike JSON,
netstrings permit skipping over the contents in constant time, without
parsing them.

 However, because the length field is variable-length, and minimal
encoding is mandatory (leading zeroes are prohibited), the length of
the length field depends on the length of the content. Because the
content is after the length field, the offset at which the content begins
also depends on the content’s length. So, when outputting a netstring
sequentially, it is not possible to output any of the content before
knowing the length of the whole content. So a large netstring in
general cannot be emitted in a one-pass fashion.

 A higher-level protocol can of course provide a facility analogous
to HTTP’s “Content-Encoding: Chunked”, for example permitting
foo to be encoded as s3:foo,, s1:f,+2:oo,, etc. This has drawbacks,
though: it eliminates the ability to skip an item in constant time, it
adds back in the opportunities for bugs that netstrings were designed
to avoid, and without further restrictions it eliminates the bijective
nature of the netstrings encoding.

 In many contexts, some kind of out-of-band framing indicates the
end of data — for example, the file size in a Unix or MS-DOS
filesystem, framing bytes in SLIP or PPP packets, the Frame Check
Sequence in HDLC, or a fixed-length count field in a program’s
memory. In these contexts, we can place the length field at the end of
the representation instead of the beginning, encoding foo as, for
example, (foo)3 and (foo)3(bar)3 as ((foo)3(bar)3)12, or \t\tfoo\tbar\n3\n12.
This permits single-pass output of an arbitrarily large tree of these
strings, requiring memory proportional only to the tree depth, and
then constant-time navigation operations on the resulting serialization
as long as it is stored in random-access memory. However, unlike
bytestuffing or quoting approaches, it does not permit reliable partial
parsing of any truncated serialization. For example, (())2)3(()8)3)12 is
also valid, representing the 12-byte string ())2)3(()8)3, which is the
concatenation of the representation of the 3-byte string))2 and the
representation of the 3-byte string ()8. But its prefixes (())2)3(()8 and
(())2 are also valid.

https://cr.yp.to/proto/netstrings.txt

 Rather than “netstrings” we might call this representation
“diskstrings”.

 If we concatenate diskstrings with type bytes (prefixed or suffixed)
we can represent JSON-like data in a random-access-friendly
ASCII-clean way; for example, (37)2s might represent the 2-byte
binary string 37, while (37)2n represents the number 37₁₀,
((37)2s(37)2n)12a represents a sequence or array of them both (Python
[b"37": 37]), ((37)2s(37)2n)12d represents a dictionary mapping the first
to the second (Python {b"37": 37}), ? represents a nil value, t represents
Boolean true, and f represents Boolean false. If canonicalization or
rapid searching is important, as in bencode, we can require that
dictionary keys be lexicographically ordered (by their representations,
to permit comparisons between values of different types).

 Prefix type bytes might have more desirable lexicographical
ordering properties or be more human-readable: s(37)2, n(37)2,
a(s(37)2n(37)2)12. In that case punctuation type bytes would probably
improve readability further by breaking up the visual unity of “2n”:
,("(37)2+(37)2)12 or something.

 If compactness were more important than the extra
error-detection, the type bytes could be further merged with the
trailing delimiter, and the leading delimiter eliminated, thus 37H237#2@8.
But it’s hard to see when this would be a good tradeoff.

Topics

• Programming (p. 1141) (49 notes)
• File formats (p. 1233) (5 notes)

Phased-array imaging sonar from a
mesh network of self-localizing
sensor nodes
Kragen Javier Sitaker, 02021-04-27 (updated 02021-12-30)
(8 minutes)

 Suppose you have some devices that send out periodic ultrasound
signals to each other. If one sends a ping and another responds, the
two can measure the distance between them using the speed of sound.
If you have three, they can thus measure their pairwise distances and
thus angles, and if there are four or more, they can measure more or
less precise three-dimensional positions up to rotation and reflection.

 Multipath in this case should mostly just produce extra signals that
are delayed by more; it should usually be possible to distinguish the
shortest-path signal.

 The array of devices can then coordinate to function as a phased
array for sonar imaging.

The speed of sound

 In dry air at sea level, sound travels 343 m/s. Wikipedia says this is
20.05 \sqrt T m/s, so the temperature coefficient is about 0.6 m/s per
degree, ranging from 331.4 m/s at 0 degrees up to 354.8 m/s at 40
degrees:

>>> C
array([0, 1, 5, 10, 15, 20, 21, 30, 40])
>>> 20.05 * (273.15 + C)**.5
array([331.37136701, 331.97738684, 334.39048338, 337.38258383,
 340.34838089, 343.28855628, 343.8735747 , 349.09462596,
 354.80569735])

 This means that every 1-degree error in temperature estimation of
the air will give rise to a scale error of about 0.17%.

 There’s also an inverse-quadratic variation with the molar mass of
the air: dropping the molar mass of the air by 1% will increase the
speed of sound by 0.5%. Humidity affects this: higher humidity
means lighter molecules and thus faster sounds, although this is partly
canceled by the higher adiabatic index of the non-collinear triatomic
water molecules, so the variation is only about 1.5 m/s for 0% to 100%
relative humidity at STP. The temperature-induced error is probably
smaller.

Measurement precision

 A 40kHz wavepacket is hard to localize to better than about 25
microseconds, though probably with repetition and averaging we can
get down to around 2 microseconds. This is an error of about 0.7
mm. It would be feasible for one or more of the devices to include a
meter-long constricted pipe which generates an echo a meter away;

this measures the round-trip time of the sound over a known distance
of 2 meters. 0.7 mm over this distance would be an error of 0.035%,
plus whatever the error in the tube length is; this could then be used
to calibrate the scale factor of the overall mesh model, rather than
depending on temperature and humidity measurements. (It also
provides a combination temperature/humidity measurement, where
unknown humidity works out to about ±4.4° temperature
imprecision.)

 By using a syn-synack-ack triplet it’s possible to measure a single
round trip according to two clocks at nearly simultaneous,
overlapping times, which allows you to measure the relative speeds of
the two clocks as long as they drift over a period of time that is large
compared to the round-trip time.

 By using 2.4 GHz radio signals of known phase, it might be possible
to improve this, even in a system made of microcontrollers that are
too slow to respond in nanoseconds or even microseconds. One
microcontroller starts by transmitting a “pilot wave” that the other
locks a second-order PLL onto, driving the phase error to zero, so the
second microcontroller’s local oscillator is perfectly in phase with the
signal it receives.

 Then, the first microcontroller stops transmitting, and before the
phase has time to drift much, the second microcontroller patches the
still-oscillating LO through to an output amplifier hooked up to an
antenna.

 Now, the first microcontroller can receive this signal and measure
the phase difference from its own local oscillator, down to, say, 0.2
radians. This gives you the distance of the round trip (up to multiples
of the wavelength) precise to about 10 picoseconds, about 4
millimeters.

 A single such measurement has an ambiguity of multiples of about
125 mm. By repeating the measurement at a second frequency, you
can eliminate about 97% of the possible candidate distances; doing
two more measurements at two more frequencies should bring the
number of possibilities down to 1 if you know the distance is less than
about 40 km.

 This 4-mm precision for radio ranging is by itself worse than the
0.7-mm precision for the sonar approach, but it isn’t subject to the
0.17%/° thermal error and 1.5% humidity error of the sonar. By
combining the two, you should be able to get the best of both worlds.
Suppose you have two nodes about 64 meters apart. Through radio
ranging they know their distance to within 4 millimeters, an
uncertainty of 0.006%. This allows them to compute the speed of
sound between them to that 0.006% uncertainty, which allows them
to use sonar to measure the distance to other nodes 10 m away and 20
m away to that same 0.006% precision --- in the 10-meter case,
they’re limited to 0.7-mm precision, but in the 20-meter case, they
get 1.25-mm precision.

 This 0.006% precision for the speed of sound translates to
measuring the relative humidity to a precision of 0.4% if the
temperature is known, or measuring the temperature to a precision of
40 millikelvins if the humidity is known.

 (I’m handwaving a bit about things like the difference between

standard deviation, maximum error, and error interval size, because
these precision calculations aren’t that precise. Hopefully they’re
within a factor of 3 or so.)

Spirometry

 By breathing through the tube, or perhaps two parallel tubes with
check valves going in opposite directions, you can do spirometry. A
typical tidal volume of 500 ml in a 1 cm² tube at a normal breathing
rate of 15 breaths per minute amounts to an average exhalation breath
velocity of 1.25 m/s, with peaks up to perhaps 3 m/s. This results in a
quadratic change in the round-trip time. If outgoing sound travels at
346 m/s and returning sound travels at 340 m/s, then instead of
taking 2.9155 ms on the way out and 2.9155 ms on the way back, the
ping will take 2.8902 ms on the way out and 2.9412 ms on the way
back, pushing the total round trip time up from 5.8309 ms to 5.8313
ms. This 77 ppm change is easily within the precision of a quartz
crystal to measure, particularly since we’re only interested in cyclic
changes over less than a kilosecond.

 However, the one-way trip time changes by almost 9000 ppm, so if
you can put a sensor node at each end of your spirometry tube and
run wires between them, you get 100× more precise spirometry, and
an even bigger advantage at lower flow rates.

Phased-array sonar

 Having a bunch of nodes like this dispersed in a 3-D space allows
you to build a model of all of their locations relative to each other
with accuracy and precision of a few millimeters. This ad-hoc phased
array of microphones allows you to do passive sonar imaging of sound
sources and sound reflectors in the surrounding environment down to
a few millimeters as well; also, you can emit pings from the devices to
sonically “illuminate” the scene for active sonar.

Orientation sensing

 The simplest way to sense the 3-dimensional orientation of an
object with such a system is to mount three nodes on it. Polarization
of two or more antennas mounted on a node is another way.

Topics

• Contrivances (p. 1143) (45 notes)
• Physics (p. 1157) (18 notes)
• Sensors (p. 1191) (8 notes)
• Metrology (p. 1212) (6 notes)
• Cameras (p. 1301) (3 notes)
• Audio (p. 1304) (3 notes)
• Sonar
• Digital signal processing (DSP)

A boiler for submillisecond steam
pulses
Kragen Javier Sitaker, 02021-04-28 (updated 02021-12-30)
(10 minutes)

 Normally we think of steam engines as being fairly slow, needing
minutes to hours to get up a head of steam. But what if our heating
elements and the spaces between them are really thin? They could
have the fractal-heat-exchanger structure I described in Dercuano,
where a very large and very rumpled surface pierced with many thin,
short “capillaries” permits the transfer of a great deal of thermal
energy into water or another working fluid very quickly.

 Suppose you have 1-mm-diameter heating elements made of
copper pierced or separated with 1-mm-diameter water channels.
What’s the time constant of the relaxation of this thermal system
when the copper is much hotter than the water?

 Copper has a thermal conductivity of 401 W/m/K, liquid water of
0.5918 W/m/K, and steam around 0.01 W/m/K. My first thought is
that a crude approximation is that the water in the middle of the
passages is insulated from the heat from the copper by about 200
microns of water plus an insignificant amount of copper, which
would give you about 3kW/m^2/K. Each passage, if circular, has a
circumference of about 3 mm, so that’s 9 watts per millimeter of
passage per kelvin. A millimeter of passage has on the order of 1 mg
of water in it, and 9 watts would heat a milligram of 4.184 kJ/kg/K
water at about 2000 kelvins per second, so under these assumptions
the characteristic relaxation time is about half a millisecond.

 That is, if you have a temperature difference of 1000 K, you’ll have
9000 W per mm of passage, which will be heating the mg of water in
that mm by 2 megakelvins per second, so every microsecond the
water closes 1/500 of the remaining temperature gap.

 However, if you have Leidenfrost stuff going on, the water will
start to be insulated from the walls by a layer of steam, which will
slow the process down by a factor of 60 or so, up to timescales of 30
ms or so. On the other hand, if you have turbulent flow that
recirculates the mass flow of water or steam from the center of the
passage to the walls and back on submillisecond timescales, the process
will accelerate further. On the gripping hand, hot steam condensing
onto cold water also accelerates heat transfer, which is how nucleate
boiling transfers heat.

 So I think millimeter galleries being about a millisecond is probably
about right. Maybe in reality it’s a tenth of a millimeter or something
because it sure takes a lot more than 10 milliseconds for hot water
flowing through a 10-millimeter pipe to cool down to the
temperature around the pipe, but maybe that’s mostly because the
concrete around the pipe is less conductive than copper.

 Copper has some advantages for this kind of boiler thing, although
it’s not as strong as some other metals. It has great conductivity and
tends not to corrode until well above boiling.

https://en.wikipedia.org/wiki/List_of_thermal_conductivities

 PV = nRT, and the molar mass of water is like 18 grams. At one
atmosphere and 0° a mole should be 1 mol RT/P = 22.4 liters and
1/18 mol should be 1.25 liters. At 100° it’s 1.70 liters, so 1 cc of water
boils into 1.7 liters at that temperature, but it’s not doing any work at
that point, since it’s at 0 gauge pressure. At 250° at 1 atm it’s 2.38
liters.

 Suppose the steam is pushing a piston 10 cm in a cylinder of 20 mm
diameter, thus 314 mm². That’s 31.4 milliliters of steam volume. For
it to do 1000 J of work over that distance, it needs 10 kN, which
means averaging 31 MPa, 314 atmospheres. This would need to be
supercritical steam; water’s critical point is about 22 MPa at 650 K
(377°). At 250° its vapor pressure is only about 3 MPa, so it would
only do about 100 J of work, which is still pretty okay.

 At 250° at 3 MPa the ideal gas law gives us a volume of 80 ml for 1
g of water. PV/RT is about 390 mg, so if we have more water than
this, some of it will remain liquid. Say 500 mg.

 Heating 500 mg of water to 250° should cost about 0.5 g × 4.184
J/g/K × 230° = 480 J, though I guess the specific heat goes down a
little at higher temperature, and then boiling it (normally 44 kJ/mol)
only takes about 32 kJ/mol or 1.8 kJ/g, so about another 900 J, for a
total of about 1.4 kJ. This is not a very efficient steam engine, under
10%.

 If we want the 1.4 kJ to be lost in the sensible heat of some copper
as it drops from 300° to 250°, well, copper’s specific heat is 0.385
J/g/K (at room temperature anyway), so that’s about 73 g of copper.
This is an unreasonably large amount of copper to put in contact with
500 mg of water, so a better approach may be to maintain the
temperature of the copper at 300° (to keep it from oxidizing) by
running electricity through it as the water boils. Alternatively, we
could use a smaller amount of copper at a higher temperature and just
sacrifice it; copper boils at 2562°, and so we’d only need 1.6 g of
copper at that temperature to boil the water, though at that
temperature the specific heat might be significantly lower. And of
course the engine won’t work for many iterations.

 Dumping 1.4 kJ into the copper electrically during the millisecond
of boiling would require 1.4 MW. If we use 2000 V, above which we
start to encounter special problems, we need 700 A, requiring 2.86
ohms or less to avoid needing even higher voltages. If we dump this
in from a capacitor, the capacitor needs to have an ESR that’s not too
large compared to those 3 ohms.

 This is pretty challenging. AVX’s “BestCap” low-ESR supercaps
include, say, the BZ01CB153Z_B, which handles 12 volts, 15
millifarads, and 420 milliohms (at 1 kHz, which is a good speed for
this). This is 28 mm × 17 mm × 6 mm, more or less, and an energy
capacity of about 1.1 J. You’d need 1300 such caps to hold the 1400 J,
totaling 3.7 liters; a bit awkward.

 It gets worse, though. That’s a time constant of 6 milliseconds, so
in 1 ms you can only get about 15% of the energy out of it. Other
supercaps are similar. Aluminum electrolytics are faster but even
bulkier.

 No, resistance heating is not the way to go. The right way to
flash-boil the water is with a packed bed of little balls of something

inert, like quartz or aluminum oxide or porcelain. You can heat it to
the requisite temperature by blowing hot air over a Kanthal or
Nichrome filament and then over the packed bed, then pump in the
water once the packed bed is hot.

 Granite’s specific heat is 0.79 J/g/K, fused silica 0.703, crystalline
quartz sand 0.835. Alumina (thermal conductivity 30 W/m/K, still
far better than the water) is 0.96 J/g/K, I think, and doesn’t melt
until 2277°. At 1100° the 1400 kJ might need 1.3 grams. 1-mm balls
of fused silica might withstand the thermal shock better than the
stronger but more expansive aluminum oxide, though, even though
alumina conducts heat better: granite’s thermal conductivity is about
1.8-3.8 W/m/K, fused silica around 1.4 W/m/K, sapphire closer to
27. Embedding copper wires below the surface might help.

 Such oxides could perhaps also improve the efficiency and
compactness of the engine by withstanding higher temperatures
without corroding. If one gram of steam is at 600° instead of 250°,
then nRT/P at one atmosphere would be 4 liters instead of 2.38 liters;
at 3 MPa it’s 134 ml. If allowed to expand to only 31.4 ml, nRT/V
gives us 12.8 MPa; if this pressure were constant throughout this
expansion, because the steam is generated exactly as fast as it expands,
it does 400 J of work. If the pressure is higher at first, because steam
generation finishes earlier, it could do more.

 I haven’t calculated here the energy needed to heat the water and
then steam to this temperature, but the 1.4 kJ above was to heat half
this amount of water to 250° and then boil it off at that temperature,
so probably it’d be around 3 kJ.

 How do you power the resistance heater? Suppose you have four
18650s (weighing 250 g or so) and you use the 1800-mAh 15C types
sold for quadcopters. Each can provide nominally 27 A at 3.7 V,
which is 100 W. So all four together can provide 400 W, thus
providing these 3 kJ of heat over 7.5 seconds. So they could activate
this piston every few seconds.

Topics

• Materials (p. 1138) (59 notes)
• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Physics (p. 1157) (18 notes)
• Mechanical (p. 1159) (17 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Thermodynamics (p. 1219) (5 notes)
• Regenerators (p. 1334) (2 notes)

Three phase logic
Kragen Javier Sitaker, 02021-04-30 (updated 02021-07-27)
(9 minutes)

 I was thinking about building logic out of discrete transistors and
other such basic parts.

JLCPCB assembly pricing

 This is in part driven by JiaLiChuang’s PCB assembly service (see
Can you get JLCPCB to fabricate a CPU for you affordably from
“basic” parts? (p. 347)). They charge you I think 1.43¢ per PNP
transistor, 1.32¢ per NPN transistor, 1.68¢ per N-MOSFET, and 1.79¢
per P-MOSFET, including assembly and soldering, but only 0.35¢ per
0402 resistor or 0.50¢ per 0805 resistor. So a standard CMOS
two-input NAND built out of discrete power MOSFETs would be
6.94¢, while a standard RTL two-input NAND would be only 3.69¢,
and also use a lot less space.

 But can we do better? They only charge you 1.08¢ for a 1N4148W
(again, including assembly). The LGP-30 CPU used 113 vacuum
tubes and 1450 diodes; the tubes were set up as latches (“flip-flops”)
whose set and reset inputs were computed via diode logic. If the
vacuum tubes could be replaced by MOSFETs, assembling these parts
would cost US$17.56, of which US$1.90 would be the transistors.

The two-NPN RTL latch

 Consider the traditional two-NPN RTL latch. Both NPN
transistors have their emitters grounded, base resistors of 10kΩ to the
collector of the other transistor, and collector pullups of 1kΩ to Vcc.

$ 1 0.000005 0.8031194996067259 50 5 43 5e-11
t 160 240 80 240 0 1 0.5676806399704408 0.6401601810026045 100 default
t 224 240 304 240 0 1 -4.531171328470282 0.07247958718181605 100 default
g 304 256 304 272 0 0
g 80 256 80 272 0 0
r 160 240 304 192 0 10000
r 224 240 80 192 0 10000
w 80 192 80 224 0
w 304 192 304 224 0

https://tinyurl.com/yz8xzdjw

r 80 192 80 112 0 1000
r 304 192 304 112 0 1000
R 304 112 304 80 0 0 40 5 0 0 0.5
R 80 112 80 80 0 0 40 5 0 0 0.5
s 304 192 416 192 0 1 true
g 416 192 416 272 0 0
s -32 192 80 192 0 1 true
g -32 192 -32 272 0 0
368 80 192 128 160 0 0
368 304 192 256 160 0 0
o 16 64 0 4099 5 6.4 0 2 16 3
o 17 64 0 4099 5 6.4 0 2 17 3

 Like RTL in general, this sinks current fairly strongly, but sources
it fairly weakly. If β = 100 and Vcc = 5 V, the base current is (5 V -
600 mV) / 11kΩ = 400 μA, the transistor on the LOW side of the
latch can sink 40 mA while remaining in saturation, but only sinks
5 mA in normal operation. You can flip the latch over by
overwhelming it in either direction. By sourcing enough current into
its LOW side you can pull it up to HIGH and knock the other side
LOW, but this requires about 35 mA (a number which would push it
up to 35 V if not restrained by the limited compliance of a current
source). By contrast, sinking current from its HIGH side can flip it
over with only about 3.9 mA, pushing the collector down by 3.9 V
and leaving only 5 - 3.9 - .6 = 0.5 volts across the other transistor’s
base resistor, and thus only 50 μA of base current, at which point it
desaturates and its Vce starts to soar, flipping the latch back.

 This asymmetry is computationally promising: the latch can pull
its inputs/outputs down to 0.2 volts sinking 40 mA, but pulling the
other output down to 1.1 volts by sinking 3.9 mA is enough to flip the
latch’s state. There’s more than a diode drop’s worth of headroom in
there and a fanout of about 10, and of course the latch itself provides
amplification and inversion:

$ 1 0.000005 0.8031194996067259 50 5 43 5e-11
t 160 240 80 240 0 1 -4.531171328470283 0.07247958718181524 100 default
t 224 240 304 240 0 1 0.5676806399704415 0.6401601810026044 100 default
g 304 256 304 272 0 0
g 80 256 80 272 0 0
r 160 240 304 192 0 10000
r 224 240 80 192 0 10000
w 80 192 80 224 0
w 304 192 304 224 0
r 80 192 80 112 0 1000
r 304 192 304 112 0 1000
R 304 112 304 80 0 0 40 5 0 0 0.5
R 80 112 80 80 0 0 40 5 0 0 0.5
s 304 192 416 192 0 1 true
g 416 192 416 272 0 0
s -32 192 80 192 0 1 true
g -32 192 -32 272 0 0
368 80 192 128 160 0 0
368 304 192 256 160 0 0
368 800 192 752 160 0 0

https://tinyurl.com/yg4mujb6

368 576 192 624 160 0 0
g 464 192 464 272 0 0
s 464 192 576 192 0 1 true
g 912 192 912 272 0 0
s 800 192 912 192 0 1 true
R 576 112 576 80 0 0 40 5 0 0 0.5
R 800 112 800 80 0 0 40 5 0 0 0.5
r 800 192 800 112 0 1000
r 576 192 576 112 0 1000
w 800 192 800 224 0
w 576 192 576 224 0
r 720 240 576 192 0 10000
r 656 240 800 192 0 10000
g 576 256 576 272 0 0
g 800 256 800 272 0 0
t 720 240 800 240 0 1 -4.53117132847028 0.07247958718181717 100 default
t 656 240 576 240 0 1 0.56768063997044 0.6401601810026043 100 default
w 304 192 320 208 0
w 544 208 576 192 0
d 544 208 320 208 2 default
s 80 192 16 128 0 1 true
R 16 128 16 96 0 0 40 5 0 0 0.5
o 16 64 0 4099 5 6.4 0 2 16 3
o 17 64 0 4099 5 6.4 0 2 17 3
o 19 64 0 4099 5 6.4 0 2 19 3
o 18 64 0 4099 5 6.4 0 2 18 3

 So by coupling some such latches together with diodes you can
compute, among other things, arbitrary logic functions; by releasing a
/S signal at some given time you can see whether any of the various
sources connected through diodes to its /R input were low at the
time, thus computing their AND (in conventional positive logic) and
putting their NAND on the /S line at that time.

 (The same asymmetry also means you can get 3-stable and 4-stable
latches rather than just bistable ones.)

The three-phase thing

 Something I think is more interesting is what happens when you
power the latch from a clock signal instead of a constant positive
voltage rail. Say the clock signal controls some kind of high-side
switch like a PNP transistor; then when the switch is turned off both
inputs are basically just 10kΩ to ground (+0.6V at currents above the
most minimal) and 2kΩ to each other. The same switch can be shared
between probably multiple gates.

 If you divide your gates into three phases, you can activate each
phase during a different three sixths of a single complete clock cyle:

CK0 CK1 CK2
 *
 * *
 *
 * *
 *

https://is.gd/2latch

 * *

 In this way, gates in phase 1 can compute results from gates in phase
0, gates in phase 2 can compute results from gates in phase 1, and gates
in phase 0 can compute results from gates in phase 2.

 But how do you ensure a determinate outcome? As before you
could release a /R input at a given point during the clock cycle,
lengthening the full set of stages within the clock cycle from 6 to 9:

E0 R0 E1 R1 E2 R2
** **
** **
** ** **
** **
 ** **
 ** ** **
 ** **
 ** **
** ** **

Topics

• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Manufacturing (p. 1151) (29 notes)
• Falstad’s circuit simulator (p. 1198) (7 notes)
• Physical computation (p. 1208) (6 notes)
• Oscillators (p. 1283) (3 notes)
• JLCPCB (JiaLiChuang) (p. 1360) (2 notes)

 How fast do von Neumann
probes need to reproduce to
colonize space in our lifetimes?
 Kragen Javier Sitaker, 02021-05-04 (updated 02021-06-12)
(5 minutes)

 Suppose we want 16 earth-surfaces’ worth of human living space
by the year 02050, in orbit around the sun, using an exponentially
growing colony of 3-D printers that starts growing in 02029.

 How much material is this? The classic approach is rotating space
stations in order to provide artificial gravity of one gee. Suppose we
don’t have a stronger material for this than music wire, whose free
breaking length is 35 km (2700 MPa / (7.9 g/cc) / gravity). (We can
hope that carborundum fiber (110 km), basalt fiber (183 km),
monocrystalline iron whiskers (183 km), UHMWPE (378 km),
carbon fiber (399 km), nanotube rope (4700 km), etc., are options, but
maybe they won’t work out.) We can't use all the structure’s weight
in tensile supports against its own centrifugal force, since we also want
lakes and soil and stuff; suppose we use an “overhead factor” of 3.

 (Ugh, I’m tangling up in mental knots trying to figure this out.)

 So, uh, suppose our habitat soil and lakes etc. is about 10 meters
deep, so we need about 20 tonnes of soil per square meter, plus
another similar amount of our bargain-basement Victorian-era scrith,
let’s say 64 tonnes per square meter in total. 149 million km², the
Earth’s land surface, is then 9.5 × 10¹⁸ kg (9.5 zettagrams). 16 times
that is 153 zettagrams, round it up to 200 zettagrams (2 × 10²⁰ kg),
about 0.3% of the mass of the Moon, all of the mass of asteroid Pallas,
or 7% of the mass of the main asteroid belt.

 If the initial 3-D printer weighs 100 g in 02029, that’s a factor of 2
× 10²¹ growth in 21 years, which is fairly slow by the standards of
bacteria and fungi, about 0.64% per day, doubling every 108 days. A
human growing from 4 kg to 40 kg in 10 years is on average much
slower, of course, but during their first 3 months after birth they grow
perhaps from 3.5 kg to 6.5 kg, nearly the same speed.

 At this speed, we have the following growth curve:
 02029 02030 02031 02032 02033 02034 02035 02036
02037 02038 02039
 100 g 1 kg 11 kg 108 kg 1.1 t 11 t 120 t 1.2 Gg 12 Gg 128 Gg
 1.3 Tg
 Gerbil Rabbit Pug Dolphin Narwhal Three hippopotami
Blue whale General Sherman 2×Pando La Tour CN Golden
Gate Bridge
 02040 02041 02042 02043 02044 02045 02046 02047
02048 02049 02050
 13 Tg 138 Tg 1.4 Pg 15 Pg 150 Pg 1.6 Eg 16 Eg 160 Eg 1.7
Zg 17 Zg 180 Zg
 2×Great Pyramid the humans the fish ??? Lake Tahoe Lake
Ontario Lake Tanganyika Gulf of California Gulf of Mexico
Arctic Ocean, or asteroid Euphrosyne Indian Ocean, or asteroid

Pallas

 As Machiavelli points out, any innovation is likely to provoke
opposition from entrenched interests. Experience in 02020 has shown
that existing human institutions are not equipped to stop or respond
to exponential phenomena with doubling times of around a week, so
this is probably a better benchmark to shoot for, although of course in
this case the phenomenon is a liberatory phenomenon of human
empowerment rather than an epidemic of a virus.

 Having the seed on Earth is not equivalent to having it in orbit
around the Sun; launching things into orbit is expensive and tightly
surveilled. There are two likely ways to cross this bridge.

 The first is to get a single spore off Earth as early as possible and
grow it among the asteroids, which has the disadvantage that it
requires access to space launch very early on, before a significant
quantity of printers have been built. Worse, it’s not just space launch
but actually escape velocity, which means launching not just a printer
but a thruster that can provide the other half of the Δv. this would
benefit from having as small a printer as possible, especially absent
buy-in from the entrenched interests mentioned above; the Space
Surveillance Network publicly catalogs 17480 objects mostly 10cm
(1ℓ) or larger, so we’d have to assume objects down to 3cm are usually
detectable even today, especially if they’re in LEO doing things like
emitting plumes of plasma. So the target design size would probably
have to be about 10g or less: the future of a galaxy contained in the
mass of a coin.

 The other possibility is to grow the 3-D printer ecosystem here on
Earth until it can print abundant space launch resources, perhaps in
02040 or thereabouts. This avoids the risk of provoking opposition at
an earlier, more fragile stage of the project, but it means that
inevitably it will have to face opposition before making the leap off
Earth, and consequently is at serious risk of being strangled in the
cradle. It also limits the material and energy resources that will be
available to the project during that time to what is available on Earth.
However, everything done on Earth is enormously easier in some
ways — to fix when it breaks, especially — and there are many
resources on Earth that are hard to find elsewhere, such as
microprocessors.

 Topics

• Digital fabrication (p. 1149) (31 notes)
• Self replication (p. 1204) (6 notes)
• The future (p. 1220) (5 notes)
• Space (p. 1323) (2 notes)

List of random GUI ideas
Kragen Javier Sitaker, 02021-05-04 (updated 02021-07-27)
(6 minutes)

 Some random ideas to try in UIs:

• How about crosshairs instead of a mouse pointer? Boundaries
between gradients, maybe, rather than opaque black lines. Your
mouse pointer shouldn’t obscure anything, and being able to use it to
see the alignment between things is occasionally useful.
• Or maybe crosshairs with a vertical line that only goes down?
• what if the crosshairs are done with some kind of filtering that is
subtle enough that you barely notice it when it's not moving. like an
edge enhancement kind of filter say.
• circles are a common alternative for indicating a point in some other
contexts, like screencasting software and touch ui
• Maybe for 3-D rendering a bit of Lambertian surface bumpmapping
would help with adding the illusion of 3-D-ness? If the
bumpmapping is bandlimited well below the pixel frequency then
visual discontinuities will coincide with depth discontinuities. Perlin
noise maybe? Simplex noise? Blue noise? Ambient occlusion might
help add depth cues too.
• You can render a sphere as a circle very quickly, but it looks like a
disc. If you add an elliptical contour between light and dark, though,
you can add a lot of spherishness very quickly. Spheres have some
merits compared to triangles as 3-D primitives.
• Directly highlighting depth discontinuities with edge features (black
lines, white lines, Gabors, sincs, whatever) might also improve
rendering legibility.
• This NeRF stuff produces really impressive 3-D renderings. Can
some kind of sparse representation of a radiance field be useful for
user interfaces too?
• What does a UI for guiding heuristic A*-like search through an
exponentially large search space look like?
• when exploring a search space covering orders of magnitude
through manual dimensional search, maybe you can have buttons for
½×, 2×, 10×, .1×, etc., each accompanied by a preview of the
variables of interest there. iphone software often displays the
previews as the background of the buttons, also handy for things like
choosing color palettes.
• what would a ui scripting language look like. like, something for
easy exploration of different ui dynamics, like a simple game scripting
language for ui components. how can we minimize the time between
coming up with a ui idea and trying it out on yourself.
• low-ui-budget software i see screencasts of on youtube (optistruct,
notepad plus plus, abaqus, matlab, origamizer, etc.) is mostly a fairly
small number of ui components that look straight out of win95.
pulldown menus, dockable buttonbars, radio buttons with black dots
inside white circles, checkboxes, gray backgrounds everywhere,
accelerators, buttons, tab panels, a status line along the bottom of the
window, dropdowns, dialog boxes, text fields, scrollbars, occasionally
a slider or spinbutton. one thing that's surprisingly common is a tree

control in the left pane. i suspect that a lot of this is stuff that people
find very familiar by now and so departing from it should be done
with care. even tinkercad has a fair bit of this feeling even though it's
in the browser. catia definitely has its own look but it still has
win95-style comboboxes with the little downward-pointing isosceles
right triangle on a gray embossed button and shitty little toolbars
around the viewport and shitty opaque gray dialog boxes full of
forms.
• one way that a lot of this software is kind of nice is that they often
display what could be tooltips in the status bar.
• meshmixer is a little nicer looking by virtue of, among other things,
translucency, fewer larger buttons with labels, and more visual texture
and gradients. ambient occlusion just about shows up in its clicky gui.
prusaslicer also uses translucent overlays (with sparklines even) in the
corners of the main viewport to good effect, and does the smae kind
of thing with some dialog boxes. fusion 360 of course overlays its tree
view on the left side of the viewport with cracks but not much
translucency.
• iphone software often overlays text labels for buttons in a popup
menu over the main viewport, so the (often translucent) buttons on
the menu minimally obscure the main viewport. though this kind of
text overlaying thing wouldn't be very useful if what's in the main
viewport is actually text, in which case reflowing it to miss the menu
would be more useful.
• also typically instead of radio buttons iphone software has a slidy
switch thing with a circle that can slide to different positions in the
radio button group.
• a common fui trope is to put statusbarry things in folder-tab-like
things with 45° angles protruding onto the main viewport. also of
course in fui everything is transparent, blue, and circular.
• slight delays between animating multiple items are common in
modern chi prototypes and break up the appearance of solidity,
reinforcing the multiplicity of objects
• graying out the background when a pie menu or similar modal pops
up is really helpful for focusing attention
• integrating high-res touch surfaces into projected or
glasses-displayed ar environments can provide higher-resolution and
lower-latency interaction possibilities, though xiao's work has shown
that common touch surfaces can't really do any better than depth
cameras (5mm or so); you need better-quality touch
• just as sound is the lowest-latency interaction modality, vision is the
highest-bandwidth one, and that's underused at present, in part
because people aren't chameleons or octopodes. but they can draw.
for some reason gesture tracking via camera analysis is still janky and
jerky.

Topics

• Human-computer interaction (p. 1156) (22 notes)
• GUIs (p. 1216) (6 notes)

Thixotropic electrodeposition
Kragen Javier Sitaker, 02021-05-04 (updated 02021-12-31)
(2 minutes)

 There are various ways to deposit thixotropic pastes in a more or
less controlled way; you can squeeze them out of a nozzle,
RepRap-style, or form them with a spatula like cake icing, or stamp
them between dies, or imprint their surface with dies such as
Sumerian rollable clay seals, or cut them with blades. These
techniques have been central to human manufacturing since the
Neolithic advent of pottery; clay bodies have the desirable trait of
having an extremely small elastic deformation limit beyond which
they deform plastically, permitting fairly precise dimensional control
of the result, though this is often compromised by the grain size of
tempers in the clay body and by contraction on drying.

 Often dimensional precision is compromised by adhesion to the
tools being used, but a spritz of liquid mold release or coating of solid
powder is frequently sufficient to keep this source of error
manageable. In other cases, a layer of rapidly flowing gas or liquid, as
in an air bearing or air-hockey table, may eliminate this problem.

 It occurred to me today as I was watching peaks of dulce de leche
stubbornly fail to collapse that emulsions like mayonnaise and dulce de
leche are generally thixotropic, as are liquid-gas foams. I guess the
energy to deform droplets of the discontinuous phase out of sphericity
manifests as enough elasticity to render the overall metamaterial
thixotropic.

 [Later I read some papers about dulce de leche rheology, and that’s
not why it’s thixotropic. It's thixotropic because the sugars and
polysaccharides form a gel.]

 If the thixotropic paste is sufficiently dimensionally stable, this is
the easiest way to realize arbitrary high-precision three-dimensional
geometry. Often, though, the thixotropic substance itself doesn’t
have the desired properties; mayonnaise, for example, noticeably
lacks structural strength.

 [Note that the above uses the wrong definition of thixotropy: I
thought thixotropy was the phenomenon where viscosity increases
instantaneously at low shear rates, but actually thixotropy is where
viscosity increases progressively over time at low shear rates, which is
a phenomenon that does happen with dulce de leche.]

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• Clay (p. 1179) (10 notes)
• Ceramic (p. 1193) (8 notes)
• Thixotropy (p. 1317) (2 notes)

Cheap cutting jig
Kragen Javier Sitaker, 02021-05-06 (updated 02021-12-30) (1 minute)

 Freehand plasma or oxy-acetylene cutting frequently wanders
pretty far offcourse, but plasma cutting along a straightedge is a lot
more precise. If you want a complicated shape cut out of metal sheet,
rather than a straight line, you can cut out some kind of pattern
instead of using a straightedge. For plasma cutting you may be able to
use laser-cut MDF, but oxy probably needs something that can resist
the heat.

 Dried mud is quite possibly an adequate material for this, but if not,
surely fired-clay ceramic is. You can roll the wet clay body into a
plastic sheet, let it dry to leather-hardness to get most of the shrink
out, then cut out the desired form with a knife or perhaps a wire.
Alternatively, a sheet of gypsum can be either cut to shape or
deposited as paste.

 How do you know where to cut? You might be able to use a knife
plotter like those used to cut vinyl, but a probably-lower-budget
alternative is to project the shape to cut onto the surface with a laser,
then cut by hand. For small projects, you can print out a plan on a
laser or, better, inkjet printer, and glue it onto the pattern before
hand-cutting.

Topics

• Digital fabrication (p. 1149) (31 notes)
• Ghettobotics (p. 1169) (12 notes)
• Clay (p. 1179) (10 notes)
• Ceramic (p. 1193) (8 notes)
• 2-D cutting (p. 1201) (7 notes)

Differential filming
Kragen Javier Sitaker, 02021-05-07 (updated 02021-12-30) (1 minute)

 Illuminating an area with a somewhat bright flash produces more
brightness on objects closer to the flash. By arithmetically subtracting
a non-flash-illuminated frame from a flash-illuminated frame, you
can extrapolate what the scene would look like if the flash were the
only illumination. This could be useful to provide illumination for
actors, etc., that isn’t visible in a photograph or motion picture. This
probably isn’t useful for confidentiality, since brighter areas of the
subtracted background will have larger amounts of noise in the
subtraction result, but it could provide dramatic lighting effects, even
permitting after-the-fact lighting adjustment.

Topics

• Algorithms (p. 1163) (14 notes)
• Sensors (p. 1191) (8 notes)
• Cameras (p. 1301) (3 notes)

Planetary roller screw worm drive
Kragen Javier Sitaker, 02021-05-07 (updated 02021-12-30)
(4 minutes)

 One of the problems with worm drives is that they tend to be a
little inefficient, which limits their maximum power because they
heat up. This often prevents them from being backdriven. This is
due to the sliding friction between the worm and the worm wheel,
which becomes a bigger problem for larger reduction ratios because of
the smaller leads.

 Suppose you have an “inverse planetary roller screw”, a planetary
roller screw where a cage of screws revolves around a central screw
but is not free to move relative to the central screw, but instead of
driving longitudinal displacement of an outer “nut”, it drives the
rotation of a worm wheel. This eliminates sliding friction, and when
the planetary screws are of the opposite handedness from the sun
screw, also amounts to a differential gear drive, permitting very high
reduction ratios. This worm wheel can also have much lower
backlash than the traditional sliding-contact type.

 The screws can to some extent be “throated”, with the planets
being hourglass-shaped in order to maintain contact with the wheel
around some of its circumference instead of just a point, requiring the
sun to bulge out into a cocklebur shape to compensate. This variation
of radius reintroduces some sliding friction due to the varying radii,
but I think it will still be much less than an ordinary worm drive,
particularly if the worm is large compared to the worm wheel. The
worm wheel can likewise be throated to maintain contact with the
planets through more than a single point in their travel.

 To maintain large areas of continuous contact it is desirable for the
planets to be very small compared to their orbit size so that there can
be very many of them, but this eliminates the possibility of extreme
reduction ratios through the roller-screw mechanism itself. Extreme
throating of the worm wheel, with each of its teeth encompassing a
near-semicircle of the planets, might nevertheless allow such large
ratios.

 Another variant that would reduce the variability of contact from
five or six rollers is to split the cage into two or more sections, each of
which has separately rotating rollers, which are staggered. For
example, one half of the cage might have roller screws around the
center screw at 0°, 60°, 120°, 180°, 240°, and 300°, while the other
half has them at 30°, 90°, 150°, 210°, 270°, and 330°. These roller
screws would be half as long as they would be otherwise, so this
doesn’t increase the total amount of area of contact, but it does
potentially distribute it better, producing smaller distortions.

 The unbalanced forces on the shaft from pressing against the worm
wheel can be balanced on the shaft in different ways. An additional
identical worm wheel on the other side is one possibility; the shaft
can held in heavy bearings on one or both sides of the worm drive; or
the “top lands” or “threadform truncations” or “crests” on the tops of
the planetary screw threads can roll against a simple cylinder on the

opposite side from the worm wheel, or an hourglass shape if the
planets are throated.

 Similarly, the radial side load on the worm wheel can be balanced
by placing one or two other worms on the other side. If only
balancing the radial force is desired, these additional worms can either
be idlers or driven synchronously, but they can also serve as additional
driven elements, either for sensing or to provide mechanical power.

 Another way to use these differential roller screws is in place of a
micrometer screw, whether to measure the sizes or angles of things or
to actuate to precise distances or angles with very low backlash,
though of course you need to minimize thermal distortion and
possibly compensate for it before you get too far.

Topics

• Contrivances (p. 1143) (45 notes)
• Mechanical (p. 1159) (17 notes)
• Roller screws (p. 1275) (3 notes)
• Gears (p. 1365) (2 notes)

Fresnel mirror electropolishing
Kragen Javier Sitaker, 02021-05-08 (updated 02021-12-30)
(6 minutes)

 Suppose you want to reflect light of a given wavelength (say, 555
nm) coming from a given direction into given directions from all
points of a surface. It is sufficient to be able to determine the phase
delay at all points of the surface; the gradient of that phase delay with
respect to the u-v coordinates on the surface then determines the
output beam direction.

 If you can only control the phase delay up to some limit, then
occasionally you will have a discontinuity, like in a Fresnel lens. This
is minimally disruptive if the discontinuity jumps an integer number
of wavelengths, such as 1. So it’s sufficient to be able to control the
phase delay over a single cycle, for example by etching the surface
selectively to depths of up to half a wavelength, since a
half-wavelength-deep pit will induce a whole wavelength of phase
delay for normal light. Less depth is needed if the light is at an
oblique angle.

 277 nm is a pretty shallow etching depth, and the average depth is
only half of that, 139 nm. If you want to achieve it purely via
electropolishing, you’re removing 139 picoliters per square millimeter.
But if you can use a combination of electrodeposition and
electropolishing, the average amount of material moved is only half of
that, 69 nm or 69 pl/mm². If the material is copper, which weighs
8.89 g/cc, that’s 610 nanograms per square millimeter. Copper is
63.546 g/mol, so that’s 9.7 nanomol per square millimeter, which
works out to 5.8 × 1015 atoms per square millimeter added and
removed.

 Electropolishing copper involves removing two electrons per atom,
and electrodepositing it involves adding them, and the electron charge
is about 1.6 × 10-19 coulombs, so that’s about 1.9 millicoulombs per
square millimeter.

 So, if your feedback and control systems were up to the task, with
100 mA you could electroform/electropolish 54 mm² per second;
that’s probably about half a watt. For 22 A4 pages per minute, you’d
need about 43 amps, which is a lot better than a regular laser printer.

 If you were anodizing aluminum in water instead of
electropolishing copper, you’d need to do the whole 139 nm depth
since you can’t electrodeposit aluminum in water, and you’d need to
remove three electrons per atom instead of two. Aluminum is only
2.70 g/cc, while its atomic weight is only 26.9815384(3), so a mole of
aluminum is 10 cc to copper’s 7.14. So you actually need roughly the
same amount of current per volume of aluminum as you do for
copper.

 Actually though the anodization layer you’re depositing has a high
refractive index; according to a couple of different papers, ranging
from 2.1 at 2 volts or 10 mA/cm² down to 1.6 at 10 volts or 100
mA/cm². Either way the index gets even higher for blue light. This
means your wavelength is 1.6 to 2.5 times shorter than the vacuum

wavelength, so you actually need about the same amount of current
per area despite the inability to electrodeposit aluminum.

 (This variation in ior with applied current suggests that fabrication
of rugate filters in nanoporous aluminum oxide by applying a
time-varying current may be feasible.)

 Actually, it’s even better than that; the above is calculated
assuming the etched space is filled with this ior-1.8-or-whatever
coating, but in fact typically the anodized coating on aluminum is
twice as thick as the aluminum thus consumed. So each 10 nm of
aluminum you anodize into oxide produces 20 nm of oxide, which
the light will strike 10 nm earlier than for the untouched surface and
leave 10 nm later. So the total phase delay is, say, 1.8 × (20 nm + 20
nm) - 20 nm, which ends up being 52 nm of phase delay.

 At 30 mA/cm² our 2 mC/mm² or so would take a few seconds.
Like, 7 seconds. So this seems like an eminently feasible process to
carry out at a physical level; the only question is how to do the
process control, using viscosity, positional control, current pulses, and
perhaps optical feedback.

 Even a 10-micron-thick layer of aluminum foil would be more
than sufficient to electro-etch 80 nm deep into. You could imagine
doing 10 or 100 wavelengths or more of phase delay instead of just
one, thus allowing your mirror to function across a wide range of
wavelengths and reducing the number of discontinuities and their
associated stray-light losses. (Ordinary non-selective hard anodization
coatings on aluminum do already indeed reach 50 microns routinely
and 100 microns occasionally.) This will enable rapid computational
production of white-light holograms, diffraction gratings, imaging
mirrors, and solar concentrators.

 Despite the inevitable micro-cracks, the shapes of anodizing coating
thus thrust up from the aluminum surface may also be usable for
non-optical, mechanical purposes such as stamping, or as mechanically
mating surfaces that slide past one another.

 Anodizing titanium rather than aluminum offers the possibility of
stronger refraction and and thus thinner films and faster production,
as well as of course the direct use of the stronger iridescence that
comes from rutile’s higher ior.

 I think electropolishing of aluminum in chloride electrolytes such
as sodium chloride produces water-soluble aluminum chloride rather
than insoluble aluminum hydroxide, although some production of the
gel is also reported; one experimenter reports 3.6 mm per minute
drilling (60 microns/second) with 5-14% sodium chloride and a
0.1-0.4 mm interelectrode gap. By comparison, EMAG’s “PECM”
die-sinking ECM machines’ oscillating process gap typically goes
down below 50 microns; they imply it oscillates at 50 Hz and goes
higher than 750 microns to improve sludge clearance, flushing at
10-50 m/s.

Topics

• Digital fabrication (p. 1149) (31 notes)

https://youtu.be/x4m1RWWJElM
https://youtu.be/x4m1RWWJElM

• Electrolysis (p. 1158) (18 notes)
• Machining (p. 1165) (13 notes)
• Aluminum (p. 1180) (10 notes)
• ECM (p. 1186) (9 notes)
• Optics (p. 1209) (6 notes)
• Small things (p. 1223) (5 notes)
• Electropolishing (p. 1371) (2 notes)

Leaf hypertext
Kragen Javier Sitaker, 02021-05-08 (updated 02021-12-30)
(3 minutes)

 I’ve previously written a bit about a hypothetical new hypertext
medium displaying several “cards” or “scraps” at once. I think “leaf”
is maybe better terminology.

 The idea is that your memex consists of some collection of “leaves”
and dynamically lays out as many as will fit on the screen, something
like TiddlyWiki or Ward’s Simplest Federated Wiki; but the leaves
are a bit smaller, like a line of text rather than a paragraph. Each leaf
is identified by a globally unique leaf ID which can be used to link to
it, and those links may be activated explicitly (for example by
clicking) or implicitly in order to display some other leaf. Typically
these implicit links include previous and next links, which permit
reading through a linear document in a more or less straightforward
fashion by shifting the focus to earlier or later leaves --- if necessary
by clicking or tapping them, but usually just by centering them in the
display. (This implies that the potentially infinite graph of implicit
links cannot simply be fully traversed to decide what to display at any
given time.)

 In addition to this subatomic conception of hypertext, we have
parameters in the links, like #fragment identifiers on the WWW. The
rendering of a leaf for display is done by some arbitrary
Turing-complete code, contained in the leaf or linked from it, which
is supplied some arbitrary blob of parameters from the link that was
followed to display it. By interacting with the display (clicking on it,
typing characters into it, etc.) you can change these parameters under
the control of that code.

 In this way, it becomes straightforward to write a leaf that, for
example, contains data and buttons to plot the data in different ways
by invoking other leaves with the data as parameters, or that invokes
an “infobox template” leaf with some parameters in order to present
that data visually in a consistent way.

 I’d like to do some kind of infinite regress thing where the leaf
contents are themselves produced by invoking some piece of code
with some parameters, and the leaf ID likewise consists of the ID of
that piece of code and its parameters, so that ultimately we ground
ourselves in a single “primitive leaf” that provides some kind of
fundamental virtual machine. But I don’t quite see how to do that
yet.

 In the stuff you have on the screen you can thus have a mix of stuff
you wrote, stuff you’re taking notes on, and code.

Topics

• Human-computer interaction (p. 1156) (22 notes)
• Virtual machines (p. 1182) (9 notes)
• Higher order programming (p. 1196) (7 notes)

• GUIs (p. 1216) (6 notes)
• End user programming (p. 1217) (6 notes)
• Caching (p. 1266) (4 notes)
• Reproducibility (p. 1277) (3 notes)
• Hypertext (p. 1291) (3 notes)
• Wiki (p. 1311) (2 notes)
• Archival (p. 1389) (2 notes)

Weighing an eyelash on an
improvised Kibble balance
Kragen Javier Sitaker, 02021-05-08 (updated 02021-12-30)
(3 minutes)

 Watched a Nominal Semidestructor advertising video recently
about weighing an eyebrow hair with an analog meter movement.
Paul Groke built his scale as follows: he oriented the needle
horizontally, connected up an optointerruptor to an opamp that drove
the current through the meter movement so as to maintain the
optointerruptor half interupted, then dropped his eyelash on the end
of the needle. Then the current required to restore the zero position
gave a measurement of the weight. Result: 75 micrograms or
something. I guess he calibrated it previously.

 (The circuit is very simple: the opamp has a resistor from its output
to its inverting input, which is connected to the photodiode, and its
noninverting input is held at a fixed bias voltage. Then the output is
just connected to the meter movement, which is then connected to a
resistor to ground. So the current flowing through the resistor keeps
the inverting input equal to the bias voltage, and that current is just
the photocurrent, so the output is maintained at a voltage above the
bias voltage proportional to the photocurrent by the factor of the
resistance.)

 The nice thing about this kind of Kibble balance is that, except for
elastic deformation, the movement is in the same position when it’s
balanced as when it’s empty. The magnetic field can be wildly
nonuniform over the range of the meter’s movement, but you don’t
care because once you’re taking a reading you’re back at the same
position; all that’s changed is the strength of the magnetic field
(which is hopefully linear in the current) and the bending of the
balance beam.

 (This version of the ampere balance used to be called a “watt
balance” because the power needed to restore the position is what’s
proportional to the weight. Kibble proposed it in 01975, and after he
died in 02019 they renamed the instrument after him. The
full-fledged Kibble balance includes some other refinements and can
measure mass by reference to voltage, current, gravity, and speed.)

 It occurred to me that a simpler and higher-resolution version of
the instrument would use electrical contacts instead of an
optointerruptor, ideally gold-plated spherical ball bearings to ensure a
well-defined point of contact. Then you include a small ac or noise
component in the coil current in order to get intermittent contact and
thus a continuously varying feedback signal (“stochastic resonance”).
Such electrical contacts can detect movements of nanometers rather
than the microns you get from an optointerruptor. At this point
thermal deformation and creep of the balance apparatus become more
significant sources of error than the sensor.

Topics

• Contrivances (p. 1143) (45 notes)
• Ghettobotics (p. 1169) (12 notes)
• Bootstrapping (p. 1171) (12 notes)
• Precision (p. 1183) (9 notes)
• Metrology (p. 1212) (6 notes)
• Small things (p. 1223) (5 notes)
• Weighing (p. 1267) (3 notes)
• Stochastic resonance
• Kibble balances

Precisely measuring out
particulates with a trickler
Kragen Javier Sitaker, 02021-05-09 (updated 02021-12-30)
(17 minutes)

 One of the problems I ran into with flux-deposition particle-bed
3-D printing was depositing small consistent amounts of flux particles.
Fine particles clump and stick, which means dry particles don’t
deposit uniformly.

 I learned today of a device called a “trickler” used for depositing
small amounts of particulate (milligrams, not micrograms, at a rate of
a few milligrams per second). It’s a near-horizontal cylindrical tube
that can rotate around its axis with some particles in it. As it rotates,
the particles roll around in it, which helps break up clumps, and some
fall out the end of the tube; some versions have a screw thread on the
inside of the tube to push the particles along. There’s a constant feed
of new particles into the other end of the tube, achieved for example
by immersing it in a bin of particles and having one or more holes in
its side. If you stop rotating the tube, the particles stop falling out,
because of friction with the floor of the tube.

 It seems to me that this approach is likely to work well for solid
particle flux deposition, although the resolution may be a bit coarse.
If we’re shooting for 100-micron “pixels”, well, that’s about two
micrograms, and the idea is that only about 5% of the total particle
bed is flux, so 10 nanograms per “pixel”, and we’d like that 10 ng to
be about 10 particles to reduce the random variation. (Weighing or
filming the particulate bed during the operation may enable the
counting of individual flux particles.)

 1 ng is about 500 cubic microns; your particle diameter then needs
to be on the order of 10 microns, which is about four or five linear
orders of magnitude smaller than what the “tricklers” normally
manage. Such fine particles tend to clump pretty aggressively.

Liquids

 Of course, the standard solution to particulate-bed printing is to
deposit “binder” via jets of liquid “ink” using a standard inkjet printer
mechanism. I’d been thinking that this probably wasn’t a viable
option for flux deposition, because the fluxes usually aren’t
water-soluble, but now I think it’s possible in many cases to use
water-soluble forms of fluxes.

 For fluxing quartz, for example, the highly water-soluble
hydroxides, bicarbonates, acetates, or formates of sodium (soluble to
109, 9.6, 46.4, and 81.2 g/100ml of water at 20°) or potassium (112,
33.7, 256, and 337) would probably work; heating any of these will
eventually leave only the oxide. Soluble salts of calcium such as the
chloride (74.5), formate (16.6), acetate (34.7), or nitrate (121.2) may be
helpful in addition, as they further lower the melting point of the
quartz while reducing the water-solubility of the final product.

 Things that decompose into lead oxide might be superior to the

above for fluxing quartz. Lead nitrate (54.3) is suitable; its acetate
(44.3), formate (16), chlorate (144), and perchlorate (440) might be,
too.

 Boric acid is reasonably water-soluble (4.7 g/100ml) and liquefies at
only 170.9°, at which point it can dissolve or react with a fair number
of other things, most especially including quartz and other silicates.
The whole sequence is somewhat complex: at 170.9° it becomes
metaboric acid, which melts at 176° and converts to B2O3 at around
300°, which can crystallize into forms that melt at 450° or 510° but is
more commonly amorphous.

 Many other metals have highly soluble chlorates and perchlorates,
although potassium’s are only mildly soluble. These could be
especially useful in contexts where mixing with potassium salts is not
necessary, but oxidation is either harmless or desired. These
decompose to produce oxygen and chloride when heated above 400°.
This kind of phenomenon may be useful for providing heat for firing
the printed part.

 There are a number of highly water-soluble phosphate salts (TSP is
12.1 g/100ml, MSP is 59.9, DSP is 11.8, STPP 14.5, STMP 22, K3PO4
90, MKP (KH2PO4) 22.6, MAP 36, DAP a bit over 57.5, TAP 58)
which can contribute phosphate ions; in particular the ammonium
phosphates decompose to phosphoric acid and ammonia gas at
moderate temperatures around 200°. Phosphate ions can react with
polyvalent cations to form extremely stable materials like calcium
phosphate (apatite, brushite, whitlockite, bone, hilgenstockite),
aluminum phosphate (berlinite, augelite, variscite), and zinc
phosphate (hopeite, parahopeite, tarbuttite, and dental cement). So
you could imagine selectively stabilizing some calcium-bearing or
zinc-bearing material by squirting phosphate salts on it, heating them
to cause a reaction (which might bind particles together), then
removing the untreated particles.

 Alumina is attacked by hydrochloric acid to become aluminum
chloride, which is not only highly soluble in water but also sublimes
at 180°. Generalized chlorates (including perchlorates, chlorites, and
hypochlorites such as that of calcium) may be suitable donors of
chlorine for such a reaction, but even ordinary chlorides like those of
sodium or calcium might work at a high enough temperature.

Soluble fluxes for 3-D printing metal alloys

 For fluxing iron particles, carbohydrates like sugar would probably
work well; they can dehydrate, leaving only carbon, long before the
iron starts to absorb hydrogen, although oxidation of the iron with
the resulting water molecules may be a concern. Paraffins contain no
oxygen and aren’t water-soluble, but other solvents may work to
make paraffin inkjets, and they too will carbonize around 300°, long
before the iron takes up their hydrogen; but anything but
very-long-chain paraffins (polyethylene) will boil off pretty easily. So
perhaps something like linseed oil, which is largely a triglyceride
made of α-linolenic acid and linoleic acid, would work better, with
nonzero oxygen content but much lower thermal stability.
Turpentine is its traditional solvent.

 Among low-melting metal alloys, my attention is drawn by 5% tin

or aluminum added to zinc depressing its melting point from 419.53°
to 382°; 2.5% silver added to lead depressing its melting point from
327.46° to 304°; 9% zinc added to tin (KappAloy9) depressing its
melting point from 231.93° to 199°; 3% silver added to indium
depressing its melting point from 156.5985° to 143°; and 5.5% zinc,
4.5% indium, and 3.5% bismuth added to tin depressing its solidus
from 231.93° to 174°. Also, in general the tin-lead alloys have a
solidus of 183°, the melting point of the eutectic.

 Popular higher-melting metal alloys include brass, bronze,
aluminum bronze, and arsenical bronze. Zinc-copper brass doesn’t
really have a eutectic; its lowest-melting version is 100% zinc
(419.53°) and at low zinc content there’s a relatively slow drop of the
melting point from copper’s 1084.62°. The copper-tin system
(ordinary bronze) is broadly similar but somewhat luckier, with the
solidus depressing to about 900° with 10% tin (if I’m reading this
phase diagram right). Aluminum bronze has a real eutectic at 548.2°
and about 32% copper, with a fairly steep drop in aluminum’s solidus
from 660.32° down to that temperature with only about 6% copper,
as well as a eutectoid on the other side around 92% copper and about
1050°. So you could imagine using something near 6% copper as a
“sintering aid” for aluminum particles. The arsenic-copper system is
similar, with an apparent eutectic at 685° and 20.8% As, but already
depressing the solidus to that temperature at only 7.96% As. (Wait,
that doesn’t make sense, that’s higher than aluminum’s melting
point.)

 However, you probably can’t get tin or aluminum to alloy with
metal particles by adding water-soluble salts of tin or aluminum to it
and then heating the mix. If you heat salts like aluminum nitrate it’s
going to be hard to get the metal out of them; instead you’ll just get
the oxide. (I’m not sure what stannous chloride decomposes to, but I
imagine reducing it to tin is hard.) You can eventually reduce just
about any metal oxide by heating it enough with hydrogen or
ammonia, but that may complicate the situation further here. Such
metals could maybe be handled by including some magnesium
particles in the bed to steal their oxygens.

 Copper and silver salts are more promising here. Silver doesn’t
really mind being reduced at all, and even copper is only mildly
inerested in oxygen. In particular, if copper oxide has a chance to
react with aluminum, it does so violently. So you could imagine that
nitrates or acetates of copper could be inkjet-squirted into aluminum
particles (making, say, about 20% Cu(NO3)2), heated to decompose
them to oxide (say, about 8.4% CuO, which is 80% copper, so the mix
was 1.7% oxygen), then reacted with the aluminum to produce an
alloy (in the example case, 6.7% copper and about 3.6% sapphire, with
the remainder being aluminum.) Some chlorides (of copper, say)
might help to initiate the reaction with the aluminum by breaking
down the aluminum oxide layer.

 Lin, Han, and Li (2012) report that copper acetate dehydrates at
168° and decomposes to copper oxides at 302°. Naktiyok and Özer
(2019) report similar results, though they report that the
decomposition starts happening below that temperature.

 Silver should be even easier than copper to reduce; the

silver-aluminum eutectic, though, is something like 28% aluminum
and 566°, with 15% silver needed to drop aluminum’s solidus below
600°.

 (Although silicon is commonly used to reduce the melting points of
metals, I’ve omitted it entirely here on the theory that very few
metals are able to reduce silicates, which are the only water-soluble
silicon-bearers that occur to me.)

 Indium, bismuth, and gallium might also be effective at reducing
metals’ melting points, but often the resulting alloys don’t have
desirable properties. Also, bismuth doesn’t seem to have any
water-soluble salts, while indium and gallium salts are mostly soluble
but don’t decompose on heating.

 Ammonium dihydrogen arsenate (48.7 g/l) might be a useful
source of arsenic for fluxing copper.

 Alternative solvents might include carbon tetrachloride, ethanol,
carbon disulfide, chloroform, supercritical carbon dioxide,
dichloromethane, and ammonia. Carbon disulfide in particular can
dissolve sulfur, which forms low-melting sulfides with a huge
number of metals; these can then be reduced back to the metal by
roasting.

Other ways to get fine particles to not stick
together

 Flowability has been a major concern for pillmaking for a long
time, along with rules of thumb, like a 31-35° angle of repose and
under 16% compressibility for good flowability, and 56-65° angle of
repose and over 32% compressibility for very poor flowability.

 What can we do to get even flow, other than trickler-style rotating
tubes?

• Ultrasonic vibration, as I’ve suggested previously. Even
non-ultrasonic vibration is commonly used in pillmaking, with
accelerations in the tens of gees; above five or ten gees even relatively
stubborn particulates may flow, though if the angle of repose is higher
than 65° or the compressibility over 37% even that may not be
enough. Particulates with “good flowability” as described above do
not need vibration.
• Dilute them with coarser inert carrier particles, or grow coarser
particles on them. If each 10-micron-diameter particle of binder is
attached to a 200-micron-diameter round particle of ammonium
chloride, it will flow easily; mild heating of the particle bed will
“sublimate” the ammonium chloride. Many other possible
alternatives exist for ammonium chloride: sulfur, dry ice, paraffin
wax, other polyolefins, and so on. Other possible ways of removing
the inert carrier include reacting it with a gas to form another gas or
dissolving it in a solvent, which might permit the use of even table
salt. The crucial fact is just that the carrier particles must somehow be
made to disappear without disturbing the binder. (Solvent removal
ought to use low-surface-tension solvents.) In dry inhalers, lactose is
the typical carrier.
• Premix them with some other particles that they don’t stick to, but

which form part of the final result. In the case of fluxing an iron
particle bed with 3% carbon, you could mix each part of the carbon
particles with 3 parts of additional iron particles, so you’d have to add
12% instead of 3%. In systems where a little graphite inclusion would
be harmless, you might be able to mix inert graphite particles with the
flux particles to keep them flowing freely. Taken to the extreme, this
approach amounts to depositing the particle bed like a stack of sand
paintings, depositing different mixes in different parts of a layer to
form a layer of constant thickness.
• Coat the particle surfaces with something that sticks together
poorly; in the case of waterglass particles used to flux quartz, for
example, treating the surface with the sorts of silanes used to enhance
adhesion of glass fillers to nonpolar polymers might work well, so that
when the flux particles touch one another, they encounter only
alkane moieties and very little adhesion. Magnesium stearate is
commonly used for this purpose in pillmaking, simply by
dry-tumbling it with, for example, a microcrystalline cellulose
excipient, for a few minutes. It might work even better to coat some
flux particles with an alkane moiety like the tail of stearate and others
with a fluorocarbon moiety, so that they will tend to have even less
affinity for the foreign half of their neighbors. Other stearates
commonly used are that of calcium and of zinc.
• As an alternative to adding a low-surface-energy coating it may be
possible to transmute the surface into one in some cases. Fluorinating
the surface of a polymer or metal is one example, although this shades
into the sort of silane surface treatment suggested above, and
fluorinating some things will increase their surface energy rather than
decreasing it.
• Keeping them very dry will help in many cases. Materials
commonly added to table salt for this purpose include calcium silicate,
sodium aluminosilicate (a zeolite), sodium ferrocyanide, and
potassium ferrocyanide; other common anticaking food additives that
work by similar absorption include bentonite and tricalcium
phosphate.
• Presumably there’s a temperature effect, but whether being cold or
being hot is better, I don’t know.
• An ion emitter (or the foil used on those antistatic phonorecord
brushes) may help to reduce electrostatic forces that tend to cause
clumping. Maybe also using conductive particles or a conductive
coating.
• If you run the whole apparatus inside a centrifuge, so that the small
flux particles have proportionally more mass relative to their surface
forces, that should help.
• Generating the flux particles as smoke generates them out of contact
with one another, so they cannot stick to one another. The smoke can
be generated in a stream of plasma or gas, which is then sucked the gas
through the particulate bed so the flux can deposit. Or it can be
generated simply by heating and deposited on the particulate by
diffusion.
• Of course to the extent that the fine particles can be spherical rather
than irregular, acicular, or platy, they will tend to clump less. The
lower the aspect ratio, the better.
• And to the extent that the particles are nonuniform in size, I think
the smaller particles will provide more adhesion among the larger

ones.
• On the contrary, though, a small quantity of very fine irregular
particles should help to keep a much larger quantity of much larger
particles apart; “glidants” in pills commonly work in this way,
including silica gel, fumed silica, talc, magnesia, and even cornstarch.
Magnesia was what made Morton Salt pour when it rained.
• Porous and soft particles will adhere to one another at lower
pressures than hard ones.

 It occurs to me that if a particulate is gently tumbled in a closed
drum that has pinholes in its walls, clumps that fall down and impact
a pinhole may not fit through, but may be able to eject some particles
through the hole. If this can be observed it may be a solution to the
problem of depositing ten or fewer particles in a given position.

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• 3-D printing (p. 1160) (17 notes)
• Powder-bed 3-D printing processes (p. 1226) (5 notes)
• Particulates

A four-dimensional keyboard
matrix made of linear voltage
differential transformers (LVDTs)
to get 30 or 180 keys on five pins
Kragen Javier Sitaker, 02021-05-12 (updated 02021-12-30)
(4 minutes)

 Suppose you charlieplex blue LEDs on four pins ABCD of a
microcontroller. So you have 6 pairs of lines AB, AC, AD, BC, BD,
and CD. To light a forward LED you bring an earlier line high and a
later line low, and the voltage is below twice the threshold voltage, so
when you bring A high and C low, LED AC lights, but the LEDs AB
and BC (which you might suppose would supply a secondary current
path) do not exceed their threshold voltage and so do not light.

 You can get 12 LEDs on 4 pins by charlieplexing by adding reverse
LEDs BA, CA, DA, CB, DB, and DC.

 Consider LVDTs. At the most basic level, an LVDT creates or
destroys an inductive coupling between two coils depending on the
location of a sensed element, typically a magnetic core. The “L”
means that the coupling is linear in the position of the core, and the
“D” means that the way it is destroyed is by precisely balancing
couplings in two opposite directions.

 Between these 12 current paths there can exist 66 pairwise
inductive couplings; in series with the AB LED we can have
inductive elements that couple that current path to current paths BA,
AC, CA, AD, DA, etc. We can literally create these couplings by
putting 11 LVDT windings in series with each of the 12 LEDs. But
can we sense them independently?

 I think the answer is “not quite”. If we bring A high and B low,
then we cannot sense voltages on those pins (unless we are using weak
pullups and pulldowns like those in the STM32). But maybe if
flowing 20 mA from A to B causes C to be pulled up or down from
either A or B, we can detect this, and likewise for D. Moreover if the
induced voltage is at some point predictably less than the voltage
being applied across A and B, as it surely will be if the AB current
tends toward an asymptote, we can distinguish C being pulled up
from A (which will be limited by the input protection diodes to 3.9
volts or so) from C being pulled up from B (which might be, say, 1.5
volts). So that gives us 12 keys: two for each of our 12 current paths,
but each key appears twice, since the coupling between an AB
winding and an AD winding will appear both as an AD voltage on an
AB current pulse and an AB voltage on an AD current pulse. Maybe
you can increase this further with different polarities and coupling
strengths, although that would seem to eliminate the possibility of
using continuously varying coupling strengths to, in effect,
charlieplex analog sensors.

 If C is being pulled up or down from D, this may be more difficult

to distinguish if both C and D are floating. We might have 1.5 volts
of difference between the two, but does that mean C is at 0 and D is
at 1.5 volts, or that C is at 1.8 and D is at 3.3? This is maybe
complicated by diode blocking. But maybe twiddling weak pullups
and pulldowns at C and/or D can distinguish.

 Unlike just charlieplexing a switch in series with each LED, this
approach allows you to use the LEDs independently for output.

 With five pins the picture is rosier still: instead of 12 current paths
we have 20, and each of those 20 can be sensed on any of 3 other pins,
for a total of 30 keys. Or maybe each of those 20 current paths can be
usefully coupled to any of 18 others, and we can distinguish all of
them, in which case you have 180 keys.

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Human-computer interaction (p. 1156) (22 notes)
• Input devices (p. 1252) (4 notes)
• Keyboards (p. 1289) (3 notes)

Planetary screw potentiometer
Kragen Javier Sitaker, 02021-05-12 (updated 02021-12-30) (1 minute)

 You could integrate a multiturn potentiometer into a planetary
screw without occupying extra space, though plausibly this is a bad
idea. One or more of the planets is metallic or otherwise strongly
conductive, one of the threads on the continuous track (the nut for an
inverse planetary screw, the screw for the normal type) is resistive,
and the other linear element (the screw for an inverse planetary screw,
the nut for the normal type) is conductive. This gives you ratiometric
positional feedback and a potentiometer without sliding contact (and
thus plausibly longer life than potentiometers normally have, though I
suppose that if this is beneficial then there must be existing
ball-bearing or gear potentiometers).

 This might involve undesirable compromises to mechanical
properties. Probably the best material for the planets is either
conductive or non-conductive, so making one of them conductive
represents a compromise. And needing to make most of one of the
long linear elements insulating may be a drawback, since metals are
plausibly better materials for them.

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Mechanical (p. 1159) (17 notes)
• Input devices (p. 1252) (4 notes)
• Roller screws (p. 1275) (3 notes)

3-D printing in carbohydrates
Kragen Javier Sitaker, 02021-05-16 (updated 02021-12-30)
(10 minutes)

 I was thinking about simple sugar syrup, which has a glass
transition around room temperature or even below depending on the
water content (the eutectic point is 60% sucrose and -9.5°, but at that
concentration the glass transition is about -90°, rising above 0° around
85% sugar and increasing to 52° at 100% sugar), and which can either
be easily crystallizable or stable against crystallization depending on its
specific composition. (Using isomalt, which normally only crystallizes
in a hydrated form, rather than or in addition to sucrose is one
approach popular for keeping sugar art from crystallizing;
hydrolyzing some of the sucrose with lemon juice is another, and
mixing in some high-fructose corn syrup is a third.)

 The first 3-D printer I ever saw was the CandyFab 4000, which
melted sugar with hot air, which happens at 160° to 186° in a very
complex way, at which temperature the sugar caramelizes fairly
rapidly, enough to produce a noticeable discoloration in the few
seconds the CandyFab 4000 kept the sugar molten.

 But in sugar art, sugar glass is maintained in its rubbery, plastic state
at room temperature with the addition of water.

 Glasses drop dramatically in viscosity above their glass transition
temperatures. So, for example, syrup of 60 wt% sugar has 113
centipoise at 10°, but 56.7 cP at 20°, 34.0 cP at 30°, 21.3 cP at 40°,
14.1° at 50°, and 4.17 cP at 90°. Moho says that, at 76%, the viscosity
at 30° is 1200 cP, dropping to 510 cP at 40°, 250 cP at 50°, 130 cP at
60°, and 47 at 80°. He gives no viscosity at 20°, so presumably it's
effectively no longer a syrup for confectionery purposes.

 However, PLA extrusion normally happens at 3-20 kilopoise, i.e.,
300-2000 Pa s. This is in the range Moho gives for toffee fondant
mass (Table A1.34, p. 572): 17%-water Kis-Kis toffee mass is 2.48 Pa s
(2480 centipoise) at 60° and 0.26 Pa s at 100°, while 8%-water Kis-Kis
toffee is 487.8 Pa s at 70° and 43.0 Pa s at 90°. Wikipedia claims
toffee is more like 1% water, the "hard crack" stage (boiling at
146°-154°), so perhaps "toffee mass" is a different substance.

 Regardless of exactly how much water is needed to plasticize sugar
to an extrudable stage, it's clear that such a level does exist, and the
resulting substance hardens rapidly as it cools.

 Pok Yin Victor Leung investigated hard-crack candy printing in
02017 as a more accessible model for printing optics in soda-lime
glass, using sucrose and high-fructose corn syrup gravity-fed from a
reservoir maintained at 98° with a PID controller with only a manual
valve. He got beautiful results but reports that the shining golden
objects thus printed were deliquescent.

 A standard candy sealing process is "hard sugar panning", in which
hard sticky candy balls are rolled around in syrup which crystallizes on
the surface as it dries, sometimes in many layers added over weeks;
this is how "jawbreakers" and M&Ms are made. If the syrup used is a
non-crystallizing syrup like glucose syrup, the process becomes "soft

https://www.doitpoms.ac.uk/tlplib/biocrystal/water-sucrose.php
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Solution properties.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Solution properties.pdf
https://pubs.acs.org/doi/10.1021/jf3002526
https://pubs.acs.org/doi/10.1021/jf3002526
https://www.engineeringtoolbox.com/sugar-solutions-dynamic-viscosity-d_1895.html
https://www.engineeringtoolbox.com/sugar-solutions-dynamic-viscosity-d_1895.html
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781444320527.app1
https://core.ac.uk/download/pdf/163105304.pdf
https://core.ac.uk/download/pdf/163105304.pdf
https://en.wikipedia.org/wiki/Candy_making#Sugar_stages
https://en.wikipedia.org/wiki/Candy_making#Sugar_stages
https://dspace.mit.edu/bitstream/handle/1721.1/115176/Leung-Sugar 3D Printing_ Additive Manufac.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/115176/Leung-Sugar 3D Printing_ Additive Manufac.pdf?sequence=1&isAllowed=y

panning", and powdered sugar can harden it, producing jellybeans.
Such crystallization would be undesirable for Leung's purpose of 3-D
printing optics, but it would solve the deliquescence problem.

 There are a variety of other possible ways to harden such a surface
besides dusting it with sugar, though. Shellac, for example, is
commonly used in candymaking, with zein as an up-and-coming
alternative that also leaves the result edible. You could also include
sodium alginate in the syrup and harden the surface with calcium
ions, or vice versa, or include something that hardens instead of
deliquescing when it reacts with water from the air. Or perhaps you
could wash the surface with a desiccant such as ethanol or a strong
solution of muriate of lime.

 Of course, if edibility is not a requirement, there are lots of coatings
you can use. Possibilities for hardening systems to use as coatings
include molten wax, cyanoacrylate, plaster of paris, spray paint, resins
that polymerize on the object (such as silicone, epoxy, or acrylic),
polymers dissolved in a solvent (such as acrylics, ABS, or polystyrene,
dissolved for example in acetone or gasoline), lime concrete, OPC
concrete, geopolymer concrete, or soluble silicates such as that of
sodium (perhaps desolubilized by polyvalent cations added to the
syrup). In addition to using these hardening systems simply as
coatings, you can also just pour them over the printed sugar object,
embedding it in a block; once this block has solidified, you can
dissolve the sugar out of it with enough flowing water, ideally warm.

 Some of these coating systems include free water, which poses a
potential problem: at the interfacial layer between the hardening
system and the sugar object, water will be migrating out of the
hardening system and into the sugar, swelling and liquefying the
sugar, while diminishing the water available to the hardening system,
potentially impeding its hardening. This may be actually desirable,
acting as a sort of inbuilt mold release and avoiding the need to melt
or dissolve the sugar out of the hardening system's product; even if
not, the affected layer may be thin enough to be acceptable.

 In other cases, it may be possible for the hardening system to
actually extract the water it needs from the sugar object; for example,
methyl cyanoacrylate or the usual silyl acetates that comprise
acetoxy-cure silicones (largely methyl triacetoxysilane, I think) will
happily steal water in such a situation, and I think plaster of Paris can
too. So it may be possible for them to be applied as a bath or powder
coat and selectively harden on the surface of the printed object.

 A totally different approach is to postprocess the print to get rid of
the sugar, which is especially appealing if the sugar syrup is mostly
used as a plasticizing and sticky carrier for a solid particulate "filler"
that is the real printing payload, much like epoxy is used in JB Weld
or PLA is used in brass-filled PLA filament. (Such fillers, in addition
to adding numerous useful properties to the resulting object, may help
to make the melt thixotropic, easing the compromise between
flowing easily through the hotend nozzle and staying in place once
extruded.) The easiest way to remove the sugar is to heat the piece to
caramelize it, eventually producing carbon. If it's thin enough and it's
heated slowly enough, this can be done without provoking
water-vapor bubbles.

 (Are we blowing hot and cold with one breath here? Why won't
the syrup clog up the extruder if heating it caramelizes it? It might
not work, but my thought is that in the extruder it's potentially only
hot for a few seconds, during which time it is under a lot of shear
stress, while we can keep it at a lower temperature overnight or
longer with very little stress in order to caramelize it.)

 I haven't had much luck getting caramelized sugar to stick quartz
sand together, but it's well known how difficult it is to get it off steel
or stainless steel, often requiring lye.

 In addition to solid fillers, another possible additive to improve
thixotropy of water-plasticized sugars is emulsified oil, as in
mayonnaise, though of course in mayonnaise it's soluble protein that's
being plasticized by the water, not sugars. Oil droplets dispersed in an
emulsion can give rise to quasi-elastic behavior.

 I thought the same was true of dulce de leche, but that turns out to
be wrong. Dulce de leche is an emulsion, but it is also a much more
complex system containing proteins and polysaccharides which form a
gel structure; it's normally 6-8% fat and 31-34% water. This is not
enough fat to give the emulsion quasi-elastic behavior; instead it is
pseudoplastic like molten polymers made of long linear molecules that
form ephemeral entanglements, and also forms a gel.

 A different family of carbohydrate 3-D printing is suggested by
pasta and flubber, which are made out of starch granules and water;
the starch granules can be suspended in water by purely mechanical
means. Heating the water enables it to dissolve the starch granules, in
a process called starch gelatinization, and the resulting viscous solution
of amylose and amylopectin (boh polysaccharides) behaves much like
a sugar syrup.

 There are various ways to crosslink these starch molecules to reduce
their solubility, including using glow discharge plasma, phosphorus
oxychloride (POCl3), citric acid (with a sodium hypophosphite
catalyst), sodium trimetaphosphate, boric acid, formaldehyde, and
sucrose oxidized by periodate cleavage with sodium periodate to form
random aldehydes; and polyols like glycerol or sorbitol can be used to
plasticize the resulting insoluble plastic. Glyoxal, the simplest
dialdehyde (and essentially nontoxic, 3300 mg/kg) is consumed in
mass quantities to thus crosslink starches for sizing paper and textiles.
Glutaraldehyde (plantar wart remover, also used in tanning leather,
and as a biocide in fracking) seems like it should work.

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• 3-D printing (p. 1160) (17 notes)
• Sugar (p. 1271) (3 notes)
• Glutaraldehyde (p. 1294) (3 notes)
• Cross linking (p. 1377) (2 notes)

https://ri.conicet.gov.ar/handle/11336/103304

Clay-filled PLA filament for firing
to ceramic
Kragen Javier Sitaker, 02021-05-17 (updated 02021-12-30) (1 minute)

 Curiously, I just realized I haven’t heard of clay-filled PLA
filament before, but it turns out that it does exist; the clay increases
shear thinning, thermal stability, crystallinity, and rigidity, and at 40%
clay the print can be fired to ceramic, though melt viscosity increases.
Other mineral fillers currently on sale include zircon and sapphire,
both of which claim to be sinterable in the same way. I’d think that
including clay would also lower the cost and increase strength
without firing, but that doesn’t seem to be the case yet; in this
experiment the clay actually decreased tensile strength in most cases
by 5-20%.

 They bought a prefunctionalized clay whose preparation I don’t
understand at all:
For nanocomposites preparation, an organo-modified layered silicate (Cloisite 30B,
Southern ClayProducts Inc., Gonzales, TX, USA), modified by methyl, tallow,
bis-2-hydroxyethyl, and quaternary ammonium chloride, having a basal interlayer
spacing d001 = 18.5 Å, was used.

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• 3-D printing (p. 1160) (17 notes)
• Filled systems (p. 1161) (16 notes)
• Clay (p. 1179) (10 notes)
• Ceramic (p. 1193) (8 notes)
• Poly(lactic acid) (PLA) (p. 1281) (3 notes)

https://www.mdpi.com/1996-1944/11/10/1947/htm
https://shop.thevirtualfoundry.com/products/amaco-46-d-ceramic-clay-filamet?variant=29457842733139
https://shop.thevirtualfoundry.com/products/amaco-46-d-ceramic-clay-filamet?variant=29457842733139

Multicolor filament
Kragen Javier Sitaker, 02021-05-17 (updated 02021-12-30)
(5 minutes)

 A YouTuber named Sunshine has demonstrated an interesting
technique for varying colors in an FDM 3-D print with a single
hotend, using the technique with PLA vaguely similar to knitting
with variegated yarn. This also permits you to produce an unlimited
variety of colors within the color gamut spanned by two or more of
your filaments.

 He first prints out a spiral on his printer bed using two or more
filament colors in two or more printing passes; then he pops the spiral
off the bed and uses it as the filament for the final object. Unless you
do an additional filament-spiral-printing step, the resulting color
depends on the direction of movement during extrusion, providing a
color gradient.

 At this point Sunshine is only printing a filament that remains
constant in composition from beginning to end, varying only laterally,
but it’s obviously easy to vary the composition as the filament
progresses, producing temporal variation during the print.

 It occurs to me that your slicer knows within a few millimeters
how much filament will be extruded at various points in any given
print. So you could actually synchronize the color changes to
different parts of your print, so that instead of just the smooth color
gradients Sunshine demonstrates, you can perform arbitrary
multicolor printing in this way. (Marco Reps covers a multi-material
filament splicer called the Palette Plus from Mosaic Manufacturing
designed with this purpose, but concurrent with the actual 3-D print
itself, using periodic pauses to fix desynchronization.)

 Doing this straightforwardly will suffer from some imprecision in
the color change, as the hotend’s melt chamber gradually changes
from one color to another, and also due to unavoidable imprecision in
the precise timing. When this isn’t desired, you could insert G-code
into the print that moves the hotend off to the side of the print and
extrudes enough spaghetti to achieve the desired sharpness of color
change, wasting a little plastic, or you could choose to spend the
transition zone on inside perimeters or infill, where it won’t be visible.
Typically you would have to do this two or more times per layer.

 By synchronizing the color changes to the amount extruded on a
given circumference of the print, you can achieve smooth gradients
more intense than those Sunshine achieved.

 This filament-mixing process is not limited to color; you can use it
to achieve customized material properties, including gradient
properties. For example, you could use filament with a metal filler
such as brass in areas of the print that need extra strength, density,
conductivity, rigidity, or shininess, or mix varying amounts of
thermoplastic elastomers into your ABS or PETG to give
continuously varying rigidity, or mix acetal into ABS, PETG, or PLA
to improve mechanical properties, or print polycarbonate or nylon
fibers inside a print to improve impact resistance, or polypropylene to

https://youtu.be/6kbjZobJtbM
https://youtu.be/7UVG9WLHMBQ
https://youtu.be/7UVG9WLHMBQ

provide a chemically resistant surface, or include other fillers or
additives to make part of a print more malleable, translucent,
electrically permittive, phosphorescent, levorotary, permeable,
hygroscopic, flame-retardant, bacteriostatic, abrasive, hydrophobic,
abrasion-resistant, electronegative, ferromagnetic, high in refractive
index, ferrimagnetic, high in specific heat, diamagnetic, fragrant,
thermally expansive, flavorful, incompressible, acidic, porous or
otherwise permeable, optically dispersive, more dielectrically stable,
viscoelastic, high-melting, fluid when liquid, fluorescent, or possessed
of some other material property. (Or less so: while flame retardants
will make a filament more flame-retardant, oxidizer fillers will make
it less so.) And of course you can print water-soluble supports with
PVA. This kind of processing has thermal limits, since you can’t mix
filaments that need incompatible hotend temperatures (for example,
PLA and nylon), but those can be extended somewhat with additives
such as plasticizers or antioxidants.

 Even linear reinforcement like carbon fiber might survive this kind
of process.

 Some kinds of additives might be harder to come by already mixed
into printer filament, but can be coated onto the surface of a filament
once it’s printed. The geometry of the printed filament can be
adjusted to facilitate this kind of surface adhesion by having more
surface area. It can also be adjusted to improve the grip of the
extruder, which is especially important for filaments that are highly
brittle or have high melt viscosities.

 The filament in this process makes two trips through the hotend.
This will have some good effects, such as boiling out any water it has
absorbed while in storage during the first trip; but it also increases the
strength loss from hydrolysis. And of course it doubles the wear on
the hotend.

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• 3-D printing (p. 1160) (17 notes)
• Filled systems (p. 1161) (16 notes)
• Poly(vinyl alcohol) (PVA) (p. 1245) (4 notes)
• Poly(lactic acid) (PLA) (p. 1281) (3 notes)

Acicular low binder pastes
Kragen Javier Sitaker, 02021-05-19 (updated 02021-12-30) (1 minute)

 By using a platier or more acicular or fibrous granulated filler, you
can decrease the amount of binder needed, although at some point
you start having the stuff stick together without any binder at all.
Using smoother surfaces and larger particles also decreases the amount
of binder needed as well as the tendency to stick together without
binder.

 This has implications for powder-bed 3-D printing: a small
amount of binder can bind a large amount of powder into a
continuous solid network, although the bound powder may be porous
and weak.

 Promising fillers that come to mind include talc, mica, milled clays
such as kaolin, acicular hydroxyapatite, asbestos, jade, graphite,
mullite, rockwool, glass fiber, carbon fiber, acicular wollastonite
(CaSiO3, the calcium analogue of enstatite, which has a totally
different crystal structure), ceramic fiber, steel fiber, acicular
boehmite (AlOOH, which more typically crystallizes in a massive
habit),

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• 3-D printing (p. 1160) (17 notes)
• Filled systems (p. 1161) (16 notes)
• Anisotropic fillers (p. 1218) (6 notes)
• Powder-bed 3-D printing processes (p. 1226) (5 notes)

Cutting clay
Kragen Javier Sitaker, 02021-05-19 (updated 02021-12-30)
(10 minutes)

 I’ve been interested in sheet-cutting automated fabrication for a
while as a more practical alternative to 3-D printing for many
purposes, and I just realized that there may be a considerably more
accessible variant of this technique right under my nose.

 I was watching a video on “clean cutting with polymer clay cutters
”. The author gets 3-D-printed cookie cutters to cut a previously
rolled sheet of “clay” cleanly by first sticking it to something it will
stick to, like glass or ceramic, then scraping it off afterwards, a process
which may distort it. However, they also point out that putting
plastic wrap over the top of the “clay” will keep the cutter from
sticking to it, and then the wrap can be peeled away; and then the
bubbles trapped under the wrap produce little shallow hollows in the
surface.

 This wrap-layer approach provoked many thoughts about
automated fabrication. This probably works with pastes such as real
clay in its plastic state too, and maybe even better in its leather-hard
state, I’m not sure. In the leather-hard state adhesion is not much of a
problem.

 Also, it probably works with molten thermoplastics (rather than
plasticizer-impregnated “polymer clay” plastics, as shown in the
video). A thermoplastic of a higher melting point can serve as the
protective anti-adhesion wrap; for example, nylon oven bags for
baking chicken would work adequately for a lot of common plastics
that won’t dissolve them, or won’t dissolve them too fast.

 Also, it probably works with soda-lime glass, although I’m not sure
what the backing plate needs to be. The anti-adhesion layer in this
case might be aluminum foil, but probably a more effective approach
is to keep the surface of the glass cool, using forced air or water if
necessary.

 You could probably use a rolling wheel to “cut” the plastic sheet
through the wrap, giving you a vinyl-cutting-plotter-like capability.
Certainly you can repeatedly push something like the end of a butter
knife or tongue depressor through it. Making multiple trips along the
cutting contour at different heights should handle the cases where this
doesn’t work as well as you’d hope. So this is an appealing technique
for sheet-cutting automated fabrication.

 Also, you can push a thin rod into the material in many places, for
example a chopstick, to be able to cut arbitrary shapes without the
limits on sharp corners imposed by the wheel-cutter method.

 You can use this approach with a rolling ball (like the spherical
casters sometimes seen on office chairs) to form the clay or other
plastic material instead of cutting it. This requires good simulation of
the plastic deformation to plan the forming toolpath. The wrap will
reliably keep the plastic sheet or other plastic workpiece from
adhering to the forming tool.

 Of course it also works with stamps pre-designed to form the

https://youtu.be/ci7OY7H4I14

surface of the material rather than cutting all the way through like the
cookie cutters. (Some cookie cutters have such stamps already
incorporated.)

 For many sticky plastic materials, there exists some kind of powder
that can be dusted on the surface to prevent adhesion: talc, cornstarch
(suggested in the video, which claims it doesn’t prevent sticking in
this case), quartz flour, zirconia dust, whatever. In other cases a liquid
coating will prevent sticking and may also serve as a lubricant. In
some cases you would like this to be removed or fuse with the
workpiece after it has its shape, and with the appropriate choice of
powder this can be achieved by means such as washing, raising the
temperature further, solvent vapor smoothing, or liquid solvent
smoothing.

 Instead of a film, powder, or nonplasticized part of the underlying
plastic slab, fibers may be a feasible alternative: woven, felted, or
especially knitted. This is appealing because cloth can remain flexible
and resilient over a wider temperature range; even fairly minor plastic
or elastic deformations in the fiber material can permit gross
deformation of the cloth, protecting the “cutter” from adhesion as it
deeply penetrates the surface of the slab. It can also provide better
thermal insulation than powders or films. For example, knitted fiber
of silicon carbide or zirconia could permit pizza-cutter action on
glasses whose glass transition is at 1500° or more.

 Other kinds of filled systems are appealing, too. For example, filled
system consisting of 65 vol% stainless steel powder, 5% of a sintering
aid (such as borax, potassium bisulfate, boric acid, fluorspar, sulfur, or
brass), and 30% poly(lactic acid) or delrin would probably become
plastic at the usual temperatures for PLA (around 185°-230°) or
delrin, at which temperatures the sintering aids should be inactive.
Heating to a much higher temperature should activate the sintering
aid and bind the particles together, as well as burning off the organic
polymer; sufficient time at sintering temperature would result in a
porous sintered stainless steel body. However, such a the
low-temperature plastic matrix will likely burn off long before the
sintering aids can activate, so you might need a small amount of a
fourth ingredient to add enough green strength by holding the
particles in place; candidates include soluble silicates, clays (especially
highly plastic clays like bentonites), carbohydrates such as sugar, and
organic thermosets.

 Sulfur is a particularly interesting possible binder/matrix for such
filled systems because at one temperature it is very liquid, and then at
a higher temperature it polymerizes into a plastic form which can be
molded; if cooled quickly enough (traditionally by water quenching),
it then gradually hardens through further polymerization. Moreover,
it reacts with many possible metal fillers to form low-melting sulfides,
which can then be transmuted back to the original metals by further
heating to drive off the sulfur.

 Water-soluble carbohydrates such as sugars, isomalt,
carboxymethylcellulose (a popular choice for pottery), or gelatinized
starch have the potential advantage that, like real clay, you can
plasticize them with a small amount of water so that they flow readily
at easily accessible temperatures (0°-100°), but upon being maintained

warm for a longer time in contact with air, they will lose water and in
some cases can be induced to crystallize by such dehydration. (This is
the principle behind making fruit leather, for example.) Once their
water content is low enough to avoid forming bubbles that would
disturb the form, they can be caramelized at somewhat higher
temperatures (150°-250°) to form a heat-stable green body that will
carbonize, and the carbon will survive for a substantial period of time
even at metal-sintering temperatures, before finally debinding the
sintered piece through oxidation.

 Such carbon-containing binders/matrices or sintering aids may add
carbon to the final product, for example if the “filler” contains iron or
silicon.

 What should you use as the backing sheet? In the case of real clay
or similar preceramics which will be fired afterwards, one possibility is
to use sacrificial organic material or or sulfur, either of which which
will fully gasify during firing in an oxidizing atmosphere; this will
avoid distortion from the peeling process used in the video. Sulfur or
zinc will also simply boil away, even in a reducing atmosphere, but
the gases may cause problems for things other than the workpiece, for
example by forming metal sulfides.

 In the case of molten thermoplastics, experience with
RepRap-derived 3-D printers has shown that many thermoplastics
will adhere nicely to a sheet of warm glass, then delaminate from it
without breaking due to thermal contraction when allowed to cool.
This may work for soda-lime glass on sheet steel too, I’m not sure.
Another popular option which will also work here is to use an elastic
flexible backplate made from something like thin sheet steel; this can
also be peeled off the finished object once it is cool.

 Another alternative may be backing sheets that can be destroyed, or
whose workpiece-contacting surface can be destroyed, by a reagent
that will spare the workpiece itself. In semiconductor fabrication, for
example, hydrofluoric acid with a little nitric is routinely used to
remove exposed silicon dioxide without attacking the silicon,
aluminum, copper, and I think hafnia parts of the chip, while caustic
potash is routinely used to etch away silicon (along certain crystal
planes! and only if it doesn’t contain enough boron!) and aluminum
without affecting silicon dioxide or nitride; in jewelry, hot aqueous
alum solution is routinely used to dissolve broken steel taps from
workpieces made of other metals; and caustic soda will rapidly
dissolve aluminum and etch amorphous silica, and with sufficient heat
will dissolve crystalline silica, but leaves most metals untouched.

 The air bubbles in the video suggest another fascinating possibility:
forming the surface of a sheet of material by injecting pressurized gas
or liquid between it and some kind of substrate, whether flexible like
the wrap or rigid like the glass.

 And of course the overall process is not so far different from things
like hot-needle cutting of foam sheets, or hot-wire cutting.

Topics

• Digital fabrication (p. 1149) (31 notes)
• Filled systems (p. 1161) (16 notes)
• Clay (p. 1179) (10 notes)
• 2-D cutting (p. 1201) (7 notes)
• Self replication (p. 1204) (6 notes)
• Sugar (p. 1271) (3 notes)
• Forming (p. 1295) (3 notes)

Scaling laws
Kragen Javier Sitaker, 02021-05-19 (updated 02021-12-30)
(8 minutes)

 Galileo’s square-cube law explains that a cylinder over a given
dimension will collapse under its own weight:
From what has already been demonstrated, you can plainly see the impossibility of
increasing the size of structures to vast dimensions either in art or in nature;
likewise the impossibility of building ships, palaces, or temples of enormous size in
such a way that their oars, yards, beams, iron-bolts, and, in short, all their other
parts will hold together; nor can nature produce trees of extraordinary size because
the branches would break down under their own weight; so also it would be
impossible to build up the bony structures of men, horses, or other animals so as to
hold together and perform their normal functions if these animals were to be
increased enormously in height; for this increase in height can be accomplished
only by employing a material which is harder and stronger than usual, or by
enlarging the size of the bones, thus changing their shape until the form and
appearance of the animals suggest a monstrosity.

Different properties

 Suppose we scale some physical system up by some factor f, or
down if f < 1. Not only will some of its static properties change, as
Galileo points out above, but also some of its other behaviors will
speed up or slow down. But by how much?

Mass

 The mass and thus weight of a body will tend to scale as f³.

Tensile failure

 The tensile strength of a member will tend to scale as f², so by
smallifying an object we make it stronger (1/f times) relative to its
own weight. If we consider stress from accelerations, well, this means
we can accelerate it faster (1/f times) before it fails in the tensile
mode; relative to its own dimension, this is an advantage of a factor
of 1/f² in acceleration, but this only works out to a factor of 1/f in
frequency.

 That is, suppose we have some sort of machine in which a weight is
being jerked back and forth along a course inside the machine by a
rope, and if we run the machine too fast, the rope will break. We
smallify the machine, say by a factor of 1/f = 3. Now the weight is
being moved a 3 times shorter distance, it has 27 times less mass, and
the rope can withstand 9 times less tension. So the rope can withstand
27/9 = 3 times greater acceleration, but at a given jerking frequency,
3 times less acceleration would be needed to jerk the weight the same
distance. But the length of the weight’s course within the machine
has also diminished by a factor of 3, so at the same operational
frequency, the stress on the rope has actually diminished by a factor of
9.

 However, if we run the machine 3 times as fast, so that it jerks the
weight 3 times as often, the velocity increases by a factor of 3, but the
acceleration increases by a factor of 9. So, in the mode of tensile
failure, smallifying does increase the maximum frequency, but only

http://galileoandeinstein.physics.virginia.edu/tns_draft/tns_109to152.html

proportionally, not quadratically as one might hope.

Buckling failure

 XXX Euler columns

Shear failure

 XXX

Compressive failure

 XXX

Elastic beam bending

 The usual expression for rectangular beam bending stiffness is k =
Ebh³/4L³, where E is the material’s modulus, h is the thickness of the
beam along the direction of bending, L is its length, and b is its width
transverse to the direction of bending. If we scale the beam uniformly
up or down by some factor, then the changes in bh³ and L³ leave the
stiffness varying directly with the scale.

Resonant tines

 The general expression for the resonant angular frequency of a
sprung-mass system is ω = (k/m)½. So, if a mass is at the end of an
elastically bending beam, the mass m changes by a factor of f³ while
the stiffness k changes by a factor of f, so its resonant angular
frequency changes by a factor of 1/f.

 tensile-mass oscillation

 shear-mass oscillation

Dennard scaling

 XXX

Resistors

 A resistor’s resistance is ρL/bh, where ρ is the resistivity. If it
becomes f times longer and f times wider and deeper, it will thus
diminish in resistance by that same factor f. Smallifying resistors thus
makes them proportionally higher in resistance; we might say that
conductance, rather than resistance, is proportional to scale.

 A thin resistive film whose thickness does not change is well known
to have a characteristic “resistance per square”: its resistance over 1
mm × 1 mm is the same as its resistance over 1 cm × 1 cm or 1 μm × 1
μm.

 At ordinary (macroscopic) sizes it is easy to achieve an enormous
range of resistances at any scale, because in a given volume you can
either make a long, thin conductor or a short, thick one, and
moreover available resistive materials themselves cover several orders
of magnitude of resistivity; resistors from 0.001Ω to 1GΩ are all staple
articles of commerce, and resistors from 1Ω to 1MΩ are common, and
all of those common ones are available at any size from 0402 up to
many watts. At the lower end these resistances are limited by the
resistances of the commonly employed wires (i.e., not
superconductors, but materials like copper) and at the upper end by
the leakage currents of materials such as glass, polypropylene, and
Teflon, used as insulators.

 On chip, the story is different, because although low resistances are
easily accessible (just use a metal layer) high resistances such as 100kΩ
are not; they occupy an inordinate amount of space and are a
nuisance.

Capacitors

 A (planar) capacitor’s capacitance is εA/d, where ε is the
permittivity of the dielectric. This is proportional to f, so smallifying
capacitors thus makes them proportionally smaller in capacitance.

 Common macroscopic capacitors cover an even wider range than
resistors, from 10 pF to 50 F, or 10000 μF if we exclude
supercapacitors.

RC time constant

 Perhaps the most common way to mark time in an electrical circuit
is with an RC circuit with an exponential decay time constant τ = RC
; this is how RC filters and 555 timer circuits work, for example, and
how the internal oscillators in microcontrollers work. Since R is
inversely proportional to f while C is proportional to it, smallifying an
RC circuit will not change its frequency response.

 This is an astonishingly different result from Dennard scaling.

Inductors

 A cylindrical air-core coil has an inductance of roughly μN²A/L.
Scaling it by f increases A by f² and L by f, so inductance scales with f.
So inductance, like capacitance and conductance, is proportional to
scale.

LC frequency

 The resonant angular frequency of an LC circuit is ω = (LC)-½. So
multiplying both L and C by a factor f will multiply ω by 1/f; larger
LC circuits oscillate proportionally slower.

RL time constant

etc.
 electromagnetic relays

 electrostatic relays

 crystalline structure

 heat transfer characteristic time

 turbulent vs. laminar flow

 matter diffusion

 composite materials

 aerostats

 heat exchanger design

 mass transfer design

 liquid friction

Topics

• History (p. 1153) (24 notes)
• Physics (p. 1157) (18 notes)
• Small things (p. 1223) (5 notes)
• Galileo (p. 1367) (2 notes)

Selectively curing one-component
silicone by injecting water
Kragen Javier Sitaker, 02021-05-19 (updated 02021-12-30)
(2 minutes)

 I understand that the usual single-component RTV acetic-cure
silicone cures by hydrolyzing silyl acetates, consuming water in the
process, normally from the air (and producing acetic acid). That’s
why it doesn’t cure in the tube and why it takes a long time to cure if
you spread it too thick.

 It occurred to me that this affords a simple silicone 3-D printing
process: first, you make a big block of the liquid silicone in a cup, and
let it skin over the top. Then, you insert a hypodermic into the
silicone through the skin to the bottom of the cup, withdrawing the
needle while injecting water. By repeating this process you can create
water bubbles at different locations in the silicone mass, close enough
together that the silicone around them will join into a continuous
object when enough of it is cured by the water. Once the curing has
proceeded to this point, you must remove the uncured silicone;
Smooth-On recommends acetone or mineral spirits (naphtha or
Zippo fuel), while others report that ethanol works too, and some
even report success with ordinary aqueous detergents (Dow Corning
DS-1000 Aqueous Silicone Cleaner is such a formulation). GE
recommends mineral spirits or "rubbing alcohol" (probably 70%
isopropanol).

 This kind of needle injection of reagent into a gel or viscous liquid
is much more broadly applicable. You can thus inject dyes into jello,
for example (according to Soonish); or you can inject carbon dioxide
or calcium chloride into a green body of quartz sand lightly moistened
with soluble silicates, which will harden the silicates immediately; or
you can inject cold plasma (of air, for example) into a wide variety of
powders to activate the surfaces of powder particles to get them to
clump together;

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• 3-D printing (p. 1160) (17 notes)
• Silicone (p. 1329) (2 notes)

Clay wire cutter
Kragen Javier Sitaker, 02021-05-21 (updated 02021-12-30)
(2 minutes)

 A clay wire cutter makes curved cuts. If it enters a planar surface of
a clay block all at once while it is pulled taut, the cut starts out
straight, but if it enters incrementally, the cut can start out curved;
and of course the path on which it is pulled through the clay can also
be curved.

 The cut path has a tendency to have negative Gaussian curvature as
initial wiggles in the wire tend to straighten out; I am not sure if it
the cut surface through homogeneous clay is necessarily a minimal
surface.

 By moving the wire ends under automatic control it should be
possible to make preprogrammed cuts, and by using a mathematical
optimization algorithm such as Nelder-Mead or gradient descent on
either a simulation or experimental data, it should be possible to
design those preprogrammed cuts to produce a wide variety of
geometries in the clay. Simulation parameters can be tuned from
experimental results, for example using a mathematical optimization
algorithm such as gradient descent.

 The same thing is true of hot-wire foam cutters that contact the
foam, but the process has an additional degree of freedom, the speed.
The trajectory of the wire through clay is almost insensitive to speed
because the clay is almost purely plastic, but that is clearly not the case
for hot-wire cutters, which encounter not only viscous resistance but
time-varying viscous resistance as the molten plastic around them
heats up. By adjusting the wire current up and down, they can even
vary this variation with time.

 Feedback from the wire cutting process can come in different
forms: tension, electric resistance, and electric impedance
tomography through the clay, for example. This can improve the
quality of the control algorithm by improving the picture of what is
going on during the cut, permitting incremental replanning to
improve the quality of the final result.

Topics

• Digital fabrication (p. 1149) (31 notes)
• Clay (p. 1179) (10 notes)
• Foam (p. 1185) (9 notes)
• Control (cybernetics) (p. 1262) (4 notes)

Electroforming rivets
Kragen Javier Sitaker, 02021-05-22 (updated 02021-12-30)
(2 minutes)

 By discharging a capacitor through a coil you can
electromagnetically form metal nearby the coil; this is most famous in
the form of “quarter shrinkers”, but those exert so much force that
they destroy the coil. But electromagnetic forming can be applied in
less violent ways that permit the coil to be used repeatedly. I have
seen spectacular demonstrations by a scholar at OSU using pulses of
only 2kJ and 4kJ.

 Unlike with physical impacts, there’s no inherent limitation to how
fast this can happen; a hammer moving at 100 m/s can’t push
material ahead of it faster than 100 m/s (though bouncing off it can
accelerate hard material to faster than that). But electromagnetic
forming is limited only by the inductance and voltage of your coil;
submicrosecond rise times should be feasible, although I think there is
a tradeoff in which larger numbers of turns produce slower rise times
(at a given voltage) but higher peak forces. This might make it
possible to do cold welding, particularly of thin foils.

 One use I was thinking about just now is fastening hollow rivets,
similar to pop rivets, through holes. By inserting a coil into a metal
tube and discharging a pulse through it, the tube can be plastically
expanded, and its ends can be flared, forming a permanent
connection. If the center of the coil is either a ferrite (ferromagnetic
or ferrimagnetic) or some other kind of hard ceramic such as alumina
or zirconia, it will tend to protect the coil from being shrunk in the
process.

 The same coil may be used to preheat the rivet through
electromagnetic induction in order to soften it before the
electroforming operation; induction heating is feasible for any metal,
but is easier (can be done at lower frequencies) for ferromagnetic
metals.

 The same kinds of forming can be used to seal together pipes or
structural tubing end-to-end, as mentioned by the OSU scholar.

Topics

• Manufacturing (p. 1151) (29 notes)
• Welding (p. 1181) (9 notes)
• Forming (p. 1295) (3 notes)
• Electroforming (p. 1372) (2 notes)

Metal welding fuel
Kragen Javier Sitaker, 02021-05-23 (updated 02021-12-30)
(6 minutes)

 I was watching an Abom79 video about spray welding (or “thermal
flame spraying”) and it occurred to me that maybe you can dispense
with the welding gas entirely.

 Suppose you wanted a welding torch, or better a metal-cutting
torch, that used only iron filings as fuel, perhaps only for emergency
situations. Clearly burning iron or steel can produce a high enough
temperature to burn iron or steel in a stream of oxygen, and I think
compressed air would also work, though it isn’t the usual practice.
You could think of this as a thermic lance adapted to use powder.

 You could imagine that the “flame” it produced could be quite
small, perhaps submillimeter in size. Perhaps initial ignition could be
provided by an arc igniting iron filings suspended in air within an
ignition chamber; once ignition was achieved, though, it would
probably be more practical to continue combustion outside the torch
body in eddies of more-slowly-moving gas, just because otherwise the
rapid heat production seems certain to destroy the torch, even if the
combustion chamber is pyrolytic graphite. Maybe if you
water-cooled the walls or something.

 The enthalpy of formation of formation of Fe2O3 is -824.2
kJ/mol, and its molar mass is 159.687 g/mol, of which 2×55.845 =
111.690 g is the iron fuel. Unlike the case with things like propane,
the combustion product is liquid rather than gaseous (Fe2O3 melts at
only 1539° but doesn’t boil until 2664° according to PubChem;
magnetite, which melts at 2623°, oxidizes to hematite upon sufficient
roasting in air, while producing magnetite from hematite normally
requires reduction with hydrogen, though presumably a much higher
temperature would also work) so heat is not carried away nearly as
rapidly. At ordinary temperature its heat capacity is some 103.9
J/mol/K, which would give us an extrapolated “maximum flame
temperature” of some 7900 K above ambient (824200/103.9); NIST
gives 68.2 J/mol/K in liquid form, giving an even higher maximum
temperature.

 The stoichiometric mixture of iron filings and oxygen, which is
probably reasonably close to optimal for this sort of thing, would be
two moles of iron (111.690 g, as explained above) to three of atomic
oxygen (48 g) or 1.5 moles of oxygen molecules. Solid iron weighs
7.874 g/cc, so this is about 14 cc of iron; a room-temperature mole of
an ideal gas is about 24 liters at atmospheric pressure and 20°, so to
burn those 14 ml of iron we would need 36 STP liters of pure oxygen
or 172 of ordinary air. A more practical point of view is that 111.690
mg of iron would occupy 14 μl and need 172 ml of uncompressed air to
burn it, yielding 824 J.

 Probably about as far as you can compress air in practical terms is
some 4000 psi, in medieval units, or 28 MPa or 270 atm; if it were to
behave as an ideal gas at this concentration, then when cooled to room
temperature, it would have a density of some 0.33 g/cc; the 172 ml of

https://webbook.nist.gov/cgi/cbook.cgi?ID=C1345251&Type=JANAFL&Table=on#JANAFL
https://webbook.nist.gov/cgi/cbook.cgi?ID=C1345251&Type=JANAFL&Table=on#JANAFL

room-temperature air would then occupy some 640 μl.

 If this mixture of air and iron were burned and squirted out in a
100-micron-wide burning jet, I feel like it could get pretty hot, but
how hot would I guess depend on the equilibrium between the
process of combustion generating heat; the process of radiation,
which would cool the jet; and the processes of of expansion and
mixing with cooler air, which would tend to expand the jet out pretty
rapidly.

 The maximum energy density of this mixture would be 824 J per
(640 + 14)μl, which is about 1.3 MJ/l, similar to primary-battery
levels and almost up to rocket-propellant levels. It isn’t obvious to
me how to calculate the maximum power per unit area that could be
supplied by the hot jet; that would seem to depend on the achievable
gas velocity and combustion velocity of the jet.

 The 78% nitrogen mixed into air has a heat capacity of 29.124
J/mol/K, and there would be 5.6 moles of nitrogen per mole of
Fe2O3, adding a considerable extra “thermal mass” of 162 J/mol/K
to the 103.9 J/mol/K of solid Fe2O3 or 68.2 J/mol/K of liquid
Fe2O3. Still, 824200/(162+104) is still 3100 K, which is still way
hotter than we need.

 The relatively small amount of carbon mixed into steel will
produce carbon monoxide or dioxide; in the context of burning in
highly compressed 78%-nitrogen air this is not significant, but of
course it has a very visible effect when steel sparks are burning on
their own.

 You’d probably want to either sift the metal powder down into the
gas jet, as modern spray-welding torches do, or ensure that the gas
blowing up through the metal powder reservoir was traveling fast
enough to prevent flashbacks into the metal reservoir.

 Speaking of water cooling, some metals can burn in steam instead
of air; this has the potential advantage that steam is 89% oxygen
rather than 21% and wouldn’t need to be compressed the way air is.
However, I don’t think iron can burn this way. Water’s enthalpy of
formation is -285.83 kJ/mol, so stealing the three oxygen moles for a
mole of Fe2O3 would take 860 kJ. So I think the reaction would be
endothermic. Powdered aluminum or magnesium would work,
though, and although aluminum oxide would be a nuisance if you
were trying to weld or cut steel, magnesium oxide might be tolerable.

Topics

• Materials (p. 1138) (59 notes)
• Manufacturing (p. 1151) (29 notes)
• Physics (p. 1157) (18 notes)
• Aluminum (p. 1180) (10 notes)
• Welding (p. 1181) (9 notes)
• Magnesium (p. 1213) (6 notes)

Aluminum foil
Kragen Javier Sitaker, 02021-05-24 (updated 02021-09-11)
(14 minutes)

 Kitchen aluminum foil is a remarkable material.

 It’s typically 10 μm thick and 400 mm wide, giving it an aspect
ratio of 40000 in that dimension, and rolls are commonly some ten
meters in length, for an aspect ratio of 1 000 000; heavy-duty versions
can reach 30 μm or more. Despite their thinness, foils of 25 μm or
more are impermeable to oxygen, water, and light, though Wikipedia
claims thinner foils typically are plagued with pinholes. It comes in a
fully annealed state, so it rapidly work-hardens when bent, and
because of its thinness can be bent at deep submillimeter scales to
form metamaterials. It’s highly reflective (88% on the bright side
across the visible spectrum and even higher in the infrared) and
conductive, rivaling copper. It resists corrosion for years in weather,
it’s nontoxic, it’s light (2.71 g/cc), and it’s damn cheap, under 50¢/m².

 Robert Lang recommends laminating tissue paper on one or both
sides of kitchen aluminum foil to make “tissue foil”, which for years
he considered the ideal origami material. Notably, he uses a weak
sacrificial adhesive layer to hold the foil in place for the lamination
process.

 Typical alloys include especially 1100 and 1200, but also 8111, 8015,
and 8006, with 0.06%–0.6% silicon and 0.4%–1.6% iron, and in some
cases also some copper or manganese, under 0.5%. (1100 is sometimes
described as an “unalloyed aluminum grade” but it’s specified to
contain 0.05%–0.20% of copper, and it unavoidably has other
impurities.) Room-temperature yield strengths of these alloys range
from 30–170 MPa, with ultimate tensile strengths of 70–200 MPa,
and of course they all have a Young’s modulus around 70 GPa.
Because its crystal structure is fcc, it remains ductile down to absolute
zero, making it suitable for cryogenic applications; indeed, aluminum
becomes stronger at cryogenic temperatures. And, although it weakens
dramatically at higher temperatures, it doesn’t melt until almost 650°,
enabling it to be used at higher temperatures than organic materials.

 If oxidized (for example, with a soda solution, an arc, or
anodization) it yields amorphous sapphire, which if crystallized is an
excellent insulator, refractory, and abrasive. The oxidation process
produces a great deal of heat, making aluminum a
very-high-energy-density fuel, and, thanks to aluminum’s sternly
trivalent nature, electrical current; aluminum-foil fuel cells are
routinely produced by amateurs, though these typically oxidize the
aluminum to the chloride rather than the hydroxide or the oxide.

 50¢/m² is 50¢/kWp in a solar concentrator, or 0.05¢/Wp, which is
noticeably cheaper than photovoltaic cells, currently around 18¢/Wp,
360 times more expensive. (However, the foil number there is
sunlight watts; if you’re making a PV solar concentrator you have to
divide by the efficiency of the solar cells, say 21%, which gives you
0.24¢/Wp electric.) A large aluminum-foil assembly would be
vulnerable to significant deflections, but many small assemblies could

https://articulo.mercadolibre.com.ar/MLA-608033178-rollo-papel-aluminio-grueso-cocina-gastronomia-_JM
https://articulo.mercadolibre.com.ar/MLA-608033178-rollo-papel-aluminio-grueso-cocina-gastronomia-_JM
https://langorigami.com/article/paper/
https://www.freepatentsonline.com/6350532.html

be placed on a hard, stable surface such as a rock or an adobe wall.

 Alternatively, though, it might be possible to stiffen the foil by
making the equivalent of corrugated cardboard out of it, maybe using
aqueous boric acid (US$1.70/kg according to Potential local sources
and prices of refractory materials (p. 566)) or borax as the glue. The
surface tension of water is ample to hold aluminum foil in place until
the water dries.

 The feature that currently attracts my attention is the possibility of
work-hardening, which suggests the tempting possibility of making
tooling from aluminum foil that can itself work aluminum foil at
room temperature, a possibility reinforced by the immense aspect
ratios routinely available. As a simple example, you can in theory roll
some foil into a cone, and the point of this cone can dent, form a rib
in, or even pierce more of the same foil; but this is much easier in
practice if you first fold the foil 16 layers thick, form ribs converging
to a point on the last-formed fold, then roll the cone around that
point. If the last-formed fold is reversed, the aluminum along the
outer edge of the fold is the aluminum that was most strained
previously, having been bent double with as small a radius as possible,
and so will be the most work-hardened.

 I was able to use such a cone to pierce not just aluminum foil but
the skin of an apple. I folded it from some foil which, folded 256
layers thick, measured 2.57 mm in my shitty digital calipers; the
resulting square measured 27–29 mm on each side and weighed 1.8 g,
giving a density of only 0.8–1.0 g/cc, so it’s probably more than half
air, though it rapidly sinks in water, so probably the density is a little
higher than that.

 Using such a cone point to form ribs without piercing foil is tricky,
because it tends to have significant asperities around the tip, which
tend to tear the foil if it is unbacked. These can presumably be
removed, permitting traditional SPIF processing of raw foil by sliding
the point over the foil; a better alternative might be to produce a
sequence of dents in the foil, then add new dents between them,
eventually producing a continuous groove in a way analogous to how
chain drilling cuts through a block of metal. However, when the foil
“workpiece” is backed by something reasonably hard (I’ve used
corrugated cardboard and the above-mentioned packed 256-layer
aluminum-foil square) and I’m using one of the other point types
described below, tears are relatively uncommon; in this situation it
fairly reliably just forms ribs. (I need to test more rigorously to find
out if the point type, the backing, or both is relevant here.)

 Because such ribs are work-hardened, they are able to imprint their
shape on fully-annealed foil repeatedly. I wrote a short word in
cursive on foil using a layered aluminum-foil point (“single-point
incremental forming”), with the foil simply backed by the
somewhat-hard 256-layer square, then pressed this master against
another piece of foil in several places, pressing the two foils between
my fingers in each position (“stamping”). This resulted in very
readable copies of the word in several locations, although I’m guessing
there was substantial springback, so repeating this sort of stamping
through multiple generations would make the stamping shallower at
each generation.

 I’ve tried smoking and annealing this foil with candle flames and
butane lighter flames, but so far I’ve only managed to melt it (in
under a second, usually) without ever smoking it. Maybe if I put
water in it I could get it to smoke up so I could tell when it was on
the point of overheating, but probably a different method of
temperature control would be more practical to anneal such a thin
material, such as a temperature-controlled heat gun.

 A more reproducible point construction with a sharper,
lower-volume point was able to pierce the foil and apple even more
easily. I folded the foil three times to get 8 layers with a right-angle
corner; bisected the corner twice to get a 22½° angle; formed a rib
bisecting that angle with thumbnail pressure; then opened the final
fold to about 30° so that the two sides of the point would stiffen one
another.

 By laying the foil into a form with a 90° valley in it and dragging
such a point over it, I was able to get a bend into the foil. When there
were ribs running perpendicular to the bend, this required multiple
passes in one case; a second attempt resulted in neatly cutting through
the foil at the intended bend location.

 Another way to look at the 40 000:1 aspect ratio is to consider
making a tight cylindrical roll from a strip of the foil, 400 mm long
and, say, 10 mm wide, comprising 40 mm³, a cylinder whose ends are
4 mm³. The cylinder thus has radius 1.13 mm and diameter 2.26 mm,
so a section through the center of it will go through 226 10-μm layers
of foil. That is, instead of being 40 000 as you’d expect, it’s about
√(40000) · 4/π.

 The significance of ribs for folding is not that the ribs themselves
become more flexible — the material in the rib is work-hardened and
thus less flexible in plastic deformation, though its elastic properties
remain unchanged — but that they prevent curvature of the material
around them in any other direction, so if it’s going to bend, the bend
will be parallel to the ribs.

 By making many parallel slits in the foil (with a steel box-cutter
blade, backing the foil with cardboard), I was able to make expanded
sheet metal, expanding a bit of foil by more than a factor of 2.

 I was also able to fold a rather ugly origami crane by hand from the
foil, about 700 mg and 70 mm wingspan.

 This assemblage of techniques seems promising for matter compiler
bootstrapping, although it’s clearly just a beginning. Many of the
problematic aspects of kitchen aluminum foil result from trying to
work with it at the 10-mm scale rather than the 10-μm scale.
Wrinkles, rips, and so on are going to happen unintentionally when
trying to manipulate 10-μm foil with 10-mm human fingers.

 (Also, the natural frequencies of such macroscopic objects made by
folding such foil rarely exceed 100 Hz. The wing of the foil crane
resonates at around 100 Hz.)

 As a test of alternatives, I also folded an origami crane from a
square cut from an aluminum Monster can, which is normally
expected to be about 100 μm thick. The square was about 125 mm on
a side, and the crane weighs about 3.8 g. One layer of the square
measured 0.12 mm; two layers 0.33 mm; three layers 0.38 mm; and

four layers 0.52 mm. We can conclude from this that (a) my caliper
technique is shitty, (b) the can (including paint) is about 120 μm thick,
and (c) the actual aluminum part of the can is more like 90 μm thick
(3.8 g / 125 mm / 125 mm / 2.71 (g/cc)).

 It’s a fucking miracle that I didn’t cut myself on the damn crane. It
was all knife edges and burrs, and every time I folded the damn thing
it cracked and ripped more, exposing new cutting edges.
Aluminum-can bodies are typically aluminum 3004, hardened with
manganese and magnesium, and work-hardened from the
deep-drawing process rather than annealed, so it’s not a perfect
analogy, but it seems at least suggestive.

 Aluminum flashing for roofing is 0.024 inches, or in modern units,
610 μm, but I think it’s annealed; aluminum is sold as sheet metal
down to 0.004 inches, 100 μm in modern units.

 If we figure that the foil can meaningfully change direction every
20 μm, then we might think of an aluminum-foil machine as being
made of “moving parts” on the order of 1000 μm² (50 μm × 20 μm),
1000 “parts” per square millimeter of foil; a roll of kitchen aluminum
foil is enough to fabricate some 4 billion “parts”. A bootstrapping
compiler might require 100 000 parts and thus a square centimeter of
aluminum foil, cut and folded around into a shape a couple of
millimeters in diameter. If it were doing only one thing at a time, and
needed 10 seconds to construct/assemble each moving part, it would
take about 12 days to recompile itself. This is probably adequately
fast, barely, but probably not adequately robust against errors. It
would probably be better to design it to have more parts and do many
things at once, enabling it to be faster and correct errors.

 It would be astonishing if no other materials were needed: you
can’t build anything electrical out of aluminum, at least at
sub-microwave frequencies, because the whole device is at the same
electrical potential. Similarly with getting mechanical power from
thermal expansion and contraction: it would just expand isotropically
rather than bending or sliding to do useful work. It might be possible
to use just aluminum foil coated on one side with something else,
such as glass or a few microns of aluminum oxide.

 An interesting way to think of the density of aluminum foil is that
10 μm of 2.71-g/cc aluminum foil is 27.1 g/m², which is the same
areal density as a 23-mm-high column of air.

 Other processes that may be very interesting to apply to aluminum
foil include electrolytic machining, electric discharge machining,
scanning probe microscopy, and anodization. Electrolytic machining
might make it possible to use an aluminum-foil tool to cut arbitrary
shapes into metals such as steel, invar, brass, inconel, monel, or
tungsten, and also to transform a scrap of aluminum foil (either flat or
of a known geometry) into a white-light hologram of an arbitrary
optical system, Fresnel-reflector-style.

Topics

• Pricing (p. 1147) (35 notes)

https://www.professionalroofing.net/Articles/Metal-flashing-thicknesses--11-01-2017/4120
https://www.riversidesheetmetal.net/sheet-metal/gauge-and-weight-chart/
https://www.riversidesheetmetal.net/sheet-metal/gauge-and-weight-chart/

• Digital fabrication (p. 1149) (31 notes)
• Electrolysis (p. 1158) (18 notes)
• Experiment report (p. 1162) (14 notes)
• Strength of materials (p. 1164) (13 notes)
• Machining (p. 1165) (13 notes)
• Aluminum (p. 1180) (10 notes)
• ECM (p. 1186) (9 notes)
• Solar (p. 1203) (6 notes)
• Optics (p. 1209) (6 notes)
• Aluminum foil (p. 1237) (5 notes)
• Electropolishing (p. 1371) (2 notes)
• Origami
• Alloys

The nature of mathematical
discourse
Kragen Javier Sitaker, 02021-05-27 (updated 02021-12-30)
(5 minutes)

 As a kid I was always confused by the requirement to “show your
work” on math tests, which is to say, demonstrate how you derived
your answer. Why did it matter how I got the answer? What
mattered was whether the answer was right or wrong, wasn’t it?

 This comes out of the street-fighting approach to math commonly
taught in elementary schools, in which math is treated as a skill used
to come up with answers to potentially difficult puzzles --- or, worse,
merely a means to pass math tests. (And surely one motivation for
demanding the “showing of work” is to reduce cheating on tests.)
One alternative approach is to see math as a medium of creative
expression, as explained in Lockhart’s Lament, in which the tools and
materials are abstract ideas rather than clay or paintbrushes. But
another alternative is to see math as a form of argument, whose
quality is to be judged by its convincingness and fallibility.

 That is, although I could tell you that 48303 / 27 = 1789, even if
you trust me, it may not be immediately obvious to you whether I am
mistaken or not. If you are going to rely on this fact for some
purpose, such that you will put yourself in a position to be harmed if
it turns out to be false, you might want some sort of stronger
assurance than merely my fallible assertion. And this is the objective
of “showing your work” if you write down the partial sums:

 1789
 × 27

 12523
+ 3578

 48303

 This is an abbreviated notation for a syllogistic argument for the
truth of my original assertion, which we could partly unpack as
follows: 1789 × 7 = 12523; 1789 × 20 = 35780; 12523 + 35780 =
48303; therefore 48303 / 27 = 1789. (There are several other implicit
premises as well, such as the distributive law of multiplication.)

 Although it happens to be correct, this is not a very good argument,
because each of the three premises I stated explicitly above is less than
obvious. If I had written 1789 × 20 = 35870, for example, it might
take you a while to spot the error. I claim that a principal objective of
math is to state arguments in such a way as to make any errors obvious.
Such an argument can be far more convincing: if it contains no
obvious errors, then it contains no errors at all. Then, if its premises
are correct, so is its conclusion, even if its author is untrustworthy.

 I think this is a better argument for the same proposition: 1789 +
1789 = 3578; 3578 + 1789 = 5367; 53670 - 5367 = 48303; therefore

48303 / 27 = 1789. These calculations are simpler and so if there is an
error in them it should be easier to spot, although perhaps the
reasoning requires a little more explaining (30 - 3 = 27, so 30 × 1789 -
3 × 1789 = 1789 × 27).

 In practice, though, I checked these calculations mostly by doing
them with computer programs that I believe are unlikely to produce
wrong answers, and it’s common nowadays for people to use
spreadsheets, cash registers, or pocket calculators for this purpose.
Arguably, repeating a calculation a few times with different
calculators is more trustworthy than mental checking. But there’s still
a great deal of potential for error in the process of invoking the
calculator, as well as from hardware and software bugs.

 This mathematical form of argument is the central ratchet that has
allowed human knowledge to advance rather than falling backward
over the last few centuries, because, just as money permits us to gain
safety and sustenance by the efforts of not only honest hardworking
folk but even treasonous cutpurses and greedy misers, math allows us
to gain true and trustworthy knowledge of the universe from the
reasoning of half-mad alchemists and deluded fools, because we can
sift the occasional flake of gold from the mountains of superstitious
dross they produced; by mathematical argument we can recognize a
truth even when beset on all sides by nonsense, and often we can
perfect a near-truth into a truth, and just as easily we can spot a flaw
even in the sweetest honey of theory, dripping from the mouth of the
finest of philosophers.

 Unfortunately, at present we cannot do the analogous operation for
results produced from a computer program rather than a
mathematical formula. Often not enough information is published to
even allow us to reproduce the published results by re-executing the
program used by the original researcher; when such reproduction is
possible, often the results diverge, and the error is quite frequently a
different environment on the computer of the researcher attempting
the reproduction, a situation more closely resembling chemistry than
mathematics. Even if the results reproduce the original results
correctly, they may well be due to a bug present in software installed
on both computers.

Topics

• History (p. 1153) (24 notes)
• Math (p. 1173) (11 notes)
• Reproducibility (p. 1277) (3 notes)
• Ontology (p. 1350) (2 notes)
• Epistemology

Designing curiosity and dreaming
into optimizing systems
Kragen Javier Sitaker, 02021-05-30 (updated 02021-12-30)
(6 minutes)

 Watching a talk by Deepak Pathak about “Learning to Generalize
Beyond Training” where he’s talking about helping reinforcement
learners perform better in the world by making them do
non-goal-directed exploration.

 Pathak shows two photos, one of a toddler playing with her toy
plane wearing goggles, another of a young woman standing in front of
a fighter jet, and says, “In the real world, the reward could be delayed
by days, months, or years, such that it’s hard to project back to where
you are. So how does this child over here know how should she [sic]
act to become pilot [sic] 20 years later? Does she optimize any reward
and backprop all the way to her childhood? Well, not quite.” He
cites Alison Gopnik’s work claiming that children are not driven by
extrinsic goals, but by intrinsic curiosity. “Maybe by not giving goals
to the agent you are making it not overfit to the task.”

 (And that explains why people learn so poorly when motivated by
extrinsic rewards, probably. They’re overfitting.)

 He then outlines some approaches for choosing what actions a
reinforcement learner should take to do “goal-free exploration”,
which in a sense is experiment design.

 Pathak actually cited a dozen papers on curiosity and intrinsic
motivation (Poupart et al. 02006, Lopes et al. 02012, Bellemare et al.
02016, Oh et al. 02015, Tang et al. 02016, Ostrovski et al. 02017,
Schmidhuber 01991, Schmidhuber 02010, Stadie et al. 02015,
Houthooft et al. 02016, Mohamed et al. 02015, Gregor et al. 02017)
and said that the originality of his approach was that his agent has no
extrinsic goals at all.

 It occurs to me that there’s probably some kind of way to bend
gradient descent and its children to this task. If you have some kind
of differentiable model (an ANN or whatever) of cause and effect in
your world, you can use it to maximize a reward (and children do of
course take goal-directed actions, for example to get food or to earn
their parents’ approval) by using gradient descent to seek the optimal
action: you compute the gradient of utility with respect to your
vector of planned action parameters, then revise the plan to increase
utility. And you can optimize it to be a better fit to your existing
database of real-world experiences: you compute the gradient of
prediction error with respect to your world-model parameters (ANN
biases and weights or whatever), and adjust the parameters to decrease
prediction error. So what does curiosity look like in this framework?

 I think you can handle this with gradient descent as well. If you
dream up scenarios in the world, for example by generating plausible
predictions forward from some arbitrary state, then you can ask your
model what will happen in those dreams, and perhaps in particular
what actions would be best. In cases where your world model

provides very vague predictions (this may require that in some sense it
gives you Bayesian probabilities) you can compute that you are
ignorant, and you can use automatic differentiation to figure out
which of the parameters of your world model are responsible for that
ignorance --- dimensions in which your existing prediction error has
a very small gradient, but there is a large gradient in the dream. Then,
to be curious, you can try to create situations in the real world that
you find unpredictable in the same way the dream was unpredictable,
where there are plausible outcomes that maximize the magnitude of
the resulting update in those ignorant parameters.

 Or you could perhaps just choose actions whose results you cannot
predict. But that might be more difficult: if you weight by utility,
you will be choosing the actions that are the most unsafe, and if you
don’t weight at all, you will just be choosing the actions that will
produce the brightest colors or loudest noises or most edges, whatever
your input feature space is. So it might be best to leave the generation
of unsafe scenarios to your dreams, then permit the dreams to inform
you of which parameters of the world to be curious about so that you
can design experiments to investigate them in a safe way.

 This formulation of dreaming or fantasizing is vaguely similar to
the concept of a generative adversarial network as a dreamer.

 The phenomenon of “flow” suggests that there’s a nonmonotonic
aspect to intrinsic motivation in the humans: when prediction error is
really high, they lose interest in the task (it’s too hard) and when it’s
really low, they pay attention to other things (it’s too easy). Pathak’s
formulation seems to lack that nonmonotonicity: his agents get more
interested when things get more unpredictable.

 Entropic formulations of the prediction problem (like, I think,
about half the papers Pathak cites) offer a different candidate for the
goal of curiosity: you want to improve your model of the world by
reducing the entropy of the past, so that it now seems obvious that the
things that happened were going to happen (“hindsight bias”). But
does that mean you should look for parts of your model that are
training slowly because their gradients with respect to your training
data are very low, and try to do experiments that impact them? It
seems that perhaps those are the parameters least likely to help you at
re-encoding the past with lower entropy.

Topics

• Artificial neural networks (p. 1307) (3 notes)
• Mathematical optimization (p. 1348) (2 notes)
• Gradient descent (p. 1364) (2 notes)
• Dreaming (p. 1373) (2 notes)
• Flow

Omnidirectional wheels
Kragen Javier Sitaker, 02021-05-30 (updated 02021-12-30) (1 minute)

 I was just watching a YouTube video by James Bruton of
xrobots.tech on spherical wheels composed of independently rotating
hemispheres in order to be able to roll in one direction controlled by a
drive axle and a second direction freely; he built a vehicle with three
such wheels that could move in any direction. In the center of each
hemisphere he included an additional wheel, copied from a design at
Osaka University. And it occurred to me: what about a toroidal
wheel to be able to do the same trick?

 Not such a novel idea, I guess, with the diagonal rollers. But what
if the rollers around the edge of the wheel simply rotate perpendicular
to the torus’s axis? The torus can be driven on that axis and consist of
four or more rollers around the outside whose axes of rotation form a
regular polygon. Perhaps if there are many of them they can even
overlap one another. Bruton’s spheres contain sort of a degenerate
version of this: the torus has been stripped of all but two rollers, and
the rest of the torus is covered with the hemispheres.

Topics

• Contrivances (p. 1143) (45 notes)
• Mechanical (p. 1159) (17 notes)

https://youtu.be/zKLMCO0-How
https://youtu.be/zKLMCO0-How

Ghetto electrical discharge
machining (EDM)
Kragen Javier Sitaker, 02021-05-31 (updated 02021-12-30)
(5 minutes)

 In theory you could cut any shape into steel, tungsten carbide, or
diamond by electroerosion with nothing more than the tip of a copper
wire or graphite point, a cup of diesel fuel, a capacitor or inductor
sufficient to power an arc, and some way to supply power to it
(originally, in 01943, a resistor). All you have to do is touch the wire
to the steel (or other workpiece) wherever you don’t want steel, and
stir the dielectric around to sweep away the swarf. The trouble is just
knowing where the cutting tip is, where steel is, and also that it’s a
slow process.

 Nowadays you should be able to use the cutting tip itself to probe
where the steel is, at least relative to the tip; a secondary tip operated
at lower voltage and therefore not suffering from sparking can be used
for touch-off to correct for tip wear. This should enable you to get an
accurate picture of where the workpiece is and what remains to be
cut, as well as the cutting rate of the spark parameters.

 This kind of feedback should permit much higher material removal
rates than are typical for wire EDM or die-sink EDM, because the
feedback system compensates for the tool-electrode wear, permitting
the use of much more aggressive sparks like those used in tap-burning
EDM equipment.

 To the extent that you can use a hollow needle electrode with
dielectric squirting through it, you should be able to get higher
cutting rates due to better swarf clearance.

 Diesel fuel is cheaper than kerosene, lamp oil, vegetable oil,
transformer oil, or laxative mineral oil, although any of these would
also work, and these oils are much easier to keep in a dielectric state
than water, which is very sensitive to slight amounts of ionic
contamination. The oils only need to be circulated and have
particulates strained out of them. Machines using water, even plain
tap water, seem to have higher MRRs in practice, but I don’t know
why.

 One inventor creating unorthodox devices in his shed reported
success with die-sink EDM with an RC circuit with a 60V supply
and a 400V electrolytic 100μF capacitor switched at 5kHz and a 10%
duty cycle with an IRF IRG4PC40S IGBT. For his resistor he used a
cartridge heater of “a few ohms”. He used a water dielectric and got
an MRR on aluminum of 18 mm³/minute (a 3-mm hole through a
1-mm aluminum sheet in 23 seconds) or 310 nl/s, and his brass tool
electrode had visible pitting after even this brief use. This works out
to a maximum of about 400 mJ per spark and theoretically up to
about 1800 watts, but I suspect that in practice the power was much
lower because he was getting more like 50 sparks per second than
5000.

 Later he added an aquarium pump to recirculate the water through

https://youtu.be/MZm-mvxa2qo
https://youtu.be/MZm-mvxa2qo

a paper coffee filter, switched to a lower-ESR 300V 160μF
electrolytic, and added a servomechanism which simply feeds the
electrode down when the current spikes of the sparks didn’t reach a
preset set point. At times, his aquarium-pump setup squirts water
onto the cut rather than immersing the whole apparatus in water.
With an additional patch to lift the electrode periodically to improve
flushing, he was able to cut steel.

 Another machinist reported similar success on aluminum, but used
a tubular brass “die” tool electrode to cut his round hole. A third
amateur used diesel fuel as his dielectric and reported very slow
cutting on steel, limiting his current with the series resistance of a
quartz-halogen worklight at 120VDC.

 A much simpler approach uses the traditional solenoid buzzer
circuit, with the sparking contacts being the workpiece and tool and
the solenoid itself holding the energy of the spark, powered from
merely 24VDC 1.8A. Thus the servo, energy-storage, and feed
mechanisms are all provided by a single simple mechanism. He
reported extremely slow cutting and applied a light oil dielectric
occasionally by hand; I think it was slow because his cut was getting
filled up with swarf.

 A review of a Luoyang Xincheng SFX-4000B tap remover
reported burning through a 50-mm-long broken tap in 8 minutes
with about 10 amps at about 40 volts (average, not peak), using a brass
electrode in tap water. My best guess is that it was making a 2 mm
cut through a 4 mm wide tap flute, so about 400 mm³, or 50
mm³/minute. The wear on the brass tool electrode was visually about
15% of the wear on the hardened steel workpiece.

Topics

• Materials (p. 1138) (59 notes)
• Pricing (p. 1147) (35 notes)
• Manufacturing (p. 1151) (29 notes)
• Ghettobotics (p. 1169) (12 notes)
• Electrical discharge machining (EDM)

https://youtu.be/kRc1NFO8uwo
https://youtu.be/6Jt08F1HOiU
https://youtu.be/6Jt08F1HOiU
https://youtu.be/fRPmSgfIJqY
https://www.youtube.com/watch?v=_u2JJ-Mx6_Y

Broken hard disks are the cheapest
source of ultraprecision
components
Kragen Javier Sitaker, 02021-06-02 (updated 02021-06-12)
(3 minutes)

 Ooh, broken disks are AR$1200 (US$8) for a ten-pack. $120 (80¢)
(or US$1 in the EU in 02013) gets you a voice-coil actuator built
around two pyrophoric neodymium magnets plated in nickel
mounted on permalloy or mu-metal brackets, a 5400rpm long-life
bearing, and a BLDC motor with a controller, plus some extremely
flat (Ra 120 pm) first-surface glass-ceramic mirrors with 80%
reflectivity and a low thermal coefficient of expansion (7.4 ppm/° for
TS-10) and high modulus (100 GPa), about 400g of castable
aluminum between possible platters and the case (maybe A380 or
ADC12 or 6061 or 5052) some Torx screws, a SATA power
connector, some machined 6061-T6 aluminum spacers, and some
jumper blocks. Oh and maybe an accelerometer and temperature and
pressure sensors. As scrap metal this totals about US$1.66, mostly
from copper and gold from the PCB, but obviously you can’t get
voice-coil actuators or bearings that cheap.

 Oh, and an ARM core accessible over JTAG, using external RAM
and Flash. And it talks to the controller that controls the spindle and
head over SPI. The Flash format has been largely reversed, but the
chipmakers don’t publish datasheets.

 The whole precisely balanced platter assembly with the platters,
motor, and bearings is nowadays almost invariably 5400rpm or
7200rpm; 10krpm disks are exotic rarities, and 3600rpm disks are
antique. A 7200-rpm 3.5" desktop drive has a rim speed of 5.3 m/s,
while a 5400-rpm 2.5" laptop drive is 2.9 m/s. Either of these is a
fairly respectable speed on its own for things like fine grinding, but
also you can also overclock them quite a bit. They’re normally only
operated at about 3 watts, so you probably can’t get more than 30
watts out of them no matter how much cooling you add.

 The motor might be suitable as a hand pullstring generator.

 Desktop disks still use aluminum platters, typically 635 μm thick.
These are also 6061.

 For small machinery the cobalt alloy used for the magnetic medium
might be worth extracting and refining. I’m guessing it’s on the order
of 10 mg per disk, assuming 25 nm thickness, 3 platters, and 3.5", and
ignoring the center hole; there are also two layers on top of it and
three underneath.

 Reputedly the head arm bearing is also very high precision. Micah
Elizabeth Scott built a 4kpps laser projector in 02008 using two
voice-coil actuators from hard disks.

 Not sure how to use the actual GMR sensors themselves;
presumably they can detect small magnetic fields reliably.

https://articulo.mercadolibre.com.ar/MLA-691736404-discos-rigidos-a-revisar-reparar-lote-de-10-surtidos-_JM?searchVariation=46220774514
http://www.resourcefever.com/publications/reports/Bo2W_HDD_Dismantling_Nov2015_final.pdf
https://hackaday.com/2016/02/03/hard-drive-disassembly-is-easy-and-rewarding/
https://www.scrapmetaljunkie.com/269/how-to-scrap-hard-drives-2
https://www.scrapmetaljunkie.com/269/how-to-scrap-hard-drives-2
https://www.fujielectric.com/company/tech/pdf/57-02/FER-57-2-062-2011.pdf
http://imajeenyus.com/optical/20140813_hdd_mirrors/index.shtml
http://imajeenyus.com/optical/20140813_hdd_mirrors/index.shtml
http://www.oharacorp.com/pdf/TS-10.pdf
http://www.oharacorp.com/pdf/TS-10.pdf
http://www.resourcefever.com/publications/reports/Bo2W_HDD_Dismantling_Nov2015_final.pdf
http://www.resourcefever.com/publications/reports/Bo2W_HDD_Dismantling_Nov2015_final.pdf
https://www.quora.com/What-aluminum-alloy-is-used-to-cast-computer-hard-drive-shells
https://www.quora.com/What-aluminum-alloy-is-used-to-cast-computer-hard-drive-shells
https://www.scrapmetalforum.com/computer-recycling/25497-hard-drive-shells-heatsinks-alloy-separation.html
https://www.st.com/en/applications/data-center/hard-disk-drive-hdd.html
https://www.st.com/en/applications/data-center/hard-disk-drive-hdd.html
http://www.resourcefever.com/publications/reports/Bo2W_HDD_Dismantling_Nov2015_final.pdf
https://spritesmods.com/?art=hddhack&page=3
https://spritesmods.com/?art=hddhack&page=3
https://web.archive.org/web/20130228021446/http://nazyura.hardw.net/Part02.htm
https://www.overclockers.com/forums/showthread.php/568740-Microcontrollers-on-Hard-drives
https://www.overclockers.com/forums/showthread.php/568740-Microcontrollers-on-Hard-drives
http://imajeenyus.com/electronics/20140125_brushless_motor_driver/index.shtml
https://ceramics.org/ceramic-tech-today/glass-could-replace-aluminum-in-hard-disk-drives-that-store-20-tb-of-data
https://www.fujielectric.com/company/tech/pdf/57-02/FER-57-2-062-2011.pdf
https://www.fujielectric.com/company/tech/pdf/57-02/FER-57-2-062-2011.pdf
https://hackaday.com/2018/01/07/scrap-a-hard-drive-build-a-rotary-encoder/#comment-4301966
https://scanlime.org/2008/07/hard-disk-laser-scanner-at-ilda-4k/
https://scanlime.org/2008/07/hard-disk-laser-scanner-at-ilda-4k/

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Ghettobotics (p. 1169) (12 notes)
• Precision (p. 1183) (9 notes)

Micro impact driver
Kragen Javier Sitaker, 02021-06-02 (updated 02021-06-12)
(2 minutes)

 I watched a Marco Reps video last night when I should have been
working and was surprised by his overpowered screwdrivers with
goofy animated OLED screens and 1500-watt quadcopter motors and
the like. It led me to thinking about what you could use the modern
cheapness of control electronics for in hand tools.

 One semi-obvious example is impact drivers, which avoid
disastrous screwdriver camout by simultaneously exerting force
axially “down” onto the screw. Traditionally these are operated
manually with a hammer, but there’s no particular reason not to
operate them internally with a spring, like an automatic center punch.
And if you have electrical power, you could power it internally, like a
hammer drill or rotary hammer.

 In an impact driver it may be necessary for the axial force to be
large: it must be larger than the camout force generated by the
inclined planes, and the rotary force normally needs to be large
enough to overcome the screw’s stiction, which is possibly larger than
normal due to the axial force (so increasing the axial force without
bound makes things worse). However, the requirement on the
impact energy is minimal: it needs to be enough to overcome stiction.
But you could imagine that, at least for some screws, a very large
number of impacts with very high peak force but low energy would
work adequately. In the limit you’re approaching ultrasonic
sonication of the screw as you twist it, making this a real-life “sonic
screwdriver”.

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Mechanical (p. 1159) (17 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Hand tools (p. 1197) (7 notes)
• Sonic screwdrivers (p. 1324) (2 notes)

Minkowski deconvolution
Kragen Javier Sitaker, 02021-06-02 (updated 02021-12-30)
(6 minutes)

 Suppose you are moving a tool of some unknown, but static,
geometry around a workpiece that also has unknown and static
geometry, and you have a thing rigged up that stops motion when
they touch, preventing damage, and tells you. And you have a
high-resolution positional feedback system that tells you what the
position of the tool is, relative to its starting point; and there are no
other important sources of motion or unknown geometry in the
system. What can you learn from this?

 Well, if you have only one degree of freedom, you can tell the
initial distance, or angle or whatever, from the tool to the workpiece.
Or the distance at any later time, which comes to the same thing
when you always know how far you’ve come.

 If you have two translational degrees of freedom, you can trace out
a curve in the plane that is sort of the Minkowski sum of the tool and
the workpiece; if the point of the tool is not too large, this is an
approximation of the workpiece’s shape. In particular, if the tool is
convex, you will never see tighter convex curvature on this
workpiece approximation than the tightest curvature on the tool.
This can allow you to bound the error due to the tool being
non-pointlike.

 In three translational degrees of freedom a similar property holds,
but now you’re tracing out a Minkowski-sum surface rather than just
a curve.

 But how can you separate out the contributions from the tool and
the workpiece?

 One piece of information comes from recognizing motifs in the
surface: every point and edge in the workpiece surface manifests as a
copy of part of the tooltip shape, like the camera bokeh in a photo,
but the Minkowski sum is more similar to grayscale morphological
dilation than like the convolution with a bokeh. So in theory from a
purely information-theoretical perspective you ought to be able to
recognize that these repeated motifs are generated by the tooltip and
infer enough about the tooltip shape to give you a more
random-looking workpiece landscape, though with holes in it where
the tooltip didn’t fit. But another approach comes from having more
degrees of freedom.

 Suppose you have redundant degrees of freedom. The simplest
example here is having two translational degrees of freedom, plus the
ability to rotate the tool around the axis perpendicular to them. This
enables you to sort of measure the shape of the tool, by rotating it and
measuring it against the same position on the workpiece. If you’re
measuring it against a flat on the workpiece, you can use this to find
the shape of the convex hull, though only up to some constant radius
offset. If you measure against a needlelike point on the workpiece,
you can use it to find the shape of the tool to high accuracy, again up
to some constant radius offset. Combining this with the workpiece

motifs, which tell you how big the radius should actually be (at least if
the workpiece has a few asperities on it somewhere), you should be
able to infer quite precisely what the tooltip shape is, and thus a great
deal about the workpiece shape.

 This extends into three translational dimensions as well, if you have
two separate rotational degrees of freedom.

 A sort of intermediate case here is where you don’t have four or
five degrees of freedom, but the degrees of freedom you do have
admit multiple solutions to inverse-kinematics problems. Consider an
XZC* setup with a tool that can scan back and forth past the center
of a turntable, and can also be raised and lowered. This only has three
degrees of freedom, only enough to bring the end effector into
contact with any position on or in the workpiece, but for every point
that isn’t on the center axis of the turntable, you can establish contact
in two separate ways, with relative orientations 180° apart. These two
orientations give two separate Minkowski-sum surfaces; the
difference between them tells you something about the difference
between the tooltip and a half-turn-rotated version of the tooltip.

 This isn’t necessarily enough information to tell you anything
interesting; it’s impossible to distinguish any two
half-turn-symmetric tooltips that are capable of producing the same
Minkowski-sum surface. By contrast, a redundant rotational degree
of freedom enables you to distinguish any two tooltips that differ by
anything other than a circular dilation, or in the 3-D case, a
cylindrical or toroidal dilation.

 This is a particularly interesting problem to me because, when
you’re cutting or forming any kind of workpiece, there is usually tool
wear, and avoiding tool wear requires tradeoffs that may be
unappealing for other reasons, like lower material removal rate or
more expensive tool materials. So to the extent that it’s possible to
automatically and continuously compensate for that, it may be an
extremely worthwhile ability to develop, providing
order-of-magnitude advantages in speed/precision tradeoffs.
Probably the right way to do this is to start by cutting or forming one
or more reference points on the workpiece to have favorable
geometry in a way that is resilient to tooltip shape errors, such as a
sharp-edged circular hole or a sharp cone, and then using those
reference points periodically thereafter to measure the tooltip. The
reference points can be eliminated at the end of the process, or they
can be placed on things that aren’t part of the workpiece proper (but
are rigidly fixed in relation to it), or they can be placed in places
where their shape doesn’t matter.

 * The X and Z axes can also be rotational rather than purely
translational; it makes no difference in this case.

Topics

• Math (p. 1173) (11 notes)
• Precision (p. 1183) (9 notes)
• Sensors (p. 1191) (8 notes)
• Scanning probe microscopy (p. 1242) (4 notes)

Greek operating systems
Kragen Javier Sitaker, 02021-06-04 (updated 02021-06-12)
(4 minutes)

 Because it’s the most common masculine singular nominative
suffix, Greek is full of nouns and adjectives that end in “-os” (“-ος”),
including many people’s names, although in many cases English got
them by way of Latin, which usually substituted its own masculine
singular nominative suffix, “-us”. And there’s also an “-ιος” suffix (I
think that’s the singular genitive of the same declension?) which gives
us names like “Apollonios” and “Dionysios” and Hephaestus's epithet
“Aitnaios”, as well as highly productive suffixes like “-ασσος”, for
places, and “-ισμος”, for procedures or beliefs. Of course, to a
programmer, the “-os” suffix sounds like an operating system, like
MacOS, AmigaOS, MS-DOS, RISC OS, iOS, IOS, BeOS, GEOS,
GECOS, SunOS, Unicos, ReactOS, FreeDOS, TempleOS,
KeyKOS, Palm OS, ChibiOS, and the like, and there is a long
tradition of naming computer systems after figures from Greek
mythology, such as Kerberos and Project Athena.

 So multilingual puns seem to be called for.

 This is not an entirely new idea; CDC named an OS “Kronos”,
there was an MS-DOS alternative called “THEOS”, of course
EROS, and there has probably been more than one OS called Cosmos
, DEMOS/ДЕМОС, and at least three named Minos.

 Adding to the potential for multilingual puns, masculine plurals of
nouns and adjectives in Spanish and Portuguese also commonly end in
“-os”, and “Unicos” and “AROS” are already Spanish (and
Portuguese) words, meaning “only” and “rings/earrings”
respectively; Liddell and Scott additionally define ἄρος as “use,
profit, help”. Too bad it’s already taken!

 But we could imagine, for example, the cult of HefaistOS
AitnaiOS in LemnOS, OdysseOS, DionysOS and his thiasOS and
SeilenOS drinking from a cantharOS, carrying a thyrsOS (with
which fire was stolen) and suffering a sparagmOS, hermaphroditOS,
FalOS, OceanOS, TyrnavOS, PriapOS, GlaucOS, LycurgOS,
ScyrOS, KotylOS, AscOS, AryballOS, CyprOS, TheofrastOS,
DiodorOS Siceliotes, HerodotOS, FlaviOS PorfyrogenitOS,
HalicarnassOS, HomerOS, ChiOS, ChaOS, EustachiOS,
DemetriOS, ParnassOS, PeisistratOS, SamOS, LogOS, StrategOS,
HyperbolOS, PeloponnesOS, ArgOS Panoptes, HeliOS, Hermes
TrismegistOS, AtreOS, Eos, OrpheOS, TartarOS, BriareOS,
AnytOS, IapetOS, OlympOS, ApollodorOS, OuranOS, KratOS,
TheOS ProterOS, FolOS, ThespiOS, ErymanthOS, PithOS, PylOS,
KnossOS, AngelOS, TyphOS or TyphoiOS, AischylOS, PatroclOS,
FaidrOS, OrthOS (which is “assholes” in Spanish, though
misspelled), KadmOS, AigyptOS, NarkissOS, IkarOS, TalOS the gift
of HefaistOS KholOS to MinOS, KokalOS who gave DaidalOS
refuge in KamikOS from MinOS, PegasOS, OrfeOS, AisculapiOS,
MinotaurOS, CetOS, AgriOS, EnkeladOS, HippolytOS, SisyphOS,
NessOS the son of KentaurOS who slew Herakles the lover of
IolaOS and slayer of AntaiOS, AkhaiOS, NostOS, LykourgOS the

https://en.wikipedia.org/wiki/CDC_Kronos
https://en.wikipedia.org/wiki/THEOS
https://en.wikipedia.org/wiki/THEOS
https://en.wikipedia.org/wiki/Cosmos_(operating_system)
https://en.wikipedia.org/wiki/DEMOS
http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0057:entry=a)/ros
https://en.wikipedia.org/wiki/Askos_(pottery_vessel)
https://en.wikipedia.org/wiki/Halicarnassus
https://en.wikipedia.org/wiki/Halicarnassus
https://en.wikipedia.org/wiki/Chios
https://en.wikipedia.org/wiki/Mount_Parnassus
https://en.wikipedia.org/wiki/Samos
https://en.wikipedia.org/wiki/Hyperbolus
https://en.wikipedia.org/wiki/Hyperbolus
https://en.wikipedia.org/wiki/Argos,_Peloponnese
https://en.wikipedia.org/wiki/Hermes_Trismegistus
https://en.wikipedia.org/wiki/Hermes_Trismegistus
https://en.wikipedia.org/wiki/Hermes_Trismegistus
https://en.wikipedia.org/wiki/Anytus
https://en.wikipedia.org/wiki/Anytus
https://en.wikipedia.org/wiki/Mount_Olympus
https://en.wikipedia.org/wiki/Uranus_(mythology)
https://en.wikipedia.org/wiki/Kratos_(mythology)
https://en.wikipedia.org/wiki/Pholus_(mythology)
https://en.wikipedia.org/wiki/Pithos
https://en.wikipedia.org/wiki/Pylos
https://en.wikipedia.org/wiki/Angelos_(Greek_mythology)
https://en.wikipedia.org/wiki/Typhon
https://en.wikipedia.org/wiki/Patroclus
https://en.wikipedia.org/wiki/Phaedrus_(Athenian)
https://en.wikipedia.org/wiki/Phaedrus_(Athenian)
https://en.wikipedia.org/wiki/Orthrus
https://en.wikipedia.org/wiki/Cadmus
https://en.wikipedia.org/wiki/Egypt#Names
https://en.wikipedia.org/wiki/Talos
https://en.wikipedia.org/wiki/Cocalus
https://en.wikipedia.org/wiki/Cetus_(mythology)
https://en.wikipedia.org/wiki/Agrius
https://en.wikipedia.org/wiki/Hippolytus_(son_of_Theseus)
https://en.wikipedia.org/wiki/Achaeans_(Homer)
https://en.wikipedia.org/wiki/Nostos

law-giver, LesbOS, BarbarOS (which in colloquial Argentine Spanish
meaning “excellent”), DemosiOS (“public”, of the δημος),
HeraklitOS, OstrakismOS, ByblOS, PapyrOS, BybliOS, DiOS (“of
Zeus”), and so on.

 Several other promising names turn out to not end in “-ος” in
Greek: Prometheus and Theseus, for example.

 Really, though, you can probably find a Greek name ending in
“-ος” for any concept you care to name an OS after.

Topics

• Programming (p. 1141) (49 notes)
• Humor (p. 1292) (3 notes)
• Puns

https://en.wikipedia.org/wiki/Ostracism
https://en.wikipedia.org/wiki/Byblos
https://en.wikipedia.org/wiki/Papyrus#Etymology
https://en.wikipedia.org/wiki/Philo_of_Byblos

The algebra of N-ary relations
Kragen Javier Sitaker, 02021-06-14 (updated 02021-07-27)
(4 minutes)

 (Based on Jamie Brandon’s Imp and some unpublished work of
Dave Long’s based on Hehner’s Practical Theory of Programming.)

 Consider N-ary relations like those of the relational algebra, treated
as sets of equal-arity tuples. (Maybe they could be bags instead of sets;
I’m not sure.) It’s convenient to assume some set of atomic items to
make these tuples out of, such as words, symbols, or numbers. We
can treat an atom as a degenerate relation: a is taken to be the relation
consisting of a single tuple containing the atom a.

 From these atoms we can build nonempty single-column relations
with a union operator +: a+b+d is a single-column relation consisting of
three one-item tuples a, b, and d, in no particular order, so it’s equal to
a+d+b or d+b+a. (If we rule out multisets, it’s also idempotent, so
a+b+d+a+b+d is also equal.)

 By adding a cartesian-product operator with higher precedence,
written simply with juxtaposition, we can build multiple-column
relations: x y z is a three-column relation consisting of a single tuple
with the atoms x, y, and z, in that order. This operator is associative,
so (x y) z is equal to x (y z), but not commutative; the order of
columns matters, so, for example, y z ≠ z y, and x y z ≠ x z y.

 We give the implied operator of juxtaposition cartesian-product
semantics simply by declaring that it distributes over +, so (a + b) (c +
d) = a (c + d) + b (c + d) = a c + a d + b c + b d. This also gives us a
normalization procedure for relations built up in this way, which
makes equivalence decidable.

 Now we can introduce identity elements for these two operations;
capitalizing the names from Imp, we can declare that None is a
relation with no rows, and Some is a relation containing only the
empty tuple. (A different choice of notation might use {} for None
and () for Some, or α for Some and ω for None.) For any relation X,
None + X = X, and Some X = X Some = X. I think it’s provable from this that
None X = X None = None, but if not, let’s postulate it — it’s obviously
necessary for juxtaposition to give us the usual kind of cartesian
product.

 We’ve said that we’re interested in sets of equal-arity tuples, but
there’s nothing stopping us from writing a + b c, though that has a
straightforward interpretation as a set containing a 1-tuple and a
2-tuple. For the time being we’ll just consider such expressions as
being uninteresting due to being “ill-typed”, but clearly enough if we
leave them in with that interpretation, we have the
Kleene-closure-free regular expressions.

 This is nearly a Boolean algebra, with juxtaposition for ∧, + for ∨,
None for 0, and Some for 1; but the ∧ of a Boolean algebra must be
commutative, and it’s not clear to me how to define ¬ such that a ∨ ¬
a = 1 and a ∧ ¬a = 0 (X + !X = Some and X !X = None).

 It is a semiring, though, at least if we sweep the “typing” problem
under the rug; we have associativity of both operators,

https://scattered-thoughts.net/writing/imp-sets-and-funs/

commutativity of +, distributivity, identity elements, and annihilation.
In fact, it’s pretty much just the free semiring on whatever our atoms
are. If we rule out multisets, it’s the free idempotent semiring, which
induces a partial order on the operations.

 The two operators above are two of the five primitive operators of
Codd’s relational algebra; the other three are selection, projection,
and set difference (set intersection being derived from union and
difference).

Topics

• Programming (p. 1141) (49 notes)
• Math (p. 1173) (11 notes)
• Program calculator (p. 1246) (4 notes)
• Kleene algebras (p. 1287) (3 notes)
• Databases (p. 1376) (2 notes)

Nuclear energy is the Amiga of
energy sources
Kragen Javier Sitaker, 02021-06-14 (updated 02021-07-27)
(3 minutes)

 Nuclear energy is the Amiga of energy sources.

 Ahead of its time, it was unjustly rejected and persecuted by the
ignorant masses. Its advocates are bonded by the quiet pride that at
least they weren’t unthinkingly siding with those masses. (And
they’re right!) Meanwhile, as the Amiga stagnated for terribly unfair
reasons, other, scrappier technologies like the i386 and UMG-Si grew
from being worthless boondoggles (except in special circumstances,
like spaceflight) to being actually far better and cheaper. But the
Amiga advocates keep the faith, sharing their suffering and
resentment. They inevitably try the alternatives a little and perhaps
even start to like them. Gradually their denial recedes, decade by
decade.

 But they know that however much fab costs go down and leave
their beloved Amiga behind in the dust, you’ll never be able to run
nuclear submarines and Antarctic research stations on solar panels.

 — ⁂ —

 Not all nuclear-energy advocates are so unversed in the basics of
energy as to say incoherent things like “replacing daily energy
consumption from crude oil will require 14.5 terawatts per day” or
pants-on-head things like “renewable mandates push up electricity
prices” (
https://freopp.org/why-nuclear-power-not-renewables-is-the-path-
to-low-carbon-energy-part-1-c0b66d4b9570) but today they are all
suffering from serious fact deficiencies.

 — ⁂ —

 Wind, where available, undercut the cost of steam power
(including nuclear and coal) a decade ago, and PV undercut it in
equatorial parts of the world about four years ago, or in even more of
the world if you don’t include storage. As a result, last year, China,
whose electrical consumption has doubled in the last decade, built
48.2 gigawatts† of new photovoltaic capacity last year
https://www.reuters.com/article/us-china-energy-climatechange-id
USKBN29Q0JT but only has, I think, something like 10 GW of
nuclear plants under construction, scheduled to come online over the
next several years. PV installed capacity in China is growing by 23%
per year, the same rate it has been growing worldwide for the last few
years; with some luck that will return to the
39%-yearly-worldwide-growth trend that has been the fairly
consistent average over the last 28 years.‡

 (Previous versions of this comment were posted at
https://news.ycombinator.com/item?id=26218673,
https://news.ycombinator.com/item?id=26674832, and
https://news.ycombinator.com/item?id=27503120.)

 † China’s PV capacity factor seems to be only about 13%, so those

https://freopp.org/why-nuclear-power-not-renewables-is-the-path-to-low-carbon-energy-part-1-c0b66d4b9570
https://freopp.org/why-nuclear-power-not-renewables-is-the-path-to-low-carbon-energy-part-1-c0b66d4b9570
https://freopp.org/why-nuclear-power-not-renewables-is-the-path-to-low-carbon-energy-part-1-c0b66d4b9570
https://www.reuters.com/article/us-china-energy-climatechange-idUSKBN29Q0JT
https://www.reuters.com/article/us-china-energy-climatechange-idUSKBN29Q0JT
https://www.reuters.com/article/us-china-energy-climatechange-idUSKBN29Q0JT
https://news.ycombinator.com/item?id=26218673
https://news.ycombinator.com/item?id=26218673
https://news.ycombinator.com/item?id=26674832
https://news.ycombinator.com/item?id=26674832
https://news.ycombinator.com/item?id=27503120
https://news.ycombinator.com/item?id=27503120

48 GWp probably work out to only about 6 GW average. It would
be nice if China managed to site its new PV plants in places that could
provide a capacity factor like California’s 28%.

 ‡ Why 28? Because I haven’t found figures yet on what
worldwide installed capacity was in 01992 or earlier.

Topics

• Energy (p. 1170) (12 notes)
• Humor (p. 1292) (3 notes)

Flux-gate downconversion in a
loopstick antenna?
Kragen Javier Sitaker, 02021-06-15 (updated 02021-07-27)
(2 minutes)

 Lower radio frequencies like AM radio are typically received with
ferrite loopstick antennas rather than half-wave dipoles or similar,
because the dimensions of an efficient dipole are totally impractical
for a human-scale system. It occurred to me that if you saturate the
loopstick with a magnetic field at a different frequency, you could use
it as a magamp that does downconversion, either for downconversion
to IF or baseband — in a sense, using the ferrite as a flux-gate
magnetometer to measure the magnetic component of the radio
waves at submicrosecond intervals.

 Mediumwave AM broadcasting is 530 kHz to 1700 kHz, so you
couldn't just use a single fixed frequency to downconvert to IF — you
could imagine using a 400 kHz LO to get 130–1200 kHz, say, but
that's useless. If you tried saturating the ferrite with a square wave at
the frequency of the desired station, you might get half-wave
synchronous rectification of the frequency without so much as a
diode, or you might get nothing if you were in quadrature. So you'd
probably need some kind of second-order PLL or something to keep
your phase in sync, and it would have to tolerate the intermittent
nature of AM. This is probably more complexity than the usual
tuning circuits, so there may be no real advantage to this design at all.

 There are magnetic core materials that work well up to about 10
MHz.

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Radio (p. 1278) (3 notes)

PEG-like flexibility for parsing
right-to-left?
Kragen Javier Sitaker, 02021-06-16 (updated 02021-07-27)
(2 minutes)

 Looking at PDF, whose syntax derives from PostScript, I’m struck
by the fact that a lot of its constructs are most easily parsed right to
left. An object reference like 16 0 R starts with an integer object, and
so you end up having to backtrack if you’re using a PEG parser.

 If instead you parse it right to left, you don’t have this problem as
much; the R announces that you are looking at an object reference,
and it contains the following two integers. Similarly, in a content
stream, you may encounter a text object like Example 1 from §9.2.2
of the PDF 1.7 spec, ISO 32000-1:2008:

BT
 /F13 12 Tf
 288 720 Td
 (ABC) Tj
ET

 As an S-expression, this is (text (font 'F13 12) (pos 288 720) (paint
"ABC")); Tf is the operator that sets the font, Td is the operator that sets
the position, and Tj is an operator that draws text. Reading this
backwards, it’s trivial to predict what you’re going to have to parse;
reading it forwards, you either need to maintain a stack of pending
values like 288 and 720, or do a lot of backtracking.

 However, individual tokens in here are more easily read forwards;
/F13 looks like an integer if you look at its last 0, 1, or 2 characters, and
perhaps like an operator if you only look at its last 3.

 Is there a way to get PEG-like memoization for an asymptotic
performance guarantee and flexibility, while maintaining a
LALR-like stack of bottom-up items that can tell us what parses to
even attempt? Is that even a meaningful question?

Topics

• Programming (p. 1141) (49 notes)
• Algorithms (p. 1163) (14 notes)
• The Portable Document Format (PDF) (p. 1227) (5 notes)
• Parsing (p. 1228) (5 notes)
• Parsing expression grammars (PEGs) (p. 1343) (2 notes)

How little code can a filesystem
be?
Kragen Javier Sitaker, 02021-06-16 (updated 02021-07-27) (1 minute)

 What’s the simplest way to support the basic Unix filesystem
interface? open, close, read, write, mkdir, chdir, lseek, and fstat,
supporting append, random-read, random-write, and
random-readwrite modes. If you were willing to sacrifice efficiency
for simplicity.

 You need file-descriptor objects with offsets and modes, and then
the actual directories, and a CWD for your filesystem cursor.

 Probably the simplest solution in a garbage-collected language is to
make a mutable tree of strings in memory with associated metadata.
fstat sort of requires that you keep track of the modification date.
Then you might want to be able to serialize this in-memory
filesystem, or maybe an incremental update to it. inode numbers are
potentially a bit tricky, but they don’t have to be assigned
sequentially.

 One alternative is to use an immutable tree and update it
functionally, which potentially simplifies the incremental-update
logic.

 This feels like it ought to be doable in about 200 lines of code in a
garbage-collected language.

Topics

• Programming (p. 1141) (49 notes)
• Bootstrapping (p. 1171) (12 notes)
• Small is beautiful (p. 1190) (8 notes)
• Independence (p. 1215) (6 notes)
• Operating systems (p. 1248) (4 notes)
• Unix (p. 1268) (3 notes)
• Filesystems

Notes on the PDF file format
Kragen Javier Sitaker, 02021-06-16 (updated 02021-07-27)
(15 minutes)

 I’m reading through the ISO 32000-2008 PDF-1.7 spec, which is
about 340,326 words, 60% of the size of War and Peace. But for the
time being I’m not interested in all of it:

• §1 Scope (1 p.), yes.
• §2 Conformance (1 p.), yes.
• §3 Normative references (4 pp.), yes.
• §4 Terms and Definitions (4 pp.), yes.
• §5 Notation (1 p.), yes.
• §6 Version designations (1 p.), yes.
• §7 Syntax (100 pp.), yes.
• §8 Graphics (127 pp.), no.
• §9 Text (59 pp.), yes.
• §10 Rendering (24 pp.), no.
• §11 Transparency (42 pp.), no.
• §12 Interactive Features (124 pp.), no.
• §13 Multimedia Features (61 pp.), no.
• §14 Document Interchange (96 pp.), I don’t think so.

 This works out to only about (+ 1 1 4 4 1 1 100 59) = 171 pages of
reading. I don’t think I’m going to be able to make it through the
whole thing in the next couple of hours...

 It’s interesting that on p. 251 in §9.4.3 it requires you to backslash
all of your special characters in the string, with no provision for
nesting parens:
The strings shall conform to the syntax for string objects. When a string is written
by enclosing the data in parentheses, bytes whose values are equal to those of the
ASCII characters LEFT PARENTHESIS (28h), RIGHT PARENTHESIS (29h),
and REVERSE SOLIDUS (5Ch) (backslash) shall be preceded by a REVERSE
SOLIDUS) character. All other byte values between 0 and 255 may be used in a
string object. These rules apply to each individual byte in a string object, whether
the string is interpreted by the text-showing operators as single-byte or
multiple-byte character codes.

 I think this is an error because §7.3.4.2 on p. 23 says:
Any characters may appear in a string except unbalanced parentheses (LEFT
PARENHESIS [sic] (28h) and RIGHT PARENTHESIS (29h)) and the backslash
(REVERSE SOLIDUS (5Ch)), which shall be treated specially as described in this
sub-clause. Balanced pairs of parentheses within a string require no special
treatment.

 It’s surprising to see that “name objects” are apparently new in
PDF 1.2:
Beginning with PDF 1.2 a name object is an atomic symbol uniquely defined by a
sequence of any characters (8-bit values) except null (character code 0).

 But maybe that isn’t really what is meant; maybe they existed
previously but could include null or couldn’t include, say, DEL.

 It’s a relief to see that names are interpreted as UTF-8.

Strings and character encodings

 The encoding of string contents is tricky. §7.9.2.2 says they’re
PDFDocEncoded unless they begin with a BOM. But that’s only for
“structural” strings, not for strings that are part of document content.
Actual text strings on the page are decoded by the font:
With a composite font (PDF 1.2), multiple-byte codes may be used to select glyphs.
In this instance, one or more consecutive bytes of the string shall be treated as a
single character code. The code lengths and the mappings from codes to glyph are
defined in a data structure called a CMap, described in [§]9.7, “Composite Fonts”.

 It isn't really described there. §9.7.5.3 explains that CMaps are
really described in “Adobe Technical Note #5014, Adobe CMap and
CIDFont Files Specification.” Although it does give an example
CMap that implements Shift-JIS, which is evidently written in
PostScript, and there’s some further explanation in §9.7.6.2, but it
assumes you’re already familiar with the aforementioned TN5014.
§9.10.3 also suggests reading “Adobe Technical Note #5411,
ToUnicode Mapping File Tutorial.”

 TN#5014 explains further:
Some CID-keyed font rendering software (such as ATM-J) takes advantage of a
particular stylized use of the PostScript language. As a result, CID-keyed font files
must also adhere to these PostScript language usage conventions. The syntax
resulting from these conventions is considerably more restricted than that of the
PostScript language; CID-keyed fonts can be read and executed by PostScript
interpreters, but not all PostScript language usage is acceptable in CID-keyed fonts.

 Its §5 and §7 explain the CMap in more detail; TN#5014§5 gives
what looks like a slightly less abbreviated version of the Shift-JIS
CMap given as an example in the PDF spec. The most crucial
information is on TN#5014 p. 51:
the cidrange sections associate the beginning and ending of a range of acceptable
character codes, expressed as hexadecimal strings, with the starting CID for that
range. ...

100 begincidrange
 <20> <7e> 1
 <8140> <817e> 633
 <8180> <81ac> 696
...
endcidrange

 Evidently this means that the byte sequence 0x20 maps to CID 1,
0x21 to CID 2, ... 0x7e to CID 95, then 0x81 0x40 to CID 633, 0x81
0x41 to CID 634, etc. Evidently 0x81 0x7f is an invalid sequence in
Shift-JIS, and Wikipedia agrees that it is.

 Also there are some predefined CMap names, given as the
"/Encoding" of a Type0 font, including /Identity-H (which is
UTF-16BE for horizontal text) and some UTF-16BE and UCS-2
cases.

 The /Type0 font can include, in addition to an /Encoding, a
/ToUnicode which points at another CMap which tells how to
convert to Unicode rather than indexes into some font. The example
given maps the ASCII range, unpacks some ligatures with “basefont
ranges”, and maps a single character to a surrogate pair with a
“basefont char”:

https://adobe-type-tools.github.io/font-tech-notes/pdfs/5014.CIDFont_Spec.pdf
https://adobe-type-tools.github.io/font-tech-notes/pdfs/5014.CIDFont_Spec.pdf
https://en.wikipedia.org/wiki/Shift_JIS#As_defined_in_JIS_X_0208:1997

2 beginbfrange
<0000> <005E> <0020>
<005F> <0061> [<00660066> <00660069> <00660066006C>]
endbfrange
1 beginbfchar
<3A51> <D840DC3E>
endbfchar

 Nobody ever uses a predefined CMap for /ToUnicode. And they
always compress their CMaps. I extracted one of these content
streams to a file and read it with Python’s zlib.decompress; evidently
it was set up using a super dumb ASCII subsetting procedure:

>>> print zlib.decompress(open('tmp.flate').read())
/CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo <<
/Registry (F3+0) /Ordering (T1UV) /Supplement 0 >> def
/CMapName /F3+0 def
/CMapType 2 def
1 begincodespacerange <20> <78> endcodespacerange
6 beginbfchar
<20> <0020>
<2a> <002A>
<2e> <002E>
<41> <0041>
<59> <0059>
<61> <0061>
endbfchar
7 beginbfrange
<31> <35> <0031>
<43> <49> <0043>
<4b> <50> <004B>
<52> <56> <0052>
<63> <69> <0063>
<6d> <6f> <006D>
<72> <78> <0072>
endbfrange
endcmap CMapName currentdict /CMap defineresource pop end end

 Here’s another case from another file that’s not quite so innocent:

/CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo <<
/Registry (NDBBAF+ArialMT+0) /Ordering (T42UV) /Supplement 0 >> def
/CMapName /NDBBAF+ArialMT+0 def
1 begincodespacerange <0114> <012a> endcodespacerange
2 beginbfrange
<0114> <0114> <0144>
<012a> <012a> <017C>
endbfrange
endcmap CMapName currentdict /CMap defineresource pop end end

 A nicer case is this one, from a third PDF file:

/CIDInit /ProcSet findresource begin
12 dict begin

begincmap
/CIDSystemInfo <<
/Registry (Adobe)
/Ordering (UCS)
/Supplement 0
>> def
/CMapName /Adobe-Identity-UCS def
/CMapType 2 def
1 begincodespacerange
<0000> <FFFF>
endcodespacerange
1 beginbfrange
<0000> <FFFF> <0000>
endbfrange
endcmap
CMapName currentdict /CMap defineresource pop
end
end

 I think this doesn’t comply with the explanation of beginbfrange
from the PDF spec:
EXAMPLE 2 in this sub-clause illustrates several extensions to the way destination
values may be defined. To support mappings from a source code to a string of
destination codes, this extension has been made to the ranges defined after a
beginbfchar operator:

 n beginbfchar
 srcCode dstString
 endbfchar

 where dstString may be a string of up to 512 bytes. Likewise, mappings after the
beginbfrange operator may be defined as:

 n beginbfrange
 srcCode1 srcCode2 dstString
 endbfrange

 In this case, the last byte of the string shall be incremented for each consecutive
code in the source code range.
 When defining ranges of this type, the value of the last byte in the string shall be
less than or equal to 255 - (srcCode2 - srcCode1). This ensures that the last byte of
the string shall not be incremented past 255; otherwise, the result of mapping is
undefined.

 But evidently in this case the intent is to increment both of the
bytes of dstString, not just the last one.

 But /Adobe-Identity-UCS isn’t always so nice. Here’s another
one, from another file:

/CIDInit /ProcSet findresource begin
12 dict begin
begincmap
/CIDSystemInfo
<< /Registry (Adobe)
/Ordering (UCS)
/Supplement 0
>> def

/CMapName /Adobe-Identity-UCS def
/CMapType 2 def
1 begincodespacerange
<0001> <046D>
endcodespacerange
10 beginbfchar
<005F> <007C>
<0061> <007E>
<0070> <00E9>
<0085> <00A3>
<0087> <2022>
<00A9> <00AB>
<00AA> <00BB>
<00AB> <2026>
<00C2> <2219>
<013C> <2033>
endbfchar
7 beginbfrange
<0003> <0004> <0020>
<0006> <003E> <0023>
<0040> <0042> <005D>
<0044> <005D> <0061>
<00B1> <00B2> <2013>
<00B3> <00B4> <201C>
<00B5> <00B6> <2018>
endbfrange
endcmap
CMapName currentdict /CMap defineresource pop
end
end

 Strangely enough nobody seems to include the DSC comments in
their embedded CMaps.

 U+2022 is a bullet, U+2026 is horizontal ellipsis, U+2219 is
BULLET OPERATOR, and U+2033 is DOUBLE PRIME. So I
think this is specifying a transcoding from some Adobe encoding into
Unicode. The font in question unfortunately uses /Identity-H as its
/Encoding:

344 0 obj
<</Type /Font
/Subtype /Type0
/BaseFont /Georgia
/Encoding /Identity-H
/DescendantFonts [350 0 R]
/ToUnicode 351 0 R
>>
endobj

 So apparently in the font we will find DOUBLE PRIME at CID
013C, 316 decimal.

 Georgia is not one of the PDF base fonts; it’s also embedded in the
file:

356 0 obj
<</Type /FontDescriptor
/FontName /Georgia
/Flags 6
/Ascent 916.9922
/Descent 219.2383
/StemV 133.7891
/CapHeight 692.8711
/ItalicAngle 0
/FontBBox [-490.2344 -303.2227 1796.3867 1074.707]
/FontFile2 357 0 R
>>
endobj
357 0 obj
<</Length1 49484
/Filter /FlateDecode
/Length 29751
>> stream

 ttfdump on the extracted font file actually agrees with my inference
above about the encoding; the corresponding feature in TrueType is
actually also called cmap:

'cmap' Table - Character to Glyph Index Mapping Table

...

 Seg 107 : St = 2032, En = 2033, D = 57609, RO = 0, gId#
= N/A
...
Segment 107:
 Char 0x2032 -> Index 315
 Char 0x2033 -> Index 316

 The actual text painted on the page using this font happens to be in
a ridiculously inefficient form:

BT
/F1 11 Tf
1 0 0 -1 31.375 118 Tm
<0031> Tj
1 0 0 -1 39.813 118 Tm
<0032> Tj
1 0 0 -1 47.9985 118 Tm
<0039> Tj
1 0 0 -1 55.3301 118 Tm
<0028> Tj
1 0 0 -1 62.5166 118 Tm
<0030> Tj
1 0 0 -1 72.7163 118 Tm
<0025> Tj
1 0 0 -1 79.9082 118 Tm
<0028> Tj
1 0 0 -1 87.0947 118 Tm
<0035> Tj

 According to the above CMap, this encodes the text
“NOVEMBER”. In 283 bytes. I guess it’s less, deflated; the content
stream for that page is 84551 bytes uncompressed, 16920 bytes
deflated, so that's only about 57 deflated bytes.

Annotations and actions

 The whole string thing is super confused. Line breaks are
permitted inside strings and are 0x0a LF, but paragraph separators in
markup annotation text are 0x0d CR (§12.5.6.2, p. 391, 399/756).

 The whole annotation spec is a nightmare, and unfortunately a
necessary one for including hypertext links (§12.5.6.5). Annotations
can have intents, titles, subjects, reply-tos, modification dates, and
author-specific states (marked, unmarked, accepted, completed). It
even includes a separate richtext format that isn’t PDF (§12.7.3.4,
“Rich Text Strings”). They can embed arbitrary file attachments
(§12.5.6.15), sounds (§12.5.6.16), and videos (§12.5.6.17). Link
annotations can either go to “destinations” (§12.3.2) or take “actions”
(§12.6), “such as launching an application, playing a sound, changing
an annotation's appearance state.”

 The action spec is 16 pages long and includes halfhearted warnings
against infinitely recursive and self-modifying code; in theory you
should only be able to program a sequence of actions, but triggers
include mouseovers, clicks, and page opening and closing. And the
form spec lets you write actions in JS, including dependency-directed
recalculation of form fields! And there's a SubmitForm action
(§12.7.5.2) that lets you submit a data form to a URL! And
ImportData (§12.7.5.4) to load data from a local file! Plus also GoTo
actions to navigate around the document (§12.6.4.2, though you can
also link within the document without using an action) and URI
actions (§12.6.4.7, with an IsMap parameter). And you can hide or
show annotations (Hide, §12.6.4.10), which can be of a variety of
drawable types, as well as do a display transition (§12.6.4.14,
transitions listed in §12.4.4.1 like Wipe, Dissolve, etc., with a
duration), make “optional content groups” visible or hidden
(§12.6.4.12), or reorient a 3-D view (§12.6.4.15).

 It doesn’t look like you can do arbitrary drawing from these
actions, though, though maybe you could get pretty far with custom
fonts. Or modify the document tree, so I’m not sure what's up with
the prohibition on self-modifying code.

 The JS stuff is specified in a totally separate document, “Adobe
JavaScript for Acrobat API Reference”.

Streams

 A curious thing is that this is, I think, an indirect dictionary object:

31820 0 obj
<< /Length 10 >>
endobj

 While this is not a dictionary object:

31820 0 obj
<< /Length 10 >>
stream
helloworld
endstream
endobj

 That’s a stream object. Stream objects must be indirect objects
(§7.3.8.1) and cannot be nested within object streams like most other
indirect objects (§7.5.7). So when you are parsing either of these, you
don’t know if you’re parsing a stream object or a dictionary object
until you reach the endobj or stream keyword. But you are guaranteed
to hit one or the other.

 The easiest way to think about this is as a sequence of stack
operations: stream is an operation that consumes the dictionary on the
stack and uses it to parse the following data before returning control
of the input stream to the normal PDF parser.

Topics

• The Portable Document Format (PDF) (p. 1227) (5 notes)
• File formats (p. 1233) (5 notes)

Notes on what would be needed
to drive a PS/2 keyboard from an
Arduino
Kragen Javier Sitaker, 02021-06-20 (updated 02021-12-30)
(12 minutes)

 Trying to get a PS/2 keyboard to work with an Arduino
Duemilanove.

Notes on the PS/2 keyboard protocol

 Adam Chapweske’s physical-layer guide clarifies the key points:
I use a few tricks when implementing an open-collector interface with PIC
microcontrollers. I use the same pin for both input and output, and I enable the
PIC’s internal pullup resistors rather than using external resistors. A line is pulled
to ground by setting the corresponding pin to output, and writing a “zero” to that
port. The line is set to the “high impedance” state by setting the pin to input.
Taking into account the PIC’s built-in protection diodes and sufficient current
sinking, I think this is a valid configuration. Let me know if your experiences have
proved otherwise. ...
 The PS/2 mouse and keyboard implement a bidirectional synchronous serial
protocol. The bus is “idle” when both lines are high (open-collector). This is the
only state where the keyboard/mouse is allowed begin transmitting data. The host
has ultimate control over the bus and may inhibit communication at any time by
pulling the Clock line low.

 The PIC approach should work the same with AVRs, I think.
The device always generates the clock signal. If the host wants to send data, it must
first inhibit communication from the device by pulling Clock low. The host then
pulls Data low and releases Clock. This is the “Request-to-Send” state and signals
the device to start generating clock pulses.
 Data sent from the device to the host is read on the falling edge of the clock
signal; data sent from the host to the device is read on the rising edge. The clock
frequency must be in the range 10-16.7kHz. This means clock must be high for
30-50 microseconds and low for 30-50 microseconds. If you’re designing a
keyboard, mouse, or host emulator, you should modify/sample the Data line in the
middle of each cell, i.e., 15-25 microseconds after the appropriate clock transition.

 At the Duemilanove’s 16 MHz, 15-25 microseconds is 240-400
clock cycles, so we can probably get by with polling rather than
interrupts, at least initially.

 Chapweske also wrote a guide to the logical protocol.

Existing Arduino software is worth trying
but will be insufficient

 There’s an LGPL-licensed library called PS2Keyboard, last updated
2 years ago, with the last release 5 years ago, for speaking this
protocol; its interface looks very simple. The page on arduino.cc is
even more out of date, which I guess makes sense since it’s been
read-only since 02018.

keyboard.begin(DataPin, IRQpin); ...
if (keyboard.available()) {

http://www.burtonsys.com/ps2_chapweske.htm
https://web.archive.org/web/20050315093045/panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/keyboard/atkeyboard.html
https://www.pjrc.com/teensy/td_libs_PS2Keyboard.html
https://github.com/PaulStoffregen/PS2Keyboard
https://playground.arduino.cc/Main/PS2Keyboard/
https://playground.arduino.cc/Main/PS2Keyboard/

 char c = keyboard.read();
 if (c == PS2_ENTER) {
 Serial.println(); ...
 } else {
 Serial.print(c);
 }

 However, this interface has a couple of major drawbacks:

• It doesn’t provide key-release data.
• Multiple special keys like F1 and F2 are all mapped to the same
character code. (There’s a get_scan_code function but it’s static.)

 The implementation also has a couple of drawbacks:

• It uses 52 bytes of RAM for buffering the keys.
• It uses an interrupt — though this is probably unavoidable with any
decent interface.
• It always puts three separate 409-byte keymaps in ROM
(US-English, French, German).
• It doesn’t provide any of the messages to the keyboard, such as
pinging it (“echo”, 0xee), setting the scan code set (0xf0), and, most
importantly, setting the keyboard LEDs (0xed).

Buffering on the keyboard?

 The Wikipedia page has an intriguing comment suggesting a
fully-polled mode of operation:
When the host pulls Clock low, the device must immediately stop transmitting
and release Clock and Data to both float high. ... The host can use this state of the
interface simply to inhibit the device from transmitting when the host is not ready
to receive. (For the IBM PC keyboard port, this was the only normal use of
signalling from the computer to the keyboard. The keyboard could not be
commanded to retransmit a keyboard scan code after it had been sent, since there
was no reverse data channel to carry commands to the keyboard, so the only way to
avoid losing scan codes when the computer was too busy to receive them was to
inhibit the keyboard from sending them until the computer was ready. This mode
of operation is still an option on the IBM AT and PS/2 keyboard port.)

 This suggests the possibility that you could pull the clock line low
all the time except when polling for a keystroke, trusting the
keyboard to buffer any keypresses, but I’d be surprised if that worked
reliably. In any case, it would require waiting for the minimum
timeout to see if the keyboard was going to send anything...

Experiment notes

 I have an Arduino Duemilanove here. It can successfully run the
Blink and ASCIITable examples, so it’s at least mostly working.

 The keyboard is an IBM KB-9910, Latin American layout with
Windows key, which seems on first glance to be in pretty good shape
aside from being dusty. The main board is a single-sided board built
around a large Chicony DIP, 40 pins I think, with lots of
through-hole parts. The keyboard switch silicone domes are all
molded from a single silicone sheet, which fortunately means they
can’t get lost individually. The main board is connected to the
thoroughly-strain-relieved cable with a four-pin Dupont connector,

https://en.wikipedia.org/wiki/PS/2_port
https://en.wikipedia.org/wiki/PS/2_port

with four lines on the board labeled G (violet), V (brown), D (red),
and C (yellow); presumably these are ground, Vcc, data, and clock.

 I reassembled the keyboard, cut off the PS/2 connector, stripped
the cable a bit, and soldered pins individually to the wires. Plugging
the brown and violet wires into the 5V and GND pins on the
Duemilanove doesn’t seem to harm the Duemilanove, which has its
pin-13 LED blinking happily.

 The next step, I think, is to measure sequences of data transitions
and send them over the Arduino’s serial port. There’s an Arduino
sketch under a 2-clause BSD license by Andrew Gillham that
implements the SUMP logic analyzer protocol and something called
Openbench Logic Sniffer at 4 MHz, with triggering support and stuff.
This might allow sigrok to use the Arduino to view these signals
without needing to write more code. And, to my surprise, sigrok
already has a PS/2 protocol decoder in it! So if I can just get some
signal data into pulseview, I can see what data the keyboard is
sending.

 I burned the sketch to the Arduino and connected to it in
Pulseview: “Choose the driver: Openbench Logic Sniffer & SUMP
compatibles (ols); Choose the interface: /dev/ttyUSB2 (FT232R
USB UART - A6008ePZ); Scan for devices using driver above
[usually twice]; Select the device: AGLAv0 with 6 channels.” I’m
trying to do captures at 200 kHz.

 (Mark R. Rubin has also written a somewhat more powerful GPL
firmware for the Blue Pill called “buck50” that can do 6 Msps, 5k
samples, and 8 channels, and also a 1 MHz analog oscilloscope. (Too
bad my Blue Pill is at home.) But it doesn’t seem to work directly
with sigrok; he suggests using Gnuplot to plot CSV files, saying
sigrok uses too much RAM.)

 Okay, I haven’t figured out how to set up triggering, and the
sample buffer is only 5 milliseconds long, but by doing a lot of key
repeat and capturing over and over again, I think I got it to capture a
keystroke. (This happens about one out of every 32-64 tries.) It does
show a nice 10.0 kHz clock on the yellow wire and some kind of data
on the red wire. The whole packet is 1.020 ms long, with 10 positive
clock pulses (and 11 low states) in 1.050 ms. This means 11 falling
clock transitions, which seems to be correct.

 I get about 9 samples during each clock pulse. Sigrok’s PS/2
protocol decoder is silent about what any of this means.

 Oh, now I’ve told it to trigger on the clock going low, by clicking
on the little “0” tag in the left margin. I was thinking that it was
triggering too late because the data packet is at the very end of the
window, but actually I think this is a bug people have reported in the
past in the Arduino sketch: the values are time-reversed. So the
triggering packet is at the very end of the window instead of the
beginning, and it’s backwards so the PS/2 protocol decoder can’t
decode it. Also, after the first triggering, if I do a second capture it
never runs again unless I reset the Arduino.

 Setting the sample speed down to 50 kHz gives me a 20.5
millisecond window instead of a 5 millisecond window; 20 kHz is too
slow and misses some clock cycles. With this I was finally able to see
the two-byte sequence that indicates a key-release event; there are

https://sigrok.org/wiki/Arduino
https://sigrok.org/wiki/Arduino
https://sigrok.org/wiki/Arduino
https://sigrok.org/wiki/Arduino
https://github.com/gillham/logic_analyzer
https://www.sigrok.org/blog/new-protocol-decoder-ps2
https://www.cnx-software.com/2020/11/14/turn-1-5-blue-pill-stm32-board-into-a-sigrok-compatible-logic-analyzer/
https://www.cnx-software.com/2020/11/14/turn-1-5-blue-pill-stm32-board-into-a-sigrok-compatible-logic-analyzer/
https://github.com/thanks4opensource/buck50
https://github.com/thanks4opensource/buck50
https://sigrok.org/doc/pulseview/0.4.1/manual.html#_triggers
https://sigrok.org/doc/pulseview/0.4.1/manual.html#_triggers

3.92 ms from the start of one byte to the start of the other, so the
whole sequence takes 4.94 ms.

 A capture at “5 MHz” has 5 full clock cycles in 0.3765 ms, 75.3 us
per bit, which is really more like 13000 bits persecond. The whole
1024-sample buffer is some 511 us long, and the samples are evidently
two per microsecond, so I guess it’s sampling at 2 MHz.

 I tweaked the sketch to send back the samples in reverse order from
how they were being sent:

 /*
 * dump the samples back to the SUMP client. nothing special
 * is done for any triggers, this is effectively the 0/100 buffer split.
 */
 for (i = 0 ; i < readCount; i++) {
#ifdef USE_PORTD
 Serial.write(logicdata[readCount - i - 1] >> 2);
#else
 Serial.write(logicdata[readCount - i - 1]);
#endif
 }

 This does not seem to have made any difference, but I think I
maybe made the change in the wrong place. This was the right place:

 if (trigger) {
 while ((trigger_values ^ CHANPIN) & trigger);
 }

 for (i = 0 ; i < readCount; i++) {
 logicdata[i] = CHANPIN;
 delay(delayTime);
 }
 }
 for (i = 0 ; i < readCount; i++) {
#ifdef USE_PORTD
 Serial.write(logicdata[readCount - i - 1] >> 2);
#else
 Serial.write(logicdata[readCount - i - 1]);
#endif

 Now time flows forward, but sigrok’s PS/2 decoder is still not able
to decode the data.

 However, I did manage to get something out of its SPI decoder.
At first I was trying to decode the bits MSB-first, but that’s wrong;
they’re LSB-first.

 Aha, finally I got the PS/2 decoder to decode the F0 of a
key-release event! It apparently doesn’t decode the last byte in a
capture (I guess because it’s missing the falling clock transition that
indicates the end of the bit) and all of my captures are too short so far.

 Now I’ve verified that pressing the “A” key produces the correct
0x1C scan code; the SPI decoder set for clock polarity 1, clock phase
0, lsb-first bit order, 11 bits decodes the sequence 00011100001: start

https://techdocs.altium.com/display/FPGA/PS2+Keyboard+Scan+Codes
https://techdocs.altium.com/display/FPGA/PS2+Keyboard+Scan+Codes

bit 0, data bits 0011 1000 (0x1C LSB-first), odd parity bit 0, stop bit 1.
The SPI decoder renders this as “438” in hex, which is just shifted left
by 1 bit (the start bit):

>>> hex(0x438 >> 1)
‘0x21c’

 Left shift gives “624”, 00100100011, which should be scan code
0x12. This seems to be correct. And sometimes I instead get 0xF0
0x12, which is the correct key release code.

 I feel like for such slow signals it ought to be possible to send a
continuous stream of bytes over the Arduino’s serial port.

 So, at least I understand the PS/2 signals, and the keyboard seems
to work properly.

Topics

• Programming (p. 1141) (49 notes)
• Electronics (p. 1145) (39 notes)
• Experiment report (p. 1162) (14 notes)
• Real time (p. 1195) (7 notes)
• Protocols (p. 1206) (6 notes)
• Input devices (p. 1252) (4 notes)
• Encoding (p. 1256) (4 notes)
• Keyboards (p. 1289) (3 notes)
• Interrupts (p. 1361) (2 notes)
• Arduino (p. 1388) (2 notes)

Self hosting kernel
Kragen Javier Sitaker, 02021-06-21 (updated 02021-12-30) (1 minute)

 Last time I talked to Jeremiah Orians about it, the stage0-posix
project required only the following system calls of a POSIX kernel,
up to M2-Planet+mescc-tools:

• execve(), fork(), waitpid(), exit()
• brk()
• open(), close(), read(), write()
• lseek()
• chmod()

 execve(), fork(), waitpid(), and exit() are used in a stereotyped
manner for spawning a child process running a new program, then
waiting for it to exit(); and chmod() is only used to make a file
executable.

 He said mescc-tools-extra+Kaem also needs:

• fchmod()
• access()
• chdir(), fchdir()
• mkdir() (in particular for extracting tarballs)
• mknod()
• getcwd() (traditionally a library function implemented with stat())
• umask()
• uname() (to find out what the architecture is)

 Mes proper and probably tcc also needs:

• unlink()
• ioctl() (specifically isatty(), to find out whether a shell is interactive)
• stat()
• fsync(), though of course this can be a no-op

 In particular it doesn’t require pipes or I/O redirection.

Topics

• Programming (p. 1141) (49 notes)
• Bootstrapping (p. 1171) (12 notes)
• Small is beautiful (p. 1190) (8 notes)
• Independence (p. 1215) (6 notes)
• Operating systems (p. 1248) (4 notes)
• Unix (p. 1268) (3 notes)

Stack syntax
Kragen Javier Sitaker, 02021-06-22 (updated 02021-07-27)
(4 minutes)

 You can serialize a data structure in a compact way that can be
efficiently interpreted by building it up on a stack, with pointers into
older parts of the stack, minimizing parsing and permitting the fixup
of pointers on input so that the final structure can be safely traversed
with no overhead. This is a potentially interesting middle ground
between slow serialization formats like JSON and protobufs and
zero-parsing formats like FlatBuffers.

 Now, the most basic thing you could do would be to have a big
block of literal binary data, then a “linkage table” that just lists all the
pointers in it, so that you can iterate through and offset each of these
pointers by adding a base pointer to it in place, and maybe verify that
it doesn’t point outside the block afterwards. (Alternatively, you
could do the offsetting when you follow the pointers rather than
when you load them.) Import and export tables are a simple addition
to such a scheme. This isn’t all that compact, it’s not self-describing,
and it's likely to have backward-compatibility problems, but it sure is
fast to load.

 A somewhat less basic approach would use nested delimiters like
JSON or PDF for dictionaries and heterogeneous tuples, but counted
bytestrings for text or numerical arrays. By using both opening and
closing delimiters for dictionaries and tuples, arbitrary nested
structures can be built in place, without fragmentation. A linked list
of delimiter contexts can be interspersed with the actual data on the
stack to avoid any further allocation; and processing the closing
delimiter of a dictionary can create, for example, an
appropriately-sized hash table.

 Referring to the same object more than once cannot be done with a
pure stack discipline. The simplest way to handle this is probably
with a symbol table: a way to define a unique name or ID number as
pertaining to the next or previous object, and a way to insert a
reference to another object. If this name-binding step is done at the
end of deserialization, or lazily when following references, rather than
during deserialization, it permits cyclic references as well as multiple
references.

 In cases where data is being received byte by byte over a network
or serial port, it makes sense to allocate all the memory on the stack.
But if the data is mapped in from a memory-mapped file, it makes
more sense to build only an ‘index’ structure on the stack, with
pointers pointing to raw binary data in the mapping.

 This still requires parsing work for each text string, though, as well
as each object. A faster approach is to have a single bolus of all the
text and numerical data, followed by a list of offsets into it defining
where each blob starts, and then the graph structure of arrays,
dictionaries, and records represented with lists of object IDs. A final
coup de grace is to include the typing information needed to decode the
graph structure itself as a graph-structure item, thus making the entire

structure self-describing without inflating it with redundant type tags,
length fields, and field names. The decoder must traverse the type
graph in sync with the object graph in order to know how to interpret
the bytes of each item.

 But traversing such a file requires not only parallel type-graph
traversal, but also an extra indirection through the object ID table on
every reference traversal. If the object IDs in the graph structure are
allocated x

Topics

• Programming (p. 1141) (49 notes)
• Syntax (p. 1221) (5 notes)
• File formats (p. 1233) (5 notes)
• Stack machines (p. 1320) (2 notes)

Bead hypertext
Kragen Javier Sitaker, 02021-06-22 (updated 02021-12-30) (1 minute)

 The PDF standard (since PDF 1.1) has the amusing terminology of
“beads” on a “thread” of “articles”. I think “bead” might be better
than “line” or “card” or “page” for my card-based hypertext thing
(suggesting perhaps its intellectual descent from wampum).

 And indeed the meaning in PDF is closely related:
Some types of documents may contain sequences of content items that are logically
connected but not physically sequential.
 EXAMPLE 1: A news story may begin on the first page of a newsletter and run
over onto one or more nonconsecutive interior pages.
 To represent such sequences of physically discontiguous but logically related
items, a PDF document may define one or more articles (PDF 1.1). The sequential
flow of an article shall be defined by an article thread; the individual content items
that make up the article are called beads on the thread. Conforming readers may
provide navigation facilities to allow the user to follow a thread from one bead to
the next.

 The beads are “chained” with “N (next) and V (previous)
[attributes]”, while they link to their actual contents with “P” for the
page object and “R” for the rectangle on the page.

 My intent, of course, is to eliminate or ephemeralize the physical
sequence entirely, rather than to simply superimpose a secondary
sequence on it.

Topics

• Programming (p. 1141) (49 notes)
• Human-computer interaction (p. 1156) (22 notes)
• GUIs (p. 1216) (6 notes)
• The Portable Document Format (PDF) (p. 1227) (5 notes)
• Hypertext (p. 1291) (3 notes)

Does USB bitstuffing create a
timing-channel vulnerability?
Kragen Javier Sitaker, 02021-06-22 (updated 02021-12-31) (1 minute)

 USB adds a 0 bit after 6 (or 5?) consecutive 1s. Does this create a
timing channel attack? Is there a two-out-of-5-code-like approach
that avoids this?

 A timing-channel attack would occur when some kind of private
data is being transmitted in cleartext over the channel, such as a
password or an encryption key, and an attacker can observe the length
or timing of the transmission but not its content. It would be
especially helpful to the attacker if they could somehow send data
that was concatenated with, or especially interspersed with, the
bitstuffed data, repeatedly, because that would allow them to
determine that a particular bit was a 1 by inserting several 1s before it.
Although this sounds far-fetched, several vulnerabilities of this sort
have been found in SSL and TLS. Still, USB seems likely to be less
vulnerable.

 Many other line protocols instead use constant-overhead encodings
like 8b/10b encoding to ensure adequate state changes and line
balance at a modest efficiency cost. This approach is guaranteed to
not create a timing-channel vulnerability in this way. FC, DVI,
HDMI, DisplayPort, FireWire, SATA, and USB3 all use 8b/10b.

Topics

• Protocols (p. 1206) (6 notes)
• Security (p. 1224) (5 notes)
• Encoding (p. 1256) (4 notes)

Verstickulite
Kragen Javier Sitaker, 02021-06-23 (updated 02021-07-27)
(3 minutes)

 Vermiculite is readily available at plant nurseries and garden stores,
and withstands temperatures up to 1150°. But it comes as an
aggregate of fragile, loose particles; to make a solid object out of it
you need to stick them together somehow. The standard approach is
to use sodium silicate, but I don’t have any.

 Some adhesives are only activated by heat, and those would need a
low-temperature adhesive to give the “green body” enough “green
strength” to survive until firing. For many uses of vermiculite, much
of the body would never reach a high enough temperature to activate
it.

 The most obvious such “adhesive” would of course be a hydrated
clay, but low-temperature clays might slump too much at
temperature.

 Glassy carbon might be a useful, though weak, adhesive for this
purpose; it won’t flux the vermiculite, won’t melt up to much higher
temperatures, and can be easily made from sugar. You could tumble
damp vermiculite particles in powdered sugar, or spray sugar water
onto tumbling vermiculite, so that each particle is coated without
penetrating much into its interior. Heat caramelizes the sugar into
glassy carbon, hopefully without expanding the aggregate much. The
sugar itself can serve as the initial adhesive if enough humidity is
available and it is prevented from crystallizing. The greatest drawback
of glassy carbon is that in an oxidizing atmosphere it erodes rapidly.

 Superficial borax might also work: a thin coating of dissolved
borax (31.7 g/ℓ) can dry and crystallize, providing green strength;
upon heating, it will produce anhydrous borax at 75° and then
boric-acid glass. This should eventually diffuse into the phyllosilicate
vermiculite grains and eliminate the low-melting phase.

 Soluble sodium donors also seem promising to apply in the same
way: sodium hydroxide, carbonate, or bicarbonate on the surfaces of
the grains should enable them to sinter together by forming a small
amount of sodium silicate in situ. Trisodium phosphate might also
work, perhaps forming silicon aluminum phosphates, though its
aqueous solution might attack the vermiculite even at room
temperature. Phosphates in general may be a useful way to increase
the temperature the final mixture can handle, counteracting the
fluxing effects of additives like boria and soda.

 The most accessible alkali donor is probably wood ash, with its
mixture of oxides and carbonates of sodium and potassium, which
potters sometimes use for ash glazing.

 (Some sodium hydroxide is currently crackling across the room
from me as it releases its water of hydration in a pile of vermiculite on
top of an electric burner; the temperature of the burner is plenty hot
enough to completely melt it, but the vermiculite is slowing the
process. Probably a more finely divided form, or a spray coating on
the vermiculite granules, would have been better; both the

vermiculite grains and the NaOH grains are about 3 mm.)

 (The final result of that experiment: the sodium hydroxide
apparently simply disappeared, leaving the vermiculite loose and not
visibly changed.)

 See also More cements (p. 466) for more notes on mineral cements
that might be applicable.

Topics

• Materials (p. 1138) (59 notes)
• Waterglass (p. 1189) (8 notes)
• Refractory (p. 1225) (5 notes)
• Cements (p. 1235) (5 notes)
• Vermiculite (p. 1238) (4 notes)
• Sugar (p. 1271) (3 notes)

Simple linear-time linear-space
nested delimiter parsing
Kragen Javier Sitaker, 02021-06-24 (updated 02021-12-30) (1 minute)

 Suppose you’re parsing a token stream containing nested delimiters,
like (a b (c (d) e ((f g))) h), storing the tokens as you go, and you’d
like to store information about the nesting structure in the stored
tokens themselves, which are of some fixed size.

 You can clearly get by with a previous-sibling pointer and a
previous-parent pointer, populated online as you parse the string, if
you’re going to traverse the string backwards; on close delimiters,
you could repurpose the previous-parent pointer as a last-child
pointer, since if you want the parent you could just follow the
previous-sibling pointer to the matching open delimiter and use its
parent pointer. When adding a close delimiter and thus ending a
level, to find the matching open delimiter, simply leap to the last
delimiter or delimiter pair within the level now ending and ask them
for their parent; when adding a new open delimiter, look at the
previous delimiter, and if it was a close delimiter, it is your sibling and
tells you your parent; if it was an open delimiter, it is your parent and
you have no siblings yet. This permits building the structure in linear
time with only a single pointer to leap over the trailing non-delimiter
tokens with.

Topics

• Programming (p. 1141) (49 notes)
• Algorithms (p. 1163) (14 notes)
• Facepalm (p. 1199) (7 notes)
• Parsing (p. 1228) (5 notes)

Economic history
Kragen Javier Sitaker, 02021-06-25 (updated 02021-07-27)
(17 minutes)

 (Originally posted at
https://news.ycombinator.com/item?id=27639177.)

 Money doesn’t objectively exist; it’s purely a figment of people’s
imagination. This ten-trillion-Zimbabwean-dollar bill isn’t money
anymore, even though it used to be, and it isn’t physically changed in
any relevant way. The only thing that changed was how people
thought of it.

 It might seem strange to say that a purely imaginary thing like
money could be “the driver/catalyst for everything” in
industrialization, but many strange things are true. I’m writing you
this note in letters of lightning far too small to see, which are
persistently trembling within a few tiny slivers of quartz that can thus
contain the lightning because the vital air has been removed from
it—stranger still, but true, because that is how DRAM chips work.

 Still, let’s see if we can analyze how industrialization happens in
terms of objectively existing reality rather than shared hallucinations
like money—surely the picture will be partial, but it may still be
useful. Industrialization itself seems to be objectively observable: it
doubles people’s life expectancy at birth.

 Let’s start with an outside view of economic production as a whole.
How would we explain it to a Martian?

 People work, planting and harvesting and preparing food. If they
do not eat food, they die in a few months from lack of various
molecules crucial to their biochemistry and energy (collectively
“nutrition”). They expend energy and water and damage their bodies
by working, damages which they repair automatically if they have
time to rest, but which will otherwise eventually kill them. So their
capacity for work is limited. Not everyone has to work, but if the
people collectively produce too little food from their work, then they
will start dying from lack of nutrition, and pretty soon they will all
die. One old book of poetry sums this up by saying, “In the sweat of
thy face shalt thou eat bread.”

 On the other hand, if they can make a lot of food despite their
limited work capacity, more than they need to survive—a
“surplus”—many of them will live for decades, they will reproduce,
and their population will increase, typically by about 4% per year.
Groups that manage to do this come to vastly outnumber groups that
do not.

 (There are some other material necessities for human survival and
reproduction besides food, but none of them are different in relevant
ways, so for the time being I’ll stick to food.)

 The other conventional factors besides labor that affect
productivity are land and something called “capital”. Some land
yields a lot of food and is easy to plant and harvest; other land yields
very little. By “capital” is conventionally meant not money but
durable goods that increase labor and land productivity, such as hoes

https://news.ycombinator.com/item?id=27639177
https://news.ycombinator.com/item?id=27639177

and waterwheel-driven mills for making flour. If people don’t need
to spend their entire labor capacity on making enough food to
survive, they can instead devote some of it to making these durable
goods: cords, needles, ropes, bows and arrows, shoes, knives, hoes,
axes, pots, and so on. Cords and ropes enable you to climb palm trees,
hang meat over a fire, or bridle a horse; needles enable you to make
clothing and all manner of sturdy, flexible fiber goods; bows and
arrows enable you to kill dinner at a distance; shoes enable you to
walk or run longer distances; knives and axes make cooking and
woodworking much easier; hoes allow you to plant much more land;
pots enable not only cooking but food storage and the storage of other
goods; and so on.

 So these are “capital goods”: once you have a surplus, then by
spending some of your work creating durable goods instead of
satisfying basic necessities for survival, you thenceforth multiply their
possessors’ future production, or at least until the durable goods stop
enduring. But a hoe or a blast furnace is produced in the same way as
a vegetable garden: people work to turn raw materials into the
desired end product, directed by their skills and knowledge. Instead
of hoeing the field today, perhaps they’re hammering the hoe blade
into shape or molding bricks from fireclay. Most capital goods are
more or less specialized to a particular sort of production—you cannot
harvest more corn by dumping blast furnaces or gristmills into the
cornfield—though some are more versatile than others.

 I haven’t mentioned skills and energy before, but they’re crucially
important. A person is skilled when they can direct their work to
produce their intended results with ease and precision, and labor
specialization develops skill much more highly.

 Energy is a fundamental physical quantity which can be converted
between many different forms, including heat and kinetic energy;
many kinds of work require a lot of kinetic energy and a lot of heat,
and this has historically often been the limiting resource for work
productivity, particularly when all the relevant kinetic energy came
via people’s muscles from their food, and all the relevant heat came
from firewood.

 The available kinetic energy for production has greatly expanded
five times in the past: ox-yokes (6000 years ago), horse-collars (1500
years ago, in the Sui), the steam-engine (250 years ago), and electric
dynamos and motors (140 years ago). Photovoltaic cells seem at long
last to be adding a sixth item to this list now that they have finally
become cheaper than steam-engines.

 The available heat energy for production has greatly expanded
three times: fire (400,000 years ago), oil drilling (2300 years ago), and
deep-shaft coal mining (250 years ago). Again, photovoltaics are
probably a huge factor here today.

 So, in these terms, we can analyze industrialization as a set of
several major synergistic shifts.

 First, enormously increased specialization, which would have been
counterproductive to effective productivity in the absence of the
worldwide markets created by the British Empire and by cheaper
transport via canals. The ten workers in Adam Smith’s pin factory
could produce 48000 pins a day, far more pins than a village could

use, or maybe even a city—perhaps each household might ruin five or
six pins in a day as they repaired their clothing. Without easy
shipping, the tonnes of pins thus produced would be as worthless as an
asteroid belt converted into paperclips.

 Second, enormously increased use of capital goods enabled by that
specialization—only a few decades after Smith observed his pin
factories of ten or eighteen men, the whole operation became
automated by cam-driven pin-making machinery, further decreasing
the labor per pin, and of course the rise of the spinning-machines and
jacquard and other automated looms is even more notorious.

 Third, as improved capital goods like the cotton gin and the
combine harvester became abundant, the planting and harvesting of
larger and larger amounts of land required less and less labor, so
smaller and smaller amounts of farming work per person sufficed to
prevent mass starvation. This surplus manifested as a mass population
migration from the countryside to the cities, where increasingly
specialized capital-intensive production of all kinds was carried on by
large crews of people harnessing steam power, rather than by
individual farmers plowing behind teams of horses.

 Fourth, invention became central to economic production in the
newly industrializing countries, as it had been a thousand years before
in the Song; we can think of an invention as a skill that has been
digitized, expressed in words or pictures so that it can be copied,
rather than having to be learned by practice. New notions of
precision, innovation, specification, tolerances, and standardization
became central to work in a way entirely foreign to previous
generations. New notions of measurement and metaphors of
clockwork universes allowed the implicit to become explicit, legible,
and reproducible.

 Fifth, the advent of the steam-engine, which permitted pumping
water out of deep-shaft coal mines, which provided a vastly increased
fuel supply.

 — ⁂ —

 In none of the above do we find any money, or for that matter any
elites or banks or other corporations. All of it could, at least
hypothetically, have happened through Stakhanovite altruism or
telepathic mind control, if human nature contained such possibilities.
The investment of surplus production capacity in capital goods which
thenceforth further increase the production surplus, faster than the
human population can increase, combined with labor specialization,
urbanization, and invention, creates industrialization, and that is what
creates the profligate material abundance and extended lifespans we
are struggling to cope with today.

 But of course it is not enough that such a pattern of changes
improves the overall welfare; if the status quo ante is a Nash
equilibrium, anybody who unilaterally attempts to automate
pinmaking, invent cotton gins, or move to a city might merely
impoverish themself and their family. Indeed, if you merely
specialize in pinmaking, surely you will have made more pins than
your family needs within only a few weeks—and how will they eat
this winter if you’ve spent the whole planting season making pins
instead of plowing? Even if your aunts and uncles will plow for you,

they probably don’t need that many pins either.

 And this is where money comes in: trade gamifies work by
allowing you to cooperate productively with people you don’t trust,
breaking the Nash equilibrium that keeps everybody poor, and money
enormously simplifies trade. You can ship a box of pins from your
French pin factory to Spain or England or some godforsaken place
like Connecticut, and receive gold in return, which you can use to
buy both potatoes and better pin-making machinery. As you said, it’s
a lubricant.

 Modern capitalism largely arose in the Industrial Revolution as a
form of gambling. Many entrepreneurs can bootstrap: a machinist
can buy a lathe, a drill, a work-bench, a file, dividers, a square, etc.,
with his wages as a machinist’s apprentice, and as long as he has a
“production surplus” (now, as measured in the collective
hallucination of money, rather than in the increased harvests of the
farmers using his machinery) he can keep improving and buying
machinery to increase his productive capacity and thus his surplus,
and perhaps begin to hire workers—not apprentices for a limited term,
now, as in pre-capitalist craft production, but employees for life. But
a competing machinist who sells her business to capitalists (whether a
few wealthy investors or many subscribers) suddenly has enormously
more money with which to buy such tools, and perhaps she can win
customers away from the bootstrapped entrepreneur, producing
superior goods at a lower price because of her superior tools.

 Effectively the capitalist is offering the worker a deal: the capitalist
provides the tools, the worker provides the labor, and each receives
part of the value produced. In capitalism qua capitalism, the worker is
an employee and receives a fixed wage, while the capitalist receives a
variable profit, but of course there are lots of other variations; the
machinist might take a loan from a bank or rent the tools, precisely
reversing the roles, or someone who’s nominally merely an employee
might receive most of their compensation in the form of incentive
stock options.

 From the point of view of economic development, these questions
of how the pie is divided are minor, but they matter enormously to
the participants. This division depends mostly on cultural
expectations and on the negotiating positions and skills of the parties;
in an industrialized economy, the capitalist has a very strong
negotiating position, since capital goods like drill presses and rail
locomotives are very commonly the critical limiting factor in
productivity. For many expensive products that can be cut on a lathe,
there are fewer lathes that can turn them than machinists skilled
enough to turn them. The machinist without a lathe must resort to
backyard aluminum casting and hand scraping before he can start to
turn parts.

 Ultimately, though, the money is just a scorekeeping device, a
lubricant. What makes the machine shop more or less productive is
not the money, but the tools it bought, which were necessarily
produced by the production surplus of the existing economy. If
suddenly machine shops as a whole attract a hundred times as much
investment, it won’t make their productivity skyrocket by bringing a
hundred times as much tools into existence—it will just drive up the

price of the tools. Pretty soon it will drive up the prices of the
machine shops’ products, too, since if their management doesn’t
deliver a respectable return on that investment, it will be replaced,
and if that doesn’t fix it, the company will be shut down. These
higher prices will tend to decrease the market for the products.

 When we’re talking about international capital flows, we also have
the well-known resource curse or Dutch disease: investing a lot of
money from England in US companies will tend to devalue the
pound relative to the dollar, which makes US products less
economically competitive and/or UK products more economically
competitive. This is precisely the opposite of driving US
industrialization.

 — ⁂ —

 So if some Englishman sent a bunch of money across the Atlantic to
invest in nascent industrialization, that wouldn’t speed up the
industrialization—unless a bunch of that money went back across the
Atlantic to buy the capital goods needed for industrialization. Maybe
it did! From 01780 to 01824 artisans were forbidden to emigrate from
Britain, and exportation of metalworking or glass manufacturing
equipment was likewise forbidden; but these prohibitions were
widely flouted, and at any rate they excluded steam-engines, and they
ended in 01843. A lot of the machinery and artisans during this time
went to the US. The “American System of Manufacturing” was the
world’s most advanced manufacturing technology by the mid-01850s.

 More likely, though, if someone in England was investing in US
industrial firms in the 01800-01850 period, they weren’t meaningfully
promoting a flow of needed capital goods from England to America;
they were just giving the American firms they invested in a leg up on
competing American firms, and perhaps other sectors of the US
economy, like the slave plantations.

 But where does Junius Morgan come into all this? Well, it turns
out that Junius S. Morgan was born in Massachusetts in 01813; his
father was a Revolutionary War veteran and one of the founders of
Aetna in 01819. Junius Morgan was a partner in various US banks
from 01833 to 01853, inheriting his father’s fortune in 01847 and then
becoming a partner in London’s leading American bank in 01854. So
that was when he started funneling British investors’ money into
American industrial companies by selling things such as railway bonds.
J. P. had nothing to do with it! He started working with his father in
London in 01857 and acting as his father’s overseas agent in the US in
01860.

 Moreover, by this point it was no longer a question of “driving
industrialization” in America. The US had already been the world’s
leading industrial power for decades. The B&O railroad opened in
01830, using a US-built locomotive; by 01861 it had 236 locomotives,
3451 rail cars, and 826 km of railroad, and it had many domestic
competitors. In 01830 the Liverpool and Manchester Railway, the
first intercity railway and the first to be powered entirely by steam,
also opened. The US had power looms from 01815, milling machines
by 01816, small arms with interchangeable parts by the 01830s, 2000
steam engines by 01838, cloth exports from the 01830s, electric
telegraphs from 01844, and invented the Corliss steam engine in

01848.

 So, Morgan was far too late to drive industrialization in the US.
He certainly did make a lot of money from it, though. And he
arguably got a lot of other people to invest in its expansion—US
industry expanded a lot in the second half of the 19th century.

Topics

• History (p. 1153) (24 notes)
• Incentives (p. 1230) (5 notes)
• Economics (p. 1258) (4 notes)
• The United States of America (USA) (p. 1314) (2 notes)

More cements
Kragen Javier Sitaker, 02021-06-26 (updated 02021-08-15)
(5 minutes)

 I’ve been thinking more about chemical reactions that can produce
inorganic solids that are hard and/or strong and/or refractory from
conveniently shapable precursors. Previously I was mostly thinking of
things that react in aqueous solution, but now I’ve also been thinking
about granular substances you could mold into shape (in some kind of
carrier, such as a thermoset resin) and then heat up to activate the
reaction.

 In Dercuano in file berlinite-gel I mentioned Grover et al.’s
low-temperature synthesis of alumina ceramics bonded by berlinite
(aluminum orthophosphate) by partly dissolving alumina in aqueous
50 wt% phosphoric acid at 130° (with a 5:1 weight ratio of alumina to
phosphoric acid) for 1–4 days, then heating the resulting a thick
puttylike gel of hydrated aluminum phosphate to only 150° for 1–3
days to get a 20%-porosity solid of nearly 50 MPa compressive
strength. Similar substances (“MALP” or “MAP”) are widely sold as
castable refractories. (See Cola flavor (p. 707) for more on this
substance.)

 With respect to adding phosphate cross-linkers, the ammonium
phosphates should not be overlooked; some are deliquescent under
ordinary conditions, easily dehydrated to crystallinity with gentle
heating, and yield phosphoric acid when the ammonia is driven off
with stronger heating.

 An interesting benefit of phosphoric acid as a binder (or acid
phosphates like monoaluminum phosphate or monomagnesium
phosphate) is that it can bind silicates like soda-lime glass, but doesn’t
destroy them the way lye does. Soda-lime glass fiber is only about
US$3/kg, according to Potential local sources and prices of refractory
materials (p. 566), which is enormously cheaper than any alternative
fiber reinforcement of similar strength. Maybe by combining
phosphoric acid, some kind of high-strength foam (see Glass foam (p.
595)) and oriented glass fiber, you could produce a structure
analogous to wood. Space Shuttle TPS protective LI-900 HRSI tiles
were a felt of fused-quartz fibers, but they were adhered together
with, I think, borosilicate.

 More discussion of such composite materials is in Fiberglass CMCs?
(p. 588).

 A different way to get phosphates of aluminum might be to react
sodium aluminate, easily prepared by digesting aluminum in lye, with
a soluble phosphate, such as one of the phosphates of sodium or
ammonium. I seem to have had some success with this with fire; see
Material observations (p. 633), 02021-08-06. WP says sodium
aluminate is thus used to precipitate soluble phosphates in water
treatment plants.

 Sources of aluminum may be other useful bonding agents;
water-soluble sodium aluminate precipitates aluminum hydroxide in
water upon cooling, part of the Bayer process; even the insoluble

https://en.wikipedia.org/wiki/Sodium_aluminate
https://en.wikipedia.org/wiki/Sodium_aluminate

hydroxide itself may serve as a useful bonding agent due to its
tendency to form a metastable hydrogel which eventually crystallizes.
Calcining the hydroxide yields sapphire.

 Aluminates of calcium are also potentially interesting, especially for
3-D printing; the highly reactive tricalcium aluminate is notorious
for causing “flash setting” of concrete immediately upon hydration,
though a small amount of sulfate can prevent this. WP says:
Water reacts instantly with tricalcium aluminate. Hydration likely begins already
during grinding of cement clinker due to residual humidity and dehydration of
gypsum additives. Initial contact with water causes protonation of single bonded
oxygen atoms on aluminate rings and leads to the formation of calcium hydroxide.
4 The next steps in the sequence of the hydration reaction involve the generated
hydroxide ions as strong nucleophiles, which fully hydrolyze the ring structure in
combination with water.

 But of course if you want to 3-D print a stone object by spraying
water onto a powder bed, this kind of instant setting may be highly
desirable, and tricalcium aluminate's other deleterious effects on
concrete may not be relevant.

 My previous thought of precipitating calcium phosphate through a
double metathesis reaction still might work as a cement, even with
melting rather than in a solvent system. It’s similarly fairly instant. I
had settled on calcium chloride and agricultural diammonium
phosphate, and the thought at the time was an aqueous reaction; but
DAP decomposes to yield liquid phosphoric acid (and other crap) at
only 155°, which I think can attack the solid calcium chloride (which
melts at 772°). Maybe it can also attack solid metallic aluminum to
get phosphates of aluminum. Monoammonium phosphate is cleaner,
decomposing to yield only ammonia and phosphoric acid at I think a
slightly higher temperature.

 Reportedly you can react alumina with boria at 800° or 600°–800°
or 1200° and get the exotic aluminum borate, which reportedly
sublimes at 1050° or above 1300°; reacting aqueous borax with
aluminum sulfate below 45° reportedly gives aluminum borate
directly. For Al₁₈B₄O₃₃, Vickers hardness is reported as 6 GPa,
Young’s modulus 400 GPa, tensile strength 8 GPa (65% higher than
basalt fiber, 15% higher than carbon fiber, three times maraging steel),
Mohs hardness 7, crystal habit acicular, and the whiskers have been
used to strengthen aluminum. There are a few different aluminum
borates or boron aluminates, though.

Topics

• Materials (p. 1138) (59 notes)
• Phosphates (p. 1184) (9 notes)
• Foam (p. 1185) (9 notes)
• Cements (p. 1235) (5 notes)
• Sapphire (p. 1331) (2 notes)

https://en.wikipedia.org/wiki/Tricalcium_aluminate
https://en.wikipedia.org/wiki/Sodium_aluminate
https://en.wikipedia.org/wiki/Sodium_aluminate
https://pubmed.ncbi.nlm.nih.gov/19198315/
https://www.tandfonline.com/doi/pdf/10.1080/21870764.2018.1539209
https://www.tandfonline.com/doi/pdf/10.1080/21870764.2018.1539209
https://www.americanelements.com/aluminum-borate-11121-16-7
https://www.americanelements.com/aluminum-borate-11121-16-7
https://www.tandfonline.com/doi/pdf/10.1080/21870764.2018.1539209
https://patents.google.com/patent/US3860692A/en
https://patents.google.com/patent/US3860692A/en
https://www.tandfonline.com/doi/pdf/10.1080/21870764.2018.1539209
https://www.tandfonline.com/doi/pdf/10.1080/21870764.2018.1539209
https://www.tandfonline.com/doi/pdf/10.1080/21870764.2018.1539209
https://www.tandfonline.com/doi/pdf/10.1080/21870764.2018.1539209

Base 3 gage blocks
Kragen Javier Sitaker, 02021-06-27 (updated 02021-12-30)
(5 minutes)

 Suppose you want to make a minimal number of gage blocks (Joe
blocks) out of Zerodur or something similar, with precision of 0.1
microns and a range from 2 mm up to 200 mm in increments of 0.5
microns. Conventionally this is done with combinations of 1 to 7
gage blocks from a set of some 80 or 90 pieces. (Also, conventionally,
the blocks are made of hardened steel rather than a ceramic, despite
steel’s inferior thermal stability, chemical stability in air, and tendency
to raise burrs when scratched. Zirconia gage blocks are coming into
use, but they are no more thermally stable than steel; a zirconia
coating on a Zerodur base would probably be better still. Tungsten
carbide is an intermediate ceramic that is seeing some use with a lower
TCE.)

 Well, in theory you could try doing it in binary, with sizes in
microns 0.5, 1, 2, 4, 8, 16, and so on, 18 sizes in all to get to 200 mm.

 But a gage block that’s less than 10 microns thick will be destroyed
when you touch it, probably 100 microns if it’s a fragile material like
Zerodur. If instead you start at 200 microns and go up with these
binary increments, you could start with 200.5 microns, 201, 202, 204,
208, 216, 232, 264, 328, and 456, plus ten 200-micron blocks, then
you can wring together ten items from this set to get from 2 mm to
2.5115 mm in 0.5-micron increments; at this point you can add blocks
of 0.512 mm, 1.024, 2.048, 4.096, 8.192, 16.384, 32.768, 65.536, and
131.072 to get any number up to 200 mm. Up to 264.1435 mm, in
fact. But that’s 29 blocks instead of 18.

 Suppose that instead we use balanced ternary and add an offset of
250 microns. Our first few blocks would be of sizes 249.5 microns,
250.5, 248.5, 251.5, 245.5, 254.5, 236.5, 263.5, 209.5, 290.5, plus 5
blocks of 200 microns. Combinations of 5 of these 15 blocks give us
any size from 1.1895 mm up to 1.3105 mm in increments of 0.5 mm,
243 measurements covering a total range of 121 microns. If we offset
our next power of 3 around 321.5 microns instead of 250, we have
three more blocks of 200, 321.5, and 443 microns, and now we can
cover the range from 1389.5 microns to 1753.5 at 0.5-micron intervals
by wringing together 6 of these 18 blocks, a 364-micron range. A
single additional block of 364 microns doubles our range, and now we
have a 728-micron range in combinations of 6 or 7 blocks out of 19.
By increasing the offsets mentioned above we can relocate that range
to cover 2.000 to 2.728 mm; this is clearly a small improvement over
the previous system, which needed 20 blocks to cover 2.000 to 2.5115
at the same resolution. Adding 9 more binary blocks as before gets us
to our objective in 28 blocks.

 Still, I can’t help but feel that this is not optimal. There are 524288
combinations of our 19 initial blocks, but these are only giving us 1457
different lengths within their intended range; many combinations are
outside the bounds (including all the combinations with less than 6 or
more than 7 blocks), and 5 of the initial blocks are 250 microns in size
and thus interchangeable, so there are many equivalent ways to

achieve most of our 1457 lengths by using one or another 250-micron
block. Ideally if we wanted to be able to construct 1001 evenly spaced
lengths from 2.0000 mm to 2.5000 mm, we could do it with only 10
blocks (from which there are 1024 combinations), or maybe only a
little bit more, rather than needing as many as 19.

 So, it seems that this solution can be easily improved (it’s only
about 0.3% efficient) but it’s not clear to me what the optimal solution
is or how to calculate it.

 Making the gage blocks circular rather than rectangular might
make it more difficult to wring them together, but it would also
reduce their vulnerability to chipping.

 If these blocks are themselves microscopic in size and intended to
be handled by microscopic manipulators, the problem of very thin
blocks may become less severe, as breakage is less of a problem at
small scales; the forces needed to lift and manipulate objects are
smaller relative to their strengths than at macroscopic scales. But
surface effects like adhesion and wear may become more troublesome.

Topics

• Contrivances (p. 1143) (45 notes)
• Manufacturing (p. 1151) (29 notes)
• Machining (p. 1165) (13 notes)
• Math (p. 1173) (11 notes)
• Composability (p. 1188) (9 notes)
• Metrology (p. 1212) (6 notes)
• Length (p. 1356) (2 notes)

Multiple counter-rotating milling
cutters to eliminate side loading
Kragen Javier Sitaker, 02021-06-27 (updated 02021-12-30)
(7 minutes)

 Milling machines need a lot of rigidity to avoid not only
imprecision but even oscillation, or even grabbing in the case of climb
milling, under the heavy side forces created by their cutters. Their
workholding setups also must withstand these side forces.

 The cutters are most commonly end mills doing side cutting. It
occurs to me that, when doing a straight cut while side cutting, if you
have two counter-rotating end mills close to one another, so that one
is climb-milling while the other is conventional-milling, then only
the spacing between the cutters needs to be rigid to resist the cutting
forces, because the forward force by one cutter can be balanced
against the reverse force by the other cutter. By adjusting the two
cutters’ engagement depths and spindle speeds, you can use a
controlled imbalance in these side loads to feed the machine through
the material, eliminating the need for a high-power feed motor
driving the X and/or Y axis; the feed motor only needs to oppose the
side loads perpendicular to the toolpath, which will be only partly
canceled by this setup but do not require any power, just holding.

 The two spindles might be mounted a fixed distance apart on a
small turntable rotating around a C axis, for example.

 Of course you need active feedback to monitor the resulting
positions and feedrates and adjust the angles and spindle speeds
between the two cutters to compensate.

 Doing this for more complex surfaces might require rotating the
carrier for the two cutters around two axes, not just one. If the
cutters are not ball-nose endmills, it might then be necessary to rotate
the spindles back to verticality.

 In face milling, it should be possible to do something similar most
of the time while cutting almost twice the width of a single
face-milling cutter in a single pass, by overlapping the paths of the
cutters slightly, while overlapping the path of the leading cutter with
a corresponding amount that was cut in the previous pass. That same
overlap will create an imbalance between forward and backward
forces which can enable the cutting forces to feed the cutter into the
material.

 To do the same kind of thing for single-point cutting on a lathe,
you could use two cutters on opposite sides of the workpiece, perhaps
with a negative rake angle on them so that if one strays a bit closer to
the center of the material than the other, the cutting force will push it
back out, so that the cut is the same depth on both sides. Using three
cutting points instead of two eliminates an undesired degree of
freedom in movement.

 This is pretty much the same way that dies, taps, and countersinks
center themselves on existing round features, and drills follow
existing holes, so it could lead to cutting non-concentric features. If

the cutters’ rake angle can be varied dynamically during each
revolution, you could use position feedback to cut deeper on the high
side and thus recenter the cutting; a system of levers referenced to the
desired cutting axis can achieve this. The same approach can be used
in place of a boring bar: a sort of hole-expanding drill or boring head
that self-centers on the desired cutting axis by changing the rake
angles of its cutting points.

 These drilling-like approaches surely eliminate most of the usual
side forces and workholding forces: if you’re cutting a vertical
cylinder, inside or outside, then all the horizontal cutting forces cancel
between the three cutting teeth. It’s like a drill press: you still need
potentially a vertical force to feed into the stock (and to hold the
stock in place as you do that), which maybe you can avoid by tilting
the teeth forward or back to pull it into the stock at an appropriate
speed.

 But the bigger remaining issue is that the moment from rotating the
teeth relative to the workpiece is still present; this is what potentially
causes a poorly held workpiece in a drill press to spin around on the
drillbit and break your hand. If you’re cutting on a large radius, this
moment is potentially very large, and it needs to be resisted (probably
quite rigidly) across the whole
workpiece-workholding-frame-spindle chain. If instead of using
three rotating teeth you use four rotating endmills with steep enough
helices to ensure continuous contact, then this problem can be
eliminated; two of the endmills can rotate in one direction while the
others rotate opposite them, with the relative depths of engagement
determining the overall revolution of the assembly. It might be
possible to reduce this to two endmills and a roller.

 Using ordinary endmills would give up the ability to control the
rake angle, but a more elaborate endmill design with movable inserts
could retain that degree of control as well.

 For face milling, the equivalent of concentricity is tramming. You
could imagine a sort of three-pointed fly cutter which dynamically
adjusts the rake angles of its three teeth as it moves over the surface so
as to cut deeper on one side than the other, in order to bring the
surface into parallelism with the desired plane. If we suppose the
surface is horizontal, the cutter’s yaw axis is driven by a spindle, while
its pitch and roll axes are controlled by its engagement with the
surface. Some kind of force is needed in Z to get the teeth to dig into
the stock (unless a steep rake can provide that force on its own). The
varying degrees of engagement produce side forces in X and Y, which
will not in general correspond with the desired direction of motion
across the workpiece, so X and Y feed motors are also needed.

 If instead of one three-pointed fly cutter we have three, the X and
Y side forces from the nine points can be controlled to provide the
desired X and Y feed.

Topics

• Contrivances (p. 1143) (45 notes)
• Manufacturing (p. 1151) (29 notes)

• Machining (p. 1165) (13 notes)

Layered ECM
Kragen Javier Sitaker, 02021-06-27 (updated 02021-12-30)
(2 minutes)

 Electrochemical machining cuts almost any metal, has reasonably
high material removal rates, has no side loading or heat affected zone,
and permits cutting fairly free-form parts in 3-D, much like CNC
milling. But in its ordinary form it can’t cut parts with complex
internal spaces, and in a pure 3-axis form it can’t even cut overhangs.

 Watching demo videos of ZURAD Engineering’s ECM
jet-cutting machines, though, it occurred to me that we can go
further still. If we use ECM cut layers of the 3-D shape we want,
then stack them up, we should be able to get not only much
freer-form shapes, but also effectively a higher material removal rate,
since we only need to remove a perimeter of stock around the shape
of each layer, while if we were cutting the same part out of a solid
block of stock, we’d have to remove all the material all the way to the
surface of the stock.

 There are many possible ways to manage the layer stackup, but
locator pins for alignment and thin plastic backing for each layer seem
like one straightforward option; the pins can instead be replaced with
thin strips that are cut out with ECM in the same way.. The plastic
backing can be burned away after the layers are stacked up.

 After roughing out the shape in layers this way and stacking them
up, you can do the final precision shaping work with ECM on the
stacked-up part.

 ZURAD’s soon-to-be-open-source ZURAD Two EC Jet Cutter
evidently cuts 1mm-thick sheet steel with a gentle stream of water
with 100 grams of NaCl per liter of water (or was it 200?), with the
metal nozzle about 2.5 mm away from the steel. For some reason he
positions the sheet steel horizontally instead of vertically. The video
looks like it cuts at about 2mm/sec, but at one point the guy holds up
a part (“a simple mechanical pawl”) with a perimeter of about
100mm, and says it took an hour and a half to cut completely
through, so maybe it took 50 passes. I have no idea what current or
voltage he’s seeing; on his die-sink ECM machine he uses 12 volts.

Topics

• Manufacturing (p. 1151) (29 notes)
• Electrolysis (p. 1158) (18 notes)
• Machining (p. 1165) (13 notes)
• ECM (p. 1186) (9 notes)

https://www.youtube.com/watch?v=jTk1wRwtbQ4

A kernel you can type commands
to
Kragen Javier Sitaker, 02021-06-27 (updated 02021-12-30) (1 minute)

 What if your system call interface was usable as a shell?

 That is, you might plug a user process into an outlet that lets it ask
the kernel to do things and get back responses, but the language that
it’s speaking to the kernel is a language that a person can also
reasonably speak. Or, maybe not a person, but at least a text terminal,
if it’s plugged into that same outlet. Maybe you can open a file and
read some data from it by typing a couple of lines of text into the
kernel, and those are the same lines of text a program would send to
do the same operation.

 In a sense, this isn’t such a profound idea: on a modern computer,
instead of the shell interpreting user interface events (received
through system calls) and translating them into system calls, the
terminal emulator would interpret user interface events received
through system calls and translate them into system calls. The actual
interface between the terminal emulator and the kernel wouldn’t
have to look like an ASR-33 byte stream punctuated by CRLFs; it
could take any convenient form. The key difference from current
shells is that the form of the interface is something that could just as
well be used to talk to programs other than the kernel, and often is.

Topics

• Human-computer interaction (p. 1156) (22 notes)
• Systems architecture (p. 1205) (6 notes)
• Post-teletype terminal design (p. 1207) (6 notes)
• Operating systems (p. 1248) (4 notes)

Can you use stabilized cubic
zirconia as an ECM cathode in
molten salt?
Kragen Javier Sitaker, 02021-06-27 (updated 02021-12-30)
(3 minutes)

 You ought to be able to use yttria-stabilized zirconia, magnesia,
carborundum, or graphite as a cathode for electrochemical machining
of metals in a molten-salt electrolyte. I think zirconia needs to be
heated up to 500 degrees, maybe 800 degrees, before it becomes
conductive, but carborundum and graphite do not.

 Magnesia was what Nernst used in his original lamp, with a
platinum preheating filament, but it is fragile and presumably requires
even higher temperatures to become conductive than zirconia; the
temperature for magnesia was originally claimed to be over 3000°,
though magnesia melts at only 2852°. Hartman solved the mystery in
01906, finding temperatures from 1780°-2360°, but these were the
temperatures at which the globars were operated to provide light, not
the lowest temperatures required to make them conductive.

 The commercially sold Nernst lamps used platinum filaments
heated to redness to preheat the “glowers”, which were presumably
already zirconia rather than magnesia, though the 01903 manual
doesn’t say, only that they are “porcelain-like”. Hartman said the
glowers he tested in 01906 were magnesia. Mills’s history of the lamp
said magnesia required “above a red heat”, and explained that it
required a ballast resistor to stabilize it because of its negative
temperature coefficient of resistance. Nernst used a red-hot iron wire
in a hydrogen envelope for this resistor.

 Mills also mentions that early carborundum was insufficiently
conductive for use as globars.

 Another promising oxide for this sort of thing is bismuth trioxide,
which is significantly conductive down to room temperature. The
monoclinic room-temperature form is four orders of magnitude less
conductive than the delta form that’s favored above 727°; analogous
to YSZ, doping with other metal oxides can stabilize these more
conductive forms to lower temperatures. However, its melting point
is only 817°, so while it might be useful for molten-salt
electrochemistry, it wouldn’t work well as a globar. (It’s also
nontoxic, insoluble in water (though attacked by CO2 unless
stabilized with silicate), and has an astounding density of 8.9 g/cc;
sillenite, a bismuth silicate, is even denser at 9.2 g/cc, and though very
soft, it might be an interesting aggregate to add to pottery to increase
its density.)

 ECM at the higher temperatures enabled by molten salts ought to
permit faster material removal than in aqueous solutions, and might
be particularly appealing for metals that are difficult to machine
electrochemically in aqueous solutions; however, I think only gold
and some of the platinum-group metals really suffer from this.

https://web.archive.org/web/20171009210651/http://www.nernst.de/lamp/science1898/nernstlamp_science1898.htm
https://web.archive.org/web/20171009210651/http://www.nernst.de/lamp/science1898/nernstlamp_science1898.htm
https://web.archive.org/web/20170410003336/http://nernst.de/lamp/science1898/nernstlamp_science1898a.htm
https://web.archive.org/web/20170410003336/http://nernst.de/lamp/science1898/nernstlamp_science1898a.htm
https://en.wikipedia.org/wiki/Magnesium_oxide
doi:10.1103/physrevseriesi.22.351
doi:10.1103/physrevseriesi.22.351
https://web.archive.org/web/20170410043307/http://nernst.de/lamp/nlc/nernstlamp_nlc1903.pdf
https://web.archive.org/web/20170410043307/http://nernst.de/lamp/nlc/nernstlamp_nlc1903.pdf
http://web.archive.org/web/20130717015135/www.erittenhouse.org/artitcles/the-nernst-lamp/
https://en.wikipedia.org/wiki/Bismuth(III)_oxide
https://en.wikipedia.org/wiki/Bismuth_silicon_oxide
https://en.wikipedia.org/wiki/Bismuth_silicon_oxide

Topics

• Materials (p. 1138) (59 notes)
• Manufacturing (p. 1151) (29 notes)
• History (p. 1153) (24 notes)
• Electrolysis (p. 1158) (18 notes)
• Machining (p. 1165) (13 notes)
• ECM (p. 1186) (9 notes)
• Carborundum (p. 1381) (2 notes)
• Zirconia
• Nernst lamps
• Molten salts
• Magnesia

Electrolytic glass machining
Kragen Javier Sitaker, 02021-06-28 (updated 02021-12-30)
(6 minutes)

 Electrolytic machining of glass may be feasible, using a sort of
micro-scale variant of the chlor-alkali process in which the
alkali-producing anode directs a stream of dilute near-boiling aqueous
alkali against the glass, locally corroding its surface into soluble
sodium silicate which is immediately washed away, carrying the ionic
current toward the anode. This would be a very slow process, but
may be useful for precisely shaping amorphous silicates.

 As I understand it, the usual overall reaction of electrolysis of, for
example, sodium bicarbonate works like this. The current is carried
by Na+ ions migrating from the anode to the cathode (in industrial
practice, through a cation-exchange membrane), while the HCO3-
ions left behind at the anode give up their electrons to the anode and
produce CO2, O2, and water: 4HCO3- -> 4CO2 + 4OH-; 4OH-
-> O2 + 2H2O + 4e-. At the cathode, meanwhile, the Na+ ions
aren’t actually taking the electrodes from it; instead, they’re taking
hydroxyls from it, which the cathode is producing as 4H2O + 4e- ->
2H2 + 4OH-. So the overall reaction is apparently 4NaHCO3 +
2H2O -> 4NaOH + 4CO2 + O2 + 2H2. This contradicts Simon et
al., which says it’s 2NaHCO3 + 2H2O -> 2NaOH + 2CO2 + O2 +
2H2, splitting twice as much water, but I guess you could totally have
some arbitrary number of hydroxyl anions additionally traveling in
the opposite direction through the cation-exchange membrane and
thus totally split twice as much water, or ten times as much. Or
maybe I miscalculated something above?

 Anyway, so for glass ECM in this context you would have a tiny
little “chlor-alkali” sodium bicarbonate cell whose cathode is a metal
tube, like a hypodermic, nearly pressed up against the glass. Hot
water is being pumped through the tube through a membrane, behind
which you have a tiny pressure chamber, made of an insulator, full of
ridiculously positively charged water. The water is pumped into it
from where it’s bubbling out oxygen and carbon dioxide after the
anode destroys bicarbonate ions and gives the water that strong
positive charge. The cathode neutralizes this positive charge and
produces hydroxyl ions and hydrogen gas, which then come out its tip
tens of microns away from the glass. After the alkaline water
impinges on the glass it spreads out into a rapid current of some kind
of buffer or acid, which neutralizes it and keeps it from corroding the
rest of the glass. Maybe the acid is also produced by a similar kind of
electrolytic cell, from sodium sulfate or something, so you don’t need
an acid reservoir. Maybe even the same electrolytic cell.

 Now, how plausible is this? I was originally thinking it would
require a totally implausible degree of macroscopic charge separation,
with unrealistically large coulombic forces from the highly charged
water on nearby objects. But of course the reason water is a good
solvent for things like sodium ions is precisely that it solvates them
with its high permittivity, screening all but a tiny amount of their
electric field. And nickel, at least, can withstand contact with hot

https://core.ac.uk/download/pdf/36998552.pdf
https://core.ac.uk/download/pdf/36998552.pdf

caustic solutions. You might need to supplement the needle cathode
with a high-surface-area reticulated non-graphitizable carbon
electrode, and build the anode in the same way, to get high enough
current. You might need to use a high overvoltage and thus get poor
current efficiency. But it seems clearly feasible.

 What if you ditch all the complicated plumbing and just immerse
the glass in the hot sodium bicarbonate solution or whatever, and for
your cathode use a solid metal needle insulated except for the tip?
What happens if you pump a pulse of electrons into the cathode?
Won’t they produce hydroxyls that attract more Na+ to the area and
enable it to etch the glass there? Won’t they repel HCO3- ions from
the area?

 Well, I don’t know. Maybe? It seems like it ought to work.

 We might be talking about microscopic effects, though; some
researchers ran some experiments on glass recycling in 02010 and it
took them about 15 days to dissolve 25% of their glass samples,
pulverized to 250-800 microns, in 1-molar NaOH at 70°. KOH was
somewhat less effective, 5-M NaOH was slightly more effective,
using a solution at only 50° was much less effective, and smaller
particles sizes were significantly more effective, but overall we’re
talking about rates in the ballpark of 30 microns a day or 400
picometers per second.

 Yet I’ve seen demonstrations of dissolving silica gel in 30% aqueous
NaOH that converted amorphous silica gel to sodium silicate in a few
hours. The silica gel in question didn’t have any alkaline earth
elements in it, I suppose, which Kouassi et al. mentioned as a factor
that slowed dissolution for them. And the demonstrations I’ve seen
where lye dissolved glass in seconds or minutes were with molten
anhydrous lye, not aqueous lye, which would be something like “25
molar” and is also at something like 350° instead of 70° or 100°.

Topics

• Materials (p. 1138) (59 notes)
• Manufacturing (p. 1151) (29 notes)
• Electrolysis (p. 1158) (18 notes)
• Machining (p. 1165) (13 notes)
• Precision (p. 1183) (9 notes)
• ECM (p. 1186) (9 notes)
• Glass (p. 1254) (4 notes)

https://www.ceramics-silikaty.cz/2010/pdf/2010_03_235.pdf
https://www.ceramics-silikaty.cz/2010/pdf/2010_03_235.pdf
https://www.youtube.com/watch?v=U1ZWJCuJAYA
https://www.youtube.com/watch?v=U1ZWJCuJAYA

Super ghetto digital fabrication
Kragen Javier Sitaker, 02021-06-28 (updated 02021-12-30)
(33 minutes)

 Suppose we have positional control precise to within a few
microns, but not much force, power, rigidity, money, or access to
pure materials. How can we leverage this into a comprehensive
flexible digital fabrication capability?

Geometry

 The standard ghetto metalworking processes are stick welding,
bending, drilling, hammering, and angle grinding.

 Digitally-controlled stick welding is maybe a bit difficult, but
should be feasible, since “welding robots” have been a thing for
decades; controlling the power supply should make it much easier to
strike the arc with a TIG-like high-frequency start, you can avoid
sticking the electrode because you don’t need to enable high current
until an impedance measurement shows the electrode has been lifted
from the surface; voltage feedback should provide a trustworthy and
low-latency indication of the arc length once it’s struck; current and
polarity duty cycle can be adjusted rapidly to control electrode
melt-off rate; and precise toolpath control should dramatically
improve weld quality. To the extent that you can substitute a CO2
hose (“MAG welding”) for standard stick-welding flux, you can
avoid slag that needs to be chipped or ground off; this should be no
problem when welding on steel. “Short-circuiting metal transfer” as
in MIG/MAG welding should be a possibility. This kind of process
might allow “stick welding” using plain steel baling wire, and thus
3-D printing in mild steel.

 Model-predictive control of the temperature distribution across the
workpiece, with webcam feedback from surface temperatures, is
probably critical to this. The dimensional precision of the result will
probably be compromised by the contraction of the deposited metal,
which is one reason welding is conventionally used for permanent
assembly of prefabricated parts rather than large material buildups
(though adequate toolpath planning could potentially reduce this
problem), and the resolution will be limited by the surface tension of
the weld puddle.

 Bending of wire, rebar, or sheet-metal strip can be very precise if
you have a good model of the material’s work-hardening properties,
and fairly fast and low-power as well. But this probably requires
annealing the metal (to eliminate unknown work-hardened zones)
and possibly keeping it hot during fabrication. Bending of sheet metal
is normally done with sheet-metal brakes, press dies, or beading
machines. Digital fabrication of press dies is now widespread and can
often use cheap plastics.

 Drilling metal is pretty high power and imprecise; it may not be
very suitable for digital fabrication as a general technique, although
digitally controlled drilling might be a useful supplement to other
processes, for example to do initial piercing of a workpiece before

further processing. Manually drilling metal or wood after holes have
been precisely started by a slower digitally-controlled process is also
likely useful.

 Digitally-controlled grinding should in theory be able to generate
very precise geometry (submicron), particularly since the difference
between contact and non-contact between a grinding wheel and the
workpiece is not at all subtle; it is easy and fast to detect either the
light from sparks (maybe 100 microsecond latency) or the sound
(maybe 20 microseconds if you have a microphone on the workpiece).
This should be able to give a pretty good indication of where the
surface of the workpiece is, to within the error of your model of the
grinding wheel’s geometry, and you can go back and measure points
on the workpiece in between grinding passes by detecting its
conductivity. Large grinding wheels are high power when grinding
continuously (a US$40 Black & Decker G720N 115mm-diameter
11000rpm angle grinder is 820 W) but not intermittently, and small
ones need not be high power or even noisy.

 Digitally controlled hammer forging of metal seems potentially
very promising, especially since it could produce work-hardened
results, but it involves a lot of variables and probably requires
annealing steps.

 Aluminum foil should be easy to cut to desired shapes under
computer control with just a razor blade. If it’s on a softish surface,
running a small hard wheel over it under computer control should be
sufficient to put ribs into it to give it a little bit of rigidity and define
creases for origami panels. Automatically folding the origami or
assembling the panels is probably pretty difficult, but doing it
manually is certainly practical for initial prototyping. The precise
origami shapes thus formed can then serve as tiny molds for
inexpensive lightweight castable materials including candle wax, pine
pitch, polyethylene cutting boards, and polypropylene bottle caps and
rope. If desired, the aluminum foil can then be removed
electrolytically with a saltwater or vinegar electrolyte or
non-electrolytically with lye or muriatic acid.

 Aluminum foil can also be cut with low side forces and tiny holes,
but probably lower positional precision, with sparks from a copper
point or graphite electrode. Normally you would do this in air but
doing it under water or oil may provide better precision.

 Mild sheet steel is easy to come by and should be easy to cut
precisely but slowly with electrolytic machining with salt water,
vinegar, or sulfates. Such cutting can include living hinges that make
it easy to bend the resulting cut sheet into precise shapes.

 Shapes roughly fabricated in nearly any metal can be brought to
precise geometry by electrolytic machining or electric discharge
machining, which produce no side forces and no heat-affected zone.

 Electrolytic machining of glass may be feasible; see Electrolytic
glass machining (p. 477).

 Styrofoam is easy to come by and can be easily cut under digital
control with a hot wire. Suitable wire materials that are easy to come
by include copper, steel, stainless steel, and nichrome.

 Rigid, brittle fine foams such as some of the materials mentioned

later offer enormous advantages for digital fabrication: they are as
easy to cut to dimension as very soft materials like paraffin wax
(though much more abrasive), or even easier, but retain the
dimensional stability and refractory properties of the corresponding
solid material, which are superior to even some hard metals, and their
Poisson ratio is effectively 0; also, and related to their ease of cutting,
they are much more resistant to fracture propagation than the
corresponding solid materials. The only traditional materials with
similar properties are Mykron/Mycalex and exotic mica-containing
machinable glass-ceramics.

 Corrugated cardboard is very abundant and has a spectacular
strength-to-weight ratio and good dimensional stability in two
dimensions; it can be cut with razor blades to form precise 2-D
shapes and pressed with roller wheels to form precise crease lines,
which can then guide origami assembly. Thicker corrugated
cardboard may require higher-powered cutting with a wire saw or
hacksaw. Cardboard’s worst disadvantage is that it is very vulnerable
to water.

 Pottery clay bodies are readily available and very easily formed or
extruded, although their stickiness can be a problem, and there is
currently no software available that can model their behavior well
enough to control their forming. If fired, they can produce hard,
refractory, dimensionally stable materials with substantial strength,
but if not fired, they can easily be recycled.

 Digitally guided sandblasting (“abrasive jet machining”) requires
compressed air and consumable nozzles, but offers the possibility of
cutting desired geometry into a wide variety of materials, even very
hard ones, as well as selectively abrading surfaces, exposing fresh
unreacted material. This produces such low side forces and heat loads
that it can be used even on thin glass or eggshells, though getting it to
work on aluminum foil might be too much to ask. Although it even
works on metals, it is substantially more effective on brittle materials.
Careful choice of abrasives can make this a material-selective process;
in industry, for example, glass-bead blasting is used to remove paint
without damaging steel, and dry-ice blasting is used for degreasing
without damaging paint.

 The easiest abrasive to use for sandblasting is of course silica sand,
but crystalline silica dust causes silicosis, to the point where
sandblasting with silica has been outlawed in many countries. (This
doesn’t solve the problem if you’re cutting something like granite, of
course, and granite is a very desirable thing to be able to cut because
of its dimensional stability.) Sapphire, carborundum, apatite, metal
oxides, or powdered waste glass may be preferable abrasives.

 A different way to do digitally controlled abrasive cutting might
involve passing a fabric loop loaded with loose, perhaps wet and
sticky, abrasive across or through the workpiece. This is pretty similar
to a wire saw, but I think the flat-tape shape of the fabric potentially
provides a better tradeoff between breakage risk and kerf width. To
make a given cut, the tension on the leading edge of the fabric needs
to be just as high as it would be without all the cloth behind it, but if
that turns out to be too high, the rest of the cloth doesn’t have to rip
as well.

 Digitally guided 2-D plasma or oxy-fuel cutting is of course
already a widespread process, and is much faster than most
alternatives; laser cutting is making significant inroads here in recent
years, but would be much more difficult to improvise.

 The “Oogoo” Sugru-like silicone putty mix of cornstarch and
hardware-store silicone caulk is thixotropic with a working time of
minutes to hours (5 minutes with a 1:2 ratio, an hour with a 5:1 ratio),
and thus eminently suitable for digital fabrication through extrusion
or forming.

 Plaster of paris can be foamed with baking powder, then cut to
shape. It adheres well to quartz sand, and quartz sand or quartz flour
can be useful functional fillers for it.

 Charcoal is an easily cut material related to carbon foam (see
below), but it tends to suffer pervasive cracking from thermal
contraction during its formation, which may limit its uses.

Adding strength to established geometry, or
otherwise switching materials

 A lot of the processes in the previous section for converting digital
data into a physical three-dimensional shape are only applicable to a
narrow range of materials, often with fairly poor properties for
anything besides being shaped. So it’s important to be able to transfer
a geometry fabricated in one material into some other material.

 Hardware-store silicone caulk is a promising material for molding
for a few different reasons. It’s capable of holding detail down to the
micron level; it’s fairly inert once set, withstanding, for example,
gasoline; it’s thermally stable up to typically 300° (though the red
high-temperature formulation commonly used for auto repair as
“RTV” goes a bit higher); it’s fairly dimensionally stable (though it
does shrink a little, unlike some other silicones); and it’s elastomeric.
Being elastomeric makes it easy to pry it out of molds made of a
harder material, and also makes it easy to peel molds made out of it
off castings of a harder material. Also, it won’t remain stuck to
polyethylene or polypropylene, and reportedly also not to PVC or
polycarbonate.

 Shapes initially fabricated in aluminum foil can be thickened by
electroplating/electroforming them, most easily in copper or brass.
Although it is important for the copper to form a solid layer, it is not
necessary for it to adhere firmly to the aluminum, as is usually desired
in electroplating processes. Because the aluminum foil is the cathode
in the electrolytic cell, it is possible to use electrolytes such as muriatic
acid or lye that would normally destroy it immediately. A potentially
larger concern is the risk of deformation from the surface tension of
water, which can be reduced with surfactants and the substitution of
alcohol for water.

 Electroforming on non-conductive shapes is conventionally done
with graphite powder dispersed in some solvent and painted onto the
object. In some cases you can disperse the graphite in a solvent that
softens or dissolves the surface of the object, welding the graphite to
it; dichloromethane is reported to work for PLA.

 Polypropylene can be sufficiently stiff for molding of plaster of

https://hackaday.com/2010/10/11/oogoo-a-home-made-sugru-substitute/

Paris or portland-cement concrete, which can provide a
polypropylene part with much greater rigidity and thermal stability
than polypropylene alone. In the case of plaster, it may be possible to
later strengthen the plaster by filling internal channels in it with
molten metals such as aluminum, brass, or cast iron.

 Styrofoam forms, even those that can be cut by hot wires, can be
stacked up into forms for low-temperature molding (for example, of
portland cement or plaster of paris), or they can be wrapped in
papier-mache-family strengthening materials such as cotton cloth
soaked in plaster of Paris or fiberglass window screen soaked in
non-alkaline sodium silicate.

 Plaster shapes have little tensile strength or rigidity, but if they are
suitably designed, automatically winding them in pretensioned wire
can improve this. Steel wire has higher rigidity and less creep than
copper wire but may be harder to find; aluminum wire is available by
dissecting window screens, or the woven screening can be applied
directly. Winding subsequent layers at different angles, as is done for
glass-fiber pressure tanks, can provide tensile strength in two
dimensions instead of just one. Brazing or soluble silicates may be
suitable means for obtaining adhesion between layers of winding.

 XXX stuccoing

High temperatures

 A lot of attractive fabrication processes, such as firing clay, require
high temperatures at some stage; so, too, does making many exotic
materials (see section below). Making equipment that survives these
temperatures requires refractory materials, often insulating
refractories, although in some cases it’s adequate to just use a pile of
quartz sand (good up to 1500°, though not very insulating) or
vermiculite (insulates better, I think good to 1100°). Aluminum foil
can’t resist high temperatures itself but is often useful for reflecting
back radiant heat, preventing it from being lost.

 Ordinary steel works up to about 1200° in a reducing atmosphere,
but carbon dioxide is not sufficiently reducing; in air it starts to
oxidize annoyingly rapidly above about 900°. Fired clay is the usual
resort for temperatures up to 1100° or so; special clays can reach
much higher than this but are harder to find and to fire. Fused quartz
is maybe sometimes good to 1500° and usually to 950°, and is
available for example in broken space heaters and halogen light bulbs,
but it’s very difficult to cut or form. (In some cases the quartz tubes
are adequate.) Plaster of paris is easily formed before hydration, and
can withstand a few excursions to over 1000°, but is not durable as a
refractory.

 Soluble silicates are hard to find (see below about making them),
but can serve as adhesives for silicates such as quartz. Typically, in this
use, rather than melting at high temperatures and falling apart, they
form new compounds with the materials they’re uniting.

 Carbon foam is an excellent insulating refractory in non-oxidizing
atmospheres (good to 3642°) and can be fabricated easily from bread
dough or pancake batter, which is first heated to dry it and make it
rigid, then heated further to carbonize it. It is very rigid and thus easy
to cut, but abrasive. It does not adhere well to untreated quartz fillers.

https://www.heraeus.com/en/hca/fused_silica_quartz_knowledge_base_1/properties_1/properties_hca.html#tabs-608478-5
https://www.heraeus.com/en/hca/fused_silica_quartz_knowledge_base_1/properties_1/properties_hca.html#tabs-608478-5

Thermoplastics alone are not suitable precursors for carbon foam;
enough thermoset ingredients such as gluten are required to prevent
the object from losing its shape before carbonizing. If heated
sufficiently in a non-oxidizing atmosphere it may graphitize and
become electrically conductive, depending on its structure. Carbon
dioxide is sufficiently non-oxidizing.

 The standard insulating refractory for low-tech pottery kilns in an
oxidizing atmosphere is a conventional pottery clay body (for
example, ball clay tempered with silica and grog) filled with particles
of a sacrificial-filler organic matter such as coffee grounds, sawdust, or
used yerba mate, which burns out upon firing. In my experiments,
material made with 67% sacrificial filler was quite solid but could be
cut with a thumbnail, while material made with 89% sacrificial filler
was still solid but friable and permitted easy gas passage. The firing
process produces terrible odors.

 Intumescent moldable “Starlite”-style coatings may be adequate
insulating refractories for bootstrapping high-temperature capabilities.
The precursor is an aqueous paint or paste of organic polymers (such
as cornstarch and PVA glue, or wheat flour) and blowing agents.
Sodium bicarbonate is commonly used as a blowing agent. Borax or
boric acid substantially increases the strength of the resulting carbon
foam, and may also help to cross-link PVA in the paste to prevent
cracking from drying.

 Silicone caulk may work as a precursor material for composites of
graphite and carborundum, foamed or not, when heated. Acetic-cure
silicone may cure more rapidly and foam in the process if carbonate or
bicarbonate of soda is mixed in; I have not verified this. Oogoo
confirms that it does cure more rapidly when mixed with cornstarch.

 Even if you have an apparatus that can withstand heat, where do
you get the heat?

 The traditional approach for millions of years has been fire.
Ordinary butane blowtorches can hypothetically reach 1970°, but
usually don’t, which is why you can’t weld steel with them, and they
have the inconvenience of producing a lot of exhaust. Oxy-acetylene
torches are easy to buy (though expensive to refuel) and can reach
3500°, and oxyhydrogen torches are easy to make and can reach
2800°. Anthracite, and thus presumably charcoal, can reach 2180°.

 But electric heating is much more convenient; it can be turned on
or off (or anywhere in between) instantly, and it doesn’t produce
gases. Ordinary nichrome heating elements have maximum service
temperatures ranging from 1000° to 1260°, though they don’t melt
until almost 1400°. Some varieties of Kanthal have service
temperatures ranging from 1300° to 1425°, but these are harder to
find. Halogen lamps, still available from auto parts stores as headlights
even where they’ve been prohibited for household lighting, and their
filaments may reach 2900°, but their envelopes are only designed to
operate around 500° and are typically made of fused quartz, which
melts at 1600°, or aluminosilicate glasses, which melt at only about
800°.

 Carborundum “globar” heating elements are commonly rated to
1625° or 1600°, but are also not common household items, though it
might be possible to make one; they consist of a carborundum tube

https://www.kvpr.org/post/miracle-or-hoax-uc-merced-students-attempt-recreate-remarkable-mysterious-starlite-material
https://www.heating-element-alloy.com/article/nickel-alloys-for-heating.html
https://www.heating-element-alloy.com/article/nickel-alloys-for-heating.html
https://www.kanthal.com/globalassets/kanthal-global/downloads/furnace-products-and-heating-systems/heating-elements/metallic-heating-elements/resistance-alloys_s-ka041-b-eng.pdf
https://www.americanelements.com/silicon-carbide-heating-elements-409-21-2
https://www.americanelements.com/silicon-carbide-heating-elements-409-21-2
https://www.kanthal.com/globalassets/kanthal-global/downloads/furnace-products-and-heating-systems/heating-elements/sic-heating-elements/s-ka046-b-eng-2011-11.pdf

with a spiral cut in the central portion to increase its resistance, so that
the ends that protrude through the refractory wall of the furnace can
remain cool enough not to melt the metal wires that connect to them.
The “Globar SR” design has a two-start spiral cut so that both
electrical terminals are on the same end. Carborundum is seriously
allergic to water vapor.

 Historically, the fairly expensive yttria-stabilized zirconia was also
used for globars; they melt at 2715° and have been experimentally
used for heating up to 2100°. Possibly household ceramic knives
could be used for this, though they might need to be cut to have a
central “hot zone”, similar to carborundum globars. One
disadvantage is that they need to be preheated (for example with a
flame) to become conductive; historically, their negative temperature
coefficient of resistance was also a drawback (for example, in Nernst
illumination lamps), since it means they require a constant-current
source rather than a constant-voltage source to avoid thermal
runaway. (Carborundum, by contrast, has a positive TCR above
700°, so this issue doesn’t arise at normal globar service temperatures.)
Nowadays current regulation, at least, is an easy problem to solve.

 Nowadays, high-temperature heating elements are commonly
instead the exotic MoSi2 instead, which is serviceable to 1750° to
1850°. These are commonly used, for example, for sintering zirconia
itself, which commonly requires 1530°-1700° depending on, among
other things, sintering aids.

 Alternative methods of electrical heating include arc heating with
consumable graphite electrodes and induction heating, neither of
which has an inherent temperature limit of its own; arcs in everyday
US$200 plasma cutting torches commonly reach 20000°. Induction
heating can keep the induction coils outside the hot furnace, and big
induction heating coils are commonly made from copper pipe (at the
high frequencies used for metals above their Curie point, only the
skin of the coil can carry current anyway) with cooling water running
through it. Induction furnaces in industry commonly maintain metal
molten by heating the liquid metal inductively.

 XXX microwave heating

Making exotic materials

 Teflon and glass are crucial materials for their nonreactivity at
everyday temperatures. Glass is widely available and, though it
requires a lot of practice, can be shaped with a US$10 butane torch
from the hardware store (or, traditionally, with an oil lamp and a
blowpipe); teflon can be obtained from discarded laser printer fuser
rollers, and a great deal of electical insulation is also made of teflon,
but I do not know how to distinguish teflon insulation in discarded
cables from the more common PVC.

 Graphite is a crucial material for both electrodes and crucibles, the
only viable electrode or refractory for many purposes; welding shops
sell graphite electrodes, but they are graphite composites with poor
stability in reactive environments. As mentioned above, some
organics can be graphitized in a graphitizing furnace made of carbon
foam and purged with carbon dioxide. This requires, I think, electric
heating elements that can withstand graphitizing temperatures of

https://link.springer.com/article/10.1007/BF01289853
https://link.springer.com/article/10.1007/BF01289853
https://en.wikipedia.org/wiki/Molybdenum_disilicide
https://www.aegisdentalnetwork.com/idt/2017/01/hot-alone-will-not-do-the-trick
https://www.kanthal.com/en/products/furnace-products/electric-heating-elements/molybdenum-disilicide-heating-elements/
https://www.kanthal.com/en/products/furnace-products/electric-heating-elements/molybdenum-disilicide-heating-elements/

3000° (and pure graphite itself is the only plausible option), but are
more conductive than the carbon foam itself. Even if the carbon
foam is made from non-graphitizing carbon, it will conduct
electricity once fired high enough.

 Non-graphitizing carbon crucibles, which are more resistant to
reactive environments than graphite, have been historically made
from phenolic resin, then fired at 900° in an inert atmosphere. Other
thermosets would presumably work too, unless they pyrolyze to
graphitizing carbon (polyurethane foam, as found in pillows and
spray-foam insulation, is a common precursor); if they don’t outgas
too much they might be able to make non-porous non-graphitizing
carbon.

 Soluble silicates, especially those that are neutral rather than
strongly alkaline, are likely a crucial enabling material for digital
fabrication for several reasons: they can be used directly as refractory
adhesives (for example, to make a moldable insulating refractory from
garden-store vermiculite); they bind very strongly to silica and other
silicates; when dehydrated to solidity, they can be expanded from
beads into glass foams by the application of heat, foaming as their
water boils; and they can be instantly and directly cross-linked into
insoluble silicates by the provision of polyvalent cations such as
calcium or ferrous ions, as in the traditional colorful silicate garden, or
with carbon dioxide, a feature that promises to be important for
digital fabrication by selective solidification, perhaps even permitting
3-D printing of soda-lime glass. But soluble silicates are difficult to
find, so we may have to make them.

 (It may be possible to leach neutral sodium silicate out of
corrugated cardboard.)

 The most promising route to soluble silicates seems to be the
digestion of powdered soda-lime glass with warm aqueous alkali over
the course of hours or days. Alkali requires quite careful handling and
can itself be difficult to obtain; the chlor-alkali process with graphite
electrodes and a porous fired-clay diaphragm can produce it from
table salt, salt-substitute potassium chloride, or alkali carbonates, and
producing it thus in situ may be adequate for digesting the glass, thus
avoiding any accumulation of hazardous alkali. Unwanted chlorine
may be disposed of by passing it over hot aluminum foil. The
traditional source for alkali is to leach it out of wood ash, but this is
normally slow, dirty, bulky, and expensive.

 Although discarded soda-lime glass is abundant, it doesn’t handle
thermal shock or reactive environments well; borosilicate glass is
much more resistant, but hard to find. Adding borate (in the form of
borax or boric acid) to discarded soda-lime glass seems like a
promising thing to try.

 Sapphire is aluminum oxide; industrially this is produced in the
Bayer process by digesting bauxite with alkali to produce a soluble
aluminate, then precipitating gelatinous aluminum hydroxide by
cooling the solution (neutralizing it also works). This hydroxide
(which crystallizes as gibbsite at a few microns per hour) calcines to
sapphire, completely if held above 1200° for an hour; it is even
possible to calcine the hydroxide gel to a transparent porous ceramic
at 500° if you keep the electrolyte concentration near an ideal value,

https://link.springer.com/article/10.1007/BF01115736
https://link.springer.com/article/10.1007/BF01115736

though perhaps not if the hydroxide is derived in this way. Digesting
(readily available) aluminum metal with alkali produces the same
soluble aluminates, and so should be an easy route to sapphire for use
as an abrasive, as a refractory (melts at 2072°), or for abrasion-resistant
ceramics; the sapphire powder sinters to a ceramic around 1600°. Its
thermal coefficient of expansion is an astounding 0.6 ppm/K at
ordinary temperatures, though some sources give higher value such as
7 ppm/K.

 The so-called “sodium beta alumina” that forms when heating
sodium-rich gelatinous (?) aluminum hydroxide has fast ionic
conductivity for a wide variety of monovalent cations, a property of
great interest for its use as a solid electrolyte (and one which may be
much more accessible than zirconia), used in the sodium-sulfur
battery.

 The transformation sequence from the gelatinous hydroxide to
sapphire (alpha-alumina) is astoundingly complex (8, figure 4.1); the
gelatinous form converts to the poorly ordered eta-alumina (aka
gamma-alumina or gamma-prime alumina) around 375° (or 626°?),
which converts to theta-alumina (“a better ordered transition form”)
around 800°, which finally converts to sapphire around 1120°, while if
instead it is first crystallized as gibbsite (as is usual in the Bayer
process) some of it instead goes by way of chi-alumina and
kappa-alumina. Six other oxide and hydroxide forms are also
potentially part of the process, depending on impurities and heating
rates. Contamination with carbon dioxide in this process may result
in incorporation of carbon.

 The gibbsite itself is an important functional filler for plastics,
providing strength and especially fireproofing.

 Lucalox is another potentially important use for sapphire.

 Sapphire can also be crystallized hydrothermally with soda ash
above 400° and 200 MPa, but such pressures are challenging.

 Another interesting material potentially derived from aluminum
hydroxide is mullite, the acicular aluminum silicate that accounts for
the legendary refractory performance of Hessian crucibles.
Crystallization of mullite from amorphous Al6Si2O13 at 980° has
been reported; the preparation was a difficult process involving
alkoxides of aluminum and silicon (and the phrase “was put in an
open flask and stirred for three months”), but since mullite is the
stablest alumina/silica compound, perhaps easier routes exist, such as
just firing at 1100°.

 Carborundum was initially discovered by heating sand in an iron
crucible with an arc from a carbon electrode submerged in the sand,
carbothermally reducing some of the silica with some of the carbon
from the electrode. Heating mixed carbon and sand with a
submerged arc sounds easy, and you don’t even need the iron crucible;
you just need two carbon electrodes.

 HNO3 was traditionally obtained by XXX

Control and actuation

 Above I presupposed we could get precise positional control. But
how could we get such positional control? Norbert Heinz has

http://epsc511.wustl.edu/Aluminum_Oxides_Alcoa1987.pdf
http://epsc511.wustl.edu/Aluminum_Oxides_Alcoa1987.pdf
http://epsc511.wustl.edu/Aluminum_Oxides_Alcoa1987.pdf
http://epsc511.wustl.edu/Aluminum_Oxides_Alcoa1987.pdf
https://en.wikipedia.org/wiki/Hessian_crucible
https://en.wikipedia.org/wiki/Hessian_crucible
https://link.springer.com/article/10.1007/BF01115736
https://link.springer.com/article/10.1007/BF01115736

demonstrated a series of excellent homemade CNC machining tools
made from hardware-store parts, using the gantry arrangement used
by most existing CNC machines. Some of them use
H-bridge-controlled DC motors (or steppers) and optical quadrature
encoders he has cut out of tin cans (or from paper) with optical
sensors from old printers. The shaft rotation is translated to linear
motion with leadscrews from hardware-store allthread; but this
feedback measures only the rotational position of the leadscrew, so it
is subject to errors from deformation of the machine frame and the
leadscrew and from backlash, as well as thermal expansion.

 To avoid these errors, you need feedback about the actual position
of the end effector rather than motors that indirectly drive it. In
theory optical mice have a resolution of a micron or two, but Heinz
found they lose steps. He has achieved more precise control using the
transparent plastic optical encoder strip from an inkjet printer to
measure the linear position; these are usually 92, 150, or 300 lines per
inch. I can’t find Heinz’s page on the topic, but in 02010 Michele
Lizzit reported 33-micron precision using this method.

 Industrial machine tools are now almost universally equipped with
a “DRO”, digital readout, or are fully automatically controlled.
Three common kinds of DROs exist: using optical “glass scales”
similar to the inkjet-printer encoder strip, using magnetic sensors that
read a strip of alternating magnetizations, and using capacitive sensors
that read a strip of alternating electrical connections. Digital calipers
with 100-micron precision using this capacitive system are widely
available at retail for about US$8, and are commonly equipped with
an easily-tapped internal SPI data bus, while the other two systems
routinely deliver micron precision.

 These approaches can suffer from thermal error when the scale
(glass, plastic, or otherwise) expands or contracts under the influence
of temperature variations. The traditional solution to this was to keep
the temperature of your metrology lab constant to within a tenth of a
degree, but an alternative is to use laser interferometry, which can
easily deliver submicron precision and is much less affected by
temperature.

 The kind of swing-arm arrangement used by manual magnetic 2-D
profile cutting machines, or by hard-disk platter-and-arm
arrangements, is mechanically vastly superior to the gantry
arrangement; Melisa Orta Martínez’s “Haplink” design demonstrates
a promising mechanical design for adapting such a swing-arm
arrangement to motor-driven cable drives.

 For precise actuation over short distances, flexures and voice-coil
actuators are probably the best approach. Hard disks have voice-coil
actuators in them.

 Differential roller screws ought to enable far more precise linear
actuation than currently popular systems, but without digital
fabrication, they are very expensive to build.

Topics

https://homofaciens.de/technics-physical-computing-digital-ruler_en.htm
https://homofaciens.de/technics-base-circuits-transmissive-optical-sensors_en.htm
https://homofaciens.de/technics-base-circuits-transmissive-optical-sensors_en.htm
https://homofaciens.de/technics-base-circuits-computer-mouse_en.htm
https://homofaciens.de/technics-base-circuits-computer-mouse_en.htm
https://lizzit.it/printer/
https://lizzit.it/printer/

• Materials (p. 1138) (59 notes)
• Manufacturing (p. 1151) (29 notes)
• Machining (p. 1165) (13 notes)
• Ghettobotics (p. 1169) (12 notes)
• Bootstrapping (p. 1171) (12 notes)
• Clay (p. 1179) (10 notes)
• Welding (p. 1181) (9 notes)
• Precision (p. 1183) (9 notes)
• Foam (p. 1185) (9 notes)
• Ceramic (p. 1193) (8 notes)
• Refractory (p. 1225) (5 notes)
• Aluminum foil (p. 1237) (5 notes)
• Control (cybernetics) (p. 1262) (4 notes)
• Silicone (p. 1329) (2 notes)
• Sapphire (p. 1331) (2 notes)
• Sandblasting (p. 1332) (2 notes)
• Oogoo (p. 1349) (2 notes)
• Electroforming (p. 1372) (2 notes)
• Carborundum (p. 1381) (2 notes)
• Haplink
• Grinding
• Cardboard

Glass powder-bed 3-D printing
Kragen Javier Sitaker, 02021-06-29 (updated 02021-12-30)
(20 minutes)

 In Dercuano I wrote a bit about a family of likely-feasible
powder-bed 3-D printing processes where you print the shape by
selectively depositing some “flux” in a powder bed (for example, by
inkjet deposition of a dissolved aqueous binder, or by trickling
granulated binder from a vibrating chute or screw extruder, like
making a sand painting), then bake the whole powder bed to activate
the flux, forming a solid object. I had done a few manual tests with
100-micron quartz flour and various different candidate fluxes fired at
IIRC 1040°, getting some promising results.

 Well, now I have a lower-temperature version of the process that I
have a lot of confidence in, although I haven’t tried it.

Lye-glass 3-D printing

 The powder bed consists of sieved pulverized soda-lime glass,
which is one of the candidate fluxes I’d tried at the higher
temperatures. The flux is lye. The lye becomes very reactive when
heated past its melting point of about 320°, capable of attacking
soda-lime glass at corrosion rates millimeters per minute, and forms
waterglass with the surfaces of the glass particles, which is less reactive
and has a higher melting range than the lye; it bonds the glass
particles together into a solid mass. This is too viscous and has too
much surface tension to infiltrate the rest of the mass, so unfluxed
glass particles remain inert; soda-lime glass generally doesn’t soften
below some 700°, so at this baking temperature, the glass won’t stick
together.

 Generally molten lye is considered a material meriting the sort of
respect we accord to molten steel, lava, or RFNA (unless we’re
cleaning our ovens, in which case we often treat it casually), but in
this case we’re dealing with very small quantities which exist for only
a short time within the hot powder bed. If the glass granules have a
size on the order of 100 microns, they might each occupy 0.6
nanoliters and be associated with an additional 0.4 nanoliter void
space. If the lye is initially deposited as a 1-molar solution, that’s
about 4% by weight or 3% by volume, so we have about 0.01 nl of lye
for each 0.6-nl glass granule, distributed among the “necks”
connecting it to its neighbors; even the mass in the fluxed zone is 98%
inert glass and 2% molten lye, and the overall powder bed might be
more like 0.2% molten lye and 99.8% inert glass. A 1-kg printed glass
piece might include some 20 g of lye before firing.

 After baking the powder bed, first at 100° long enough to drive off
any water and then at 350°-500° to sinter the lye-fluxed glass
particles, depowdering the finished object should be straightforward,
and the leftover powder can be sieved and reused. The total kiln time
should be on the order of an hour, more for thicker powder beds
through which the heat will propagate more slowly; slow heating and
cooling may also be necessary to prevent breakage. Pressure will not

be needed to cause sintering, and may not be effective, since the rigid
support from the unfluxed particles will prevent any significant
compaction of the fluxed particles.

Variations

 Although I’m now pretty confident that the above will work, there
are a number of variations that might be better; some are sure things,
others less so.

Aqueous lye thickeners, including no-bake waterglass
 If the lye is deposited as a liquid solution, inkjet-style, it may be
helpful to use ethanol as part or all of the solvent to reduce the surface
tension and thus the size of the binder droplets, as well as accelerating
evaporation. To prevent it from spreading out through the powder
bed once deposited, it may be helpful to either use a very high lye
concentration, like 50% (12M), or to include alkali-tolerant thickeners
(especially thixotropic thickeners) to get high viscosity and avoid
filling the void spaces in the powder bed. Such thickeners would
become part of the final workpiece, which probably rules out most
organic chemicals, since they would char and turn the glass black.

 Being able to use lower lye concentrations in the flux would be
valuable because concentrated lye solutions are super annoying.

 Of course the most obvious thixotropic alkali-tolerant thickener to
use would be waterglass itself, in which case you don’t need the lye at
all and may not need the baking step either. Exposure to carbon
dioxide, either as a gassing step after printing or just from the
atmosphere, may provide adequate strength.

Pure amorphous silica powder bases
 Fused silica, silica gel, or silica fume (perhaps granulated) may be a
more suitable powder base than the cheap-as-dirt soda-lime glass
discussed above. Their absence of alkaline-earth metals enables them
to react more readily with alkalis, they have much lower thermal
coefficients of expansion, and they do not sinter on their own until
higher temperatures, perhaps 1000°-1600°. But the resulting
soda-silica glass is much more vulnerable to corrosion from water
than conventional soda-lime glass. You might be able to add borax to
the flux, perhaps reducing or eliminating the lye, to get a borosilicate
glass instead of a soda-lime glass. But you need a lot of boria for
borosilicate glass, like 8%-15%, and borax only dissolves at like 25 g/l
at room temperature, up to 250 g/l at 70°. Using very porous powder
bases like silica fume or dehydrated silica gel might ease this
constraint, but will tend to produce a lot of porosity in the final print.

Desiccants in the powder base

 Incorporating desiccants into the powder base is another possible
way to prevent binder droplets from spreading out once deposited;
they don’t need to be stronger desiccants than the lye, just strong
enough to diminish the free liquid volume somewhat and keep the lye
from escaping. Promising desiccants for this purpose include silica gel
itself, activated alumina (incompletely calcined aluminum
hydroxide), quicklime, and zeolites.

Cristobalite or other crystalline silica polymorphs as the

powder base

 A totally different powder base that perhaps could form waterglass
with lye more easily than soda-lime glass or quartz sand (see below
about the crude sand experiment) is cristobalite; Hachgenei et al.’s
US patent 5,215,732 explains that at room temperature, cristobalite
(or “tempered quartz sand” containing a mixture including
cristobalite, the other high-temperature polymorph tridymite, and
amorphous silica) is so much more reactive than quartz that you can
convert it completely into waterglass by boiling it in 50% lye at
112°-146° for only three hours, even with a 2:1 ratio of silicon to
sodium (“modulus”). Higher ratios of sodium to silicon naturally run
faster. He gives the sand grain size as “in general, ... 0.1 to 0.8 mm,”
so the corrosion was advancing toward the center of the sand grains at
around 30 nm/s, times or divided by four. He reports being able to
thus “temper” quartz by calcining it “above 1000° C., preferably at
1300° to 1600° C., with the addition of catalytic quantities of alkali”,
and, presumably, not annealing it back to alpha-quartz.

Blowing powdered flux onto a powder bed bound with a
temporary binder

 My original flux-deposition notes contemplated depositing the flux
as a powder, for a fully dry 3-D printing process. It’s desirable to use
as fine a powder as possible, because the grain of the powders limits
the dimensional precision of the workpiece; even if you deposit your
flux with 10-micron precision, each 100-micron-wide flux particle
that becomes part of a surface is going to produce roughness on the
order of 50 microns. Similar concerns apply to the powder-bed
particles: if your flux particles are sticking together 100-micron-wide
particles of aggregate, you’re going to get surface roughnesses on the
order of 100 microns. But using fine floury powders for the powder
bed isn’t problematic; however, fine floury powders of flux tend to
clump up into larger lumps, as the surface forces between particles
overwhelm their weight and inertia.

 I’ve written about various approaches to solving this problem in
Precisely measuring out particulates with a trickler (p. 384), but a
new one occurred to me in this context. If you can blow the flux
powder through a nozzle with a compressed air blast, you can do an
excellent job of breaking up aggregates, because the aerodynamic
forces on the particles tend to scale with their surface area, just like
the surface adhesion forces they’re fighting, not with their volume.
So you can blow very fine dust through a quite fine nozzle, although
once you’re down in the sub-ten-micron range you start having safety
concerns. But of course if you’re blowing that air blast onto a powder
bed, those same aerodynamic forces will tend to disrupt the powder
bed, which is why I’d never considered this solution before.

 The objective here is for the powder bed to be an unbound, loose
powder after baking, except in the places where enough flux was
deposited to enable it to bake to a solid. So you’d think that including
a binder in the powder bed would be totally counterproductive. But
if we use a sacrificial temporary binder that bakes off during the baking
process without leaving a residue, it could still work!

 Suitable sacrificial temporary binders might include water (as used
in traditional fired-clay ceramics), ethanol, gasoline, kerosene,

https://patents.google.com/patent/US5215732A/en
https://patents.google.com/patent/US5215732A/en

toluene, turpentine, d-limonene, acetone, ethyl acetate, dimethyl
sulfoxide, isopropanol, formamide, hydroxylamine, sulfur,
naphthalene, and various salts of ammonium (chloride, carbonate or
bicarbonate or carbamate, acetate, sulfate); most of my notes on these
are in file inorganic-burnout.md in Derctuo.

 Some of these candidate sacrificial binders, like water and ethyl
acetate, are ordinarily liquids, which means that the powder bed is
sort of more of a paste bed; the powder base might be premixed with
the liquid, so that the recoater trowels on one layer after another like
drywall mud or construction mortar. This could lead to geometric
disturbances from subsequent recoating layers, though that might be
solvable; the usual practice with construction mortar is to minimize
this problem by including barely enough water in your mortar to
make it plastic, and as soon as you trowel it onto the wall, it loses
enough water to lose its plasticity.

 Alternatively, the recoating could be done with a powder recoater
in the usual way, which is gentle enough not to perturb previous
layers, then misted with the sacrificial binder liquid.

 Other candidates, like ammonium chloride and ammonium
carbonate, are ordinarily solid, so if the base powder particles are
bonded together by them, it becomes a solid object, which avoids the
issue of geometric disturbances when recoating, but poses the problem
of how to get the sacrificial binder into the powder. If it’s just mixed
in as separate particles, it won’t be form bonds between the base
powder particles that are adjacent in their final position. Ammonium
carbonate is water-soluble; it could be sprayed onto the base powder
once it is in position, or the base powder could be mixed with an
aqueous solution of it, and in either case we would need to evaporate
the solvent to get to solidity. Ammonium chloride has an additional
power: it can be “sublimed” at convenient temperatures, so it could
be analogously infused into the powder once it is in place without
needing a liquid solvent. Or it can be formed in situ by reacting
ammonia with muriatic acid.

 See Powder-bed 3-D printing with a sacrificial binder (p. 506) for
more variations on the theme.

In-situ temporary binder creation

 Some candidate temporary binders, like muriate of ammonia, can
be produced in situ in the powder bed by applying two different
reagents at different times; in that case, ammonia and muriatic acid
can be infiltrated into the powder bed in gas form, one after the other,
where they will react to form the salt.

Salt as flux

 Some of the alternative powder-bed bases such as cristobalite or
amorphous quartz offer the possibility of using ordinary muriate of
soda as a less annoying alternative to lye that activates at higher
temperatures. It has been used for salt-glazing of pottery for 600
years. At 1100°-1200° in a steam atmosphere it forms muriatic acid
gas and lye; the former escapes, driving the reaction forward, while
the latter fluxes the silica as before.

 Wikipedia claims that silicates of iron are even more effective

https://en.wikipedia.org/wiki/Salt_glaze_pottery#Process

fluxes for this purpose, so reduced (ferrous) iron helps even more, and
red clays are well-known to be lower-firing; however, ferrous silicate
on its own is fayalite olivine, and olivine is the canonical high-melting
mineral at the high-temperature extreme of Bowen’s reaction series.
But I think fayalite olivine may indeed be low-melting; a 01993
abstract in Science gives its melting point as 1478 K, which is only
1205°. So some ferrous iron in the powder bed may help the process
along.

Soda ash

 Higher-temperature powder-bed bases might also be able to use
soda ash as a flux. Soda ash is water-soluble, even cheaper than lye,
less annoying to handle, and melts at only 851°. My experience
melting it with a butane torch suggests that it has an alarming
tendency to bubble, perhaps because it is slowly converting into lye.
This produces only carbon dioxide gas rather than muriatic acid.

Iron as flux

 If iron silicates are crucial to the fluxing effect in the salt-glazing of
pottery, perhaps metallic iron or some iron salt could form these iron
silicates directly with soda-lime glass at lower temperatures than those
necessary for salt-glazing. Ferric chloride melts at only 308° but has a
very narrow liquid range, while green vitriol starts to decompose into
high-melting hematite at 680°.

Wood ash

 If transparency of the glass produced is not a concern, wood ash
might be a possibility; it would surely be the cheapest flux for
powdered glass, if it works. It is mostly carbonates, oxides, and
hydroxides of alkali and alkaline earth metals, including lye; leaching
out the water-soluble components will tend to eliminate the
counterproductive polyvalent cations. Traditionally this was done by
washing the ash on top of linen cloth, then boiling down the results to
reasonably pure potassium hydroxide.

Crude sand experiment

 I did a crude and deadly kitchen experiment the other day which
seems to have successfully made a little waterglass from quartz and
lye. I placed a layer of damp construction sand in a thin stainless (or
nickel-plated?) metal bowl, sprinkled a layer of lye flakes liberally on
top of the center of the layer of sand, then pressed down another layer
of damp construction sand on top. I covered the bowl with
aluminum foil, placed a paper towel over the aluminum foil, added an
aluminum-foil skirt around the edge to reduce the loss of radiant heat
from the bowl’s sides, gently heated it on a gas stove burner (maybe
500 W) until the lye flakes stopped crackling from the release of
water. Then I turned the burner up to max (maybe 1500 W) for an
hour; halfway through I moved the bowl over a bit to ensure that
there were no cold spots that never got heated. I left the sliding-glass
door open so that the draft would carry any fumes from the bowl
away from me.

 Unfortunately I don’t have a thermometer. Some of the aluminum
foil skirt around the sides of the bowl strayed into the gas flame and

https://pubmed.ncbi.nlm.nih.gov/17841870/
https://pubmed.ncbi.nlm.nih.gov/17841870/
https://en.wikipedia.org/wiki/Ash_burner

melted, but on the various occasions during the hour when I
inspected the crude apparatus, no part of the bottom of the steel bowl
itself was ever glowing visibly, so it had not reached the 525° Draper
point. When I turned the flame off, tore open the aluminum foil, and
poked the sand with a chopstick, the end of the chopstick charred and
smoked, but didn’t burst into flames, so the top of the sand was
probably somewhere between 250°-350° at that point. The sand had
formed a hard mass, infiltrated by the molten lye, although not, as it
turned out, around the edges of the bowl; only in the middle.
Presumably the sand in the bowl was hottest on the bottom where it
was separated from the flame only by a thin layer of steel, with a net
heat flow in at the bottom and out at the top producing a thermal
gradient through the sand.

 Upon cooling I was able to use the chopsticks to lift up a large
monolithic aggregate of sand that extended all the way to the bottom
of the bowl; at its bottom and top surfaces its color was the beige of
the sand, but in between, where the lye flakes had been, it was much
more white. No intact lye flakes were in evidence; they had all
completely melted, so that part of the sand had exceeded 320°.

 I broke off a small piece of the aggregated sand with the chopsticks
and dropped it into a polypropylene bottlecap to which I added a few
drops of water; it disintegrated immediately, indicating that the
binder was probably mostly lye, not mostly waterglass. A couple of
flakes of aluminum foil added to the bottlecap fizzed enthusiastically,
confirming the presence of free lye. So at this point I had no
indication that any waterglass had been formed.

 I neutralized the rest of the sand by soaking it with kitchen vinegar;
after letting it stand a while, I added a pinch of baking soda, which
fizzed, confirming that the pH had been brought down below neutral.
This ensured that any lye had been not only dissolved in water but
converted to highly soluble sodium acetate; at the same time, the
lower pH would make any waterglass present almost entirely
insoluble in water.

 Stirring around the sand with my fingers, I found that most of the
aggregated chunks had disintegrated immediately upon wetting or
were easily broken up. However, one irregular chunk of aggregated
sand of a centimeter or three in every dimension remained intact,
indicating that it was completely bound together with something
other than frozen lye, almost certainly waterglass. Handling it wet
did not leave my fingers slippery, providing further confirmation that
free lye was not present.

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• 3-D printing (p. 1160) (17 notes)
• Experiment report (p. 1162) (14 notes)
• Powder-bed 3-D printing processes (p. 1226) (5 notes)
• Glass (p. 1254) (4 notes)
• Fluxing

Rator-port GUIs
Kragen Javier Sitaker, 02021-06-29 (updated 02021-12-30)
(26 minutes)

 How do we bring the goodness of RPN and command-line history
into a multitouch world?

 I’ve been thinking about this problem for a few years, and I think
my thinking has evolved to the point where it’s probably reasonable
to implement it. I think it will make it easy to implement a lot of
really cool and versatile exploratory computation user interfaces.

Basic interaction paradigm

 I’m imagining some data values scattered around a
two-dimensional workspace, maybe zoomable, each one represented
by some kind of graphical display, which I’ll call a “port”.

 Maybe the data are numbers, or formulas, or programs, or images,
or files, or data tables, or locations in memory in a program being
debugged. One of them is the “focused port” (this has some
similarities to the WIMP concepts of “current selection”, “current
window”, “current tab”, and “focused widget”) and is highlighted to
indicate this, and there are some operation buttons and knobs
displayed for it, maybe outside of its actual display area, as well as
some generic operations applicable to all objects. If you click or tap
on another port, the focus shifts to that other port, and the previously
focused port becomes the “background port”, which is also
highlighted in a secondary way.

 The ports do not contain other ports; there is no hierarchy of ports.
Data values can certainly contain other data values.

 I am agnostic as to whether these ports are rectangular, round, or
some other shape (although I keep imagining them as being round,
with round buttons scattered around them), or whether they are
overlapped or tiled or flowed together like sentences in a paragraph,
or whether they are all composited together on a single canvas, as in
KSeg or Flash. But it does need to be possible to tap or click on
individual ports.

 The data values themselves are conceptually immutable; at any
given time, each port is associated with a single data value, but at
different times that value will be different. So ports are stateful but
data is not.

 Generic user interface operations applicable to all ports include
resizing, moving, cloning, closing, and undo/redo. These might be
accessible from a menu in a fixed location on the display and/or with
fixed reserved keys. Each port has associated with it an undo/redo
tree, which you can navigate to restore it to values that it has had at
some time in the past. Cloning a port creates a new port with the
same data value and a copy of the undo/redo tree, which is then
focused, but from then on the two ports evolve independently.
Closing a port adds it to a list of recently closed ports, from which it
can be reopened in case of regret.

 So ports have state, but it is entirely under user control: ports
cannot change state irreversibly or destroy information, because you
can always undo a state change, and you can copy a port, go back in
time, and see what would have happened if you hadn’t taken the road
less traveled by.

Unary rators

 Some of the buttons for the focused port compute a function of the
port’s current value and change the port’s value to the new value,
adding a node to its undo/redo tree, and these normally include some
kind of preview of this new state in their display. Examples include
incrementing or negating a number, deleting a column from a data
table or sorting it by a column, navigating to a child or parent node in
a filesystem or JSON hierarchy, and perhaps appending a letter to a
string (if we consider each of the letters on the keyboard to be a
separate “button for the focused port”). If you invoke one of these
and regret it, you can go back in the undo tree; sometimes you will
then want to clone the port and redo the undone operation, so that
you have both the old and the new value visible. Some other buttons
similarly compute such a function but open a new port to display the
result in; you might have both kinds of button for the same function.
These are best thought of as conveniences for common cases,
especially where you might want to invoke several such operations in
a row starting from the same state; the user can always get the same
effect by manually cloning the port before invoking the operation.

 (Maybe it would be fun to call these buttons’ operators “rators” or
“rations”.)

 Sometimes a rator might return both a new data value for its own
port and a data value to display in a new port — a random number
generator, for example.

Rators with continuous parameters

 Some other rators interactively adjust one or more continuous
parameters of the current port, like a slider widget does. That is, they
compute a new value that is a function of the port’s current value and
some set of continuous quantities. This might be implemented by
dragging from a button in one or two dimensions while watching the
live preview of the result. Examples include changing a numerical
value, changing the brightness or contrast of an image (or cropping
it), changing the width of a column in a data table, or rotating a 3-D
object. Once the user finishes adjusting the value, a new state is added
to the port’s undo tree.

 It might be better to use a second finger to drag to adjust the
parameters while the button is being held, which both permits
continuous parameters with more components and reduces the clash
with the one-finger scroll idiom in touchscreen interfaces.

Convergent data flow with binary rators
combining two ports

 All the data flow described so far is divergent: you can make lots of
“copies” of a value and “modify” each of them in different ways, but

there’s no way to combine multiple values displayed in different ports
into a single value. But some rators take a parameter that is another
port. For example, the addition or division rator on a number or
formula might take another number or formula as a parameter, the
differentiation rator on a formula might take a variable as a
parameter, the move-to rator on a file might take a directory as a
parameter (or alternatively the move-into rator on a directory might
take a file as a parameter), the concatenation rator on a program
might take another program as a parameter, and on data tables the
union and intersection rators take another table.

 This requires some kind of data value typing to give the user
feedback about which ports are plausible parameters. It might be best
to display a preview of the rator’s result on each of the possible visible
operand ports, graying out those that are not possible, so the user can
tap the one they want. If they tap a grayed-out port, they should see
an explanation of why it is not compatible; in this form, such
compatibility checking doesn’t require static typing, only dynamic.
Normally the whole operand-selection thing should be quasimodal,
only active as long as the user is holding down the operation button.

 (WIMP interfaces sometimes use drag-and-drop for this kind of
two-operand operation, but I think that’s clumsy, and it’s profoundly
incompatible with one-finger scroll on touchscreens.)

Lifecycle behaviors

 There are at least five different plausible user interface “lifecycle
behaviors” for invoking such a binary operation:

• The focused port transitions to display the result, and the operand
port is closed. This adds a special node to the undo/redo tree of the
focused port so that undoing will reopen it, and the user need not
manually restore it from the list of recently closed ports.
• Similarly, but the operand port remains unchanged.
• The operand port transitions to display the result, but the focused
port remains unchanged. This is sort of like the HP-9100A behavior.
• Similarly, but the focused port is closed, although it’s hard to
imagine when that would be useful.
• The result is displayed in a new port, which becomes the new
focused port when the button is released. Both of the original ports
remain open and unchanged.

 I think in most cases #1 should be the default, beause that’s what
RPN does, but it seems likely that different options will be best for
different cases.

 The “background port” mentioned earlier now comes into play; if
you press and release the operation button without explicitly tapping
an operand, the background port is taken to be the operand if it is
compatible. (You can always undo if that wasn’t what you wanted.)
There’s a whole invisible focus history maintained so that, when the
background port is closed, the most-recently-focused still-visible port
becomes the new background port; this is just the RPN stack. This is
also used to set the new focused port when the focused port closes.

 Which of the 5 lifecycle behaviors mentioned above is the right
default likely depends on what kind of repetition you’re most likely

to want when you’re invoking the operation. It’s very useful to be
able to invoke the same operation repeatedly on the same or different
operands while still holding down the operation button, but there are
lots of possible meanings of “invoke the same operation”. Suppose
you have the number 1.21 focused and you are selecting its
multiplication button. Here are the kinds of repetition you get if you
select the operands 2.50, 4, and 2.10:

• All four numbers are collapsed into a single product, 1.21 × 2.50 × 4
× 2.10 = 25.41.
• Same, but the other three numbers remain visible.
• Each of the other three numbers is replaced by its product with 1.21,
handy if you’re computing a 21% VAT.
• If the operation somehow remains active while the focused port
goes away, all four numbers are collapsed into the same single product
as in #1, but in a different order.
• Similar to #3, but both the original price and the price with VAT
are visible.

 In cases #2 and #3, it even makes sense to repeat the same
operation with the “same” operands, since one of them now has the
result of the previous repetition.

 It probably makes sense to offer #5 as an user option with a gesture
of dragging from the selected operand off into empty space,
particularly in cases where #3 is the default. That is, if you just tap on
an operand port, that port transitions, but if you drag from it, the new
data value appears in a new port where you dragged it.

 Part of the question here is how common various kinds of
“linearity” are, linearity in the sense of Girard’s linear logic or linear
type systems. If a particular kind of value, like a number, tends to be
used only once, it is most convenient for operations on it to remove it
from the canvas, leaving only the operation result, rather than
requiring you to manually remove each intermediate value. On the
other hand, perhaps joining two data tables through a one-to-many
relationship normally leaves the table on the “many” side of the join
intact, waiting for further joins to be applied to it.

 (Henry Baker noted the connection between linearity in this sense
and the life cycle of values on an RPN stack.)

The gulf-of-execution problem for binary
rators

 The operand feedback suggested above may not be particularly
useful if no compatible ports are visible on your canvas, creating a
large gulf of execution. Say you have a formula focused and you try
to differentiate it, but the differentiation operation takes a variable as
its operand, and there aren’t any variable ports visible. So you press
the differentiate button, all your formulas go gray for a moment, and
then you release it and nothing happens. How are you supposed to
know how to open a port of the right type? This is the kind of
problem VB-style forms UIs excel at.

 In this particular case, maybe you could fix the problem by opening
a menu of the formula’s free variables, although note that the UI

idioms discussed so far offer no way to open such a menu.

Currying

 Computations with more than two inputs can be handled by
currying: providing each of the extra inputs in sequence. This
potentially worsens the gulf-of-execution problem, because when
you provide the first input you don’t have any way to see what the
type of the second input will be, or that there even is a second input.
This is sort of like a “wizard” or a “dark pattern”.

 So, for example, to equijoin two data tables, you might tap an
unary equijoin rator that one of the two tables displays on one of its
column headers, which opens a new port for the next step in the join.
The new port might display the same data table, maybe with the
column in question highlighted and some information about the
column’s data type and typical values; a binary rator on the join port
allows you to select a table to join with, which transitions the join
port to displaying data from the columns of the second table, each
with an unary rator to select each of them as the join column, and
maybe some outer join options. Tapping one of those unary rators
transitions the join port to displaying the join result. At any point,
even long after completing the join, you can “undo” to go back to a
previous step and change the options.

 This kind of program-controlled sequencing is anathema to
event-driven GUI thinking, according to which the user should be in
control of what order they provide the information to complete an
operation.

Programming by example with rator names

 Suppose that each rator has a consistent name, though perhaps not
one that is displayed prominently in the UI. Then we can imagine
writing a transcript of a part of a session, automatically assigning a
hidden variable name to each port involved:

v0 := Number new. “Create a number for the VAT.”
v0 set: 1.21. “Adjust its value with a slider.”
clone(v0, v1). “Clone the port so we can use it twice.”
v2 := v2 * v0. “Multiply the first price by VAT.”
v3 := v3 * v1. “Multiply the second price by VAT.”
v2 := v2 + v3. “Add them together.”

 This slighly silly transcript contains three free variables --- Number, v2
, and v3 — which are in some sense inputs; and it ends with one
unconsumed result in v2. So, when you are interacting with concrete
values in this way, you are also “programming by example” or
“programming by demonstration”, building up a script that could be
later applied to different input data, in a way similar to John W.
Cowan’s system “Mung”.

 (Maybe Number is really a constant rather than an input.)

 You could imagine converting such a single-output transcript into
a new rator (keyboard macro recording), or automatically snipping it
into separate rators at the boundaries where new inputs appear. The
standard facilities for output preview and operand compatibility

scanning can apply automatically to these new rators just as they apply
to built-in rators.

 This may run into some difficulty with the idea that the applicable
rators might be derived from the data; for example, a data table view
might have a unary rator to sort by the Rating column and another to
sort by the Price column, but the same data-table-viewing code will
have a different, arbitrarily large number of applicable rators when it’s
looking at a table with a different number of columns. I think we can
solve this by allowing the “rator selector” to include arbitrary
immutable data rather than just being a symbol in the way my
Smalltalk-syntax example above suggests.

 How do you know in what ports a new binary rator thus defined is
applicable? At first, I thought this might require static typing, but as
long as we can run code peremptorily without harm, I don’t think it
does. The above script requires inputs v2 and v3. Suppose we should
offer it on a port’s menu whenever the current state is suitable for use
as v2, which is to say, it has a * rator that can accept our v1, which is
the Number 1.21; we can determine this by trying to run it, and
checking to see where it crapped out. If it croaked trying to read the
not-yet-defined v3, then we’re probably good, but it shouldn’t be a
menu option if it didn’t even get to trying to read v3 and instead died
on a previous line because v2 doesn’t have a * (or someone hacked
Number and its instances no longer support set:).

 If you want conditionals in pure programming-by-example form,
you can get them with assertions and fallbacks, but I’m not sure how
to do loops. So it might be best to reify the macros in the interface so
you can apply operations like “if” and “while” to them.

Dependencies and external state via paint
functions

 Each data value provides not only the transition functions invoked
by rators, but also functions that the user interface shell uses to paint
its port and rators. So far most of my examples have concerned only
painting data pulled from the data values themselves, like the column
widths of a table view, or column names and data cells from the
underlying immutable table it refers to. But we could imagine that
the paint functions can also read mutable state that lives outside the
rator-port system, like the list of running processes on the system, or
the contents of the filesystem, or the history of IRC messages on a
channel. So the rator-port system can give you undo and cloning and
stuff for everything inside it, but you might only be using it as a
cyberdeck through which you interact with the stubborn and
refractory traditional world. (Even the set of available rators on a port
might depend on the state of the external world; consider navigating
to a filesystem subdirectory.)

 If we allow paint functions, or some of them, to read the mutable
state of the outside world, then we might as well allow them to read
the mutable state of the ports as well, and thus data values to contain
pointers to ports. In this case, we could imagine, for example, having
some data values representing formulas in which the variables are
pointers to ports, and having the increasingly-poorly-named paint
function evaluate those formulas recursively. Then, if we change the

formula in one of the ports, all the ports whose formula refers to it
will also update their display on the next repaint. (Which we ought
to be able to arrange to happen quickly.)

 Note also that the rator functions are themselves just pure
functions, so it ought to be feasible to incorporate them, or even a
PBE script invoking a sequence of them as described above, into a
paint function in that way. (Of course that’s essentially how the
system’s results previews work.)

 At this point it becomes necessary to cache the evaluation of parts
of a paint function that depend on mutable state (“nested
transactions”), so that you don’t re-evaluate the same formulas
exponential numbers of times for each repaint. And this brings us to
the question of background computations, progress, cancelation, and
futures.

Background processes

 Everything above has supposed that all the computation is fast
enough that it’s always effectively instant, but of course that is a bad
assumption for a user interface, especially in latency-sensitive
environments like touch and especially VR/AR. In practice we can’t
miss video frame deadlines simply because a formula is slow to
recalculate! But everything described so far is purely side-effect-free,
except for consuming input events, port transitions, and updates to
the cache; so it’s always safe to discard and/or restart a computation
in progress, as long as we don’t consume whatever input events
inspired it. So probably we can keep painting responsive by just
having the display of some ports update after several frames, and
maybe giving them a “fast paint” function whose results can be used
when the slow paint function is slow.

 However, we also might want to run background computations
that take a while, like solving a large system of equations, maybe even
in separate OS processes or on separate machines. I think the simplest
way to handle that is to treat the output history of such a background
computation as “mutable external state”, so a port can display that
history in whatever way it chooses: scrolling text, progress bars,
progressive image enhancement, whatever. And if the background
processing happens internal to the rator-port system, well, aborting
the computation is just another event to add to the log. It’s
guaranteed not to corrupt anything else.

Not Actors

 These ports are very similar to Hewitt’s Actors, but there are some
significant differences. Like Actors, ports have a current state, which
can include references to other Actors, and a state transition function
that specifies how their state should change in response to external
events.

 But ports cannot send messages, either to other ports within the
system or globally, and they cannot create new ports. And they have
a fixed set of methods, rather than a single “invoke” operation or an
arbitarily large set of methods: one to paint, and one to return a list of
currently valid rator selectors and their corresponding closures. (Or
maybe there’s a third method to invoke a given rator selector.)

 Moreover, ports don’t manage their own state; their rators return a
new data value and some kind of indication of where to stick it, but
that new data value might end up being the new state of a different
port, and at any rate you can time-travel the ports independently to
any previous or later state. They can’t count on other ports being in a
state that is in some way mutually consistent.

 (This suggests that maybe another reason that the default lifecycle
behavior should be #1 or #2 is that it’s maybe kind of bad to set that
data value as the new state of a different port, since it will wreck
whatever display preferences the user had set up. But how else will
we arrange to set the same background color on three different
drawing objects conveniently?)

Modality-agnosticism and graceful
degradation

 This doesn’t have to be limited to multitouch; the abstraction level
of invoking rators with operands on a bunch of ports to get them to
transition to new states means that most of your code would be fine
on a terminal.

 If you’re writing a paint function for something that’s basically
some text, what you really want is to call a library function with
either the literal text or a lazy stream of the text, and have it produce
the painted window and maybe some scrollbar interaction stuff, and
then just return it. Then you could run that same paint function in a
terminal interface by passing in a different library of paint-function
building blocks.

 It’s important to structure the user interface libraries such that most
of your code doesn’t care about pixels and touches.

Taming external processes with snapshots

 If we can take snapshots of external process state and record and
rewind and replay it, then we can apply the whole undo/redo/clone
thing to computations carried out by external processes as well, as
long as we confine their I/O well enough; we can treat their
behavior from one input to the next as a “pure function”.
Batch-mode external processes don’t even need snapshots; we only
need to “snapshot” the filesystem before they start and after they stop,
potentially using something like Docker.

Topics

• Human-computer interaction (p. 1156) (22 notes)
• Composability (p. 1188) (9 notes)
• Real time (p. 1195) (7 notes)
• Higher order programming (p. 1196) (7 notes)
• GUIs (p. 1216) (6 notes)
• Reverse Polish notation (RPN) (p. 1243) (4 notes)
• Zooming user interfaces (ZUIs)
• Rewind replay

Sulfur jet metal cutting
Kragen Javier Sitaker, 02021-06-30 (updated 02021-12-30)
(6 minutes)

 Could you cut metal with a jet of hot sulfur vapor in a way
analogous to oxy-fuel cutting of iron?

 Sulfur boils at under 450° and reaches several hundred kPa of vapor
pressure by 600°, and it reacts exothermically with most metals, with
adiabatic flame temperatures in the 1000°-2000° range at atmospheric
pressure. Sometimes the metal sulfides melt lower than the metals,
and invariably much lower than the oxides; ferrous sulfide, for
example, melts at under 1200°, much lower than iron’s 1538°,
wüstite’s 1377°, or hematite’s decomposition at 1539°. Nickel sulfide
melts at 797° and boils at 1388° (though I’m not sure you can just
react nickel with sulfur), while metallic nickel doesn’t melt until
1455°, and its oxide not until 1955°. Chromium sulfide melts at
1350°, but metallic chromium doesn’t melt until 1907°, and its oxide
(chromia or viridian) not until 2435°. Tungsten disulfide melts at
1250°, lower than tungsten trioxide’s 1473°, while metallic tungsten
doesn’t melt until 3422°.

 Even in the cases where the sulfide is higher-melting than the
metal, it’s usually not by much. Cuprous sulfide melts at 1130°,
slightly higher than copper’s own 1085°. Aluminum sulfide melts at
1100°, considerably higher than metallic aluminum’s 660°, and boils
at 1500°; by contrast, sapphire doesn’t melt until 2072°. Even
titanium yields a bit: its sulfide melts at 1780°, while titania holds out
to 1843°. Tin(II) sulfide melts at 882°, while its principal oxide (the
tetravalent) doesn’t melt until 1630°.

 So maybe you could use sulfur-jet cutting to flame-cut not only
iron and steel but also low-chromium stainless, tungsten, copper,
brass, bronze, and aluminum.

 Generally the metal sulfides transform to oxides when heated in air,
not vice versa, so we can’t expect the jet of hot sulfur vapor to be very
good at removing the oxide. Still, though, it might be good enough;
no oxygen atom stolen from the oxide by the sulfur vapor is going to
stick around long enough to reform the oxygen.

 Unlike oxygen, you could maintain your sulfur in solid form when
not using it, and you don’t need a separate ignitor or fuel; upon
heating past 450°, you would get a jet of vapor which ignites
spontaneously in air, though with a low adiabatic flame temperature
of something like 1200°, and producing vitriolic fumes. You could
perhaps heat the vapor to a much higher temperature by passing it
through a heated ceramic nozzle, or perhaps a heated chromed metal
nozzle, if it turns out that viridian is sufficiently resistant to
sulfidation. If you can convert the sulfur vapor into a plasma (for
example, an inductively coupled plasma), you might be able to
increase its reactivity and attack oxide coatings that would normally
resist it; maybe even just burning a bit in air will be good enough for
that. Also, the hot SO2 in the flame will try to reduce oxide coatings.

https://en.wikipedia.org/wiki/Sulfidation

 If you really want to increase the temperature of the flame, mixing
some metal powder into the hot sulfur would do the trick. The
easiest way to do this would be something similar to a solid-fueled
rocket engine made of solid sulfur with substoichiometric quantities
of metal powder mixed in, ideally aluminum. As the reaction
proceeded, it would expel superstoichiometric sulfur through the
nozzle along with sparks of metal sulfide. Ignition temperatures are in
the 350°-550° range.

 This has the unfortunate feature that, as with solid-fueled rockets,
there’s no way to turn it off once it’s started, which is less than ideal
for flame cutting of metals. Maybe you could do something similar to
a hybrid rocket motor, using a combustion chamber containing solid
metal fuel in a mostly-sulfur atmosphere. As you pump more sulfur
into the chamber, it heats up and expands, traveling out the nozzle;
some of it also reacts with the fuel to produce more heat. The
chamber can’t have an all-sulfur atmosphere, and the sulfur can’t be
forced to travel through the hot fuel to get to the nozzle; in either
case all the sulfur will be consumed instead of producing the desired
metal-cutting stream.

 In terms of health hazards, the whole system is kind of nasty.
You’re producing a stream of vitriol as you cut, and the slag that
melts out of the kerf is a metal sulfide, which will produce stinky and
poisonous hydrogen sulfide in moist air thereafter, possibly for years.
And iron sulfide, at least, has been well known for its pyrophoricity
since antiquity, but a thing that surprised me is that sometimes it’s so
pyrophoric that it ignites when exposed to air.

 It lacks some of the safety hazards of oxy-fuel systems, though.
Unlike with methane or acetylene, it’s impossible to have a leak of
sulfur vapor that builds up an explosive gas mixture over time before
finally exploding; if the vapor is concentrated enough to burn, it’s
also hot enough to do so spontaneously, because the auto-ignition
temperature is 230°, and boy did that surprise me the first time it
happened to me. In rare cases, sulfur dust can make air explosive.
Aside from the fire risk, cold sulfur and even molten sulfur are
relatively safe materials; a ruptured tank would not produce an
explosion, asphyxiation, or render nearby objects highly inflammable
the way oxygen does. There are no high-pressure bottles in the
system that can explode or act as rockets.

Topics

• Materials (p. 1138) (59 notes)
• Manufacturing (p. 1151) (29 notes)
• Machining (p. 1165) (13 notes)

Powder-bed 3-D printing with a
sacrificial binder
Kragen Javier Sitaker, 02021-06-30 (updated 02021-12-30)
(12 minutes)

 I was writing Glass powder-bed 3-D printing (p. 490) and came up
with the idea of “powder-bed” 3-D printing that is really more of a
layered paste bed, and I realized that that idea itself is maybe a lot
more broadly applicable than to the lye-fluxed glass-powder bed
processes with full-bed baking prior to depowdering I was exploring
there.

 In particular, I was exploring the idea of powder-bed 3-D printing
with two binders: a “sacrificial binder” that maintains the integrity of
the powder bed during the printing process but is later removed, and
a selectively deposited permanent “flux” binder which defines the
geometry ultimately produced by the process, and which perhaps is
not active until after all the layers are patterned. My objective there
was to allow the flux to be blown in dry powder form onto the
powder bed without disturbing it, but now I see many other potential
advantages of this design approach.

 One variant for printing in concrete is to trowel on plastic layers,
made of a thixotropic aqueous paste of sand; water; perhaps
reinforcers like chopped basalt fibers or straw; a water-soluble
temporary binder like sugar, carboxymethylcellulose, clay, or
gelatinized starch; and perhaps a plasticizer, which might be the same
as the temporary binder. Then, on each layer, selectively deposit a
permanent cement such as waterglass, slaked lime, plaster of Paris,
magnesium oxychloride, calcium aluminate, or ordinary portland
cement. This requires the layers to be thin enough, relative to the
mobility of the cement molecules, that the cement can diffuse down
to the previous layer before it sets, or they require you to deposit the
cement vigorously enough to penetrate the whole layer. In the case
of a slaked-lime binder, you’d have to perforate an array of air holes
at the end of the process to allow CO2 to diffuse to all the layers.
Such objects wouldn’t need to be baked; they’d just need the
uncemented material to be washed away with a water hose once the
cement was set.

 Another variant is to pour layers of liquid into a vat or pit, one by
one, allowing hydrodynamics to level each layer rather than using a
mechanical recoater; after pouring each layer, you solidify it with the
sacrificial binder (for example, by allowing excess water to depart into
porous surroundings, or allowing a solvent to evaporate, or by
allowing enough time for thixotropic network formation to gel it, or
by spraying on a pH-changing agent to activate a pH-sensitive gelling
mechanism) and then selectively deposit the permanent binder, which
might be a construction cement like those mentioned above, or might
be a sintering aid like those discussed in the note mentioned above and
in Dercuano, or might be something else.

 Another variant is to deposit the layers using spin-coating,
permitting extremely fine and precise layer thickness control. In this

case, you could still pattern the layer by selectively depositing a
different material on it, such as a catalyst, but another possibility is to
pattern it by using light or particle beams to cause some kind of
change in it, like a multi-layer version of the standard
photolithography process, or stereolithography on a solid substrate
rather than a vat of liquid. For example, you could draw a pattern on
the layer with a moving laser, move a bar of light sources across it
analogous to how a xerox machine or flatbed scanner scans an image
or how an LED printer prints one, press it up against an LCD that
selectively permits light to pass through, project a pattern onto it
optically with a lens from a projector, or press it up against a thin mica
window through which an electron beam is passing. Once all the
layers have been patterned, maybe you need to bake it, and then you
can remove the undesired parts of the block, for example by
immersing it in a solvent.

 If you were using, say, UV light to pattern the layers in this way,
most of the usual stereolithography resin concerns apply: you need a
component that reacts to the UV, a possibly different component that
does something like polymerize or depolymerize in response, and
something that blocks the UV from reaching the next level down,
which has already been patterned --- a UV-opaque pigment, but not
so much of it that the effect only reaches partway through the layer.
The mix might include other components as well, for example to
affect the mechanical or electrical properties of the final product, and
these might vary from layer to layer.

 In the case of patterning with electron beams, which might offer
the possibility of deep submicron 3-D printing, adjusting the electron
energy may be a more reasonable way to set the penetration depth to
the layer height than mixing in varying amounts of opaque pigment.

 If you specifically spin-coat potassium silicate rather than
photopolymers, your “sacrificial binder” can be the dried potassium
silicate itself, while you can inkjet-print the pattern on each layer
with an aqueous solution of a polyvalent-cation salt such as calcium
acetate, which will cross-link the potassium silicate into insoluble
alkali-lime glass. Once all the layers are printed, if it’s been
adequately protected from CO2, you can redissolve the dried but
uncrosslinked waterglass with hot water, leaving a 3-D-printed object
in alkali-lime glass. This may be adequately precise and transparent
for fabricating optical lenses; 100-nm resolution in Z should be easily
attainable, and resolution in X and Y will depend on the precision of
positioning and inkjet deposition, easily reaching 30 microns. Other
things to selectively deposit might include aqueous lead acetate,
which will not only make the glass insoluble but significantly alter its
refractive index and dispersion; water-soluble dyes to incorporate
into the final piece; and various kinds of paint that are intended
merely to adhere to the final workpiece rather than to react with it,
such as conductive copper-filled paint.

 For cases like that, where the permanent binder consists of
polyvalent cations, you might be able to do your patterning with an
array of transition-metal electrodes in contact with the layer being
patterned, rather than with actual ink jets. By putting a positive
charge on one of the electrodes, you anodically dissolve some of it and
pump the resulting (generally polyvalent) cations into the workpiece.

This requires that the workpiece have high enough ionic conductivity
for this to be acceptably fast.

 Doing things exactly backwards, you could spin-coat layers of
some viscous solution of some salt with polyvalent cations, like
calcium acetate, and then print “inks” onto them containing
water-soluble compounds that abruptly stop being water-soluble once
they see polyvalent cations; waterglass is one example, but sodium
alginate is another, much gummier example, while e.g., ammonium
phosphate is an example that can form extremely strong and
refractory minerals with many polyvalent cations, and plain old
sodium carbonate can form carbonate minerals with many polyvalent
cations. So you could imagine, for example, a single spin-coated layer
of zinc sulfate (maybe mixed with other water-soluble solids), on
which one of your inkjet nozzles can create the biocompatible mineral
zinc phosphate, another can create zinc carbonate (smithsonite), a
third can create fluorescent-green zinc silicate (willemite), and a
fourth can create the biocompatible antibacterial hydrogel zinc
alginate, all with submicron precision at least in Z. After you’ve
finished printing out your array of multi-material objects in a block of
mostly zinc sulfate, you can wash away the unreacted zinc sulfate.
And maybe you could have other layers that provide other polyvalent
cations.

 If you’re printing in a pH-sensitive gel like some of the
carrageenans (or, again, waterglass), you can maintain the pH at a
level favorable to gelation of the whole layer during the printing
process, but then pattern each layer by loading some places on it up
with a bunch of buffering agent to keep it favorable to gelation. So,
for example, if your gel is stable at acidic pH but dissolves in basic
environments, you could dump a bunch of a citrate or acetate buffer
into the parts you want to keep; or, if it’s stable in basic environments
but dissolves in acidic ones, you could dump a bunch of borate buffer
in there. Then, once you’re done printing all the layers, you can
immerse the block in a base (or, respectively, acid), which will
immediately dissolve all the unprotected parts, while taking a much
longer time to attack the printed object.

 Returning to the powder-bed context, we could consider the
problem of iron powder metallurgy. We can build up a powder bed
of iron, layer by layer, and deposit a binder in it that works as a
sintering aid (in Dercuano I suggested graphite, copper, or iron
phosphide), and then bake the result to sinter the iron; but iron is not
very rigid at sintering temperatures, and will tend to sag. Suppose we
mix some dehydrated active alumina in with our iron powder, and
repeatedly compact the powder bed during printing enough to kind
of squish the iron particles together with the alumina particles,
forming a friable but solid block. Now, when we bake this solid
block, the iron gets gummy and soft, but the alumina particles remain
as firm as ever, and have enough contact with each other to prevent
any macroscopic deformation. When the loaf comes out of the oven,
the fluxed part of the block is no longer friable; it’s a solidly
connected network of welded-together iron particles with an
interpenetrating network of alumina particles. Light wire brushing
removes the unsintered volume, leaving the metal part, and lye,
muriatic acid, or oil of vitriol can destroy the alumina within it,

leaving the iron part with great porosity. (Infiltration may solve this,
or it may be desirable.)

 Alumina particles may not be the ideal “sacrificial binder” here;
they’re a very poor binder, so they have to occupy a lot of the volume
to work at all. There are sol-gel processes for producing alumina gels,
and forming some kind of gel to encapsulate the base powder particles
could allow firmer holding with much lower volume; the most
common sol-gel processes are aqueous, which would be a disaster for
iron powder, but some take place in other solvents that won’t attack
the iron. But there may be better binders available.

 For example, silica gel deposited from tetraethyl orthosilicate might
do a better job of holding the iron particles in place. In its crude form
its polymerization takes far too long, but perhaps if the iron powder is
mixed with dry glass fibers of length comparable to the particle size,
even slight polymerization would form a continuous network.
Amorphous silica can handle iron’s sintering temperatures for the
little while that’s necessary, and then you can remove it with molten
lye or hydrofluoric acid without damaging the iron.

 Shrinkage is already a big problem in ordinary pressed powder
metallurgy, and the sacrificial-binder approach can solve it almost
completely, at the cost of increased porosity.

Topics

• 3-D printing (p. 1160) (17 notes)
• Waterglass (p. 1189) (8 notes)
• Powder-bed 3-D printing processes (p. 1226) (5 notes)
• Cements (p. 1235) (5 notes)

https://www.hoganas.com/globalassets/download-media/sharepoint/handbooks---all-documents/handbook-2_production_of_sintered_components_december_2013_0675hog_interactive.pdf
https://www.hoganas.com/globalassets/download-media/sharepoint/handbooks---all-documents/handbook-2_production_of_sintered_components_december_2013_0675hog_interactive.pdf

Stochastically generated
self-amalgamating tape variations
for composite fabrication
Kragen Javier Sitaker, 02021-07-02 (updated 02021-12-30)
(26 minutes)

 Duct tape or electrical tape is a great way to make things; for
example, wallets, pipes, connections between pipes, handles,
hammocks, shoes, masks, baskets, purses, canoes. It’s really easy to
make and remake a variety of surface shapes, either with an
underlying form or without one, or to seal connections; and the
result remains open to revision. But when the tape is only sticky
because it uses a constant-tack adhesive, the resulting object never
fully solidifies, is subject to creep, and can’t handle high loads.
There’s something called “self-amalgamating tape” which avoids this
problem to some extent by bonding to itself and solidifying once it’s
in place, but I think this is generally a potentially much wider-ranging
family of materials.

 There’s a thing called “UD tape” or “unidirectional endless fiber
reinforced tape” which is an existing higher-end version:
thermoplastic tape, 50-500 microns thick and 3-165 mm wide,
reinforced with lengthwise carbon, glass, or UHMWPE fibers.
Typically an automatic tape layup machine (“ATL”) automatically
laminates together several layers of the UD tape on a flat surface, and
then the resulting flat sheet of composite is pressed and heated to fuse
the thermoplastic together. Then it can be cut to final 2-D shape, for
example with a waterjet, and thermoformed in a hot press. Or,
instead, it can be wound around a form to form wound shapes like
wound-fiber tanks. The matrices/binders are thermoplastics;
common thermoplastics include polyethylene, polypropylene, PET,
nylon 6, polycarbonate, PMMA, or, for stronger results, PEEK or
nylon 12.

 And of course prepreg sheets for fabricating carbon-fiber reinforced
plastics or similar materials are pretty much the same thing: a flexible
woven fibrous sheet of carbon fiber is pre-impregnated with resin,
stored at low temperature to prevent full curing, and activated by
bringing it up to room temperature after it’s incorporated into a
laminate.

 There is a very wide spectrum of composites following the general
pattern of some sort of flexible sheet (woven or otherwise) combined
with some sort of adhesive. As I pointed out in file globoflexia.md, it
includes the balloon-covering kind of pâpier-maché, as well as most
carbon-fiber and fiberglass construction, and it’s especially effective if
used to add rigid shells to easily-shaped foam cores, forming a sort of
sandwich panel which can gain extra strength from surface curvature.
If you can somehow cut the sheet into a strip and precombine the
adhesive with it, maybe you can use it in the same convenient way as
duct tape, but with much more permanent results.

 If you’re precombining the adhesive for convenience, though, you

https://www.sciencedirect.com/science/article/pii/S2212827117307102
https://composites.evonik.com/en/products-services/Tapes
https://composites.evonik.com/en/products-services/Tapes

need the roll of precombined tape to not self-amalgamate into a solid
cylinder before you use it. There are different ways you could
potentially achieve this. The adhesive could be activated by contact
with air, if you store the tape in an airtight box. It could be activated
by spraying it with some kind of chemical. It could be activated by
the process of peeling it or stretching it as you unroll it. It could be
activated by the humidity cycling of the air. It could be activated by
externally applied temperature, as by a heat gun or sunlight. It could
be activated by pressure, as scratch-and-sniff books are, for example
by breaking open micro-encapsulated reagents in the tape by
burnishing it with a burnisher. It could be activated by ultraviolet
light, as by sunlight. And (for me the most exciting possibility) it
could undergo self-propagating high-temperature synthesis, where
once the object is in the shape you want, you light it (for example,
with a match, a blowtorch, or a magnesium strip) and a hot chemical
reaction propagates through the material, converting it into a
different material.

 You can use a lot of different possible flexible sheets as bases for the
tape: ordinary cotton cloth, cotton duck (as in duck tape!), paper,
glass-fiber cloth, fiberglass window screening, aluminum window
screening, steel window screening, carbon fiber, basalt fiber, woven or
laminated music wire, ceramic fibers like alumina and zirconia,
woven polyester, sheet polyester like Tyvek, woven glass rovings as in
printed circuit boards, Kevlar or other aramids, UHMWPE fibers,
carborundum fibers, aluminum foil, gold leaf, boron fibers, quartz
fibers, polyimide film, boPET, burlap, hemp cloth, cotton-candy
sugar fiber, flax, silk, glass foil, or foil or cloth made from the
common thermoplastics mentioned earlier, for example. For any of
these that are fibers, it may be useful to make the fibers unidirectional
or nearly so, rather than evenly distributed in two or three directions,
as in the case of thermoplastic UD tape mentioned above.

 If the permanent binder isn’t active until after the tape has been
applied, you may need some sort of “sizing” to hold the binder onto
the base sheet, or in the case of a base sheet made of unidirectional
fibers, just to hold the fibers of the base sheet together. (Often in
“unidirectional” fibers for composite panel layups, there is “stitching”
or “weaving” of either polyester or the same fiber material for this
purpose, so they are only, say, 90% unidirectional.) Such sizings might
also be useful for holding layers of the tape in place before the
permanent binder is activated, especially if the sizing is intermittently
placed, permitting direct layer-to-layer contact, unlike the
continuous adhesive layers in duct tape and electrical tape. Sizings
might include conventional pressure-sensitive or constant-tack
adhesives like those used in duct tape; PVA; other water-soluble
polymers such as gelatin, carrageenans, sodium polyacrylate; the
common thermoplastics mentioned earlier; soluble silicates; “drying
oils” such as linseed or poppyseed oil; soluble polymers such as
celluloid and shellac; pine pitch; clays; soluble salts such as the
chlorides of sodium, calcium, or magnesium; sugar; gelatinized
starch; or thermosets such as epoxies, phenolic resins, or
polyurethanes. In some cases only very light bonding might be
needed, so even very gentle bonds like sublimed ammonium chloride
might work as a “sizing”; this has the advantage that it can be rapidly

infused into a great volume of tape at a reasonable temperature
without introducing any water, which is advantageous if water would
prematurely activate the permanent binder.

 Candidate permanent binders include all of those listed above as
sizing candidates, and also geopolymers, plaster of Paris, portland
cement, silicones, phosphates, and brass.

Comments on some candidate tape systems
of those described above

 I wrote this program; it blindly generates random selections from
4,744,806 possible tape systems.

Program to generate random combinations

#!/usr/bin/python3
import random

thermoplastics = '''
polyethylene
polypropylene
PET
nylon 6
polycarbonate
PMMA
PEEK
nylon 12
'''.strip().split('\n')

fibers = '''
cotton
glass fiber
carbon fiber
basalt fiber
music wire
ceramic fiber
polyester
Kevlar
UHMWPE
carborundum fiber
boron fiber
quartz fiber
hemp
cotton-candy sugar fiber
silk
'''.strip().split('\n')

fibers.extend(x + ' fiber' for x in thermoplastics)

films = '''
paper
fiberglass window screening
aluminum window screening
steel window screening
sheet polyester like Tyvek

woven glass rovings as in printed circuit boards
aluminum foil
gold leaf
polyimide film
boPET
burlap
glass foil
'''.strip().split('\n')

films.extend('woven ' + x for x in fibers)
films.extend('unidirectional ' + x for x in fibers)
films.extend(x + ' film' for x in thermoplastics)

sizings = '''
common pressure-sensitive adhesives
PVA
gelatin
carrageenans
sodium polyacrylate
waterglass
linseed oil
poppyseed oil
celluloid
shellac
pine pitch
clays
sodium chloride
calcium chloride
sugar
gelatinized starch
epoxy
phenolic resin
polyurethane
ammonium chloride
'''.strip().split('\n')

sizings.extend(thermoplastics)

binders = '''
geopolymers
plaster of Paris
portland cement
silicone
calcium phosphate
brass
lead-tin solder
silver solder
latex paint
'''.strip().split('\n')

binders.extend(sizings)

def imagine_a_tape():
 tape = random.choice(films)
 if not random.randrange(3):

 tape += ' and ' + random.choice(films)

 if not random.randrange(2):
 tape += ', sized with ' + random.choice(sizings)

 tape += ', with a permanent binder of ' + random.choice(binders) + '.'
 return tape[0].capitalize() + tape[1:]

if __name__ == '__main__':

 print("A random selection from the %d possible tapes:" % (len(films) * (1+len
(films)) * (1 + len(sizings)) * len(binders)))
 for i in range(16):
 print(imagine_a_tape() + ' ')

Commentaries on some combinations

 I ran the program to see if it would come up with anything
reasonable.

Unidirectional nylon 6 fiber, with a permanent binder of silver
solder.
 This would not work in its raw form, both because you need some
kind of sizing to keep the fiber together and keep the solder on the
fiber, and because activating the silver solder requires heating it up far
beyond the melting point of the nylon. If you added some kind of
refractory sizing, like potassium silicate, then probably you could get
the sizing to both stick the powdered silver solder to the tape and
roughly hold its shape as the nylon burned out, perhaps even up to the
melting point of the silver solder (some 741°), though that’s kind of
pushing it. Using potassium silicate rather than sodium silicate would
allow you to re-wet the tape if it dried out.

 The benefit of this sort of thing is that you could make free-form
jewelry out of it, then solder it into final shape once you were
satisfied; or, you could stick it onto things that you wanted to
silver-solder together that were in positions where loose bits of silver
solder would just fall off. But I can’t help but think that
unidirectional nylon 6 is nearly the worst base material for these
purposes.

Aluminum window screening, sized with linseed oil, with a
permanent binder of clays.
 You can definitely get clay to stick to a strip of window screening
with linseed oil, and as long as this is kept in an airtight container. If
there’s a bit of grog in the clay to add porosity, you might even be
able to get the linseed oil to solidify all the way through the shape.
Then you have an “all-natural” free-form thin clay surface shape
which doesn’t need to be fired to cure, at least if aluminum is natural
enough for you. You might be able to burnish it to a nice finish after
it cured.

 If you did try to fire it, the aluminum would burn out, but the
resulting thin eggshell of fired clay would probably still have enough
strength to stand up, at least if it didn’t slump too much in the kiln.
But if you were going to do that, you’d probably want to leave out

the linseed oil and use water instead.

Woven cotton and aluminum foil, with a permanent binder of
polyurethane.
 The cotton layer would bear the mechanical load of the tape, while
the aluminum foil would make it reflective on one side, especially to
infrared. You’d probably have to use a thermoplastic polyurethane
and “cure” it with heat somehow, rather than using one of those
polyurethanes that polymerizes when it’s exposed to air.

Unidirectional music wire and woven hemp, sized with
gelatinized starch, with a permanent binder of phenolic resin.
 This is probably not a good mix. Unidirectional music wire tape is
probably a useful thing to make, and I guess if you wove hemp
through it you could keep it from coming apart? The starch would
probably interfere with the resin curing, phenolic resin probably
would be too brittle for anything you’d want music wire for, and the
thermoset curing process for the phenolic would probably soften the
music wire.

Woven polypropylene fiber, with a permanent binder of clays.
 You could probably use an oil to get the clay to stick to the
polypropylene cloth, especially if it was loosely woven, and this could
maybe give you a “plasticine tape” that you could make things with,
sealing the different layers together with some pressure. It might be
hard to unroll from its totally-stuck-together state without ripping all
the clay off the fabric. Getting water-based clay to stick to
polypropylene would be more difficult, but if you could do it, you
could build fairly free-form thin structures that could then be either
dried or dried and fired. Normally I’d suggest that you could keep
layers of claycloth from sticking together on the roll by putting a thin
smooth plastic sheet between them, but also normally that plastic
would ideally be polypropylene.

Unidirectional glass fiber, with a permanent binder of latex
paint.
 No, I don’t think that would be a useful combination. You’d need
some kind of sizing to keep the glass fiber together, and generally
you’d want either a fairly beefy permanent binder like geopolymer
cement or epoxy, or a more accessible and convenient fiber like nylon.

BoPET, sized with gelatin, with a permanent binder of PEEK.
 Maybe you can get gelatin will stick to PET if you activate the
surface with a corona-discharge plasma first? The way you’d activate
PEEK would be by blasting it with heat, which would shrink the
boPET by making its orientation less biaxial, so this would be sort of
like a shrink-wrap tape kind of thing. I guess that would squish the
(presumably granular) PEEK around whatever the tape was wrapped
around, so that when the PEEK melted it would be in contact with
itself. Except that I think the PET and gelatin would just totally melt
away, and maybe burn, long before the PEEK started to soften.

 Maybe you could activate it with some kind of solvent that softens
the PEEK but doesn’t attack the boPET? Nothing attacks boPET.

Woven PEEK fiber, sized with clays, with a permanent binder
of PEEK.
 I guess you could draw PEEK into fiber, though I haven’t heard of
anybody doing it, and if so you could wrap a tape of PEEK cloth
around something tightly a bunch of times and then turn a heat gun
on it. Maybe if the cloth was impregnated with clay, maybe like
glossy magazine paper, that would increase its viscosity enough to
keep it from melting onto the floor before you’d finished melting it
together. But probably a better way to thus hold it in place would be
to mix the PEEK fiber with some other fiber that was totally
unharmed by PEEK-melting levels of heat, like glass fiber. Or nylon?
Does nylon stay solid at PEEK-melting temperatures? Polyimide
would definitely work but would be expensive. Maybe you could use
an oven-bag-style layer of nylon (or polyimide) on the back of the
tape, but make it full of small holes to permit the layers of PEEK to
melt together.

Unidirectional glass fiber, sized with polyethylene, with a
permanent binder of lead-tin solder.
 This is definitely a thing you could make. In fact, glass-fiber UD
tape in a polyethylene matrix is available from multiple vendors right
now; all that’s lacking is granulated lead-tin solder as a filler in the
polyethylene. Although I haven’t tried it, I think the solder won’t
bond to the glass fiber, no matter what the temperature, and heating it
up enough to flow the solder onto whatever copper pipes or
electronic connections you’re interested in will burn up the
polyethylene, leaving the glass fibers embedded in this solder mass but
not strongly bonded to it. But the glass fibers would still be
undamaged.

 So maybe you could use this combination to coat an entire vertical
surface with solder, or the outside of a copper tank, or something.

Woven PET fiber and unidirectional carborundum fiber, with
a permanent binder of carrageenans.
 Well, this would certainly be very strong, and the carrageenan
could probably stick the carborundum to the polyester cloth well
enough to keep the tape intact. You could store the tape in dry form,
then spritz it with water to activate the carrageenans once you’d
wound it around whatever tank you had. But you’d probably be
better off with a stronger binder, and maybe a more refractory one,
too, because the virtues of the carborundum are probably going to be
wasted with such a weak binder.

Unidirectional polycarbonate fiber, with a permanent binder
of nylon 6.
 I don’t think you can do this because I think polycarbonate melts
lower than nylon 6, and I can’t think of any solvents that will dissolve
the nylon but not the polycarbonate. The other way around would
work, though, especially with a little adhesive of some kind to stick
layers of the tape together, and it might be a good way to make
free-form shatterproof plastic surfaces.

Woven carbon fiber and unidirectional quartz fiber, with a
permanent binder of pine pitch.

 This is silly: two exotic refractory high-strength low-creep
health-hazard fibers and a “permanent binder” of high-creep
low-temperature low-strength colophony, whose principal
advantages are its low toxicity and wide accessibility.

Woven polyester, with a permanent binder of silicone.
 This could work. The commonplace single-component silicone
caulk cures by absorbing moisture from the air, so if you keep this in a
hermetically sealed container, the tape you pull out will always be
fresh and sticky. The polyester cloth (I now realize I have a duplicate
in the above list) allows you to wrap a thin layer of silicone around
just about anything, and it compensates significantly for silicone’s low
strength.

 Still, I’m not sure what I’d use it for where I wouldn’t just use the
silicone.

Aluminum window screening and unidirectional carborundum
fiber, with a permanent binder of sugar.
 Haha, no.

Unidirectional PMMA fiber, with a permanent binder of
polyethylene.
 This would almost definitely work; you’d hot-press a UD tape
layup to get a strong, shatterproof sheet that could absorb an
enormous amount of impact energy and wouldn’t suffer even in
highly reactive environments. Or you could wind it around a form
and then heat it up with a heat gun to fuse the layers together. I’ve
never heard of PMMA fiber though, just acrylonitrile.

Woven cotton-candy sugar fiber, sized with common
pressure-sensitive adhesives, with a permanent binder of silver
solder.
 Yeah, no.

Polycarbonate film, with a permanent binder of linseed oil.
 How would you cure the linseed oil through the polycarbonate
film?

Woven glass rovings as in printed circuit boards, sized with
polypropylene, with a permanent binder of sodium chloride.
 This wouldn’t work; you could spray it with water and dissolve
the salt, but neither the water drops nor the recrystallized grains
would interact with the polypropylene-coated glass fibers. Without
the salt, it would be glass-fiber-reinforced polypropylene sheet, but in
a form that was hard to thermoform.

Unidirectional polypropylene fiber, with a permanent binder
of lead-tin solder.
 Nope, the PP melts too low.

Unidirectional UHMWPE, sized with waterglass, with a
permanent binder of linseed oil.
 I don’t think the waterglass will stick to the UHMWPE, because
nothing does. And the linseed oil is too weak to be useful here. This

won’t work.

Polypropylene film, sized with common pressure-sensitive
adhesives, with a permanent binder of sugar.
 So it’s tape that you wet to make syrup? No.

Woven carbon fiber, sized with nylon 6, with a permanent
binder of shellac.
 You could activate it by spritzing it with alcohol, dissolving the
shellac out of the nylon, I guess. So it would be a relatively easy way
to do a carbon-fiber layup, and squirting alcohol on it is a pretty easy
way to “amalgamate” it. The shellac isn’t very strong at all, but in
some situations it wouldn’t have to be.

Unidirectional basalt fiber, sized with sodium chloride, with a
permanent binder of gelatinized starch.
 Basalt starch tape with salt in it to keep it from growing mold, I
guess. All natural! I guess you activate it by getting it wet? And
remove it the same way? At a very small scale this might be a good
way to repair damaged old books, but maybe with copper sulfate
instead of the sodium chloride.

BoPET, with a permanent binder of PMMA.
 I’m pretty sure you can activate this by spraying it with DCM if
there are holes in the BoPET, which you would want so that the
PMMA can weld abundantly from layer to layer of tape. You could
probably just deposit a film of PMMA on one or both sides of the
boPET.

Paper, sized with sugar, with a permanent binder of linseed oil.

 This sounds like decoupage, although I don’t know what the
benefit of the sugar would be. Maybe it facilitates wet-folding
origami?

Nylon 12 film, sized with clays, with a permanent binder of
celluloid.
 I guess the film would be heavily perforated, maybe in a
honeycomb pattern of 1-mm holes spaced 2 mm apart. So you’d get a
nice strong biaxial bond, and then you’d wet it down with something
to dissolve the celluloid (I forget what dissolves celluloid but I bet it
doesn’t hurt nylon) and let it redeposit as a very stiff, rigid,
lightweight plastic sheet. Which explodes if you get a spark on it. I
like it except for the clays.

Woven nylon 12 fiber and glass foil, sized with PMMA, with a
permanent binder of pine pitch.
 No, that makes no sense.

Unidirectional nylon 12 fiber, with a permanent binder of
common pressure-sensitive adhesives.
 That sounds like strapping tape, minus the plastic backing.

Unidirectional Kevlar, with a permanent binder of linseed oil.
 No, that’s ridiculous.

Woven Kevlar, with a permanent binder of sodium chloride.
 That’s even more ridiculous. You can build furniture and shields
with it that withstand bullets, but they fall apart if you spill your
Coke.

Woven glass rovings as in printed circuit boards, sized with
linseed oil, with a permanent binder of PVA.
 None of these three materials are usefully compatible with any of
the other two.

Woven polycarbonate fiber, sized with linseed oil, with a
permanent binder of carrageenans.
 This sounds like expensive and smelly pâpier-maché.

Less random thoughts

 In tape systems where you need to apply heat to join the layers
together permanently, as in the various kinds of thermoplastic-matrix
UD fiber-reinforced tapes, it can be extremely inconvenient to do so
externally. A possible solution is to “print” a grid of a
self-propagating high-temperature synthesis system on one surface of
the tape, a grid of little squares or hexagons whose edges are printed
with, for example, a stoichiometric mixture of iron powder and
sulfur, or a stoichiometric balance of aluminum foil and nickel foil
separated by, for example, a layer of zinc. These systems, once
ignited, will burn rapidly, producing a high temperature but no gas.
Where they’re sandwiched between two layers of tape, each with a
thermoplastic surface, they will melt together the thermoplastics in
their vicinity. Although the tapes along the grid line itself will be
separated by the waste products of the reaction and thus will not form
a bond, on both sides of the weld line they will be quite firmly welded
together.

 Deliquescent substances like calcium chloride may have a useful
role in activating water-activated binder systems like calcium sulfate,
by absorbing water from the air and making it available to the binder
in their vicinity. I’m not sure that will work in that form; it might
run into the same kinds of difficulties perpetual-motion machines do.
In cases where the lack of a suitable solvent was preventing a reaction,
though, deliquescence can definitely bridge that gap. This might
work, for example, for producing calcium phosphates from
diammonium phosphate and calcium chloride, initially mixed
together as dry powders, but gradually, after deliquescing, irreversibly
reacting to form calcium phosphates, which can serve as binders under
some circumstances.

 Water-activated permanent binders like slaked lime, portland
cement, and plaster of paris can’t be coated onto the backing with
water-based “sizings”. You need to use some kind of anhydrous or
almost-anhydrous approach. Maybe a polymer like polystyrene
dissolved in a nonpolar solvent like acetone, for example, or shellac in
ethanol, would work for this sort of “sizing”, as long as there isn’t so
much present that it will waterproof the permanent binder particles or
keep them from being able to interact. Above I also suggested
subliming ammonium chloride into the tape to deposit some
relatively inert salt crystals to stick things together.

Topics

• Materials (p. 1138) (59 notes)
• Manufacturing (p. 1151) (29 notes)
• Filled systems (p. 1161) (16 notes)
• Python (p. 1166) (12 notes)
• Composites (p. 1187) (9 notes)
• Anisotropic fillers (p. 1218) (6 notes)
• Humor (p. 1292) (3 notes)
• Tape

Spin-coating clay-filled plastics to
make composites with high
anisotropic filler loadings
Kragen Javier Sitaker, 02021-07-02 (updated 02021-12-30)
(4 minutes)

 Platy clay crystals, for example of bentonite, are common
functional fillers in filled polymer systems, among other things
because they decrease permeability (if well bonded to the polymer
matrix) they provide enormous strength. Each clay grain has
quartz-like mechanical properties in its two long dimensions, due to
its phyllosilicate structure. The individual clay grains have very large
aspect ratios, which allows them to transfer the large loads they can
withstand to the polymer matrix over a large contact area. However,
they are normally limited to fairly low volume fractions in the filled
system because their orientation is random, which limits the strength
that can be achieved by the resulting composite material.

 One researcher whose name I can’t recall at the moment (though
he was polite enough to answer my email, years ago) was able to
deposit grains of bentonite all in parallel planes, bound together by
something like limpet glue, with the result that the resulting
composite material had a very high volume fraction of clay particles,
and thus a very high strength and stiffness; he had to devise a new
means for testing the stiffness by measuring small displacements under
a microscope, using a bunch of glass spheres stuck to the film of
material as the load was applied, then writing software to analyze the
images to measure the displacement. But his procedure was
extremely slow, depositing one layer of clay on the surface at a time.

 I just thought of a process which might be faster, although it still
deposits layer by layer.

 The clay particles with appropriate surface treatment are suspended
in a resin dissolved in a solvent. This is spin-coated onto a substrate,
which orients the clay particles parallel to the surface of the thin layer,
then heated to drive off the solvent, leaving a layer of solid resin and
clay particles. The heating time needs to be long enough for the
solvent to diffuse out from underneath clay particles. Another layer is
applied on top of the first, and similarly dried, and the process is
repeated many times. If the clay particles are 10% of the original
dispersion, but the solvent is 85% of it, then after the solvent is
removed, the clay particles will have a volume fraction of some 67%,
which should be enough to have clay particles on each layer
overlapping particles on the previous and next layers enough to form
a continuous filler network.

 Two possible improvements are relevant.

 First, after evaporating each solvent layer, the new surface is
washed before the next spin-coating step long enough to remove
some of the resin just deposited. This will preferentially remove resin
that is not underneath a clay particle, although if continued long

enough it will remove clay particles too. So there’s a certain range of
washing intensity within which this change will give a higher volume
fraction of filler in the final product.

 Second, although the resin used is still solid when the solvent
evaporates, it is a photopolymerizable precursor to another resin. This
permits a higher-strength final product by photopolymerizing the
whole thing at the end, as well as 3-D printing by selective
photopolymerization of each layer, which in that case would also
need to include UV absorbers to keep the photopolymerization at the
surface. See Powder-bed 3-D printing with a sacrificial binder (p.
506) for related 3-D printing processes.

Topics

• Materials (p. 1138) (59 notes)
• Manufacturing (p. 1151) (29 notes)
• Filled systems (p. 1161) (16 notes)
• Clay (p. 1179) (10 notes)
• Anisotropic fillers (p. 1218) (6 notes)

 ECM for machining nonmetals?
 Kragen Javier Sitaker, 02021-07-05 (updated 02021-07-27)
(11 minutes)

 I’ve looked a bit into electrolytic machining (usually “ECM”) of
glass, but I think probably it’s not a good idea; sandblasting (“abrasive
jet machining”) is a dramatically more reasonable idea for glass. But I
was thinking about marble, and I think electrolytic machining would
probably work really well for marble.

 Electrolytic machining of marble and
similar basic minerals
 Suppose we use a neutral, very dilute NaCl electrolyte, saturating
the pore spaces of the marble, with a high enough overvoltage that
most of the electrolytic product is hydrogen and oxygen (1.23 V)
rather than sodium and chlorine. At the anode, we produce
(conventionally) H⁺ ions and oxygen by stripping an electron from
water: 2H₂O → 4e⁻ + 4H⁺ + O₂. If the anode is close to the marble
or in contact with it, these H⁺ ions (really hydronium, H₃O⁺) will
immediately react with the CaCO₃ to reform water and carbon
dioxide: CaCO₃ + 2H⁺ → H₂O + Ca⁺⁺ + CO₂. Thus the marble
around the anode will be eroded, neutralizing the acid and producing
CaCl₂. If the anode is either silver-plated or made of carbon, I think
it will not itself suffer erosion.

 We can pump a fresh stream of electrolyte constantly through a
hole in the center of the anode; if the anode is sheathed in an
insulator, such as teflon, the hole in the insulator where the
electrolyte squirts out can ultimately determine where the workpiece
erosion happens, rather than depending on the geometry of the
possibly-eroding anode itself.

 I don’t think much chlorine gas will be produced, if any, because
the electrons being sucked out of the anode are coming from the
abundant hydrogen ions, which replace them from the abundant
marble, rather than from the scarce chlorine ions. If that does turn
out to be a problem, alternative electrolytes exist.

 Aside from lime and its carbonates, the same anodic-attack
approach should work with other nonconductive minerals subject to
easy acid attack, such as dolomite (Mg/Ca), siderite (Fe), smithsonite
(Zn), magnesite (Mg), malachite (Cu), azurite (Cu), and perhaps
portland cement (calcium silicate hydrate).

 A waste product of strong alkali will form at the cathode, though
perhaps this could be ameliorated with a suitable buffer, perhaps based
on acetate, citrate, or borate, to compensate for the buffering the
carbonate provides to the acid produced at the anode; lacking this,
ultimately the liberated calcium ions will find their way to the
cathode and precipitate slaked lime.

 Choice of electrolyte
 It’s important for the anions in the electrolyte to maintain the
calcium ions in solution, unlike phosphate (apatite), pyrophosphate,

https://en.wikipedia.org/wiki/Buffer_solution#Simple_buffering_agents
https://en.wikipedia.org/wiki/Buffer_solution#Simple_buffering_agents

oxalate (weddellite/whewellite), fluoride (fluorite), hydroxide (slaked
lime), sulfate (gypsum), tartrate (beerstone, barely soluble) or titanate
(perovskite). Chloride is a good choice, but other choices include
bromide, iodide, cyanide, thiocyanate, nitrate, acetate (34.7 g/100mℓ),
chromate (2.25 g/100mℓ), or formate (16 g/100mℓ at 0°).

 Calcium borate is a weird boundary case. In dicalcium hexaborate,
the least soluble borate of calcium, water can dissolve 202mg/100mℓ
of boria, which works out to (* 202 (/ (+ (* 2 40.078) (* 2 15.999) (* 6
10.81) (* 9 15.999)) (+ (* 6 10.81) (* 9 15.999)))) = 310 mg/100mℓ of the
salt, though US Borax gives 470 mg/100mℓ.) Generally, borates are
complicated and not very soluble, much like silicates, phosphates, and
silicoaluminates, because of the possibility of oligomer or polymer
formation.

 Choice of anode material
 It’s simultaneously desirable to use anions that won’t form soluble
salts with the anode material itself, both so you don’t end up with
nasty anode salts all over your nice cut marble, and so you don’t have
to keep feeding in more anode as it’s consumed (and suffering
imprecision from anode wear uncertainty). A gold-plated anode
would permit the use of just about any electrolyte (except maybe
cyanides, which have other disadvantages), and even silver should
resist chloride and the other halogens (except fluoride). Ordinary
copper would permit thiocyanate, and lead might permit the use of
iodide and bromide, though the resulting lead salts would be soluble
enough to pose real risks of contamination. Because copper is lower
in the reactivity series than hydrogen, you’d think it could avoid
forming copper chloride in this use, but in fact copper plating using
chloride or acetate baths is totally a thing. I have definitely anodically
destroyed copper in salty vinegar.

 (Of course, graphite or carborundum electrodes will withstand
arbitrary acid or base attack at ordinary temperatures, and platinum
electrodes withstand nearly any reactive environment.)

 Here’s a solubility chart formulated for the purpose:
 (anion) Magnesium Calcium Gold Copper Lead Silver Tin
Iron Nickel
 fluoride sS I I sS sS S† S S S
 chloride S S S† S S I S S S
 bromide S S sS S sS I S S S
 iodide S S I I sS I S S S
 cyanide S S S I sS? I ??? ??? I
 thiocyanate S? S? ??? I sS sS sS? S? S?
 acetate S S sS† S S I sS? S S
 chromate S S S?† I? I! I sS? R sS
 formate S S ?† S S (16 mg/mℓ) ??? unstable S? S S
 borate sS? sS ??? I† S? ??? † † †
 sulfate S sS R† S sS sS S S S
 citrate sS sS ??? sS S I (285 ppm) ??? S S

 † indicates compounds that I don’t think will form electrolytically
from unoxidized metal and relevant anions.

 (Ugh, I don’t have zinc in the chart. But it’s almost the same as
magnesium. Also, I don’t have tartaric, lactic, and phosphoric acids.)

https://en.wikipedia.org/wiki/Calcium_chromate
https://en.wikipedia.org/wiki/Calcium_formate
https://onlinelibrary.wiley.com/doi/full/10.1002/ep.10058
https://agriculture.borax.com/USBorax/media/assets/infographics/borates-mineral-solubility.pdf
https://www.quora.com/Is-there-any-reaction-between-Silver-and-Hydrochloric-Acid-Ag+HCl
https://www.quora.com/Is-there-any-reaction-between-Silver-and-Hydrochloric-Acid-Ag+HCl
https://en.wikipedia.org/wiki/Solubility_chart
https://en.wikipedia.org/wiki/Magnesium_fluoride
https://en.wikipedia.org/wiki/Calcium_fluoride
https://en.wikipedia.org/wiki/Gold(III)_fluoride
https://en.wikipedia.org/wiki/Copper(II)_fluoride
https://en.wikipedia.org/wiki/Lead(II)_fluoride
https://en.wikipedia.org/wiki/Silver(I)_fluoride
https://en.wikipedia.org/wiki/Tin(II)_fluoride
https://en.wikipedia.org/wiki/Iron(II)_fluoride
https://en.wikipedia.org/wiki/Nickel(II)_fluoride
https://en.wikipedia.org/wiki/Magnesium_chloride
https://en.wikipedia.org/wiki/Calcium_chloride
https://en.wikipedia.org/wiki/Gold(III)_chloride
https://en.wikipedia.org/wiki/Copper(II)_chloride
https://en.wikipedia.org/wiki/Lead(II)_chloride
https://en.wikipedia.org/wiki/Silver_chloride
https://en.wikipedia.org/wiki/Tin(II)_chloride
https://en.wikipedia.org/wiki/Iron(III)_chloride
https://en.wikipedia.org/wiki/Nickel(II)_chloride
https://en.wikipedia.org/wiki/Magnesium_bromide
https://en.wikipedia.org/wiki/Calcium_bromide
https://en.wikipedia.org/wiki/Gold(III)_bromide
https://en.wikipedia.org/wiki/Copper(II)_bromide
https://en.wikipedia.org/wiki/Lead(II)_bromide
https://en.wikipedia.org/wiki/Silver_bromide
https://en.wikipedia.org/wiki/Tin(II)_bromide
https://en.wikipedia.org/wiki/Iron(III)_bromide
https://en.wikipedia.org/wiki/Nickel(II)_bromide
https://en.wikipedia.org/wiki/Magnesium_iodide
https://en.wikipedia.org/wiki/Calcium_iodide
https://en.wikipedia.org/wiki/Gold_triiodide
https://en.wikipedia.org/wiki/Copper(I)_iodide
https://en.wikipedia.org/wiki/Lead(II)_iodide
https://en.wikipedia.org/wiki/Silver_iodide
https://en.wikipedia.org/wiki/Tin(II)_iodide
https://en.wikipedia.org/wiki/Iron(II)_iodide
https://en.wikipedia.org/wiki/Nickel(II)_iodide
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856803/
https://en.wikipedia.org/wiki/Calcium_cyanide
https://en.wikipedia.org/wiki/Copper(I)_cyanide
https://chemistry.stackexchange.com/questions/108993/solubility-of-lead-cyanide
https://en.wikipedia.org/wiki/Silver_cyanide
https://en.wikipedia.org/wiki/Nickel_dicyanide
https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3258303.htm
https://www.chemicalbook.com/ProductChemicalPropertiesCB1467934_EN.htm
https://en.wikipedia.org/wiki/Copper(II)_thiocyanate
https://en.wikipedia.org/wiki/Lead(II)_thiocyanate
https://en.wikipedia.org/wiki/Silver_thiocyanate
https://en.wikipedia.org/wiki/Nickel(II)_thiocyanate
https://en.wikipedia.org/wiki/Magnesium_acetate
https://en.wikipedia.org/wiki/Calcium_acetate
https://www.americanelements.com/gold-acetate-15804-32-7
https://en.wikipedia.org/wiki/Copper(II)_acetate
https://en.wikipedia.org/wiki/Lead(II)_acetate
https://en.wikipedia.org/wiki/Silver_acetate
https://www.americanelements.com/tin-ii-acetate-638-39-1
https://en.wikipedia.org/wiki/Iron(II)_acetate
https://en.wikipedia.org/wiki/Nickel(II)_acetate
https://en.wikipedia.org/wiki/Magnesium_chromate
https://en.wikipedia.org/wiki/Calcium_chromate
https://chempedia.info/info/auric_chromate/
https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3890444.htm
https://en.wikipedia.org/wiki/Lead_chromate
https://en.wikipedia.org/wiki/Silver_chromate
http://cameo.mfa.org/wiki/Stannic_chromate
https://en.wikipedia.org/wiki/Iron(III)_chromate
https://en.wikipedia.org/wiki/Nickel(II)_chromate
https://en.wikipedia.org/wiki/Magnesium_formate
https://en.wikipedia.org/wiki/Calcium_formate
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201705557
https://pubchem.ncbi.nlm.nih.gov/compound/Cupric-formate
https://www.scbt.com/p/lead-ii-formate-811-54-1
https://pubs.rsc.org/-/content/articlelanding/1964/jr/jr9640004801/unauth#!divAbstract
https://srdata.nist.gov/solubility/sol_detail.aspx?sysID=73_28
https://srdata.nist.gov/solubility/sol_detail.aspx?sysID=73_30
https://www.chemicalbook.com/ChemicalProductProperty_EN_CB4135142.htm
https://www.sciencedirect.com/science/article/abs/pii/S002554081500327X
https://www.americanelements.com/lead-borate-35498-15-8
https://pubs.rsc.org/en/content/articlelanding/2019/dt/c9dt01901d#!divAbstract
https://www.sciencedirect.com/science/article/abs/pii/S0304885316308605
https://pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta07385f#!divAbstract
https://en.wikipedia.org/wiki/Magnesium_sulfate
https://en.wikipedia.org/wiki/Calcium_sulfate
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3749(200109)627:9<2112::AID-ZAAC2112>3.0.CO;2-2
https://en.wikipedia.org/wiki/Blue_vitriol
https://en.wikipedia.org/wiki/Lead_sulfate
https://en.wikipedia.org/wiki/Silver_sulfate
https://en.wikipedia.org/wiki/Tin_sulfate
https://en.wikipedia.org/wiki/Iron(II)_sulfate
https://en.wikipedia.org/wiki/Nickel_sulfate
https://en.wikipedia.org/wiki/Magnesium_citrate_(3:2)
https://en.wikipedia.org/wiki/Calcium_citrate
http://www.sciencemadness.org/smwiki/index.php/Copper_citrate
https://en.wikipedia.org/wiki/Lead_citrate
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590638/
https://en.wikipedia.org/wiki/Iron(III)_citrate
https://en.wikipedia.org/wiki/Nickel_organic_acid_salts

 I tried reducing the above solubility chart to an easier-to-use form
a few times, but I never succeeded.

 Alternative solvents
 Another approach is to make the electrolyte from ions dissolved in
a polar solvent other than water; for example, anhydrous ammonia,
formamide, tetrahydrofuran, acetone, isopropanol, methyl ethyl
ketone, pyridine, DMSO, dichloromethane, or deep eutectic systems;
these will yield different solubilities for various ionic substances.

 For example, only 0.2 grams of muriate of potassa dissolves in 100
mℓ of DMSO, and 0.013 g of potash, but it can dissolve 20 g of the
iodide or 30 g of muriate of Mars, while the muriate of lime is
entirely insoluble. In DMSO, hydrated cupric acetate and muriate
are insoluble, but the acetate and muriate of zinc are quite soluble, as
are the muriates of tin, so a copper anode with a zinc-muriate
electrode dissolved in DMSO might be able to electrolytically etch
salts of tin or iron with impunity.

 Some solvents may not produce electrolysis products of their own
that are useful for the electrolytic etching process, the way water does;
for example, the anodic reaction converting carbonate ions to oxygen
and carbon breaks apart and then reforms water molecules in the
process. DMSO in particular seems likely to produce electrolysis
products much more noxious for human life.

 Etching with a cathode instead of an anode

 If the electrolytic cell’s cathode rather than its anode were the
active tool, it should work for acidic or amphoteric materials attacked
by strong bases, most notably sapphire (slowly, at tens of megapascals
and 400° or higher), gibbsite, and amphoteric oxides like those of zinc
(philosopher’s wool, a refractory (1974°) thermochromic transparent
piezoelectric direct-bandgap n-type semiconductor with a 3.37-eV
bandgap), titanium (rutile, a UV-blocking strongly birefringent
photo-superhydrophilic photocatalytic transparent refractory (1843°)
n-type semiconductor with refractive index 2.61 and a 3.05 eV
bandgap which becomes an excellent dielectric when stoichiometric),
tungsten (an electrochromic photocatalytic semiconductor),
vanadium (a refractory (1967°) transparent semiconductor with an
0.7-eV bandgap that becomes metallic and IR-reflective in 100 fs
above 68°, a temperature that can be adjusted with tungsten doping),
and tin (cassiterite, a refractory (1630°) n-type semiconductor with a
refractive index of 2.0 and a specific gravity of 7).

 The amphoteric oxides can be etched just as well by the
anode-acid process described at the start, but etching them with a
cathode means you can use any metal for the tool electrode, since it
won’t be vulnerable to anodic dissolution.

 Metal sulfides might be another candidate. Leaching with very
dilute alkali has been successfully used to separate antimony from
stibnite (antimony sulfide) without affecting other metals, with
etching speeds around 10 microns per minute. Alkaline leaching has
also been used to extract lead, tungsten, zinc, vanadium, and

https://www.gaylordchemical.com/content/uploads/2020/08/GC-Literature-102B-ENG-Low.pdf
https://www.gaylordchemical.com/content/uploads/2020/08/GC-Literature-102B-ENG-Low.pdf
https://www.gaylordchemical.com/content/uploads/2020/08/GC-Literature-102B-ENG-Low.pdf
https://www.gaylordchemical.com/content/uploads/2020/08/GC-Literature-102B-ENG-Low.pdf
https://pubs.acs.org/doi/abs/10.1021/j100798a028
https://pubs.acs.org/doi/abs/10.1021/j100798a028
https://www.researchgate.net/profile/Emilia-Smincakova/publication/225747528_Leaching_of_Natural_Stibnite_using_Sodium_Hydroxide_Solution/links/5745887208aea45ee854bab6/Leaching-of-Natural-Stibnite-using-Sodium-Hydroxide-Solution.pdf?origin=publication_detail
https://www.researchgate.net/profile/Emilia-Smincakova/publication/225747528_Leaching_of_Natural_Stibnite_using_Sodium_Hydroxide_Solution/links/5745887208aea45ee854bab6/Leaching-of-Natural-Stibnite-using-Sodium-Hydroxide-Solution.pdf?origin=publication_detail

chromium from various ores. Mostly, though, these processes are
very slow.

 These cathodic etching processes, instead of producing waste alkali
at the cathode, would produce waste acid at the anode, and the same
comments about buffering apply to avoiding undesired acid
accumulations.

 More speculative directions to explore
 A very interesting question for this kind of electrolytic work:
these semiconductors, zinc oxide, rutile, tungsten oxide, vanadia, and
cassiterite, are all immune to anodic dissolution; but they are
amphoteric enough to be unstable for this kind of work. But perhaps
other nonmetallic semiconductors other than carbon and
carborundum, such as GaN or InP, may be alternative electrode
materials.

 Pulses of high voltage on small-diameter electrodes should be able
to produce plasma discharges to overcome activation barriers, a sort of
corona-discharge EDM/ECM hybrid, though this would surely also
erode the tool electrodes.

 Topics

• Materials (p. 1138) (59 notes)
• Manufacturing (p. 1151) (29 notes)
• Electrolysis (p. 1158) (18 notes)
• Machining (p. 1165) (13 notes)
• ECM (p. 1186) (9 notes)
• Solubility (p. 1273) (3 notes)
• Sandblasting (p. 1332) (2 notes)

Sonic screwdriver resonance
Kragen Javier Sitaker, 02021-07-06 (updated 02021-12-30)
(11 minutes)

 I’d previously made some notes somewhere on using mechanical
vibration to counter stiction when driving or removing screws, thus
preventing screwdriver camout; this would be less annoying if it was
above the threshold of human hearing, although that might not be
practical, because the energy of each vibrational pulse needs to exceed
the stiction energy. It occurs to me that it would also be useful for
driving nails, where stiction is pretty much the name of the game.

 The ideal graph of force against time of such a sonic-screwdriver
system would be the derivative of a sawtooth: a Dirac delta in the
desired direction large enough to make progress on the fastener,
which necessarily creates momentum within the sonic screwdriver in
the opposite direction, followed by a recovery time during which a
constant small force is applied to arrest and eventually reverse that
momentum, all the while maintaining contact with the fastener. The
recovery force is applied against, say, the hand of the person using the
device.

 A control system can pause if contact is lost, and detect whether
progress is being made and increase the impact energy (lengthening
the recovery time and lowering the frequency) if not, or decreasing
the energy if so, moving the frequency into the ultrasonic; and some
degree of randomness in the interval would seem to be desirable to
spread acoustic annoyance across the spectrum, also avoiding the
danger of dumping a damaging amount of energy into a single
resonance mode of the system.

 (For screw installation, it would be very useful to be able to set a
torque.)

 This is all very similar, actually, to the action a hammer drill or
rotary hammer uses for drilling holes in masonry. Bosch’s 5.7 kg
1500-watt “Titan 5 kg SDS Plus” hammer drill advertises 5 J
maximum impact energy and is rated for drilling 32-mm holes in
masonry, and other hammer drills from the same “Farmers Weekly”
seller advertise impact energy in the 1.7 to 5 J range. Makita
advertises their “23 lb. AVTDemolition Hammer” HM1213C rotary
hammer as “delivering 18.8 ft.lbs. of impact energy, which is 25 J; it
runs on 14 amps, which is presumably 1.7 kW. One shill site
advertises the DeWalt DCH773Y2 rotary hammer (US$1099, 21
pounds) at 19.4 J of impact 1000-2000 times a second and marvels at
how it “just pulverizes concrete”.

 For no particularly good reason, there doesn’t seem to be a tool that
applies the same sawtooth force profile to pulling an actual flat saw
blade or wire saw through stone or concrete.

 Some of these hammer drills and rotary hammers have a new
anti-vibration feature which creates two simultaneous impacts with
each hammer blow: one on the tool bit to make the hole, and the
other on an internal counterweight, so that what rebounds from the
impact is only the counterweight rather than the tool you’re

https://www.fwi.co.uk/machinery/tips-for-choosing-the-right-sds-drill
https://www.fwi.co.uk/machinery/tips-for-choosing-the-right-sds-drill
https://www.makitatools.com/company/press-releases/2020/makita-introduces-two-powerful-demolition-hammers-with-exclusive-anti-vibration-technology
https://www.makitatools.com/company/press-releases/2020/makita-introduces-two-powerful-demolition-hammers-with-exclusive-anti-vibration-technology
https://www.makitatools.com/company/press-releases/2020/makita-introduces-two-powerful-demolition-hammers-with-exclusive-anti-vibration-technology
https://www.protoolreviews.com/tools/power/cordless/rotary-hammers/dewalt-flexvolt-2-inch-sds-max-combination-hammer-hands-on-review/52694/
https://www.protoolreviews.com/tools/power/cordless/rotary-hammers/dewalt-flexvolt-2-inch-sds-max-combination-hammer-hands-on-review/52694/
https://www.protoolreviews.com/tools/power/cordless/rotary-hammers/dewalt-flexvolt-2-inch-sds-max-combination-hammer-hands-on-review/52694/

struggling to hold in your hands. A different way to accomplish the
same thing would be to just impact the counterweight directly against
the toolbit: apply the tool’s motor to gradually accelerating the
counterweight away from the toolbit against the counterweight’s
spring, then toward the toolbit once the spring wins and the
counterweight starts accelerating it back toward the toolbit. Either
version of this same feature can be applied to the helical motion of an
impact screwdriver (like those I’m discussing here) just as well as to
the linear motion of a rotary hammer.

 How hard is it to drive screws? Well, how hard can I twist a
screwdriver? In a simple test just now with a water bottle and a metal
pipe, I was able to rotate my wrist in a T-handle sort of configuration
hard enough to lift 5.5 kg with a lever arm of 330 mm (the water
bottle) and 430 g at 500 mm (the metal pipe itself), which is a torque
of about 20 N m. This is probably about as hard as I can twist a
T-handle screwdriver to unscrew a screw, but smaller amounts of
torque usually suffice. About a tenth of a turn is pretty much always
enough for a screw to make progress rather than springing back to its
old position, and that would work out to about 13 J at that torque.
(This explains the quasi-unit-compatibility of torque and energy: 20
N m of torque is really 20 N m of energy per radian!)

 Normally, of course, screws don’t have to turn nearly that far to
not spring back, and I don’t need a T-handle screwdriver to remove
them.

 Engineering Toolbox gives withdrawal forces for some nails in
spruce ranging from 17.6 pounds to 348 pounds (79-1550 N), with a
common 16-penny nail of length 3½” (89 mm) requiring 141 pounds
(630 N). Driving such a nail 1 mm would probably be far enough that
it wouldn’t spring back out, and that would be 0.6 J. Framing
carpenters drive them all the way in in three hammer blows, which is
about 20 J per blow, disregarding the mass of the nail and the
vibrations of the structure, as you should.

 So a simple sonic screwdriver would probably need to be able to
ramp up to on the order of 1-10 J per impact to make progress in
difficult cases, and then it would be able not only to remove screws
and drive framing nails, but also drill and saw concrete, wood, and
stone, and engrave or center-punch steel. But most of the time 0.1 J
would be enough. If it were running at 1000 W, the average impulse
frequency would be in the range 100 Hz to 10 kHz, unfortunately all
well within the audible range. 1000 W would also drive one of those
60 J nails in 60 ms.

 You could power it off Li-ion batteries in the now-conventional
way, but it really only needs to contain on the order of 128-256 J at
any given time, so it might often be more convenient to charge it
with the necessary energy just before use. Even a clockwork spring
sort of arrangement might be adequate with a pullstring; I can do
two pushups to about 600 mm, lifting half my 110-kg weight, which
is about 320 J. So normal people should be able to repeatedly pull a
pullstring out to about a meter under a tension of about 50 N, like
starting a lawnmower. Easy jobs might need a single pull
occasionally, while hard jobs might need five or six pulls before every
fastener or whatever, although at some point you just want to plug

https://www.engineeringtoolbox.com/nails-spikes-withdrawal-load-d_1814.html

the thing in.

 The pullstring need not be visible in normal operation; you could
split the tool into two parts joined by the pullstring when charging it,
then reassemble them once charged.

 Clockwork springs have the advantage of having almost arbitrarily
high power density, unlike batteries, both for charging and for
discharging. Rechargeable lithium batteries typically have a “fast
charge rate” of “1 C”, meaning 1/1 hour, or less, perhaps 0.5 C,
meaning 1/.5 = 2 hours. If you were going to charge them up with a
pullstring, you would have to pull the string continuously over the
course of that hour or two.

 The modulus of resilience of a material is the amount of energy it
can store per unit volume as elastic deformation. For tensile elastic
deformation of ductile linear materials, the relevant figures are
Young’s modulus E and the yield stress σy, and the integral of
deformation from 0 to the yield strain σy/E gives us ½σy²/E. Most
types of steel have the same Young’s modulus regardless of their
hardness, about 200 GPa. Soft steels have yield stresses as low as 300
MPa, but normally we make springs from music wire, which is more
like 2800 MPa. This gives us a tensile modulus of resilience for music
wire of some 20 MJ/m³, or 20 J/cc. 256 J then would require 13 cc of
spring steel, or 100 g.

 Conventional clock mainsprings do in fact deform in tension and
compression, but the mainspring is only stressed to its limit at its inner
and outer surfaces; on its neutral axis it isn’t strained at all. So the
situation is actually even worse: you only get ¼ of the possible tensile
energy storage that way, and you’d need 400 g of mainspring. This is
getting to be a rather heavy screwdriver!

 Coil springs instead deform the spring material in torsion, which is
to say, in shear, and much more of the material is closer to the
maximum shear strain. For shear deformation we’re interested in the
shear modulus G, about 79 GPa for steels, and the yield shear strength
τy, which for steels is about [0.58 of σy][10], or say 1600 MPa; the
factor 0.58 comes from 3-½. So if we just calculate the shear modulus
of resilience as ½τy/G, which I’m not sure is the right thing to do, we
get 16 MJ/m³ or 16 J/cc, about 15% lower than the tensile modulus. I
guess I should do the integral to see how much the distribution of the
shear strain in the circular coil spring cross-section affects the
situation, but it seems clear that using shear rather than tension (and
compression) doesn’t make a huge difference.

 By twisting a tube rather than a solid bar, the way a lot of torsion
bars in car suspensions do nowadays, you can get the full shear
modulus of resilience of your metal, but that doesn’t get you more
energy per volume, just more per mass.

 So what about carbon fiber? I hear truck suspensions nowadays are
starting to use carbon-fiber-reinforced plastic rather than steel.

 sawtooth components

Topics

https://en.wikipedia.org/wiki/Young's_modulus
https://en.wikipedia.org/wiki/Young's_modulus
https://en.wikipedia.org/wiki/Yield_(engineering)
https://www.engineeringtoolbox.com/young-modulus-d_417.html
https://www.engineeringtoolbox.com/young-modulus-d_417.html
https://en.wikipedia.org/wiki/Piano_wire
https://en.wikipedia.org/wiki/Shear_modulus
https://en.wikipedia.org/wiki/Shear_modulus
https://en.wikipedia.org/wiki/Shear_strength

• Contrivances (p. 1143) (45 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Hand tools (p. 1197) (7 notes)
• Sonic screwdrivers (p. 1324) (2 notes)

Subnanosecond thermochromic
light modulation for real-time
holography and displays
Kragen Javier Sitaker, 02021-07-06 (updated 02021-12-30)
(8 minutes)

 I learned last night that vanadium oxide transitions from
IR-transparent to highly IR-reflective at 68° (or a lower temperature
if doped with tungsten) in 100 picoseconds. If you wanted to project
an IR image onto something, say for an IR camera, what kind of
image quality could you manage with that?

 Well, suppose you have a line of 64 vanadium oxide pixels
illuminated by an IR laser, and you can individually turn them on and
off using individual heating elements, and you’ve arranged the time
constant of cooling to be on the order of the thermochromic response
time, so maybe you can turn a pixel on or off in 200 picoseconds.
This allows you to modulate the laser beam through each such pixel
at 5 gigabaud, 5 gigapixels per second, up to 2.5 GHz; the overall
system is 320 gigapixels per second. Each pulse of light in the air is 60
mm long.

 If you shine light through your modulator strip onto a 30krpm
spinning mirror whose axis is more or less parallel to the strip --- say
they’re both vertical --- then the mirror spins by 630 nanoradians
(0.13 arcseconds) per pixel column. If you can manage such a tiny
beam divergence, then at 10 meters’ projection distance, your pixel
columns are 6.3 microns wide.

 If your beam waist is 200 mm and your wavelength is 0.1 mm (near
IR), the usual Airy-disk formula approximate formula sin θ ≈ 1.22 λ/
d gives us 1.22(.1/200) = 0.61 milliradians, three orders of magnitude
blurrier. And a 200-mm-wide mirror facet spinning at 30krpm
would be something to behold --- ideally from a great distance.

 So trying to use such a spatial light modulator in such a way would
probably greatly exceed the capabilities of your electronics, your
optics, and your mechanics. But it’s something to keep in mind if
those each improve by an order of magnitude or so.

 For LIDAR, you could imagine sending out periodic
200-picosecond pulses by modulating such a mirror to briefly pass
light (perhaps in a direction determined by mechanically moving
conventional optics) and then modulating a second mirror to briefly
pass light some time later; by using analog electronics to vary the
phase delay between the two pulses, you should be able to measure
the time delay of the reflection to within about 20 ps (6 mm).

 I don’t know if such fast thermochromic materials exist in visible
or shorter light wavelengths, which would be convenient for
super-high-speed displays. If you wanted 4000 horizontal pixels
spread across half a radian with a 30krpm spinning mirror, 40
nanoseconds would be plenty fast enough, and there are lots of LEDs
that can do that.

 Real-time holography would be another potentially interesting use.
In particular, if you illuminated a grid of such thermochromic pixels
with a single laser, you could use it as an infrared phased-array
communications transmitter, modulating an arbitrarily large number
of separate beams, each at 2.5 GHz. (The divergence of each beam,
and thus the number of beams that you could actually separate in
practice, would depend on the number of pixels and on the total
aperture and thus diffraction-limited divergence.) The pattern
imposed on the thermochromic pixels would merely be an
approximate linear sum of waveplates, one waveplate pattern for each
outgoing beam.

 Such a system can be used for multicast communication in an even
faster mode. Suppose your laser source can be modulated at 20 GHz,
25 ps per bit. By setting the phased array to direct its light to five
specific destinations, after a wait of 200 ps (8 bit times), you can then
talk to those five destinations at the full 20 GHz bandwidth.

 A perhaps more interesting use of the phased-array approach for
optical communication is reception, in which you simply reverse the
flow of time; incoming light from a particular chosen source is
focused onto your photodiode (or other detector) with a waveplate on
the phased-array modulator. You can superimpose several waveplates
at once to enable reception from any of several possible sources (each
with high “antenna gain”, though necessarily lower than you’d have
for listening to a single source). Similarly you can have several
photodetectors, perhaps at different focal lengths behind the
waveplate; their holographic beamforming patterns on the shared
phased-array spatial light modulator will add noise to one another,
but only mildly so.

 Such bidirectional phased-array optics with small arrays of
high-speed photodetectors can also be used as “lensless” cameras,
whether by physically scanning them over a scene or by changing the
holographic beamforming pattern to scan. And of course these also
work in reverse, illuminating scenes from a distance.

 Alternative means of rapid light modulation, other than
thermochromic effects, include Kerr (10 GHz, 30 kV) and Pockels
(slower, 10 kV) electro-optic cells. I think these can be used not only
to set the phase delay (and polarization rotation) through a material,
but also to turn off and on total internal reflection as fast as you can
modulate the electro-optic cell. If so, near the critical refractive index
that is the threshold for total internal reflection threshold, the
transmitted wavefront is still potentially planar (it depends on the
phase delay of the electric field over the cell) but has a very large
derivative of refraction angle with respect to the applied field, and,
thus, potentially with respect to time. If this works, it is a faster
alternative to a spinning mirror for scanning a light beam, and perhaps
a better alternative to a phased-array transmitter as well.

 Liquid crystal pixel arrays, of course, if stripped of their
conventional second polarizer, can also produce a spatially modulated
optical phase delay, and can thus also be used for such holographic
beamforming, especially if the pixel size is not too much larger than
the light wavelength.

 If the pixel size of any of these spatial light modulators cannot be

kept small, blacking out all but a small window in the center of each
pixel may help. A microlens array between the SLM and the focal
plane should be able to reduce the resulting loss of gain, for example
by focusing all the light that arrives from the laser source onto the
small window, or directing all the light that makes it through the
small window toward the single photodetector. A microlens array
between the SLM and the rest of the world would limit the device’s
field of view but add “antenna gain”.

 Whether using liquid crystals, direct electro-optic effects, or
thermochromic effects, if great speed in changing the image is not
required (because the speed is taken care of by the light source or
detector rather than the modulator, which only sends it in an
occasionally-varying direction), it may make sense to use a “passive
matrix” or “active matrix” like a common LCD display to multiplex
a large number of pixels onto a smaller number of control lines.

Topics

• Contrivances (p. 1143) (45 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Optics (p. 1209) (6 notes)
• Displays (p. 1261) (4 notes)
• Communication (p. 1264) (4 notes)
• Spatial light modulators (SLMs) (p. 1327) (2 notes)
• LiDAR (p. 1355) (2 notes)
• Vanadia
• Holography

Notes on Richards et al.’s nascent
catalytic ROS water treatment
process
Kragen Javier Sitaker, 02021-07-07 (updated 02021-07-27)
(14 minutes)

 Posted at https://news.ycombinator.com/item?id=27763602

 (I should preface this by saying that, unlike you, I have no real
water disinfection expertise, so I may be overlooking significant
fundamentals in what follows.)

 Those costs sound reasonable for niche uses (though I do think they
would prevent it from “revolutionizing water disinfection
technologies” as they claim in the Conclusions), and being able to
operate in practical terms at a very small scale seems to me like an
advantage rather than a disadvantage. It clearly is more expensive
than conventional water treatment and would have difficulty scaling
to replace it for reasons of material availability. Other alternative
very-small-scale disinfection approaches are probably cheaper than
their process in its current form; they mention ozonation, UV
irradiation with germicidal lamps, photocatalytic disinfection, and the
Fenton process in the paper and supplement.

 I don’t see how the square-cube law plays into it; the reason
they’re supporting the catalyst on rutile (anatase?) instead of just using
solid bars of metal alloy is precisely to ensure neat linear scaling, and
the reason it’s 1% metal instead of 0.1% or 0.001% is that the rutile is in
the form of 1–100 nm particles. (See p. 8/12 in the article and Fig. 4
on p. 7/12). The only square-cube thing that occurs to me is that a
large ice bath requires much less ice input than a small ice bath, but
that favors scaling the process up, not down.

 A couple of other points:

 � Your calculations seem to be correct.

 ① People’s drinking water needs are lower than you suggest by a
factor of about 65, although conventional surface-water treatment
plants cannot take advantage of this.

 ② You’re not taking into account the supply-chain issues that
plague smaller-scale treatment facilities.

 ③ The cost of consumables that this process would eliminate would
still be lower than the cost of the catalyst.

 ④ There are plausible ways the process might be improved that
could make it economic.

 Thanks to mkr-hn I found the paper at
https://www.researchgate.net/publication/352882305_A_residue-fre
e_approach_to_water_disinfection_using_catalytic_in_situ_generatio
n_of_reactive_oxygen_species; the canonical paper link
(unforgivably missing from the original press release) is
https://www.nature.com/articles/s41929-021-00642-w, and the
supplementary material is at

https://news.ycombinator.com/item?id=27763602
https://www.researchgate.net/publication/352882305_A_residue-free_approach_to_water_disinfection_using_catalytic_in_situ_generation_of_reactive_oxygen_species
https://www.researchgate.net/publication/352882305_A_residue-free_approach_to_water_disinfection_using_catalytic_in_situ_generation_of_reactive_oxygen_species
https://www.researchgate.net/publication/352882305_A_residue-free_approach_to_water_disinfection_using_catalytic_in_situ_generation_of_reactive_oxygen_species
https://www.researchgate.net/publication/352882305_A_residue-free_approach_to_water_disinfection_using_catalytic_in_situ_generation_of_reactive_oxygen_species
https://www.nature.com/articles/s41929-021-00642-w
https://www.nature.com/articles/s41929-021-00642-w

https://static-content.springer.com/esm/art%3A10.1038%2Fs41929-0
21-00642-w/MediaObjects/41929_2021_642_MOESM1_ESM.pdf.

 — ⁂ —

 � Scaling calculations.

 Here are the calculations in more detail, since I misread yours badly
at least twice.

 You say 0.5 MGD is 6.5 million times higher than the 0.2 mℓ/min
(3.3 μℓ/s) in the experiment. 0.5 MGD is 21.9 ℓ/s, which is 6.6
million times higher than 3.3 μℓ/s.

 I think you are reading it correctly; they do say their catalyst is
0.5% Au and 0.5% Pd on a TiO₂ support: 0.6 mg of gold and 0.6 mg
of palladium to process 0.2 mℓ/min of water. The supplementary
material has a plot of different catalyst mixes they tried (Sup. Fig. 14,
p. 12, 13/32).

 If we normalize that amount of catalyst metal to SI units, that’s 180
gram seconds per liter (g·s/ℓ) each of gold and palladium. Your 0.5
MGD (22 ℓ/s) for 5000 people is 4.4 mℓ/s per person, which works
out to 790 mg per person each of gold and palladium. Palladium at
US$2800 per troy ounce (
https://www.kitco.com/charts/livepalladium.html — that is per troy
ounce, isn’t it?) is US$90/g. Gold at US$1800 per troy ounce is
US$58/g. Multiplying it out, that’s US$71 of palladium per person
and US$46 of gold per person, for a total of US$117 of catalyst metals
per person. This seems likely to be the dominant cost of the whole
shebang at anything larger than laboratory scale; the actual
preparation of the catalyst with these metals by the process they
reported in the paper might be even more expensive, but presumably
cheaper methods are possible.

 The 5000-person 0.5 mgd plant you cite as an example would need
3.9 kg of gold (US$230k) and of palladium (US$350k) for its catalysts,
a total of US$580k, which is the number you gave for “our small
plant”.

 790 mg of gold per person, times 7.7 billion people, would be about
6100 tonnes, about 3% of all the 200 000 tonnes of gold that has been
mined so far. However, the corresponding 6100 tonnes of palladium
would vastly exceed the above-ground stocks of palladium, estimated
at 4.5 “moz”, which I think means “million troy ounces”, or 140
tonnes.

 However, they also tried 1% gold without any palladium, and
although this produced lower H₂O₂ concentrations, they were still
high enough to be somewhat effective (≈80 ppm rather than 220
ppm, resulting in a 1.6 log₁₀ reduction rather than the 8.1 they were so
satisfied with). So in the face of resource limits you could trade off a
larger amount of gold and a longer residence time against scarce
palladium.

 ① Potable water needs are 5.7 ℓ/day/person, not 380.

 Your figure of 4.4 mℓ/s/person is 380 liters per day per person (100
gallons per day per person), but Burning Man recommends 1.5 gallons
per day per person (5.7 liters/day/person, 0.066 mℓ/s/person), which
includes water for showers, for cooking, and for drinking in a very
dry environment with extensive physical exertion, though not for

https://static-content.springer.com/esm/art:10.1038/s41929-021-00642-w/MediaObjects/41929_2021_642_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art:10.1038/s41929-021-00642-w/MediaObjects/41929_2021_642_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art:10.1038/s41929-021-00642-w/MediaObjects/41929_2021_642_MOESM1_ESM.pdf
https://www.kitco.com/charts/livepalladium.html
https://www.kitco.com/charts/livepalladium.html

bidets. My experience at Burning Man is that you can get by on less.

 That’s 67 times less water than your figure.

 Maybe your waterworks is supplying not only drinking water but
also toilet-flushing water and lawn-irrigating water? Those don’t
normally need antibacterial treatment. Even the 0.2 mℓ/min
benchtop catalyst they used in the paper (containing 5.4¢ of palladium
and 3.5¢ of gold) would supply 0.29 liters per day; it would only need
to be scaled up by a factor of 20 (to 12 mg gold (US$0.69) 12 mg
palladium (US$1.10), 2.4 g rutile) to supply the requisite 5.7 liters per
day per person.

 ② Supply-chain issues with consumables.

 This is mentioned in the Conclusions section of the paper.

 Conventional surface-water treatment facilities involve treatment
with hypochlorite, permanganate, chloramine, and whatnot. These
pose some safety concerns (especially at small scales) and in many
places are subject to legal reporting requirements. Occasionally there
are industrial accidents because a truck driver pumped ammonia into
the hypochlorite tank or vice versa; when people try to use the same
materials at the household scale, sometimes you get medical problems
because somebody put 1000 ppm of hypochlorite into their drinking
water instead of 3 ppm. And, especially for individual households in
middle-income and poor countries, there are often supply-chain
issues with these materials; sometimes shipments don’t arrive, or the
household doesn’t have enough money to buy a new bottle of bleach
when they run out, or the products are falsely labeled, or have
degraded before delivery—a particular problem with sodium
hypochlorite.

 For example, the cleaning-products store down the street from me
here in Argentina advertises that they sell “100% chlorine”, which I
found pretty alarming until I saw that they are unpressurized bottles
of liquid, not pressurized gas cylinders. Probably it’s mostly aqueous
sodium hypochlorite, but who the hell knows what the concentration
is, and what else they put in it? The supermarket has jugs of sodium
hypochlorite solution stabilized with sodium hydroxide, and the label
tells you the nominal concentration (usually 66 g Cl/ℓ) but of course
the bottles aren’t hermetically sealed, may be exposed to sunlight, and
may not have been properly quality-controlled at the factory in the
first place.

 If you’re running an 0.5 mgd water treatment plant, you can
presumably just measure the concentration in your hypochlorite tank,
and have someone assigned to do this. And since they replaced the
water main last year, we finally do have a reliable water supply 24/7,
instead of only at night when the neighbors aren’t pumping so much
water. Still, the water from the mains has to be pumped up to the
rooftop tank, where the chlorine concentration falls before we use it;
maybe the water plant is putting way too much chlorine in the water
to compensate for that, because it smells pretty strongly of bleach
when it comes out of the tap.

 If, by contrast, you have a durable catalyst that fulfills the same
microbicidal function without needing constant reliable shipments of
bleach, all of these concerns go away. It’s like the difference between
photovoltaic panels and the electric grid: even if a reliable electric

grid might give you energy at a lower cost than having your own
solar panels, that doesn’t help if you don’t have a reliable electric grid.
It might be worth spending US$10-US$200 per person for an
autonomous germicidal appliance; it might be cheaper than a
refrigerator or washing machine.

 ③ Consumables costs.

 That brings us to the question of consumables costs. Obviously
enough, I’ve never operated a waterworks, but for example Callie
Sue Rogers’s 02008 B.S. thesis on conventional surface-water
treatment plants https://core.ac.uk/download/pdf/4276743.pdf has a
table surveying a number of Texas “conventional surface-water
treatment facilities”, concluding that they spend between US$20.21
and US$286.14 per million gallons on “chemical costs”, depending on
the condition of the water they’re starting with; I infer “chemical
costs” means things like the oxidants mentioned above, flocculants,
and precipitants; this works out to 5.3 to 76 microdollars per liter.
She estimates that the total production cost ranges from
US$0.31/1000 gallons for small 5 mgd plants down to US$0.13/1000
gallons for larger 130 mgd plants (respectively 81 and 34 microdollars
per liter).

 The US$120/person figure (US$120 per 100 gallons per day) would
be 10400 microdollars per liter if the catalyst only lasted a month, 870
microdollars per liter if it lasts a year, 170 microdollars per liter if it
lasts 5 years, or 43 microdollars per liter if it lasts 20 years. It seems
almost certain to exceed the cost of buying the necessary oxidants on
the open market, particularly on a time-discounted basis.

 How long would the catalyst last in practice? The catalyst materials
in question are pretty darn inert, so you could probably clean them
(with acids and/or alkali) if they get poisoned by some kind of
inorganic contaminants in your incoming water. Organic fouling
won’t be a concern, and organic catalyst poisons would just get
chewed up by the H₂O₂. You have to use cleaning agents that aren’t
so aggressive that they can corrode the porous rutile support, but I
think that requires something like hot concentrated sulfuric acid.

 Of course, such cleaning might cut into the
supply-chain-autonomy advantage a bit. But it might not be
necessary at all; this isn’t a car catalytic converter, after all, and it’s
constantly washed with fresh water.

 What about the energy cost? Maintaining a 2° ice bath is pretty
cheap, but 10 bars (1 MPa, 145 psi) of pressure doesn’t come for free.
It costs 1kJ/ℓ (a simple unit conversion). Your 380 liters a day per
person would be 4.4 watts. At US$20/MWh this is US$0.77 per year
of energy per person, probably in practical terms more like US$3 per
year once you take into account the inefficiencies of electric motors
and pumps. This is small but not insignificant compared to the cost of
the catalyst. But it’s still a low enough energy cost that you could
hand-crank the pump.

 ④ Process improvements.

 So this is an economically feasible way to provide the 5.7 liters per
day of potable water a person needs, even if existing alternative
processes are cheaper. What are the prospects for improving the
process further?

https://core.ac.uk/download/pdf/4276743.pdf

 The key findings of this paper, as I read it, are that this catalytic
process is resilient to common solutes, and that the witches’ brew of
reactive oxygen species produced in this process is more effective than
commercially purchased H₂O₂—they say by a factor of 10⁷, but in
Supplementary Table 2 (p. 18, 19/32) I see log₁₀ reduction of
CFU/mℓ going from 0.44 to 0.98 (3.5×), from 0.64 to 1.25 (4×), from
0.96 to 1.18 (1.7×), and from 0.84 to 1.48 (4.4×), so I have no idea
where 10⁷ comes from.

 Process intensification is one possibility for making it economic;
it’s quite plausible that the use of higher pressures or additional
alloying elements in the catalyst could increase reaction rates by an
order of magnitude or more, and it’s possible that heating the water
after catalytic ROS production (by running it through a
countercurrent heat exchanger into a hot tank) would enable even
lower concentrations of ROS to disinfect effectively. (Normally
you’d also consider heating the catalyst, too, but presumably the ice
bath is necessary to push the equilibrium toward high concentrations
of H₂O₂ and other ROS.) Applying light or a voltage to the catalyst
are other possible routes to increased free radical production.

 Another possibility is lowering the cost of the catalyst;
metal-oxide, metal-(other-)chalcogenide, intermetallic, and even
transition-metal catalyst systems might work adequately through the
same route, and could be much cheaper even if the catalyst leaches at
an appreciable rate.

 After all, what use is a newborn baby?

Topics

• Materials (p. 1138) (59 notes)
• Pricing (p. 1147) (35 notes)
• Life support (p. 1251) (4 notes)
• Peroxide
• Drinking water

Memory view
Kragen Javier Sitaker, 02021-07-09 (updated 02021-12-30)
(6 minutes)

 I was thinking that, for examining data in PDF files, it would be
nice to have Python objects that basically represent chunks of bytes;
for example, the contents of a file, some substring of the contents of a
file, or the output of decompressing them. You ought to be able to
slice these objects to create new ones on subranges of them, without
copying the underlying data. And these objects ought to have default
displays that are useful for debugging, but not only one such display,
like the ordinary repr(); rather, several:

• A default text display that represents, in UTF-8 text, the contents of
the chunk of bytes, treated as UTF-8 text, up to some limited
number of lines, like 8. Like, the first four lines, an ellipsis, and the
last three lines. Plus magic symbols to indicate things like control
characters, malformed UTF-8, and trailing whitespace.
• A hex dump display, again by default limited to a small number of
lines.
• An annotated display that also indicates their provenance.
• Jupyter displays that somehow use Jupyter facilities to display them
more richly. For example, Jupyter apparently invokes _repr_svg_ if
present (which the graphviz.Graph class uses). Or you can return an
IPython.display.Image(filename) or IPython.display.Image(data=somebytes,
format='png').

 Also, I want to have parse-node objects, which are the same kind of
objects but with child nodes, trailing context, and computed values,
and the computed values are their default display --- but the other
forms of presentation are still available. To get one of these, you
invoke a .parse() method on one of the raw buffer objects with a
grammar argument, and you get back a version of the same object,
but with the parse-node stuff associated.

 Even the computed values ought to be able to have multiple kinds
of displays.

 Ideally I’d like to enable clicking around the graph in an
object-inspector sort of way, and clicking on Jupyter output to select
different views and follow links to child nodes.

IPython facilities

 Aha, and I see IPython also supports customizing tab-completion
by defining a __dir__ method, which is also what the builtin dir() uses,
and for tab-completion of mapping keys or sequence indices foo[key],
there’s an _ipython_key_completions_ method.

 For customizing display, there’s not only _repr_svg_ but also png and
jpeg representations, and in the HTML notebook, html, javascript,
markdown, and latex. If you define more than one of these I don’t
know how IPython determines which one to use, but there is a
_repr_mimebundle_ that supersedes them, and an _ipython_display_ function
which I guess can call whatever IPython methods it wants to draw

https://ipython.readthedocs.io/en/stable/config/integrating.html
https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html
https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html
https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html
https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html
https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html

stuff.

 For interactivity, there’s IPywidgets, which is simple enough to use
for simple cases (sliders, dropdown selections) and will use the above
means for output. For example:

from ipywidgets import interact
class Circle:
 def __init__(self, r):
 self.r = r

 def _repr_svg_(self):

 return """<svg width="256"><circle cx="128" cy="128" r="%s" stroke="#339"
 fill="#c6c" /></svg>""" % self.r

@interact(r=(0, 181))
def circle(r):
 return Circle(r)

 It’s no ObservableHQ, but hey, it gives you a form-based GUI to
any function. There’s an interactive which creates the widget that
interact displays, but lets you maybe display it later with
IPython.core.display.display, which is imported into notebooks by
default. The dropdown facility is enough to select among different
output facets; this very minimal prototype works, for example:

from ipywidgets import interactive

class DataView:
 def __init__(self, data):
 self.data = data

 def widget(self):
 def show(format='text', size=64):
 if format == 'text':
 print(self.data[:size])
 elif format == 'hex':
 print(' '.join("%02x" % ord(c) for c in self.data[:size]))

 return interactive(show, format=['text', 'hex'], size=(0, len(self.data))
)

DataView(open('README.md').read()).widget()

 There’s a submit-button version of interact called interact_manual, and
there’s widgets.Button which has an on_click method. Setting .value
on an existing widgets.Text from another cell causes it to update its
value on the screen. There are HBox and VBox widgets for layout
(not sure if their .children is mutable), and various kinds of output
widgets: widgets.Label, widgets.HTML, widgets.HTMLMath,
widgets.Image (whose .value is the binary data of the image file, and
also takes format, width, and height parameters). And there’s
widgets.Tab and widgets.Accordion for selectively hiding things, but

https://ipywidgets.readthedocs.io/en/stable/examples/Using Interact.html
https://ipywidgets.readthedocs.io/en/stable/examples/Widget List.html#Button
https://ipywidgets.readthedocs.io/en/stable/examples/Widget Events.html

not, I think, for computing them lazily.

 I’m able to spawn widgets with a button on_click.

 Also, suitable for nesting inspectors, there’s a widgets.Output to
display anything IPython can display, which can be used as a context
manager:

out = widgets.Output(layout={'border': '1px solid black'})
with out:
 display(YouTubeVideo('eWzY2nGfkXk'))

 widgets.Output also has a .clear_output() method and (maybe in
newer versions?) an .append_display_data() method which avoids
problems with multithreading. However, display() with a widget
doesn’t get nested into the output as it should, so I guess my best bet is
mutating a VBox; the following code is a bit awkward but does
work:

def nestable():
 i = 0
 out = widgets.Output()
 inc = widgets.Button(description='inc')
 def inc_click(ev):
 nonlocal i
 i += 1
 with out:
 display(i)

 inc.on_click(inc_click)

 spawn = widgets.Button(description='spawn')
 vbox = widgets.VBox([widgets.HBox([inc, spawn]), out])
 def spawn_click(ev):
 nonlocal out
 out = widgets.Output()
 vbox.children += nestable(), out

 spawn.on_click(spawn_click)

 return widgets.HBox([widgets.Label('-'), vbox])

nestable()

 Finally, non-button widgets have an .observe() method.

 It’s possible to insert things with a _repr_svg_ for instance into these
Output widgets, using display().

Topics

• Human-computer interaction (p. 1156) (22 notes)
• Python (p. 1166) (12 notes)
• The Portable Document Format (PDF) (p. 1227) (5 notes)
• Parsing (p. 1228) (5 notes)

https://ipywidgets.readthedocs.io/en/latest/examples/Output Widget.html
https://ipywidgets.readthedocs.io/en/latest/examples/Output Widget.html

• Domain-specific languages (DSLs) (p. 1260) (4 notes)
• Jupyter

Spreadtool
Kragen Javier Sitaker, 02021-07-10 (updated 02021-12-30)
(30 minutes)

 Watching an Abom79 video I saw an interesting way of fastening
parts together with friction: one part has a slot in it that’s too small
for the other part, but round holes on both sides of the slot. By using
a simple hand tool with two round pins that fit in the holes, one of
which is mounted on an eccentric with a handle on it, you can exert a
very large force to elastically bend the slot open, allowing the other
part (in this case, a ceramic cutting insert for a lathe parting blade) to
freely move in and out of the slot.

 This is a fascinating idea to me. Bolts and other screws also fasten
parts together with friction, but they add weight and tend to vibrate
free if they aren’t secured with lockwire. (Loctite isn’t considered
adequate in aviation.) Screws are inherently very three-dimensional,
while this bending-open-jaws approach can I think be arbitrarily close
to planar; you can fabricate it with 2-D cutting approaches. And
screws take a long time to insert and remove, while this eccentric
approach is a quarter-turn of a handle, like a camlock.

 Screws get a pretty good mechanical advantage, but eccentrics can
in theory have arbitrarily high mechanical advantage, because the
relevant output lever arm is at most the eccentric axis displacement
distance and diminishes toward zero like a toggle mechanism when
the eccentric approaches top dead center; additionally, you could
drive the eccentric rotation through a separate toggle mechanism if
need be.

 I’d previously seen the MTM Snap mill by Jonathan Ward and
Nadya Peek, which uses snaplock connectors milled out of HDPE
instead of screws, because Neal Gershenfeld loves snaplock
connectors. And they’re sort of the same thing as the flexing-jaw
connector in the video, or anyway there’s a continuum between them.

 Exploring the design possibilities, I think this is a potentially very
exciting mechanism offering many possibilities:

• Snap-jaw joints potentially offer a repeatedly-assemblable
alternative to screw fasteners with several advantages:

• It could be integrated into the parts to be assembled at the cost of a
few cuts and holes, rather than being manufactured separately.
• It could require dramatically less effort, whether measured in
maximum force, in energy, or in time, to assemble and disassemble
than screws do.
• It is usually enormously more vibration-resistant than screws are.
• On one of the two parts being connected, it’s possible to make the
connection anywhere in a continuous region, as with a screw slot, but
without the reduction in holding force and part strength that a screw
slot implies.
• The cost may be comparable, but is probably lower, by at least a
factor of 2 or 3, in part because snap-jaw joints can easily be made

https://youtu.be/PbFLW0_HIAU
http://mtm.cba.mit.edu/2011/2011_mtm-snap/mtm_snap-lock/index.html

with XY cutting processes.
• You could build a reusable, very inexpensive, very rapid
construction kit using high-strength snap-jaw fasteners, which would
allow you to rapidly assemble and disassemble a variety of shapes.

A basic snap-jaw connection

 Consider a mating pair of such parts, made of mild steel with 250
MPa yield strength and a 200 GPa Young’s modulus, giving 0.125%
yield strain. They’re made from 3 mm steel plate (23.7 kg/m²); the
first is 2-D cut with a 20-mm-long slot in its edge that tapers from
2.5 mm wide at the edge up to 3 mm at the base of the slot. The
second has a corresponding backwards taper ground or rolled into its
edge, so that its edge is the full 3 mm thick, while 20 mm from the
edge, it’s been thinned down to 2.6 mm. The slot must thus be
elastically opened by 0.5 mm or more, 0.25 mm per jaw, to assemble
the parts. Then these jaws can be clamped onto the edge anywhere
along its length, not just at predefined locations.

 Although there is a stop at the base of the slot, it consists of a
tongue; the jaws do not join onto the main body of the second piece
for another 20 mm, so the total bend in each jaw is 0.25 mm over 40
mm.

 The Von Mises yield criterion says the shear yield stress should be
about 0.58 of the tensile yield stress (3-½), or 145 MPa, and the shear
modulus G = ½E/(1 + nu), where nu is the Poisson ratio (about 0.26
for mild steels) and E is Young’s modulus, which works out to about
79 GPa, so the shear yield strain is about 0.18%. 0.18% of 40 mm is
0.07 mm, which is a lot less than 0.25 mm. This means that if the
jaws are so thick and solid that they are deforming in shear instead of
flexure when we open them, we have lost the game; we need them
to deform almost entirely in flexure. (I need to learn how to calculate
that.)

 0.25 mm over 40 mm amounts to a radius of curvature of 3200 mm
and a diameter of curvature of 40²/0.25 = 6400 mm.

 So suppose we make them 5 mm thick. Assuming pure bending,
the jaw’s inner edge is 40/3200 radians of a circle of radius 3200+2.5
mm; its outer edge is the same number of radians of a circle of radius
3200-2.5 mm. This amounts to 0.031 mm of compressive or tensile
strain, 0.08% strain, which is comfortably less than the 0.125% yield
strain limit of the mild-steel material.

 But how much force is this biting down on the other plate with if
it tries to pull out? Well, that 0.08% strain gives us 160 MPa stress in
the material at the extremes, where it’s applying a 2.5 mm lever arm.
But as the strain diminishes toward the neutral axis of the beam, so
does the lever arm. We need the integral from -1 to 1 of x² (which is
2/3), times 160 MPa, times (2.5 mm)², times the 3 mm thickness of
the material, and we get a torque of 2 N m, which is like 800 N
applied at a 2.5 mm lever arm. Dividing this by 40 mm we get 50 N,
which is a pretty modest force. You wouldn’t even need a special
tool.

 But that’s when it’s almost all the way pulled out; it increases from
20% of that (10 N) up to that value as the taper pulls the blades apart,
for an average bite force of 30 N. The interesting thing, though, is

the size of the energy barrier: steel on steel has a kinetic friction
coefficient of about 0.6, so it’s an average of 18 N of friction resisting
the pull-out force (plus 30 N × 0.5 mm / 20 mm = 0.75 N). But
because that’s over 20 mm, the energy barrier is a very significant 0.36
J. If you don’t manage to pull it all the way out, it will tend to move
back into place when there is vibration.

Shape variations

 A purely-2D-cuttable version is to use a sort of triangle-wave
pattern of teeth on the jaws of one plate and a series of slots in the
other plate to accommodate the crests of the triangles.

 This conformation of the connector type is not very proof against
being twisted, without further support; if we turn it inside out so we
have two tapered prongs that stick through a slot against the inside of
which they are pressing, we obtain a much better purely-2D-cuttable
connector which resists more degrees of freedom. The slot can be, for
example, 3.1 mm × 40 mm to locate the connector in all dimensions
to a reasonable degree of precision (and if it’s not perfectly
rectangular, thinning out to 3.0 mm at the edges, that will improve
the precision]; or it could be 40 mm × 40 mm to permit positioning
the connector anywhere within it at either of two angles; or it could
be longer, say 150 mm × 40 mm, to permit further positioning
freedom.

 To increase the force without vastly increasing the required
cantilevered jaw length, we can use rigid jaws mounted on many
parallel flexible thin strips (a section of metal with many parallel cuts
through it, perpendicular to the edge but not reaching it), which bend
into parallel S-curves to allow the jaw section to move. Since the
strips would be bending twice, they’d need to be half as thick to reach
the same strain, so 2.5 mm, which also halves the torque (and thus, I
think, the force) applied by each one. So to reach a 20 J energy
barrier for sliding out of place, we would need about 60 strips,
occupying about 150 mm of lateral space and providing about 1500 N
of peak bite force, for which you would definitely want a special tool.
The energy for opening the jaws would be 0.75 J.

 What people normally do in practice in such cases is to use a much
steeper slope than the 1:40 slope I’m talking about above, using
something closer to 1:1 or even 2:1 or 10:1, creating something more
like a hook than an inverted wedge, and a much larger displacement
than 0.5 mm. This makes the snap connector self-locking (like a
screw or the most common kinds of worm drive) without requiring
excessive forces to open it, when the opening forces are applied
directly to the snap jaws rather than to the joint they secure. Because
rounding over or breaking off the snap hook is an alternate means of
failure, typically only one side of the snap fastener moves.

 (Providing multiple hook tips, like interlocking sawtooths, is
another possibility for reducing the failure risk from the snap hook.)

 If the snap jaws are grabbing onto the edge of something or into a
slot, rather than poking through a hole or grabbing a small object,
having two connected sets of jaws in parallel planes positioned some
distance apart along the edge would strongly resist two axes of
twisting that a single edge-jaw connection is vulnerable to. And if

you want an edge that can be reliably grasped with such an edge-jaw
connector, a 2-D-cutting way to get one is, rather than trying to roll a
reverse taper into the edge, to assemble something like one side of an
I-beam, where a narrow strip of material runs along the edge of a
plate of material, perhaps held there by snap connectors protruding
through it. If the edge is perfectly straight and there are no jaws
clamped onto it, the strip can be twisted around its intersection line,
but if the strip is curved or there are jaws grabbing it, it should be held
firmly in place.

Compound mechanical advantage and
smooth jaws

 An exciting thing about hook tips with steep slopes is that they
provide further mechanical advantage that’s available to press
multiple things together. Suppose your hook tips have a 10:1 slope, so
0.4 mm of bite-down movement is permitted by 0.04 mm of
snugging up, and you have 1500 N of bite-down force. That
multiplies whatever part of the bite-down force isn’t stymied by static
friction, potentially all of it if you vibrate the joint enough, so you
might be able to get 15 kN of snugging force. (But, with a 250 MPa
yield strength, you need 60 mm² of cross-sectional area in tension to
withstand 15 kN, so you’d probably want to make such a thing out of
6mm mild steel sheet instead of 3mm.)

 An interesting thing about this is that the numbers for the forces
needed to fasten and unfasten, or the costs of fabrication, don’t really
depend at all on how wide the actual jaw is (and thus its tensile
strength), just the flexure that supports it. This might seem like a
distinction without a difference, though: if the flexure breaks under
tension, what does it matter that the jaw didn’t?

 But I think there is a very clever way around this. The movable
jaw always has to work against some kind of fixed jaw (whether
pressing toward it or pulling away), and the fixed jaw is rigid and not
supported on the flexure. Therefore, why not put the hook on the
fixed jaw, which can be arbitrarily robust, and make the movable jaw
totally smooth so it isn’t subject to tensile forces? This is backwards
from the usual snap-connector design, but I think it has a really killer
advantage in terms of strength.

 In the case where we’re joining the edge of one plate to the face of
another, we can’t do the sawtooth thing to prevent the hook from
rounding over or breaking off. Instead, we can use multiple rigid hooks
that poke through multiple slots in the mating plate, all preloaded
with the same flexure-mounted smooth movable jaw.

 There are some disadvantages to the hooked-fixed-jaw approach.
It means that the parts being joined have some play in the join,
depending on exactly how far down the hook ramp the flexure has
managed to force the mating parts, so they aren’t precisely locate
relative to one another. And an impact could apply the mass of either
of the two parts to the purpose of disconnecting the smooth movable
jaw. I think these can be mostly eliminated by using a chain of
wedges, like those in a tusk-tenon joint, those used to assemble
reusable concrete forms, or those in a cotter pin, with only the last
“keystone” wedge in the chain using a compliant snap joint to wedge

the whole chain tighter and tighter when there’s vibration. The small
masses of the keystone wedge and its immediate wedgee prevent
impacts from breaching the energy barrier to disassembly.

 Being able to make each connection extremely strong means that
you can use fewer of them, which lowers both costs and time for
assembly and disassembly.

 Of course, if you were to apply 1500 N, you need a fastening and
unfastening tool.

Design of a 91%-efficient snap-jaw-loading
tool

 At 0.5 mm displacement, a simple eccentric lever tool like the one
in the Abom79 video would have an 0.25 mm eccentric offset and
thus maximum lever arm. A comfortable handle length of 250 mm
would thus have a M.A. at worst of 1000:1, halfway through the
movement, when the bite force is only 750 N, and the handle force
thus 0.75 N plus friction. The peak handle force is just a little past
that, and then the M.A. starts to increase togglewise. With a force
budget of 10 N, you’d only need a peak M.A. of 75:1, and thus a
handle length of 19 mm. (A pullstring might still be a better way to
apply the force, though.)

 With the snap-fit fastener, though, there’s almost no friction inside
the workpiece, just elastic hysteresis, which is insignificant for most
common materials at these speeds. The friction is all inside the tool
used to force the snap open, where it’s practical to reduce it with
material choice and rolling-element bearings, instead of within the
part as with a screw. Consider these scenarios:

• The force is applied to a movable snap jaw by inserting a round steel
pin from the tool into a dry round steel hole in the snap jaw, and the
pin rotates as an integral part of the eccentric as the handle is turned,
thus rubbing against the jaw hole while the normal force increases
from 300 N to 1500 N. Suppose the pin is 3 mm in diameter; then in
a half turn it moves 4.7 mm with an average of 900 N normal force,
which with a friction coefficient of 0.7, gives us 630 N of average
friction force, consuming an extra 2.96 J every time you opened or
closed the jaws, in addition to the 0.75 J that gets elastically stored.
This is most similar to the situation with ordinary screws.
• Same, but now the pin is bronze or zinc, so the coefficient is reduced
to 0.22, and instead of 2.96 J it’s 0.93 J. A big improvement already,
and one you can’t get with screws unless you either put bronze sleeves
in all your screw holes or make all your screws out of bronze.
• Same, but now the pin has a teflon sleeve. This drops your
coefficient of friction to about 0.04 to 0.10, but teflon has a
compressive strength of only around 10-15 MPa so withstanding 1500
N requires a 150 mm² contact area, so now you might need to make
the “pin” and its hole 50 mm wide to not wear out, which would
make this less efficient instead of more, not to mention less
convenient.
• Same, but now instead of rotating as an integral part of the
eccentric, the pin runs through a pair of ball bearings pressed into the
eccentric, giving an effective frictional coefficient around 0.0008 to

https://wisconsindot.gov/documents2/research/WisDOT-WHRP-project-0092-08-13-final-report.pdf
https://www.bearingworks.com/uploaded-assets/pdfs/retainers/ptfe-datasheet.pdf
https://www.bearingworks.com/uploaded-assets/pdfs/retainers/ptfe-datasheet.pdf
http://web.archive.org/web/20190812011332/http://www.zyxmecanizados.com.ar/

0.0015. At this point, though, we need to worry about the bearings on
which the eccentric shaft as a whole rotates, because they become a
more significant source of friction; suppose the pin is on 608
roller-skate bearings with an 8mm bore and 22mm outer diameter.
Then the eccentric needs to be at least 22.5 mm in diameter and
probably more like 24mm, so at the business end its 24-mm-bore
bearing is resisting that same 750 N average force with the same
0.0015 effective frictional coefficient, but over 38 mm of rotation
instead of 4.7 mm. So that bearing consumes 50 mJ, while the pin’s
608 bearing consumes 17 mJ, for a total of about 67 mJ. SKF rates
their 608 deep-groove bearings for 3450 N dynamic, 1370 N static, so
this is sort of marginal, but that’s for a million revolutions before
fatigue.
• Same, but now the eccentric isn’t a constant diameter, but has a sort
of dogbone shape; its two ends are 25 mm in diameter with an
eccentric 22mm bored out of them (0.25 mm off center) to press the 3
mm pin’s bearings into, but those two ends are connected by an
8-mm OD pipe which is itself pressed into two more 608 bearings.
The 3mm pin runs through the ID of the pipe, which is, say, 4mm.
Now the eccentric’s bearing also consumes only 17 mJ for a total of 34
mJ, and as a bonus, the bearings cost 50¢ each instead of 600¢ each,
like a 24-mm-bore 6802 would.

 These 34 mJ are 4.5% of the 750 mJ needed to activate the
mechanism, but we pay them twice: once to load the snap jaw, once
to unload it. So it’s only 91% efficient.

 Consider the mechanical advantage of the screw. A coarse M6
screw has 1mm thread pitch and might be driven by a screwdriver
with a 25mm-diameter handle, so each 79 mm of screwdriver motion
produces 1 mm of axial screw motion. This is a 79:1 mechanical
advantage. To get 15 kN of snugging force you would need to apply
200 N of force at the surface of the screwdriver; you might need a
T-handled screwdriver or something. But with an appropriate safety
factor an M6 screw can handle a snugging load of only about 2090 N
in strength class 12.9, because its effective cross-sectional area is only
20.1 mm². To handle 15 kN you would need a larger screw --- the 60
mm² cross-sectional area I suggested above would be a little bigger
than an M10, but Misumi recommends a safety factor of 3-15
depending on the situation, and so a at least an M24. And these larger
screws have coarser thread pitch, further decreasing the mechanical
advantage.

How inexpensive?

 McHone says laser cutting steel costs US$13-$20 per hour, and 70”
per minute is a common cutting speed, which works out to 12¢-19¢
per meter of cut, but sometimes as slow as 20” per minute, which
would bring the cost to 66¢ per meter. (Also they suggest 0.005”
precision, which is 127 microns in modern units.) AST Manufacturing
says plasma is 0.020” precision (500 microns) on materials thicker than
1”, but laser can hit 0.003” (76 microns) and up to 1575 (!) inches per
minute.

 OSHCut says the nominal 1200-ipm speeds for the laser they
bought are misleading because acceleration is the limiting factor, not
cutting speed. So curvy contours, angles, traversing between

https://www.smbbearings.com/technical/bearing-frictional-torque.html
https://www.smbbearings.com/technical/bearing-frictional-torque.html
https://www.skf.com/ph/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-608
https://www.skf.com/ph/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-608
https://de.misumi-ec.com/pdf/press/us_12e_pr1271.pdf
https://blog.mchoneind.com/blog/how-much-does-laser-cutting-steel-cost
https://blog.mchoneind.com/blog/cost-laser-vs-waterjet-cutting
https://astmanufacturing.com/cutting-processes-compared/
https://astmanufacturing.com/cutting-processes-compared/
https://www.oshcut.com/post/laser-cutting-speeds
https://www.oshcut.com/post/laser-cutting-speeds

contours, and especially piercing are slower than cutting the contours
themselves, but also they say that on their 3kW Trumpf 1030 fiber
laser ¾”-thick steel (19mm) cuts at a maximum of 47 inches per
minute (20 mm/s), while 0.04”-thick steel (1mm) cuts nominally at
1160 inches per minute (490 mm/s). They measure curviness in
radians per inch, and their plot seems to show that at 5 radians per
inch (200 radians/m) the 1160 drops by a factor of 8, I guess to about
150 inches/minute (61 mm/s). Even at 1 radian/inch (39 radians/m)
it was down to ¼ of max (I guess 290 inches/minute, 120 mm/s).
Still higher curvatures added less penalty; even at 30 radians/in.
(1200 radians/m) the penalty for 1-mm steel was only about 17×, so I
guess 68 in/min or 29 mm/s. For thicker metal the curviness penalty
was less, basically no measurable penalty for the 19-mm stuff. Their
plot isn’t super well labeled but one of the thicknesses is supposed to
cut at 335 ipm (141 mm/s) and I’m guessing that might be 3mm; at 5
radians/in. (200 radians/m) it was only 2× as slow (70 mm/s?) and
even at 30 radians/in. (1200 radians/m) the penalty was only 4× (35
mm/s?).

 Another way to look at these curvature numbers is as the
characteristic feature size, although especially good CAM software
can avoid this sometimes for some designs; a closed convex polygon
of any shape is 2 pi radians, so a curvature of 200 radians/m means
that your closed polygons are about 31.4 mm in perimeter, while 39
radians/m means they’re about 160 mm in perimeter, and 1200
radians/m means they’re 5.2 millimeters in perimeter, which is pretty
impressive if your kerf is close to the typical 0.2 mm. Except that it
doesn’t include pierce times, so maybe they weren’t really cutting 6
polygons per second, maybe more like 24 radius-0.8-mm 90° corners
per second.

 Higher-powered 12-kW lasers can cut 12mm steel at 150 ipm, 64
mm/s, but even for straight cuts, laser cutters from 6 kW to 12 kW
on 0.5-mm steel all topped out at 3150 ipm (1.3 m/s). JMT has a
cutting speed chart cutting 1-mm steel with 4kW from 280 to 2362
ipm (120-1000 mm/s) and 3-mm steel at 120-380 ipm. Interestingly
they needed to use either O2 or N2 gas for such thick steel; air was
insufficient. Air could cut thin steel faster, and nitrogen faster still,
but oxygen was needed for steel over 6.4 mm.

 Plasma is cheaper and faster than laser as of 02018 anyway. This
article also gives me the term “XY cutting processes” to cover plasma,
laser, and waterjet, and mentions the acceleration limitation. Laser
vendor Trumpf disagrees, saying plasma is more expensive per hour,
while laser is only US$3/hour in operating costs, and also cuts faster
(114 ipm (48 mm/s) in ¼” (6.4mm) mild steel rather than “typical
plasma”’s 70 ipm, which commenters say is much slower than
typical).

 A company in Monte Castro called ZYX Mecanizados
(4674-6826, zyxmec...@gmail.com) is one possible vendor of the
service; they offer plasma, CNC router, laser, and hot-knife cutting,
for up to 1000 × 1300 mm. Their website is down but dates from
02014 and it says they cut lots of things but not ferrous metals. There
seem to be some other vaguely relevant companies listed in its
category on MercadoLibre, but that is probably not really true. Near
here Google Maps lists Plasmacenter (Perón 1898, Lomas de Zamora,

https://info.paramountmachinery.ca/blog/how-fiber-laser-power-impacts-cut-speeds
https://info.paramountmachinery.ca/blog/how-fiber-laser-power-impacts-cut-speeds
http://jmtusa.com/laser-comparison-cutting-speed-and-rate-of-feed/
http://jmtusa.com/laser-comparison-cutting-speed-and-rate-of-feed/
https://www.engineering.com/story/an-engineers-guide-to-laser-cutting
https://www.fabricatingandmetalworking.com/2017/09/the-king-of-cutting-sheet-metal-up-to-one-inch-thick/
https://www.fabricatingandmetalworking.com/2017/09/the-king-of-cutting-sheet-metal-up-to-one-inch-thick/
https://servicio.mercadolibre.com.ar/MLA-927216734-servicio-corte-router-cnc-pantografomecanizado-mdf-otros-_JM
http://web.archive.org/web/20190812011332/http://www.zyxmecanizados.com.ar/
http://web.archive.org/web/20190812011332/http://www.zyxmecanizados.com.ar/
http://web.archive.org/web/20190803100231/http://www.zyxmecanizados.com.ar/materiales
https://servicios.mercadolibre.com.ar/imprenta/impresiones-laser/
https://servicios.mercadolibre.com.ar/imprenta/impresiones-laser/
https://plasmacenter.com.ar/index.php/servicios/

4282-3855 or maybe now 6233-5443), but they just sell CNC plasma,
oxy, and laser machines. And in Palermo there’s S.A.D.I. Metales,
whose web site says they do CNC plasma (1.6 mm to 12.7 mm) and
oxy-fuel (4.7 mm to 300 mm) cutting, but who said they just do laser
last time I asked. They sell sheet metal from 1 mm to 6.4 mm in
thickness.

 Sheet steel is sold here as construction material in a weird mix of
medieval and modern units: 1500 mm × 3000 mm × 3.2 mm (0.125”)
for AR$28650, which at today’s rate of AR$163/US$ is US$176, or
US$39/m²; 1220 mm (4 feet) × 2440 mm (8 feet) × 1.25 mm
(18-gauge), 20 kg, for AR$9100, US$56, US$19/m², but it also can’t
possibly be those dimensions or it would be 29 kg; 1 m × 2 m × 1.25
mm (18-gauge), 20.5 kg, SAE 1010, for AR$7458, US$46, US$23/m²,
which ought to be 19.75 kg, which is close enough; 1.22 m × 2.44 nm
× 2.0 mm (14-gauge) for AR$15043, 49 kg, SAE 1010 from Hierros
Torrent, US$92, US$31/m². These are all in the range
US$1.43-US$2.80/kg, with the thinnest gauges costing nearly as
much per square meter and thus far more per kg.

 So, to get a cost estimate, let’s try scaling down the hook thing a
little. Say we’re satisfied with the 2kN snugging load a
strength-class-12.9 M6 screw can handle, and we get a 10:1 M.A.
from the angle of the hook (so we only need 200 N of bite), and 500
microns is enough. And to get 200 N over 500 microns, let’s say my
calculations above are okay and each additional 2.5-mm-wide
40-mm-long strip in 3-mm mild steel would give you 25 N of bite, so
you need 8 of them; a 20-mm-wide strip cut lengthwise into 8
straight 40-mm strips with 7-9 cuts (although where do we pierce?).
And let’s say the US$15/hour number is about right, and 70 mm/s
(one of what I think are OSHCut’s numbers) is about right for these
cuts. That works out to 6¢ per meter of cut, or 1.9¢ to cut the springs
for each such snap connector. The connector itself might occupy
more like 1000 mm² (0.001 m²), so the steel thus used costs about 3.9¢,
but it can also be serving other roles as structural support.

 (At 200 N we don’t need a special tool with eccentrics and bearings
and stuff. We can comfortably use snap-ring pliers with an M.A. of
3:1.)

 A box of 50 15mm M6 screws costs AR$540 or US$3.31, or 6.6¢ per
screw, but those aren’t strength class 12.9 or actually any declared
strength class. A box of 25 20 mm class-12.9 M6 screws costs AR$656
, 8¢ per screw. Drilling and tapping the holes for a screw costs extra,
probably a comparable amount.

Topics

• Contrivances (p. 1143) (45 notes)
• Pricing (p. 1147) (35 notes)
• Digital fabrication (p. 1149) (31 notes)
• Manufacturing (p. 1151) (29 notes)
• Physics (p. 1157) (18 notes)
• Mechanical (p. 1159) (17 notes)
• Strength of materials (p. 1164) (13 notes)

https://www.sadimetal.com.ar/index.php
https://listado.mercadolibre.com.ar/materiales-construccion-obra-chapas/lisa/material-acero/
https://articulo.mercadolibre.com.ar/MLA-924439735-chapa-lisa-de-18-lac-1500-x-3000-32mm-1500x3000--_JM
https://articulo.mercadolibre.com.ar/MLA-924439735-chapa-lisa-de-18-lac-1500-x-3000-32mm-1500x3000--_JM
https://articulo.mercadolibre.com.ar/MLA-906262811-chapa-lisa-n18-de-122x244-mts-125mm-laf-_JM
https://articulo.mercadolibre.com.ar/MLA-906262811-chapa-lisa-n18-de-122x244-mts-125mm-laf-_JM
https://articulo.mercadolibre.com.ar/MLA-828878948-chapa-lisa-laf-n-18-125-mm-de-100-x-200-mts-_JM
https://articulo.mercadolibre.com.ar/MLA-828878948-chapa-lisa-laf-n-18-125-mm-de-100-x-200-mts-_JM
https://articulo.mercadolibre.com.ar/MLA-796327344-chapa-lisa-lac-n-14-200-mm-de-122-x-244-mts-_JM
https://articulo.mercadolibre.com.ar/MLA-796327344-chapa-lisa-lac-n-14-200-mm-de-122-x-244-mts-_JM
https://articulo.mercadolibre.com.ar/MLA-796327344-chapa-lisa-lac-n-14-200-mm-de-122-x-244-mts-_JM
https://articulo.mercadolibre.com.ar/MLA-767623283-tornillos-fresada-philips-m6-x-15mm-caja-x-50-unidades-_JM
https://articulo.mercadolibre.com.ar/MLA-883120009-tornillo-allen-boton-m6-x-20-pack-x-25-unidades-calidad-129-_JM

• Machining (p. 1165) (13 notes)
• Hand tools (p. 1197) (7 notes)
• Argentina (p. 1200) (7 notes)
• 2-D cutting (p. 1201) (7 notes)
• Steel (p. 1222) (5 notes)
• Flexures (p. 1232) (5 notes)
• Spreadtools (p. 1321) (2 notes)
• Snaps (p. 1325) (2 notes)

Smolsay: the Ur-Lisp, but with
dicts instead of conses
Kragen Javier Sitaker, 02021-07-12 (updated 02021-07-27)
(22 minutes)

 What if we wanted a small dynamically-typed imperative language
with the flexibility of Lisp that admitted reasonably efficient
implementations, but not based on conses? Like, something with an
implementation about the size of the ur-Lisp? The power of
first-class hash tables (“dictionaries” or “tables” or “associative
arrays”) has been convincingly shown by JS, Perl5, PHP, Python, and
Lua, and they certainly produce much more readable code than Lisp.

 Lua has shown that freeform syntax without statement terminators
can be reasonably usable (though it mostly prohibits you from using
juxtaposition as an operator, as ML does for function composition,
and it limits your flexibility in what expressions can start with), and
Python has shown that indentation-based syntax can be too, at least if
you don’t demand too much from anonymous lambdas.

Statement-level structure

 We can start with variables. Imperative languages probably need
variable updates, but most variables should be declared and initialized
and then not mutated, so it makes sense to privilege the declaration
form over mutation with brevity; and ideally the thing being
declared should be in the left margin, permitting easy scanning, rather
than preceded by a keyword or punctuation:

decl ::= name "=" expr
assi ::= "set" lvalue "=" expr

 Multiple assignment (and multiple declaration) is convenient
syntactic sugar at times, especially with Lua-style or Perl-style
multiple return values, but it doesn’t add any fundamental power if
we have dicts. And I think non-multiple assignment tends to push
code toward being “boring” rather than “clever”, which is
worthwhile here.

 So an lvalue is just a dictionary lookup chain from a name. A
pathname, you might say. I think it’s really important to be able to
say literally p.x = 3 rather than the much noisier options like, say, p{x} =
3 or p:x = 3 or p.:x = 3 or p['x'] = 3 or x(p) = 3, or a more implicit option
like p x = 3. But it’s also important to be able to index with
expressions rather than literal symbols like :x. One approach to this
would be to distinguish literal symbols by case: perhaps X would be a
literal symbol and x a variable, so p.X = 3 would index by the literal
symbol, but p.x = 3 would use whatever the current value of x was.
But I think maybe a better approach is to use a parenthesized
expression, so p.x = 3 assigns to the property x, while p.(x) = 3 reads the
variable x and assigns to the property it names. Thus .() takes the
place of [] in most conventional languages.

lvalue ::= name ("." arc)*
arc ::= name | "(" expr ")"

 Now we need conditionals, functions, and (if this is really
imperative) iteration. My Lisp sense tells me that conditionals and
iteration should be expressions rather than statements; my Lua and
Python sense tells me that this might make parsing errors unusable
(Lua's parsing can reliably distinguish a function call from a trailing
expression followed by a new statement beginning wih (or [because
Lua statements can’t begin with those because Lua doesn’t have
expression statements) but in any case they should use conventional
words; my C sense tells me that I should use curly braces. So,
conditionals:

if ::= "if" expr "{" expr+ "}"
 ("elif" expr "{" expr+ "}")*
 ("else" expr "{" expr+ "}")?

 Since we don’t have multiple value returns, the value returned by
the conditional is the value of the last expression in the chosen branch.

 Function calls are similarly syntactically simple, although they
involve the expression-juxtaposition danger that shows up in JS, since
presumably we will allow expression parenthesization:

call ::= expr "(" (expr ("," expr)*)? ","? ")"

 The arrow syntax from current JS is the lowest-hassle way to
define an anonymous function. Semantics are that it is a closure with
arguments are passed by value.

lambda ::= "(" (name ("," name)*)? ","? ")" "=>" "{" expr* "}"

 Tentatively I’m using Sam Atman’s -> syntax from Lun for
function return values:

return ::= "->" expr

 This allows us to write add1 = (x) => { -> x + 1 }, which is
lightweight enough to not wish for a sugared function add1(x) { -> x + 1
} form.

 Minimally iteration needs a while loop, but most loops are better
expressed as iteration over a sequence:

while ::= "while" expr "{" expr* "}"
for ::= "for" name "in" expr "{" expr* "}"

 List comprehensions in Python are extremely useful, so these ought
to return sequences, but what should they contain? The conventional
answer would be the last expression invoked in the loop body, and
that seems adequate.

 The Lisp approach to sequences is to use cons lists, in which case
the “for” structure would desugar somewhat as follows:

for x in y { z }

yi = y
while !yi.null {
 x = yi.car
 z
 set yi = yi.cdr
}

 A different approach would use arrays and perhaps slices:

yi = 0
while yi < y.len {
 x = y.at(yi)
 z
 set yi = yi + 1
}

 The remaining fundamental means of combination is explicit
aggregate variable construction. Unlike in JS, it’s syntactically
unambiguous to use {} here because all our previous uses of { were
semantically obligatory and thus cannot occur where an expression is
expected.

dict ::= "{" (arc ":" expr ("," arc ":" expr)* ","?)? "}"
list ::= "[" (expr ("," expr)* ","?)? "]"

 So, the basic expression language then is

expr ::= decl | assi | if | call | lambda | return | while | for
 | dict | list | infix

Infix expressions

 Pop infix syntax is fairly straightforward; basic arithmetic is:

atom ::= "(" expr ")" | string | int | real | symb | lvalue
unary ::= atom | "-" atom | "!" atom
expo ::= atom ("**" exp)*
term ::= expo (("/" | "//" | "*" | "%") expo)*
terms ::= term (("+" | "-" | "..") term)*

 Here .. is Lua’s string concatenation operator. I think it’s safe to
relegate bitwise arithmetic to named functions.

 There’s an unfortunate precedence ordering thing in C where
booleans have precedence close to the bitwise operators, tighter than
comparisons, rather than the more desirable looser-than-comparisons
thing. Another problem is that chained comparisons (x == y == z) have
unintuitive results in most languages. A simple solution is to restrict
the syntactic composability of these elements, requiring the use of
parentheses to disambiguate:

infix ::= terms (("==" | "!=" | "<" | ">"
 | "<=" | ">=" | "&&" | "||") terms)?

 A slightly better solution is to provide a separate case for the
associative short-circuiting Boolean operators that does allow them to
be individually chained:

infix ::= terms (("==" | "!=" | "<" | ">" | "<=" | ">=") terms)?
 | terms ("&&" terms)+
 | terms ("||" terms)+

Tokens

 Strings, numbers, names, and symbols are simple enough. The {}
around these productions indicate that whitespace should not be
skipped within them.

string ::= {"\"" ([^\\"] | "\" byte)* "\""}
int ::= {"-"? [0-9]+}
real ::= {"-"? ("." [0-9]+ | [0-9]+ "." [0-9]*)}
name ::= {[A-Za-z_$] [^] \t\r\n(){}[.=!<>+-*/%&|#]*}
symb ::= {":" name}

 Whitespace itself, implicitly ignored elsewhere, includes comments
to end of line, which are marked with Unix # rather than Ada/Lua --.

whitespace ::= ([\t\r\n] | "#" [^\r\n]* (\r\n | \n | \r))*

Modules and scoping

 There’s no need to put an import statement into the program
grammar; the “.” syntax will work perfectly well for reaching into
modules if there’s an ordinary function that imports a module and
returns it, like JS’s require. We can simply declare, Python-like, that
global variables in a file are the properties of the corresponding
module.

 So then we simply have

module ::= expr*

 I’m convinced that lexical scoping is adequate and the right default.

The whole Smolsay grammar
(Smolbutswol?)

module ::= expr*
expr ::= decl | assi | if | call | lambda | return | while | for
 | dict | list | infix
decl ::= name "=" expr
assi ::= "set" lvalue "=" expr
lvalue ::= name ("." arc)*
arc ::= name | "(" expr ")"

if ::= "if" expr "{" expr+ "}"
 ("elif" expr "{" expr+ "}")*
 ("else" expr "{" expr+ "}")?
call ::= expr "(" (expr ("," expr)*)? ","? ")"
lambda ::= "(" (name ("," name)*)? ","? ")" "=>" "{" expr* "}"
return ::= "->" expr
while ::= "while" expr "{" expr* "}"
for ::= "for" name "in" expr "{" expr* "}"
dict ::= "{" (arc ":" expr ("," arc ":" expr)* ","?)? "}"
list ::= "[" (expr ("," expr)* ","?)? "]"
atom ::= "(" expr ")" | string | int | real | symb | lvalue
unary ::= atom | "-" atom | "!" atom
expo ::= atom ("**" exp)*
term ::= expo (("/" | "//" | "*" | "%") expo)*
terms ::= term (("+" | "-" | "..") term)*
infix ::= terms (("==" | "!=" | "<" | ">" | "<=" | ">=") terms)?
 | terms ("&&" terms)+
 | terms ("||" terms)+
string ::= {"\"" ([^\\"] | "\" byte)* "\""}
int ::= {"-"? [0-9]+}
real ::= {"-"? ("." [0-9]+ | [0-9]+ "." [0-9]*)}
name ::= {[A-Za-z_$] [^] \t\r\n(){}[.=!<>+-*/%&|#]*}
symb ::= {":" name}
whitespace ::= {([\t\r\n] | "#" [^\r\n]* (\r\n | \n | \r))*}

 This still contains the frustrating ambiguity where an expression
immediately followed by (is a call, but expressions can also begin
with (. The alternative of replacing sin(x) with something like sin:(x)
or sin[x] is unappealing. It’s possible to disambiguate in these cases by
assigning to a dummy variable: _ = (foo). Requiring no whitespace or
at least no line breaks before the paren would pretty much solve the
problem, but it sort of requires that the parsing of expr not consume
following whitespace.

 Because conditional blocks are always wrapped in braces, the if-else
ambiguity doesn’t occur.

Resulting design at other levels of
abstraction

 This suggests the following set of 23 basic “bytecode” operations:
getlocal, setlocal, get, put; jumpfalse, jump, call, return; makedict,
makelist; constant; negative, not, exponent, truediv, floordiv, mul,
mod, add, sub, cat, eq, lt.

 Of course, the proper order of implementation would be
something like:

• Implement bytecode interpreter with textual bytecode syntax and
program in it a bit.
• Implement S-expression syntax, compiling to the bytecode, and
program in it a bit.
• Implement debugger stuff, maybe native-code compiler, etc.
• Implement pop infix syntax above.

 The S-expression syntax can get by with six special forms:

• (lambda args body...)
• (return x)
• (cond xy...)
• (while p body...)
• (for x y body...)
• (setlocal n v)

 The other bytecode operations are either implicit (getlocal, call,
constant), folded into the three control structures, or ordinary
functions (get, put, makedict, makelist, negative, not, exponent,
truediv, floordiv, mul, mod, add, sub, cat, eq, lt), along with the other
ordinary functions (require, print, length, etc.).

 From the point of view of the pure ur-Lisp, if we strip away the
imperative and arithmetic frippery, we’re replacing ATOM, CONS,
CAR, and CDR with get, put, makedict, and makelist, and makelist
is unnecessary.

 Of course, other alternatives to S-expressions exist. RPN, for
example (which is on my mind lately because I’ve been hacking on
PDF and PostScript) or Prolog notation, or REBOL-style non-R PN,
or APL-style precedence-free infix.

Alternative debugging-first semantics

 What if functions returned their internal namespaces instead of an
explicit return value? You wouldn’t need a return statement or a dict
type, and in most cases debugging would get a lot easier.

 A hairier approach to this would be to associate the internal
namespace with the value thus produced, and provide a function
why(x) that returns the activation record of the function call that
returned x. This implies that returning a value sort of makes a copy of
it to potentially associate it with a different activation record, but
accessing it as a property does not; we want why(p.x) to work. Other
internal operations can be treated as functions.

 That is, a variable/property has a value aspect, the usual reference;
but it also has a why aspect, which is the activation record of some
function, accessible via the why built-in function. Both of these aspects
are returned when a function returns and stored in the
variable/property. It might as well also have other aspects useful for
debugging, like prev, which gives you the variable as it was before
being overwritten, and where, which tells you what statement did the
overwriting (or initializing), and in what activation record. An
activation record might also have a caller; often caller(why(v)) will be
where(v).call. You might also want to know the control-flow context
of the where, with something like where(v).context.condition to find out
why the if or while statement was continuing.

 If all this data is always available, no activation record and indeed
no value ever becomes garbage, so only very short programs can run
fast. (We’re in an imperative world here, so we can’t just recompute
the activation record on demand like Bicicleta.) We could maybe
store it in some kind of a ring buffer, like Cheney on the MTA.

 The no-return-statement variation doesn’t have this problem;
sin(x) is a whole activation record, but sin(x).val is just the return

value, so you only retain activation records when you want them. In
Bicicleta I had syntactic sugar for this: sin{x} and sin(x) respectively,
the second of which extracted a variable annoyingly called ().

Efficient implementation

 A standard pointer-bumping generational GC should work pretty
well here, though maybe not quite as well as in a strictly immutable
language. If we use a standard sort of stack structure rather than
heap-allocating activation records, we need to scan the stack for roots
on nursery collections anyway, so we don’t need a write barrier for
writes to the stack, which are statically apparent, nor for property
initializations. Only property mutations and module-variable
mutations need a write barrier.

 To statically resolve callees, we’d like to be able to treat the module
variables in which “global” functions live as constant. Static analysis
can’t show that module variables are never mutated, but we could
maybe trigger a recompile after mutating such a cell. This makes the
property-mutation write barrier more expensive, and it might require
on-stack replacement (with a recompilation of the same code, not a
compilation of the new function), which is easier if our stack-frame
structures aren’t too optimized. Debugging is also easier if those
structures are ordinary dictionaries.

 Statically compiling local-variable accesses into indexing off a stack
frame that is also an ordinary dictionary would be easier if we could
ensure that dictionaries never changed shape, as local-variable vectors
normally don’t. If you can delete values from a dictionary, which is
probably important, there’s the question of what happens when you
try to read the deleted value. If getting nil as in Lua is an acceptable
answer, then you can ensure that dictionaries never change shape.
But, if you want that to raise an exception, you either need to check
for existence every time you read a local variable, as Python does, or
you need to recompile the function to crash (and potentially do
on-stack replacement) when you delete the variable from its stack
frame.

 Or you could just raise an error when you try to delete a variable
from a stack frame, which is probably the most sensible thing to do
--- changing their values is reasonable but deleting them is not. That
would require that the deletion operation do a special check for such
protection --- which is fine, because key deletion is so rare that it
doesn’t need to be especially fast.

 The space-efficient way to make such early-bound accesses fast
would be to put dictionaries’ keys in one vector (or set of vectors, but
probably just one in this case, though maybe it would be worthwhile
to use the set-of-vectors approach to handle lexical scopes) and the
corresponding values in another one, which would be in the stack
frame. For large key sets, a canary hash table for the key set would
enable fast access by key. Newly added keys would go into a new key
vector.

 This kind of design, where the stack frame structure is a regular
first-class data value that happens to be efficient enough to use for
local variables, seems like it might be an appealing alternative to
dynamic deoptimization.

 (It might be useful to expose the inheriting-dictionary approach
used to handle nested scopes as first-class in the language itself, so that
you could, for example, put a class’s methods in one dictionary and
then create objects that inherit from it, or efficiently override a few
things in a large dictionary.)

 This structure would also make the common makedict case, where
the set of keys is constant, fast and space-efficient. And it might ease
the task of “hidden class” compilers.

 Initialization can be statically guaranteed for all local variables if
variable declarations are block-local rather than function-local.

What about dynamically dispatched
methods?

 We can use closures as methods, of course, or we could supply
syntactic sugar like Lua’s obj:method(args), which translates to
obj.method(obj, args), although both : and -> are already taken in the
syntax above. obj.method[args], obj << method(args), obj <- method(args),
^method(obj, args), @method(obj, args), and method = generic(:method) ...
method(obj, args) come to mind. But we’d like to be able to do this in a
way that can be compiled efficiently in a dynamically-typed system,
which means we need some way to quickly verify that the method to
invoke is the same as last time. So we’d like the memory
representation of obj to be possessed of some easily readable
register-sized value that can be efficiently compared against the one
for the method we think we ought to call.

 One approach is to attack the problem entirely at the desugared
level: if we’re first fetching a property from the object, then invoking
the resulting closure, we could try to speed up the property fetch,
and/or we could compare the resulting property against the last
closure we invoked at this callsite (or a PIC of them). This would be
fine for a tracing JIT but it seems unlikely to provide much benefit
for a simpler compiler. If your objects are made out of a delegation
chain of dictionaries as described earlier, you can store the chain in a
counted vector in the dictionary object, and you can copy the chain
item in which you found the method to your inline cache, along with
a number that says what index it was at. Then you can compare the
cache-key dictionary pointer to the dictionary pointer in the
delegation chain at the appropriate position, if it’s within bounds. But
then you need to worry that a later (more superficial) dictionary in
the chain might be hiding the method, so you can also maybe store an
index in the object that tells which is the last dictionary in the chain
none of whose keys are hidden, and use that instead of the dictionary
where you actually found the keys. Hopefully this will allow you to
have cache hits for “objects” in the same “class”, since instance data
doesn’t normally hide methods.

 Another approach is the Perl/Python bless approach, where the
instance data of an object is in one dictionary, and its methods are in
another, providing a totally separate namespace and enabling you to
use dicts with much greater security than in JS. Lua does this with
setmetatable: the things that tell Lua how to index a table or convert to
strings are stored in a separate table, the metatable, which may be
shared among many objects. So maybe obj << method(args) should

desugar to what we’d write in Lua as getmetatable(obj).method(obj, args).

 This is somewhat less conceptually simple (a dict isn’t just a set of
key-value pairs; instead it has become merely the puppet of a
shadowy class) but much easier to compile efficiently and much safer.
You don’t need to grovel over a delegation chain to figure out what
the best cache key is; it’s just the class, which doesn’t need to support
inheritance. It would be better to put regular user methods in the
class too, unlike Lua, which is at this intermediate point where
methods like index and tostring are in the metatable as in Perl and
Ruby, but you’re expected to put ordinary user methods in the same
namespace as your instance variables or dictionary items, as in JS.

 I think this is slightly less simple than the current Lua approach,
since in Lua, you don't need to add a metatable to a table in order to
put methods on it. but the metatables are already in the picture and
it's already common to return setmetatable(...) in object constructors,
and in those cases it seems like it would just simplify user code, as well
as having the above advantages.

 One of the things I really enjoyed about LuaJIT's FFI (by contrast
to Python's cffi) is that I can just add Lua methods to C structs with
ffi.metatype(ctype, { __index = { methods } }) instead of having to do the
whole song and dance of the membrane pattern where I wrap each C
type in a separate porcelain object, everywhere it's returned through
the looking glass (and possibly going to some effort to keep that
relationship 1:1). But the standard Lua way of defining ordinary
methods means that if I want to do the same thing for an ordinary
table that's used as a dictionary, I do have to create a separate
porcelain façade to hold its methods.

 Some notes on COLA-like object models are in Faygoo: a
yantra-smashing ersatz version of Piumarta and Warth’s COLA (p.
570).

Topics

• Programming (p. 1141) (49 notes)
• Lisp (p. 1174) (11 notes)
• Virtual machines (p. 1182) (9 notes)
• Small is beautiful (p. 1190) (8 notes)
• Programming languages (p. 1192) (8 notes)
• Higher order programming (p. 1196) (7 notes)
• Systems architecture (p. 1205) (6 notes)
• Syntax (p. 1221) (5 notes)
• Bytecode (p. 1236) (5 notes)
• Garbage collection (p. 1255) (4 notes)
• Dynamic dispatch (p. 1259) (4 notes)
• LuaJIT (p. 1353) (2 notes)
• Lua (p. 1354) (2 notes)
• The JS programming language (p. 1359) (2 notes)
• Debugging (p. 1375) (2 notes)
• Lun

Electrolytic berlinite
Kragen Javier Sitaker, 02021-07-12 (updated 02021-12-30)
(7 minutes)

 Thinking more about 3-D printing phosphate rocks. The prince of
phosphates is the quartz-like berlinite, an aluminum phosphate.
Obvious solution: squirt soluble aluminum salts like aluminum
chloride into soluble phosphate salts like diammonium phosphate, or
vice versa, to precipitate it, maybe in the interstices of some dirt.

 (The other soluble aluminum salts are the sulfate, the nitrate, the
lactate, and the perchlorate, as well as the alums, and any of them
could be used; sodium aluminate might also be worth a mention,
since it precipitates out the insoluble aluminum hydroxide gibbsite in
anything but a very alkaline environment. Potassium aluminate,
which has very similar properties, is sold for phosphorus-precipitation
water treatment.)

 Next step: what if we produce the aluminum salt electrolytically
on demand from an aluminum electrode? Maybe run NaCl over the
electrode to produce aluminum chloride or sodium aluminate.
Probably you still need to do the electrolysis in a clean chamber and
squirt the result into some kind of powder or solution instead of just
sticking the electrode into mud and applying a voltage, unless buildup
on the electrode itself is what you’re going for.

 But producing aluminum itself is costly and demanding in a variety
of ways. What if we don’t have aluminum metal, just an aluminum
ore like bauxite? Maybe we could electrolytically produce soluble
aluminum salts from it and squirt them out; for example, with a
chloride electrolyte like NaCl and a silver-plated, gold-plated, or
graphite anode, or a sulfate electrolyte and a lead or graphite anode, or
a sodium-salt electrode and a steel cathode. The alums occur
naturally on Earth in water-soluble form, so in their cases you
wouldn’t even need electrolysis.

 What if you instead want to extract the phosphate electrolytically?
Maybe a slurry of apatite with a sulfate salt (sodium, say) and a lead or
graphite anode could solubilize phosphate while immobilizing most of
the calcium, and the result could be directly squirted onto a power
containing aluminum cations, maybe even in an insoluble form like
the trihydroxide, to form the phosphate of aluminum.

 You might even be able to carry out both processes simultaneously,
thus eliminating the need to neutralize unwanted ions from the other
half of the electrolysis.

 In both these aluminum-metal-free processes, you could probably
skip most or all of the usual refining of the mineral feedstocks,
because the usual contaminants either mostly won’t dissolve or won’t
harm the desired cement-formation reactions. For example, bauxite
often contains troublesome impurities of reactive silica, hematite,
rutile/perovskite, and lime, all of whose cations would react with
phosphate to form hard, insoluble rocks in much the same way as
aluminum. Such a mix might have more favorable properties than
pure aluminum phosphate; for example, species like hydroxyapatite

that nucleate and grow rapidly could provide early strength, especially
if they form acicular or platy crystals, allowing time for
slower-growing crystals of other minerals to form over a longer
period of time.

 Aside from the potential for 3-D printing, this family of processes
could also be used for grouting soil to stabilize it as a foundation for
buildings or civil-engineering projects like highways.

 Massive crystalline berlinite is fairly hard and inert, so if that can be
persuaded to form, it should be possible to reveal the resulting shape
by abrading or dissolving away the softer or more reactive ingredients.

 Another interesting possibility is the mineralization of wood (or
other porous substances that are easy to shape, such as carbon foam or
plaster of Paris) by soaking such materials into it one after the other
(perhaps forcing them in under high pressure), hopefully forming a
surface layer of wood enhanced with the incombustible, hard, stiff,
insoluble phosphate mineral. This obviously has potential
disadvantages: the phosphate is not the only product of the reaction
--- aluminum chloride and diammonium phosphate, for example,
will also produce ammonium chloride; the solvent remains, and may
have difficulty escaping the low-porosity material; and the
ingredients may not be completely consumed, and in some cases may
attack the wood over time, for example hydrolyzing it.

 This sort of thing seems like a potential appealing low-cost
hydrothermal route to “ceramic-matrix composites”, somewhat
similar to the bargain-basement gypsum remineralization described in
Making mirabilite and calcite from drywall (p. 564). First, layup and
fixation of the reinforcing fibers (perhaps zirconia, alumina, mullite,
carborundum, graphite, basalt, metals like steel, or ordinary glass
fiber), using some sort of very porous adhesive (perhaps a minimal
amount of plaster of Paris), and sizing of the fibers with a
lower-strength material to enable fiber pull-out. (Traditional CMC
manufacturing uses pyrolytic carbon or boron nitride for this sizing.)
Second, saturation of the fiber reinforcement with one of the salts that
will produce the matrix, followed by drying it to remove the
unnecessary water. Third, application of the other salt to form the
desired mineral matrix, such as berlinite.

 To form large crystals, capable of bridging larger gaps, it’s desirable
for reaction conditions to be just barely favorable for crystal
nucleation. For some systems, this can be achieved by temperature
control, but that seems unlikely to help much in this case, given the
very low solubility of the aluminum phosphate in water at any
reasonable temperature. If the amount of aluminum phosphate
dissolved in the water never rises very high, this could help, although
at the cost of making the reaction take a long time. This requires
limiting the rate of the reaction that produces it, either (unlikely) by
very low temperatures, or by having a very low concentration of one
of the ingredients.

 For example, if solid gibbsite is the source of the aluminum, you
could flow an abundant amount of very dilute diammonium
phosphate through it, perhaps forming aluminum phosphate at a low
enough rate that nearly all of it would deposit on existing phosphate

crystals rather than forming their own. But this might simply encase
the gibbsite crystals in an inert layer of berlinite, passivating them.
The difficulty with doing this with two water-soluble ingredients is
that flowing an abundant amount of a very dilute ingredient through
the porous object would wash away the other ingredient.

 If it’s possible to supply one of the salts as a vapor instead of a liquid
solution, that could perhaps solve this problem, because a low
concentration could be applied for a period of time. Aluminum
chloride sublimes at 180°, for example, while the soluble phosphate
remains liquid even after losing all its water at 212°, so perhaps hot
aluminum chloride vapor could form berlinite on phosphate-bearing
surfaces in the 100°-200° range.

 If using the phosphate as a cement to selectively join an aggregate
(a functional filler), obvious candidates for the aggregate include clay
grains, quartz, and sapphire, aside from the fibers and whiskers
mentioned previously.

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• Electrolysis (p. 1158) (18 notes)
• 3-D printing (p. 1160) (17 notes)
• Filled systems (p. 1161) (16 notes)
• Phosphates (p. 1184) (9 notes)
• Minerals (p. 1210) (6 notes)
• Cements (p. 1235) (5 notes)
• Ceramic-matrix composites (CMCs) (p. 1265) (4 notes)

Making mirabilite and calcite from
drywall
Kragen Javier Sitaker, 02021-07-12 (updated 02021-12-30)
(4 minutes)

 Glauber’s salt is an appealing material for both phase-change
thermal energy storage and thermochemical energy storage, but the
usual ways to make it might be inconvenient at small scales,
particularly in places where the police consider such activities
suspicious. So how can you make it from non-suspicious materials?

 It occurs to me that gypsum is much more water-soluble than
calcite, particularly at pH above 7, so in an equilibrium between solid
gypsum, solid calcite, and some aqueous solution with some other
cation that is highly soluble with both anions, there will be very little
gypsum left. So perhaps you can boil drywall (plaster of Paris) in
baking soda for a while (months?) to get Glauber’s salt, or just boil the
baking soda to liberate the carbonate ion and then soak the plaster in
the resulting liquor (for months?) after cooling.

 Aside from its potential use as a source of mirabilite, this
remineralization process might be a useful way to strengthen objects
initially shaped from plaster of Paris (or composites cemented with it),
at least if they survive it intact rather than falling to pieces or swelling
out of shape. Plaster of Paris is easy to mold and sets up in a few
minutes; it’s easy to abrade, cut, and burnish to precise dimensions
once it’s set; it’s a fairly non-corrosive environment; and it adheres
well to a wide variety of functional fillers, including traditional fillers
like quartz sand, horsehair, and various forms of cellulose fibers, but
also I think higher-performance fillers like fiberglass which are never
used with it in practice. It would be very valuable to convert the
resulting weak plaster or plaster-cemented composite, which will
simply crumble with enough exposure to water, to the much stronger
calcite or a calcite-cemented composite like lime mortar. (Matweb
gives limestone as 5-25 MPa tensile, 14-255 MPa compressive, but
that’s presumably full of cracks; I’m having a hard time finding
properties of the pure minerals.)

 Lime-mortar buildings have stood for thousands of years in rainy
areas, and calcite can also withstand much higher temperatures than
plaster of Paris for many cycles. (Plaster of Paris won’t melt, but it
dehydrates below 200°, shrinking and losing strength, while calcining
calcite back to quicklime requires temperatures over 600°, normally
over 800°.) Moreover, the use of lime cement in the traditional form
imposes very significant restrictions: the pH of the slaked-lime
cement mix before it sets is high enough to degrade most glass fibers,
limiting the strength of the final result. It also attacks most candidate
thickeners and thixotropic additives, and so without a large amount of
filler (normally quartz sand), lime cement tends to just turn into a
puddle. If calcite objects could instead be created by remineralization
of plaster of Paris, it would avoid these problems.

 Even if the remineralization process required a large amount of
other feedstocks relative to the gypsum, it could be very valuable:

http://www.matweb.com/search/datasheet.aspx?matguid=87597d62662c46a7a308b11e16c563c6&ckck=1
http://www.matweb.com/search/datasheet.aspx?matguid=87597d62662c46a7a308b11e16c563c6&ckck=1

small additions of plaster of Paris with ordinary portland cement have
of course been tried, and while the result does set up quickly, it never
achieves much strength. If this is due to gypsum in the structure that
could be converted to the much stronger calcite in such an easy way,
many new possibilities appear.

Topics

• Materials (p. 1138) (59 notes)
• Minerals (p. 1210) (6 notes)

Potential local sources and prices
of refractory materials
Kragen Javier Sitaker, 02021-07-14 (updated 02021-09-11)
(9 minutes)

Geese Quimica SRL

 Aqueous sodium silicate, unspecified concentration and modulus,
goes for US$2/kg.

 Bentonite (“bentonita sodica”) goes for US$0.30/kg
(AR$1260/25kg). It’s the binder in greensand. Other vendors sell it
in adulterated form as clumping cat litter for US$0.55/kg.

 Ground coal (“carbon mineral molido para fundicion”) goes for
US$0.70/kg (AR$2941/25kg).

 They sell a product called “tierra de Junín” for aluminum casting
for US$0.20/kg (AR$1346/40kg). I’m guessing this is a substitute for
quartz sand; people say you need to add bentonite.

HIDRO-SAN

 Low-temperature (1100°) kaowool-type ceramic fiber blanket,
density unspecified, goes for US$0.60/ℓ (AR$1565/2.5cm/61cm/1m,
which is 15 liters and US$9.60).

Fiberglass

 Fiberglass is good to much lower temperatures but far cheaper at
US$0.026/ℓ (AR$13583 for 3 × 1.2 mm × 18 m × 50 mm = 3240 ℓ
for US$83). Typically it has trouble above 230°. “High density” is
evidently 14kg/m³ and normal values are 7.7–12.1 kg/m³ so this is
probably in that ballpark; if it were 10 kg/m³ that would be almost
US$3/kg.

SAEMSA

 Fiberfrax 1260° 96 kg/m³ ceramic fiber blanket costs US$0.40/ℓ
(AR$7000 for 7200 mm × 610 mm × 25mm).

 Solid firebrick (advertised as 1300°, 38% alumina) costs
US$1.10/brick (23 cm × 11.5 cm × 6 cm, 3.6 kg).

 Insulating 1480° firebricks (“K26”) cost US$3 (23 cm × 11.5 cm ×
6 cm).

 1000° refractory mortar costs US$0.80/kg, premixed.

 1750° refractory mortar (SURECAST 80, 80% alumina) costs
US$0.90/kg, premixed, but comes in a 30kg bucket.

AUKAN MINERA

 Alumina in 100-μm grains (325 mesh) is US$3/kg.

 Red clay is US$0.30/kg (“temp max 1180°”, which I doubt it
reaches.)

http://www.geesequimica.com.ar/nosotros.html
https://articulo.mercadolibre.com.ar/MLA-850465717-silige-silicato-de-sodio-para-moldeo-de-fundicion-_JM
https://articulo.mercadolibre.com.ar/MLA-863007906-bentonita-sodica-natural-para-fundicion-_JM
https://articulo.mercadolibre.com.ar/MLA-864265218-piedritas-aglutinantes-x-20-kg-_JM#position=10&search_layout=stack&type=item&tracking_id=a0b69fe7-df0f-4e80-90dd-b3015768d407
https://articulo.mercadolibre.com.ar/MLA-863007475-carbon-mineral-molido-para-fundicion-_JM
https://articulo.mercadolibre.com.ar/MLA-863007475-carbon-mineral-molido-para-fundicion-_JM
https://articulo.mercadolibre.com.ar/MLA-863010960-tierra-de-junin-moldeo-para-fundicion-_JM
https://articulo.mercadolibre.com.ar/MLA-863010960-tierra-de-junin-moldeo-para-fundicion-_JM
https://foro.metalaficion.com/index.php?topic=9090.15
https://articulo.mercadolibre.com.ar/MLA-761438564-manta-fibra-ceramica-1100c-96k-25cmx61cmx1mts-samianto-_JM
https://articulo.mercadolibre.com.ar/MLA-865375910-3-rollos-de-lana-de-vidrio-50mm-isofox-_JM
https://articulo.mercadolibre.com.ar/MLA-865375910-3-rollos-de-lana-de-vidrio-50mm-isofox-_JM
https://articulo.mercadolibre.com.ar/MLA-862991427-2-rollos-lana-de-vidrio-50mm-x-216m2-alta-densidad-durlock-_JM
https://articulo.mercadolibre.com.ar/MLA-862991427-2-rollos-lana-de-vidrio-50mm-x-216m2-alta-densidad-durlock-_JM
https://ws680.nist.gov/bees/ProductListFiles/Generic Fiberglass.pdf
https://articulo.mercadolibre.com.ar/MLA-861813774-manta-fibra-ceramica-1-96kgm3-465m2-unifrax-durablanket-_JM
https://articulo.mercadolibre.com.ar/MLA-623906129-ladrillo-refractario-premium-6cm-parrillas-hornos-hogares-_JM
https://articulo.mercadolibre.com.ar/MLA-623906129-ladrillo-refractario-premium-6cm-parrillas-hornos-hogares-_JM
https://articulo.mercadolibre.com.ar/MLA-882833930-ladrillo-asilante-k26-importado-pack-6-unidades-isocel-_JM
https://articulo.mercadolibre.com.ar/MLA-833649829-pegamento-refractario-8kg-para-parrillas-y-hogares-envios-_JM
https://articulo.mercadolibre.com.ar/MLA-862725763-hormigon-refractario-80-alumina-surecast-80-_JM
https://articulo.mercadolibre.com.ar/MLA-862725763-hormigon-refractario-80-alumina-surecast-80-_JM
https://articulo.mercadolibre.com.ar/MLA-816355588-alumina-calcinada-5-kgs-ceramica-refractaria-_JM
https://articulo.mercadolibre.com.ar/MLA-617785191-arcilla-roja-molida-para-ceramica-artistica-x-25-kgs-_JM

 Ball clay (?) is US$0.30/kg (AR$1240/25kg). 200 mesh, 1150°
firing.

 200-mesh quartz is US$0.30/kg (AR$1120/25kg). Quartz sand
(“molido tipo azúcar o sal fina”, so probably about 150 μm) is
US$0.35/kg, while quartz flour (200-mesh, but “impalpabale”?) is
US$0.27/kg.

 200-mesh talc is US$0.40/kg (AR$1550/25kg). Talc is very
interesting; see Firing talc (p. 576).

 200-mesh calcite is US$0.20/kg (AR$790/25kg).

 200-mesh potassium feldspar is US$0.30/kg (AR$1240/25kg).

 325-mesh infusorial earth is US$0.40/kg (AR$1390/20kg).

 Calcined metakaolin is US$0.35/kg (AR$1160/20kg). Uncalcined
“super white” kaolin is US$1/kg.

 Sparkly 30/80-mesh wet-milled mica is US$2.30/kg.

Workcrat

 Alumina sold as abrasive (polvo abrasivo para pulir) is US$7/kg,
regardless of whether it’s 80-grit, 120-grit, or 220-grit. I'm assuming
it’s alumina; it's gray, so it’s hard to tell.

JF Grafito

 There’s this guy in San Juan who sells graphite crucibles at prices
from US$52 to US$58 to US$100, depending on the size. A different
vendor they’re good to 1600°, but I don’t know if that’s because the
graphite is bonded with clay or something or because graphite burns
too fast in air above that temperature.

Eiffel Química

 These guys sell natural zeolite clay as an insecticide for US$7/kg;
otherwise they mostly sell cosmetics supplies (ti tree oil, cetyl alcohol,
castor oil, cocoa butter, bentonite, etc.)

Etc.
 Zirconia abrasive wheels are widely available but I haven’t been
able to find zirconia in bulk.

 Astonishingly, high-pressure sodium lucalox bulbs are also widely
available; this 250W bulb costs US$12.

 You can get construction sand for US$0.03/kg, which is pretty
much pure quartz, alabaster for US$0.30/kg, and slaked lime for
US$0.11/kg.

 Apparently pumice is sold for US$0.14/ℓ under the brand name
“Pometina” as an aggregate for lightweight concrete (“la roca natural
mas liviana con un peso de 0,4 Kg / dm3 (menos que el agua)”), or at
US$0.17/ℓ, which I guess would be US$0.42/kg, in 1-4 cm stones;
they say it has no compressive strength, as a substitute for LECA. (At
a slightly later date, it turns out the garden store down the street sells
it for AR$370/10ℓ when US$1 = AR$180, thus US$2.10 or
US$0.21/ℓ.) LECA itself (1200°?) is mostly sold for hydroponics these
days, for US$0.29/ℓ or US$0.12/ℓ for construction, and is about three

https://articulo.mercadolibre.com.ar/MLA-666653326-arcilla-blanca-molida-para-ceramica-artistica-x-25-kgs-_JM
https://articulo.mercadolibre.com.ar/MLA-644393096-cuarzo-blanco-molido-200-bolsa-de-25-kgs-_JM
https://articulo.mercadolibre.com.ar/MLA-929079326-arena-de-silice-cuarzo-blanco-x-10-kilos-_JM
https://articulo.mercadolibre.com.ar/MLA-929079326-arena-de-silice-cuarzo-blanco-x-10-kilos-_JM
https://articulo.mercadolibre.com.ar/MLA-871259748-cuarzo-impalpable-_JM
https://articulo.mercadolibre.com.ar/MLA-871259748-cuarzo-impalpable-_JM
https://articulo.mercadolibre.com.ar/MLA-862336010-talco-200-x-25-kgs-_JM
https://articulo.mercadolibre.com.ar/MLA-774832026-carbonato-de-calcio-200-25-kgs-carga-mineral-_JM
https://articulo.mercadolibre.com.ar/MLA-671352721-feldespato-potasico-200-25-kgs-ideal-ceramistas-_JM
https://articulo.mercadolibre.com.ar/MLA-820586342-tierra-diatomea-micronizada-325-insecticida-organico-20-kg-_JM
https://articulo.mercadolibre.com.ar/MLA-922333551-caolin-calcinado-en-polvo-20-kg-_JM
https://articulo.mercadolibre.com.ar/MLA-908774018-arcilla-caolin-super-blanca-cosmetica-natural-5-kg-_JM
https://articulo.mercadolibre.com.ar/MLA-886666881-mica-molida-3080-2-kilos-_JM
https://articulo.mercadolibre.com.ar/MLA-869384792-polvo-esmeril-abrasivo-2kgs-grano-80-_JM
https://articulo.mercadolibre.com.ar/MLA-918103826-polvo-esmeril-abrasivo-2kgs-grano-120-_JM
https://articulo.mercadolibre.com.ar/MLA-918103872-polvo-esmeril-abrasivo-2kgs-grano-220-_JM
https://articulo.mercadolibre.com.ar/MLA-911561269-crisol-grafito-c15-jfgrafito-_JM
https://articulo.mercadolibre.com.ar/MLA-911557743-crisol-grafito-c1-jfgrafito-_JM
https://articulo.mercadolibre.com.ar/MLA-911559627-crisol-grafito-c9-jfgrafito-_JM
https://articulo.mercadolibre.com.ar/MLA-664397117-crisol-de-grafito-especial-horno-induccion-_JM
https://articulo.mercadolibre.com.ar/MLA-767420926-zeolita-pura-activada-micronizada-500gr-oferta-_JM
https://articulo.mercadolibre.com.ar/MLA-922676882-disco-flap-de-zirconio-cbase-de-fibra-tyrolit-g-80-115-mm-_JM
https://articulo.mercadolibre.com.ar/MLA-784484765-lampara-ge-lucalox-250w-e40-tubular-general-electric-_JM?searchVariation=55941831414#searchVariation=55941831414&position=2&search_layout=stack&type=item&tracking_id=192c1256-fa26-4263-bde5-8b11d20f0a44
https://articulo.mercadolibre.com.ar/MLA-856933135-bolson-arena-zona-norte-construccion-_JM
https://articulo.mercadolibre.com.ar/MLA-848250344-yeso-yemaco-comun-durlock-x-40-kg-_JM
https://articulo.mercadolibre.com.ar/MLA-823843327-cal-cacique-plus-x-20-kg-5-baldes-_JM
https://articulo.mercadolibre.com.ar/MLA-823843327-cal-cacique-plus-x-20-kg-5-baldes-_JM
https://articulo.mercadolibre.com.ar/MLA-916925306-pomez-pometina-drenaje-hidroponia-bolsa-10-litros-aqualive-_JM?variation=82251856668
https://articulo.mercadolibre.com.ar/MLA-916925306-pomez-pometina-drenaje-hidroponia-bolsa-10-litros-aqualive-_JM?variation=82251856668
https://articulo.mercadolibre.com.ar/MLA-688969171-pometina-agregado-ultraliviano-contrapiso-reemplaza-la-leca-_JM?variation=33972315808
https://articulo.mercadolibre.com.ar/MLA-688969171-pometina-agregado-ultraliviano-contrapiso-reemplaza-la-leca-_JM?variation=33972315808
https://en.wikipedia.org/wiki/Expanded_clay_aggregate
https://articulo.mercadolibre.com.ar/MLA-903394937-leca-terrafertil-20-litros-drenaje-hidroponia-aqualive-_JM
https://articulo.mercadolibre.com.ar/MLA-850159939-piedra-leca-venta-x-m3-_JMp

times as dense; perlite (1150°) goes for US$0.38/ℓ at 0.128 kg/ℓ, so
US$3/kg; rock wool (maybe 700–850°?) growth medium for
US$0.31/ℓ at 0.1 kg/ℓ, so also US$3/kg; and vermiculite (1100°) for
US$0.23/ℓ, at 0.06-0.16 kg/ℓ.

 Unspecified broken-rock aggregate for concrete is more like
US$0.08/kg, same price as ornamental 1–4 cm landscaping rocks.
Even better, round 1–3 cm river rocks are only US$0.09/kg.
However, these rocks probably don’t have reliable refractory
properties.

 Gravel for fishtanks goes for US$0.19/kg (2–4 mm I guess) while
gravel (“cascote”) for concrete is US$0.016/ℓ, so probably
US$0.008/kg, and construction gravel “6/20” (I think that means
“6-20 mm”) is US$0.03/ℓ, which is probably close to US$0.01/kg.
Pure white marble pebbles (700°, say) is pricier at US$0.14/ℓ, which
is at 1.25 kg/ℓ US$0.12/kg. Quartz gravel aggregate for concrete is
sold as one type of “nonmetallic hardener”; for example, US$0.15/kg
for an 8/20 grade (which I think is 8–20 mm); as ornamental stone
another vendor sells it for US$0.021/kg, 6 tonnes minimum order.

 Commercial castable insulating refractories sell for prices around
US$1/kg.

 [Other solid firebricks] go for prices depending on their alumina
content. 23 cm × 8 cm × 11 cm bricks go for US$1.50 used, US$2
new if 45% alumina; US$2.50 new if 60% alumina; US$3.50 new or
US$4.30 used (?) if 90% alumina.

 This guy Ariel Weston is evidently marketing carborundum
(“carburo de silicio”) as “esmeril” at US$1.80/kg up to 220 mesh.

 Phosphate is a crucial ingredient in many refractory cements.
Previously I found that the cheapest way to buy it is as diammonium
phosphate fertilizer, which is now US$1.00/kg and not very pure. By
comparison, food-grade 85% phosphoric acid is US$3.40/kg; the pure
substance is 98 g/mol of which 30.97 is phosphorus, so the liquid is
thus 26.9% phosphorus by weight and US$13 per kg of phosphorus,
while the fertilizer is nominally 132.06 g/mol and thus 23.4%
phosphorus by weight and US$4.30 per kg of phosphorus. Either of
the two might be more convenient, depending on circumstances.
Trisodium phosphate goes for about US$2/kg.

 Químico Cotton Fields sells boric acid for US$2.90/kg, but Planeta
Verde sells it for US$1.70/kg; borax is sold by others for sealing
ceramic crucibles for US$10/kg. Planeta Verde also sells aluminum
sulfate for US$1.50/kg as a swimming pool clarifier; this is a
potentially useful soluble aluminum salt for making either aluminum
phosphate or foam of hydrated alumina. Many vendors also sell
potassium alum, a soluble double sulfate of aluminum, for about
US$3.50/kg, and MG Química also sells ammonium alum for
US$8/kg, along with a bunch of food and cosmetics ingredients like
borax, menthol, glycerin, turpentine, sodium lauryl sulfate,
triethanolamine, sodium hyposulfite, silicone lubricant, lye,
colophony, polyethylene glycol, carboxymethylcellulose, etc.

 (Unrelatedly, Cotton Fields sells the pharmaceutical grade of the
nontoxic wide-temperature-range coolant propylene glycol at
US$6/kg, as well as triethanolamine, oxalic acid, naphthalene,
isopropanol, sorbitol, povidone (polyvinylpyrrolidine), etc.)

https://articulo.mercadolibre.com.ar/MLA-886059515-perlita-5-l-terrafertil-acondiciona-sustratos-salamanca-_JM
https://en.wikipedia.org/wiki/Mineral_wool#Use
https://articulo.mercadolibre.com.ar/MLA-867955819-lana-de-roca-hidroponia-x-metro-lineal-100x10x2cm-_JM
https://articulo.mercadolibre.com.ar/MLA-867955819-lana-de-roca-hidroponia-x-metro-lineal-100x10x2cm-_JM
https://articulo.mercadolibre.com.ar/MLA-917323496-vermiculita-intersum-50-dm3-salamanca-grow-_JM?searchVariation=82489871401
https://articulo.mercadolibre.com.ar/MLA-917323496-vermiculita-intersum-50-dm3-salamanca-grow-_JM?searchVariation=82489871401
https://articulo.mercadolibre.com.ar/MLA-614402000-piedra-partida-x-bolsa-sellada-_JM
https://articulo.mercadolibre.com.ar/MLA-614402000-piedra-partida-x-bolsa-sellada-_JM
https://articulo.mercadolibre.com.ar/MLA-620729919-piedra-partida-mar-del-plata-decoracion-jardineria-oferta-_JM
https://articulo.mercadolibre.com.ar/MLA-870459862-piedra-canto-rodado-clasico-x-25-kg-jardin-deco-paisajismo-_JM
https://articulo.mercadolibre.com.ar/MLA-830191027-granza-grava-piedras-para-pecera-acuario-estanque-8-kilos-_JM
https://articulo.mercadolibre.com.ar/MLA-871458844-cascote-picado-a-granel-x-1m3-_JM
https://articulo.mercadolibre.com.ar/MLA-906821632-piedra-620-suelta-x-m3-de-construccion-envio-con-volcador-_JM
https://articulo.mercadolibre.com.ar/MLA-756297486-piedra-partida-100-blanca-marmol-brillante-x-m3-1250-kg-_JM
https://articulo.mercadolibre.com.ar/MLA-793279546-endurecedor-no-metalico-natural-cuarzo-820-x-50-kg-_JM
https://articulo.mercadolibre.com.ar/MLA-692042427-cuarzo-en-piedras-ornamentacion-decoracion-jardin-x-1000-kg-_JM
https://www.azom.com/article.aspx?ArticleID=13310
https://www.azom.com/article.aspx?ArticleID=13310
https://articulo.mercadolibre.com.ar/MLA-926775592-grano-abrasivo-polvo-esmeril-_JM
https://articulo.mercadolibre.com.ar/MLA-768661192-fosfato-diamonico-25kg-fertilizante-iniciador-profertil-_JM
https://articulo.mercadolibre.com.ar/MLA-768661192-fosfato-diamonico-25kg-fertilizante-iniciador-profertil-_JM
https://articulo.mercadolibre.com.ar/MLA-912086481-acido-fosforico-85-2-kg-quimica-cotton-fields--_JM
https://articulo.mercadolibre.com.ar/MLA-788648580-fosfato-trisodico-_JM
https://articulo.mercadolibre.com.ar/MLA-905207719-acido-borico-x-1kg-adios-a-las-cucarachas-_JM
https://articulo.mercadolibre.com.ar/MLA-907824103-fertilizante-acido-borico-pureza-999-x-1-kg-fertirriego-_JM
https://articulo.mercadolibre.com.ar/MLA-666185500-borax-para-curar-crisoles-envase-por-150-gr-_JM
https://articulo.mercadolibre.com.ar/MLA-666185500-borax-para-curar-crisoles-envase-por-150-gr-_JM
https://articulo.mercadolibre.com.ar/MLA-908963892-sulfato-de-aluminio-x-1-kg-clarificador-decantador-pileta-_JM
https://articulo.mercadolibre.com.ar/MLA-908963892-sulfato-de-aluminio-x-1-kg-clarificador-decantador-pileta-_JM
https://articulo.mercadolibre.com.ar/MLA-709877402-alumbre-de-potasio-1-kilo-_JM
https://articulo.mercadolibre.com.ar/MLA-709877402-alumbre-de-potasio-1-kilo-_JM
https://articulo.mercadolibre.com.ar/MLA-929266903-alumbre-de-amonio-1000g-_JM
https://articulo.mercadolibre.com.ar/MLA-929266903-alumbre-de-amonio-1000g-_JM
https://articulo.mercadolibre.com.ar/MLA-916894954-propilenglicol-x-5-kg-usp-calidad-premium-quimica-cotton-_JM
https://articulo.mercadolibre.com.ar/MLA-916894954-propilenglicol-x-5-kg-usp-calidad-premium-quimica-cotton-_JM

 Silica gel in particular goes for about US$5/kg. Other vendors sell
it as silica cat litter for US$1.54/ℓ, which seems cheaper.

 Someone is selling a lot of 5 carborundum globars for US$12
(brand: “Delta”). Someone else is selling what claims to be Kanthal
A-1 for a variety of prices, such as US$0.72/m for 1-mm diameter, as
well as 1-mm-diameter 80/20 nichrome for US$1.20/m. Thinner
nichrome is naturally cheaper per meter; it’s largely marketed for
making and fixing segelines.

 My efforts to find abrasives

 welding blankets

 zirconia

 carborundum

 alumina

Topics

• Materials (p. 1138) (59 notes)
• Pricing (p. 1147) (35 notes)
• Waterglass (p. 1189) (8 notes)
• Argentina (p. 1200) (7 notes)

https://articulo.mercadolibre.com.ar/MLA-882382467-silicagel-blanca-en-esferas-sin-indicador-1000g-_JM
https://articulo.mercadolibre.com.ar/MLA-831503618-piedra-silica-sanitarias-can-cat-gato-persa-mascotas-76lts-_JM
https://articulo.mercadolibre.com.ar/MLA-908330703-5-barras-resistencias-electricas-carburo-de-silicio-globar-_JM
https://articulo.mercadolibre.com.ar/MLA-688722892-kanthal-a1-alambre-100-mm-por-10-mts-resistencias-_JM
https://articulo.mercadolibre.com.ar/MLA-841262145-nicrom-8020-alambre-100-mm-por-10-mts-resistencias-_JM

Faygoo: a yantra-smashing ersatz
version of Piumarta and Warth’s
COLA
Kragen Javier Sitaker, 02021-07-14 (updated 02021-12-30)
(17 minutes)

 I was rereading Piumarta and Warth’s paper on open and extensible
object models today (implementation), and I was thinking about how
to extend it, which sadly seems not to have been done much, though
Piumarta did build his COLA/Idst on it.

Piumarta & Warth

 The paper describes a relentlessly simple metaobject protocol, with
three core object types (object, symbol, and vtable) and five core
methods (symbol.intern, vtable.lookup, vtable.addMethod,
vtable.allocate, and vtable.delegated). The system starts with a symbol
table, five symbols, and two vtables, one for vtables themselves and
one for non-vtable objects. The fundamental operation it provides is
send(anObject, aSymbol, args...). This is implemented by invoking
bind(anObject, aSymbol), which in the usual case fetches the vtable
pointer v from the word preceding anObject and then recursively
invokes m = send(v, :lookup) on it to get the pointer to the method
code. This having been done, the method code pointer m is then
socked away in various caches for performances, and then invoked
m(anObject, args...). To bottom out the recursion, bind() has a special
case such that bind(vtablevtable, :lookup) returns a hardcoded
constant function pointer.

 If I’m reading the numbers right, they report that the usual C
function call mechanism on their 2.16GHz Core 2 Duo takes about 8
ns, while this dynamic send mechanism takes about 15 ns in the fast
path for monomorphic sends found on the fast path. This is a pretty
reasonable cost; I think it replaces the single-instruction call found on
most modern CPUs with 5-7 instructions. Deutsch & Schiffman
report that in their measurements such a single-item inline cache was
effective 95% of the time, though it is well known that the Self
researchers got significant system speedups out of a polymorphic
inline cache, since many of the remaining 5% of calls are not
“megamorphic”.

 The other four core methods provide a runtime mechanism for
constructing other object classes. intern creates new symbols that can
be used as method selectors; x.addMethod(selector, code) mutates
vtable x by overwriting or adding a method; x.allocate(size)
instantiates a new object with vtable x; and x.delegated() creates a
new vtable whose lookup method delegates to x when it doesn’t find
a method internally.

 In more conventional terminology, vtables are called classes,
allocate is called new, and delegates is called subclass.

 The objective is that you should be able to extend the system with

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.6603&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.6603&rep=rep1&type=pdf
https://www.piumarta.com/oopsla07/
https://www.piumarta.com/software/cola/colas-whitepaper.pdf
https://www.piumarta.com/software/cola/
http://web.cs.ucla.edu/~palsberg/course/cs232/papers/DeutschSchiffman-popl84.pdf

new kinds of vtables that use a different lookup algorithm than the
built-in version. They are only constrained in that whatever method
pointer they return will be cached, both in an inline cache and in a
system-wide cache indexed by (class, selector) tuples, forever.

 The particular mechanism chosen for the inline cache allocates two
words of writable memory for each callsite, one for the class and one
for the method. Upon visiting the callsite a second time, if the
receiver’s class is equal to the class last time around, the chosen
method is invoked without invoking bind(); otherwise, bind() is
invoked for the new class, and the result is duly cached before
invoking it. In pseudo-assembly:

 ;; callsite 4310
 ld.8 r1(-8), r2 ; r1 is the receiver, word size is 8
 ld.8 icclass.4310, r3 ; icclass.4310 is a statically allocated word
 bne r2, r3, 1f ; if this is the wrong class, jump to slow path
 ld.8 icmeth.4310, r4 ; load method pointer
 b 2f
1: st.8 r2, icclass.4310 ; update the IC key so we’ll have a hit next time
 call bind ; bind expects class in r2, method selector in r5
 st.8 r4, icmeth.4310 ; bind’s return is in r4; r1 and r2 are preserved
2: call *r4 ; method expects receiver in r1, class in r2

 The fast path here is 6 of these 9 instructions, but it’s common for
absolute loads to require multiple machine instructions (auipc, loads
from PC-relative constant pools, that kind of thing). Also, though,
note that 9 instructions per callsite occupies quite a bit of code space.
The slow path is mostly inside of bind, which may recursively invoke
send() with lookup, and maintains the system-wide cache.

 But what if we want to invalidate these caches to accommodate
new methods, changes in the inheritance hierarchy, recompiled
methods with new code, and so on? It’s okay for the invalidation to
be relatively expensive, since code changes happen much less often
than message sends; but, with the above pseudocode, unless we want
to add additional memory accesses and comparisons on the fast path,
there are only two paths open to us:

• To change the class of every affected object, which would seem to
involve scanning the entire heap and mutating potentially every live
object, and probably also tripping the GC’s write barrier on all those
objects, possibly resulting in a second scan of the entire heap. This
might actually be slower than just saving the whole system image and
restoring it.
• To scan through the entire IC space, clearing the pointer in icclass.N
for every N whose callsite might need to be relinked. This is surely
less expensive; it might amount to a few million instructions for a
large program.

Trampolines or yantras

 In the original Deutsch & Schiffman JIT for Smalltalk-80, each
method body was preceded by a header that validated that the
receiver was of the correct class, failing over to a generic dispatch
procedure if not:

The entry code [prologue] of an n-code [compiled] method checks the stored
receiver class from the point of call against the actual receiver class. If they do not
match, relinking must occur, just as if the call had not yet been linked.

 This suggests the following alternative compilation of send():

 ld.8 icmeth.4310, r4
 call *r4
callsite.4310:

 This transfers control to a trampoline, which has access to the
receiver in r1 and the callsite in the link register. We’ll call these
trampolines “yantras”, because they are a sort of apparatus the object
system sets up to efficiently achieve the desired result. In the happy
path, this yantra verifies that it is being invoked for the correct class,
then transfers control to the method body:

 ld.8 r1(-8), r2
 li r3, $foobarclass ; load immediate
 beq r2, r3, foobar::ogonkify
 b bind

 There might be several such yantras for the same method, one for
each class that inherits it, but the total number of yantras in the
system is relatively small, perhaps tens of thousands. In the case that
the inheritance hierarchy changes, or the method is replaced with a
new version at a different address, or a subclass starts to override the
method with its own version, we can simply smash the yantra by
overwriting the first instruction or two with a b bind instruction.

 The world is a little less rosy for bind. It has the receiver in r1 and
the receiver’s class in r2, but to finish its job it needs two more pieces
of information: the selector of the method that was being invoked,
and the address of the inline-cache variable icmeth.4310 into which it
must store the address of the correct yantra, which it may additionally
need to synthesize. For these, it must look at the link register to find
the callsite callsite.4310; then it can look up the callsite in a table of all
callsites like the following:

callsites:
 .8byte callsite.0
 ; ...
 .8byte callsite.4308
 .8byte callsite.4309
 .8byte callsite.4310
 .8byte callsite.4311
 ; ...

 Binary search on this table provides the index 4310 in about 12
memory accesses and about 60 instructions. (However, if code is not
emitted in strictly increasing memory-address order, it might be
necessary to use a segmented table, so maybe we should be using a
256-way trie instead.)

 This index allows bind to look up the selector at index 4310 in a
table of callsite selectors, so it can perform the correct lookup, and

also to store the yantra pointer into icmeth.4310 for the next time
around.

 At system startup, the icmeth.N values for every callsite simply point
directly at bind, which gradually materializes yantras for
frequently-called methods and populates the global cache and the IC
with pointers to them.

 Ideally the yantras are allocated after the method bodies that they
jump to so that their conditional branch will be correctly predicted
the first time (and most of the times they fall out of the branch
prediction buffer).

 Let’s call this inline-cache mechanism “faygoo”, for “fast abstract
yantra generic object orientation”. Its primary benefit over Piumarta
& Warth’s implementation is that it provides a reliable, efficient, and
fine-grained way of invalidating elements in the inline caches. But it
might also be more efficient; on the fast path, faygoo runs 5 of these
pseudo-assembly instructions instead of the 6 used by the Piumarta &
Warth mechanism, and performs one data memory read instead of
two. It uses much less space per callsite (two pseudo-assembly
instructions, a read-only word, and a read-write word, rather than
nine pseudo-assembly instructions and two read-write words) at the
expense of allocating a megabyte or so of yantras, and perhaps having
somewhat worse locality of reference.

Yantra size

 Why a megabyte or so? In “bytecode interpreters for tiny
computers” I dissected the Squeak 3.8-6665 image a little and found
49775 methods; presumably the majority of these are in leaf classes,
while a few are inherited by thousands of classes, so perhaps in a
system as large as Squeak, there would eventually be 65536-131072
yantras. Each of these consists of the four pseudo-instructions listed
above; ld.8/li/beq/b.

 I think that in the RISC-V C extension, the ld.8 would be C.LD if
we store the class pointer at index 0 instead of index -1, the li is
probably an uncompressed LUI/SLLI/LUI/ADDI sequence (14
bytes), the beq is probably an uncompressed BEQ (to avoid a separate
subtract instruction and to be able to put the yantra within 4 KiB of
the method start rather than 256 bytes like C.BEQZ), and the b is
probably a compressed C.J to an uncompressed JAL instruction that’s
shared between many yantras. That’s 20 bytes in all.

 The amd64 realization might be something like this, 25 bytes per
yantra if we don’t do any alignment and don’t use a shared fast-path
second-level trampoline to allow the use of the shorter jump format,
or 21 bytes if we do:

0000000000000000 <bind_shared_trampoline>:
 0: e9 00 00 00 00 jmpq 5 <yantra1>

0000000000000005 <yantra1>:
 5: 48 8b 43 f8 mov -0x8(%rbx),%rax
 9: 48 b9 ef cd ab 89 67 movabs $0x123456789abcdef,%rcx
 10: 45 23 01
 13: 48 39 c1 cmp %rax,%rcx

 16: 0f 84 00 00 00 00 je 1c <foobar::ogonkify>
 1c: eb e2 jmp 0 <bind_shared_trampoline>

 This also gets a byte shorter if we put the class pointer at offset 0
instead of offset -1:

000000000000001e <yantra2>:
 1e: 48 8b 03 mov (%rbx),%rax
 21: 48 b9 67 45 23 01 ef movabs $0x89abcdef01234567,%rcx
 28: cd ab 89
 2b: 48 39 c1 cmp %rax,%rcx
 2e: 0f 84 00 00 00 00 je 34 <foobar::ogonkify>
 34: eb ca jmp 0 <bind_shared_trampoline>

 In the i386 instruction encoding, conditional jumps could only use
the short format, which would have required the extra shared
unconditional jump.

 If class identifiers were HotSpot-style 32-bit “compressed oops”, or
indices into some kind of object table or class table, instead of 64-bit
memory addresses, these numbers would probably shrink a little. But
probably each yantra costs about 20 bytes, so 65536-131072 of them
will cost 1310720-2621440 bytes.

When to smash yantras?

 One of the interesting items in Deutsch & Schiffman, carried over
to most modern JITs, is the notion of a restricted-size cache for
JIT-compiled code. Because they were using machines with small
memory by current standards (typically using 16-bit address spaces,
and usually less than a megabyte) and slow disks, and the Smalltalk
bytecode (“v-code”) was something like 5× more compact than the
native machine code (“n-code”), they considered it more practical to
discard the least-recently-used native code rather than swapping it
out to disk. Nowadays, rather than main memory, the objective
might be to fit the n-code into L1 or at least L2 cache (4096 KiB on
this AMD A10-5745M). If a compiled method is to be thus
discarded, smashing its yantras is a cheap way to ensure that control
will not flow into it again.

 But that’s just an optimization. The main reason to smash yantras is
because the method they jump to is no longer the correct method for
the class; in this case the yantra must be smashed and its
corresponding global lookup cache entry must be removed. If your
only metaclass (vtable vtable) is the primitive metaclass, and you only
modify classes through Piumarta & Warth’s methods, this happens
only when you call addMethod, at which point we must smash that
method’s yantras in that class and all its subclasses. This should be
straightforward.

 However, the great appeal of the OEOM metaobject protocol is
that it makes it straightforward to extend the system with other
metaclasses. Piumarta & Warth give the example of implementing
Traits, but other possibilities include RPC remote stub objects, the
proxy-membrane pattern more generally (which is also useful for
auditing or debugging), record-reply-style creation of mock objects

https://www.amd.com/en/support/apu/amd-series-processors/amd-a10-series-apu-for-laptops/a10-5745m-radeon-hd-8610g

for unit tests, and the creation of data classes from, for example,
Proto3 files.

 Some of these cases, like dynamic data-class creation, don’t actually
need custom metaclasses; being able to subclass existing classes and
add methods to them under program control is quite sufficient.
Other cases require the creation of new methods on demand, but
never subclass the classes they create or change those methods once
they exist, so never need to smash any yantras. However, in theory,
the ability for the lookup method to examine arbitrary mutable data
means that any change in the system state, or even outside of it (such
as on a network server with which the lookup method communicates)
might necessitate smashing yantras.

 The most significant missing facility from the methods in the
primitive metaclass is the ability to mutate the inheritance graph by
changing a class’s parent, which would necessitate smashing some or
all of the yantras of that class and all its transitive subclasses,
depending on whether the methods they inherited had changed.

 For interactive changes to the system, such efficient and fine-grained
cache invalidation is probably not necessary. If there are 65536
methods with 131072 yantras and 1048576 callsites, flushing the entire
cache can be done by brute force by overwriting only 8 mebibytes of
RAM, which takes on the order of a millisecond; repopulating the
cache as callsites get rebound will slow down the system over a longer
period but still possibly be a tolerable slowdown. But you wouldn’t
want the system to hang for a millisecond every time a new method
got invoked on a debugging membrane proxy object.

Eliminating inheritance

 I think the OEOM system becomes simpler if you eliminate
inheritance entirely. There’s no need to propagate invalidation
through subclasses and no need for class.subclass() (called
vtable.delegated() by Piumarta & Warth). There would still be the
possibility that a changed lookup() method might return different
results, and the only way to be sure to avoid this is to flush the cache
completely.

Topics

• Performance (p. 1155) (22 notes)
• Assembly-language programming (p. 1175) (11 notes)
• Compilers (p. 1178) (10 notes)
• Small is beautiful (p. 1190) (8 notes)
• Higher order programming (p. 1196) (7 notes)
• Systems architecture (p. 1205) (6 notes)
• Dynamic dispatch (p. 1259) (4 notes)
• Jit

 Firing talc
 Kragen Javier Sitaker, 02021-07-14 (updated 02021-12-30)
(17 minutes)

 Talc (Mg₃Si₄O₁₀(OH)₂) is very interesting, particularly for cyclic
fabrication systems, because it calcines to enstatite and amorphous
silica at 800–840°, and the enstatite (MgSiO₃) converts to
clinoenstatite at 1200° (?), and the amorphous silica to cristobalite at
1300° (or possibly it converts to enstatite above 1050°?); enstatite
melts at some 1550° and quartz/cristobalite at 1713°. You could think
of enstatite as being a quartz/forsterite eutectic, and indeed 1543° is
the lowest-melting point in the quartz/forsterite continuum, but the
cristobalite crystals remain solid until 1713°. (I’m not sure how solid
the resulting slush is, though...)

 Potential for inorganic cyclic fabrication
systems
 If you have an ample supply of talc, then, as with clay, you can
shape it into the geometry you want, and then fire it to harden it. As
with clay, you can use tools thus made to shape new objects.
However, firing talc to harden it does not (?) cause it to become
plastic and change in shape or shrink; the results are nonporous and
extremely unreactive; and they are capable of withstanding much
higher temperatures than those needed to fire them, so it should be
easy to make talc-firing ovens out of fired talc. The required firing
temperature is lower than for most clays, and much lower than for
high-performance porcelain clays.

 Because the unfired talc is not plastic and does not become plastic
during firing, very large shapes can be precisely cut and fired in a
gravitational field without suffering plastic deformation. Though
brittle, the fired objects are highly resistant to thermal shock, in part
because of their low thermal coefficient of expansion (enstatite’s
linear TCE is a steel-like 11 ppm/K), permitting their use for a wide
variety of applications with demanding temperature gradient
requirements.

 Talc is a useful feedstock for synthesizing cordierite, a common
refractory with an acicular crystal habit and even lower TCE, which
can be as low as 0.8 ppm/K for porous cordierite materials.

 For machinery involving sliding contact, unfired talc serves as a
dry lubricant.

 Obtaining adequate supplies of natural talc may be difficult, but
straightforward hydrothermal talc synthesis processes are known, and
some of them can be carried out in vessels made of fired talc. The raw
feedstocks are abundant: oxygen is 47% of the Earth’s crust, silicon
28%, and magnesium 2.1%. Only hydrogen is scarce (0.14%), and it is
removed in the firing process.

 Fired talc is hard enough to grind or cut softer metals, but I think
it can only barely cut steel, if that.

 Even fired, talc is not a very good material for withstanding
impact, controlling electricity, or spring energy storage.

https://nvlpubs.nist.gov/nistpubs/jres/15/jresv15n5p551_A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/15/jresv15n5p551_A1b.pdf
https://www.eurotalc.eu/what-talc
http://deanpresnall.org/files/90Enst.melting.pdf
http://deanpresnall.org/files/90Enst.melting.pdf
http://www.geo.umass.edu/courses/geo321/Lecture 8 Binary Systems.pdf
http://www.geo.umass.edu/courses/geo321/Lecture 8 Binary Systems.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.1305&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.1305&rep=rep1&type=pdf
https://www.scientific.net/AMR.105-106.802
https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth's_crust
https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth's_crust

 History of firing talc
 An anonymous stone sculptor writes that they have been firing
soapstone as a stone-sculpting technique for many years:
 Many years ago I wrote an article about firing soapstone to make the stone harder.
It is possible to harden the stone to the point that you cannot scratch it with
anything short of steel. This will also close the structure of the stone enough to
allow it to be used in outdoor applications. ... Insulators on the electric poles were
at one time made of fired soapstone.

 A geology.com article says the Americans have been carving
soapstone for 8000 years, although I’m not clear on whether the
results were fired — but because cooking bowls, cooking slabs, and
smoking pipes were among the uses, I suspect they were. The same
article mentions the Scandinavian Bronze-Age use of soapstone for
carving bronze-casting molds. (Also, it mentions that some
“soapstone carvings” are actually alabaster or serpentine.)

 Reportedly potters use 50% talc, 50% ball clay for slipcasting.

 Material qualities
 In “Synthesis of MgSiO₃ ceramics using natural desert sand as
SiO2 source” Wang et al. mention some pretty cool benefits of
enstatite-based ceramics, including protoenstatite’s “adjustable
coefficient of thermal expansion (CTE), high strength, low dielectric
loss, and strong vibration resistance” at high temperatures, but lament
its tendency to crack when transforming to clinoenstatite at lower
temperatures. Evidently this is not a problem with fired-talc
ceramics, though.

 Firing synthetic magnesium silicate
 Apparently if you react soluble magnesium and silicate salts, at low
enough Mg/Si ratios you get crystalline talc but only above 200°.
But, according to the same paper, it looks like amorphous synthetic
magnesium silicate hydrates also produce silica when fired in the same
way, but at a slightly lower temperature:
 Differential thermal analysis (DTA) of the M-S-H samples reveals a distinct
exothermic transition around 840 - 860 °C, which is attributed to the
decomposition of amorphous M-S-H and the recrystallization to SiO₂ and enstatite
(MgSiO₃) [11, 12] or SiO₂ and forsterite (Mg₂SiO₄) for high Mg/Si ratios [29].
The dehydroxylation of the phyllosilicate sheets in talc (Mg₃Si₄O₁₀(OH)₂) and the
transformation to SiO₂ and enstatite occurs at slightly higher temperatures of 850
to 950 °C [11, 12]. The lower dehydroxylation temperature of M-S-H compared
to talc is consistent with a less crystalline structure [11, 12].

 (It’s worth noting that their room-temperature synthesis took a
year, but only because they were using low-solubility feedstocks.)

 And I’ve prepared what seems to be this amorphous material in my
kitchen by dumping magnesium chloride from the health food store
into a can of waterglass (see Glass foam (p. 595) for details).
However, it came out in the state of sort of slushy lumps; I’m not
sure how to stick it together into a more solid material. Maybe with
more waterglass, I don’t know.

 Links to follow up
 https://usenaturalstone.org/soft-spot-soapstone/

https://nwssa.org/sculpture-northwest/the-stone-corner/111-stone-corner-firing-soapstone-marapr-2002
https://geology.com/rocks/soapstone.shtml
https://geology.com/rocks/soapstone.shtml
https://digitalfire.com/article/understanding+the+deflocculation+process+in+slip+casting
https://doi.org/10.1016/j.ceramint.2019.04.084
https://doi.org/10.1016/j.ceramint.2019.04.084
https://www.dora.lib4ri.ch/empa/islandora/object/empa:7119/datastream/PDF2/download/Nied-2016-Properties_of_magnesium_silicate_hydrates_(M-S-H)-(accepted_version).pdf
https://usenaturalstone.org/soft-spot-soapstone/

https://doradosoapstone.com/blog/6-fun-and-historical-facts-about
-soapstone/ notes on firing

 https://www.golcha.com/insulators.html talc and clay electrical
insulators

 https://wmblogs.wm.edu/sgtresearch/the-soapstone-special/
mining in Virginia

https://en.wikipedia.org/wiki/Insulator_%28electricity%29#Insulati
on_of_antennas steatite mountings

https://www.jpcfrance.eu/technical-informations/electrical/historica
l-introduction-of-ceramics-used-in-connection-blocks/ notes on
historical electrothermal applications

 https://isolantite.com/ “Isolantite has been a major producer of
precision Steatite Ceramic electrical components for over 100 years”

 https://www.r-infinity.com/Companies/ history of insulator
companies

 https://www.lspceramics.com/steatite-ceramic-insulators/ “We
can grind steatite ceramic insulators to your specs, achieving
tolerances within 0.0005”.”

https://www.indiamart.com/proddetail/anoop-steatite-and-alumina
-ceramic-insulators-1460976162.html “used in all types of
communication devices operating at a very high voltage and high
frequency”

https://www.sciencedirect.com/science/article/pii/S0272884219309
06X “Synthesis of MgSiO3 ceramics using natural desert sand as SiO2
source”

https://www.sciencedirect.com/science/article/pii/S0272884206002
227 “Synthesis and characterization of MgSiO3-containing
glass-ceramics”

https://www.tandfonline.com/doi/abs/10.1179/174367606X128423
“Microstructure, mechanical and thermal properties of boron oxide
added steatite ceramics”

https://www.tandfonline.com/doi/abs/10.1080/0371750X.2019.1657
954 “Production and Characterization of Alumina and Steatite Based
Ceramic Insulators”

https://www.sciencedirect.com/science/article/pii/S0272884206000
861 “Low-temperature fabrication of steatite ceramics with boron
oxide addition”
 Steatite ceramics have been fabricated by using coarse starting materials such as
talc, clay, and barium carbonate with addition of boron oxide (B2O3). B2O3 has
been found to be a useful flux to densify MgO–Al2O3–SiO2–BaO (MASB)
powders. The steatite ceramic with a relative density of 97% was obtained at a
sintering temperature of 1200 °C.

https://doradosoapstone.com/blog/6-fun-and-historical-facts-about-soapstone/
https://doradosoapstone.com/blog/6-fun-and-historical-facts-about-soapstone/
https://doradosoapstone.com/blog/6-fun-and-historical-facts-about-soapstone/
https://www.golcha.com/insulators.html
https://wmblogs.wm.edu/sgtresearch/the-soapstone-special/
https://en.wikipedia.org/wiki/Insulator_(electricity)#Insulation_of_antennas
https://en.wikipedia.org/wiki/Insulator_(electricity)#Insulation_of_antennas
https://en.wikipedia.org/wiki/Insulator_(electricity)#Insulation_of_antennas
https://www.jpcfrance.eu/technical-informations/electrical/historical-introduction-of-ceramics-used-in-connection-blocks/
https://www.jpcfrance.eu/technical-informations/electrical/historical-introduction-of-ceramics-used-in-connection-blocks/
https://www.jpcfrance.eu/technical-informations/electrical/historical-introduction-of-ceramics-used-in-connection-blocks/
https://isolantite.com/
https://www.r-infinity.com/Companies/
https://www.lspceramics.com/steatite-ceramic-insulators/
https://www.indiamart.com/proddetail/anoop-steatite-and-alumina-ceramic-insulators-1460976162.html
https://www.indiamart.com/proddetail/anoop-steatite-and-alumina-ceramic-insulators-1460976162.html
https://www.indiamart.com/proddetail/anoop-steatite-and-alumina-ceramic-insulators-1460976162.html
https://www.sciencedirect.com/science/article/pii/S027288421930906X
https://www.sciencedirect.com/science/article/pii/S027288421930906X
https://www.sciencedirect.com/science/article/pii/S027288421930906X
https://www.sciencedirect.com/science/article/pii/S0272884206002227
https://www.sciencedirect.com/science/article/pii/S0272884206002227
https://www.sciencedirect.com/science/article/pii/S0272884206002227
https://www.tandfonline.com/doi/abs/10.1179/174367606X128423
https://www.tandfonline.com/doi/abs/10.1179/174367606X128423
https://www.tandfonline.com/doi/abs/10.1080/0371750X.2019.1657954
https://www.tandfonline.com/doi/abs/10.1080/0371750X.2019.1657954
https://www.tandfonline.com/doi/abs/10.1080/0371750X.2019.1657954
https://www.sciencedirect.com/science/article/pii/S0272884206000861
https://www.sciencedirect.com/science/article/pii/S0272884206000861
https://www.sciencedirect.com/science/article/pii/S0272884206000861

https://www.sciencedirect.com/science/article/pii/S0272884218329
262 “Effects of mechanical-activation and TiO2 addition on the
behavior of two-step sintered steatite ceramics”
 Steatite, as ceramic with composition predominantly resting on magnesium
silicate, was produced from economic resources – talc, aluminosilicate clays, and
either BaCO3 or feldspar as flux.

https://www.degruyter.com/document/doi/10.3139/146.110409/ht
ml "The role of talc in preparing steatite slurries suitable for
spray-drying"

 https://link.springer.com/article/10.1007%2FBF01285830
“Sintering corundum with additives”, 01964, Ukraine
Scientific-Research Institute of Refractories, USSR

 https://ieeexplore.ieee.org/abstract/document/5781588 “Notice of
Retraction: Synthesizing Cordierite from High-Alumina Fly Ash and
Talc Powder”

 “Continuous synthesis of nanominerals in supercritical water”

https://www.degruyter.com/document/doi/10.1515/chem-2020-015
4/html “Synthesis of magnesium carbonate hydrate from natural
talc” cc-by. kind of backwards from what I’m looking for tho...

 https://www.nature.com/articles/srep22163 “Rapid growth of
mineral deposits at artificial seafloor hydrothermal vents” mostly
sulfide with a little talc

 https://link.springer.com/article/10.1007/s00410-009-0395-4
“Growth and deformation mechanisms of talc along a natural fault: a
micro/nanostructural investigation”

 https://pubmed.ncbi.nlm.nih.gov/28771845/ “Synthetic Talc and
Talc-Like Structures: Preparation, Features and Applications”
 This contribution gives a comprehensive review about the progress in preparation
methods, properties and applications of the different synthetic talc types: i)
crystalline nanotalc synthesized by hydrothermal treatment; ii) amorphous and/or
short-range order nanotalc obtained by precipitation, and iii) organic-inorganic
hybrid talc-like structures obtained through a sol-gel process or a chemical
grafting. Several advantages of nanotalc such as high chemical purity, high surface
area, tunable submicronic size, high thermal stability, and hydrophilic character
(leading to be the first fluid mineral) are emphasized

 https://www.nature.com/articles/ncomms10150 “Talc-dominated
seafloor deposits reveal a new class of hydrothermal system”

https://www.chemistryviews.org/details/ezine/9489511/Talc_from_
the_Lab.html “In the journal Angewandte Chemie, French scientists
introduce a laboratory synthesis of talc, which needs only seconds and
produces nanocrystals with unique properties useful in many
applications ... Two research groups under the direction of Cyril
Aymonier and François Martin in Bordeaux and Toulouse, France,
have developed a method to produce synthetic talc nanocrystals
hydrothermally in supercritical water.”

https://pubs.rsc.org/en/content/articlelanding/2010/jm/c0jm01276a
#!divAbstract “Functionalization of synthetic talc-like phyllosilicates

https://www.sciencedirect.com/science/article/pii/S0272884218329262
https://www.sciencedirect.com/science/article/pii/S0272884218329262
https://www.sciencedirect.com/science/article/pii/S0272884218329262
https://www.degruyter.com/document/doi/10.3139/146.110409/html
https://www.degruyter.com/document/doi/10.3139/146.110409/html
https://www.degruyter.com/document/doi/10.3139/146.110409/html
https://link.springer.com/article/10.1007/BF01285830
https://ieeexplore.ieee.org/abstract/document/5781588
https://www.degruyter.com/document/doi/10.1515/chem-2020-0154/html
https://www.degruyter.com/document/doi/10.1515/chem-2020-0154/html
https://www.degruyter.com/document/doi/10.1515/chem-2020-0154/html
https://www.nature.com/articles/srep22163
https://link.springer.com/article/10.1007/s00410-009-0395-4
https://pubmed.ncbi.nlm.nih.gov/28771845/
https://www.nature.com/articles/ncomms10150
https://www.chemistryviews.org/details/ezine/9489511/Talc_from_the_Lab.html
https://www.chemistryviews.org/details/ezine/9489511/Talc_from_the_Lab.html
https://www.chemistryviews.org/details/ezine/9489511/Talc_from_the_Lab.html
https://pubs.rsc.org/en/content/articlelanding/2010/jm/c0jm01276a#!divAbstract
https://pubs.rsc.org/en/content/articlelanding/2010/jm/c0jm01276a#!divAbstract
https://pubs.rsc.org/en/content/articlelanding/2010/jm/c0jm01276a#!divAbstract

by alkoxyorganosilane grafting”
 A range of talc-like phyllosilicates were prepared via a hydrothermal synthesis
performed at five different temperatures from 160 to 350 °C. The organization of
the lattice and the degree of crystallinity of the new materials were evaluated by
different techniques such as XRD, FTIR, solid-state 29Si NMR, TEM, FEG-SEM
and TG-DTA. When synthesized at low temperature the material presents high
degree of hydration, low crystallinity and flawed structure. This was attributed to
stevensite-talc interstratified product present in the samples. The stevensite/talc
ratio and the hydration decrease in the talc-like phyllosilicate samples when the
hydrothermal synthesis temperature increases and so the crystallinity becomes
higher. A thermal treatment at 500 °C allowed a significant flaw reduction in
talc-like phyllosilicate structure; the synthesized sample at 350 °C and heat treated
presents a structure close to that of talc.

https://www.sciencedirect.com/science/article/abs/pii/S01691317130
03001 “Synthetic talc advances: Coming closer to nature, added
value, and industrial requirements”
 Over the past 2 years, the synthetic process of talc particles has evolved
considerably, leading to an inexpensive, convenient, and rapid process that is
compatible with industrial requirements. In addition to facilitate the synthetic talc
preparation, the evolution of the synthesis process has led to an improved
crystallographic arrangement of the talc particles in both the c* direction and (ab)
plane. In the present study, the most recent process was investigated with respect
to the reaction time, temperature, pressure, pH, and salt concentration to
determine the optimal reaction parameters.

https://egyptmanchester.wordpress.com/2018/01/19/the-use-of-stea
tite-in-ancient-egypt/
 In its raw state the softness of steatite make it extremely easily damaged, and
simply wearing or using a carved object would damage the carved detail. Steatite
has an interesting property, when it is fired it will convert from steatite into
enstatite. Unlike steatite, enstatite has a hardness of Mohs 5.5 which is close to that
of granite – making it extremely hard wearing and resistant to damage, whilst still
retaining its carved detail. Steatite has also been glazed since the Predynastic era for
objects such as beads and amulets. ... Firing at a temperature of ~950°C will cause
steatite to dehydrate and crystallise into enstatite. Clay will begin its vitrification
process ~800-900°C and firing will generally require temperatures in excess of
1100°C , therefore the steatite to enstatite conversion can be achieved using similar
technology as is required for firing clay objects. A wood fuelled open fire can easily
reach temperatures exceeding 1100°C, and can be used for firing ceramics and also
for converting steatite to enstatite.
 Further reading: Connor, S, Tavier, H and De Putter, T. ‘Put the Statues in
the Oven: Preliminary Results of Research on Steatite Sculpture from the Late
Middle Kingdom’. Journal of Egyptian Archaeology 101 (2015).

 https://www.hindawi.com/journals/geofluids/2017/3942826/
"An Experimental Study of the Formation of Talc through
CaMg(CO3)2–SiO2–H2O Interaction at 100–200°C and
Vapor-Saturation Pressures"
 In this study, in situ Raman spectroscopy, quenched scanning electron microscopy,
micro-X-ray diffraction, and thermodynamic calculations were used to explore the
interplay between dolomite and silica-rich fluids at relatively low temperatures in
fused silica tubes. Results showed that talc formed at ≤200°C and low CO2 partial
pressures (PCO2). The reaction rate increased with increasing temperature and
decreased with increasing PCO2. The major contributions of this study are as
follows: we confirmed the formation mechanism of Mg-carbonate-hosted talc
deposits and proved that talc can form at ≤200°C; the presence of talc in carbonate
reservoirs can indicate the activity of silica-rich hydrothermal fluids; and (3) the
reactivity and solubility of silica require further consideration, when a fused silica
tube is used as the reactor in high P–T experiments.

https://www.sciencedirect.com/science/article/abs/pii/S0169131713003001
https://www.sciencedirect.com/science/article/abs/pii/S0169131713003001
https://www.sciencedirect.com/science/article/abs/pii/S0169131713003001
https://egyptmanchester.wordpress.com/2018/01/19/the-use-of-steatite-in-ancient-egypt/
https://egyptmanchester.wordpress.com/2018/01/19/the-use-of-steatite-in-ancient-egypt/
https://egyptmanchester.wordpress.com/2018/01/19/the-use-of-steatite-in-ancient-egypt/
https://www.hindawi.com/journals/geofluids/2017/3942826/

https://www.sciencedirect.com/science/article/abs/pii/S0169131715
001532 “Technological properties of ceramic produced from steatite
(soapstone) residues–kaolinite clay ceramic composites”
 Ceramic bodies (7.0 cm × 2.0 cm × 1.0 cm) of kaolinite clay and soapstone
residuals collected from workshops in Ouro Preto and Mariana, Minas Gerais,
Brazil, containing from 2.5 to 97.5 wt% steatite (soapstone) were prepared and
firing at 500, 1000 and 1200 °C, for 2 h, in air. The linear shrinkage, compressive
strength, water absorption and mass loss by heating were determined on the
samples after heat treatment. The fired samples at 1000 and 1200 °C, with steatite
percentages of 85, 90 and 95%, presented the best results for technological
applications in ceramic industry. For these samples, the values of the compressive
strength were higher than 10 MPa and those of water absorption varied between 8
and 22%, which means that the values of these properties are superior and inferior,
respectively, to the reference values established by Brazilian Standards. The linear
shrinkage was lower than 6%, which is the maximum value established by the Pólo
Cerâmico de Santa Gertrudes, in São Paulo State.

https://experimental-prehistory.blogspot.com/2016/02/soapstone-st
eatite-as-hard-as-flint.html “Making Soapstone/Steatite as hard as
flint ? after firing, at ~950°C?”

 https://www.mdpi.com/2075-163X/8/5/200/htm “Looking Like
Gold: Chlorite and Talc Transformation in the Golden Slip Ware
Production (Swat Valley, North-Western Pakistan)”
 ...In order to constrain the firing production technology, laboratory replicas were
produced using a locally collected clay and coating them with ground chlorite-talc
schist. On the basis of the mineralogical association observed in both the slip and
the ceramic paste and the thermodynamic stability of the pristine mineral phases,
the golden slip pottery underwent firing under oxidising conditions in the
temperature interval between 800 °C and 850 °C. The golden and shining looks of
the slip were here interpreted as the result of the combined light reflectance of the
platy structure of the talc-based coating and the uniform, bright red colour of the
oxidized ceramic background.

 https://digitalfire.com/material/talc

http://webmineral.com/data/Clinoenstatite.shtml#.YO9psLOdJhE

 https://www.mindat.org/min-1072.html clinoenstatite

https://www.sciencedirect.com/science/article/pii/S21870764150006
52 “Talc-based cementitious products: Effect of talc calcination”
cc-by-nc-nd
 This study reports the use of calcined talc for cementitious products making. The
calcination is used to enhance the availability of magnesium from talc to react with
phosphate for cement phase formation. It is shown that previous calcination of talc
leads to products having enhanced mechanical performance due to the formation of
more cement phase than in products based on raw talc. Talc fired at 900 °C was
found to be the one in which magnesium release was maximal. Firing at
temperature higher than 900 °C leads to the stabilization of enstatite, which
decreased the magnesium availability. The cement phase is struvite, which was
better detected on the X-ray patterns of the products involving fired talc. All the
products have very rapid setting time and low shrinkage.

 https://www3.epa.gov/ttnchie1/ap42/ch11/final/c11s26.pdf talc
processing

 https://nvlpubs.nist.gov/nistpubs/jres/15/jresv15n5p551_A1b.pdf

 https://rruff.info/doclib/hom/clinoenstatite.pdf

https://www.sciencedirect.com/science/article/abs/pii/S0169131715001532
https://www.sciencedirect.com/science/article/abs/pii/S0169131715001532
https://www.sciencedirect.com/science/article/abs/pii/S0169131715001532
https://experimental-prehistory.blogspot.com/2016/02/soapstone-steatite-as-hard-as-flint.html
https://experimental-prehistory.blogspot.com/2016/02/soapstone-steatite-as-hard-as-flint.html
https://experimental-prehistory.blogspot.com/2016/02/soapstone-steatite-as-hard-as-flint.html
https://www.mdpi.com/2075-163X/8/5/200/htm
https://digitalfire.com/material/talc
http://webmineral.com/data/Clinoenstatite.shtml#.YO9psLOdJhE
http://webmineral.com/data/Clinoenstatite.shtml#.YO9psLOdJhE
https://www.mindat.org/min-1072.html
https://www.sciencedirect.com/science/article/pii/S2187076415000652
https://www.sciencedirect.com/science/article/pii/S2187076415000652
https://www.sciencedirect.com/science/article/pii/S2187076415000652
https://www3.epa.gov/ttnchie1/ap42/ch11/final/c11s26.pdf
https://nvlpubs.nist.gov/nistpubs/jres/15/jresv15n5p551_A1b.pdf
https://rruff.info/doclib/hom/clinoenstatite.pdf

 http://deanpresnall.org/files/90Enst.melting.pdf

http://www.geo.umass.edu/courses/geo321/Lecture%208%20Binary
%20Systems.pdf

https://hal.archives-ouvertes.fr/hal-01686526/file/ACL-2018-009.p
df

https://www.researchgate.net/profile/Adnan-Badwan/publication/2
23981891_Magnesium_Silicate/links/5a5b07320f7e9b5fb388e3bb/Ma
gnesium-Silicate.pdf

https://www.researchgate.net/profile/Kamal-Tabit/publication/327
635588_Crystallization_behavior_and_properties_of_cordierite_synth
esized_by_sol-gel_technique_and_hydrothermal_treatment/links/5e
525d6492851c7f7f504015/Crystallization-behavior-and-properties-of
-cordierite-synthesized-by-sol-gel-technique-and-hydrothermal-trea
tment.pdf

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.643.1922
&rep=rep1&type=pdf

http://www.doiserbia.nb.rs/img/doi/0354-4656/2018/0354-4656180
3297R.pdf

http://75.72.27.96/dad/Journal%20of%20the%20European%20Cera
mic%20Society/2004%20%28Vol%2024%29/Volume%2024%2C%20
Issues%2015-16%2C%20Pages%203693-3848%20%28December%2020
04%29/3817.pdf

https://dais.sanu.ac.rs/bitstream/handle/123456789/4536/Terzic_Sci
ence-of-Sintering_50_2018_299-312.pdf?sequence=1&isAllowed=y

 http://przyrbwn.icm.edu.pl/APP/PDF/127/a127z4p077.pdf

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.1305
&rep=rep1&type=pdf

https://www.gtcountymi.gov/AgendaCenter/ViewFile/Item/1198?f
ileID=5819

https://www.repositorio.ufop.br/bitstream/123456789/8834/1/ART
IGO_TechnologicalPropertiesCeramic.pdf

 https://www.ceramics-silikaty.cz/2015/pdf/2015_04_331.pdf

 Topics

• Materials (p. 1138) (59 notes)
• Experiment report (p. 1162) (14 notes)
• Ceramic (p. 1193) (8 notes)

http://deanpresnall.org/files/90Enst.melting.pdf
http://www.geo.umass.edu/courses/geo321/Lecture 8 Binary Systems.pdf
http://www.geo.umass.edu/courses/geo321/Lecture 8 Binary Systems.pdf
http://www.geo.umass.edu/courses/geo321/Lecture 8 Binary Systems.pdf
https://hal.archives-ouvertes.fr/hal-01686526/file/ACL-2018-009.pdf
https://hal.archives-ouvertes.fr/hal-01686526/file/ACL-2018-009.pdf
https://hal.archives-ouvertes.fr/hal-01686526/file/ACL-2018-009.pdf
https://www.researchgate.net/profile/Adnan-Badwan/publication/223981891_Magnesium_Silicate/links/5a5b07320f7e9b5fb388e3bb/Magnesium-Silicate.pdf
https://www.researchgate.net/profile/Adnan-Badwan/publication/223981891_Magnesium_Silicate/links/5a5b07320f7e9b5fb388e3bb/Magnesium-Silicate.pdf
https://www.researchgate.net/profile/Adnan-Badwan/publication/223981891_Magnesium_Silicate/links/5a5b07320f7e9b5fb388e3bb/Magnesium-Silicate.pdf
https://www.researchgate.net/profile/Adnan-Badwan/publication/223981891_Magnesium_Silicate/links/5a5b07320f7e9b5fb388e3bb/Magnesium-Silicate.pdf
https://www.researchgate.net/profile/Kamal-Tabit/publication/327635588_Crystallization_behavior_and_properties_of_cordierite_synthesized_by_sol-gel_technique_and_hydrothermal_treatment/links/5e525d6492851c7f7f504015/Crystallization-behavior-and-properties-of-cordierite-synthesized-by-sol-gel-technique-and-hydrothermal-treatment.pdf
https://www.researchgate.net/profile/Kamal-Tabit/publication/327635588_Crystallization_behavior_and_properties_of_cordierite_synthesized_by_sol-gel_technique_and_hydrothermal_treatment/links/5e525d6492851c7f7f504015/Crystallization-behavior-and-properties-of-cordierite-synthesized-by-sol-gel-technique-and-hydrothermal-treatment.pdf
https://www.researchgate.net/profile/Kamal-Tabit/publication/327635588_Crystallization_behavior_and_properties_of_cordierite_synthesized_by_sol-gel_technique_and_hydrothermal_treatment/links/5e525d6492851c7f7f504015/Crystallization-behavior-and-properties-of-cordierite-synthesized-by-sol-gel-technique-and-hydrothermal-treatment.pdf
https://www.researchgate.net/profile/Kamal-Tabit/publication/327635588_Crystallization_behavior_and_properties_of_cordierite_synthesized_by_sol-gel_technique_and_hydrothermal_treatment/links/5e525d6492851c7f7f504015/Crystallization-behavior-and-properties-of-cordierite-synthesized-by-sol-gel-technique-and-hydrothermal-treatment.pdf
https://www.researchgate.net/profile/Kamal-Tabit/publication/327635588_Crystallization_behavior_and_properties_of_cordierite_synthesized_by_sol-gel_technique_and_hydrothermal_treatment/links/5e525d6492851c7f7f504015/Crystallization-behavior-and-properties-of-cordierite-synthesized-by-sol-gel-technique-and-hydrothermal-treatment.pdf
https://www.researchgate.net/profile/Kamal-Tabit/publication/327635588_Crystallization_behavior_and_properties_of_cordierite_synthesized_by_sol-gel_technique_and_hydrothermal_treatment/links/5e525d6492851c7f7f504015/Crystallization-behavior-and-properties-of-cordierite-synthesized-by-sol-gel-technique-and-hydrothermal-treatment.pdf
https://www.researchgate.net/profile/Kamal-Tabit/publication/327635588_Crystallization_behavior_and_properties_of_cordierite_synthesized_by_sol-gel_technique_and_hydrothermal_treatment/links/5e525d6492851c7f7f504015/Crystallization-behavior-and-properties-of-cordierite-synthesized-by-sol-gel-technique-and-hydrothermal-treatment.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.643.1922&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.643.1922&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.643.1922&rep=rep1&type=pdf
http://www.doiserbia.nb.rs/img/doi/0354-4656/2018/0354-46561803297R.pdf
http://www.doiserbia.nb.rs/img/doi/0354-4656/2018/0354-46561803297R.pdf
http://www.doiserbia.nb.rs/img/doi/0354-4656/2018/0354-46561803297R.pdf
http://75.72.27.96/dad/Journal of the European Ceramic Society/2004 (Vol 24)/Volume 24, Issues 15-16, Pages 3693-3848 (December 2004)/3817.pdf
http://75.72.27.96/dad/Journal of the European Ceramic Society/2004 (Vol 24)/Volume 24, Issues 15-16, Pages 3693-3848 (December 2004)/3817.pdf
http://75.72.27.96/dad/Journal of the European Ceramic Society/2004 (Vol 24)/Volume 24, Issues 15-16, Pages 3693-3848 (December 2004)/3817.pdf
http://75.72.27.96/dad/Journal of the European Ceramic Society/2004 (Vol 24)/Volume 24, Issues 15-16, Pages 3693-3848 (December 2004)/3817.pdf
http://75.72.27.96/dad/Journal of the European Ceramic Society/2004 (Vol 24)/Volume 24, Issues 15-16, Pages 3693-3848 (December 2004)/3817.pdf
https://dais.sanu.ac.rs/bitstream/handle/123456789/4536/Terzic_Science-of-Sintering_50_2018_299-312.pdf?sequence=1&isAllowed=y
https://dais.sanu.ac.rs/bitstream/handle/123456789/4536/Terzic_Science-of-Sintering_50_2018_299-312.pdf?sequence=1&isAllowed=y
https://dais.sanu.ac.rs/bitstream/handle/123456789/4536/Terzic_Science-of-Sintering_50_2018_299-312.pdf?sequence=1&isAllowed=y
http://przyrbwn.icm.edu.pl/APP/PDF/127/a127z4p077.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.1305&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.1305&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.1305&rep=rep1&type=pdf
https://www.gtcountymi.gov/AgendaCenter/ViewFile/Item/1198?fileID=5819
https://www.gtcountymi.gov/AgendaCenter/ViewFile/Item/1198?fileID=5819
https://www.gtcountymi.gov/AgendaCenter/ViewFile/Item/1198?fileID=5819
https://www.repositorio.ufop.br/bitstream/123456789/8834/1/ARTIGO_TechnologicalPropertiesCeramic.pdf
https://www.repositorio.ufop.br/bitstream/123456789/8834/1/ARTIGO_TechnologicalPropertiesCeramic.pdf
https://www.repositorio.ufop.br/bitstream/123456789/8834/1/ARTIGO_TechnologicalPropertiesCeramic.pdf
https://www.ceramics-silikaty.cz/2015/pdf/2015_04_331.pdf

• Self replication (p. 1204) (6 notes)
• Minerals (p. 1210) (6 notes)
• Talc (p. 1319) (2 notes)
• Forsterite
• Enstatite

Improvements on C for low-level
programming such as block
arguments
Kragen Javier Sitaker, 02021-07-14 (updated 02021-12-30)
(8 minutes)

 C is simple and efficient, doesn’t require GC, and potentially
allows you to handle failures, but it can take a lot of code to get things
done, and you tend to bake in a lot of inflexibility. Things like
Smalltalk are less efficient and can run out of heap, but require less
code to get stuff done, and allow more flexibility. I’ve been thinking
about how to get a Pareto improvement over C: something that
allows you to handle failures, but still supports failure-free GC-less
computing, and is simpler. Seven key features I’ve identified are
coercions, dynamic dispatch, call-by-name, block arguments, pattern
matching on sum types, uninitialized data, and list comprehensions.

 C tries to help you by implicitly converting between data types, but
the rules for this are extremely complex and bug-prone. I think it’s
better to require explicit coercions but, as in Golang, make constants
sort of typeless. This makes the language safer and much simpler in
exchange for, generally, a tiny increment of brevity.

 C++ can do dynamic dispatch with virtual functions, but the
design is all wrong. The Golang design for virtual functions by
indirection through an interface is the correct design; whether a
method call is statically dispatched or dynamically dispatched is a
property of the callsite, not the function being called. This is achieved
by (implicitly, in Golang) creating an “interface object” containing a
pointer to the object and the relevant function pointers. In the case
where you’re creating an interface object for a concrete type, or for a
more restricted facet of a broader interface, this can be done statically.
Golang also, using dynamic checks, implements a broadening type
conversion; I think this is basically just a kludge to fake dynamic
typing, and can be dispensed with.

 The Golang interface construct doesn’t create a subtyping relation.
The interface is a separate object from the concrete object that it
provides access to; they are separate types, although Golang does
unfortunately have implicit coercions. The absence of subtyping
relations dramatically simplifies the task of type inference.

 Call-by-name was a much-maligned feature of the original Algol
60, omitted from both C and Pascal. It allowed you to write a
function like the following:

double sum(double &fi, int &mut i, int start, int stop) {
 double total = 0.0;
 i = start;
 while (i != stop) { total += fi; i++; }
 return total;
}

 This could be invoked, for example, as sum(&a[i], &mut i, 0, 10) or as
sum(&i**2, &mut i, -5, 6), assuming ** is exponentiation. As with C
preprocessor macros, each evaluation of the name of a call-by-name
parameter would re-evaluate the expression that had been passed as an
argument, and this even worked in lvalue context, so i = start; here
would change the value in the caller. In these cases, changing i also
changed fi.

 This is clearly somewhat bug-prone (though I think some kind of
marking at the callsite like the & in the above might help to clarify
what’s going on) and its implementation is slow (it involves creating
one or more closures per parameter; they are not garbage-collected,
but invoking them involves all the usual call/return overhead); but it
is not without its merits. One is that, unlike C pointer parameters, it
can be passed down the stack, but cannot be stored in a data structure
or returned up the stack, so they do not pose a risk of pointer lifetime
bugs. The other, in combination with CLU iterators, is subtler and
more powerful.

 The block arguments I have in mind are similar to CLU iterators;
they are a restricted form of the block arguments you see in Smalltalk
or Ruby. You can use them as iterators:

each_line(&mut line, somefile) { print(line); }

 Or as resource managers:

with_file(&mut f, filename, "r") { results = read(f, fstat(f).st_size); }

 Or as conditionals:

button("Invert") { invert(&mut image); }

 The block is passed in to the function being invoked as a closure,
just like a name parameter. That function can invoke the block (in
CLU or Ruby, yield) zero or more times, including with arguments.
But the block does not have its own stack frame; instead, it stores all
its state in the subroutine it’s lexically nested inside of. And the
subroutine they’re passed to cannot return them or save them in a
data structure.

 Together with call-by-name, this facility allows you to implement
control structures as library functions:

forto(&mut x, 0, 10) { printf("%d² = %d\n", x, x**2); }
while (&x < 10) { x++; }

 You could implement while something like this, at least as a
prototype, assuming proper tail-call elimination is at play:

void while(&b) {
 if (!b) return;
 yield;
 while(&b) { yield; }
}

 Syntactically you probably need facilities to handle multiple block
arguments, though; in particular you want to be able to do things like
map and filter as such iterators, which take one block to describe the
mapping or filtering and a second block to send the result to.

 Null pointers are the bane of C, and ML-family languages avoid
them by instantiating their data structures fully populated and by
using variant tags. If you define a string-search-result type in
OCaml:

type loc = Found of int | Not_found

 then if you have a value of type loc you cannot get any data out of
it without a pattern-match:

match p with Found x -> x * 2 | Not_found -> 1

 The variable x is only in scope in the part of the conditional where
it has matched something. This eliminates the need for NULL.

 (I’m not sure how this fits into C’s nested-data model, but I don’t
think there’s a clash.)

 Uninitialized data in C is almost invariably a result of the
traditional Algol block structure with declarations at the top of the
block, followed by statements. C at least allows you to initialize
things in the declarations. But there’s very little reason, even in
modern C, to declare a variable before giving it a value; you can
delay declaring it until you have the value ready. This eliminates
another source of null data.

 In Python, list comprehensions are just a ridiculously useful way to
write code. The translation to imperative code is straightforward, so
why should we do it by hand? (This might involve some tricky
questions about allocation.)

 The thing I was really trying to figure out here, though, is how to
put a static stack size bound on code that uses these features, in
particular block arguments and dynamic dispatch. Dynamic dispatch
with method names is potentially less troublesome than arbitrary
function pointers, since a function pointer could take you to any
function whose address has been taken, while method dispatch can
only take you to one of the 6 functions named toTuple or whatever.
Block arguments are a little tricky because any calls from within the
block get stacked on top of the activation record of the “iterator”
that’s calling it --- but not at the same time as the iterator’s own
callees.

 There are two different reasons for wanting a static stack size
bound. One is to statically guarantee that the program won’t crash.
Another is to insert a minimal number of stack overflow checks
which, if they fail, do something like invoke the
Cheney-on-the-MTA trampoline, or allocate a new segment to
expand the stack into.

Topics

• Programming (p. 1141) (49 notes)
• Safe programming languages (p. 1172) (11 notes)
• C (p. 1194) (8 notes)
• Higher order programming (p. 1196) (7 notes)
• Pascal (p. 1247) (4 notes)
• OCaml (p. 1249) (4 notes)
• Dynamic dispatch (p. 1259) (4 notes)
• Memory models (p. 1285) (3 notes)
• Smalltalk (p. 1326) (2 notes)
• Call by name (p. 1382) (2 notes)
• Block arguments (p. 1383) (2 notes)
• Typing
• Golang
• Failure free

Fiberglass CMCs?
Kragen Javier Sitaker, 02021-07-15 (updated 02021-07-27)
(8 minutes)

 Fiberglass for insulation is super cheap (Potential local sources and
prices of refractory materials (p. 566) reports that it’s around
US$3/kg) and has substantial tensile strength, even if it’s not as high
as S-glass and M-glass. Chopped glass fiber for mixing into plastics as
reinforcement (probably E-glass) also sells for about US$3/kg
(AR$9975 for 20kg). (I think fiberglass insulation is A-glass.) Glass
fibers are commonly used to reinforce organic polymers like epoxy to
make them roughly as strong as steel, but this matrix is itself fairly
expensive in bulk; 6 kg of epoxy from Tienda Bepox costs AR$21000
, US$129, or US$21/kg, seven times the price per unit mass of the
fiber reinforcement. Polyester resin is significantly cheaper, at
AR$7300/10kg, US$4.50/kg, but also much more rigid and, I think,
more fragile. (Vinyl ester and phenolic casting resins are apparently
harder to find, locally at least.)

 For polyester thermosets, Matweb gives useless ranges of 10–123
MPa for ultimate tensile strength and 54–265 MPa for flexural yield
strength (implying that at least one polyester thermoset has a flexural
yield strength twice its ultimate tensile strength), and for “epoxy cure
resin” 5–97 MPa and 76–1900 MPa, and for “epoxy, cast,
unreinforced” 8–97 MPa and 14–131 MPa. And I have no idea where
in these very wide ranges these resins are.

 Matweb says fused quartz (Saint-Gobain Quartzel) is 6000 MPa
UTS and generic A-glass fiber is 3310 MPa UTS, while Micarta
RT500M glass-reinforced epoxy is only 269 MPa UTS and
“Goodfellow E-glass/Epoxy composite” is only 490 MPa UTS. So
there’s a lot of room for improvement.

 Could you make a ceramic-matrix composite from insulation
fiberglass, getting the usual cracking-resistance performance
improvements of CMCs, even if the improved performance doesn’t
approach the kind of performance you get out of things like SiC/SiC
CMCs? Could you do it cheaply?

 You clearly can’t heat it up to the high temperatures normally
associated with CMC manufacturing; those are over 1000° and glass
wool craps out around 230–260° (reportedly, I haven’t tried, and I
suspect this may just be the max temp of the polymeric
sizing — soda-lime glass normally doesn’t soften until around 700°),
while rock wool (which is also about US$3/kg) should maybe be
good to 700°–850°. So you might need some kind of hydrothermal
process. Moreover, the hydrothermal process needs to be gentle
enough to not eat the glass reinforcing fibers, so in particular ordinary
portland cement and carbonation of slaked lime are probably off the
table, and so is anything that involves making silica highly soluble in
water.

 A few candidate matrix systems:

• Calcined alabaster, of course, though this will never reach very high

https://articulo.mercadolibre.com.ar/MLA-834281445-hilo-de-fibra-de-vidrio-cortada-20kg-placas-antihumedad-_JM
https://articulo.mercadolibre.com.ar/MLA-914848579-resina-epoxi-revestimiento-6-kg-cristal-vidrio-liquido-_JM
https://articulo.mercadolibre.com.ar/MLA-666422735-10kg-resina-poliester-cristal-_JM
https://articulo.mercadolibre.com.ar/MLA-666422735-10kg-resina-poliester-cristal-_JM
http://www.matweb.com/search/datasheet.aspx?matguid=1d92ed366503454ba49b8a44099f90de&n=1&ckck=1
http://www.matweb.com/search/datasheet.aspx?matguid=1d92ed366503454ba49b8a44099f90de&n=1&ckck=1
http://www.matweb.com/search/datasheet.aspx?matguid=1d92ed366503454ba49b8a44099f90de&n=1&ckck=1
http://www.matweb.com/search/DataSheet.aspx?MatGUID=956da5edc80f4c62a72c15ca2b923494
http://www.matweb.com/search/DataSheet.aspx?MatGUID=1c74545c91874b13a3e44f400cedfe39
http://www.matweb.com/search/DataSheet.aspx?MatGUID=c1880a08cfb948b0b5f2f9d47cc9b130
http://www.matweb.com/search/DataSheet.aspx?MatGUID=c1880a08cfb948b0b5f2f9d47cc9b130
http://www.matweb.com/search/datasheet.aspx?MatGUID=8f9003366c9044bdb91bcd86e1fa6e42
http://www.matweb.com/search/DataSheet.aspx?MatGUID=887a9a6a63bb476d9bf271ba2da40e4e
http://www.matweb.com/search/DataSheet.aspx?MatGUID=89f8b78cfd564d07845a232d22b99519

strengths.
• Geopolymer cements with low alkalinity, such as milled metakaolin
polymerized with modulus-4 sodium silicate (though Davidovits
recommends 1.45–1.85).
• Low-alkalinity waterglass binders.
• Aqueous phosphate cements such as the phosphates of zinc,
magnesium, or aluminum.
• Sorel cement (pH 8.5 to 9.5 according to Wikipedia).

 To any of these binders you could add functional fillers such as
clays, talc, mica, quartz sand, quartz flour, carborundum, perlite,
vermiculite, glass foam, or sapphire.

 Aside from the spatula layup approaches normally used to produce
fiber-reinforced plastics, chopped-fiber mixing is a possibility, and
spin-coating of the binder/filler/fiber mixture would tend to produce
a biaxial orientation of the solids, which would tend to be very
advantageous to both solids density and to applying the strength of
the solids in the appropriate directions. This approach would be best
at increasing the density of the solids if the binder decreases greatly in
volume after the spinning, for example by dehydrating.

 Another way to increase the toughness and flexibility of such a stiff
composite material is to fabricate it in thin sheets and then laminate
them together with a softer or weaker binder. The binder would tend
to stop crack propagation or at least redirect it parallel to the surface
of the material, and if it is soft rather than just weak it would tend to
shear to allow the overall composite sheet to flex, like the pages of a
book. Sodium chloride and highly-hydrated sodium silicate are two
candidate binders that might be capable of such shear, especially over
time.

Sizing

 Normally when you’re making glass-fiber-reinforced things you’re
concerned with sizing the fibers to improve adhesion to the matrix,
because otherwise the low-modulus, low-strength matrix can’t
effectively transfer load to the fibers, and you get pullout failures at
much lower loads than would be needed to actually break the fibers.

 In CMCs the objective is the opposite: the matrix has strength
comparable to the fibers, but both the fiber and matrix have the very
low elongation at break characteristic of ceramics. Instead, the fibers
are incorporated to arrest crack growth by bridging cracks, for which
a much longer length of fiber must be recruited to stretch, for which
the fiber needs to slide through the matrix. So sizing is necessary to
weaken the bond between the fiber and the matrix, causing material
failures to be pullout failures — still at a lower stress than would be
needed to break a solid, defect-free block of the material, but with
enormously improved toughness. This can even translate to higher
tensile and flexural strength in the case of non-defect-free brittle
materials, where microcracks can reduce their theoretical tensile
strength by many orders of magnitude.

 So, what kind of sizing could you apply to the glass fibers to
weaken their bond to the matrix? You want it to be much softer than
the other materials involved, and to completely cover the glass fibers,
or at least almost so, which suggests that you’d like it to be

https://www.researchgate.net/profile/Joseph-Davidovits/publication/306946529_Geopolymer_Cement_a_review_2013/links/5bf2cb7c299bf1124fde4512/Geopolymer-Cement-a-review-2013.pdf?origin=publication_detail
https://www.researchgate.net/profile/Joseph-Davidovits/publication/306946529_Geopolymer_Cement_a_review_2013/links/5bf2cb7c299bf1124fde4512/Geopolymer-Cement-a-review-2013.pdf?origin=publication_detail

amorphous. You want it to be water-insoluble so it will survive
when the matrix is infiltrated into the fibers, but applicable
hydrothermally rather than with some kind of white-hot gas or
something. And you want it to be cheap, which eliminates most
organics. Precipitating amorphous calcium phosphate or aluminum
trihydroxide from aqueous solution might work; there are also a
number of softer insoluble phosphates and carbonates of polyvalent
cations, such as rhodochrosite, siderite, vivianite, wolfeite,
smithsonite, hopeite, malachite, azurite, magnesite, struvite, and
calcite. Oxide and hydroxide minerals might also be candidates.

 Amorphous deposition isn’t essential, but if we hydrothermally
deposit a crystalline sizing material, there’s a good chance there will
be gaps between the crystals that leave the glass exposed.

 Another approach would be to expose the fibers to something that
reacts enthusiastically with the exposed glass (for which there are
relatively few candidates at ordinary temperatures, mostly silanes) and
forms a monolayer on it, and then something else that reacts with the
monolayer, perhaps repeating the process several times.

 Infiltrating loose glass fibers very briefly with a low-density hot
plasma of something that’s solid at room temperature might work to
deposit a thin, even layer on the surface of the glass without damaging
it, if the heat in the plasma isn’t sufficient to melt the glass. The layer
would tend to be of relatively constant thickness because the places on
the glass where the plasma has already frozen will be hotter than the
places it hasn’t frozen yet. For example, tenorite and maybe cuprite
(Mohs 3.5–4) will tend to precipitate from a plasma formed by passing
too much current through a copper wire which is allowed to mix
with air. In an inert atmosphere, maybe you could use vapor of
aluminum or zinc.

 If the sizing layer is thin compared to the fiber diameter, which
would be necessary in this crazy plasma process but maybe not some
of the others, the cost of the sizing is less of a concern.

Topics

• Materials (p. 1138) (59 notes)
• Pricing (p. 1147) (35 notes)
• Strength of materials (p. 1164) (13 notes)
• Composites (p. 1187) (9 notes)
• Ceramic-matrix composites (CMCs) (p. 1265) (4 notes)
• Fiberglass

My ideal workshop (unfinished)
Kragen Javier Sitaker, 02021-07-16 (updated 02021-07-27)
(2 minutes)

 My ideal workshop would have a roll-down steel door (cortina
metálica) 3 meters wide and 4 meters tall. Inside, it would be 5 meters
wide, 25 meters long, and 5 meters tall. Its walls would be solid brick,
shared with neighboring industrial buildings, and its ceiling
corrugated galvanized sheet steel, interrupted with the occasional
translucent fiberglass panel, supported on welded arch trusses. The
floor would be sandy soil, and it would be on a rise or hill some 15
meters above the usual water table. It would have electricity but no
water, sewer, gas, telephone, or internet service. The roof would
slope down toward the street, and on its front edge, there would be an
old sheet metal sign with the name of a former occupant, obscuring
the view from the street of the roof. It would have a couple of
sheet-metal chimneys.

 I would build a meter-thick wall up to the ceiling, some 7 meters
inside the front door, separating a 35-m² “front office” from a 85-m²
“back office”. I would dig out 500 mm of soil in the front office,
grout the soil beneath it to solidify it, and replace it with
broken-stone construction aggregate, thus providing a surface on
which a delivery van could park safely. The front-office/back-office
firewall would extend deeper than the broken-stone aggregate, and
considerably deeper than that I would have to grout the soil that
supported that wall to keep it from sinking in, because the wall is
about 12 tonnes per square meter (120 kPa).

 I would insulate under the steel roof with fiberglass batts. In the
back office, I would replace 10m² of the steel with translucent
fiberglass panels, under which I would install photovoltaic panels,
with fiberglass batts beneath them.

 The front office would XXX

Topics

• Fiction (p. 1368) (2 notes)

Can you 3-D print Sorel cement
by inhibiting setting with X-rays?
Kragen Javier Sitaker, 02021-07-16 (updated 02021-07-27) (1 minute)

 “Kiran K” of Larsen and Toubro reports that Sorel cement is
sensitive to X-rays and strong DC electric fields — they prevent it
from setting. (Even more astonishingly, he claims polarized laser light
affects its setting.)

 What if this is true?

 Ring and Ping give more detail:
Cements formulated near the stoichiometry of the 5-phase [i.e., 5MgO + 1MgCl₂]
reaction, e.g. 0.8987 kg/L (7.5 lbs/gal) and 28.9±0.15% MgCl₂ brine, are the
strongest. Kinetic experiments observed that the 5-phase is formed quickly, but
the kinetics are not complete for several days. The cement does not set by the
5-phase reaction when exposed to Cu Kα x-rays but gives a putty like form having
MgCl₂*6H₂O crystals that do not set into a cement. These are the first
observations of x-ray altered cementation reaction kinetics.

 Does this mean you could use X-rays to 3-D print an object out of
Sorel cement?

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• 3-D printing (p. 1160) (17 notes)
• X rays (p. 1310) (2 notes)

https://www.linkedin.com/pulse/note-sorel-cement-kiran-k
https://www.linkedin.com/pulse/note-sorel-cement-kiran-k
https://www.che.utah.edu/~ring/Publications-PDFs/J-127.pdf

Tetrahedral expanded metal
Kragen Javier Sitaker, 02021-07-16 (updated 02021-07-27)
(3 minutes)

 To make a three-dimensional honeycomb with the open-cell
structure of the diamond crystal lattice, you make many sheet-metal
strips of the same width, and you make a stack of two of these layers
of strips, running at right angles, either with or without spacing
between the strips. This gives you a grille of intersections between
the strips. Color these intersections chessboard-style and spot-weld
the black ones. Add a third layer at right angles to the second, each of
its strips in the same position as a corresponding strip in the first layer
(except displaced in Z by twice the sheet metal thickness), and
spot-weld the white squares. (This may require a spot-welder with
both electrodes on the same side of the workpiece, like those used for
welding nickel strips to lithium batteries.) Now at every intersection
the second layer is welded to either the first layer or the third layer.
Add a fourth layer parallel to the second, and spot-weld it to the third
layer at the intersections where the third layer isn’t welded to the
second (but the second is welded to the first). And so on.

 Once you have added enough metal, pull the layers apart,
permanently bending the strips so that each welded intersection
becomes a tetrahedral lattice point.

 If you have two-dimensional square mesh available for free, you
can do this with half as many spot welds. Place a second layer of mesh
on top of the first layer, with its X and Y axes parallel, but offset in
both X and Y by half a cell, so that each wire in one layer of the mesh
crosses a wire in the next layer exactly halfway between the two
nearest intersections in each of their respective meshes. Spot-weld all
these crossing points; repeat.

 This isn’t a very rigid structure, which is why it’s possible to bend it
into shape by pulling on it once it’s welded up. If impact energy
absorption is the goal, then that’s fine; it should work great for that.
However, if higher rigidity is desired, it’s possible to take advantage
of metals’ work-hardening tendencies to get it. Say that two
intersections are “metamours” if they are directly connected to a
single common intersection. The trick is to add additional members
to the structure connecting each pair of metamours which get further
apart during the pulling process, of which I think each intersection
has 8; these extra members are initially not straight, but the initial
expansion of the matrix straightens them, which work-hardens them.
If the expansion is done rapidly enough, the mass of the centers of
these members comes into play, makng them straighter than the same
amount of pulling force could have made them under quasistatic
conditions.

 This may be enough to get an ideal omnitriangulated mesh like an
octet truss. There are still 4-cycles in the structure that have no
diagonals, one between each pair of metamours in the same layer, but
that's true of the standard octet truss as well.

Topics

• Materials (p. 1138) (59 notes)
• Manufacturing (p. 1151) (29 notes)
• Welding (p. 1181) (9 notes)

Glass foam
Kragen Javier Sitaker, 02021-07-16 (updated 02021-08-15)
(17 minutes)

 You can get neutral waterglass to foam up into an open-cell-foam
glass just by heating it to its softening point (I didn’t measure with a
thermometer, maybe 500°?) over the course of a few minutes. The
structure of the resulting foam is fairly coarse, and the density is not
that low.

How

 A couple of possibilities occur to me to improve the structure.

 Water is probably the best blowing agent for this kind of thing, just
based on its low molecular weight. Ammonia might be a possibility,
too.

 First, waterglass solution doesn’t solidify at room temperature until
it’s something like 35% waterglass by mass, and so when you heat it
up slowly, any water in excess of that 65% (or even a bit more, since
solubility increases at higher temperatures) will bubble out in the
liquid state, before the solid foam can form. Adding small amounts of
polyvalent cations (such as calcium or magnesium, or maybe even
aluminum or boron) is well known to decrease its solubility to by
orders of magnitude, so perhaps they could permit the formation of a
solid hydrogel with much higher water content, perhaps 90%, 99%, or
99.9%, with a corresponding decrease in the density of the final
product. There must be some density limit below which you get glass
mist rather than glass foam, but given how viscous glasses can be just
above their softening point, the limit might be pretty low.

 Second, if the expansion is carried out very quickly rather than
over a period of time, bubbles will have less time to coalesce into
larger bubbles and convert the foam into the open-cell form. So
perhaps the solid hydrogel precursor could be foamed more
effectively in the way that rice and breakfast cereals were originally
puffed (and still are by roadside vendors in China and Korea), by first
heating it under pressure to its softening point, then suddenly
releasing the pressure. For most cereals this is done by heating the
cereal to the proper temperature inside a cereal cannon, then
whacking the valve on the front of the cannon with a hammer,
allowing the cereal to blow the cannon door open; but for popcorn it
is instead done by encasing a small ball of the starch hydrogel in a
hermetic hull which contains the pressure until it ruptures. Both
possibilities might work to produce lighter-weight glass foam.

 In the cannon case, there’s the risk that the glass hydrogel will
completely melt inside the pressure chamber and stick together into a
single mass, and also to its walls. If the hydrogel is initially produced
in granules, their surfaces can be treated to prevent this, for example
by rolling them in quartz flour (which can be made to stick either by
doing it before they have finished solidifying, by making the quartz
flour hot enough to partially melt the surface, or by a hot air blast) or
by replacing most of the alkali ions near their surface with polyvalent

cations like those mentioned above.

 Many minerals might serve as viable alternatives to quartz flour
here, including chalk, quicklime, alabaster, magnesia, zeolites, clays,
talc, feldspar, aluminum hydroxide, mica, or rutile — almost any
mineral used in formulating ceramic clay bodies or glazes will have a
much higher melting point than the waterglass hydrogel, except
perhaps oxides of lead. Boric acid and borax don’t have a higher
melting point, but still might be an alternative, by forming a
borosilicate network in the surface of the granule.

 Most of these treatments to increase the melting point of the
granules’ surfaces would also increase the surface’s strength, which
would permit the use of the cannon-free popcorn process.

 An alternative means of puffing rice is “hot salt frying”, in which
salt is heated to a high enough temperature to puff rice (but not melt
the salt), and then the rice (often parboiled) is mixed into it. The hot
salt transfers heat to the rice much more rapidly than hot air would at
ordinary velocities, so the rice puffs instead of dehydrating through
vapor diffusion as it normally would. The coarse-grained puffed rice
is then easily sieved out of the fine-grained salt. Modern
continuous-process cereal puffing works the same way, but using
high-speed air or steam rather than solids. This might be a viable
alternative way to rapidly foam waterglass hydrogels, but media you
wouldn’t want in your food could be used instead of the
salt — anything from the foregoing litany of quartz, chalk, quicklime,
etc., and also carbon. These would permit the use of higher puffing
temperatures. Using air, of course, would permit puffing glass at
higher temperatures still, but its low thermal conductivity and
thermal density means you need high-pressure air jets.

 You could load a refractory mold full of many such beads of the
hydrogel, but without any such surface treatment, then run hot air or
steam through the mold cavity at high speed in order to expand all
the grains and cause them to fuse together, like expanded polystyrene.
This could be a pretty quick process if the grains are small; the hot air
could convert them into a sort of fluidized bed.

One crude kitchen experiment

 I placed a thin irregular slip of air-dried waterglass on a bed of
expanded vermiculite, then dumped a small bowlful of preheated
construction sand on it. The bowl and sand were not hot enough to
glow visibly, but hot enough to immediately char the towel I was
using to hold the bowl and the towel on the floor that I spilled some
of the hot sand on. The expanded waterglass foam retrieved from
beneath the sand was about 47 mm long at its longest, 27 mm wide at
its widest, 20 mm wide at a narrower point, and 10-12 mm thick over
most of its area. It weighed some 600 mg. If we approximate the
volume as 45 mm × 22 mm × 10 mm, we get 9.9 cubic centimeters,
so 0.06 g/cc, suggesting that it is about 98% air. Upon immersing it in
a glass of water weighing 421.4 g while supporting it from above with
chopsticks, the measurement increased to 430.4 g, suggesting it was
displacing 9.0 mℓ of water, and upon weighing afterwards, its weight
had increased to 1.5 g, suggesting that it had absorbed 900 mg of
water, also giving a volume of 9.9 cubic centimeters. Although an
extra decimal place of accuracy would give more confidence,

particularly given how the scale readings were drifting upwards while
the foam was held underwater, it seems safe to say that it’s probably
60 ± 30 mg/cc, so maybe 97%-99% air. (But contrast that 0.06 g/cc
to the 0.74 g/cc reported for pumice in Material observations (p. 633)
.)

 The resulting piece of white foam can be easily handled without
breaking it, but it’s fragile enough that dropping it on the table
sometimes breaks off a corner. Contact and rubbing make sounds
similar to the sounds of extruded polystyrene, suggesting that the
velocity of sound through the material is similar (and thus a similar
density to stiffness ratio) and that acoustic coupling to air is pretty
good, as you’d expect it to be if its density is only 60× higher than
air’s.

 For context, a silica aerogel produced in the 01990s was the
record-holder for least-dense solid material for a while at 3 mg/cc,
more recent aerogels have reached 1 mg/cc, and extruded polystyrene
panels for building are typically 20–80 mg/cc.

 I was concerned that the sand or vermiculite might stick to the
waterglass as it foamed up, but this didn’t seem to happen — there
were three pieces of vermiculite stuck to it, but I think they were
there in the unexpanded waterglass, which had oozed onto a
polyethylene sheet out of some vermiculite I was trying to glue
together earlier.

 Later, I reheated the foam to drive out the water and verify that it
still weighed 600 mg. After removing it from the hot bowl on the
stove, I could hear crackling inside the foam as the thermal shock
induced fractures inside the foam.

 Fragments of this foam melted and collapsed when heated with a
butane torch to red or orange heat (say, 700–900°). In an effort to
raise this softening point, I tried boiling another foam fragment made
in a similar way in aqueous magnesium chloride for a while, then
boiling it in tap water for a while to get rid of the magnesium
chloride. The idea was that the magnesium, without changing the
structure of the foam, would replace some or most of the sodium to
produce some kind of mostly magnesium silicate, which would be
water-insoluble and have a much higher melting point. After a first
such tap-water boiling, there was some white deposit around the
water (probably MgCl₂) but the foam no longer tasted noticeably like
magnesium chloride. Just in case, I boiled it in fresh tap water for a
while longer, which left less of a white deposit around the water.

 Wet, the fragment sank in bottom of water and weighed 400mg.
Dried, it weighed “0”: under the 100mg low end of my crappy scale.
After heating it with the blowtorch to an orange-yellow heat
(800°–1000°?) for several minutes, which produced some sodium
yellow in the flame at first, it appeared slightly smaller and less white,
more translucent. Upon putting it in water, rather than floating at
first as before, it immediately sank, and its wet weight was still "0",
so, under 100mg. This suggests that its pore space had diminished by
at least a factor of 4 from this treatment, and that the pores had
become larger.

 This survival for several minutes contrasts strongly with the
behavior of the freshly prepared foam, which shrivels up to a tiny

https://web.archive.org/web/20050718075757/http://www.llnl.gov/IPandC/technology/profile/aerogel/Terms/index.php
https://web.archive.org/web/20050718075757/http://www.llnl.gov/IPandC/technology/profile/aerogel/Terms/index.php

bead in seconds upon being heated in the same way.

 I’m repeating the MgCl₂ procedure with another piece from the
9.9mℓ chunk of foam just to make sure I’m not fooling myself. I kind
of fucked it up because I let it boil dry, and then didn’t let it cool back
down before adding water, so water was boiling fiercely as it re-wet
the foam, which probably did some real damage to its structural
integrity. Also, the first time I did it in the cut-off bottom of an
aluminum can; this time I’m doing it in a steel bowl with a badly
oxidized plating of something like nickel, so there may be different
compounds running around. And the water is cloudy white (perhaps
due to particles of insoluble silicate broken off when I re-added the
water) rather than transparent as before.

 The second magnesium-infused chunk of foam did indeed
withstand the blowtorch flame; but I think it lost significant weight
during the magnesium-infusion process, and it looks significantly
smaller. At any rate, once dry, it weighed in at “0 g” again. Wet, it
weighs 1.1 g.

 To test it further, I put it back in the bowl of vermiculite and built
an aluminum-foil arch over the top of it, then heated it to yellow heat
(parts to white heat) for several more minutes with the butane torch.
It appeared unharmed, but after cooling was evidently more fragile
than before, and its wet weight was 1.0 g, so it may have lost 10% or
20% of its pore space through this treatment. Also, the aluminum
part of my butane torch nozzle melted and the brass tip fell out on the
floor, so I had to stop.

 To test compressive strength, I cut a 13 mm × 18 mm rectangular
piece of the non-magnesium-treated foam and sanded two surfaces
fairly flat, making it about 6 mm thick. I placed it on a larger scale
and crushed it by pressing down slowly on a slab of granite placed
atop it with my hand; it began to crush around 1 kg and completed
crushing around 2 kg. 1 kg gravity / 13 mm / 18 mm is about 40 kPa,
so the compressive strength of the foam is probably somewhere in the
neighborhood of 20–80 kPa. This is an order of magnitude lower
than construction-insulation styrofoams, which are typically in the
150–700 kPa range, measured by the DIN 53421 standard, which
evidently specifies 10% deflection as the limit.

 (See also Synthesizing amorphous magnesium silicate (p. 617).)

Why

 The glass foam resulting from foaming waterglass can be abraded or
sawn (or crushed) very easily, and the possibility of cutting it with a
hot wire, like styrofoam, is very appealing, especially if its density can
be decreased further. Although it’s quite weak, it could be very
useful for supporting granular slightly-denser materials such as perlite,
vermiculite, alumina foam, and cheap carbon foam, for example
while an adhesive sets (see Leaf vein roof (p. 600) for one use for
this). Because of its relatively low melting point and very low
density, it might be possible to “burn it out” in such cases, leaving
only a thin layer of residue.

 It was easy to bore a hole through one of the scraps prepared in the
crude kitchen experiment described above using an 850-μm
spring-steel wire, just by poking at the foam with the end of the wire.

The material did not visibly shatter or chip as the wire poked through
the back side.

 A different way of using this glass foam to support stronger
materials is to first get it into the right shape (whether by expanding
beads into a mold, gluing together a bunch of pre-expanded beads and
pushing them into a mold, by cutting or abrading at low
temperatures, or by hot-wire cutting) and then use the resulting form
as either a mold or a stucco substrate. This is more or less the same
way styrofoam is used for molding, for example, concrete, or as a base
for a fiberglass layup. By painting, spraying, wrapping, laying up, or
otherwise depositing a stronger material onto its surface, you can
make a strong, hard shell. This may need to be done in stages, first
building up a lightweight shell that can be supported by the foam,
then a stronger shell supported by the lightweight shell, then perhaps
a solid object filling the whole shell.

 Why would you use glass foam for this rather than styrofoam?
Well, it doesn’t require any organic materials, so it’s potentially much
cheaper. Being more rigid means you can cut it to precise dimensions
more easily, and it will bend less when you’re doing things to it that
impose slight side loads, like painting or stuccoing it. It can withstand
common solvents without any complaint, unlike styrofoam, and it can
withstand higher temperatures than any organic polymer.
Counterintuitively, it might be possible to get it to a lower density
than styrofoam, because silicate glass (even waterglass) has a much
higher strength-to-weight ratio than polystyrene; however,
experiment so far has not realized this possibility.

 Also, if the density gets low enough, you can use glass foam for
lost-foam casting, particularly for casting of materials like basalt, fused
quartz, lead glass, or soda-lime glass that will happily dissolve the
glass-foam residues.

 It might be possible to raise the melting point of the foam once it
has been shaped through ion exchange, for example with salts of
magnesium, iron, boron, or aluminum. Saturating the foam with an
aqueous solution of such soluble salts might be enough. This could
enable it to be used directly as a refractory.

 The standard established approach to foaming glass is to mix carbon
and an oxygen source such as MnO₂ into it, so that as the glass starts
to soften they react to form CO₂ (and, say, Mn).

Topics

• Materials (p. 1138) (59 notes)
• Manufacturing (p. 1151) (29 notes)
• Experiment report (p. 1162) (14 notes)
• Strength of materials (p. 1164) (13 notes)
• Foam (p. 1185) (9 notes)
• Waterglass (p. 1189) (8 notes)
• Glass (p. 1254) (4 notes)

Leaf vein roof
Kragen Javier Sitaker, 02021-07-16 (updated 02021-09-11)
(9 minutes)

 Cheap roofs are mostly made out of corrugated galvanized sheet
steel, but this has several disadvantages. A typical price is
AR$2070/1.1m² (US$12/m²) for 500-μm-thick (25-gauge, in the
Argentine system) corrugated galvanized steel, so the cost is not
insignificant. The metal has no real insulating properties, reradiating
all the heat of the sunlight that it absorbs, and although its finish is
initially quite reflective, soon after installation it corrodes enough to
absorb a lot of sunlight. It’s kind of heavy (4.4 kg/m²). It tends to
make a lot of noise when things fall on it. You have to drill holes in it
to fasten it to things, which creates water leaks when it rains. It’s a
pain to bend or cut.

 Maybe you could make a better material out of a sandwich panel.
Take a layer of aluminum foil (50¢/m², see Aluminum foil (p. 413))
and lay down a layer of aluminum window screen on top of it; a 1.2
m × 30 m roll costs AR$13244, US$81, US$2.25/m². Or
200-μm-thick galvanized steel window screen, at AR$9053 for 1 m ×
30 m, US$1.90/m². Or fiberglass window screen; a 1 m × 30 m roll
costs AR$5377, US$33, US$1.10/m² — though that vendor says it’s
actually not glass but plastic! On top of the window screen, add a
50mm layer of expanded vermiculite (0.1 kg/ℓ, US$0.23/ℓ, according
to Potential local sources and prices of refractory materials (p. 566)),
previously moistened with waterglass (US$2/kg) and a second layer
of window screen. Now press down the whole pile to ensure good
contact among the vermiculite particles, and solidify the waterglass,
either by letting it dry or by gassing it with CO₂.
 (Dehydrated alabaster is a possible alternative binder, and it’s
cheaper at US$0.30/kg, but it won’t coat the vermiculite grains as
nicely, so you might end up using a lot more of it.)

 (A layer of chicken wire (US$40 per roll of 1 m × 25 m, thus
US$1.60/m²) or hardware cloth (US$82 per roll, thus US$3.30/m²)
might provide additional strength and stiffness. 220g/m² woven
fiberglass cloth for composites is US$3.50/m².)

 The window screens provide tensile stiffness, and the somewhat
springy vermiculite provides shear strength and impact absorption.
The aluminum foil reflects the sunlight and adds a little extra
stiffness, and the vermiculite provides insulation. The waterglass
sticks it all together, and in particular keeps the aluminum foil from
flapping in the wind.

 Let’s guess the weight of the waterglass is about the same as that of
the vermiculite, which turns out to be 5 kg/m². So 1 m² is US$0.50
(foil) + US$4 (screens) + US$11.50 (5 kg vermiculite) + US$10 (5 kg
waterglass) = US$26. So our panels weigh 10 kg/m² and cost
US$26/m², each twice as much as the corrugated steel we were
hoping to improve on. But now we have insulation and corrosion
resistance, the panels absorb sound and can be cut with a box cutter,
and we can drive screws into them without impairing their water

https://articulo.mercadolibre.com.ar/MLA-799068036-chapas-techo-galvanizadas-acanalada-c-25-ternium-oferta-_JM?searchVariation=40210427267
https://articulo.mercadolibre.com.ar/MLA-799068036-chapas-techo-galvanizadas-acanalada-c-25-ternium-oferta-_JM?searchVariation=40210427267
https://articulo.mercadolibre.com.ar/MLA-886617841-tejido-tela-mosquitera-aluminio-rollo-120x30-mts-no-se-oxida-_JM
https://articulo.mercadolibre.com.ar/MLA-886617841-tejido-tela-mosquitera-aluminio-rollo-120x30-mts-no-se-oxida-_JM
https://articulo.mercadolibre.com.ar/MLA-782275624-tejido-tela-mosquitera-galvanizado-rollo-1-x-30-mts-_JM
https://articulo.mercadolibre.com.ar/MLA-782275624-tejido-tela-mosquitera-galvanizado-rollo-1-x-30-mts-_JM
https://articulo.mercadolibre.com.ar/MLA-904121645-tela-mosquitero-de-fibra-vidrio-rollo-1-metro-x-30-metros-mm-_JM
https://articulo.mercadolibre.com.ar/MLA-904121645-tela-mosquitero-de-fibra-vidrio-rollo-1-metro-x-30-metros-mm-_JM
https://articulo.mercadolibre.com.ar/MLA-922604748-tejido-hexagonal-gallinero-1-x-1-m-x-25-m-importador-_JM
https://articulo.mercadolibre.com.ar/MLA-907005386-tejido-electrosoldado-50x50mm-16-malla-1x25-m-alambre-_JM
https://articulo.mercadolibre.com.ar/MLA-615625188-fibra-de-vidrio-en-tela-roving-220-grsm2-multiples-usos-_JM

resistance. And they’re still fireproof.

 Loose vermiculite might conduct heat at 0.06 W/m/K, but with
the waterglass it’s probably more like 0.1 W/m/K. So if our
vermiculite roof is at 45° and the indoors is at 20°, it will conduct
about 50 W/m², which seems like a lot, even if it’s only 5% of what
enters through an open window. This is a U-value of 2 W/m²/K.

 What’s the flexural strength of the panels? It seems like it ought to
be something reasonable, but I’m not sure how to calculate it.

 In this form, we haven’t yet achieved a Pareto improvement but
only a tradeoff; however, we’ve come within a stone’s throw of the
price and weight of the standard approach. Can we improve these
panels further?

 Because we don’t need super high temperature resistance, it’s
probably better to use fiberglass insulation (US$0.026/ℓ, about 0.025
W/m/K, and also lower density, 0.02 kg/ℓ) or, if properly
fireproofed, styrofoam at US$1/m² for 20mm (US$0.05/ℓ, 0.033
W/m/K); both of these have several times lower thermal
conductivity than vermiculite. (Fiberglass is much less rigid, though,
so perhaps it should be installed below the roofing panels rather than
integrated into them.) Then maybe we could use a thinner
vermiculite layer, just to provide a little stiffness, or a layer of gypsum.
Or two layers of gypsum separated by a lower-density layer.

 You could use perlite, LECA, or pumice, instead of vermiculite;
all of these are stiffer than vermiculite but also denser and more
expensive. Fired-clay ceramic made porous by the burnout of organic
materials like sawdust or yerba mate is another possibility; though not
commercially available, it's easy to make, and even at 75% or 80%
burned-out filler, it’s still pretty solid.

 In a similar way, it ought to be possible to dilute the vermiculite
with another granulated material of about the same granulometry, but
much lower density and strength, without interrupting the
continuous network of vermiculite grains in the finished composite.
Let’s call this bulking additive “filler”. Crude reasoning suggests that
the dilution could be up to a factor of 3: in a close packing of spheres,
each sphere is in contact with 12 others, and to form a 3-dimensional
network rather than a 2-dimensional one, at least 4 of those spheres
need to be non-filler. See Glass foam (p. 595) for one filler
possibility; styrofoam and foamed starch are two others.

 If the vermiculite grains form a continuous network, these filler
grains could be removed once the material has solidified. Organics
could be simply burned out; foamed starch could be washed out with
water much more quickly than the water would affect dried
waterglass; anhydrous calcium chloride is a candidate filler that could
be washed out with water and would also instantly, irreversibly
harden any waterglass it came in contact with during the mixing
process, keeping the bulk of each calcium chloride grain from being
dissolved. Calcium chloride is fairly cheap (US$1.60/kg) and could
be reused.

 There are other candidate aqueous binder systems that could be
similarly activated by surface contact with grains of a water-soluble
“filler”, including aqueous solutions of soluble carbonates and
phosphates (I wrote about some of these in my Dercuano note on

https://www.vermiculite.org/wp-content/uploads/2014/09/Vermiculite-Data.pdf
https://articulo.mercadolibre.com.ar/MLA-624937603-plancha-de-telgopor-1m-x-1m-x-20mm-casa-scalise-_JM

powder-bed 3-D printing processes) and Sorel cement (where the
“filler” grains would be magnesium chloride). Reversing the roles,
aqueous calcium chloride itself is capable of forming a thin coating on
grains of aggregate such as vermiculite, and then being hardened by
surface contact with “filler” grains of anhydrous soluble carbonate or
phosphate, or possibly of solid potassium silicate.

 By carrying out such a “dilution” at multiple granulometry scales,
it might be possible to get much lower vermiculite densities. Suppose
2-mm expanded vermiculite grains mixed 1:1 with 2-mm filler grains
can successfully form a continuous vermiculite network, with a little
binder, which seems likely. Then if the resulting 50%-vermiculite
mixture is mixed 1:1 with 5-mm filler grains, the same process should
repeat at larger scales: the vermiculite-network regions should be
able to form a continuous-phase network around the 5-mm filler
grains, for a 25%-vermiculite solid. A third stage of dilution with
12-mm filler grains would repeat the process, leaving a
12½%-vermiculite solid network with “pores” at different scales of 12
mm, 5 mm, and 2 mm, filled with useless filler particles, effectively a
foamed foam.

 Such high-porosity solids might be useful for a variety of purposes
other than construction insulation.

 A thin layer of quartz sand under the aluminum foil, once bonded
with waterglass or something similar, would harden the
aluminum-foil surface greatly against abrasion and impact, as well as
providing a great deal more stiffness per dollar than metal
reinforcement could. Construction sand (relatively pure quartz) costs
US$0.03/kg and weighs about 2.4 g/cc. A 500-μm-thick layer would
thus cost about US$0.04/m² per side and weigh 1.2 kg/m² (2.4 kg/m²
on both sides). This would probably require the panel as a whole to
be very stiff, because this layer of effectively mortar would crack off
very easily if the surface flexed much. Gypsum is more expensive,
but lighter and more flexible, so it might be a better option. Gypsum
used as a binder for other lightweight, stiff aggregate such as
expanded perlite might be better still.

 Sandwich panel optimization (p. 754) has notes on how to get the
cheapest sandwich panels for a given stiffness.

Topics

• Pricing (p. 1147) (35 notes)
• Strength of materials (p. 1164) (13 notes)
• Clay (p. 1179) (10 notes)
• Composites (p. 1187) (9 notes)
• Ceramic (p. 1193) (8 notes)
• Vermiculite (p. 1238) (4 notes)
• Life support (p. 1251) (4 notes)
• Insulation (p. 1290) (3 notes)
• Alabaster (p. 1309) (3 notes)
• Sandwich panels
• Roofing

Aluminum fuel
Kragen Javier Sitaker, 02021-07-17 (updated 02021-12-30)
(2 minutes)

 Aluminum is a high-density fuel, 83.8 MJ/liter, though a little
lower specific energy than, say, diesel fuel --- only 31 MJ/kg instead
of 46 MJ/kg; but diesel is only 38.6 MJ/liter. That volumetric
density is comparable to graphite (72.9 MJ/liter) and, in that table,
exceeded only by beryllium (125.1 MJ/liter) and boron (137.8
MJ/liter). (I'm guessing anthracite is basically equivalent to graphite.)

 All three of these materials (aluminum, beryllium, and boron) burn
to solid oxides rather than producing gas emissions. In this context it's
interesting to note that aluminum can be burned in aluminum-air fuel
cells, typically at about 25% efficiency (comparable to that of heat
engines), and that scrap aluminum is readily available; retail scrap
buyers buy it at AR$100/kg from cartoneros, and at AR$172/US$,
that's US$0.58/kg or US$0.019/MJ. This price is comparable to other
fuels; crude oil is currently US$72/bbl, which works out to
US$0.012/MJ at 1700 kWh or 5.8 million BTU per barrel, and retail
refined fuel prices are often twice that. The US$0.04/kWh that is
typical on the wholesale electrical market works out to US$0.011/MJ,
though current solar energy costs one fourth of that, and retail prices
are commonly ten times that.

 Practical aluminum-air batteries can be made from very simple,
inexpensive materials like table salt or potassa, carbon black, nickel,
water, and paper, and they can tolerate the impurities that are
common in scrap aluminum. More philosophical aluminum-air
batteries are more efficient.

 So you could very reasonably buy scrap aluminum as a fuel for
when grid power is unavailable, such as for aviation or submarines.

Topics

• Materials (p. 1138) (59 notes)
• Energy (p. 1170) (12 notes)
• Aluminum (p. 1180) (10 notes)
• Independence (p. 1215) (6 notes)
• Batteries (p. 1302) (3 notes)

https://en.wikipedia.org/wiki/Energy_density
https://en.wikipedia.org/wiki/Barrel_of_oil_equivalent

Boosters for self-propagating
high-temperature synthesis (SHS)
Kragen Javier Sitaker, 02021-07-17 (updated 02021-12-30)
(4 minutes)

 If you wanted to carry out self-propagating high-temperature
synthesis, you could in many cases mix the synthesis feedstocks you
desire to heat up with a redox fuel mix that will produce the desired
heat, with a grain size chosen to produce the desired reaction rate.

 The conventional reducer for this sort of thing is aluminum, with
its oxide’s enthalpy of formation of -1675.7 kJ/mol (-559/mol O).
Magnesium at -601.6 (-601.6), beryllium at -599 (-599), and lithium
at -595.8 (-595.8) excel it. Other candidate reducers include
zirconium at -1080 (-540), silicon at -911 (-456), zinc at -350.5
(-350.5), and boron at -1254 (-418). All of these have extremely stable
and unreactive oxides, at least at room temperature.

 The conventional oxidizer is hematite at -824.2 kJ/mol (-274.7),
yielding 283.8 kJ per mole of O1 when oxidizing aluminum. This is
5.33 kJ per gram of hematite at 159.687 g/mol. At 5.25 g/cc, that’s
27.99 kJ/cc of hematite. But of course you also need 2 mol Al
(26.9815 g/mol, so 53.96 g) at 2.70 g/cc (20.0 cc) to react with each
mol (30.4 cc) of Fe2O3, so you actually only get 3.98 kJ/g of mix or
16.9 kJ/cc.

 Hematite is abundant and cheap, but it has several disadvantages.
Though in pure form it gets hot enough to boil the iron, you can’t
dilute this fuel mix very far with your actual desired reagents before
the reaction stops being self-propagating, maybe a factor of 2 or 3.
And the metallic iron produced is itself fairly reactive. Consider, by
contrast, black cupric oxide (tenorite) at -156 (-156), thus yielding 403
kJ/mol; at 79.545 g/mol, you get 5.1 kJ/g of oxidizer, and the copper
produced is considerably less reactive than iron (though easier to boil
if the fuel is dangerously concentrated). Other promising alternative
oxidizers include NiO at -240 (-240), chromium trioxide at -589.3
(-196.4), lead dioxide at -274.47 (-137.24), manganese dioxide at -520
(-260), and potassium permanganate at -813.4 (-203.4).

 Consider a stoichiometric mix of lead dioxide with magnesium.
We need 2 mol of magnesium (24.305 g/mol, so 48.610 g, occupying
27.895 cc at 1.737 g/cc) per mol (239.1988 g) of lead dioxide,
occupying at 25.5 cc at 9.38 g/cc, for a total of 287.808 g in 53.4 cc.
Burning it produces 2 * 601.6 - 274.47 = 928.73 kJ (464.37 kJ per mol
of O1), which is 17.4 kJ/cc or 3.23 kJ/g.

 This is sort of disappointing, although it is at least a little more heat
per volume. I feel like I must have miscalculated something; the
enthalpy yield per oxygen atom is double the conventional system, but
the yield per cc is only slightly higher, and per g it’s actually lower. I
guess the lead is just too heavy and bulky?

 How about lithium with manganese dioxide? You need 4 mol
lithium (6.94 g/mol, so 27.8 g, occupying 52.0 cc at 0.534 g/cc) per
mol of MnO2 (86.9368 g, occupying 17.30 cc at 5.026 g/cc), for a

total of 114.7 g in 69.3 cc. It burns to metallic manganese and 2 mol
of Li2O and 2 * 595.8 kJ - 520 kJ = 672 kJ, 9.69 kJ/cc or 5.86 kJ/g.
Super disappointing!

 Still, not so disappointing as to be useless for boosting SHS. Even
fairly small admixtures of these boosters may be adequate to permit
SHS of feedstocks that would be hopeless on their own.

Topics

• Materials (p. 1138) (59 notes)
• Self-propagating high-temperature synthesis (SHS) (p. 1241) (4
notes)
• Enthalpy (p. 1369) (2 notes)

Compressed appendable file
Kragen Javier Sitaker, 02021-07-19 (updated 02021-07-27)
(5 minutes)

 PDF is a mess because it tries to support incremental updates by
way of appending, random access, and compression, in a way that’s
deeply intermeshed with the application-layer data structures it uses
and unnecessarily inefficient as a result. Each indirect object has an
identifying number that can be used to make references to it. Indirect
objects include independently compressed streams for the contents of
each page, and you have an xrefs table at the end of the file that tells
you the byte offset at which to find each indirect object.

 In PDF 1.5, they added compressed object streams containing a
bunch of non-stream indirect objects that all get compressed together,
preceded by a variable-length free-form header that gives the byte
offset of each indirect object in the decompressed stream, but of
course the objects don’t have byte offsets in the top-level file that
could be listed in the traditional xrefs table; instead they added a new
xref stream format which has type-1 xrefs (the traditional kind) and
type-2 xrefs that give the object number of an object stream and an
index into it.

 Despite all this, you still can’t compress the contents of multiple
pages together, so even with all the bells and whistles, PDF files are
still significantly bigger than the corresponding gzipped PostScript
files.

 I think the right solution is a layer separation: generic data
compression should be provided by a layer underneath the application
data structures. For example, a filesystem supporting transparent
compression would allow PDF files to just forget about compression
entirely, just using text and byte offsets and relying on the filesystem
to map byte offsets to the proper place in the transparently
decompressed data; and the files would occupy less space than using
the current PDF Rube Goldberg scheme.

 Filesystem compression doesn’t help with network transmission,
though. For that you need a file format, implemented by a library.
But efficient traversal of graph structure as in PDF requires random
seeks, and traditional compression libraries like gzip don’t support
random seeks.

 This is pretty much the same problem the dictzip program from
Rik Faith’s dictd solves: it resynchronizes the gzip compression
algorithm every sub-64-K “chunk”, and provides a gzip-compatible
format that stores an “Extra Field” in the gzip header that tells how
many bytes each chunk compressed to, and how many bytes the
chunks were originally. The man page reports that with 64kB
chunks, the file is only 4% larger than with unchunked gzip.

 However, PDF files, like many other candidate uses for such a file
format (such as debug logs and database journals), need to be able to
append data to the end of the file. I think dictzip can’t provide this,
because it would have to expand its header field with data about the
newly added chunks, which I think would involve shifting the data in

the rest of the file a few bytes to the right to make room.

 PDF and PKZip both take the approach of appending a file
“directory” or “xrefs” trailer or footer that permits you to efficiently
find everything else in the file; in the case of a compressed bytestream
format, the only thing to find are the seekable compressed byte offsets
most closely corresponding to particular uncompressed byte offsets.
The .xz file format also does this, including an “Index” just before the
“stream footer” which gives the compressed and uncompressed size of
each of the data blocks in the stream. This allows you to parse an .xz
file backwards from the end to seek randomly in it.

 Moreover, an .xz file can consist of multiple concatenated streams:

$ (echo hi | xz -9c; echo bye | xz -9c) | xz -dc
hi
bye
$

 So in theory you could use .xz as a compression format that
supports appending and random reads. However, your reads (or
opens) are going to eventually take time proportional to the total
number of appends that have been done, rather than constant time, as
is desirable. And if an append operation is interrupted, for example by
a process being killed or a server going down, it’s likely that the file
will no longer end with a stream trailer, eliminating the ability to read
it safely from the end.

 If we add a single fixed-size field in the file header (like dictzip
does) that points at the latest trailer (unlike dictzip), we can
atomically update that field after appending a new commit to the file.
And all the stuff we append in a single commit can be compressed
together.

Topics

• The Portable Document Format (PDF) (p. 1227) (5 notes)
• File formats (p. 1233) (5 notes)
• Compression (p. 1263) (4 notes)

https://tukaani.org/xz/xz-file-format-1.0.4.txt

SHS of magnesium phosphate
Kragen Javier Sitaker, 02021-07-22 (updated 02021-07-27)
(3 minutes)

 According to doi:10.1021/acs.chemrev.5b00463, one of the
difficulties with magnesium cements using phosphoric acid is:
These reactions are highly, often violently, exothermic, which raises practical
challenges regarding the use of this process on a large scale.

 Specifically they’re talking about MgO + 2H₃PO₄ + H₂O →
Mg(H₂PO₄)₂·2H₂O, which is soluble, and MgO + H₃PO₄ + 2H₂O →
MgHPO₄·3H₂O, which is not.

 “Highly, often violently, exothermic” sounds great for
self-propagating high-temperature synthesis, and both MgO and
H₃PO₄ are solid at ordinary temperatures. But where do you get the
water?

 Aside from preparing the mix well below 0°, a possible alternative
is to use a hygroscopic magnesium salt rather than the oxide.
Magnesium chloride is annoyingly hygroscopic, as I’ve been
experiencing today (normally a hexahydrate), and Epsom salt
(normally a heptahydrate) actually has an undecahydrate, Fritzsche’s
salt, which melts at 2°. So even a little bit of the hygroscopic salt
might be adequate. Magnesium nitrate is so hygroscopic it can’t even
be dehydrated by heating. The bromide is outright deliquescent.

 Another possibility is the oxalate, which is normally a dihydrate
and decomposes to the oxide on heating.

 So, for example, maybe you could use 5MgO + 2(MgSO₄·7H₂O)
+ H₃PO₄.
 A different way to use this rapid cementation reaction might be to
spray aqueous phosphoric acid (or dissolved phosphates of ammonia)
onto a powder bed containing an MgO or Mg(OH)₂ binder, and a
filler such as quartz, in order to 3-D print. The paper also mentions
rapid-setting magnesium phosphate cements:
Although earlier patents and articles used liquid polyphosphates or diammonium
phosphate, by the late 1980s, MgO and powdered monoammonium phosphate
were the preferred materials, shipped as dry powders, principally forming a
crystalline struvite binding phase when mixed with water, according to eq 12.134 ...
Addition of water to a blend of monoammonium phosphate and MgO results in a
mass that sets too rapidly to be of use, and thus, early MAP patch repair cements
used a separately packaged ammonium polyphosphate solution that reacted more
slowly with the MgO.

 However, these form the wimpy struvite rather than phosphates of
just magnesium.

 It also mentions that sodium dihydrogenphosphate (monosodium
phosphate) is twice as soluble as the ammonium salt (MAP), which is
57% more soluble than the potassium salt.

 The magnesium salts that are easy to find here are the citrate, the
carbonate (gym chalk), the chloride, and the sulfate, which (being
fertilizer) is cheapest: US$1/kg, oddly cheaper than even dolomite.
The oxide is available but only in an expensive food-grade form. The
nitrate is also available as fertilizer, but costs much more than the

sulfate.

 See Synthesizing reactive magnesia? (p. 615) on getting different
oxides and hydroxides.

Topics

• Materials (p. 1138) (59 notes)
• Pricing (p. 1147) (35 notes)
• Phosphates (p. 1184) (9 notes)
• Magnesium (p. 1213) (6 notes)
• Cements (p. 1235) (5 notes)
• Self-propagating high-temperature synthesis (SHS) (p. 1241) (4
notes)

Back-drivable differential windlass
Kragen Javier Sitaker, 02021-07-23 (updated 02021-07-27)
(15 minutes)

 (This note has several calculations I’ve noted errors in that need
redoing.)

 It’s often stated that one of the advantages of the Chinese windlass
mechanism is that it’s self-locking, or not back-drivable. Another
advantage is that, being a differential mechanism, its mechanical
advantage can be arbitrarily large. A third advantage, rarely remarked
upon perhaps because of its obviousness, is that since most of the
mechanism is purely in tension, it can extend over a great distance
while containing very little mass; it is practical to construct a Chinese
windlass that applies substantial forces between points a hundred
meters distant, weighing only 200 grams, half of which is 1-mm
UHMWPE cord. A fourth is that most of the contact in the
mechanism is not sliding contact and thus does not cause abrasive
wear or frictional losses; only the bearing of the windlass drum has
sliding contact, and possibly the bearing of the pulley.

 In a sense the third advantage above is the opposite extreme from
Reuleaux’s definition of a machine as something that imposes motion
in desired degrees of freedom but prevents it in all others — that is, has
effectively infinite rigidity in all other degrees of freedom. The
differential pulley in the windlass mechanism is imposes motion in
one desired degree of freedom, employing motion in a second degree
of freedom (usually attached to a bearing so this can be ignored); it is
somewhat restrained in a third degree of freedom, though not very
rigidly; and has effectively infinite compliance in the remaining four
degrees of freedom. In a well, that is, the bucket can swing back and
forth and twist around while receiving only very small restoring
elastic forces from the rope’s minuscule rigidity.

 One disadvantage of the mechanism is that the differential
mechanical advantage can be somewhat imprecise; as layers of rope
build up on the drums, they change the drums’ effective radius and
potentially their difference in radius. Grooved drums can prevent this
from happening, but only if the drums are long enough.

 The M.A. of the mechanism is the ratio between the crank arm
and the difference in drum radii. This implies that the absolute drum
radii can be as large or small as desired without changing the M.A.
However, if the difference in radii is, say, 1mm, you only get 6.28mm
of elongation per revolution, regardless of whether that revolution is
running 100 mm of cord through the differential pulley or 100 m of it.
So, this allows you to increase the rigidity of the drum, which might
allow you to increase its length, thus permitting more unlayered cord,
but not to use less layers of cord in the same length.

 The wrapping of the cable on the drum can be protected from
side-loadings by running the cable through a grommet in between the
drum and the differential pulley. That way the angle at which the
cable rolls onto the drum only depends on where the cable is on the
drum and the tension on the cable, not on any other side-loadings. If

the grommet is sort of hyperboloid-of-one-sheet-shaped, it will avoid
kinking the cable there and avoid any concentrations of force at one
point on the grommet, and if it is made of a hard material such as
sintered sapphire, like sparkplugs, it will not suffer much from
abrasion.

 The self-locking nature of the mechanism is an advantage for some
uses, but being able to use an arbitrarily large mechanical advantage in
reverse would be useful in some situations. The reason it is usually
self-locking is that the frictional torque is the side loading on the
bearing, multiplied by the bearing’s radius, multiplied by the bearing’s
coefficient of friction μ; and the frictional force resisting the
differential pulley is that torque divided by the effective moment
arm, which is the difference in radii. Typical coefficients of friction
for dry journals are 0.2–1.6; for example, bronze on cast iron is 0.22,
wood on dry wood is typically 0.25–0.5, steel on steel is 0.5–0.8, and
copper on copper is 1.6. Usually the side loading on the bearing is the
force on the differential pulley. So, if μ = 0.22, then 100 N of pull on
the differential pulley will generate 22 N of friction at the bearing.

 Suppose, for example, that the journal is 20 mm radius (40 mm
diameter), and the radius difference is 10 mm (say, the drums are of
radii 50 mm and 60 mm). So the torque on the shaft from the
differential pulley is 100 N · 60 mm - 100 N · 50 mm = 100 N · (60
mm - 50 mm) = 100 N · 10 mm = 1 N m. And the torque from the
friction is 22 N · 20 mm = 0.44 N m. So in this case the mechanism
will not be self-locking. (It will be somewhat efficient: 1.44 N m
from the crank will be converted to 1 N m at the drum and thus 100
N, for 69% efficiency.)

 If we increase μ past 0.5, though, (the reciprocal of the M.A.), the
frictional torque rises past 1 N m, the mechanism becomes
self-locking, and its efficiency falls below 50% (assuming static and
dynamic friction are equal), because the frictional force has exceeded
the force from the slow/strong end of the mechanism, the differential
pulley. The same thing happens if we leave μ at 0.22 and increase the
M.A. past 4.55, for example by increasing the journal radius from
20 mm to 46 mm or by decreasing the difference in radii from 10 mm
to 4.3 mm.

 This is a case of a general phenomenon where mechanisms with
efficiency above 50% are backdrivable, and those with lower
efficiencies are instead self-locking, under certain simplifying
assumptions.

 But a M.A. of up to 5 is a far cry from an arbitarily large (inverse)
M.A. What can we do if we want to use this mechanism to make
things go fast instead of slow? Like, what if we want to pull a string
to spin something at 15000 rpm by hand to generate electricity?
Maybe something only 120mm in diameter, so it can be comfortably
handheld?

 First, consider the parameters of the problem: a person can pull
about 200 N at about 3 m/s for about 1 m. (Think of someone trying
to start a lawnmower or chainsaw with a pullcord.) The edge of the
disc, which will be generating the alternating magnetic field that
generates electricity, will be moving at about 94 m/s. So we need a
M.A. of more than 62, probably at least 200 to be safe. We’re

https://www.engineeringtoolbox.com/friction-coefficients-d_778.html

missing a factor of 40.

 With modern UHMWPE fiber and its 3-GPa tensile strength, 200
N requires a 290-μm-diameter cord; better say 500 μm to be safe,
which should be good to 580 N. This means that a single layer of
wrapping on a 20-mm-long barrel holds 40 revolutions, and each
layer adds 500 μm to the radius. An 8-mm-diameter barrel with its
25-mm circumference would hold about 1 m of cord per wrapping
layer.

 We can make some progress on the problem by using better
bearing materials. Steel on polyethylene has μ ≈ 0.2, on graphite, μ ≈
0.1; on teflon, 0.05–0.2; and on tungsten carbide, 0.4–0.6. Tungsten
carbide on tungsten carbide is listed as 0.2–0.25. Materials with lower
μ might be worse if they require a larger journal radius to compensate
for lower compressive strength; WC’s 3+ GPa compressive strength
would theoretically allow it to bear 200 N on a 250-μm-long
250-μm-diameter shaft, if it doesn’t bend too much, for example.

 XXX I’ve confused circumferences and radii so there’s a missing
factor of τ from some of the below

 Or a 500-μm-long 125-μm-diameter WC shaft, maybe somewhat
tapered to reduce the risk of breakage. That would give you a 62-μm
bearing radius, so each 100 N of side load produces, say, 25 N of
friction, but only 1.55 millinewtonmeter of friction torque. So if your
difference in radii is, say, 30 μm, say because one drum is 8.00 mm in
diameter and the other is 8.06, the 100 N will produce 3
millinewtonmeters of torque, which is twice as much as the friction,
so it will be able to backdrive the mechanism. The M.A. to the
magnet disc, then, will be 60 mm / 30 μm, or 2000. Our 3 m/s
human pullcord would be able to spin the rim of the magnet disc at
6000 m/s, or Mach 18, spinning at 955000 rpm. Also, the ⅓ of the
200 J lost to friction, or 60 J, would be deposited in the tungsten
carbide bearings, which are some 0.1 mm³ or about 1.6 mg of WC;
with its room-temperature specific heat of 200–480 J/kg/K its
temperature would rise to between 78000° and 188000°.

 Although the bearings could withstand the mechanical pressure at
room temperature, they would vaporize and the disc would explode.
Also, any practical mass of disk would make the pullcord too hard to
pull. And extending the pulley pull handle by 1 m at 30 μm of
difference per revolution and 25 mm of cord per revolution would
require 33000 revolutions, unwinding some 800 m of cord from one
drum and winding it up on the other. Clearly this is taking things too
far!

 Let’s try backing off to our planned M.A. of 200: a difference of
radii of 300 μm. And let’s consider ordinary cast iron on bronze: μ =
0.22. Cast iron can withstand 500+ MPa of compression, but UNS
C93200 (SAE 660) bearing bronze only some 300 MPa, with a fatigue
strength of only 110 MPa. Also, consider that there are two bearings,
one at each end, so each can bear half the 200 N load. 100 N ÷ 110
MPa gives 950 μm diameter × 950 μm length, say, or 450 μm
diameter × 2 mm length, giving 225 μm radius (probably, again, an
average over a slight taper). 200 N · 0.22 · 225 μm = 9.9
millinewtonmeters of friction, and 200 N · 300 μm = 60

millinewtonmeters of applied differential torque. The leftover 50
mN m manifests as an 0.8 N resistance at the 60-mm-radius generator
ring, which should be quite straightforward to produce by, for
example, generating electricity through pancake coils.

 This is an improvement, but we still face the dismaying prospect of
3000 revolutions of the main spindle unrolling 75 m of UHMWPE
thread from one drum and rolling it onto the other. That’s a lot of
revolutions! And the 17% power loss in the main journal bearings is
worrisome not only because it’s wasteful but also because of the heat
problem.

 By adding an additional idler pulley behind one of the differential
drums, so that the side loadings from the two strings are in opposite
directions, you can reduce the side loadings on the drums’ bearings.
The idler adds some friction, requiring a journal similar in stoutness to
that of the main wheel, but it can be quite narrow (<1 mm) and large
in diameter (40 mm, say). So the string running around the idler has a
lever arm of 20 mm with which to counteract the 0.225-mm lever
arm of the journal’s friction, an M.A. of 89, which when divided by μ
= 0.22 gives us a factor of some 400. So the idler will consume about
¼% of the energy; and it ought to be able to reduce the friction in the
bearings of the main differential wheel considerably, perhaps by a
factor of 2, which matters a great deal more, because their friction has
a great deal more M.A.

 Instead of just having one idler pulley, one differential pulley on
the pull handle, and one spindle, we can improve the situation
further: by adding three more idlers in the body and three more in
the pull handle, with an additional 1.5% efficiency loss, we can run the
cable back and forth between the main body and the pull handle eight
times instead of twice. This enables us to use a much smaller M.A. in
the differential windlass mechanism itself — 50 instead of 200, realized
by paying out 1.2 mm of differential cable per revolution of the drums
rather than 0.3 mm. By pulling the two parts of the mechanism apart
by 1 m, 8 m of cable is demanded of the differential windlass itself,
which is still (!?) 6700 revolutions. But now each cable only bears 25
N (XXX, I was overspeccing it above by a factor of 2) and so can be
hair-thin: 150 μm diameter at 3 GPa should withstand 50 N. And the
side-loading imposed by these threads on the spindle, and the
frictional losses in the journals, are correspondingly lower.

 It’s important to design the handle so the pulleys can pivot to
equalize tension among these threads; otherwise you will accidentally
put all the tension on one thread while yanking the handle and break
it.

 Suppose our windlass barrels are 30 mm long and 7 mm in
diameter. Each layer of this thread on the barrel is 200 revolutions, 22
mm in circumference, and thus holds 4.4 meters of thread. If this
circumference remained unchanged, there would be 33 layers, totaling
4.95 mm in thickness, on a fully charged barrel. This is clearly a
practical volume of thread.

 I’m still concerned, though, about the thread thickness changing
the barrel radius and thus the M.A. 1.2 mm of circumference
difference is only 190 μm of radius difference: barely more than a
single layer of thread.

 It’s worth mentioning that in such a mechanism the electronics
could be entirely sealed away from the rotor and pulleys,
communicating exclusively through magnetic fields.

Topics

• Materials (p. 1138) (59 notes)
• Physics (p. 1157) (18 notes)
• Mechanical (p. 1159) (17 notes)
• Strength of materials (p. 1164) (13 notes)
• Tungsten carbide
• UHMWPE
• Friction

Synthesizing reactive magnesia?
Kragen Javier Sitaker, 02021-07-25 (updated 02021-08-15)
(4 minutes)

 (See also Synthesizing amorphous magnesium silicate (p. 617).)

 Suppose you want reactive magnesia in order to make, for example,
Sorel cement for X-ray 3-D printing (see Can you 3-D print Sorel
cement by inhibiting setting with X-rays? (p. 592)), or exothermic
refractory magnesium phosphate cement (see SHS of magnesium
phosphate (p. 608)) , but it isn’t sold locally, but other soluble
magnesium salts are available. What can you do?

 Well, calcining the carbonate or the hydroxide produces magnesia
at only 350°, and according to WP:
Magnesium carbonate can be prepared in laboratory by reaction between any
soluble magnesium salt and sodium bicarbonate... If magnesium chloride (or
sulfate) is treated with aqueous sodium carbonate, a precipitate of basic magnesium
carbonate—a hydrated complex of magnesium carbonate and magnesium
hydroxide—rather than magnesium carbonate itself is formed

 So magnesium oxide can be made with a soluble carbonate or
bicarbonate (such as baking soda) plus the citrate, the chloride, or the
sulfate of magnesium, thus forming the carbonate of magnesium
(possibly, or possibly the bicarbonate), and just a bit of heat. Though
WP also says that if you don’t heat it to at least 700° it’s so reactive
that it will recarbonate from the air.

 An alternative alkali-free approach is taken in Kiwami Japan’s
“sharpest Seawater kitchen knife in the world”. They begin by
boiling down the filtered seawater twice to crystallize some salts
(presumably sodium chloride?) which are filtered out, leaving a
solution of mostly magnesium chloride (solubility 72.6 g/100mℓ at
100°, twice NaCl’s 36 g/100mℓ).

 Then they calcine seashells in a microwave-oven kiln made of
insulating firebrick, using charcoal as the susceptor rather than (or
perhaps in addition to) the more conventional silicon carbide, for 15'
at 1000 W, reaching a bright yellow heat, twice. This yields pure
white quicklime seashells, which are ground to a granulometry
around 100 μm using a mortar and pestle and a meat grinder. This
heats from 25° to 65° upon hydration with water from a cow-shaped
pitcher. A little limewater (1.5 g/ℓ slaked lime) is decanted and
filtered off.

 Adding some limewater to concentrated seawater (containing a
significant amount of magnesium chloride) precipitates some
magnesium hydroxide (solubility 0.00064 g/100mℓ) over the next 30',
which is filtered off, along with some sodium chloride. This is
washed with water from another cow-shaped pitcher to remove the
salt, dried, and ground to get dry magnesium hydroxide, which is
then moistened with magnesium chloride solution to produce a weak
Sorel cement (11 Shore D). Calcining the hydroxide in the
microwave-oven kiln (with charcoal as susceptor, 15', 1000W, heating
to a yellow heat measured as 970° with a pyrometer) yields the oxide.
Moistening the oxide with the chloride solution yields a much harder

https://en.wikipedia.org/wiki/Magnesium_carbonate#Preparation
https://en.wikipedia.org/wiki/Magnesium_oxide
https://en.wikipedia.org/wiki/Magnesium_oxide
https://www.youtube.com/watch?v=pFG-nXUw6Ts
https://www.youtube.com/watch?v=pFG-nXUw6Ts

Sorel cement (102-109 Shore D, but I think that may be as high as his
meter goes).

 An open rectangular mold was filled with this cement and vibrated
with a Handy Massager to remove bubbles; when set, the demolded
rectangle was cut with an abrasive wire saw into the rough shape of a
kitchen knife. While wearing rubber gloves equipped with reptilian
claws, a gavel was used to drive a scrap of Sorel cement through the
top of an Altoids tin, damaging the face of the gavel. The knife blank
was then ground with a series of files and abrasives to form the knife
edge, which then successfully cut a cucumber extruded from the
reptilian glove.

 David Reid’s experiments with “Microwave melting of metals”
found that magnetite works well as a susceptor for microwave-oven
kilns, more efficiently than graphite, up to 900° (though its Curie
point is only 580°, and you would expect it to become transparent to
microwaves above that temperature). He reports that the magnetite
tends to flux the sand and melt it, though. His use of uninsulated
crucibles explains the need for more-efficient susceptors; Kiwami
Japan’s use of a few centimeters of insulating refractory ceramic
avoids this problem. Previously Reid had used ceramic-fiber furnaces.

 Some other recent work has used graphene paint as a susceptor.

Topics

• Materials (p. 1138) (59 notes)
• Magnesium (p. 1213) (6 notes)
• Microwave heating

https://www.talisman.org/~erlkonig/misc/microwave-metal-casting.html
https://en.wikipedia.org/wiki/Magnetite
https://en.wikipedia.org/wiki/Magnetite
https://web.archive.org/web/20120419035439/home.c2i.net/metaphor/rt.html

Synthesizing amorphous
magnesium silicate
Kragen Javier Sitaker, 02021-07-25 (updated 02021-08-15)
(6 minutes)

 See also Firing talc (p. 576) for notes on magnesium-silicate
ceramics processing, Glass foam (p. 595) for notes on using
magnesium chloride to raise the softening point of waterglass foam,
and Synthesizing reactive magnesia? (p. 615) on the oxide.

 In a crude kitchen experiment, I mixed 136 g of a waterglass
solution (35%?) with 136 g of tap water in a cut-off Monster can, then
took 72 g of kinda gummy magnesium chloride from the sack where
it had been deliquescing and melted it on the stove. (If this were the
hexahydrate that would be 34 g of anhydrous.) It stubbornly refused
to dissolve completely, so I added 48 g of tap water, which did the
trick. Upon dumping this into the diluted waterglass, it immediately
(<500 ms) formed a solid white slushy material that I couldn’t really
stir with the chopstick, with only a little bit of milky liquid to be
squeezed out of it. I was able to pour off 62.7 g of this syrupy liquid
with a few chunks, so there’s about 330 g of solid “gel” in the can, of
which only about 14% is waterglass and 22% is the hydrated
magnesium chloride, so probably something like 10% is actual
anhydrous magnesium chloride. So it’s 76% water, 24% solid matrix.
It feels gritty, but it’s easily crumbled by hand. The stuff at the base
of the can, where probably less magnesium penetrated, was even
grittier.

 Rather than any sort of glassy material, this seems more like a
crystalline precipitate that’s got a lot of water locked up inside its
crystalline structure (a fairly well-defined amount, not the kind of
loosey-goosey anything-goes relationship you see with a gel) and
some more water in the interstices between the numerous sand-sized
crystals. The obvious candidate would be talc, but although the
crystals are soft, they don’t feel as soft as talc. More gritty, like baking
soda. I can’t identify the crystal habit, and I wonder if maybe the
hard substance formed along a mixing boundary between the two
solutions rather than in any sort of crystalline way. It doesn’t get less
gritty when I rub it around on my hand for a while, and it doesn’t
dissolve in (96%) ethanol. Heating it at 500° for half an hour leaves it
whiter, and it’s still super crumbly, but tells me nothing else useful.

 Apparently this is the recipe for synthetic magnesium silicate,
which forms porous, amorphous masses.

 Roughly guessing at the stoichiometry, 136 g of 35% waterglass
would be 47 g of waterglass. If it’s 3:1 SiO₂:Na₂O by weight then
that’s 35 g of silica, which is 60.08 g/mol, so 0.58 mol of silica (and of
silicon). Anhydrous MgCl₂ is 95.211 g/mol so 34 g of it would be 0.36
mol of MgCl₂ (and of magnesium). So that’s about 1.6 silicons per
magnesium (Mg/Si molar ratio 0.62). Forsterite has 2 magnesiums
per silicon (0.5 silicons per magnesium), serpentines have 1.5
magnesiums (or irons) per silicon, enstatite (the eutectic) has 1 silicon
per magnesium, and talc has 1⅓ silicons per magnesium. So on

https://en.wikipedia.org/wiki/Synthetic_magnesium_silicate

average this material is a little closer to silica gel than talc is. Synthetic
magnesium silicate for food has 2.5 silicons per magnesium.

 It gets a little crunchier when I wash it, maybe because a little
residual sodium silicate was lubricating it.

 Apparently at low enough Mg/Si ratios you get crystalline talc but
only above 200°. The paper suggests that maybe I have some silica
mixed in with my magnesium silicate because I didn’t add enough
magnesium.

 I stuck a chunk of the stuff in a bowl with a little sunflower oil in
it, and it provided a pretty usable oil-lamp wick, so I guess it must be
pretty porous. A deposit of porous black carbon built up on the top
surface, and the flame is pretty smoky once it gets going, a process
that often involves a certain amount of spluttering. There’s a bit of an
acid smell to it, like a lit match or the exhaust from high-sulfur diesel.
I tried sand and vermiculite as alternative wick materials, which
worked much more poorly. The amount of smoke is high enough to
discourage me from using it in practice, but cutting it to a better
shape might solve that problem, and of course blowing the flame into
a combustion chamber with extra air would solve it.

 The microporous nature of the material suggests that it might be
useful for filtering; a major commercial use of the stuff is adsorbing
polar radicals from used frying oil.

 One paper describing the synthesis of a magnesium silicate with a
particular molar ratio added the silicate and the magnesium salt
dropwise to a continuously stirred solution of ethanol thickened with
PEG. I guess the idea was to keep the concentration of unreacted
feedstocks low enough that they would produce a mineral of a
consistent composition.

Topics

• Experiment report (p. 1162) (14 notes)
• Minerals (p. 1210) (6 notes)
• Magnesium (p. 1213) (6 notes)

https://www.dora.lib4ri.ch/empa/islandora/object/empa:7119/datastream/PDF2/download/Nied-2016-Properties_of_magnesium_silicate_hydrates_(M-S-H)-(accepted_version).pdf

Ropes with constant-time
concatenation and equality
comparisons with monoidal hash
consing
Kragen Javier Sitaker, 02021-07-27 (15 minutes)

 Avery Pennarun’s bupsplit and Silentbicycle’s Jumprope, used in
his Tangram filesystem, are something like a hash-consed
general-purpose rope structure.

 It occurred to me that by extending this approach, you can build a
string type that supports in-practice-constant-time concatenation and
comparison operations, at least in the absence of adversarial input.
Traversal is linear time; extracting substrings by numeric byte
position is logarithmic.

Hash consing

 Hash consing is an interesting technique: it allows you to reduce all
equality comparisons to pointer comparisons, extending the magic of
garbage collection, which lets you reduce all copying of (immutable)
values to copying of pointers, to equality comparison. This is clearly
very desirable for hashing and associative storage: you can hash the
pointer, for example by interpreting it as an integer, rather than the
data structure, thus obtaining constant-time indexing of properties by
arbitrarily complex data structures.

 Recent advances in hashing, such as cuckoo hashing and Robin
Hood hashing, reduce some of the historical downsides of hashing.

 Hash consing is not called that because it’s useful for hashing,
though, but because you have to hash the values you’re consing in
order to find out whether the cons already exists. If it does, you just
return it, rather than allocating a duplicate.

Ropes

 Ropes represent strings as, basically, the fringe of an arbitrary cons
tree structure, typically with the size of each subtree cached at each
node. This permits linear-time traversal, logarithmic-time indexing
by byte offsets, and constant-time concatenation. However, if we
want to use hash consing for ropes, we have a problem; string
concatenation is supposed to be associative: "a" || ("b" || "c") ==
("a" || "b") || "c". If we just use regular hash consing with ropes,
we may end up with lots of duplicate ropes that represent the same
string.

 Lua hashes a new string in constant time: at least in Lua 5.2,
luaS_hash examines at most 32 bytes of the string in order to compute
its hash value. But it can’t construct the new string in constant time, or
usually constant time, because it has to copy all of its bytes. Similarly,
it can’t test strings for equality in constant time, or even usually
constant time—even if their hash values are equal, it has to iterate

https://github.com/silentbicycle/tangram/
https://www.sebastiansylvan.com/post/robin-hood-hashing-should-be-your-default-hash-table-implementation/
https://www.sebastiansylvan.com/post/robin-hood-hashing-should-be-your-default-hash-table-implementation/

over all their bytes.

 The Jumprope approach is to use a rolling hash to split the string
into chunks in a consistent way, so that strings that contain common
substrings will usually split into the same chunks. But Jumprope does
not aspire to support string concatenation or, I think, constant-time
string comparison.

Monoidal hash functions

 Here’s one way you could get usually constant-time string
concatenation and always-constant-time string equality tests. You
compute the hash used for cons hashing in such a way that equivalent
ropes will always have the same hash value, even if their internal
structure is different. This is done by choosing the hash to be a
monoid under a constant-time operation applied at concatenation
time.

 A particularly appealing kind of monoid for this purpose is
functional composition of linear forms mx + b; the hash of the
concatenation of string s₀ with hash m₀x + b₀ and string s₁ with hash m
₁x + b₁ is then m₁(m₀x + b₀) + b₁ = (m₁m₀)x + (m₁b₀ + b₁). So to
compute the hash of the concatenation of the tuples (m₀, b₀) and (m₁, b
₁), we just compute (m₁m₀, m₁b₀ + b₁). Since the empty string is the
identity element of the string-concatenation monoid (which is the
free monoid on the characters) the hash of the empty string must be
(1, 0), while the hashes of the characters can be chosen to be anything
convenient, such as (3, c).

 It isn’t necessary for the multiplication and addition operations here
to be integer multiplication and addition, and in fact it’s undesirable,
because integers can be arbitrarily large, and we want our hash values
to be of constant size, and the computation of their composition to be
constant-time. We only need the addition and multiplication
operators to be associative, the multiplication to left-distribute over
the addition, and for them both to have identity elements (written 1
and 0 above); that is, they each need to be a monoid, with one
left-distributing over the other. The usual approach in such cases is to
use “machine integers”, say multiplication and addition mod 2⁶⁴, and
that would work fine here. Reducing modulo a large prime, such as
2⁶⁴ - 59, might be advantageous, in order to keep bits well mixed.
Vectors or matrices would work too.

 But any semiring with identity (and in particular any ring and any
field) would work; we don’t even need the addition operation to be
commutative, as semirings guarantee. Rings in general will tend to
work better, because the addition operation of a ring is
information-preserving, so you can’t end up in a trap where all strings
with a given prefix have the same hash. (Idempotent semirings and
especially tropical semirings would probably be bad choices.)
Multiplication in a ring isn’t information-preserving, so with the
above it’s possible to get into a trap where all the strings with a given
suffix have the same hash, or where a lot of information is lost, but
this should generally be easy to avoid; when the multiplicative
inverse exists for nonzero elements, for example, you just need to
prevent the hash of any primitive rope from containing a 0 multiplier.

 It might be desirable to prevent an adversary from choosing strings
to produce a high collision rate, and the linearity of this simple family
of monoids might pose a problem for that.

 In some sense you could use a much more general function, such as
secure hash functions using the Merkle-Damgård construction, but
it’s really desirable to use sets that have some kind of constant-size
representation that can be efficiently composed. The whole idea of
the Merkle-Damgård construction is to limit that kind of thing.
Infogulch suggests that random invertible matrices over finite fields (
Julia notebook) might provide an answer, but others suggest that it
would probably be easy to break:
Consider an ordered sequence of elements aₙ, a function h that derives an invertible
matrix over finite field ��₂₅₆ from a single element’s cryptographic hash, and a
function �� that finds the product of all such matrices from a sequence:
 ��(a)=∏ⁿᵢ₌₁h(aᵢ)
 Define ��(a) to be the hash of the sequence aₙ.

Rope append algorithm

 So, to concatenate two ropes in this scheme, you first compute the
hash of the concatenation, then check to see if a rope with that hash
already exists. If so, you must check to see if it is actually equal; in
most cases, this will be rapid, because you won’t have to descend very
far down the respective trees to decompose them into nodes of the
same size, which can simply be compared by pointer. If it is actually
equal, you can simply return the existing rope; otherwise, you must
allocate the new concatenation.

 An alternative approach to checking for equality in such a
candidate-equality case is to slice the candidate new rope into new
candidate ropes. If the existing rope is (A || B) and the new
candidate rope is (C || D), then either #A == #C, #A < #C, or
#A > #C. If #A == #C it is sufficient to compare the identities of
A and C, and B and D. If #A < #C, then we can continue by
constructing C[:#A] and comparing its identity to A’s; if they are
equal, then we construct C[#A:] || D and compare it in the same
way to D. Analogously, when #A > #C, we can check whether C
|| D[:#A-#C] would be equal to A, and if so, check whether
D[#A-#C:] would be equal to B.

 This would seem to pose a troubling problem of infinite regress: to
construct a new rope, we must apparently construct three more new
ropes, and, worse, these extra new ropes might sit around in the hash
cache and waste space until they get garbage collected. I think that’s
one way to solve the problem, but maybe a better way is to
“proto-construct” these ropes but not stick them into the table; I
think this reduces to the approach of traversing both trees in parallel.

 In the usual case, if we approximate the hashes as random, the
probability of a hash collision is on the order of 2⁻¹⁰⁰ or lower, so,
with a reasonably good hash function, such double-checking deep
comparisons will almost always return true; new strings will almost
always have new hashes. Even if the root has an equal hash, its
children almost certainly won’t (except in the case of an intentional
attack). So maybe it isn’t worth worrying too much about how many
ropes get allocated in those cases, except to bound the cost to
logarithmic.

https://math.stackexchange.com/questions/4200988/using-random-invertible-matrices-over-finite-fields-to-define-the-hash-of-a-list
https://math.stackexchange.com/questions/4200988/using-random-invertible-matrices-over-finite-fields-to-define-the-hash-of-a-list
https://archive.fo/lpgal
https://archive.fo/lpgal

 Here, I’m supposing that each concatenation node includes a left
pointer, a right pointer, two 64-bit words of hash, and a length field,
so about 5 words, 40 bytes. On a 32-bit machine maybe it would be
20 bytes. You might need another word if you can’t steal a bit for a
type field somewhere, either in the node pointer or from one of the
words.

Input splitting and leafnode coalescing

 When importing bytestrings into the hash-consed-rope system, you
can’t get any storage sharing if you just import them as single
leafnodes. You could imagine, for example, importing two versions
of this Markdown file into the system as two strings, one before and
one after inserting a blank line at the beginning. Ideally you would
like these two versions to share most of their storage.

 Now, if you construct the second version within the system, by
appending the old version to a newline character, then you get storage
sharing automatically, like the Ent of Xanadu. But what if you don’t?
What if someone sends you the second version over a network?

 Jumprope and bupsplit have an answer here: run a rolling hash
over the file (a hash like the CRC, that’s not just monoidal but has an
inverse), and use some criterion on the rolling hash to pick out a
hierarchy of special cut points determined by their surroundings.

 If you have working hash consing of ropes, though, I don’t think
that’s necessary; you just need some way of splitting big input blobs
into leafnode chunks of about 64–512 bytes that tends to reproduce
the same cut points when it encounters the same data in different
contexts. After that, the size of the rope tree internal nodes is going
to be relatively small, maybe 20% of the size of the leaf nodes, and if
you build it in a relatively random and balanced way, you’ll probably
be able to share a fair bit of that, too.

 One simple approach is to start with a counter at 576 and
decrement it every byte, then split and reset the counter when
encountering a byte whose value is more than half of the counter
value. So the byte ‘a’, whose value is 97, will start a new block if the
counter is less than 194, setting the counter back to 576. This clearly
guarantees chunks of 64–576 bytes, and it will clearly stay
resynchronized if it ever manages to split in the same place (which is
likely), but the average block size will depend on the data — if it’s all
zero bytes, it’ll be 576 bytes per block, and if it’s all 0xff bytes, it’ll be
64. In Python:

def split(infile, maxsize=576):
 i = maxsize
 buf = []
 while True:
 c = infile.read(1)
 if not c:
 yield ''.join(buf)
 break

 i -= 1
 if ord(c) * 2 > i:
 i = maxsize

 yield ''.join(buf)
 buf = []

 buf.append(c)

 You could take some steps to whiten the distribution a bit; for
example, you could use the sum of all the bytes in the block so far
mod 256, which will still have a much higher probability of creating a
break at a ‘y’ than at a ‘!’, or you could use the sums or bitwise ANDs
of pairs of adjacent bytes. All such measures are necessarily trading off
consistency of split location against consistency of split frequency.

 On similar economic considerations, when you’re concatenating
small ropes, say less than 64 bytes, it’s probably worth it to just copy
the bytes into a new leafnode. This means that if you’re typing into a
hash-consing-rope editor, you’ll be allocating a new leafnode of 16-72
bytes on every keystroke (averaging 44 bytes), which is clearly 44
times slower than it needs to be, but still better than allocating a
16-byte leafnode and a 40-byte concatenation node. (Of course you
also need to allocate another couple of concatenation nodes that join
the new character to the previous and following parts of the editor
buffer, but that’s true whether the keystroke is in a leafnode of its
own or not.)

 Along the same lines, it’s probably good to coalesce concatenation
nodes into a B-tree to some degree; a 4-child concatenation node
would have a length, two words of hash, and 4 child pointers, 7
words. If you built it out of binary concatenation nodes, you’d need
three 5-word concatenation nodes, 15 words, more than twice as
much space.

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Algorithms (p. 1163) (14 notes)
• Real time (p. 1195) (7 notes)
• Hashing (p. 1293) (3 notes)
• Ropes (p. 1333) (2 notes)

Compilation of block arguments
to high-performance code
Kragen Javier Sitaker, 02021-07-29 (updated 02021-12-30)
(19 minutes)

 What would a calling convention optimized for block arguments
look like?

Block arguments

 Smalltalk and PostScript use block arguments for all their control
structures, though Smalltalk cheats a bit on this. This makes
user-defined control structures first-class. Ruby method calls can
include a “block argument” after the other arguments, to which you
can “yield” once or many times within the method, for example to
automatically clean up after running some code, or to provide
iteration over a data structure, echoing CLU’s iterator construct:

irb(main):012:1* def xs(y)
irb(main):013:1* yield y + 1
irb(main):014:1* yield y + 2
irb(main):015:0> end
=> :xs
irb(main):016:0> xs(3) { |z| puts(z) }
4
5
=> nil

 This sort of makes the caller and callee into coroutines rather than
subroutines. Python’s generator construct, adapted from a more
general construct in Icon and now adopted by JS as well, provides a
similar iteration facility.

 Tcl procedures can evaluate an argument in the context of the
caller, which is how Tcl control structures work, making user-defined
control structures first class in Tcl as well.

 ALGOL-60 provided call-by-name parameters allowing the callee
to assign to an arbitrary expression in the caller; this, it turned out,
required thunks to implement correctly and with reasonable
efficiency.

 Pascal permits passing nested subroutines as parameters, and these
nested subroutines had access to the variables of the subroutine they
were nested within. Though more awkward, this has the same sort of
power as block arguments in Smalltalk, PostScript, Ruby, and Tcl.
To preserve stack discipline in memory management, subroutines
cannot be returned or stored in variables or fields, only passed. Such
“downward funargs”, rather than unrestricted closures, were also the
only kind of closures implemented in old dynamically-scoped Lisps;
dynamic scoping did not provide real closures. They provide much of
the power of real closures.

 Aside from the well-known use of this for iteration, my notes on

IMGUI languages suggests that there is great utility in block
arguments and at least pass-by-reference parameters, which cannot be
implemented in Lisp-family languages like Python, PostScript,
Smalltalk, and Ruby:

text_field("First name", &firstname, &firstname_len);
button("Submit") { send_form(); }

 And of course it’s common for control structures to want to assign
to local variables in the caller, which in Ruby and Smalltalk is usually
handled with block arguments:

mydict.each(&k, &v) { print "$k: $v"; }

 So, how efficiently can we implement this kind of thing?

Calling conventions

 The usual calling convention establishes where arguments are
passed and divides registers into “caller-saved” and callee-saved.
When a callee returns, it’s entitled to have clobbered all the
caller-saved registers it pleases, generally including all the arguments,
but must have restored the callee-saved registers (on amd64, that’s
%rbx, %rsp, %rbp, %r12, %r13, %r14, and %r15; on RISC-V,
according to both the user-level ISA manual and the ELF psABI,
that’s x2 (sp), x3 (gp), x4 (tp), x8 (s0/fp), x9 (s1), x18-x27 (s2-s11),
f8-f9 (fs0-fs1), and f18-f27 (fs2-11)) to their values on entry.

 On RISC-V, interestingly, tp and gp are supposed to be preserved
even for signal handlers, so the callee can’t even temporarily use them
for something else unless it’s willing to disable signals.

 There are tradeoffs in how many registers you preserve across calls.

 Generally, if you’re going to support recursive functions, you need
to at least preserve a stack pointer or a frame pointer; otherwise the
function you’re returning to has no way to find its return address or
other local variables. And making very rarely changed registers like a
thread pointer or global pointer callee-saved is basically free: since
callees won’t normally change them, preserving them incurs no cost.

 Generally the caller doesn’t really save the caller-saved registers. A
better term might be “scratch registers”: any result you compute in
them must be consumed or stored somewhere stable before any call.
That might be, as the “caller-saved” term suggests, by pushing it on
the stack or storing it into the stack frame, but there’s no particular
reason to restore it to the same register again afterwards, or indeed any
register; you might also have stored it into a data structure or used it
as a pointer or an arithmetic operand.

 You could argue about whether argument registers are
copy-in-copy-out or pass-by-reference, but at any rate the caller is
able to see whatever changes the callee made to them. Sometimes this
may be true of arguments passed on the stack (at least if the callee isn’t
responsible for popping them) and aggregate return values are
commonly provided by allocating space for them on the stack.

 I don’t have a great handle on the performance tradeoffs involved.
If a function uses a callee-saved register, it must save it whether or not

its caller was actually using it; if it uses a scratch register for a value it
wants to preserve across a call, it must save it whether or not its callee
was actually going to clobber it. Having only a few callee-saved
registers makes context switching (including function calls) faster,
because context switching is precisely a question of saving and
restoring the callee-saved registers in a way that violates stack
discipline. Having many callee-saved registers makes leaf functions
slower, because they have to save and restore however many
callee-saved registers they use, but never have to save and restore
scratch registers.

 On the other hand, having enough callee-saved registers makes
higher-level functions more convenient to write, and possibly faster,
since it doesn’t have to pay the cost of saving those registers unless it
calls a callee that uses them.

 Jeremiah Orians tells me that he finds it much less cognitive
overhead to make all the registers, except of course return-value
registers, callee-saved.

Different ways to represent closures or
blocks

 Indirect-threaded (ITC) Forth normally does a function call as
explained in Moving Forth by the following sequence (my syntax, not
his):

w := *pc -- load virtual machine instruction (xt) into W
pc++ -- increment program counter
x := *w -- load address of machine code from where xt pointed
goto x -- invoke code

 Note that this leaves the execution token in the W register. So, for
example, all colon definitions share the same machine code (their first
cell is a pointer to DOCOL) but have different data, and by
incrementing W they can access that data. So this double indirection
gives you a sort of automatic closure: the invocation sequence passes
the code an address from which its code pointer was loaded, where it
can find whatever other data it’s interested in. Rodriguez explains,
“CODE words [primitives] don’t need this information, but all other
kinds of Forth words do.”

 He points out that direct threading, where instead of putting a
pointer to DOCOL you put a call or jump to DOCOL at the
beginning of each word, is a better option on most machines:

w := *pc
pc++
goto w

 Note that the execution token is still in W, so the instruction being
jumped to can be simply a jump; it doesn’t have to be a call.
(Rodriguez attributes this discovery to Frank Sergeant’s Pygmy
Forth.) This is a faster way to invoke primitives (“CODE words”)
and generally no worse for other cases, though it involves a mixing of
executable code and writable data that is difficult in many contexts

https://www.bradrodriguez.com/papers/moving1.htm
https://www.bradrodriguez.com/papers/moving1.htm

(Harvard machines, operating systems hardened with W^X).

 But suppose you want to pass CLU-style iterators, Ruby-like block
arguments, or ALGOL-60-style call-by-name thunks to a subroutine.
These are also closures, but normally the data they want access to is in
the lexically enclosing stack frame. GCC handles this by building a
trampoline on the stack which sets the context pointer register before
jumping to the implementation code. If you wanted to use the Forth
approaches to this, you could imagine representing an ITC closure as
a two-word struct:

struct closure { void (*c)(); void *d; };

 If this struct is passed by reference, invoking c from it involves
assembly code something like this:

mov -24(%rbp), %rax # load struct pointer into %rax
mov (%rax), %rcx # load code pointer into %rcx
call *%rcx

 Then, if this struct were passed in memory (rather than in two
registers), and if the pointer to it can be guaranteed to always be in a
known register (in this case %rax), then the callee can access d as
something like 8(%rax), just like DOCOL in an indirect-threaded
Forth.

 The direct-threading thing would amount to dynamically
generating a jump instruction instead of a code pointer, and as with
GCC’s trampolines, would allow the invoker of the block argument
to not indulge in an extra level of indirection in case it’s invoking a
closure.

 However, this requires the caller to build a closure structure in
memory for each thunk argument or block argument. This requires
storing a code pointer in memory, which is a huge pain on amd64. If
you have three such arguments, that might be something like this (in
the ITC-like case; the DTC-like case is just slightly messier):

 movabsq $foo, %rdi # build first closure
 mov %rdi, -24(%rbp)
 mov %rbp, -16(%rbp)
 movabsq $bar, %rdi # build second closure
 mov %rdi, -40(%rbp)
 mov %rbp, -32(%rbp)
 movabsq $baz, %rdi # build third closure
 mov %rdi, -56(%rbp)
 mov %rbp, -48(%rbp)
 lea -24(%rbp), %rdi # pass first closure argument
 lea -40(%rbp), %rsi
 lea -56(%rbp), %rdx
 call quux

 It’s not too terribad how the callee invokes one of these (remember
that this is a non-standard calling convention that guarantees the
closure pointer to be in %rax):

 mov %rsi, %rax # invoke second closure argument; realistically this
would probably be in the stack frame
 mov (%rax), %rcx
 call *%rcx

 If we were to use the standard C calling convention and the usual
userdata (*k->c)(k->d) approach, closure invocation is instead something
like:

 mov %rsi, %rcx
 mov 8(%rcx), %rdi # first parameter to closure
 mov (%rcx), %rcx
 call *%rcx

 Despite all this hassle, the code for each of these closures needs an
additional instruction to load its context pointer:

 mov 8(%rax), %rcx

 Or three, if it wants to use %rbp as its context pointer.

A calling convention that makes block
arguments efficient

 For the specific case of thunks and block arguments, where the
context pointer is the parent’s call frame, it would be much nicer to
be able to just pass the code pointers and have the caller’s frame
pointer just implicitly flow through to the block arguments. Then
the initial call sequence would look like this:

 movabsq $foo, %rdi
 movabsq $bar, %rsi
 movabsq $baz, %rdx
 call quux

 The block/thunk invocation would just look like this, at least if no
registers need to be saved or restored first:

 call *%rsi

 Then, within the block or thunk, %rbp is just available as a frame
pointer as normal.

 In the case where registers do need saving/restoring, for example
because the callee quux was also using %rbp, it might look like this:

 push %rbp
 mov -8(%rbp), %rbp
 call *%rsi
 pop %rbp

 Normally you might expect this to index off the stack pointer or
the frame pointer instead of using push/pop instructions, but the

whole point of block arguments is to allow the stack pointer to be
arbitrarily far away from the stack frame of the current lexical
context, by allowing callees to yield back into callers. (Probably this
whole thing would be totally impossible on something like a
SPARC.)

 This suggests dividing “callee-saved” registers into
thunk-preserved registers, %rbp in the above example, which the
callee is obligated to restore to their caller’s values upon entry to any
caller-provided thunk, and return-restored registers, which are
guaranteed to be restored to their original value when the callee
returns but may have different values when thunks are being run
(notably, %rsp).

 This kind of thing makes it practical to implement control
structures as library functions. To take an extreme example that will
obviously frustrate desirable optimizations:

while (*s) { *t++ = *s++; }

 This might be compiled, using a library while function, as something
like the following:

 movabsq $thunk_1, %rdi
 movabsq $thunk_2, %rsi
 call while
 ret
thunk_1:
 mov -8(%rbp), %rax # s
 mov (%rax), %cl
 xor %rax, %rax
 test %cl, %cl
 setnz %al
 ret
thunk_2:
 mov -8(%rbp), %rax # s
 mov -16(%rbp), %rcx # t
 mov (%rax), %rdx
 mov %rdx, (%rcx)
 incq -8(%rbp)
 incq -16(%rbp)
 ret

 I mean, this is obviously not a good way to compile
non-NUL-terminating-strcpy, but at least so far the overhead is not
ridiculous. while itself might be implemented as follows:

while: push %rsi # thunks can hork %rsi
 push %rdi # and %rdi
 push %rbx # but not %rbx
 mov %rsp, %rbx
1: mov 16(%rbx), %rsi # load first thunk
 call *%rsi
 test %rax, %rax
 jz 2f
 mov 8(%rbx), %rdi

 call *%rdi
 jmp 1b
2: pop %rbx
 retq $16

 We could improve this a bit by guaranteeing %r12, %r13, %r14, and
%r15 to the thunks as well as %rbp. This would require no changes to
our while but would allow us to rewrite our thunks:

thunk_1:
 mov (%r12), %cl # s
 xor %rax, %rax
 test %cl, %cl
 setnz %al
 ret
thunk_2:
 mov (%r12), %rdx
 mov %rdx, (%r13) # t
 inc %r12
 inc %r13
 ret

 Suppose we decide to guarantee that thunks preserve %r8 and %r9
(normally caller-saved argument registers, which is to say, the callee
owns them; here we’re extending the callee’s ownership over them to
require blocks in the caller to preserve them while the callee is
yielded). Then we can improve while, rearranging it a bit as well:

while: mov %rsi, %r8 # save first thunk
 mov %rdi, %r9 # save second thunk
 jmp 1f
2: call *%r9
1: call *%r8
 test %rax, %rax
 jnz 2b
 retq

 This amounts to 14 instructions per loop. GCC -O is emitting this
code for me for the real C version:

 endbr64
 movq %rsi, %rax
 movzbl (%rdi), %edx # s
 testb %dl, %dl
 je .L2
.L3:
 addq $1, %rdi
 addq $1, %rax
 movb %dl, -1(%rax) # t
 movzbl (%rdi), %edx
 testb %dl, %dl
 jne .L3
.L2:
 ret

 This is 6 instructions per loop, so we can crudely guess that the
overhead introduced by this coroutine mechanism is around a factor
of 2-3 in this sort of worst-case scenario.

 So instead of dividing registers into caller-saved and callee-saved,
we divide registers into four groups: caller-saved that thunks must
preserve, caller-saved that thunks can clobber, callee-saved that
thunks can rely on, and callee-saved that thunks must preserve (but
cannot rely on).

 You can simplify this by eliminating the “callee-saved that thunks
must preserve” category. Or complexify it by by having registers, like
sp and RISC-V’s tp and gp, which thunks can rely on, but must
preserve.

 One upside of just using ordinary closures for this kind of thing is
that, even though it takes four instructions to construct and pass the
closure, three or four instructions to invoke it, and an extra
context-pointer instruction within the closure, you can pass it down
through any number of levels of calls with just the usual single
instruction needed to pass on an argument to a callee, and invocations
from however deep down the stack are always equally efficient. With
this coroutine mechanism, by contrast, if you want to pass on a thunk
you received to a callee, you can’t; the best you can do is make a
thunk of your own that invokes your thunk.

Bounding stack depth

 This kind of mechanism is useful in cases where you want to avoid
garbage collection, either for micro-efficiency or to avoid possible
failures. In the cases where you care about possible failures, it’s
important to be able to statically bound the stack depth. In the
normal kind of C programming, which doesn’t have block
arguments, you would do this by just making a call graph, which
would need to be acyclic, and computing the highest-weight path
from the root to a leaf, where the weight of each node is the size of its
stack frame.

 Actually, a better way to do this is to compute the maximum stack
size of each function as its stack frame size plus the maximum of the
maximum stack sizes of its callees, rather than explicitly constructing
the graph, but conceptually it’s the same thing.

 That runs into difficulties with function pointers, where you have
to conservatively approximate the set of functions that can actually be
called from a given callsite, for example using the function type. This
can very easily give you unwanted recursion.

 I think this block-argument thing is more tractable to make fairly
precise, because when a function invokes a block argument, you
know it can only be one of the block arguments it was actually passed.

 Now each subroutine S has not only a maximum stack size of its
own M[S], but also a maximum stack size M[S, P] with respect to
each of its block formal parameters P, which expresses the maximum
size of the stack of that function and its callees when that block formal
parameter is invoked. If it only invokes the block formal parameter

directly (not from a block nested inside it and passed to some other
function) its stack size for that parameter is just its own stack frame
size F[S]. But if it invokes block formal parameter P inside some
block that it passes to subroutine T as the actual parameter for block
formal parameter Q, then its maximum stack size M[S, P] for that
parameter is at least M[T, Q] + F[S]. So M[S, P] = F[S] + max(i,
M[Ti, Qi]) for all the callsites (Ti, Qi) for the block formal parameter
P. And M[S], which will be at least at large as any of the M[S, Pi] for
subroutine S, is F[S] + some other maximum stack size.

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Safe programming languages (p. 1172) (11 notes)
• Assembly-language programming (p. 1175) (11 notes)
• Compilers (p. 1178) (10 notes)
• Higher order programming (p. 1196) (7 notes)
• FORTH (p. 1231) (5 notes)
• Pascal (p. 1247) (4 notes)
• RISC-V (p. 1276) (3 notes)
• Tcl (p. 1318) (2 notes)
• Smalltalk (p. 1326) (2 notes)
• Call by name (p. 1382) (2 notes)
• Block arguments (p. 1383) (2 notes)
• PostScript

Material observations
Kragen Javier Sitaker, 02021-07-29 (updated 02021-12-30)
(194 minutes)

 Some notes on some things I tried.

02021-07-28

 Pouring sodium silicate solution into concentrated oil of lime
hardens the surface enough that it doesn’t stick to the bottom of the
yogurt cup, and you can pick up the resulting ooze by hand. Placing
the ooze on a bed of vermiculite and pouring hot construction sand
(300°?) over it produces foamed glass, which grows over a longer
period of time than the foamed glass produced from dried waterglass,
but with about the same density. However, it sticks to the sand and
vermiculite as it grows.

 Having burned through a cotton towel when pouring hot sand
previously, I used a steel wool pad as a hotpad in this case, which
worked fine. Obviously there are drawbacks to using such
inflammable materials as insulating refractory, but in this case it didn’t
ignite, and it worked fine to protect my fingers.

 Having melted the aluminum parts of the previous butane-torch
nozzle (the kind that uses 227-gram cans of butane), I bought a
somewhat more robust one from the hardware store for US$6, with
no evident aluminum or plastic parts and no striker. This can produce
a substantially more exciting flame.

Borax

 Bought some 700 g borax from the hardware store for some US$2.
Smells slightly acidic, suggesting it’s maybe contaminated with boric
acid. It successfully cross-links PVA glue (“plasticola”) into an
insoluble mass. A hot wire causes it to adhere readily; application of
heat causes it to foam up quite a bit, suggesting that it’s quite
hydrated, and then collapse down into a glassy layer of, presumably,
mostly boria, which seems to be able to mostly dissolve construction
sand when reheated. This suggests that it really is borax.

 Heating the borax on low heat on the stove on some aluminum foil
produces a prodigious amount of white solid foam, similar to the
intumescent foam from sodium silicate (see Glass foam (p. 595)),
which can be cut with a hot wire. A drop of water on this foam has
no immediately obvious effect, but after a few minutes, has dissolved
a hole some 30 mm in diameter.

Quartz-halogen bulbs

 The internal bulb in one of these halogen household bulbs can be
heated to an orange heat in the butane torch without any softening,
and even quenching in water does not crack them. This strongly
suggests that it really is quartz. Too bad it’s burned out. These bulbs
are hard to find nowadays, though some vendors have some
remaining stock for under US$1 each, and 150W–500W exterior
halogen floodlights still cost only US$2–US$4.

 The replacement headlight bulb I got from an auto parts store
(US$3) has the same behavior, except that I haven’t tried quenching
it, suggesting that it’s also a quartz-halogen bulb. (Also, the box
carries a pictorial warning against touching the glass.) This is a
Magneti Marelli “H7 12V 55W PX26d”. Cold (10°?) it measures
some 7Ω on a shitty multimeter that measures 3Ω short-circuit,
demonstrating why household 240V quartz-halogen bulbs would be
better for use as RTDs. When reheated to orange-hot, it measures
2Ω but the meter’s short-circuit resistance has dropped to 1Ω,
demonstrating that the meter is totally inadequate for this purpose.
For heating-element purposes such a bulb ought to be adequate up to
nearly 1000°.

Pumice and garden stores

 I bought 10 liters of off-white pumice from the garden store for
US$2. It’s so porous that it floats, but it’s open-cell enough that
sometimes it becomes waterlogged and sinks after a few seconds. It
seems to weigh about 3.5 kg. Stone dimensions are on the order of
10–40 mm. It can be heated to orange heat in the blowtorch without
apparent change. A hacksaw cuts it almost as easily as wood; a steel
wire can bore a hole through it far more easily than through wood,
and without cracking it in half. It can be easily sanded on granite or
on other pumice stones, yielding a fine floury dust.

 Though there is significant variation, it’s too hard to crush between
my fingers, break with my fingers, or carve with thumbnails in its
default form, though you can drill through it with a bamboo
chopstick and enough effort. However, heating it to orange heat in
the blowtorch renders it somewhat more fragile (presumably by
thermal shock inducing microfractures), so that it can be broken by
hand, though still not crushed between my fingers. Simply soaking it
in water does not have such a weakening effect, but quenching it in
water after such heating weakens the stone to an even greater degree.

 One stone weighs 6.7 g. When added to 151.3 g of tap water
(including yogurt cup), the reading was 158.1, a reading of 6.8 g.
Later the reading was 157.9, and upon depressing it below the surface
of the water with wires, 159.1, suggesting 1.2 cc of volume out of the
water, or some 7.9 cc of total volume. Upon removing the wet stone
from the water, the reading dropped from 158.0 to 150.2, a difference
of 7.8 g, and the wet stone weighed 7.7 g, suggesting there was 1.05 g
of water in its pore volume. This suggests a total volume, including
pore volume around 9.0 cc and thus a dry density of 0.74 g/cc.

 I stopped by a grow shop and was disappointed to find very little in
the way of pure fertilizers and pesticides, less even than in the local
garden store.

Carbonates and phosphates of iron

 The garden-store green vitriol looks quite pure, though clumping
together like a gorgeous green deliquescent thing, but the solution in
tap water is a bit cloudy. Adding an excess of baking soda produces,
after a while, voluminous green-brown bubbles that grow quite large
and do not pop, overflowing my inadequate yogurt cup. A
gray-green gritty slime with a smell like metal precipitates; this is
probably a mix of carbonates and hydroxides of iron. Effervescence

continues for an hour or more; probably boiling the soda first would
have avoided it. Adding diammonium phosphate fertilizer instead in
solid form produces no visible reaction at first, but upon heating
produces a milky white precipitate, which later proceeds to form
convection cells like those in miso soup.

02021-07-29

Iron products

 Neither of the insoluble iron preparations have defecated to
anything like transparency. Gravity filtration of the carbonate
through a coffee filter leaves a dark green-brown mud on the filter
and a fairly cloudy filtrate, which defecates. The mud smells like
sulfur or metal, but the filtrate smells like dust. A second filtration
still leaves a cloudy filtrate.

 The phosphate is instead partly white, partly gray, with some solid
chunks which presumably result from the green vitriol remineralizing
the fertilizer prills without letting them completely dissolve. It has a
similar metallic/sulfurous smell, and similarly the filtrate through
coffee filters is cloudy. No ammonia smell is detectable. Excitingly,
some of the phosphate product required a bit of work with a
chopstick to scrape free of the epoxy (?) liner of the aluminum can.
But this may have been because I overheated it when heating the
mixture. I should maybe recrystallize some of the ammonium
phosphate and figure out some of the stoichiometry.

Pumice grinding

 Grinding the surface of the pumice with, for example, bamboo,
tends to make the surface harder and less porous, because it fills the
exposed bubbles with packed powder. When a hole thus drilled with
a bamboo chopstick has recently broken through, there is greater risk
of breaking the rock by wedging.

Vendors

 Nearby vendors selling muriate of lime and similar materials
include Kubra Quimica (JUANMANUELCURRA) in Haedo,
ROAL4512404 in Ramos Mejía (aimed at making cheeses and
yogurts), DUROPAVIMENTO in Ciudadela (aimed at making
cheeses), and NAMECO QUIMICA in Villa Bosch (Kaiser 921, 5
km north, doesn’t list products on website), Química Kraff (KRAFF
QUIMICA) in Morón (Av Estanislao Zeballos 1820, “cerca de la
cancha del club dep morón”), Insumos Nahum in Ciudadela,
ACUARIO MAKARIOS in El Palomar (Sargento Cabral 1205? El
Rodeo 1416?), Isiquim SA (El Rodeo 1355 in El Palomar),
Laboratorios Condisal SA in Lomas del Mirador (Tapalqué 543),
Planeta Verde (TIENDAONLINEPLANETAVERDE) in Tapiales,
maybe Distriquím (Soldado Caballero 8664?), Biosix SA (S. Ortiz
2498, piso 2, Ramos Mejía, surely the closest, doesn’t list products on
website), Victor Eduardo Simo S.A. at Carlos Tejedor 5345 in
Caseros (4750 6644, no website, Monica Barraza?, magnesium sulfate
and fluorescein and phosphoric acid), Productos Químicos Alcesa) in
Haedo (Paraguay 939), Silap (Sialp? Bacterint?) in Haedo (San Luis
661), Astra SA in Haedo (Argerich 536), Inquimec S.R.L in Haedo

(Inalican 1154), Guillermo A. Rodríguez (Transquimia Chemist Cia
Química) in Haedo (La Fraternidad 590), Ferar Química (B.
Márquez 1235, Loma Hermosa), Química Morón (Hipólito Yrigoyen
1227, Morón), Productos Químicos SRL in Morón (H. Yrigoyen
625). Also there’s an Easy at Juan Bautista Alberdi 4950 in Caseros.

02021-07-30

Muriate of lime

 Put 108.0 g of water in a 10.9 g cut-off can and started heating it up
gently. Too bad I don’t have a thermometer. After heating to boiling
it weighed 117.8 g. Adding (hopefully anhydrous) muriate of lime it
had all dissolved up to a total weight of 235 g, so the amount of
muriate was also 117 g. At 282.0 g total weight some of the crystals
remained undissolved, but then did dissolve, with a weight gain to
287.6 g. I added more crystals to 322.1 g and a little bit seems
undissolved; gentle heating dissolved them, reducing the weight to
321.9 g. Adding more crystals to get up to 341.9 g leaves some crystals
undissolved. Further gentle heating leaves weight at 341.6 and
dissolves all crystals; adding more crystals to 366.0 g leaves some
crystals undissolved at first. Further gentle heating dissolves all
crystals and leaves the weight at 364.1 g; adding more crystals brings
the weight to 387.5 g. Further gentle heating dissolves all crystals and
leaves the weight at 385.3 g; I added more crystals to 442.2 g.

 And then I gave up. I think those dissolved too. I’m letting it cool
now; a thin crust of solid has formed at the surface, preventing
further evaporation.

 After a couple of hours, the material in the can has the appearance
of a solid, transparent block, but this is an illusion; once the crust is
broken, the inside can be seen to be a mix of rather jagged crystals of
muriate of lime and warm, syrupy oil of lime, which stick nicely to
the finger.

NightHawkInLight’s intumescent refractory

 Now I have borax so I should be able to make resistant carbonizing
intumescent refractory materials. One person reports success with 10
tsp cornstarch, 1 tsp baking soda, 4 tsp PVA glue, and no extra water.
NightHawkInLight is reported by WP to have switched from this
recipe to cornstarch, flour, sugar, and borax, which was less prone to
mold; in his video on the improved formulation he explains (3'47"):
I’ve also found an optional ingredient that adds both mold and insect resistance, as
well as an improvement I did not expect, which I’ll talk about in a moment. These
are the ingredients i used in my improved composition: 40 grams of flour, then 20
grams each of corn starch, powdered sugar, and baking soda, combining this
together with approximately 25 grams of water creates a workable dough.
 It may seem like a lousy cookie recipe, but each of these ingredients serves a
specific and important purpose. The flour is my new binder which holds all the
rest of the ingredients together. Cornstarch reduces stickiness and allows the putty
to better hold its shape. And sugar is the secret to generating a carbon foam even
when the resulting material is bone dry.
 When heat is applied to my composition, the sugar inside will melt, providing
elasticity and lubrication between the other chemicals so that gas bubbles can form.
Baking soda is the final ingredient, which, when heated, releases CO₂ and water,
which inflate the carbon bubbles and give us our final result: an extremely heat
resistant putty which can be used as is or dried into solid tiles.

https://www.steampoweredfamily.com/activities/starlite-material-experiments-on-heat-transfer-and-thermal-insulation/
https://en.wikipedia.org/wiki/Starlite#Claimed_replication
https://en.wikipedia.org/wiki/Starlite#Claimed_replication
https://www.youtube.com/watch?v=0IbWampaEcM

 ... The most obvious weakness to this composition is that it’s very edible, both
by insects and by mold, so I decided to try adding borax to the recipe. Borax kills
most insects that would eat it, and also kills mold. Similar to baking soda, it
releases water vapor as gas when heated, so borax could replace baking soda in my
formula entirely.

 At this point he shows his notebook with something like eight
alternative recipes:

• 5 g baking soda, 10 g borax, 10 g sugar, 5 g corn starch, 25 g flour,
5 g diatomaceous earth;
• 50 g corn starch, 25 g erythritol, 25 g ammonium diphosphate [sic]
+ shellac as a possible coating;
• 10 g sugar, 20 g flour, 10 g borax, and “mod + 5 g baking soda”. A
second column says that using 10 g flour instead of 20, it was “a little
melty”.
• On an earlier page, .5 g alum, 2 g iron phos[phate], 2.5 g flour; or
• 3 g iron phos[phate], 1 g urea, 3 g alum, 1 g “cs” (cornstarch?), 16 g
flour, 2 g sugar; marked “almost as good →” with an arrow pointing
to:
• “Best”: 10 g corn starch, 20 g flour, 10 g baking soda (or borax, as
suggested by a video edit), 10 g powdered sugar, 25 g water for 2×
batch; one Xed out column instead suggests 10 g corn starch, 50 g
flour, 20 g baking soda, 20 g powdered sugar; a third column suggests
5 g corn starch, 25 g flour, 10 g baking soda, and 10 g powdered sugar.
And, finally,
• 1 g “Kno3” (!), 2 g iron II phosphate, 10 g corn starch, 20 g flour,
10 g sugar, 20 g water.
The resulting carbon foam [using borax] is slightly less insulating to heat, but the
added resistance to rot and insects may be worthwhile. One discovery that
surprised me in my tests with borax was that the carbon foam generated by a
borax-containing composition is significantly stronger physically than any foam I
had generated before. The hardness, if you can believe it, is about the same as an
alumina fire brick, which may open some new opportunities for how these
normally very fragile carbon foams could be used.

 So, I guess I’ll try his recommended recipe: 40 g flour, 20 g corn
starch, 20 g sugar, 20 g borax, and 25 g water.

 I mixed:

• 40.2 g 000 white flour (Cañuelas brand)
• 20.4 g borax
• 20.0 g sugar (granulated, Ledesma azúcar común tipo “A”, freely
flowing and so apparently fairly dry)
• 20.4 g manioc starch (I couldn’t find the cornstarch)
• 37.4 g water (I poured too fast and overshot by 50%)

 The total ball of dough was 133.9 g, so I probably lost about 4.5 g
that stuck to the mixing container or my hands or whatever. It
smelled like cookie dough and had a tendency to kind of slump,
probably due to having too much water. I was able to use it to cover
the inside of a Monster can with the ends cut off and heat the can
from the inside with the hand butane torch, and it did indeed foam up
and produce an aroma similar to burnt toast and a carbon foam similar
in hardness to insulating firebrick.

 After letting the can cool, I turned the flame back on and ran it
through the can again while holding it between my fingers; after

about 30 seconds, the can became too hot to hold comfortably.

 I heated up a small, thin piece (initially on a bed of waterglass
foam, then inside the Monster-can “forge”) to see if I could cook it
thoroughly into foam to get some kind of read on its material
properties. During this process I noticed a second objectionable
feature of this composition, aside from the burnt-toast smoke: it has a
tendency to continue to smolder for a while after the source of heat is
removed. (I wrapped the piece in aluminum foil to put it out without
wetting it.) Also, significant cracks were opening up in the lining of
the Monster can, although they seem to have been exposing
uncooked dough rather than unprotected aluminum.

 After all that, the piece turned out to be under 100 mg and so too
small for my shitty scale to weigh, even when wet. It floated in water
mostly below the surface, similar to the pumice, but it’s hard to tell
how much of that is a question of water absorption.

 In terms of fragility, it is definitely less fragile than the waterglass
foam, and definitely more fragile than pumice.

 Heating some more of this stuff with he blowtorch on top of the
waterglass foam, I notice that each little black particle has a little
crater around it in the waterglass foam, like snow around de-icing salt
on a sidewalk. This suggests that either the carbon particles are
producing heat to melt the waterglass around them, for example by
burning (quite possible), or that the borax in them is fluxing the
waterglass foam and allowing it to soften and collapse at a lower
temperature (also possible).

 One of the resulting chunks of carbon foam ranges from 15 mm in
thickness to 25 mm in length and weighs 1.0 g.

 Density measurement: I placed a 64.5 g cup of water on the scale.
Immersing the foam in it beneath the surface with chopsticks yielded
a reading of 68.1 g; removing it produced a reading of 61.8 g;
weighing the foam separately yielded 3.7; immersing it a second time
produced a reading of 67.8; weighing it a second time produced a
weight of 4.0; a final weighing of the cup produced a reading of 61.4.
Apparently in the first immersion it absorbed 2.7 g of water (both the
difference in the foam and in the water), having displaced 3.6 cc of
water; after the second immersion it had absorbed 3.0–3.1 g of water
and was displacing 3.3 cc of water. So its total volume was 6.3 cc,
including both the pore spaces that filled with water and those that
excluded water, but not including spaces from which the water
drained immediately upon removal. This is a pretty reasonable
volume, given that 15 mm × 20 mm × 25 mm would have been
7.5 cc, and the shape was quite irregular. So the density of the foam as
such is about 0.16 g/cc.

 The water in this process turned dirty brown and had lots of black
crap floating in it, so presumably there was a significant amount of
lost mass. On soaking the foam a little longer, the water turned quite
black.

 After driving the water off from the foam that hasn’t dissolved
with the torch, it weighed 800 mg, so only about 20% was lost.

 I’ve flattened out a remaining piece of the dough to let it air-dry so
that I can test its intumescent properties after drying.

Waterglass and starch intumescent refractory

 It occurs to me that a 1:1 molar ratio of carbon sources such as
cornstarch with silicon sources such as waterglass might be able to
produce a foam that is partly or wholly carborundum (melting point
2830°), which would have mechanical and oxidation-resistance
properties superior to carbon foam, and mechanical and
melt-resistance properties superior to silicate glass foams. Boron
carbide B₄C would probably be superior (harder than carborundum,
softer only than CBN and diamond) but I think it’s probably even
harder to produce than carborundum; Moissan’s original synthesis
involved heating boria with carbon over the melting point of boron
carbide, 2763°, though apparently magnesium permits the reaction
under much less violent conditions.

 Mixing a little waterglass with manioc starch produces a mixture
with the consistency of warm chewing gum; I kept adding starch and
kneading it in until it seemed like adding more starch would make it
fall apart. (But I don’t know whether this is 1:3, 1:1, 3:1, or what.)
The resulting rubbery, doughy substance is intumescent under the
flame, producing a black foam with similar strength to that of the
borax-based recipe above, though perhaps with a smaller cell size, but,
as I was hoping, this foam has no tendency to smolder. Also, perhaps
unsurprisingly, it stuck rather tightly to the foamed waterglass bed I
was trying to heat it on, which the carbon/borax foam did not. I’ve
left a fragment of this composition also to dry. While intumescing it
produced a scent vaguely reminiscent of pine pitch, which strikes me
as slightly alarming.

 Both this foam and the waterglass-free version can be very readily
cut with a hacksaw.

Waterglass, borax, and starch intumescent refractory

 It occurred to me that maybe borax would be compatible with
waterglass, and indeed you can mix quite a lot of borax and water
into this waterglass solution without coagulating it in the way calcium
or magnesium ions do. (I was concerned that perhaps the borate ions
would be sufficiently amphiphilic to cross-link the silicate, but
apparently not.) Mixing up manioc starch as before with this mixture
produces another white doughy mixture which produces intumescent
black foam when heated — though there are also bits of white foam,
which may have been undissolved borax crystals. I’ve left a couple of
these samples also to dry and see how they behave. One I heated
immediately; it also has the unnerving pine-resin smell, and the foam
it produces is the hardest yet — I can barely carve it with my
thumbnail. I ran out of butane for the torch in the process, so I
heated the sample for a longer period of time on the kitchen stove’s
gas flame. Hacksawing through it reveals that although it has foamed
up throughout its thickness, only the outermost 5 mm charred,
leaving an inner circle of white uncharred material separated from the
fissured outer carbon foam by a brown ring.

 As with the waterglass/starch mix, the foam shows no tendency to
smolder.

 I can still break this foam material by hand, but it is hard enough
that I cannot crush it between my fingers. Taking a 12-mm-diameter

bit of it that weighs in at 0.65 g, I tried repeating the earlier density
measurement but screwed up my measurements; I think the water
weighs 81.9 g after pulling the wet foam out, 83.6 with it immersed,
and the wet foam weighs 1.6 g. Or maybe it’s 80.7 g after the foam is
removed. So it absorbed 0.95 g of water and displaced 1.7–2.9 g,
which is really a damned wide range, so its volume including pores is
2.65–3.85 cc. Which is totally impossible, because (12mm)³ =
1.728 cc, so it’s somewhere in the range 0.17–0.72 g/cc. Not a good
measurement by any stretch of the imagination. All you can say is
that it floats if it’s dry. It turns out that it floats if it’s wet, too, barely,
so I guess it’s below 0.4 g/cc dry.

 So, I’ll have to redo the test with a larger piece, maybe after I get
more butane.

 The part of the foam that has been entirely charred is dramatically
more fragile than the part that hasn’t.

 It’s too bad I didn’t weigh out the ingredients, because this
formulation in particular would have been pretty great to be able to
reproduce.

 I think the torch I’m using doesn’t get as hot as the torch I
melted — it’s more for heating larger areas — so I haven’t been able to
get any of these samples above orange heat. It’ll be good to be able to
verify that they don’t lose structural integrity at higher temperatures
due to, say, too much borax, too much waterglass, or too much
thermal expansion.

 The waterglass-based samples I’ve left to dry seem to be leaching
waterglass out the bottom.

02021-07-31

 The unfired waterglass bodies have hardened noticeably. Also, two
of them have split, evidently from contracting as the surface dried.

 I heated up one of them on the stove flame; it bubbled up pretty
much as before.

 Made a giant cookie using the flour/starch/sugar recipe, this time
using baking soda instead of borax (of course), and adding some oil
and vanilla. Also I added too much water, so I’m frying it in a skillet
instead of baking it. First conclusion is that this is far too much
leavening for a cookie or pancake. After cooking, it was even more
inedible than beforehand; the surface caramelized to the point of
being too bitter to eat. I discarded most of it, retaining a piece for
future torch testing. Also, I keep belching from the uncooked batter I
ate. The kitchen definitely smells more appetizing and less alarming
now, though.

 Grupo Ecoquimica at Avenida de Mayo 1761 in Ramos Mejía has
zinc oxide (AR$4500/kg), epsom salt (AR$220/kg), mesh-80 calcium
carbonate (AR$80/kg), borax (AR$220/kg), alum (AR$630/kg),
citric acid (AR$290/kg), sulfur (AR$300/kg), bentonite (AR$50/kg),
glycerin (AR$500/kg), kaolin (AR$150/kg), magnesium chloride
(AR$210/kg), dipropylene glycol (AR$528/kg, see Dipropylene
glycol (p. 687)), soy lecithin (AR$600/kg), cerium oxide
(AR$13200/kg), boric acid (AR$275/kg), copper sulfate
(AR$880/kg), titanium dioxide (AR$2100/kg), electrode gel

(AR$360/kg), talc (AR$200/kg), infusorial earth (AR$167/kg), etc.
Generally they sell in units of around AR$300-AR$500, so for most
materials the limiting factor would be how much I could carry. It’s a
few km away. Kubra and Insumos Nahum have propylene glycol,
these guys don’t, just dipropylene glycol.

 Oh, and it looks like the place I bought muriate of lime at the
beginning of the pandemic was Química Industrial Caseros, at
Bartolomé Mitre 4405 in Caseros, which is at the intersection with
Lisandro de la Torre, which intersects Alvear at Día, not where I had
thought. So that’s why I didn’t find it the other day when I went
walking up that way: I was a few blocks off.

02021-08-02

 Bought a new can of butane/propane for AR$340 (US$1.90).

 The dried inedible pancake fragment, with its extra sugar and oil,
and with baking soda instead of borax, can not only smolder but
sustain a flame for a while after the torch is removed. Also, it
evidently softens enough to deflect noticeably while the torch is on it.

 The other dried/hardened samples (waterglass with starch,
waterglass with starch and borax, flour/sugar/starch/borax) all
produce hard intumescent foams as before. The waterglass-based
samples don’t smolder.

 The massive waterglass/starch/borax sample cracked in a few
places on the outside as its crust shrank while drying.

02021-08-06

 I ground up a spoonful of some diammonium phosphate fertilizer
using scraps of granite as grindstones, noting an objectionable
ammonia odor; sprinkled it onto some construction sand, previously
dried with a torch, atop a bed of vermiculite; ground up a spoonful of
what I believe to be some aluminum hydroxide, and sprinkled it on
top; and heated the whole lot with the torch for a while. I never
reached an orange heat for the whole mass, but the fertilizer did
bubble out quite a bit of ammonia, and I often reached an orange heat
for the surface. At one point I stopped, and the large amount of
ammonia that began to escape persuaded me that stopping had been a
bad idea, so I flambéd the mass a while longer until it stopped
bubbling, about 10 or 20 minutes.

 Upon cooling, I had a somewhat porous and brittle but surprisingly
strong and hard crust of white material. It did not show any
water-solubility or acid or base reaction (that is, upon dripping
vinegar on it and letting the vinegar sit for a while, baking soda
sprinkled on it would bubble, so it did not neutralize the vinegar; but
upon being wetted with water, baking soda sprinkled on it would not
bubble, so it did not neutralize the baking soda either.)

 It’s probably worth making some better aluminum hydroxide, and
trying the three pairwise combinations of the fertilizer, the
construction sand, and the aluminum hydroxide.

 At this point, despite this process having produced some ammonia
and presumably a significant quantity of nitrogen oxides, my lungs
were feeling fine. I tried heating a piece of the aluminum phosphate

(?) crust thus formed by blowing the torch through the Monster-can
“forge” with the borax/flour/etc. insulation described earlier to see if
I could get it to a higher temperature and maybe melt it. I did get it
to bubble a bit more, but it didn’t seem to melt bodily. After heating
it in this way for several minutes, the intumescent insulation was
smoldering pretty enthusiastically, and in places was peeling away
from the can; after removing the gas flame, it sustained a flame for
under a minute, then went back to smoldering. This left the house
full of smoke that smelled like burnt toast and left my lungs feeling
shitty.

 I should probably use one of the non-smoldering, waterglass-based
intumescent recipes.

02021-08-07

 Still no water-solubility evident from the scrap of aluminum
phosphate (?) in water.

 Mina’s impression of the phosphate material was that it felt like a
“fragment of wall”, that is, fully hardened portland-cement concrete
that has exfoliated (maybe because it was improperly adhered stucco).
That seems about right, but I think it might be slightly harder than
that.

02021-08-08

 I mixed some one-component hardware-store silicone (3M 420
transparente, vidrios y ventanas) with the borax, then mixed by hand,
adding more borax until it seemed like it was going to fall apart, to
get a translucent ball some 25 mm in diameter, around 00:40. I poked
and prodded it to see if it had become elastic or was still just visco-.

 The borax is, I think, too coarsely ground to keep the silicone from
being sticky; so I got sticky silicone all over my fingers, despite initial
attempts to avoid this by using polyethylene bags as gloves. At least I
seem to have avoided getting major skin irritation from the acetic
acid. I was hoping for more of an Oogoo-style effect, but I realize
that I ① haven’t made Oogoo and ② probably would need to have the
borax finely ground. The idea at any rate was that maybe the water
of crystallization of the borax would serve as a hydroxyl source for
the silicone polymerization, allowing it to harden all the way through
like Oogoo, and then maybe if the resulting object was heated, the
borate would form a borosilicate network with the silicone backbones
of the polymers. That evidently didn’t happen.

 At 01:00 the ball was still pretty visco- and not very elastic, but at
least it wasn’t sticking to my fingers anymore. Likewise at 01:24. The
temperature in here is probably around 15°. By 07:30 the ball was
mostly returning to its initial shape after being squished, and no
longer cracking apart. My impression is that this is very similar to the
behavior it would have if I had mixed in sand instead of borax — if it
didn’t stick to the sand at all.

 (Unfortunately I didn’t bother to note whether it had an
acetic-acid smell at the time.)

 I’ve been thinking about how to make these tests more rigorous,
having just read Kingery’s earthshaking dissertation on

phosphate-bonded refractories from 01950; right now I can’t even
reliably tell if one mix is twice as strong or weak as another, or
contains twice as much sand. It would be great to be able to do
quantitative compressive and flexural strength tests, for example,
which would require being able to cast bars of reproducible
dimensions and fire them at reproducible temperatures. The tests
mentioned previously with the phosphate fertilizer involved training a
somewhat inconstant butane torch on some material until it stopped
bubbling, which took about 20 minutes.

 Doing this in a consistent fashion is going to involve setting up
some kind of kiln that can maintain a reproducible temperature, for
probably considerably longer than 20 minutes, since the temperature
has to penetrate to the center of the bar instead of just a
millimeter-thick layer. See Pocket kiln (p. 704) for thoughts on this.

 Also, it would probably be useful to pre-purify the phosphate
fertilizer, maybe using that recrystallization protocol by that African
research group. And maybe pre-dissociating it to get 99% crystalline
phosphoric acid would be useful for non-intumescent recipes, and
also eliminate the problems associated with ammonia emissions. The
phosphoric acid would have to be carefully granulated, though, to
prevent it from being a serious inhalation hazard, and if it overheated
(past 42.35°, assuming no freezing point depression from impurities) it
would glom together into just a sticky mass. And I don’t have a
prilling tower.

02021-08-09

 Attempted to repeat the production of the apparent aluminum
phosphate without success. I suspect the sand may have been wet
enough to keep the temperature too low, but stoichiometry is another
possible culprit. This time I had four areas heated to orange heat at
different times: nothing (just construction sand), possible aluminum
hydroxide, possible aluminum hydroxide with diammonium
phosphate, and just diammonium phosphate. The grey aluminum
compound remained inert to the heat in both cases; the phosphate
bubbled orange as before, but only produced a cemented mass in the
place where it was alone on the sand, not where it was mixed with the
aluminum compound. This time, though, the cemented mass was
acidic and black, and produced an acid gas while being flambéd. The
aluminum compound looked for all the world as if no phosphate had
ever been there. The phosphate flames were tinted green, a
phenomenon I could barely see and hadn’t noticed before.

 The waterglass+borax+starch pieces I’d made previously have
become brittle and fragile as they dried out; I can break a massive
(12mm) bar of it with my thumb, and upon dropping another piece
on the floor it broke. Also, one piece that had initially hardened on a
piece of PET is off-white on the air side and pure white on the plastic
side, suggesting that the water accumulation I’d observed on that side
led to a permanent compositional difference, perhaps the dissolution
of all the borax. However, they haven’t developed visible cracks, and
they still form an intumescent refractory foam upon flaming. It
smolders for a few seconds upon flame removal, though, and upon
continued flaming the foam melts somewhat; this suggests both that
the composition doesn’t contain enough waterglass to suppress

smoldering entirely, and that it doesn’t contain enough carbon to
form a continuous carbon network that can remain solid even when
the silicate network melts.

 This probably suggests that I should consider using way less borax
in these mixes. WP says non-alkaline-earth borosilicate glass is
12–13% boria, alkaline-earth types are 8–12% boria and 5% alkaline
earths and alumina, and high-borate types are 15–25% boria with
lower amounts of alkaline earths and alumina, the remainder being
silica in all cases. So even a small amount of borax is probably
adequate.

02021-08-10

 I attempted to make three crude pieces of pumice flat by rubbing
them together by hand for about 20 minutes, without external
abrasives. The resulting deviations from flatness over distances of
some 30 mm were on the order of 1 mm. In one of the three cases this
was large enough to easily detect by touch, which seems to be due to
an embedded hard stone; the other two look and feel flat (except for
bubbles), even in glancing light, until you test them against a really
flat surface. A great deal of white pumice flour covered the floor, its
adherent nature posing difficulties for broom cleanup; also, it is
slightly gritty between the teeth. Some of it has gotten into my
keyboard and mouse buttons.

 I filled a plastic shopping bag with methane, but to my
disappointment it did not rise into the air, though it did burn nicely,
leaving an unobjectionable candle-wax aroma. On calculation it
seems to be about a sixteenth of the required volume. See Methane
bag (p. 710).

02021-08-12

 The borax silicone from four days ago is rubbery all the way
through. Washing it in water reveals that it is spongy and
hydrophobic; drops of water can be squeezed out of its void spaces
and bead up on the surface; evidently the water is washing the borax
out of internal spaces, so it’s like a silicone sponge. Upon washing it
in 95% ethanol instead, gritty borax comes out on my hands; a drop
of water immediately dissolves it away into slippery wetness,
confirming that it’s borax, or at least something alkaline. Cutting it in
half with a razor knife makes some white noise as the knife
encounters hard grains and leaves crystalline grains of borax on the
razor knife and the exposed surfaces; they dissolve immediately in
water. So on one hand there seems to be no uncured silicone, as
desired, but on the other hand the borate mostly doesn’t seem to have
been available to interact with the silicone. I suspect that probably I
used enough crystalline borax to make the silicone effectively an
open-cell foam, with the pores full of borax, perhaps allowing
moisture from the air to penetrate. I can’t smell any acetic acid smell,
but it has been four days. Perhaps a better-controlled version of the
experiment would put the silicone and borax inside an airtight
membrane, such as a party balloon or ziploc bag; this would prevent
acetic acid from escaping or moisture from entering.

 I mixed some Oogoo in the same way with cassava starch and the

https://en.wikipedia.org/wiki/Borosilicate_glass#Non-alkaline-earth_borosilicate_glass_(borosilicate_glass_3.3)

same silicone, inside a pair of polyethylene shopping bags. It never
did reliably stop being sticky; when there was enough starch on the
surface it would be nonsticky, but sufficient kneading would make it
sticky again. I have left it to possibly harden. I was hoping I could
mix it by kneading the inner shopping bag from outside, but instead I
got silicone all over my fingers, which I washed off with dish
detergent and water. No skin irritation was evident four days ago,
and none is evident now.

 After sitting for a while, its surface stopped being sticky at all;
further kneading made it a little sticky again, but I didn’t continue
kneading long enough to see if it returned to its original stickiness. I
just rolled it back into a ball.

 A few hours later (4?) the Oogoo thing had thoroughly solidified
into a non-sticky smooth white rubber ball, which bounced nicely.
Slicing it with the razor knife revealed that it was solidified all the
way through (30–35 mm), so the cassava starch did succeed in
avoiding the standard problem with household one-component
silicone where it only cures in a very thin layer. It still has a
noticeable smell of acetic acid.

 Even though it’s cured all the way through, it’s still noticeably
viscoelastic.

 It easily sustains a flame once ignited. Burning it thoroughly with a
butane torch converted it to a fragile carbon foam slightly larger than
the original rubber, with the surface converted to a white ash, and
produced a slight annoying smell of acid. The vermiculite near where
it was burned received a gray deposit from the fumes. I wet three of
the vermiculite stones in a (not pure polypropylene) bottle cap with a
drop of water; baking soda then added did not fizz. So whatever the
gray stuff is, it’s not noticeably acidic in water.

02021-08-13

 In the end my lungs hurt for about an hour last night from, I guess,
the smoke from the burning silicone.

 The 3M 420 silicone I’ve been using costs AR$310 for 280 g, which
at AR$180/US$ is US$1.72, or US$6.15/kg. The bisected ball from
the other day weighs 19.0 g, probably half of which is cassava starch
(AR$190/kg or US$1.05/kg), so this ball cost about AR$3 of material.

 We have a glass microwave turntable we’ve been using as a plate,
but it’s not very stable (it tends to tilt one way or the other, or spin
around the middle, because it has three little glass projections near the
center) so I’ve cut part of the ball into three little feet and glued them
onto the bottom with more of the silicone. We’ll see if that works.

 The Monster can of muriate of lime I dissolved/melted on
02021-07-30 has finally accumulated an appreciable amount of liquid
on its surface by dehydrating the air.

 At about 21:15, in one plastic shopping bag I put about 12.0 g
cassava starch and 23.2 g silicone and kneaded them together through
the bag, which produced a mass too sticky to remove from the bag;
in another I similarly mixed 11.8 g silicone with 21.5 g starch, but
despite extensive kneading I cannot get it to cohere into a single mass.

https://articulo.mercadolibre.com.ar/MLA-925860962-silicona-acetica-universal-420-3m-280gr-transparente-_JM

It just acts like slightly damp cornstarch, easily crumbling away. I
can’t smell the acetic acid anymore, but I have the impression that the
lower-silicone crumbly version had a lot less acetic aroma to it at the
time.

 So I think the silicone-to-starch ratio has to be pretty close to 1:1;
neither 2:1 nor 1:2 works well. I might try a third batch where I start
with a ball of silicone in a vast oversupply of starch, then progressively
knead in more starch, then measure how much starch remains
unincorporated once I’ve produced a reasonable product. That seems
like it might work better than trying to knead it through the bag.
Like how you flour your hands when kneading bread.

 After an hour and a half, though, at 22:47, I can peel the
12g-starch, 23.2-g silicone mix off the bag and roll it into a ball,
which weighs 30.2 g out of the 35.2 g originally placed. So there’s
probably about 5.0 g of silicone (and starch) still stuck to the bag that I
didn’t manage to peel off. The ball is still annoyingly sticky to the
touch. I can smell the acetic acid again, and it’s sort of chokingly
strong.

 After another half hour, at 23:13, the ball is no longer fully plastic;
it tends to return to its original form after even fairly extreme
deformations, so it is no longer kneadable. If this is typical behavior
it’s fairly annoying: it went from annoyingly sticky on the hands half
an hour ago to unworkable now. I wonder if a larger amount of
starch would mitigate this behavior, because the ball last night was a
lot more kneadable when reasonably unsticky. But maybe I just got
lucky?

 My fingers sure do feel smooth.

 I mixed some more sodium silicate (waterglass) with cassava starch
on another shopping bag to form a dough, which I tried to use to
form a little pocket oven. This was unsuccessful, as over the
following 20 minutes the oven gradually slumped down into a flat
object; evidently sodium silicate with cassava starch behaves as a very
viscous fluid, not a viscoelastic solid. Maybe gelatinizing the starch
first would help.

 I flambéd a small piece of it with the butane torch. It produced a
little bit of smoke, which smelled like pine pitch — Mina reported
that it smelled like mentholated wood. Upon long flaming it was able
to remain smoldering for a few seconds after the flame source was
removed, but not sustain a flame on its own. The carbonizing stuff
swelled up like a sopaipilla in the torch flame. I was mostly able to
hold it just in my fingers even though it was only a few cm long; at
some points I resorted to needlenose pliers, which broke through the
surface and exposed the hollow interior.

 Mina reports that the sodium silicate bottle has a very strong smell
resembling that of toilet cleaner (the kind based on muriatic acid), one
which provoked nausea. I can’t smell anything from it, but I suppose
there must be a lot of hydroxyls flying around if she can.

 In between the hydroxyls from the sodium silicate, the acetic acid
from the Oogoo, and the pine-scented smoke from the intumescent,
we’re both kind of clearing our throats a lot.

 By 00:00 the Oogoo seemed to be fully hardened but of course still

preserves a quite strong acetic-acid aroma. I stuck a hardened steel
shaft through it.

 To estimate the water content of the liquid that had formed on the
muriate salt, I took a shiny steel bowl (nickel-plated?) weighing 42.3 g
and poured the salt solution out of the Monster can, bringing the
weight to 47.3 g, so about 5.0 g of liquid had formed. Then I heated
the bowl on the stove until it was apparently just dry white deposits
of muriate of lime, though a little hissing was still audible. At this
point the bowl weighed 45.0 g, so only about 2.7 g of muriate of lime
remained; 2.3 g of water had boiled away. (Also, a little bit had been
thrown out of the bowl by the violent sizzling bubbling — white
specks were visible all around the rim of the bowl, so some must have
also overshot.) After strongly heating the bowl on the stove a few
minutes more, bringing parts of its floor to red heat while covering
the top of it partly with aluminum foil, turning parts of the shiny
nickel (?) black, producing a strong smell of metal, it still weighed
45.0 g, so if more water was lost, it was compensated by oxidation of
the bowl. After washing the bowl with water, during which a bunch
of the black stuff came off onto my fingers (NiCl₂? But that would
be green and water-soluble. CrCl₃? Would be purple (but maybe I
wouldn’t notice the difference)) and drying it, the bowl weighed
42.2 g, so evidently there wasn’t a lot of oxidation going on, so
probably the white stuff from when it boiled dry was pretty much
just the anhydrous salt, as you’d expect.

 That would mean 2.3 g of water was enough to hydrate and
dissolve 2.7 g of anhydrous muriate of lime, so something is clearly
wrong here! According to Heating a shower tank with portable
TCES? (p. 714) the solid hexahydrate should weigh 219.07/110.98 of
the anhydrate form, or 5.3 g/2.7 g, so 2.6 g of water should have been
required just to get to the hexahydrate. Moreover Wikipedia says the
hexahydrate only dissolves 81.1 g per 100 mℓ of water at 25°, so to
dissolve those 5.3 g we should have needed 11.9 g of total solution,
another 6.6 g of water, or more at temperatures below 25°. It’s
definitely cold enough here for the hexahydrate to solidify.

 I’m not sure where my error is exactly. The Wikipedia numbers
predict that 11.9 g of saturated hexahydrate solution should have been
required to boil down to 2.7 g, not 5.0 g. Given how exactly the scale
was able to reproduce previous measurements, it hardly seems likely
that it had a 6.9 g error in measuring the weight of the solution I
dripped into it, even if maybe it does have a little bit of silicone on the
table under it. It measures the blob of Oogoo at 30.8 g, the one it
measured as 30.2 g a few hours ago, but also I think a little more
Oogoo got stuck to the ball after I initially weighed it. Maybe this
stuff isn’t really muriate of lime — but then, what else could it be?

 I should probably see whether, say, 20 g of salt from the bag loses
mass if I heat it to red heat, and then how much water it takes to start
to dissolve it at room temperature, which should tell me how much
mass the hexahydrate has.

 Interestingly, when I pulled the shaft out of the Oogoo to weigh it,
it left a perfectly round hole through the middle of the blob. I guess
it’s still flowing a little bit (or creeping a lot, depending on how you
look at it). It’s 01:22, and I’ve stuck the original shaft back in, and

I’m sticking a second shaft through it to see if the hole it made
remains open, or round, when I pull it out tomorrow.

02021-08-14

 It took a couple of hours for the respiratory irritation to die down.

 The Oogoo is noticeably harder this afternoon. The second shaft
left a hole smaller than the first, about half the diameter (maybe 1mm
instead of 2mm; the calipers say the shafts are 2.94–2.98 mm, so I
think that even the first hole is smaller than the shaft that made it);
I’ve taken both shafts out and inserted one of them to make a third
hole. It still smells of acetic acid.

 The waterglass starch dough has mostly hardened in the position I
left it in. It occurred to me that last night it was flowing liquidly
when left alone for long periods of time, while breaking brittlely
when I tried to form it rapidly, which is pretty much the
shear-thickening behavior you’d expect for a suspension of starch in
water, just at lower flow rates.

 We found a stone mortar that had been missing. It was in the
kitchen cabinet. Unfortunately, vinegar testing on the bottom shows
that it’s marble, not agate, so it will contaminate anything ground in it
with marble dust. Nevertheless I will grind some of the borax. Agate
mortars are available for around US$800, which seems excessive
when a chunk of agate of the right size is only US$30.

 I used the mortar to grind some borax to a mostly flour-like
consistency. I weighed it into the same bowl I used yesterday, which
now weighs 42.3 g; after taring the bowl, the borax weighs 52.5 g. I
took a Nutella jar which weighs 30.2 g; upon adding the borax, it
weighs 82.6 g, giving a 52.4 g weight of finely ground borax. I’d
probably need to screen the borax to separate out the remaining large
crystals I missed in the grinding.

 The borax tastes like baking soda (something I haven’t been brave
enough to try previously) but does not bubble in vinegar. After
adding vinegar to it, baking soda that is added still fizzes, but very
slowly, which is consistent with the borax having converted the
vinegar into sodium acetate and much weaker boric acid.

 To try Oogoo with a little of this new finer borax, I mixed 10.2 g
of cassava starch with 0.5 g of this flour-ground borax in the bowl,
then transferred it to a shopping bag. In another bag, I mixed 10.3 g
of cassava starch with 2.0 g of the same borax. To the shopping bag
with the 0.5 g of borax I added 10.4 g of the same silicone; to the
other bag with the 2.0 g of borax I added 13.2 g. In both cases I
smooshed them around by kneading them through the bag until they
seemed pretty uniform. Now it’s 01:48 by the laptop clock.

 The idea is that the borax may do one or more of: provide borate
ions that cross-link the silicone to make it harder; neutralize the
acetic acid into sodium acetate, converting the borax itself into
relatively inert boric acid, thus reducing the annoying outgassing; or
release extra water, speeding the acetic cure. And by being more
finely ground, maybe it will work better for these things than last
time, and also not add so much porosity to the final material as my
first borax silicone test on 02021-08-08.

https://articulo.mercadolibre.com.ar/MLA-897289502-juego-de-mortero-y-maja-de-agata-cole-parmer-4-75-ml-_JM
https://articulo.mercadolibre.com.ar/MLA-744508347-piedra-agata-en-bruto-natural-art517-_JM

 At only 01:56 (8 minutes later) the two Oogoo batches are
noticeably harder. I can already peel them off the bags. The ball from
the other bag (with 2.0 g of borax) weighs 25.8 g, rather than the
2+13.2+10.3=25.5 g expected, suggesting a weighing error. The ball
from the shopping bag weighs 20.9 g rather than the
0.5+10.4+10.2=21.1 g expected. I think I left more of the silicone
stuck to the very thin shopping bag because it was harder to peel the
bag away from the silicone, perhaps because it was much more
wrinkly. But I guess it probably wasn’t more than about 3%.

 It’s 02:09 now, 21 minutes after initial mixing, and the two chunks
of Oogoo are very moldable and kneadable and still kind of
annoyingly sticky, but at least they’re not leaving chunks of silicone
stuck all over my fingers any more. They both have a strong acetic
acid smell. So far, there’s no evidence that the borax has had any
effect. That does sort of mean that it was ground finely enough to
eliminate the obvious grittiness I had in the first borax silicone test. I
took advantage of the kneadability to fold each one in half 20 times to
mix them more homogeneously.

 At 02:20, 32 minutes after initial mixing, they’re still very moldable
and kneadable, and noticeably less sticky. The two versions seem
pretty identical though. Most of the acetic-acid smell seems to be
gone from the shopping-bag ball, the one with only 0.5 g of borax.
Both balls look wet when being left without kneading for a few
minutes, suggesting that the silicone is smoothing out rough surfaces
with viscous flow. Kneading makes them look dry for a little while.

 I think I’ll try kneading some construction sand into part of one of
the balls. I dried some sand in the bowl, which weighed 70.7 g with
the dry sand, and thus this is about 28.4 g of sand. I’m pulling off
about half the other-bag ball, 11.9 of 25.8 g of Oogoo. After having
kneaded in sand to 21.4 g (presumably 9.5 g of sand) it was starting to
have noticeably less structural integrity, but I managed to incorporate
essentially all the sand and still have a brown plastic mass weighing
39.0 g. I must have lost about 1.3 g of sand along the way. Mina
commented that it felt like whole-wheat flour.

 As plastic molding compounds go, this sand mix is not quite as
cheap as pottery clay, but it’s probably watertight once it hardens at
room temperature, and it wouldn’t be surprising if it were
enormously more impact-resistant as well, though weaker and softer.
The proportions are, I think:

 10.3 g cassava starch × 11.9/25.8 = 4.8 g (12%)
 2.0 g borax × 11.9/25.8 = 0.92 g (2.4%)
 13.2 g silicone × 11.9/25.8 = 6.1 g (16%)
 27.1 g sand (70%)
 39.0 g total

 1 kg of the stuff would cost 2.1¢ for the sand (US$0.03/kg
according to Potential local sources and prices of refractory materials
(p. 566)), 98¢ for the silicone, 7¢ for the borax at US$3/kg, and 12¢
for the cassava starch, for a total of US$1.19/kg.

 It’s now 02:52 by my laptop clock. It’s still possible to fold the
Oogoo over on itself an arbitrary number of times, but there’s
noticeably more resistance, and quite a bit of elasticity, where it tends

to return partway to its previous form. So at 64 minutes past initial
mixing it’s already past its prime for molding.

02021-08-15

 My hands and upper respiratory system were a little irritated last
night; some of my fingers itched. I suspect exposure to acetic acid
exacerbated by a lot of handwashing was to blame.

 It’s 19:17.

 All three Oogoo samples from last night are fairly hard, as rubbers
go. The sand-filled silicone is noticeably harder than the other two,
which otherwise seem pretty similar. An acetic-acid smell is evident
from all three.

 Attempting to cut the sand-filled silicone with a razor knife
quickly destroy the knife, within a few millimeters. I think that if I
were to push it hard enough I could probably get it to keep cutting,
because I can cut the stuff with my thumbnail. However, it’s rubbery
enough that when I let go of the cut piece, it flaps back into place.
Note that this is very different from the behavior I predicted for
sand-filled silicone on 02021-08-08, when the borax didn’t stick to
the silicone.

 The sand-filled silicone definitely wets with water better than the
other silicones. I haven’t measured a contact angle or anything,
though. When heated up to 100° in a boiling-water bath, it wets
completely with water.

 At 19:55, I’ve been boiling the sand-filled silicone for about half an
hour. It seems slightly changed: the surface feels slimy and leaves a
slimy substance on the fingers, and it no longer smells of vinegar. But
it feels about as hard as before.

 I think the seal made between the 2.94-mm ground hardened steel
shaft and the 2-mm-or-so hole it made in the 02021-08-13 Oogoo (2
hours and 45 minutes after being mixed) amounts to a usable sliding
seal. It’s easy to spin the shaft with the fingers when it’s pressed
through the silicone, and I’m reasonably sure that the hydrophobic
nature of the silicone would keep water from sneaking past it. You’d
want to use a thinner silicone washer in practice than the 30+ mm. A
casual test with a drop of water on the slice of that block of Oogoo
suggests that this would work, but of course that doesn’t tell us
anything about how much pressure the seal could withstand.

 Mina discovered that the Oogoo from 02021-08-13 is capable of
erasing pencil marks from paper, much to my surprise. In fact, it
seems to work better than a normal pencil eraser, although the
graphite remains on the surface of the silicone instead of being carried
away in crumbs. But getting the stuff to flake off in crumbs is
presumably just a matter of adding enough of some kind of friable
filler or filler with poor adhesion to the silicone, like the borax-filled
silicone on 02021-08-08 that ended up making a fragile sponge.

 At 20:22 the sand-filled silicone has been out of the boiling water
for nearly half an hour but still feels wet. I suspect I gelatinized the
remaining starch in its surface layer, and that’s now retaining water,
and smears off on your fingers when you rub it on them. Rubbed on
a wine bottle, it leaves a visible smear which does not wipe off with a

dry paper towel, but does wipe off with a wet one, suggesting that it
is indeed some kind of water-soluble thing like gelatinized starch. It
still feels the same way another hour later, at 21:31. I wonder if it will
grow mold (you’d think the borax would prevent that, but the borax
might have been leached out of the surface layer by the boiling).

 This slimy water-soluble stuff makes me wonder if maybe with so
much starch the stuff might not be waterproof even at room
temperature. It might be worth trying a wider range of ratios and
fillers.

 A permanent marker (Du Hu brand, UPC 9-930691-011013) easily
marks the Oogoo (tried on the two sand-free samples from last night
and the one from the other day), but it easily rubs off. A smiley face
thus drawn on one of the Oogoo balls rubbed onto paper transfers
onto the paper, suggesting the possibility of flexographic offset
printing with this material.

 By 02:41 the sand-filled Oogoo had stopped feeling wet on the top
side (and stopped depositing water-soluble slime on wine bottles
when rubbed) but still felt wet on the bottom (and still deposited
slime).

02021-08-16

 The 39 grams of sand-filled Oogoo had dried out by this afternoon.
I pounded the crap out of it with a hammer against some bricks
(maybe 20 hammer blows of 50 J each); it crumbled somewhat and
became softer and porous, but mostly retained its structural integrity.
The only pieces that came off were due to a couple of hammer blows
where the corner of the hammer punched all the way through it into
the brick on the other side. The surfaces are now whiter and rougher.
It now weighs 38.0 g, and I regret not having weighed it before
pounding it with the hammer, because I suspect that most of that
weight loss was from boiling starch out of its surface, not from
hammering damage.

 This seems like noticeably worse impact toughness than I would
normally expect from this kind of silicone, but then again, this object
is only 16% silicone by weight. It’s kind of in the ballpark for what
I’d expect from non-ferrous metals, although of course this impact
toughness was achieved mostly through large deformations rather
than large stiffness.

 As I suspected yesterday, I can cut through the stuff with a razor
knife just by pushing it hard enough through the material if I
carefully avoid sawing back and forth, which immediately destroys
the edge of the razor knife. By contrast, the knife edge is mostly
intact when I just push through, though not without nicks from the
sand. Pushing hard even works when the knife edge has been thus
dulled by sawing, although it requires more force.

 Using the unsharpened back of the razor knife, I can cut through
the pumice quite readily — not quite as readily as cutting soft
materials like cardboard or silicone, but very nearly. This further
reinforces my impression that Foams Are A Miracle.

02021-08-19

 The Oogoo samples from 02021-08-15 are of course fully hardened
through, and can easily be cut with a razor knife. Perhaps more
interestingly, with some sawing, they can be cut with a tin can lid as
well, which takes more effort and leaves a scalloped cut. An
acetic-acid smell is evident upon cutting, but it is not chokingly
strong.

 I got a new, hopefully less melty blowtorch head, made of brass
(US$14), for those 8-ounce (227-g) butane bottles.

 I also got some 5-mm carbon arc cutting electrodes (11.2 g,
5.11–5.19 mm diameter at the short unclad tip, 5.20–5.32 mm
diameter in the copper-clad section, 306 mm length, thus average
density around 1.69 g/cc). Treated as pencil leads, they leave only
very light marks on paper (about 4H or 6H pencil lead hardness, say.).
With significant difficulty I can break the end off the carbon rod with
my fingers, revealing an earthy fracture, dull black with a few tiny
bright particles, probably cleaved graphite grains. The sparkly carbon
cladding resists water, ethanol, and nail polish diluent (probably ethyl
acetate) with no damage; when heated, it forms iridescent coatings
and then dull black copper oxide; and my multimeter can measure no
resistance (though it bottoms out at about ½Ω), so it may be just
copper plating rather than any kind of paint. The ohmmeter measures
the graphite itself as highly conductive, but with significant contact
resistance of a few hundred milliohms. Measuring the resistivity of
the carbon rod itself would require removing the copper from it.

 I heated one of the electrodes to orange heat with the brass torch.
Mina used the hot end to burn holes in a cardboard box, which
curiously smoldered and went out rather than igniting.

 I flamed one of the waterglass/starch/borax samples from before,
and it intumesced lightly as before.

 I took one of the old waterglass-foam samples and melted it a bit
with the new brass torch, which was relatively easy. Then I poured a
bit of oil of lime (it keeps accumulating in the Monster can) onto the
sample and tried again; the oil of lime seems to have been effective at
increasing the heat resistance of the foam by, presumably, converting
it to amorphous calcium silicate; now it apparently suffers no
degradation even at white heat. Since muriate of lime melts at
772–5° the white-hot solid residuum cannot be merely muriate of
lime.

 The process filled the kitchen with a cockroach-like aroma, which,
as Mina pointed out, is almost surely smoke from the bamboo
chopsticks I was using to hold the waterglass foam sample in front of
the flame.

 I tried washing the sample with water after heating to remove the
salt, which seems to have caused it to crumble without removing all
the salt, because it still left a sticky residue on my hands after washing
(more like oil of lime than plain salt) and created a white efflorescence
on subsequent heating. This is probably a problem that could be
solved by sufficient heating time and washing time.

 This suggests the following process for making a tiny waterglass
foam oven:

• Pour the appropriate amount of waterglass onto a flat sheet of

polyethylene and let it dry to a thin layer of glass.
• Build the overall structure out of some moderately heat-resistant
material: beer cans, aluminum foil, calcined alabaster paste, mud, that
kind of thing.
• Paint the thin layer of glass with an even thinner layer of waterglass
to make it sticky, then break it into small pieces.
• Stick the small pieces of waterglass onto the inside of the oven
structure, several layers thick, to form the intumescent refractory
layer.
• Blow enough flame or hot air through the inside to foam up the
waterglass.
• Pour or spray oil of lime onto the inside to provide lime to the foam.

• Blow enough flame or hot air through the inside to thoroughly dry
out and possibly melt the muriate of lime, and possibly drive off some
marine acid air.
• Possibly, after it cools, wash the foam with water to remove the
potentially corrosive salt.
• Add a hardfacing layer on the inside of the foam, maybe paper
coated with waterglass and silica sand or aluminum hydroxide, or
waterglass mixed with starch and charred, to form a solid layer that
can support solid objects without damaging the surface of the foam.

 You could also paint the waterglass directly onto the structure, but
you might probably need to paint several coats, waiting for each one
to dry in between, to get enough thickness. It would be pretty cool if
you could include the oil of lime between the layers of waterglass
instead of applying it afterwards, so that’s probably worth a try to see
if I can get reasonably low densities that way.

 It’s likely that such a low-density foam will have a more open-cell
structure and thus more convection through it than the denser
closed-cell foams that firebrick normally consists of, and therefore a
lower thermal insulance. Even then, though, it might have better
insulance per mass, so it might still be useful for portable pocket ovens.

 The pieces of waterglass/starch dough from 02021-08-13 have
thoroughly hardened. I flamed one of them with the brass blowtorch
for a few minutes, and it intumesced, swelling by perhaps a factor of
2, forming a black foam which mostly did not melt, maybe just a little
bit around the edges. Both the uncharred material and the charred
material take noticeable effort to break by hand; the charred material
is a fine foam with mostly bubbles around the size of 100 μm which
can be indented with the thumbnail with some effort, while the
uncharred material does not appear to be a foam and cannot be thus
indented. It did smolder for a few seconds after the flame was
removed, producing the pine-pitch-like smell I mentioned
previously.

 I had previously mixed up calcined alabaster powder with a retail
baking powder (double-acting I think, and including bicarbonate, but
I don’t know what else) and baked it in the oven into a white biscuit.
It had formed an open-cell foam with about 50% porosity and pore
sizes on the order of 2 mm. I took half of this and heated part of it
with the brass torch to white heat for 7 minutes. This formed a black
circle, with a dark gray circle inside of it, with a 20-mm-radius white

circle inside of that, with increasing cracking visible in the gray and
white parts. Upon removal of heat, it continued to glow visibly
through the cracks for a minute or so. The white part flaked away
somewhat under finger pressure; on breaking the biscuit, it seemed to
have penetrated some 5mm deep. Unexpectedly, most of the biscuit
thickness had turned gray, and it fell apart in my hand.

 On repeating the process, I noted a slight acid smell, and my lungs
became irritated, perhaps due to failing to maintain a judicious
distance from the proceedings and producing a bit of vitriol from the
alabaster.

 I used the torch on the Monster can I’d previously (02021-07-30)
lined with borax/flour/starch/water intumescent refractory to heat
up some eggshells to a yellow or white heat for a couple of minutes.
Unfortunately, the refractory material began to smolder, and the
paint on the outside of the can started to change color, indicating that
it was burning, so I aborted. There was also a distinct smell of
ammonia, so perhaps the can was sitting on top of some
undecomposed diammonium phosphate from a previous test. (Also, a
smell of burning plastic from the can.) The lining had broken apart
into many pieces, exposing much of the walls, and it continued to
smolder for several minutes, even after I dumped it out of the can, so,
again, the borax was not as effective at preventing combustion as one
might hope.

 I picked the eggshells out of the smoldering rubble with chopsticks
(some of them had stuck slightly to the carbon foam) and dropped
them into a plastic yogurt cup, then dripped a few drops of water into
it. There was no visible reaction or evident heating, but after a few
minutes the water looked milky. This seemed promising. The
milkiness was due to tiny white particles. However, several drops of
this milky liquid were unable to neutralize a couple of drops of
vinegar to the point where baking soda wouldn’t fizz, so the milkiness
probably wasn’t slaked lime as I was hoping it was.

 Properly calcining lime probably requires longer heating, maybe 15
minutes to 15 hours. 15 days is more traditional, but I think I can do
better than that.

 I had the remaining fragments of waterglass foam floating in water
for a few hours. They did not crumble any further, so whatever
caused them to crumble earlier, it probably wasn’t the water — either
it was my fingers’ roughness, or the process of boiling water out of
them, or maybe there were parts subject to water attack and parts that
weren’t.

 I placed them on a bed of vermiculite and heated them with the
brass torch to white heat. Once white heat was reached, they slowly
melted, but they retained substantial foam structure for several
minutes of such heating. (As before, untreated waterglass foam
disintegrates upon being heated to merely orange heat in well under a
minute, collapsing down to a glob of glass.) I don’t know if this is
because the calcium treatment was incomplete or because lime silica
glass can’t withstand the temperatures involved. The vermiculite
remained unaffected, so the temperature wasn’t exceeding its melting
point.

 Some acid gas was evolved from the vermiculite, so I think it may

be contaminated from a previous test.

02021-08-20

 Mixed up some new Oogoo, this time with coloring. In a
126.5-gram glass jar Mina mixed 11.9 grams of dish detergent (see
below) with a tiny amount of food coloring paste (see below). This
produced a brilliant dark violet color. On weighing it afterwards, the
scale read 137.9 g, which is 0.5 g less than before adding the coloring
(so there’s only 11.4 g of detergent/coloring mix); I think there are
about 0.5 grams of detergent mix left on the Q-tips.

 For the Oogoo, I mixed 27.6 g of the same 3M 420 silicone as
before with 27.6 g of cassava starch inside a tiny plastic shopping bag
by kneading it through the bag. I think a Ziploc bag would be a
much better approach; the thin (10-μm?) bag developed a hole in it
during the kneading process. After it was thoroughly kneaded, we
waited 9 minutes, then kneaded the resulting deposits into a
43.5-gram ball of Oogoo. To this we added 2.9 grams of the
detergent/coloring mix, which I kneaded thoroughly together,
getting a uniform light lilac color.

 The dish-detergent-added Oogoo (≈6% commercial detergent
mix, maybe ≈1% sodium lauryl sulfate and sodium laureth sulfate, but
we don’t really know) was noticeably softer during molding and
seemed noticeably less prone to stick to our hands, but also seemed to
be less cohesive during kneading. (I now realize I should have kept
some aside without detergent to compare post-cure properties.) I’m
astonished that it was able to mix with the silicone at all; Mina told
me it would work but I didn’t really believe her. I thought the water
either wouldn’t mix in or would immediately polymerize all the
silicone. (Surely the silicone polymerization does consume some of
the water from the detergent.)

 Unfortunately I neglected to weigh the ball after mixing the
detergent into it, which would have been a useful clue as to how
much of the detergent and coloring went into the Oogoo and how
much soaked into my hands instead.

 Mina shaped most of the ball into an eight-petaled flower, then
painted part of the outside with food coloring/detergent mix left over
on the Q-tips. I shaped a small mushroom from it.

 I also neglected to measure how long it took to harden the silicone,
but it did seem to be quicker than on other occasions.

 Dish detergent: “5× concentrated”, lemon scent, Magistral UPC
7-500435-137900; biodegradable active surfactants alquilsulfato de
sodio, alquiletoxisulfato de sodio y óxido de amina; other ingredients:
etanol, agua, coadyuvantes, agente de limpieza, conservantes, colorante y
fragancia, which is roughly as nonspecific as you could possibly get. “
Materia activa minima 20%” might mean it’s 20% surfactants, or it
might not.

 Food coloring paste: Fleibor.com.ar; Azul T: azul brillante al 3.17%
, bottled April 25, 02016, ingredients: azul indigotina, azul patente,
tartrazina, propilen glicol, glicerina, azúcar, dióxido de silicio, which is a
pretty intense cyan, and also Violeta L: azul indigotina y amaranto al
14.51%, bottled January 4, 02016, ingredients: entrocina, amaranto, azul

indigotina, azul patente, propilen glicol, glicerina, azúcar, dióxido de silicio,
which is a pretty intense magenta.

 It is now 16:58.

 At 17:20, the color/detergent mix painted onto the outside of the
flower is still wet, but the Oogoo is quite firmly set.

 At 17:26 I lined a dry steel bowl with aluminum foil (the 10μm
stuff I might have mentioned previously, maybe Ecobol shitty store
brand; folded in half 5 times to make 32 layers, I measure 0.32 mm
with the calipers) and poured waterglass into it, then covered the top
with aluminum foil and put it on low heat, the intent being to make
some more waterglass foam, but this time with an aluminum foil
backing on one side. At 17:31 and 17:37 and 17:45 it’s crackling in a
threatening fashion. At 17:51 it has died down quite a bit. At 18:05 it
seems to have stopped completely, and the top aluminum foil is
distended upwards; I can feel a hot, hard round shape through it,
which is presumably waterglass foam, suggesting that this approach to
foaming waterglass has actually been enormously more successful than
I had imagined it could be. I might have had 2 mm of waterglass in
the bottom of the bowl and now it’s apparently like 70 mm tall! That
suggests a considerably larger void fraction than I’ve been able to
achieve in the past.

 I turned it off at 18:56 after cooking on low heat for an hour and a
half, at which point it was maybe making some tiny little crackles you
could barely hear if you put your ear next to it. I’m eager to see what
the foam structure looks like, but I want to let it cool slowly to
reduce cracking from thermal deltas (I can hear slight crackling,
which is probably precisely that). The whole bowl, foil, foam, and all,
weighs 57.6 g, but I’m not sure if this is the same bowl I previously
weighed empty at 42.3 g or a different one. It’s about 170 mm in
diameter. If the loaf’s volume is ⅓ of the cylinder it fits inside,
ø170 mm × 70 mm, that would be 530 mℓ. If it really weighs 15.3 g
and occupies 530 mℓ, that’s 29 mg/cc, half the density of the foams I
made previously. I wonder if it’s just one giant bubble, though.

 At 19:24 it seems to be silent and the hard shape distending the top
of the foil is cool to the touch.

 At 19:27 there is only the occasional click from it. I removed it
from the bowl. It weighed 15.5 g. I had hoped it was filling the
whole interior of the bowl, but that’s not what happened at all; it’s
probably only about the same density as the previous samples.
Because the heat was being applied from below, the bottom part of
the waterglass, stuck to the lower foil, hardened first. Then, as the
rest of it gradually hardened, the upper part expanded, causing the
waterglass layer to curl and form a large empty space below it, some
30 mm deep and 70 mm across. The overall mass of waterglass froth,
which looks very much like soap-bubble froth from well-shampooed
hair, is some 90 mm across.

 With some care I was able to peel almost all of the upper
aluminum off of it, tearing off aluminum tags in only three places
(removed successfully with the fingers), and leaving invisible
fragments of waterglass on the aluminum in a few more places that
can be felt with the fingers. The outer soap-bubble-like film is very
fragile, and on a couple of cases as I weighed it and opened the

package, I have seen bubbles of glass floating around in the air. A
small puff of air from my lips can shatter some of the foam into
glistening fragments.

 https://ibb.co/4WrfjQs

 On the tongue the delicate bubble surfaces feel a bit like gelatin
bubbles, but have no taste, leaving a slight slipperiness and tingling for
a few minutes like some soaps. (At this point it’s worth mentioning
that this is not a very alkaline waterglass formulation; it has a lot of
silicon per sodium.) When touching the denser parts of the froth with
my tongue, they do not immediately dissolve, but remain solid, as you
would expect for sodium silicates. However, nothing gritty comes off
in the mouth.

 The aluminum foil I peeled off the top weighs 1.7 g, and the
remaining waterglass foam and bottom foil together weigh 13.8 g.
Since the top and bottom foil are about the same size this suggests that
the foam alone weighs about 12.1 g.

 Concerned that the tiny glass flakes from the bubbles might cause
skin irritation, I rubbed the froth lightly on my slighly sweat-damp
left thigh to deposit a bunch of shiny bubble tops, then rubbed it
around thoroughly until the deposit was just a fine glitter, so that if
the microscopic sharp glass edges causes irritation mechanically (like
fiberglass) I will be able to observe it there. Either I will get a hell of a
rash on my thigh or I can tell people I’m Edward Cullen.

 Kinesthetically the foam feels like it’s about 25 or 30 mm thick in
the middle, maybe 15 mm thick near the edge. This permits a crude
volume estimate as a 120-mm-diameter circle (due to the edge
curling) that’s 20 mm thick, which would be 230 mℓ. 13.8 g in
230 mℓ would be 61 mg/cc, which is about the same density I’ve
gotten in the past. This might be slightly less dense because of the
bottom foil.

 (Later measurements, after cutting, show that it was about 20 mm
thick in the middle and about 10 mm thick near the edge, occasionally
as much as 15, but 120 mm is about right.)

 I heated one side of the waterglass mass with the brass torch and, as
before, the surface immediately melted at orange heat, accompanied
by a great deal of crackling and a few flakes flying away in the air,
then settling nearby. After 20 seconds of heating with the torch, it
looked like styrofoam whose surface has been eaten by gasoline or
acetone. I poured some saturated oil of lime over another part of it,
waited about 20 seconds, heated it gently with the torch at a distance
for about 30 seconds to drive off the water, and then heated the
lime-treated surface strongly for about 20 seconds. The treated
surface melted only very slightly at yellow-white heat. This left a
white efflorescence. Touching it with my fingers leaves the sticky
oil-of-lime feeling on them, so I suspect that only some of the oil of
lime was consumed.

 I tried to film this with my cellphone but can’t figure out how to
get the exposure right in video, so the blowtorch-affected area is just
white. The video has some other problems, like being 310 MB. I was
able to take some stills, especially after I learned about the
voice-activation feature of the cellphone.

https://ibb.co/4WrfjQs

 https://ibb.co/PgCdb4p

 There was some of the “cockroach” smell from heating the
lime-treated part of the waterglass, even though no chopsticks were
present, and maybe also some acid gas. This suggests that I might be
smelling some kind of muriate or calcium product, or possibly
something that’s present as an impurity in my industrial-desiccant
source.

 After all this it weighs 16.4 g, which suggests that the oil of lime
added about 2.6 g, including the part that’s still wet on the
still-attached aluminum foil. Removing as much as possible of the
aluminum foil reduces the weight to 14.2 g. In the process I noticed
that the bottom aluminum foil had actually torn in a few places,
looking rather like stretch marks from rapid weight gain. Also, it’s
not very firmly adherent; it’s possible to peel it off in bits in places.
The waterglass attached to the aluminum foil is noticeably porous,
though much less than the surface; I can push my thumbnail through
the foil into the waterglass.

 At 20:52 my thigh is still glittery and not irritated. It’s been maybe
half an hour since I applied the potential irritant, but if I recall
correctly from my childhood, skin irritation from fiberglass can take
hours to develop. At 21:22 still no irritation.

 I passed some water from the faucet over one side of it to see if it
would have a similar effect to the fire, but it seems to have only
affected a few of the largest and most delicate bubbles.

 I cut it in half with a razor knife, mostly using the back of the
blade. For this it was convenient to hold the foam between my
thumb on the aluminum-foil backing and a finger on the untreated
blowtorch-melted area, which is partly covered by a network of dense
glass which can withstand finger pressure without crumbling.
Cutting through the area that had been treated with oil of lime and
then melted was much more difficult. I dropped half of it on the
floor from a standing position when I finished; a small piece broke off
from the impact.

 https://ibb.co/sFVgsXk

 With my teeth, I took a tiny bite of one of the areas affected by the
water, about 21:34. The material is gritty between my teeth, like
toothpaste, rather than dissolving immediately upon being reduced to
fine powder. No large sand-like grains are present. It’s still gritty at
21:36. Only a little grittiness is left at 21:44 but probably because I
swallowed the grit rather than because it dissolved.

 If this foam is 15 mm thick, 120 mm in diameter, and weighed
12.1 g (the guess above), it’s 71 mg/cc, which is a little denser than
some I’d made in the past (for example by rapid heating). According
to Potential local sources and prices of refractory materials (p. 566),
liquid waterglass costs US$2/kg, which probably means the solid
form costs about US$6/kg (I missed an opportunity to find this out
today by not weighing the bowl before cooking the foam). At 71
mg/cc that would be US$430/m³ or 42.6¢/ℓ, which is slightly more
expensive per volume as other lightweight insulating mineral
aggregates mentioned in that file such as pumice (17¢/ℓ), LECA
(29¢/ℓ or 12¢/ℓ for construction), rock wool (31¢/ℓ), perlite (38¢/ℓ),
and vermiculite (23¢/ℓ), though these are mostly denser: pumice is

https://ibb.co/PgCdb4p
https://ibb.co/sFVgsXk

400 mg/cc, LECA is 1200 mg/cc, rock wool is 100 mg/cc, perlite is
128 mg/cc, and vermiculite is 60–160 mg/cc. Plausibly, this
waterglass foam could provide better insulation than these other
materials, being lighter in weight than most of them, and being a solid
mostly closed-cell foam rather than an open-cell foam or a loose
particulate aggregate.

 This experience suggests a few ways of making sandwich panels out
of waterglass foam:

• Sandwiching the liquid between two sheets of aluminum foil and
heating it, maybe under some pressure. Preferably you’d use thicker
aluminum foil/flashing, like 60 μm, rather than this 10 μm
bargain-basement stuff. According to the guess above, the foam’s
areal density is about 110 mg/cm². This aluminum foil at 10 μm and
2.70 g/cc is only 2.7 mg/cm²; one layer on each side would be
5.4 mg/cm², which is only 5% of the total weight. According to
Sandwich panel optimization (p. 754), sandwich panels of a given
areal density are stiffest when their faces are ⅓ of their total mass.
(You’d probably need to perforate the foil to allow the water vapor to
escape.)
• By heating the surface of the foam, you can melt it into a hard white
glass layer, which is very stiff, which is what you want for sandwich
panels.

 Part of my intent with this sample was originally to carve it into
some kind of interesting shape and then melt the shape’s surface to
make it sturdy (and maybe also cover it in aluminum foil), but I got
caught up in other stuff I guess.

 I cut out a small cuboid to measure density. It floats in water
without getting waterlogged or sinking, which (in combination with
its aggressively hydrophilic nature) suggests that most of the structure
is closed-cell foam, which is good news for use as insulation. The
outermost part does seem to absorb water; perhaps its cells were open
when it formed, or perhaps they were originally closed but broke
easily. After observing this, I realized I was an idiot, because I hadn’t
weighed the cube dry, so I rinsed the cube and converted the bowl
into a dehydration chamber: I stuck the cube in the bowl on top of a
plastic lid on top of some anhydrous muriate of lime. The idea is that
if I dry it by just heating it up, I’d possibly damage its foam structure.

 It’s 02:06 and still no detectable skin irritation.

 I tried draping some aluminum foil over the top of one of the cut
pieces of the waterglass foam and melting it on with the brass torch,
but this didn’t work very well; the foam under the melted aluminum
foil had a tendency to rip it apart, and aluminum foil after having
been melted tends to break easily, and it looks dull and wrinkly. By
contrast, the original underside foil remained fairly shiny. I think a
better way to put an aluminum-foil surface on a shape carved from
this foam might be to coat one side of the foil with liquid waterglass,
then wrap it around the foam, then cook it.

 This process also evolved some acid gas, I think from the
vermiculite bed I was resting the foam on for this process.

02021-08-21

 The cuboid, probably mostly dehydrated, weighs 900 mg. I really
should get a 10-mg-resolution scale! Or I should have cut out a
much larger cuboid.

 I made Mina coffee and myself mate with the brass torch.

 I wonder if I could get waterglass to gel with some agar? Agar is
supposed to gel at pH from 2.5–10 and concentrations in the 0.5%-1%
range. Then maybe I could make some aluminum-foil waterglass
tape with the waterglass gelled with agar, then wrap it to form a
thing, then let it dry or treat it with polyvalent cations or with CO₂
before heating. I don’t think I have any agar, though.

 With great difficulty, I bit through one of the Oogoo samples from
02021-08-15 — the borax one, I suspect, from the taste and the soapy
tongue feel afterwards. A slight acetic-acid smell is still evident.
After being rinsed, it’s relatively straightforward to tear the piece the
rest of the way, which is also true with an unrinsed piece that I cut
partway through with a razor knife. However, the tearing process is
only easy if done very slowly; the fibers of PDMS bridging the
growing crack gradually yield, neck, and break.

 I folded a bag from aluminum foil (maybe 20 mm × 150 mm) and
poured a few grams of waterglass into it. On heating it with the brass
torch on a bed of vermiculite, it swelled and crackled, and the
waterglass inside foamed up and eventually hardened, and then the
aluminum on top melted off. I added another torch, double-fisting
the butane. Eventually it seemed to become inactive, so I turned the
torches off and turned it over (the bottom was still shiny foil), then
heated it some more. Upon turning it a second time the vermiculite
stuck to it in a syrupy mass, probably because the waterglass had
poured out through the melted-open holes in the aluminum into the
vermiculite. Heating the waterglass-cemented vermiculite cemented
it together. As usual, the foam melted and collapsed rapidly
whenever the torches brought it to an orange heat.

 (It occurred to me that the vermiculite might be cemented with
moist phosphoric acid from some previous tests, and there was indeed
some acid-gas smell present, but I haven’t actually seen any syrupy
phosphoric acid going around. I got some of the syrupy vermiculite
stuff on my fingers and didn’t wash it off for several minutes, but
have no burns, so it was probably waterglass.)

 I was hoping that I could get a chunk of waterglass foam entirely
covered with aluminum foil this way, but I think for that to work, I
will need to heat it more gently — maybe quickly, as with hot sand,
but to a temperature below the melting point of the aluminum.

 I never did get any detectable skin irritation from rubbing my thigh
with waterglass micro-bubble fragments last night.

 The food coloring painted with detergent onto the flower Mina
made yesterday is still wet, presumably due to the detergent. The
mushroom I made is still much, much softer, especially at large
deformations, than the other Oogoo I’ve made in the past without
color or dish detergent, and so is the flower. Upon inflicting large
deformations on them with my fingernail, I observe some white
discoloration, which is probably permanent. I suspect that the dish
detergent is acting as a sort of plasticizer. The feeling is sort of in the
neighborhood of stretchy human skin, an illusion that becomes more

https://stellaculinary.com/cooking-videos/food-science-101/fs-004-guide-agar-gels

pronounced when I rub the mushroom with cassava starch (inspired
by vague memories that the “Cyberskin” skin simulant is a silicone
with talcum powder added.)

02021-08-22

 I broke apart one of the chunks of cemented vermiculite by hand,
finding white foam between the vermiculite grains, which I think
confirms that it was leaked waterglass and not contaminating
phosphoric acid. This is more evident when I cut it with a razor knife
instead of breaking it by hand, because breakage by hand tends to
cleave it along cleavage lines within the weak vermiculite grains.

 Bought more dish detergent, the Unilever Cif version, also 20%
surfactants, except they tell you what they are. AR$175 (US$1) for
500 mℓ, which works out to about US$10/kg for the sodium laureth
sulfate etc., which seems a bit pricey to me.

02021-08-23

 I checked MercadoLibre again today. Grupo Ecoquimica has raised
all their prices by about 25–50%, presumably to compensate for recent
inflation; for example, alum is AR$850/kg (US$4.70/kg) instead of
AR$630/kg, and bentonite is AR$75/kg (42¢/kg) instead of
AR$50/kg. It’s about 4 km away. I was planning to go, but didn’t.

 The PVA glue I crosslinked with borax on 02021-07-28 has quite
thoroughly dried out. I cut the chunk in half with a hacksaw, which
took a couple of minutes (it’s about 20mm in diameter) and felt a lot
like cutting a solid hard plastic, with no melting on the saw blade, a
thermoset. It’s hard all the way through, and it smells slightly of
PVA inside. This made me wonder whether it was in fact a
thermoset.

 Shibayama, Yoshizawa, Kurokawa, Fujiwara, and Nomura
published a paper in 01988 which suggests that this slime definitely
can gel, and higher pH raises the gel’s melting temperature, though
they mostly measured gels that melted around 75° with 0.8–2.5 × 10⁻²
mol/ℓ of boric acid. However, they propose that the borate is only
covalently bonded to one of the PVA chains, while the other chelates
a sodium ion, rather than forming a di-diol cross-linking bond, and
neither that mechanism nor their melting point plots are particularly
promising for the prospects of this material being a thermoset.

 I heated a small piece of it on vermiculite with the brass torch. Its
surface intumesced slightly with white bubbles at gentle heating, and
it produced a terrible smell reminiscent of burning polystyrene, and a
little bit of white smoke. Stronger heating charred the surface and
produced a little flame, which self-extinguished in a second or two
and did not continue smoldering. The uncharred material had stuck
to the vermiculite and become noticeably plastic; I could pull it apart
with my fingers. I conclude that it is not a thermoset, just another
thermoplastic (if a particularly hard one, and one that forms a nice gel
with water).

 Even if it’s a thermoplastic, though, you could still use a PVA
solution as a binder for 3-D printing in a powder bed of filler doped
with some kind of borate.

 A low-concentration thermoset hydrogel would be appealing for
the waterglass-tape application mentioned earlier, a great
improvement on agar, as well as for molding things with the
appropriate fillers and for preceramic polymers and for producing
carbon foam (or fibers). All I have available at the moment is wheat
gluten; the internet suggests chitosan cross-linked with
β-glycerophosphate, dicarboxylic acids such as citrate, glutaraldehyde,
divinyl sulfone, epichlorohydrin, or electron beams as possibilities, or
cellulose or chitin dissolved in more exotic solvents, which I guess is
how rayon/cellophane is made. It seems likely that most materials
that could covalently cross-link common biopolymers like starch or
chitosan would be pretty toxic; apparently epichlorohydrin,
monosodium phosphate, sodium trimetaphosphate, and sodium
tripolyphosphate (sodium triphosphate) are commonly used for
cross-linking starches. (Could the obesity pandemic be largely caused
by modified food starch?)

02021-08-24

 I heated a bit of baling wire in the brass torch to orange heat to
melt some holes in the five bottom lobes of a plastic soft-drink bottle
(Tomasso cola) to turn it into a gardening pot, which yielded curls of
white smoke with a burning-plastic smell, but no flames. I burned
the remaining PET off the wire with the torch, then set it down to
cool on a piece of the waterglass foam, to which it did not noticeably
adhere. Although it’s only 57 mm long and about 1.5 mm diameter,
the handle end didn’t get hot throughout the whole process. This is
the same wire I had Mina use to burn the mole off my forearm, but
she had it gripped in the vise-grips rather than her hand.

 I notice that the off-balance weight of the brass torch is making the
butane can a little unstable now that it’s nearly empty.

 It occurs to me that maybe some metal hydroxide could serve as
the hydroxyl donor for the polymerization of acetic-cure silicone, and
copper hydroxide (which I’ve made previously by electrolysis) seems
like an ideal candidate because of its laid-back enthalpy of formation
(-225 kJ/mol OH) and associated low decomposition temperature.
By contrast, sodium hydroxide is -425.8 kJ/mol and doesn’t boil
(decomposing into the elements, I think) until 1388°, and aluminum
trihydroxide (78.00 g/mol, 2.42 g/cc, gibbsite, dehydrates in the
range 180°–300°) is -1277 kJ/mol, or -426 kJ/mol OH, same as the
sodium salt.

 Hmm, https://iupac.github.io/SolubilityDataSeries/ is an
intriguing URL! Apparently IUPAC has put their solubility data
series on GitHub, as well as a number of other datasets, although the
link to the source repository seems to be broken. Copper hydroxides
are in volume 23. About half of the volumes have analogous URLs;
many others (5, 6, 16, 17, 27, 28, 45, 46, 53, and 67–104) are missing.

 IUPAC’s solubility data is from 01986 and suggests using lye or
ammonia to solubilize copper hydroxide. It has this lovely epigraph
at the beginning of the Foreword:
If the knowledge is undigested or simply wrong, more is not better[.]

 This seems to be a jab at the CRC Handbook:
On the other hand, tertiary sources — handbooks, reference books and other

https://pubs.rsc.org/en/content/articlehtml/2016/gc/c5gc02396c
https://pubs.rsc.org/en/content/articlehtml/2016/gc/c5gc02396c
https://iupac.github.io/SolubilityDataSeries/
https://iupac.github.io/SolubilityDataSeries/volumes/SDS-23.pdf
https://iupac.github.io/SolubilityDataSeries/volumes/SDS-23.pdf

tabulated and graphical compilations — as they exist today are comprehensive but,
as a rule, uncritical. They usually attempt to cover whole disciplines, and thus
obviously are superficial in treatment. Since they command a wide market, we
believe that their service to the advancement of science is at least questionable.

02021-08-25

 I bought a kg of electrical copper from the recycler around the
corner for AR$1200 (US$6.70/kg). Some of it is very fine
(presumably enameled wire from CRT yokes) while other parts are
stranded, thicker, and uninsulated, measuring 0Ω on the multimeter.
I cut a 1-meter section of a single strand of the uninsulated cable,
which measures 0.51–0.57 mm in diameter with the calipers at
different places along the strand, thus having a volume of about
0.20–0.26 cc. It weighs 2.1 g, which would put it in the density range
8.2–10.3 g/cc. It can be easily bent by hand.

 It melts on the bed of vermiculite at a red-orange heat from the
butane torches, a heat which is difficult to attain without placing
some heat-reflecting waterglass foam behind the wire, at which point
the waterglass also starts melting. Upon heating, it forms a hard,
adherent black oxide coating. The melting is sharply defined, so that
an intact wire forms a small sphere of liquid at the end of it. No
visible fumes are emitted.

 All of these characteristics are consistent with the metal really being
copper. The density is in the right range; measuring the density of a
larger piece of metal, or using a less shitty scale, would give me a
more precise number. Zinc (from brass) would boil at 907°, emitting
white fumes, and bronze would partly melt around 798°, or, in some
flavors, completely melt at below 750°. Either alloy would melt
gradually rather than suddenly, and both would probably be harder.

 The melted copper wetted the vermiculite grains enough to stick
firmly to them, suggesting that it ought to be possible to use copper
(in a reducing atmosphere!) to repair broken pottery in the same way
as silver and gold. To confirm this, I tried melting a little more
copper wire on a bed of sand, and indeed the little ball of melted
copper got sand stuck all over it, much of which I could not remove
with my thumbnail. The effort abraded away much of my thumbnail
stickout, in fact. I attempted to test the hypothesis directly by putting
a couple of broken bits of ceramic floor tile with copper wire between
them into an oven improvised from bits of waterglass foam, but
although the glaze on one of the tile bits melted and flowed a bit, I
wasn’t able to get them hot enough with the torches to melt the
copper. They glowed orange. I was able to melt copper wire onto the
bottom of one of the tiles by itself, a little, but it was relatively easy to
dislodge after it cooled.

 In the process I lost the aluminum foil on the bottom side of one of
the waterglass pieces from the loaf I baked the other day; it melted
away, along with a good portion of the thickness of the waterglass.
Some of the waterglass also melted onto the top of one of the ceramic
tile fragments, though I was able to dislodge it later.

 The flames shooting out of the gaps in the oven were bright green,
which might be from something in the ceramic (especially its glaze) or
(less likely) the copper or waterglass.

https://www.tf.uni-kiel.de/matwis/amat/iss/kap_6/illustr/i6_2_1.html

 During this process there were some acid fumes and some that
smelled a bit like some kind of burning plastic, so I probably ought to
throw out this vermiculite bed. Now I have both slightly irritated
lungs and throat and a bit of a headache.

 It occurs to me that if I can disperse a fine dust of a water-insoluble
inert source of polyvalent cations in the waterglass, something that
remains fairly inert at the low temperatures needed to soften and
foam up the waterglass but then gives up its ions when the waterglass
is facing real fire, it would probably work better than just applying oil
of lime to the surface of the foam. Candidates include talc, aluminum
trihydroxide, bentonite, copper oxides or hydroxide, finely ground
enstatite, dehydrated borax, chalk, kaolin, rutile, or zincite.
Amorphous silica such as diatomaceous earth might also work, but in
a different way, by dissolving into the warm anhydrous sodium
silicate melt and merely diluting the sodium rather than displacing it.

 It occurred to me that an acid electrolyte like vinegar is not going
to be useful for producing copper hydroxide, because it will convert
essentially all the copper hydroxide into (soluble) copper acetate. So I
resolved to get a vitriol electrolyte, but what I have handy is green
vitriol, which might produce undesirable deposits of its own, maybe
insoluble iron hydroxide, contaminating the copper hydroxide.

 So I heated up some baking soda in tap water on the stove; it
started bubbling as soon as I started applying heat, indicating that it
was decomposing to soda ash. I added a little unheated baking soda to
a near-transparent green solution of iron sulfate fertilizer in tap water,
resulting in the formation of the usual nasty green muck with lots of
bubbles. After the baking soda had boiled for a while, spoonfuls of
the solution still bubbled enthusiastically when vinegar was dripped
into the spoon. But I added the hot solution to the iron etc. mix and
got only a little more bubbling, presumably due to the accelerated
decomposition of the remaining baking soda. Bubbling slowed and
the solution began to defecate after a few minutes.

 Now I realize that because I didn’t measure anything my solution
contains an unknown mix of soda and sal mirabilis, plus the nasty
green iron carbonate that’s precipitating out. If I use that to
electrolyze the copper I’ll end up with verditer, which is the usual
blue-green pigment and which decomposes to tenorite on heating, so
I should be satisfied with that. But in that case I might as well just use
the soda as the electrolyte directly without the sal mirabilis.

 I turned off the flame for a while, allowing the soda to cool a bit
and crystallize into a single large mass which broke up and partly
dissolved readily upon the addition of more water. Reheating
produced no further bubbles, indicating that the baking soda was
essentially all decomposed. There was a small black speck floating in
it, probably from the defective faucet. I spooned a bit of the
menstruum into the defecated vitriol product, which precipitated no
further visible solids, indicating an excess of soda. Then I decided to
dehydrate the soda, for which purpose I added aluminum foil over
the top of the container. After a few minutes of further heating, pops
were heard, so I lowered the flame further. Pops continued; upon
inspection the soda has crystallized into a mostly porous mass, which
has a few dozen holes in it where steam explosion has blasted

fragments elsewhere.

 The internet suggests that the green material may be iron(II,III)
hydroxycarbonate, “carbonate green rust”. (On previous occasions,
after filtration and drying, it turned into a very fine purple-brown
powder.). After a few minutes it has defecated into a well-defined
layer at the bottom of the jar (about 12 mm deep out of 60 mm, if the
glass is 3 mm thick), which appears solid but is actually a fine
suspension that offers no resistance to being stirred with a knife. The
water above it is green and cloudy, but basically transparent.

 I heated a piece of brass-wool dishwashing sponge (<500mg) with
the brass torch as a control, to see if it behaved the same as the copper.
It seemed to be, if anything, harder to melt, but it did emit a little
white smoke, and did not ball up due to crossing sharply-defined
melting points, but rather wilted. It did form the same kind of black
oxide coating, though. However, a white surface deposit (presumably
philosopher’s wool) was evident on the lower layers of the result. The
burned sponge was crumbly rather than solid as the melted copper
wire had been, perhaps because it was thin enough to oxidize most of
the material rather than just a superficial coating.

 After a few minutes more of heating, the pops and hissing from the
soda ceased, and I was left with a bright white mass of soda, which
had crept up the walls a bit. It had delaminated from both the floor
and walls of the thin stainless steel pot, and indeed evidently detached
from the pot in a single block. As it cooled, it crackled softly.

 I flaked some soda off the wall and dripped some oil of lime on it in
my hand, then let it to soak in my hand for a few seconds. No
reaction was evident, not even warming, but afterwards the flakes
took multiple washings over several minutes, clouding the water each
time, to dissolve completely in water. By contrast, other similar flakes
mostly dissolved in water in a few seconds and entirely in a minute or
two. This suggests that fairly insoluble chalk was formed, though not
enough in a few seconds to withstand multiple washings; chalk is not
as strong as the phosphates of calcium, but still a viable building
material. If you wanted to do this with an inkjet printer, calcium
dinitrate might be a less corrosive source of calcium ions than oil of
lime.

 Using a cut-off end of construction I-beam as a handheld anvil, I
was able to hammer one of the balls of copper flat, to perhaps 10× its
original area and 1/10 of its original thickness, without any difficulty,
although it cracked a bit around the edges.

 96% ethanol is sufficient to remove residual adhesive from Emeth
Línea Gourmet jam jar labels, though it requires several seconds of
soaking and usually multiple tries.

 I ground up the dried soda in a marble mortar and stored it in
another Emeth jar.

 Oh, I realize I never recorded the ingredients of the Cif
dishwashing detergent, whose bottle looks like it’s made in the same
factory as the Magistral, maybe with the same blow molds: the
surfactants, both anionic, are linear sodium lauryl ether sulfate and
sodium alkylbenzenesulfonate. The other ingredients are “pH
regulating agent, coadjuvant, viscosant, preservatives, sequestrant,
colorants, and perfume.” Pretty shitty labeling if you ask me.

 Mercado Libre offers 5 kg of technical grade sodium lauryl sulfate
for AR$7430 (US$41, US$8.30/kg), which is pretty close to the
US$10 I was guessing I was paying at the supermarket, without
having to dump the formaldehyde in it myself.

 Because the Wikipedia article on green rust mentions that it
normally oxidizes to iron oxyhydroxide, which is not green but more
brown, and because the stuff I’d made previously turned
purple-brown, I sucked a little of the green muck into a tube and put
it in a bowl, then added some drops of 30-volumes hydrogen peroxide
to it. It immediately turned brown-black and foamed up a lot, which
is consistent with the identification as carbonate green rust. It would
be better to use an oxidizer that isn’t itself inclined to foam up, I
guess, so I could be sure that it’s really releasing the carbonate.

 The weird thing is that the syntheses described in Wikipedia are a
lot more involved than just dumping an excess of soda ash on some
green vitriol in a jar, so I wonder if there are impurities in my
fertilizer that predispose it to this. Or maybe this hydroxycarbonate
isn’t very pure.

 This sounds more like the reaction described in the (nearly
insoluble) iron carbonate article:
Ferrous carbonate can be prepared also from solutions of an iron(II) salt, such as
iron(II) perchlorate, with sodium bicarbonate, releasing carbon dioxide:

Fe(ClO₄)₂ + 2NaHCO₃ → FeCO₃ + 2NaClO₄ + CO₂ + H₂O
 Sel and others used this reaction (but with FeCl₂ instead of Fe(ClO₄)₂) at 0.2 M
to prepare amorphous FeCO₃.
 Care must be taken to exclude oxygen O₂ from the solutions, because the Fe²⁺
ion is easily oxidized to Fe³⁺, especially at pH above 6.0.

 Which, I mean, that’s pretty much what happened.

 The hydroxycarbonate was a little stinky, same as last time. I
wonder if that means the green vitriol is slightly contaminated with,
say, iron sulfide.

02021-08-26

 The hydroxycarbonate has entirely defecated, leaving what seems
to be a perfectly clear menstruum, except that some of it is stuck to
the walls of the jar. Siphoning this water out may usefully substitute
for a stage of filtering if the objective is getting the solutes.

 It occurred to me that in fact electro-etching of copper in soda ash
solution may not work, precisely because copper carbonate is
insoluble. If so, the sal mirabilis in that jar could be crucial.

02021-08-29

 The cuboid of foam I put in to dehydrate a few days ago now
weighs 700 mg, which I guess means that it wasn’t fully dehydrated at
900 mg. The bowl seems to have remained reasonably well sealed
with the foil; the flakes of muriate of lime that were slightly damp
before have now become almost dry, just slightly shiny, and very
firmly stuck to the bottom of the bowl, and slightly discolored with
what looks like iron oxide rust. Upon immersing the cuboid in tared
water the scale read 7.0, indicating that its extra-pore volume is
7.0 cc; upon removing it from the water, the scale read -1.1,
indicating that 1.1 cc of water had entered its pores; upon weighing

https://articulo.mercadolibre.com.ar/MLA-930052011-laurilsulfato-de-sodio-5kg-_JM
https://articulo.mercadolibre.com.ar/MLA-930052011-laurilsulfato-de-sodio-5kg-_JM
https://en.wikipedia.org/wiki/Green_rust#Air_oxidation_methods
https://en.wikipedia.org/wiki/Iron(II)_carbonate#Preparation
https://en.wikipedia.org/wiki/Iron(II)_carbonate#Preparation

the wet cube I get 1.8, which is consistent with 1.1 g of water plus
0.7 g of cube. So this foam cuboid, when dry, is actually about 8.1 cc
and 86 mg/cc. Upon leaving it on the scale a little while, turning the
scale back on, and picking it off, the scale reads -1.7 g, so about
100 mg of water seeped out of the foam; upon drying the scale with a
paper towel (should have used a sample boat!) I get -1.8 g as expected.

 Unfortunately I didn’t weigh the bowl of muriate of lime before
adding water to it to get rid of the muriate, so I can’t heat up the
muriate to see how much water I drive out of it (most of which was
presumably obtained from the cuboid).

 To get relief from gastric reflux, I drank a little dilute
washing-soda solution earlier. It was bitter, left my tongue sort of
tingling in a soap-like fashion, and left my throat more irritated than
before, so I probably should stick to baking soda. (I took some baking
soda a little bit later.) I was thinking it might be interesting to try to
saponify some butter with that soda, but apparently this involves
boiling it for 2–5 days, so I don’t think I’ll do that. Maybe I’ll make
some soap with lye, but not tonight.

 Maybe I can make boric acid (61.83 g/mol). The usual borax is the
decahydrate (381.33 g/mol) and decomposes to the anhydrous form
(201.22 g/mol) at 75°, which then doesn’t melt until 743°, a
temperature with a deep-red glow. In water you can dissolve
3.17 g/100 mℓ, I guess at room temperature. Boric acid, by contrast,
doesn’t have a hydrated form and melts at 170.9° (well, dehydrates to
the almost insoluble metaboric acid, which melts at 236°), but
dissolves about 2.52 g at 0°, 4.72 g/100 mℓ at 20°, rising to
27.5 g/100 mℓ at 100°. I don’t really understand pKa, but I think that
because boric acid’s (first) pKa is 9.24, acetic acid (60.052 g/mol,
pKa=4.756) should be able to convert all but about 0.003% of the
borate in borax into boric acid by stealing off its sodium for the highly
soluble sodium acetate (82.034 g/mol, 119 g/100 mℓ at 0°,
123.3 g/100 mℓ at 20°, 162.9 g/100 mℓ at 100°).

 The stoichiometry here is a little confusing. I need one acetate per
sodium, and borax (Na₂B₄O₇·10H₂O) has two borons per sodium, so I
guess I have two borons per acetate. But that tetraborate group needs
some extra hydrogen to break it up into loose boric acid molecules,
namely three hydrogens per boron, plus some extra oxygens (5
oxygens per tetraborate) but acetic acid only provides one hydrogen
per acetate and no oxygen. So I guess we have to get our other
hydrogens and oxygens from the water: Na₂B₄O₇·10H₂O +
2CH₃COOH → 5H₂O + 2NaCH₃COO + 4B(OH)₃.
 So if I get a reaction product that crystallizes at anything less than
overwhelming concentrations, even at 0°, it’s either borax or boric
acid, and if the solution is still acidic, it’s boric acid. And ideally I
should be able to get about 90% of the boric acid to crystallize if I use
a minimal amount of water to dissolve it. (Even if I were to
crystallize it just by cooling down an excessive amount of solution,
the yield ought to be above 50% as long as I have less than 100 mℓ of
water per 5.04 g of boric acid.) Anhydrous sodium acetate’s boiling
point is listed as 881.4°, so as long as I don’t boil the stuff dry (and
then overheat it to red hot), it ought to be stable.

 I don’t have a simple way to find out how much acetic acid is in
my vinegar, though, so I’d have to add an excess; acetic acid is
entirely miscible with water and boils at only 118°.

 I guess I could see roughly how much vinegar is needed to
neutralize, say, a gram of baking soda (84.0066 g/mol). (This would
be a lot easier with a better scale, but I guess I’ll just be very
approximate instead of carefully titrating.)

 I added 1.0 g of baking soda to a tray (which initially weighed
2.2 g). I added vinegar to a cup that initially weighed 8.2 g, with a
final weight of 53.7 g, so 45.5 g of vinegar. By the time the cup
weighed 35.5 g (27.3 g of vinegar) the baking soda seemed to all be
neutralized (by the 18.2 g of vinegar I added), but not much before
that. Let’s say somewhere between 13 g and 18.2 g.

 In theory this is NaHCO₃ + CH₃COOH → CO₂ + H₂O +
NaCH₃COO, a 1:1 mole ratio between acetic acid and baking soda, so
the 1.0 g of baking soda corresponds to 60.052/84.0066 = 0.715 g of
acetic acid, but given the weighing imprecision of the scale,
somewhere between 0.68 and 0.75 g. Continuing the interval
arithmetic, that puts us between 3.7% and 5.8% acetic acid in this
vinegar (Alcazar vinagre de alcohol, acidez 5%, UPC 7-790130-000294).
I could probably take a second measurement with more careful
titration to nail that down to something like “4.3% to 5.3%” but I’m
not going to, because this is precise enough to allow me to ensure an
excess of acetic acid with the borax without adding an absurd amount
of extra water, and I can harmlessly boil off any extra water without
losing any boric acid.

 So suppose I want 100 g of boric acid, B(OH)₃. I’d need 364 g of
water to dissolve it in. This bowl I used to dehydrate the glass foam
weighs 42.5 g empty (it’s probably the bowl that weighed 42.3 g
before) and 562 g with an unreasonably large amount of water in it,
an amount almost certain to spill. But looking at the equation above,
every mole of borax (381.33 g) requires two moles of acetic acid
(120.104 g) to neutralize it, producing four moles of boric acid
(247.32 g) and two moles of sodium acetate (164.068 g). But
120.104 g of acetic acid at my lower-bound 3.7% concentration would
be 3300 g of vinegar, and I have less than 500 g here, and at any rate if
I used that much it would spill everywhere when it came to a boil.

 So suppose I use a more reasonable 200 g of vinegar, providing at
least 7.4 g of acetic acid. That should suffice to neutralize 23 g of
borax, producing 15 g of boric acid and 10.1 g of sodium acetate. If I
then just stick it in the freezer, the 193 g of water will only be able to
dissolve 4.9 g of it, for a theoretical 67% yield, but if I boil it down to
100 g or 50 g or something, I should be able to improve that
significantly.

 I weighed out 20.0 g of borax into an improvised aluminum-foil
sample boat, put it in the bowl, and weighed out 200 g of vinegar,
then put it on a low flame. Some of the borax seemed to dissolve in
the vinegar at room temperature, but, as predicted, not most of it. It
finished dissolving at about 01:17 as the vinegar warmed up a bit, at a
point where it was too hot to hold my finger in but did not burn my
finger in a second or two, perhaps 40–45°. I continued heating it on
low heat a while longer, then decided to go for broke and boil it

rapidly with an aluminum-foil lid. At 01:23 it weighed 244 g without
the foil lid, 246 g with it. At 01:25 it weighed 232 g, and the foil
seemed to be doing a reasonable job at preventing liquid drops from
spraying out.

 At 01:30 it had boiled down to 167 g (remember, 43 g is the bowl,
and 1 g is the lid). I took off the lid to see how it looked, like if
anything had precipitated, but it just smelled very acidic and looked
clear. Unfortunately I tore the lid, which reduced the weight to
163 g, so about 3 g of condensation and spray went with the previous
lid. I made a new lid (also about 1 g) and returned it to the fire.

 7 minutes to drop from 244 g to 167 g is 11.0 g per minute, or more
realistically 8–16 g per minute. If we assume that basically all the
power is going into boiling water, at water’s enthalpy of vaporization
of 40 kJ/mol and 18 g/mol, this is about 400 watts.

 At 01:36 it was starting to sound syrupy, so I turned it off. It
weighed 98 g, 96 g without the lid, which stuck a little to the bowl as
I tried to remove it. Some drops that had splashed onto the side of
the bowl had crystallized into white spots, but they dissolved rapidly
when I sloshed the hot syrup over them. I put the mix into the
freezer. There was a strong smell of acid.

 96 g should be about 53 g of solution, of which about 10.1 g should
be sodium acetate, about 13 g boric acid, some undetermined but
fairly significant amount should be acetic acid, some insignificant
amount should be borax, and the rest (less than 29.9 g) should be
water.

 At 01:45 I looked in the freezer; there is no visible precipitation
yet, except possibly some dust floating in the syrup. Its viscosity
seems unchanged.

 At 01:56 there was a lot of translucent white crystallization on the
bottom and some more floating around in the syrup, which actually
seems maybe a bit less syrupy now. I made a gravity filtration setup
out of a couple of Monster cans and two coffee filters and stuck it in
the freezer to cool. Empty, it weighed 27.6 g, but then I realized � it
actually had a drop of water in it and � was too tall to fit in the
freezer and � at any rate I was going to be filtering 40 mℓ of solution
and not 400 mℓ so I could cut it down a bit. So I cut it down to
24.0 g.

 At 02:06 the fluid is quite milky from crystallization and seems to
be about the same viscosity as before, and it still smells intensely of
vinegar. My plan is to dump the liquid into the filtration funnel, then
rinse the crystals stuck to the bowl with some 0° water, passing that
water also through the filtration funnel, and then set both the bowl
and the filters out to dry under a loose covering for a few days.

 At 02:18 I did the filtering, but didn’t do a very good job of record
keeping because I was trying to do it all before things warmed up and
increased solubility. If I recorded this correctly, though, the filter
funnel setup initially weighed 24.1 g, and I think the bowl initially
weighed 77.8 g. After pouring the milky menstruum into the filter
funnel, it weighed 38.9 g, but I didn’t record the bowl’s weight; it
must have been about 63.0 g. I added some 0° water to the bowl,
bringing its weight up to 86.0 g, which seems like a lot more water
than I should have added; after I poured that into the filter funnel

too, the bowl was down to 72.7 g, and then I knocked over the filter
funnel, spilling some of the menstruum onto the table and bringing its
weight down to 45.2 g. I added more water to the bowl, bringing it
up to 80.2 g, and dumped that into the funnel, reducing the bowl’s
weight to 69.5 g, and bringing the funnel’s weight up to 58.4 g. I
should have weighed the water bottle at the beginning, too!

 Afterwards the water bottle weighed 514 g; it’s a nominally 500 mℓ
Coke bottle, of a type which weighs 24 g including the PCO1881 cap.
On refilling it until only a small bubble is left, as before, it weighs
555 g. So the total amount of cold water I added was somewhere in
the neighborhood of 30–45 g.

 Now I realize I should add some extra rinse water to the filter
funnel to wash water-solubles out of the filters. I first reduced the
weight of the cold-water bottle so I could weigh it on the scale at
390.0 g, and on adding some of it to the funnel apparatus, its weight
increased from 58.4 g to 105.2 g, leaving the bottle weighing 345.2 g,
so I transferred 44.8 g or 46.8 g of water from one to the other. One
of those numbers must be wrong, because I doubt I spilled 2 g of
water or got it stuck to my hands, but on weighing the filter
apparatus again it weighs 105.0 g, and the bottle still weighs 345.2 g.
So, I don’t know what went wrong, but it’s probably safe to say I
added on the order of 44–47 g of water to rinse the funnel.

 105.0 g amounts to 66.1 g of rinse water, which will probably have
stolen about 1.7 g of the boric-acid product from the funnel. It’s a
miracle there’s anything solid left in that coffee filter, but there is.

 To see if the wet product in the bowl is really boric acid, I spooned
about 0.2 g of it with a chopstick onto a 3.9-g bottom of a Monster
can and turned on the stove. At first it dissolved a bit as the water
heated, then formed a white apparently amorphous foam as the water
boiled. I scraped a little powder off the foam with a chopstick, which
landed on the aluminum. No further changes were seen to the foam
or the powder as I turned up the heat, though the epoxy inner liner of
the Monster can started to smoke white, and my lungs started to
criticize me. I blew a butane torch over the top of it to heat it further
and hopefully burn off the smoke, but this mostly had the effect of
heating parts of the foam to orange-hot and melting the aluminum
underneath it, at which point I turned off the fires and opened the
window.

 This is uninspiring, more like what I had seen previously from
heating borax (in a less stupid and dangerous way, using aluminum
foil) than what I was hoping for from boric acid. There was never a
point where it convincingly melted, even though it got to red heat.
The only detectable difference is that it’s black instead of white (from
the smoke from the charring epoxy) and it’s perhaps a bit harder (but
maybe I reached borax’s melting point and thus collapsed superficial
bubbles, reducing porosity).

 The remaining prediction to test, I guess, is that, after heating the
“boric acid” enough to convert it to metaboric acid or boria, it should
not dissolve in water; the solubility of the borax foams, by contrast,
was one of their most striking properties. Accordingly, I added most
of the blackened remains of the “boric acid” foam to a cup of warm
(≈40°) water. In a minute or so, they dissolved into black sludge,

which breaks up when the water is stirred. So I think what I have
here is still just borax, contaminated with the toxic decomposition
byproducts of epoxy. I threw it away.

 Other candidate tests suggested in some random lab handout
include a flame test (which should be bright yellow for borax,
transparent green for boric acid) and conductivity in distilled water
(which I think ought to be very high for borax and very low for boric
acid, though the lab worksheet doesn’t actually say, instead being
phrased as an exercise). The lab procedure used 1M vitriol rather than
vinegar but was otherwise equivalent.

 I tried the flame test and got a bright yellow flame that looked like
sodium. However, I also got yellow flames from my iron wire and
carbon welding electrode when they were supposedly clean, though
maybe the yellow was a little less bright. I also contaminated the
bowl of sample with the carbon welding electrode; when I dipped it
in while hot, it scattered carbon particles around.

 A much simpler test would be to heat dry “boric acid” past 200°,
weighing it before and afterwards. If it’s boric acid, which is
61.83 g/mol, heating to even a few hundred degrees will only drive
off the hydrogens, reducing its weight by about 4%. If it’s borax,
heating it past 75° will dehydrate it from 381.38 g/mol to
201.22 g/mol, a 47% reduction in weight. But I cannot do that until
it is dry. A differential scanning calorimetry/thermogravimetric
analysis rig would be extremely helpful for this kind of thing.

 It’s 03:40. The filtering apparatus has mostly frozen; the funnel
part has a little icicle hanging down, and the receptacle in the bottom
is mostly a block of ice, with a little of some kind of syrupy liquid on
top of it, which is plausibly a low-melting solution of water, acetic
acid, borax, boric acid, and/or sodium acetate. I guess that means it’s
not doing any more filtering at 0° or -20° or whatever. So I took it
out of the freezer and left it to thaw on the table, with a little
aluminum foil over the top to keep dust from falling in. The idea is
that when it melts, a little more filtration will happen, and then I can
remove the filters from the funnel and lay them out to dry.

 I found an old article about boric acid purification and a new
CC-BY article about it. The current article mentions acidifying
borax with vitriol, aqua fortis, oxalic acid, and propionic acid, but not
acetic acid, and also using membrane electrolysis.

 The old article, however, does mention acidifying with acetic
acid — but followed by a stage of evaporating to dryness, then
volatilizing the result with methanol! Methanol seems to be available
for AR$190/ℓ (US$1.06/ℓ) as a gasoline performance additive for
hot-rodding, so maybe I can find it at an auto parts store, but it seems
like it’s a more specialty product than in the US, and the HEET brand
name (for its use as a gas-line antifreeze) is nonexistent.

 However, Gooch seems to be concerned not with purifying boric
acid but with measuring the amount present, so he ends up turning it
into calcium borate to weigh it. On the other hand, he has a lot of
helpful tips about this sort of work, mentioning for example “the
exceedingly delicate test with turmeric” for detecting residual boric
acid. This is mentioned in the ScienceMadness Wiki:
Boric acid reacts in alcoholic solution with two molecules of curcumin to form

https://www.dimanregional.org/site/handlers/filedownload.ashx?moduleinstanceid=8719&dataid=3359&FileName=Cycle 5 Chem 1 Lab 1 and 2 - Preparation and Characterization of Boric Acid.pdf
https://www.jstor.org/stable/25129859
https://articulo.mercadolibre.com.ar/MLA-734405232-metanol-para-autos-y-motos100-puro-_JM
https://articulo.mercadolibre.com.ar/MLA-734405232-metanol-para-autos-y-motos100-puro-_JM
https://articulo.mercadolibre.com.ar/MLA-734405232-metanol-para-autos-y-motos100-puro-_JM
https://articulo.mercadolibre.com.ar/MLA-734405232-metanol-para-autos-y-motos100-puro-_JM
https://en.wikipedia.org/wiki/Sodium_acetate

rosocyanine, a dark green ionic solid that forms deep red solutions.

 It seems like Gooch was forming (and distilling) trimethyl borate,
which boils at 68°, but had no way to find that out.

 It looks like boric acid is highly soluble in methanol and ethanol
(even without reacting with them), while borax is only slightly
soluble in ethanol. So that might be a thing to try.

 I took out another sample of 0.2 g or so from the bowl and dripped
96% ethanol on it on a scrap of aluminum foil, letting the somewhat
milky liquid run onto a different scrap. I set the second scrap on fire,
and got what looked like a pretty normal yellow blackbody diffusion
flame with a green aura around it, which at least vaguely suggests
some boric acid might be present. Eventually the alcohol burned
away, leaving a white residue. On heating this foil on the stove, the
white residue turned black, even though there was no epoxy available
to contaminate it. I suspect that this was sodium acetate being
charred, which means that I didn’t rinse the bowl very well. (Gooch
mentions that sodium acetate is soluble in methanol; apparently
ethanol also dissolves 5.3 g/100 mℓ of the trihydrate.)

02021-08-31

 The borax/vinegar material in the bowl has solidified and smells
strongly of vinegar, indicating again that it was inadequately washed.
The filtration funnel still has sediment in the filters; the menstruum it
filtered remains clear (but is hardly exposed to evaporation).

 Yesterday I ate a can of mackerel and washed it out, but it retained
a strong fish smell. I heated it full of water and sodium percarbonate
on an electric burner, which produced froth. There was too much
sodium percarbonate to dissolve, which restricted the flow of water
near the bottom; this may have been a factor in the plastic can lining
bubbling up along the bottom where it was over the heating element.
It still smelled strongly of fish. I left it full of dilute household
ammonia overnight, but today it still smells strongly of fish. Now I
have put it full of dilute household bleach (taking care to rinse the
ammonia out first).

 To a cup cut from the bottom of a Monster bottle weighing 8.1
grams I added 40.4 g of the somewhat wet copperas fertilizer,
removing a large crystal that somehow got in there (presumably of
copperas, but possibly something else). 48.4 g was the final weight, so
maybe that was more like 40.35 g. I added 151.2 g of tap water, which
mostly dissolved the copperas immediately, though the solution was a
bit murky. Applying gentle heating does not seem to remove the
cloudiness, so it’s probably insoluble particulate contamination, maybe
the pyrites I suggested earlier might be aromatizing my iron
precipitation products. Actually, gentle heating seems to have turned
it an opaque green-brown! But there was no acidic smell, so the heat
surely isn’t decomposing sulfate ions.

 Now I realize I should have tried heating it to dryness first to
quantify how much water there was in it; this ought be the
heptahydrate plus a bit.

 To a yogurt cup weighing 7.1 g I added an egg white; afterwards it
weighed 41.6 g, suggesting that I have 34.5 g of egg white here.

https://en.wikipedia.org/wiki/Iron(III)_sulfate
https://en.wikipedia.org/wiki/Sodium_acetate

 I turned another Monster can into a filter-funnel setup and filtered
the warm copperas solution through it, spilling a little. Much to my
surprise, there’s a green translucent mud at the bottom, apparently
copperas crystals. The filtrate seems to be just as opaque as the
solution, so evidently this coffee filter is not doing a good job at
filtering out the particles, which I now realize may be precipitated
copperas.

 To the can with the sparkling green sludge, now weighing 23.3 g
(16.2 g sludge) I added 81.1 g of water. The crystals began to dissolve
immediately, but were not completely dissolved after a few minutes
when I spilled the whole thing on the floor. This, however, revealed
that some of the crystals were stuck together in pale blue-green
granular masses, presumably from when I was heating them; the
sludge had hidden them previously. These masses broke into a few
pieces when the can hit the ground. The can, unspilled green water,
and crystals weigh 25.8 g (17.7 g sludge and water); I added another
21.3 g of tap water to try to dissolve them.

 So evidently what happened was that I prepared a saturated
solution of copperas with some minor particulate contamination, then
evaporated it (failing to increase the solubility enough to desaturate)
to precipitate lots of tiny copperas crystals, which are now clogging
my coffee filter. But the 151.2 g of tap water I added was evidently
capable of dissolving at least 40.4-16.2 = 24.4 g of the copperas
crystals, and probably more, since some of that 16.2 g of sludge was
water. This works out to at least 16.1 g/100 mℓ but less than
26.7 g/100 mℓ; WP says its solubility in water is 20.5 g/100 mℓ at 10°
and 29.51 g/100 mℓ at 25°, ranging up to 51.35 g/100 mℓ at 54°. So I
probably shouldn’t have been so ambitious with the quantities.

 The granular masses and crystals to which I added the 21.3 g of
water mostly dissolved, so I poured the cloudy green solution to the
funnel, leaving only a single crystalline mass stuck to the side
(dropping the mass from 46.8 g, including the can, by 38.1 g, to 8.6 or
8.7 g) and added another 24.4 g of tap water, which rapidly
diminished the size of the polycrystalline chunk, which dissolved in a
minute or two. The pale green solution is still fairly cloudy, but I
added it to the filter. The empty can weighs 8.2 g and has some green
deposits on its walls.

 I poured the 228.8 of filtered liquid back in to the 8.1 g (!) empty
can and thence back through the filter funnel, except for some which
I lost. I’m hoping that the particles clogging the filter will provide me
with finer filtration this time around.

 It looks slightly clearer maybe. I put 1.9 g of the egg white into the
empty can and added 7.5 g of the slightly clearer filtrate, for a total
weight of 17.6 g. Yellow-brown, slimy transparent masses started to
coagulate in the solution; I was hoping for a precipitate but I was not
expecting it to be either brown, transparent, or slimy, but rather hard
and granular, with an octahedral crystal habit.

 There is still considerably more particulate in the filtrate in the
funnel setup than in the copperas I’d started with, although I’ve
surely added much more water than evaporated, so I’m guessing that
whatever particulate formed when I heated the copperas solution, it
wasn’t just precipitated copperas. It might conceivably be that I

oxidized some of the copperas, which would maybe explain the
browner color (it has a browner green color) but that shouldn’t
precipitate it; rather the contrary, WP gives ferric sulfate’s solubility
as 25.6g/100 mℓ.

 The particulate in the funnel is a yellow-brown, maybe even a
baby-poop yellow, very different from the blue-green of the copperas
itself. After 2½ filtrations through the same funnel the solution seems
to be getting a little clearer.

 After 3½ filtrations it is definitely getting clearer.

 I added a spoonful of salt and nine spoonfuls of vinegar to half a
cup of milk, which began to curdle into tiny curds. I think it started
to thicken around six spoonfuls; at the end, it was very sour. I set up
another Monster can as a filtration funnel with a coffee filter and used
that to filter the curds from the whey.

 I tried to remove the full coffee filter from the funnel, but it split,
and I had to start again. I spilled a little of the cheese. The restarted
filtration yielded a great deal of acid whey, somewhat curded at first
but later almost perfectly clear, which I neutralized with baking soda
and drank, despite its excessive saltiness and perhaps excess of
bicarbonate, which I then tried to correct with a little lemon juice.
Finally I diluted it with Diet Sprite. A white powder that looks like
baking soda was visible at the bottom of the cloudy liquid, but the
liquid was drinkable without difficulty. Indeed, on adding vinegar to
the white powder, it fizzes! So it was at least partly undissolved
baking soda.

 I managed to get a little cheese off the first, broken filter, and
scraped it off a plate. It was quite agreeable, despite the strong
vinegar flavor. This is definitely a process to keep in mind if I ever
have a fridge full of milk in a power outage. Presumably I can leach
the vinegar out once I have it solid; I wonder if I could preserve the
milk with acid and sugar (and, say, chocolate) rather than salt? Maybe
some citrus terpenes?

 Something has gone wrong with the water supply, so I suppose I
will allow the various materials to repose until tomorrow; I no longer
have a way to wash my hands after handling them. Hopefully the egg
white will not putrefy. The little funnel full of cheese is gradually
dripping at about 2 Hz.

 After an hour or two, the cheese finished draining. It is still very
soft.

 A few hours later the water supply is back. After 4 filtrations the
filtrate is clear, looking like fake apple juice — still not the blue-green
color of copperas crystals, but definitely yellow-green rather than
brown.

02021-09-01

 The copperas solution looks like slightly cloudy urine.

 To the can where I had combined egg white with copperas before,
which looks like brown phlegm I coughed up once when I was sick, I
added the remaining 29.0 g of egg white, then 100.0 g of the copperas
solution. More ropy brown precipitate formed immediately.

 Soaking the mackerel can in dilute bleach since yesterday seems to

https://en.wikipedia.org/wiki/Iron(III)_sulfate
https://en.wikipedia.org/wiki/Iron(III)_sulfate

have effectively deodorized it, which ammonia and (separately)
sodium percarbonate failed to do. There is a little chlorine odor left.

 Adding oil of lime to saturated clear solution of baking soda
produces effervescence and a precipitate, just as with ferrous sulfate
and baking soda; this despite WP claiming baking soda’s solubility is
9.6 g/100 mℓ and calcium bicarbonate’s is 16.6 g/100 mℓ. The
precipitate appears white, being presumably chalk. I suppose that
doing this in a dilute enough solution might produce large calcite
crystals. See Fast electrolytic mineral accretion (seacrete) for digital
fabrication? (p. 779). I diluted the results with water, and the chalk
settled within a few hours, but remained impalpably fine. It adhered
to the surface of the aluminum can a bit and did not immediately
dissolve in vinegar, but did dissolve with mild heating of the vinegar.

 By contrast, adding oil of lime to Diet 7-Up (not Sprite) produces
immediate effervescence but no precipitate, just as you would expect:
even though 7-Up is a saturated solution of CO₂, it does not react to
form CaCO₃.
 The large dark green crystal I fished out of the copperas yesterday
has now dried to a sparkling light green; it looks like someone
sprinkled sugar on wasabi.

02021-09-02

 The cheese is no longer wet, just moist. It is delicious, similar to an
acidic ricotta.

 The label of Doreé [sic] Capilar 30-volumes hydrogen peroxide
(UPC 7-794050-007050) peels off the polyolefin bottle without
leaving an adhesive residue. 95% ethanol removes the lot number and
expiration date. Now I have a 100mℓ hermetic polyolefin bottle.

 The baby-poop brown precipitate from the copperas on the filter
has now turned brown. Adding 30-volumes hydrogen peroxide to it
does not change its color. This suggests it may have oxidized from
ferrous to ferric when I was warming it up, thus reducing its
solubility (?).

02021-09-03

 The dried bowl of borax vinegar is actually sort of soft and slushy.
I placed a little on a pebble of pumice, skewered on baling wire, and
heated it with the brass torch; it melted rapidly down into the pores
of the pumice, and with further heating converted the pumice surface
into porous glass. There was a strong smell of vinegar. The vinegar
charred into little balls of black on the surface of the pumice. Then
the piece of pumice cracked, and a couple of flakes gradually hinged
away from the main block and then fell. A third crack remained open
by a couple of millimeters. Did the acetic acid attack the pumice at
high temperature, opening or widening cracks? Did the borax?

 I placed some oil of lime on the pumice, which soaked in. On
further heating I saw an orange flame, and the pumice cracked again,
right through the middle, held together only by the baling wire.

 I took an additional piece of pumice and dunked it in tap water,
then heated it in the same way, alternating between dunking and
heating a few tims. It did not visibly crack, but on tapping it on a

ceramic plate afterwards, a piece fell off, evidently having been
previously severed by an invisible crack.

 The surface of the pumice reached orange and yellow heat during
this procedure, but only melted where borax had been applied.

 There was a bit of the “cockroach smell” I mentioned previously
from heating the oil of lime, and also an acid smell, which might have
been just more acetic acid.

 The end of the baling wire was covered with borate glass from
previously, which liquefied and smoothed out in the flame. It was
still warm enough to sizzle when I added the oil of lime; thereafter it
bubbled and had a pebbly surface in the flame, as if the glassy calcium
borate (or whatever it was!) was only yielding up its water at orange
heat. Calcium borate could be pretty interesting: colemanite (1:3
Ca:B mole ratio) is Mohs 4.5, piezoelectric, and fluorescent yellow,
and nobleite (1:6 Ca:B) is Mohs 3. Sadly neither Wikipedia nor
Mindat bothers to mention whether either of them is water-soluble,
though colemanite mixed with ulexite is a popular pottery glaze
ingredient known as Gerstley Borate. The US Borax MSDS for it
describes it as “sparingly soluble”.

02021-09-04

 I poured some of the sodium silicate solution into some dry
construction sand.

02021-09-06

 I hammered flat some 60/40 Radio Shack lead/tin rosin-core
solder (barcode 40293-11311, Radio Shack part number I think 64-007
E) and stuck it in bleach (Ayudín agua lavandina común, 25 g Cl/ℓ,
UPC 7-793253-000400). Also, a piece of aluminum foil. After 30
minutes no tarnishing was visible on either but the aluminum foil has
some small bubbles; I suspect it may be forming aluminum chloride.
I don’t know how much chlorine is left in this bleach; it’s been sitting
around the house for quite a while.

 The can of dissolved copperas has been sitting open since
02021-08-31 and has developed a non-metallic yellow-brown deposit
at the bottom, though the liquid is still clear.

 I took a cut-off Speed can weighing 6.5 g and added 19.7 g of the
copperas solution to it, which appeared perfectly transparent, in the
sense of not being cloudy, but yellow. Then I added 7.4 g of
30-volumes hydrogen peroxide, which immediately began to
effervesce and turned the solution apparently black and opaque. A
little while later it was quite warm, red-brown, and perfectly
transparent (in the same sense) and weighed 33.4 g, gradually
decreasing to 33.2 g (unless that’s an error in my scale). I conclude
that I have made ferric sulfate (since none of the iron oxides,
hydroxides, or oxyhydroxides are soluble) at a low enough
concentration to not precipitate.

 The mass loss so far is 400 mg, which is presumably a combination
of lost oxygen and evaporated water.

 I placed the Speed can out of the way with a loosely-fitting
aluminum-foil hat to allow the solution to dry out without too much

https://digitalfire.com/material/gerstley+borate
https://digitalfire.com/material/gerstley+borate
https://web.faa.illinois.edu/app/uploads/sites/6/2021/05/Gerstley-Borate.pdf

dust falling in. NIH says ferric sulfate should appear as “a yellow
crystalline solid or a grayish-white powder”. If it takes more than a
week, I’ll try putting it in a sealed chamber with some muriate of
lime and let them fight over the water in the air; this is probably
going to be necessary because NIH also describes it as “deliquescent”,
and “decomp in hot water”. A pH-1 solution of the stuff is
apparently used in Pakistan as a dental hemostat: “Known as the
“classic” hemostatic agent”! It seems to be the right color from all
the pictures, too.

 It’s been about 8 hours, and the bleach has eaten the aluminum foil
I stuck in it. The lead-tin solder is still shiny, but there’s a white
deposit on some of it; I suspect this might have resulted from
galvanic contact with the aluminum foil. Oops.

 The sodium silicate I poured into the sand two days ago soaked
through about 20 mm of sand and formed a solid mass, which has not
stuck to the polystyrene container it’s in at all. The mass looks a bit
wet, and when I squeeze it between my fingers, it yields and fractures,
revealing inner surfaces that look even wetter.

 In theory I ought to be able to mix a fair bit of muriate of lime
with baking soda without getting chalk — until the solution dries out.
Chalk’s solubility is supposed to be 0.0013 g/100mℓ, but calcium
bicarbonate’s is supposed to be 16.6 g/100mℓ (162.11464 g/mol), more
than a thousand times higher. Baking soda’s is supposed to be
9.6 g/100mℓ (84.0066 g/mol), and muriate of lime’s 74.5 g/100mℓ
(110.98 g/mol). All these at 20°, which is a little warmer than it is
here at the moment.

 I guess the saturated solution of calcium bicarb at 20° is 1.02 mol/ℓ.
For that we’d need 2.04 mol/ℓ of baking soda, 17.1 g/100 mℓ, which
is higher than its solubility (though the potassium or ammonium salts
could maybe do it directly), suggesting that the appropriate amount of
muriate of lime ought to solvate baking soda. We’d also need
1.02 mol/ℓ of muriate of lime, which would be only 11.3 g/100 mℓ,
6.6 times more dilute than the saturated solution.

 Maybe to understand why the large excess of calcium in the oil of
lime resulted in precipitation last time I need to understand solubility
products a lot better. But I think this means that if I dilute the oil of
lime 7:1 and then add saturated bicarb to it, it shouldn’t happen.

 So I took a cut-off Monster can weighing 7.3–7.6 g (the scale can’t
quite decide) which can hold 227 g of water, and I added 12.1 g of oil
of lime to it, bringing the total to 19.7–19.8 g; this should contain
about 5.17 g of muriate of lime and 6.93 g of water. Then I added tap
water to bring the total to 103.3 g, thus 83.5 g of tap water. So in
theory I have 5.17 g of muriate of lime, .0466 mol, dissolved in
90.43 g of tap water, thus about .515 mol/ℓ. I stirred it with a soda
straw; a little dust settled to the center of the bottom. So now even a
totally saturated baking-soda solution shouldn’t cause effervescence
and chalk deposition.

 .0466 mol of baking soda should be 3.91 g, which in theory would
be contained in 44.6 g of the saturated solution (44.7 g water). So I
prepared a saturated solution of baking soda. To the now 103.1 g can
(?!) I added 48.4 g of the solution (oops!) and... it turned cloudy with
what looked like chalk, but this time completely without

effervescence. That was neither the outcome I hoped for (a clear
solution) nor the outcome I feared (effervescence and chalk).

 So that should have been 135.1 g of water, 5.17 g of muriate of lime,
and 3.91 g of baking soda. Oh, oops, that was half the amount of
baking soda I was supposed to use...

 And, after a minute or two, it started to effervesce. Ugh. I guess it
just hadn’t reached the solubility limit of choke-damp, and that was
chalk after all. It continued to effervesce for many minutes.

 I guess I should actually measure the ingredients and the
temperature when I repeat this.

 After a while the chalk had largely settled out, except for the
abundant dust forming aggregates on the surface of the water;
effervescence continued at a lower rate. To get a better look I
dripped a drop of diluted dish detergent into the can, which
immediately scattered the surface dust to the edges of the container.
The water beneath was still pretty cloudy, but I can see down to
where the chalk has settled on the bottom.

 Since I now realize I added half as much baking soda as I’d
intended, I added some more of the saturated baking soda solution.
The effervescence increased dramatically again, suggesting that the
baking soda was indeed the limiting reagent.

 It’s been a few hours, and a yellow-brown powder has precipitated
in the “ferric sulfate”, so maybe that’s not what it was, because it
certainly hasn’t evaporated that much. Or maybe there was an excess
of hydrogen peroxide and now it’s producing insoluble iron oxide or
oxyhydroxide from the soluble ferric sulfate in solution.

02021-09-07

 The chalk has settled out, leaving clear water with a thin layer of
chalk at the surface; maybe the chalk adsorbed the dish detergent. I
took a 5.9-gram cut-off Speed can and added 10.0 g of the clear liquid
to it with a syringe which I think had previously been used to fill
inkwells. No India ink contamination was visible. Then I heated the
can on the stove.

 The idea here is that if the chalk precipitated, whatever is left over
in the solution must be in equilibrium with the chalk. Maybe it’s
calcium bicarbonate (and salt), just at a lower concentration than I
had thought would be soluble. If so, I should be able to boil it down
to chalk (contaminated with salt), which should be recognizable by
virtue of being a white precipitate that bubbles and dissolves in
vinegar and does not dissolve in hot water. And hopefully there will
be enough solids dissolved in 10 grams of the solution that I can weigh
it.

 Adding a few more drops of dish detergent to the can where the
chalk was formed does not disperse the surface chalk, so I guess the
chalk didn’t adsorb the detergent, or the surface would have
dramatically cleared again as before.

 After heating the chalk (? etc.) deposit in the can for a few hours
(mostly gently, because it was popping when I tried heating it
intensely) the can weighs 4.8 grams. This suggests that the remaining
solid deposit weighs -1.1 grams, which is obviously wrong; maybe I

had something like 1.1 grams of water on it previously when I first
weighed it. Then a flying plastic fragment bounced off the ceiling
and knocked it onto the floor, scattering an unknown amount of the
precipitate, so I guess I need to start over.

 Both “nail enamel diluyent” and “enamel remover” are capable of
softening the pressure-sensitive adhesive that held the front polarizing
film onto this discarded laptop screen, allowing me to scrape it into
giant boogers with my fingernails, but neither actually dissolves it.
Surprisingly, one or the other of them did attack the polarizing film
itself, damaging it (though it still seems to polarize fine). 96% ethanol
works dramatically better, softening the adhesive much more quickly,
allowing me to rub it into eraser-crumb strings that peel off the
plastic cleanly, and apparently not dissolving the plastic itself.
Unfortunately, I ran out. Fortunately, some alcohol-based hand
sanitizer gel was enough to finish the job. The plastic is still sort of
foggy.

 I diluted and tasted the citric acid from the health food store. It
dissolves to perfect transparency in water and tastes like citric acid.

02021-09-08

 The waterglass-cemented sand from 02021-09-04 is now rock-hard
and survives being dropped on the ceramic floor without breaking.

02021-09-09

 Although the waterglass-cemented sand from 02021-09-04 is
rock-hard, I can still break it by hand by flexion. Heating it to
orange-yellow with the brass torch for a few minutes turns it from
brown to gray but doesn’t expand or soften it visibly, though it did
settle a bit in the vermiculite bed, I suspect because the vermiculite
had some waterglass or phosphoric acid sticking some of the grains
together. However, it is now easier to break by hand, and seems to
have some internal porosity (it’s gray all the way through), so maybe
it did soften during heating; no such porosity was apparent upon
breaking before heating. It gives the impression of poorly cured
portland-cement mortar: the outer surface where the flame impinged
remains intact when I rub my finger across it, but the inner porous
mass instead releases some sand. It’s a bit more sparkly than
portland-cement mortars usually are, though.

 People have reported that mixing rust powder with waterglass
affords a less intumescent refractory mix.

 I have some litharge and glycerin here. Bain McKinnon’s 01933
dissertation at Oregon State reports (citing Harry A. Neville’s
“Adsorption and Reaction II: the Setting of Litharge-Glycerine
Cement”, J. Physical Chem., vol. 30, p. 1181, in 01926) that a 3:2
molar ratio of litharge (223.2 g/mol, 9.53 g/cc) to glycerin
(92.094 g/mol, 1.261 g/cc) produces the highest temperature rise,
exceeding 80° at times; but he finds that higher amounts of glycerin
produce stronger results. I guess that means 670 g to 184 g glycerin,
or about 3.6 g of litharge per gram of glycerin. Apparently tin can
substitute for lead, and ethylene glycol for glycerin, and with heating
to 110° you can get metal glycerolates of cobalt, zinc, manganese, and
iron, from acetates, carbonates, oxalates, oxides, or hydroxides.

https://ir.library.oregonstate.edu/downloads/5999n5742
https://ir.library.oregonstate.edu/downloads/5999n5742
https://en.x-mol.com/paper/article/5814534
https://en.x-mol.com/paper/article/5814534
https://www.publish.csiro.au/ch/CH9701963
https://www.publish.csiro.au/ch/CH9701963

 I heated a drop of the glycerin on the stove on a sheet of aluminum
foil. At first it emitted a white smoke with a smell resembling
burning sugar; this could be ignited, at which point it burned with a
blurry yellow flame and emitted no further visible smoke. Small
bubbles bubbled out of the glycerin as it burned, and at one point it
popped and threw smoking drops of glycerin around. After a couple
of minutes it finished burning and left no visible residue, but the
aluminum foil had mostly melted.

 To a 6.3-gram plastic cup (from Tregar yogurt) I added 7.3 g of
buff-colored hardware-store litharge (Indalo litargirio, UPC
7-798123-981544) and 2.1 g of glycerin (Indalo, UPC
7-798123-981483), which I mixed for a couple of minutes with a
q-tip to a stiff putty, which nevertheless behaves like a (perhaps
non-Newtonian) viscous fluid. This should approximate the 3:2
molar ratio mentioned above: 33 millimoles of litharge to 23
millimoles of glycerin. No heating is evident.

 I’d tried mixing up this litharge and glycerin before, but the solid
mass initially formed fell apart into a powder after a day or two.
There aren’t a whole lot of things the ingredients could be other than
litharge and glycerin, though; not many things are dense enough to
be counterfeit litharge, though plenty are cheap enough.

 The polarizing filter obtained from the front of the laptop screen is
evidently a linear polarizer with the direction of polarization being
the vertical dimension of the screen (the short dimension of the film).
My own laptop’s screen (a Lenovo Thinkpad) seems to be linearly
polarized at about a 45° angle, and my cellphone screen horizontally.

02021-09-10

 The litharge–glycerin cement has set up solid, but it’s not very
strong; poking it with a q-tip bent the bottom of the yogurt cup
enough to crack it. It’s still shiny as if it were wet; hopefully this
means it is nonporous (as it should be) and it will remain solid this
time and not crumble. Mina reports that it has a strong smell of paint.

 The aluminum foil in bleach left a cloud of small dark particles but
otherwise is gone. The solder in bleach has corroded significantly:
brown-black, like iron rust, where it was submerged, and a fairly
voluminous white that looks like fungus above the water line. If I
had to guess, I’d guess the white was stannous oxyhydroxide, stannic
oxide, or plumbous chloride, probably not the last since it only
formed out of the water. WP says stannous oxyhydroxide is “easily
oxidized to stannic oxide by air”; the chlorides of tin are white too,
but they’re highly water-soluble. No idea what the brown-black
corrosion is.

 In the evening, the litharge–glycerin cement is less shiny, with
more of a matte look.

 I put some litharge, without glycerin, in the bottom of the
deodorized fish can and heated it on the stove. No change was visible,
but the can started to smell of burning plastic. In order to be able to
discard it safely, I added a layer of diammonium phosphate granules
on top and continued heating; this produced a noticeable aroma of
ammonia and a slight sizzling sound. An aspirator for gas scrubbing

would be really helpful for this kind of thing.

 After heating it gently for half an hour or so, there was no visible
change, but plenty of ammonia, so I decided to resort to more
aggressive measures. I put some diammonium phosphate in a cut-off
Speed can and heated it with the brass torch, which melted it and
released a lot of ammonia vapors. Worse, though, it released a lot of
burnt plastic fumes from the Speed can paint. The mass of bubbling
phosphoric acid with phosphates of ammonia dissolved in it was black
wherever the torch did not heat it to orange heat. After several
minutes and a visible haze of white smoke in the living room, I gave
up on this approach as well.

 After cooling, the Speed can had a noticeable smell of acid, with a
mass of what appeared to be carbon foam on top of a whiter porous
mass of, presumably, a mix of ammonium phosphates and phosphoric
acid. I rinsed it into the fish can with the litharge and fertilizer,
moistening the fertilizer (some of which had stuck to the litharge) and
added baking soda to the remainder, which fizzed enthusiastically.

 The silicone flower Mina made on 02021-08-21 has faded from its
original lilac color to a pale cyan. I think the magenta food coloring
in its surface has faded from exposure to light; Mina points out that
on the bottom, where it’s been exposed to air but not light, it’s still
lilac.

02021-09-11

 The litharge/phosphate mix is kind of syrupy with white chunks
and smells like a rusty engine. The phosphate/baking soda mix smells
acid, and on adding more water it resumes bubbling; maybe I didn’t
add enough baking soda to fully neutralize the acid, which I guess is
less surprising considering that it’s potentially triprotic. The
litharge–glycerin cement still seems to be hard and is now even less
shiny, like dried “satin” paint.

02021-09-14

 The litharge–glycerin cement has mostly remained solid, rather
than crumbling under its own power, but can now be crumbled like
dried mud under the pressure of a q-tip, which is similar to its
previous uninspiring performance and significantly less impressive
than I was hoping for. Where it was exposed to light (with or
without air) it has darkened from its buff color to a darker, grayer
color. It pulls away from the plastic yogurt cup (recycling triangle 6,
polystyrene) with only the lightest adhesion. Its “satin” paint luster
remains unchanged.

 I bit through one of the Oogoo samples I’d previously bitten on
02021-08-21. If there is an acetic-acid smell, it is faint enough that I
can’t be sure it’s present. It’s about 18mm thick in one dimension, so
probably the points nearest the surface were something like 7mm
away from the surface.

 I rubbed the permanent marker spot off the surface of another of
the Oogoo samples, this one about 28mm in diameter, and cut it in
half with a razor knife; it too has no discernible acetic-acid smell.
I’m not sure exactly when I made this one.

02021-09-15

 The litharge-glycerin cement I unstuck from the yogurt cup
yesterday has largely lost the bisque or buff color it previously had
underneath, presumably due to being indirectly exposed to the
sunlight through the window for a single day. I wonder if you could
use this property to make photographs? It would be more useful if
you could stabilize it, but possibly you can; plausibly the
photoreaction product is something like lead dioxide or metallic lead,
either of which would be much less easily dissolved by acids than
litharge itself.

 I added some more water and baking soda either yesterday or the
day before to the ammonia-scented Speed can containing the product
of decomposition of the fertilizer. Later, I added some
hardware-store phosphoric acid (Desoxidant fosfatizante TF3, UPC
0-723540-593022, water-clear with unspecified additives). This
induced effervescence, showing that the baking soda hadn’t been
entirely consumed.

02021-10-15

 The various wet substances in open containers have dried up. I
have thrown out some things whose identity I could no longer
remember. The egg white with green vitriol is quite orange.

 I tried heating up a flake of whitewash taken from some nearby
political graffiti with the brass torch. I was able to heat it to
orange-hot, glowing visibly even in direct sunlight. A smell of
burning paint (like linseed oil) ensued, suggesting that it was
contaminated with non-whitewash paint. The hottest part gradually
crumbled away over several minutes.

02021-12-05

 A laptop floppy disk casing seemed suspiciously light, leading me to
suspect it of being magnesium. But filings cut from it with a hacksaw
do not ignite with the brass torch and do not react with vinegar, so it’s
probably just aluminum. (At first the vinegar did not wet the filings;
some dish detergent solved that problem.)

 I have had some coupons of corrugated cardboard from a cardboard
box floating in (originally) saturated aqueous muriate of lime for
weeks now. The one I haven’t turned over still isn’t wet on top. I
added another one to a bowl of just plain water a few days ago; it also
isn’t wet on top. Normally I would have expected capillary action to
soak them through in a few minutes, so I guess they’re treated with
something to make them slightly hydrophobic. I was hoping that the
calcium chloride would convert the sodium silicate adhesive into
water-insoluble larnite, but in fact the layers of cardboard peeled apart
in warm water just as easily as cardboard normally does, and a little
rubbing got it thoroughly wet. I’m not sure if the paper is
delaminating or if the glue is, but either way the result isn’t a
water-stable cardboard as I was hoping.

02021-12-13

 No visible reaction at first between the hardware-store phosphoric

acid and aluminum foil in a plastic yogurt cup, but after an hour or
two slow bubbling was detectable. After some 10 hours most of the
foil had dissolved, leaving a slightly gray transparent liquid with some
scraps of foil floating on the top of it, so I added more foil. I was
expecting the foil to react, but not to dissolve — although both
aluminum and phosphate are trivalent, I think of aluminum
phosphate as a single material, one that’s extremely water-insoluble.
But in fact there also exists aluminum dihydrogenphosphate
(aluminum phosphate monobasic, 磷酸二氢铝), which might be
soluble; American Elements claims it is, and Alfa says they sell it
dissolved 50/50 in water, so it might be difficult to redissolve after it
precipitates, or perhaps disproportionate.

 Also, I forgot to note this earlier, but the acid had no visible
reaction with oil of lime, presumably because the pKa of muriatic
acid is about -3.0 and the first pKa of phosphoric is +2.14. I suppose
that if I partly neutralize it first with baking soda I should be able to
precipitate various phosphates of calcium. Interestingly,
https://en.wikipedia.org/wiki/Disodium_phosphate mentions a
reaction going the other way as well, preparing disodium phosphate
from “dicalcium phosphate” (CaHPO₄) and sodium bisulfate
(NaHSO₄), which is sold in hardware stores to lower the pH of your
swimming pool.

 Sodium bisulfate itself is a GRAS intermediate byproduct of the
Mannheim muriatic acid process, “an exothermic reaction that occurs
at room temperature”; on heating it transforms to anhydrous (58°),
pyrosulfate (280°), and finally sodium sulfate and sulfur trioxide
(460°). It’s a dry powder at room temperature that aggressively
consumes azania. Pyrosulfuric acid is interesting as a legal, stronger
alternative to sulfuric acid. The bisulfate ion is also available from
thermal decomposition of azanium sulfate (250°), everybody’s
favorite GRAS thermally stable azanium compound — sold for
US$1/kg as a fertilizer, and made from gypsum and hartshorn by
throwing down chalk.

 (Sodium thiosulfate, aka hyposulfite, Na₂S₂O₃, is a different
material: it’s a photographic fixer, reducing agent, and antidote to
cyanide poisoning together with sodium nitrite.)

 (Sodium azanium sulfate dihydrate is “a well known ferroelectric”
and presumably the reaction product with azania. Presumably if you
heat it you can expel the azanium and regenerate the azanium
absorbent.)

 Related to other useful materials to avoid witch-hunt persecution,
NaMnO₄ (V-2 oxidant, Condy’s Fluid) can reputedly be made from
MnO₂, NaClO, and NaOH, with an analogous route available for
Ca(MnO₄)₂. MnSO₄ is readily available as fertilizer (US$5/kg); the
nitrate (obtained, for example, by reacting with calcium nitrate) can
be decomposed at 400° to yield the oxide, which can be purified by
anodic deposition. Dehydration of the lye using the oxide supposedly
yields Na₂MnO₄, whose disproportionation is another possible route,
the one originally used by Condy, but apparently a pentavalent
manganese compound is produced additionally or instead.

 Another super fun material would be potassium ferrioxalate;
hardware stores sell “salt of lemon” to remove rust stains, and I guess

https://www.americanelements.com/aluminum-phosphate-monobasic-13530-50-2
https://www.alfa.com/en/catalog/042858/
https://www.alfa.com/en/catalog/042858/
https://en.wikipedia.org/wiki/Disodium_phosphate
https://en.wikipedia.org/wiki/Disodium_phosphate
https://iucrdata.iucr.org/x/issues/2020/09/00/wm4138/

it works by complexing the insoluble ferric iron(III) ions, which I
guess should produce K₃(Fe(C₂O₄)₃)₂. It’s fluorescent green (literally
fluorescent in solution) and decomposed by light or heat (reducing
the iron back to ferric), a property that can be used to used to make
blueprints as an alternative to ferric ammonium citrate (apparently
Michael J. Ware invented this in 01994 and wrote a fascinating book
covering this and every other aspect of cyanotyping); the ferric iron
then reacted with the potassium ferricyanide to produce insoluble
ferric ferrocyanide, Prussian blue.

02021-12-14

 Local textile pricing:

• Calico doesn’t exist.
• 180-thread-count percal at 260 cm width costs AR$7000/m on
MercadoLibre; at AR$194/US$ that’s US$36/m or US$14/m².
• 1.6-m-wide polyester polar soft liso (polar fleece with a nap on it to
soften it further) is AR$850/m (US$4.40/m, US$2.70/m²). A roll is
reported to be 22 kg and 50 meters, suggesting a weight of 280 g/m².
• 1.45-m-wide camisero cloth falsely advertised as linen (fine print:
55% linen, 45% rayon) is AR$700/m (US$3.60/m, US$2.50/m²).
• 1.5 m fibrana floral-print rayon cloth is AR$430/m (US$2.20/m,
US$1.46/m²).
• 1.5-m-wide 120-gram-per-linear-meter polyester gasa muselina,
muslin gauze, is AR$370/m (US$1.90/m, US$1.26/m²).
• 160-m-wide raw cotton 20/20 lienzo is AR$350/m (US$1.60/m,
US$1.12/m²).
• 150-μm-thick 1.4-m-wide flexible clear PVC film is AR$290/m
(US$1.49/m, US$1.07/m²).
• 1.40-m-wide nonwoven polyester friselina, 45-gram weight (/m²?
though an unhappy buyer reports that it’s actually 20-gram cloth),
goes for AR$2244 per 50-meter-roll (AR$45/m, 23¢/m, 16.5¢/m²) in
different brilliant colors.
• A week ago we went to town and found that burlap (arpillera) was
AR$400/m² there (US$2.10/m²). The other prices above are all
MercadoLibre. A MercadoLibre vendor offers 1-m-wide arpillera yute
at AR$289/m (US$1.49/m, US$1.49/m²).

 The friselina seems like probably the best material for anode bags
and similar filtering: it’s damned cheap, probably PET, safer and
cheaper than asbestos, perhaps more inert than glass fiber, certainly
more inert than any natural fiber, and PET is surpassed in its inertness
among the organic polymers only by polyethylene, polypropylene and
fluoropolymers, which are more difficult to find in the form of cloth,
though coarse polypropylene cloth is available for carpeting and tarps.
(Some vendors also offer nonwovens which purport to be both
polypropylene and polyester, or blends of the two.) It may also be
useful as a lint-free cloth for cleaning.

 HEPA air filters are generally meltspun nonwoven polypropylene;
this is a possible alternative source for polypropylene fabric for anode
bags. Surgical scrubs and lab coats are another possible source.

 The reduction of Prussian blue to Prussian white (produced by
fading of Prussian blue by light! and reversible by wet air exposure,
therefore inexhaustible) needs to steal an electron from somewhere, so

https://www.mikeware.co.uk/mikeware/downloads.html
https://www.mikeware.co.uk/mikeware/downloads.html
https://www.mikeware.co.uk/mikeware/downloads.html
https://articulo.mercadolibre.com.ar/MLA-877403579-tela-friselina-45-gr-x-50mts-140-de-ancho-tela-no-tejida-_JM
https://articulo.mercadolibre.com.ar/MLA-877403579-tela-friselina-45-gr-x-50mts-140-de-ancho-tela-no-tejida-_JM

you can use it for photographic patterning of a surface by oxidizing
other random things in the environment. I don’t think anyone has
done this.

02021-12-18

 I heard the other day that you can electrodeposit aluminum from
aluminum chloride dissolved in molten methylsulfonylmethane,
which is easily available as a dietary supplement. (Aluminum chloride
by itself won’t work at atmospheric pressure; it sublimes at 180°). I
can’t wait to try it.

02021-12-21

 Some time ago I deposited Elmer’s Classic Glitter Glue Silver
(UPC either 0-026000-185073 or 0-26000-18191, depending on
which label you believe; ingredients: deionized water, PVAc
emulsion, polyvinyl alcohol, and craft glitter (various sizes and colors);
the US marketing label lists no ingredients but apparently Argentine
law requires it) on a sheet of LDPE and let it dry. As deposited, the
glitter flakes are dispersed almost isotropically, without any preferred
orientation, but upon drying (I’m guessing to about a tenth of the
original thickness, suggesting about 90% water content by volume)
the glitter flakes were mostly parallel to the surface as indicated by
their optical properties, ±10° or so. The dried PVA/PVAc mass
peeled off the thin polyethylene sheet fairly easily, as you’d expect.
(See 3-D printing in poly(vinyl alcohol) (p. 1080).) See Xerogel
compacting (p. 1119) for the implications.

 To get a slightly more precise read on the water content than
“about 90% by volume”, I took a polypropylene bottlecap weighing
1.7 g and deposited 3.0 g of the glitter glue in it, for a reported total of
5.3 g (!? fuck this scale) and allowed to dry in the sun all afternoon.
At night it weighed 4.3 g and was still noticeably soft, though with a
tough glittery skin, so I propped it up in front of the air conditioner
condenser fan. I hope that will help it dry faster.

 I also have a thin membrane of the dried glue (of mysterious
origin), thin enough to be almost entirely transparent, which I sprayed
with a saturated aqueous solution of borax. Upon drying, it was
crinkly and “harder” than before; previously it was stretchy and
“soft”, but now it’s stiff and brittle. I rinsed it again with water and it
immediately became a soft gel, coming apart a little, and now it is
drying again.

 And I’ve deposited bits of the glue on some more LDPE, some
aluminum foil, a PET bottle, some polystyrene, and some ABS. My
expectation is that, when dry, it will have failed to adhere strongly to
any of them and will be easily peeled off; “Elmer’s” (Newell Office
Brands) advertises that it's “ideal for paper, cloth, craft, etc.”

 From Podsiadlo, 9 other authors, and Kotov’s work (“Ultrastrong
and Stiff Layered Polymer Nanocomposites”) in 02007, I learned that
PVA can be strongly crosslinked with glutaraldehyde; yesterday I
learned that glutaraldehyde can be easily bought from medical supply
stores as a heavy-duty disinfectant (typically at concentrations of
2–2.5%, lower than the concentrations used for crosslinking). It’s
somewhat hazardous to the humans because it’s great at crosslinking

proteins and they are made of proteins. Reportedly it does not reduce
the solubility of pure starch because what it does is bond amine groups
to hydroxyls, so it can crosslink proteins to starches but not starches to
starches, but that can’t be the whole story because PVA is nothing but
a saturated carbon backbone with hydrogens and hydroxyls, and
evidently glutaraldehyde is great at crosslinking it. 10% chitosan
apparently is effective at making starch cross-linkable with
glutaraldehyde.

02021-12-22

 The glitter glue pulled itself free of the LDPE, polystyrene, and
aluminum foil while drying. From the ABS and PET it didn’t peel
off spontaneously, but it easily peeled off by hand. In the case of the
ABS this may be because it was spread thinly over a rougher surface,
rather than because it had more adhesion. Also, the polystyrene may
have a coating on it, and all the materials may be contaminated with
skin oil.

02021-12-23

 The glitter glue bottlecap brought in from outside after two days of
drying in warm fan air weighs 2.6 g. Upon separating from the
bottlecap the relatively dry glue weighs 0.9 g and the bottlecap a
reassuring 1.7. This suggests that the 3.0 or 3.6 grams of glitter glue I
originally deposited was at least 70% water, but unless it’s still
retaining some water inside, it’s not close to 90%.

 But honestly it probably is. I should break it up and put it in a
desiccator with some muriate of lime.

Topics

• Materials (p. 1138) (59 notes)
• Pricing (p. 1147) (35 notes)
• Experiment report (p. 1162) (14 notes)
• Bootstrapping (p. 1171) (12 notes)
• Aluminum (p. 1180) (10 notes)
• Phosphates (p. 1184) (9 notes)
• Foam (p. 1185) (9 notes)
• Waterglass (p. 1189) (8 notes)
• Argentina (p. 1200) (7 notes)
• Refractory (p. 1225) (5 notes)
• Aluminum foil (p. 1237) (5 notes)
• Vermiculite (p. 1238) (4 notes)
• Poly(vinyl alcohol) (PVA) (p. 1245) (4 notes)
• Heating (p. 1253) (4 notes)
• Glass (p. 1254) (4 notes)
• Kingery, the father of modern ceramics (p. 1288) (3 notes)
• Alabaster (p. 1309) (3 notes)
• Oogoo (p. 1349) (2 notes)
• Pumice
• Borax

https://link.springer.com/article/10.1007/s10924-020-01736-5
https://link.springer.com/article/10.1007/s10924-020-01736-5
https://mdpi-res.com/d_attachment/polymers/polymers-10-00985/article_deploy/polymers-10-00985.pdf
https://mdpi-res.com/d_attachment/polymers/polymers-10-00985/article_deploy/polymers-10-00985.pdf
https://mdpi-res.com/d_attachment/polymers/polymers-10-00985/article_deploy/polymers-10-00985.pdf

Dipropylene glycol
Kragen Javier Sitaker, 02021-08-01 (updated 02021-08-15)
(2 minutes)

 I thought this stuff was just propylene glycol, but it isn’t. It’s
relatively cheap (US$3/kg) and so I’m curious about its merits as a
coolant. I’m guessing its solvent properties are similar to those of
propylene glycol.

 Of course it’s miscible with water.

 Dow says the pour point is -39°, it supercools, its viscosity drops
from 75 centipoise at 25° to 10.9 centipoise at 60°, it boils
(“distillation range”) at 228–236°, its vapor pressure at 25° is 2.1 Pa,
its flashpoint is 124°, and its specific heat is 2.18 J/g/K. The technical
data sheet touts its “low toxicity”. So far so good. Its heat of
formation is -628 kJ/mol, but at 134.2 g/mol I’m not sure that means
it’s a bad fuel. Thermo Fisher gives its flashpoint as 138°, its
autoignition temperature as 310°, and its orl-rat LD₅₀ as 14850 mg/kg;
even more astonishing, its LC₅₀ for freshwater fish is “>5000 mg/ℓ,
24h”. So unless they’re confusing it with propylene glycol it’s about
as toxic as water.

 Perfumers describe it as “virtually odorless with a
slight-ethereal-green solvent note.” Monument says it’s “far less
hygroscopic than other common glycols” and mentions its use as a
coolant. Shell says contact with copper, copper alloys, and zinc must
be prevented and that it is not hazardous. The National Toxicology
Program (paper) agrees, but notes that giving rats drinking water with
40000 ppm (4%) of it killed them with kidney disease within two
years, but the 2% group was fine.

Topics

• Materials (p. 1138) (59 notes)
• Pricing (p. 1147) (35 notes)
• Toxicology (p. 1316) (2 notes)

https://www.perfumersworld.com/view.php?pro_id=0ZW00165
https://monumentchemical.com/uploads/files/TDS/DPG - TDS.pdf
https://www.shell.com/business-customers/chemicals/our-products/propylene-glycols/_jcr_content/par/tabbedcontent/tab_372273154/textimage.stream/1576570677691/15e72c5350e00038d2a9f003dcd59a8f7284db38/tds-dpg-updated-december-2019.pdf
https://pubmed.ncbi.nlm.nih.gov/15213767/
https://pubmed.ncbi.nlm.nih.gov/15213767/
https://ntp.niehs.nih.gov/publications/reports/tr/500s/tr511/index.html

The ayurvedic “fire mud” of
Bhudeb Mookerji and modern
castable refractories
Kragen Javier Sitaker, 02021-08-05 (updated 02021-08-15)
(22 minutes)

 Some comments in a book on ayurvedic alchemy led me to think
about possible formulas for castable refractory.

The Rasajalanidhi of Bhudeb Mookerji and
its “fire mud”

 The Rasa-jala-nidhi describes part of the preparation of a
nabhi-yantra or jala-yantra as follows (p. 272, 307 of 406, Bhudeb
Mookerji, M.A., Vol. 1, published in 01926):
...plaster the joint by means of the following paste, which serves as a good
waterproof:—oxidised iron, finely powdered,1 molasses, and lime, rubbed together
with a highly condensed decoction of the bark of babbula [Acacia nilotica, now
Vachellia nilotica, the source of gum arabic]. This plaster is called “water mud”,
and water cannot pass through it. Similarly, chalk, salt, and oxidised iron, rubbed
together with buffalo’s milk, gives rise to a plaster, called, “fire mud”. This plaster
is a strong fire proof, The joint of the basin and the crucible is to be plastered with
this fire mud, ...

 It doesn’t really say what the proportions of the chalk, salt,
oxidized iron, and buffalo’s milk are; WP says buffalo milk is a bit
higher in everything (except water, I suppose) than cow’s milk. I
suspect this mixture will form hematite cemented with
hydroxyapatite and contaminated with salt and carbon when
heated — that the milk serves as a source of phosphates, which
combine with the calcium from the chalk to form hydroxyapatite, as
well as protein and sugar which act as low-temperature binders; then,
at higher temperatures, the protein cross-links and forms a thermoset,
holding the fire mud in shape until all the organics have been
converted to carbon with a little nitrogen. I suspect the salt is just
present as a catalyst and the iron oxide as an inert aggregate that is
stable at high temperatures.

 In other parts of the book (e.g., Vol. 1, p. 41 (76/406), or on p. 10)
he does give precise proportions of ingredients by weight.

 I do not regard the author of this “translation” as entirely reliable;
much of his book is concerned with procedures for transforming base
metals into gold, silver, and copper, a process he says he has had
demonstrated to him by his preceptor and is confident he could carry
out himself given the appropriate equipment; moreover he claims
that the human race is 1.6 billion years old. The book he “translates”
from Sanskrit says it is written by one Bhudeba of the
Mukhopadhyaya family, descendant of the sage Bharadwaja who,
nine hundred thousand years ago, brought to India the science of
medicine; his parents are Harilala Deba and Nistarini Debi; and on
the next page he explains that Mukhopadhyaya is “generally written
in English for the sake of brevity” as “Mookerji”.

https://archive.org/details/Rasajalanidhi_201601/page/n211/mode/2up
https://www.wisdomlib.org/hinduism/book/rasa-jala-nidhi-volume-1/d/doc219235.html
https://www.wisdomlib.org/hinduism/book/rasa-jala-nidhi-volume-1/d/doc219235.html
https://www.rarebooksocietyofindia.org/grid-layout.php?q=rasa-jala
https://en.wikipedia.org/wiki/Water_buffalo#Dairy_products
https://en.wikipedia.org/wiki/Water_buffalo#Dairy_products

 That is, the book is written in Sanskrit by Bhudeba Mookerji and
translated into English by Bhudeb Mookerji. He says the book is
“based on many of those which are still extant”, but is written in
“year 5026 of the perverted Kalijuga”. The Kali Yuga started on
February 17/18 in 03102 BCE, so year 5026 is most of 01925 CE and a
little of 01926. So unfortunately it is impossible to know whether this
“fire mud” recipe dates from 01926 or a thousand years earlier, or all
the way back to Nagarjuna 1700 years earlier, to whom rasāyana
(रसायन) and rasaśāstra are traditionally attributed. (On p. 20 he
claims that a particular prescription, one tola of purified sulfur mixed
with butter, “was prescribed more than 5000 years ago. Present-day
human beings can stand only one fourth to half of the dose prescribed
in those days.” units(1) and Wikipedia agree that a tola is an 80th of a
seer, (though Dr. Mookerji says it's a 64th of a seer) and a seer is 14400
grains by the British Colonial Standard, so a tola is some 11.7 g if the
standards haven’t shifted too much in 5000 years; elemental sulfur’s
oral LD₅₀ is unknown but is over 5000 mg/kg, so if Dr. Mookerji was
getting toxic symptoms from feeding a “beautiful lady” 11.7 g of
sulfur (<300 mg/kg) every day for three weeks, maybe his sulfur was
contaminated, probably with arsenic.)

 On p. 301 (345/406) Dr. Mookerji gives the chain of weights java
(barley seed)x6 = gunja; ×3 = balla; ×2 = masha; ×2 = dharana;
×2 = niska; ×2 = kola; ×2 = tola. This would make the tola 1152
barley seeds. Normally a barley seed is about 40 mg, which would
make the tola some 46 g rather than 12 g, but perhaps Indian barley
was smaller a thousand years ago. He also says a java weighs 6
mustard seeds (sarshapas), and mustard seeds are typically about 3–6
mg, which would put a java at 18–36 mg, unless modern mustard
seeds are similarly enlarged.

 Still, though, I think Dr. Mookerji’s explanation of how to make a
phallus out of mercury or “rasalingam” (Vol. 1, p. 10, 45/406) by
dissolving one third of its weight of gold leaf into it, then rubbing it
with vegetable sour juice, putting it inside a lemon, and boiling it in
gruel, is much more convincing than Sadhguru Jaggi Vasudev’s
explanation that consecration or energization with a divine
reverberation is what solidifies the 99.2%-pure mercury or
99.8%-pure mercury in the mercury lingas in the temple he
consecrated called Dhyanalinga, in the subterranean water tank called
Theerthakund.

 He explains that the term “pārada” comes from “para”, “end”, and
“da”, “give”, both of which words amusingly enough have the same
meaning in Spanish, and in the case of “da” is in fact the same word.
Spanish “parar” “stop” comes from Latin “parāre” “prepare” or
“make ready”, which comes from Proto-Indo-European “*pere-”
“produce, procure”, which I think very likely isn't the same as
Sanskrit “end”.

 Getting back to the refractory recipe, Sigma says tribasic calcium
phosphate melts at 1100°, which doesn’t count as “a strong fire proof”
in my book, but it’s already hot enough for a pretty wide range of
uses; and the carbon would tend to support it up to much higher
temperatures. WP says tribasic calcium phosphate Ca₃(PO₄)₂ melts at
1670° so maybe Sigma was talking about hydroxyapatite
Ca₅(PO₄)₃OH; WP says, “Most commercial samples of ‘tricalcium

https://en.wikipedia.org/wiki/Diammonium_phosphate
https://en.wikipedia.org/wiki/Iron(III)_phosphate
https://en.wikipedia.org/wiki/Copper(II)_phosphate
https://en.wikipedia.org/wiki/Dipotassium_phosphate
https://en.wikipedia.org/wiki/Monopotassium_phosphate
https://en.wikipedia.org/wiki/Monopotassium_phosphate
https://en.wikipedia.org/wiki/Dipotassium_phosphate
https://en.wikipedia.org/wiki/Dipotassium_phosphate
https://en.wikipedia.org/wiki/Dipotassium_phosphate
https://en.wikipedia.org/wiki/Monopotassium_phosphate
https://en.wikipedia.org/wiki/Monopotassium_phosphate
https://www.sigmaaldrich.com/AR/es/product/aldrich/c5267
https://www.sigmaaldrich.com/AR/es/product/aldrich/c5267
https://en.wikipedia.org/wiki/Tricalcium_phosphate
https://en.wikipedia.org/wiki/Tricalcium_phosphate

phosphate’ are in fact hydroxyapatite.”

 I think this phosphate-formation reaction probably has the
stoichiometry to actually work. Human milk has about a 1.4:1 to 1.7:1
Ca:P ratio, while cow’s milk is 1.24:1, while TCP is (by moles) 1.5:1
and hydroxyapatite is 1.67:1, so if you wanted to make calcium
phosphate cement out of cow’s milk, you’d have to add about
0.25–0.5 moles of calcium for each mole of phosphate in the milk.
Buffalo’s milk is reported to have higher calcium, except in Argentina
:
Buffalo milk is characterized by high calcium content (about 1.5-fold Ca than in
cow’s milk) as was apparent from several studies, except in BM from Argentina
(Patino et al. 2007) which had Ca content comparable to that of CM.

 And buffalo-milk phosphate content seems to be similar to that of
cow’s milk. So it’s possible that buffalo milk wouldn’t be
calcium-deficient in the same way — but I really have no idea
whether we’re talking about Indian buffalo from 01926, 01826,
01626, 01226, 00426, or what, so no way to even guess at the calcium
content of their milk.

Alternative routes to heat-setting castable
refractory mortars

 Even if cow’s milk doesn’t work, though, different sources of
phosphate and calcium (or possibly aluminum or boron) would surely
work to form calcium phosphate (or aluminum phosphate or boron
phosphate) at high temperatures.

 The 01950 MIT dissertation of Wm. David Kingery (“the father
of modern ceramics”), “Phosphate Bonding in Refractories” seems
very much worth reading here. He outlines a wide variety of recipes
then in use or disclosed in patents, and in particular mentions:
Aluminum, chromium, magnesium, and zirconium oxides react chemically with
phosphoric acid at 200°C to form a bonded material. The metal phosphate
reaction products are refractory and stable. Rather than using the oxides, the
halides of magnesium, tin, thorium, calcium, barium, aluminum, zirconium, or
titanium may be used with phosphoric acid to form a bonded refractory. After
mixing the constituents to a pasty constituency, the plastic mass is formed and
heated to approximately 1000°C to effect the bonding reactions and form the final
product. Using aluminous refractory materials, phosphoric acid reacts to form a
film of aluminum phosphate around each particle, which acts as a bond. ...
 Aluminum hydrate [i.e., hydroxide] may be used with refractory clay, filler and
phosphoric acid to form a bond which becomes permanent when heated to
100–300°C. The addition of aluminum hydrate to refractory compositions of
zircon, silicon, etc., and phosphoric acid is also advantageous. Use of this material
allows final heat hardening at temperatures of about 600°F [i.e., 315°] rather than
the 1200°F [i.e., 650°] which must otherwise be applied. ...
 With aluminous materials, alkaline earth acid phosphates or ammonium acid
phosphates may be used in place of phosphoric acid. On heating to 200–300°C
bonding action is obtained...
 Acid phosphates may also be formed by addition of triphosphate [i.e., tribasic
phosphate] and an acid which readily reacts with it forming mono- or
bi-phosphates [i.e., hydrogen or dihydrogen phosphates]. This process may be used
with alkaline earth phosphates, preferably calcium which is less expensive than
other materials. ...

 And that’s exactly what I speculated above is going on with the
buffalo milk: it contains some amount of calcium phosphates which
are not yet tribasic. Also, though, this sort of points out that the acids

https://www.mdpi.com/2072-6643/13/4/1329/htm
https://www.mdpi.com/2072-6643/13/4/1329/htm
https://hal.archives-ouvertes.fr/hal-00930589/file/hal-00930589.pdf
https://hal.archives-ouvertes.fr/hal-00930589/file/hal-00930589.pdf
https://scholar.google.com/citations?view_op=view_citation&hl=es&user=UQDU3p0AAAAJ&citation_for_view=UQDU3p0AAAAJ:W7OEmFMy1HYC

formed by burning the protein in the milk might help to acidify the
phosphates further, perhaps replacing some of its hydroxyls with
hydrogens. He also mentions a very exciting possibility of refractory
inorganic elastomers:
A study of the use of metaphosphates in refractory mortars by Herold and Bust
indicated that rubber-like metaphosphate polymers form a clay-gel cement with clay.
However, a large amount of the phosphate was required to form an adequately
plastic mass.

 He goes on to mention some other possibilities:
In all, the oxides and/or hydrates of thirty-four cations were tested. ...Oxides of a
highly basic nature react so violently with phosphoric acid that a porous friable
structure results (MgO, ZnO, CaO, La₂O₃, BaO, SrO). ...
 A large number of weakly basic and amphoteric oxides did react with
phosphoric acid to produce a bonded cement-like product. Included in this group
are BeO, CuO, Cu₂O, CdO, Fe₂O₃, Fe₃O₄, SnO, Pb₃O₄, Al(OH)₃, Ti(OH)₄,
Zn(OH)₄, ThO₂ and V₂O₅ in addition to calcined ZnO, MgO, La₂O₃ and CaO
[with partially neutralized acid].

 This suggests that the iron oxide of Dr. Mookerji’s recipe might not
be an inert filler as I thought.

 On p. 17 (23/94) of his dissertation he has a chart of “modulus of
rupture” (flexural strength, the same as the tensile strength for a
homogeneous material) of an alumina mix with 10% kaolin bonded
with various amounts of various phosphate cement mixes; aluminum
is best at some 1300 psi (9 MPa), followed by beryllium (1200 psi,
8 MPa), magnesium (almost the same), and, surprisingly, iron
(1100 psi, 8 MPa). Just bonding the mix with phosphoric acid alone
yielded 750 psi, same as with barium, while calcium and thorium did
substantially worse (as he puts it, “Calcium, barium, and thorium
additions to phosphoric acid decrease its effectiveness [as a cement for
alumina and kaolin].”). Moreover, all the good performers showed
strength continuing to grow linearly with the cement fraction — he
only tried up to 7% or 8% cement by weight, and while the weaker
bonds like Ca and Ba were leveling off at that point, the stronger
bonds weren’t, suggesting this was only a small fraction of the
strength they could potentially develop.

 Later on (p. 33, Fig. 9) he measures a strength of 2500 psi (17 MPa)
with 13% monoaluminum phosphate (Al(H₂PO₄)₃) cement. He
makes the monoaluminum phosphate sound super tempting: it
gradually increases in viscosity as the water content decreases, and
then you can fire it to a berlinite gel, much like waterglass. But these
solutions “precipitate at pH values greater than about 2.8” (p. 34), so
maybe you can do the same kind of instant hardening trick you can
do with waterglass, only with bases rather than acids.

 Another interesting thing he points out, when he tried mixing up
some different phosphate mortars, is that at 1500° the magnesium
phosphate mortar is stronger than the aluminum phosphate mortar,
because the aluminum phosphate mortar hasn’t started fusing yet!

 Ultimately, he says, the monoaluminum phosphate ends up as
aluminum metaphosphate, Al(PO₃)₃ (p. 25), which is different from
the AlPO₄ orthophosphate of which berlinite consists. But above
830°, in the absence of oxygen, as in a gasworks, the metaphosphate
gradually becomes the orthophosphate! And above 1220°, again in the
absence of oxygen, even that berlinite gradually calcines to sapphire.

https://scholar.google.com/citations?view_op=view_citation&hl=es&user=UQDU3p0AAAAJ&citation_for_view=UQDU3p0AAAAJ:W7OEmFMy1HYC
https://scholar.google.com/citations?view_op=view_citation&hl=es&user=UQDU3p0AAAAJ&citation_for_view=UQDU3p0AAAAJ:W7OEmFMy1HYC
https://scholar.google.com/citations?view_op=view_citation&hl=es&user=UQDU3p0AAAAJ&citation_for_view=UQDU3p0AAAAJ:W7OEmFMy1HYC

This all happens in a few hours when it’s in a very thin layer.

 Oh, fantastic! His Appendix G on p. 79 has cost data. US$1.10 per
100 lb. (45 kg) of 40° sodium silicate, US$2 for MgCl₂, US$5.50 for
85% H₃PO₄, US$17 for Al(H₂PO₄)₃.
 Ooh, interesting, “Ceramic properties of kaolinitic clay with
monoaluminum phosphate (Al(H₂PO₄)₃) addition” at UNLP.

 In isolation the phosphates that dissociate sometimes produce
phosphoric acid, and sometimes pyrophosphates or polyphosphates. A
“metaphosphate” is a polyphosphate chain that’s either cyclic (as in
the trimetaphosphate and hexametaphosphate of sodium, rings of
respectively three and six phosphate radicals) or extremely long.

 Phosphates, ordered by the decomposition or melting point of their
crystalline structure as a rough guide to how stable it is:

• Magnesium ammonium phosphate, Mohs 1.5–2, mineral struvite
• Diammonium phosphate, decomposes at 155°
• Nickel phosphate, decomposes at 158°
• Monosodium phosphate, decomposes at 169° to disodium
pyrophosphate or to sodium trimetaphosphate at 500° over 5 hours
• Ferric phosphate, decomposes at 250°
• Monopotassium phosphate, melts at 252°, decomposes at 400°
• Cupric phosphate, Mohs 4–6, decomposes somewhere over 300°
• Monopotassium phosphate, decomposes to potassium
metaphosphate KPO₃ at 400°
• Dipotassium phosphate, decomposes at 465°
• Disodium pyrophosphate, melts over 600°
• Sodium tripolyphosphate, melts at 622°, very water-soluble
• Sodium trimetaphosphate, melts at 627.6° (?), can be synthesized
from orthophosphoric acid and table salt at 600° in 2 hours
• Sodium hexametaphosphate, melts at 628° but hydrolyzes
spontaneously
• Zinc phosphate, melts at 900°, common corrosion inhibitor, dental
cement
• Cobalt phosphate, melts at 1160°
• Trimagnesium (di)phosphate, melts at 1184°
• Tripotassium phosphate, melts at 1380°, strongly basic like TSP,
deliquescent
• Boron phosphate, sublimes at 1450°, glassy but crystallizable reaction
product of boric acid and phosphoric acid, or at 1000° of
diammonium phosphate and borax
• Trisodium phosphate, melts at 1583°, strongly basic and
water-soluble
• And of course aluminum phosphate, melts at 1800°

 So much for phosphates; what about the cations — boron, calcium,
magnesium, and aluminum?

 Boron is the simplest, and borates (not to be confused with Borat)
have also been used to make ordinary methyl vinyl silicone into a
“ceramizable composite”. It has the advantage of having a very
amphoteric oxide, so you can get your boron as a borate. Indeed,
nearly all the non-borate compounds of boron are extremely exotic,
highly toxic, very unstable, or all three.

 It’s worth mentioning that, if I’m remembering correctly, borates

https://scholar.google.com/citations?view_op=view_citation&hl=es&user=UQDU3p0AAAAJ&citation_for_view=UQDU3p0AAAAJ:W7OEmFMy1HYC
https://scholar.google.com/citations?view_op=view_citation&hl=es&user=UQDU3p0AAAAJ&citation_for_view=UQDU3p0AAAAJ:W7OEmFMy1HYC
https://en.wikipedia.org/wiki/Struvite
https://en.wikipedia.org/wiki/Diammonium_phosphate
https://www.chemsrc.com/en/cas/10381-36-9_166219.html
https://en.wikipedia.org/wiki/Monosodium_phosphate
https://en.wikipedia.org/wiki/Iron(III)_phosphate
https://en.wikipedia.org/wiki/Monopotassium_phosphate
https://en.wikipedia.org/wiki/Copper(II)_phosphate
https://en.wikipedia.org/wiki/Monopotassium_phosphate
https://en.wikipedia.org/wiki/Dipotassium_phosphate
https://en.wikipedia.org/wiki/Disodium_pyrophosphate
https://en.wikipedia.org/wiki/Sodium_triphosphate
https://www.americanelements.com/sodium-trimetaphosphate-7785-84-4
https://hal.archives-ouvertes.fr/hal-01632407/document
https://en.wikipedia.org/wiki/Sodium_hexametaphosphate
https://en.wikipedia.org/wiki/Zinc_phosphate
https://en.wikipedia.org/wiki/Cobalt(II)_phosphate
https://en.wikipedia.org/wiki/Trimagnesium_phosphate
https://en.wikipedia.org/wiki/Tripotassium_phosphate
https://en.wikipedia.org/wiki/Boron_phosphate
https://en.wikipedia.org/wiki/Trisodium_phosphate
https://en.wikipedia.org/wiki/Aluminium_phosphate
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415205/

are commonly used to slow down the setting of magnesium phosphate
cements.

• Borazane, melts at 104°. Just kidding.
• Boric acid, melts at 170.9°, water-soluble; tends to evaporate
rapidly over 500°.
• Ammonium pentaborate, decomposes over the range 428.3°–458.4°
after several dehydration steps, water-soluble; this also makes the
stuff one of the highest-temperature ammonium compounds ([a
01994 paper says
• Cesium dodecaborate. Just kidding.
• Borax, melts at 743° when anhydrous, but the more normal
decahydrate melts at 75°; water-soluble.
• Zinc borate, melts at 980°.
• Calcium borates in the 986°–1479° range; see below.

 Calcium of course has many compounds, but most of them are
dismayingly stable for this sort of purpose, like larnite (melts at 2130°)
and quicklime (melts at 2613°), though Kingery’s experiments quoted
above suggest that quicklime reacts with phosphoric acid with great
violence even at room temperature. Less heat-stable compounds
include:

• Chloride of lime, which melts at 100° and decomposes at 175°, is a
strong oxidizer, is highly water-soluble, and gradually decomposes to
quicklime in air.
• Oxalate of lime, which decomposes at 200°.
• Calcium formate, which decomposes at 300° to chalk and
formaldehyde.
• Calcium nitrate, which decomposes starting at 500°.
• Chalk, which of course calcines (thus the name) to quicklime at
temperatures over 550°, and rapidly over 898°.
• Slaked lime, which calcines to quicklime at 580°.
• Calcium sulfite, melts at 600°, oxidizes in air to alabaster; used in
food as a sparingly soluble oxygen-scavenger antioxidant.
• Muriate of lime, melts at 775°, deliquescent at room temperature.
• Calcium tetraborate, melts at 986°, CaB₄O₇, tends to be glassy, but
can be devitrified in a few minutes — but there are several calcium
borates, many of which can be understood as continuously varying
mixtures of boria B₂O₃ and quicklime CaO, with melting points
varying from 986° to 1479° (or 2613° if you count quicklime itself).
• Calcium metaborate, melts at 1154° apparently, Ca(BO₂)₂
 How about magnesium? Magnesium phosphate is an awesome
refractory cement. As with calcium, [the oxide] is absurdly stable,
melting at 2852°, though it’s quite soft. But there are some
convenient magnesium compounds that could provide magnesium to
react with phosphate if heated:

• Magnesium nitrate melts at 129° and decomposes at 330°. It’s very
water-soluble.
• Magnesium formate decomposes to magnesium carbonate around
200° and magnesia around 400°.
• Magnesium carbonate decomposes to magnesia around 350°–900°.
• Magnesium oxalate decomposes to magnesia around 420°–620°.

https://en.wikipedia.org/wiki/Ammonia_borane
https://en.wikipedia.org/wiki/Boric_acid
https://hal.archives-ouvertes.fr/hal-01503798/document
https://en.wikipedia.org/wiki/Caesium_dodecaborate
https://en.wikipedia.org/wiki/Borax
https://en.wikipedia.org/wiki/Zinc_borate
https://en.wikipedia.org/wiki/Calcium_silicate
https://en.wikipedia.org/wiki/Calcium_oxide
https://en.wikipedia.org/wiki/Calcium_hypochlorite
https://en.wikipedia.org/wiki/Calcium_oxalate
https://en.wikipedia.org/wiki/Calcium_formate
https://en.wikipedia.org/wiki/Calcium_nitrate
https://en.wikipedia.org/wiki/Calcium_carbonate
https://en.wikipedia.org/wiki/Calcium_hydroxide
https://en.wikipedia.org/wiki/Calcium_sulfite
https://en.wikipedia.org/wiki/Calcium_chloride
https://ereztech.com/product/calcium-borate-12007-56-6/
https://nvlpubs.nist.gov/nistpubs/jres/9/jresv9n6p825_A2b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/9/jresv9n6p825_A2b.pdf
https://www.americanelements.com/calcium-metaborate-13701-64-9
https://www.scielo.br/j/mr/a/3VRJcZZWxmVJt7JGYgvxCSR/?format=pdf&lang=en
https://www.scielo.br/j/mr/a/3VRJcZZWxmVJt7JGYgvxCSR/?format=pdf&lang=en
https://en.wikipedia.org/wiki/Magnesium_nitrate
https://en.wikipedia.org/wiki/Magnesium_formate
https://en.wikipedia.org/wiki/Magnesium_carbonate
https://en.wikipedia.org/wiki/Magnesium_oxalate

• Magnesium chloride melts at 714°. It’s very water-soluble.
• Magnesium sulfite melts at 1124° (?).
• There exist magnesium borates too, including "admontite",
"mcallisterite", and "boracite", with uses including microwave
dielectrics (?), and apparently they melt over 1000°. Often these are
produced by reacting magnesia with boric acid at low temperatures.
However, it is remarkably hard to find good information about their
physical properties, such as their melting point, hardness, and strength.

 If anything, most aluminum compounds are even more
obnoxiously stable than those of calcium and magnesium, but there
are exceptions. The obvious candidate sources for aluminum cations
are aluminum trihydroxide and metallic aluminum; also, the highly
water-soluble (and violently acidic) aluminum chloride sublimes at
180°.

 (Aluminum hydroxide flour might also be an interesting material
for an Oogoo made with hardware-store silicone, as an alternative to
cornstarch; it might contribute strength, but also possibly contribute
hydroxyls to speed the uniform setting of the silicone, and then, after
setting, might make it possible to calcine the silicone into a
silicoaluminate or carborundum-alumina composite.)

Topics

• Materials (p. 1138) (59 notes)
• Contrivances (p. 1143) (45 notes)
• Pricing (p. 1147) (35 notes)
• History (p. 1153) (24 notes)
• Filled systems (p. 1161) (16 notes)
• Strength of materials (p. 1164) (13 notes)
• Clay (p. 1179) (10 notes)
• Phosphates (p. 1184) (9 notes)
• Ceramic (p. 1193) (8 notes)
• Refractory (p. 1225) (5 notes)
• Weighing (p. 1267) (3 notes)
• Kingery, the father of modern ceramics (p. 1288) (3 notes)
• Units
• Ayurveda

https://en.wikipedia.org/wiki/Magnesium_chloride
https://fscimage.fishersci.com/msds/13510.htm

Arc maker
Kragen Javier Sitaker, 02021-08-07 (updated 02021-12-30)
(11 minutes)

 Stick welding is a pain partly because of the necessity to strike the
arc and the danger of sticking the electrode; with a traditional
buzzbox it takes some skill to learn to avoid these. And an arc furnace
is clearly the easiest way to reach temperatures over 1000° or so.

Basic circuit parameters

 In theory, though, an intelligent control circuit could make this a
lot easier. A high-frequency start mode, as found on some TIG
welders, could activate when open circuit is detected, initiating a
plasma; and when you stick the electrode and a short circuit is
detected, the high-power circuit can be turned off entirely until a low
current detects that the short is cleared. Perhaps by monitoring the
arc voltage it could even warn you you’re getting too close.

 I think about the lowest an arc can go usefully is about 50 volts and
10 milliamps, but for welding as such you need much higher currents:
10 amps at least, 100 more typically. But the initial high-frequency
start, according to conventional wisdom anyway, requires something
on the order of a kilovolt per millimeter, so, say, 3kV at 100kHz, but
then probably only up to a few microamps.

 The normal welding current can run at a much lower frequency
than the high-frequency start; 100-120 Hz is traditional, but even 500
Hz would be reasonable.

 A table of values from Deringer-Ney cites minimal voltage and
current conditions for maintaining an arc, however short, for different
electrode materials; silver is said to require 400-900 mA and 11-12.5
volts, while carbon only 10-30 mA, but 15-22 volts. Sadly, no values
are given for the materials I’m most interested in, like copper, steel,
brass, and tungsten carbide. Still, these values are much lower than I
had expected!

Can you just use a single flyback? No!

 In theory a flyback converter can smoothly switch between any
output voltage and frequency, but in practice I feel like this factor of
60 in voltage and 200 in frequency is probably pushing it pretty far.
Like, suppose your flyback transformer has a turns ratio of 80:1, so
one volt on the input produces 80 volts on the output. So in theory
you can get 50 volts output with 5-volt input pulses at a duty cycle of
1:8 or 1/9, so the pulses are on for 11% of each 2-ms cycle (thus 220
μs) and off for the other 89%. And to get 3000 V out, the pulses use a
duty cycle of 8:1 or 8/9, giving 3200 V. But now we’re talking about
8.9 μs on and 1.1 μs off.

 So what’s the magnetizing inductance of our flyback core? 10 amps
on the output is 800 A (oof! car jumper cables!) on the input, but
that’s divided by our duty cycle to get 7200 A, which is the average
value our current must reach in its 220 μs, so a current slew rate of
7200 A / 220 μs = 32 MA/s, under an influence of only 5 V. So the

https://www.deringerney.com/assets/1/7/1.9.2_Arcing_Systems.pdf

magnetizing inductance must be 153 nH, and our switching MOSFET
bank needs to handle ten thousand amps. ½LI² at 14400 A is 15.9 J,
which is going to be a pretty huge inductor.

 Is that inductance a minimum or a maximum? If the magnetizing
inductance is higher, the current will rise lower, and less energy will
be stored in the core, thus producing lower output and limiting our
welding power to a too-low value. If the inductance is lower, then
instead we will produce more output power, if we can, unless we
saturate the core. (Hmm, what does “if we can” look like?)

 Then what happens with the high-frequency case? With 153 nΗ,
in 8.9μs our 5 V can “only” raise the primary current from 0 to 291 A,
which limits out output high-frequency start current to 3.6 A, which
is grossly overkill.

Using two supplies should work

 It would surely be better to use two separate flyback converters to
produce the high-voltage, high-frequency, low-current starter signal
and the low-voltage, low-frequency, high-current arc sustaining
supply. They can be usefully separated by passive means to take
different circuit paths. An inductor reaching 100 ohms (=ωL) at
100kHz would be 160 μH, and a capacitor reaching 100 ohms
(=1/(ωC)) at 500 Hz would be 3.2 μF, so a “bias tee” that routed
low-frequency “DC” stuff to one flyback and high-frequency stuff to
the other would be very easy to build. 160 μH at 500 Hz is only 0.503
ohms, and 3.2 μF at 100 kHz is similarly 0.497 ohms.

 The low-voltage, high-current system probably ought to be
powered from mains power rather than from a 5-volt supply, using a
voltage stepdown flyback transformer. 50 volts at 10 amps is
necessarily 500 watts, and delivering 500 watts from a 5-volt power
supply is just gonna suck. Delivering 500 watts from a 240-VAC
power supply is a little tricky but highly doable. Stepping it down to
50 volts or less could be done simply with a stepdown transformer,
but 50Hz transformers are heavy; I think an H-bridge from the mains
wires across the primary of a high-frequency transformer would be a
more elegant approach that would easily permit the kinds of power
and polarity control I’m talking about here.

 This can be done without the kinds of large energy-storage
capacitors needed by conventional switching power supplies, because
it doesn’t need to produce a constant ripple-free voltage; the
H-bridge can also operate at frequencies of around 100 kHz, with a
fuse and a little bit of filtering on the inputs and outputs, at just the
cost of having an annoying 100-Hz buzz in the arc. A 500-watt
power supply that has to store 10 milliseconds’ worth of energy needs
5 joules of energy storage; one that only has to store 10 microseconds’
worth needs 5 millijoules.

 The high-voltage high-frequency starter supply could use a stepup
flyback as usual, or maybe a chain of two 16:1 stepups. The flyback
part of it would operate at a 7:3 duty cycle: 7 μs on at 5 V, 3 μs off at
0 V, which would produce 11.7 volts referred to the input, or 187 V
on the output. The second stage 16:1 stepup transformer would then
raise this to 2995 V. If this output is to be capable of delivering 10
mA, which may be rather a lot but is surely adequate, the first input

winding needs to handle 2.56 A average, 3.66 A average during the 7
us, 7.3 A peak, which is an eminently straightforward thing to
achieve. Magnetizing inductance can’t be more than 5 V 7 μs / 7.3 A
= 4.79 μH. ½LI² is 0.13 μJ.

Microcontrollers

 This seems like a waveform that would be easy to generate with an
Arduino or an ATTiny9. 3 μs is 48 cycles or 24-48 instructions at
16MHz even if you’re doing it in software; the ATTiny9 runs at
10MHz and has a 16-bit PWM counter. (Also the 61¢ ATTiny4: and
the 40¢ ATTiny5: 12MHz, 256 instructions of Flash, 32 bytes of
RAM. The difference is that the ATTiny5 has an ADC and the
ATTiny9 has 512 instructions of Flash.) The transformers seem like
they’d be easy to wind; 2 or 3 turns on each primary, 32 or 48 turns
on the secondary. Putting an ac-coupling cap in between the MCU’s
GPIO (or rather its external buffer transistor or transistors) and the
transformer would keep the transformer from saturating.

 Looking at AVRs, there’s a new (from 02018) “0-series” 46¢
ATTiny202 with 20MHz, 1024 instructions of Flash, 128 bytes of
RAM, and a bunch of onboard peripherals including I²C (“TWI”),
master/slave SPI, two PWM channels, a 10-bit 115-ksps 6-input
ADC, 6 GPIOs, and an FPGA-style 3-LUT logic cell (or two?). Also
it maps the Flash into the data address space so you don’t need the
special aptly named LPM instruction to read it.

Winding transformers

 This coil inductance calculator suggests that this low inductance
should be easily reachable with an air-core coil; for example, 3 turns
packed into 2 mm with a radius of 16 mm and a relative permeability
of 1 should be about 4.55 μH. But I think this may be inaptly using a
long-coil approximation formula μN²A/l which assumes Nagaoka’s
coefficient is 1. WP says that for cases like this L\approx {\frac {\mu
_{0}}{2\pi}}N^{2}\pi D\left[\ln \left({\frac {D}{d}}\right)+\left(\ln
8-2\right)\right]+{\sqrt {\frac {\mu _{0}}{2\pi }}}\;{\frac {ND}{d}}{\sqrt
{\frac {\mu _{\text{r}}}{2f\sigma }}} but I have no idea what to make of
that. Low-frequency ferrites have permeabilities in the 350-20000
range so any ferrite would instantly rocket us out of the microhenry
range. But without a core, how can we guide the flux through 48
windings of a secondary?

 10 amps in a transformer winding or something like that requires at
least 12-gauge wire, 2.1 mm in diameter, even though 16-gauge (1.3
mm) would be fine for single conductors.

Switching elements

 Our peak wall voltages here are 340 volts. If we’re H-bridging that
across the primary of our transformer, our switching elements need to
be able to handle that much voltage, and in either direction.
Common high-voltage signal MOSFETs like the 57¢ BSS131 won’t
cut it, and not just because of the body diode; we need much larger
switches like the 82¢ STS1NK60Z (600V 0.25A), the obsolete 185¢
STF5N52K3 (525V 4.4A), the 89¢ STD2LN60K3 (600V 2A), the 63¢
AOD1N60 (600V 1.3A), the obsolete 116¢ STGB14NC60KT4 (600V
25A), the obsolete RoHS-non-compliant 122¢ STGD3NB60FT4

https://www.digikey.com/en/products/detail/microchip-technology/ATTINY4-MAHR/2271064
https://www.digikey.com/en/products/detail/microchip-technology/ATTINY5-TSHR/2238294
https://www.digikey.com/en/products/detail/microchip-technology/ATTINY202-SSN/9947534
https://www.digikey.com/en/products/detail/microchip-technology/ATTINY202-SSN/9947534
https://www.allaboutcircuits.com/tools/coil-inductance-calculator/
https://en.wikipedia.org/wiki/Inductor#Inductance_formulas
https://en.wikipedia.org/wiki/Permeability_(electromagnetism)#Values_for_some_common_materials
https://en.wikipedia.org/wiki/Permeability_(electromagnetism)#Values_for_some_common_materials
https://www.digikey.com/en/products/detail/infineon-technologies/BSS131H6327XTSA1/2783458
https://www.digikey.com/en/products/detail/stmicroelectronics/STS1NK60Z/1039725
https://www.digikey.com/en/products/detail/stmicroelectronics/STF5N52K3/2682995
https://www.digikey.com/en/products/detail/stmicroelectronics/STF5N52K3/2682995
https://www.digikey.com/en/products/detail/stmicroelectronics/STD2LN60K3/3711342
https://www.digikey.com/en/products/detail/alpha-omega-semiconductor-inc/AOD1N60/2353844
https://www.digikey.com/en/products/detail/stmicroelectronics/STGB14NC60KT4/1299900
https://www.digikey.com/en/products/detail/stmicroelectronics/STGD3NB60FT4/603475

(600V 6A), or the 847¢ C3M0120065K (650V 22A, SiC). I think I
need 8 of these for a full H-bridge to deal with the body diodes,
which suddenly makes this seem a lot less appealing... maybe a
center-tapped winding with diodes down to both live and neutral,
and then I can get by with just two MOSFETs on the ends? Or I
could just bridge-rectify the input, of course.

 To get 500 watts out of 240 Vrms, I need only slightly over 2 A,
and that’s spread across two transistors.

 Hmm, I wonder if this is some version of the “totem-pole PFC
topology”, though I’m not using it for PFC. Or maybe the
“phase-shift full-bridge and LLC circuit”?

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Power supplies (p. 1176) (10 notes)
• Welding (p. 1181) (9 notes)
• Microcontrollers (p. 1211) (6 notes)

https://www.digikey.com/en/products/detail/cree-wolfspeed/C3M0120065K/13906976

Argentine pricing of PEX pipe and
alternatives for phase-change
fluids
Kragen Javier Sitaker, 02021-08-07 (updated 02021-12-30)
(2 minutes)

 I’ve been thinking about some experiments with phase-change
fluids and temperature control, and basically a big thing I need is a
way to pump fluids around (sometimes salty fluids that could damage
metals).

 I found that people are selling PEX tubing for building
radiant-heating floors. PEX is great because it’s super inert and
sturdy. Unfortunately only a couple of sizes seem to be available:

• 16 mm PEX for AR$154/m
• 20 mm PEX for AR$93/m
• 20 mm PEX for AR$110/m
• 20 mm PEX for AR$160/m in red

 Other alternatives:

• 4mm transparent vinyl tube for AR$30/m
• 4mm transparent vinyl tube for AR$22/m for aquariums
• 16mm transparent vinyl tube for AR$117/m
• 3/4 inch (18mm) PVC pipe for AR$53/m
• 1/2 inch (12mm) black polyethylene tube for AR$26/m
• 3/4 inch (18.4 mm) black polyethylene tube for AR$40/m
• 1/2 inch (12mm) fiber-reinforced garden hose for AR$141/m
• 3/4 inch (18mm) corrugated polypropylene tube for AR$24/m
• 1.5 inch (38 mm) corrugated polypropylene tube for AR$123/m
• 150 mm corrugated aluminum air duct for AR$249/m for growing
pot

 Pure polypropylene, polyethylene, and PVC are also super inert,
though these versions may not be. Black polyethylene has the
advantage that it can absorb sunlight easily.

 The thin aquarium tubing may be interesting not only for when
girth doesn’t matter (because it’s 10% cheaper than anything else by
length) but also because girth can actively be a drawback; it takes up
space, it requires more coolant, it lengthens the transit time for
coolant at a given mass flow rate, and, especially when full of water, it
adds weight.

Topics

• Pricing (p. 1147) (35 notes)
• Argentina (p. 1200) (7 notes)

https://articulo.mercadolibre.com.ar/MLA-855400563-cano-tubo-pex-piso-radiante-barrera-oxigeno-16-mm-fv-ofitt-c-_JM
https://articulo.mercadolibre.com.ar/MLA-917433094-cano-pex-bgh-piso-radiante-20mm-x-300mts-_JM
https://articulo.mercadolibre.com.ar/MLA-623420397-tubo-hidroflex-pex-20-mm-por-metro-piso-radiante-saladillo-_JM
https://articulo.mercadolibre.com.ar/MLA-860184785-cano-tubo-pex-pert-20-x-120-mts-tubotherm-_JM
https://articulo.mercadolibre.com.ar/MLA-656333236-micro-tubo-para-conectar-gotero-de-4mm-por-10-mts-san-isidro-_JM
https://articulo.mercadolibre.com.ar/MLA-691309100-50-metros-manguera-cristal-4x6-acuarios-hidroponia-envios-_JM
https://articulo.mercadolibre.com.ar/MLA-930951709-manguera-industrial-tubo-cristal-traslucido-16x20mm-tecnocom-_JM
https://articulo.mercadolibre.com.ar/MLA-673821028-cano-pvc-34-rigido-liviano-huferjo-por-3mts-_JM
https://articulo.mercadolibre.com.ar/MLA-912499719-cano-polietileno-manguera-12-x-rollo-50-mt-k4-agua-riego-_JM
https://articulo.mercadolibre.com.ar/MLA-911606435-cano-polietileno-manguera-34-x-rollo-100-mt-k24-agua-riego-_JM
https://articulo.mercadolibre.com.ar/MLA-764443143-manguera-de-riego-30-metros-tramontina-12-flex-reforzado-_JM
https://articulo.mercadolibre.com.ar/MLA-642927381-cano-corrugado-blanco-34-x-25mts-flexible-_JM
https://articulo.mercadolibre.com.ar/MLA-923905265-cano-corrugado-blanco-1-12-rollo-x-25mt-flexible-homologado-_JM
https://articulo.mercadolibre.com.ar/MLA-910080395-conducto-ducto-6-pulgadas-x-metro-extraccion-indoor-cogoshop-_JM

Power transistors
Kragen Javier Sitaker, 02021-08-07 (updated 02021-12-30)
(12 minutes)

 I was looking at power transistors to use to control a load of some
tens of watts (a tiny arc furnace) from a microcontroller, driving a
couple of flybacks with something like 10 amps at 5 volts at a few
kHz. But obviously the microcontroller can’t drive 10 amps, so you
need a high-power buffer, and it should probably be a transistor.

 What buffer transistors would you want to use?

MOSFETs

 In MOSFET-land, a pricey power MOSFET like an IRF540N is
one option when you need low on-resistance; (0.044 ohms, 33 A, Vds
up to 100, 145¢); another would be a parallel pair of IRLML6344s
(0.029 ohms, 5 A each, 30 V, 36¢).

 An interesting figure here is the expected load impedance. An
IRF540N can control a 3300-watt load, but if it’s resistive, that load
has to be 3 ohms. If the load is 10 ohms, at 100 volts it can only draw
10 A, and so it’s only 1000 watts. Similarly, if the load is 1 ohm, we
can only use voltages up to 33 V, and so it can only be 1089 watts. So
even though the actual impedance of the IRF540N is only 0.044
ohms, from the point of view of efficient power transfer, it’s kind of
like a power supply with a 3-ohm internal impedance. I’ll call this the
“virtual impedance”.

 In general if the virtual impedance is too low, you can stack up
multiple switches in series to get the voltage you want. It may be
inconvenient but it’s probably not that bad. But if it’s too high you
may be in for trouble; BJTs need a lot of ballast to avoid current
hogging.

 Because you can parallel MOSFETs, too high a virtual impedance
figure is less of a concern; paralleling them drops your virtual
impedance just like it drops real impedance. So one IRLML6344 has
“6 ohms” of virtual impedance, but two in parallel have “1.5 ohms”,
and four have “0.75 ohms”.

 The modern choice would probably be a GaN FET like the
EPC2036. Damn, those things are sweet. 100 V, 1 A, 0.065 ohms,
and only 0.91 nanocoulombs of Qg, compared to the IRF540N’s 71
nC and the IRLML6344’s 6.8. And its threshold voltage is lower, too.
So you can switch it on or off much faster and with less energy. The
245¢ EPC2016C is 100 V, 18 A.

TIP120s are too voltage-greedy

 You can’t use a TIP120 darlington for this kind of thing; though it
can deal with 60 V, 5 A continuous, 8 A peak, its saturation Vce is 4
volts at 5 amps, so it would eat basically all the power you were trying
to feed the transformer.

 60 V / 5 A is a virtual impedance of 12 ohms.

https://www.digikey.com/en/products/detail/epc/EPC2016C/5031689

Other bipolars

 So are there bipolars that would work better?

 Digi-Key suggests the 55¢ 2STN1550, the 141¢ MJB41CT4G, the
232¢ MD2001FX, the obsolete 21¢ 2SD23210RA, or the obsolete 32¢
2SD250400A.

21¢ 2SD2321

 Starting with the cheapest, the 21¢ Panasonic 2SD2321 can switch 5
A (8 A peak) at up to 20 V with a beta of at least 150 at 2 A and a
typical saturation Vce of 0.28 V when you’re running it at 3 A,
zooming up to 1 V at 8 A or so. It has a 150MHz “transition
frequency”, which I think means its beta is guaranteed to be not more
than 15 if you’re running it at 10 MHz.

 20 V / 5 A is a virtual impedance of 4 ohms.

 So, you could feed it 40 mA through a 120-ohm base resistor from
a microcontroller GPIO pin, grounding the emitter, and running the
flyback primary winding through it from 5V. The current through
the coil starts to climb, and keeps climbing until we turn off the
transistor, at which point the current leaps to the secondary and
energizes the arc. If we don’t buffer it further we probably won’t get
more than 6 amps out of it. But then it’s dropping a whole volt, so
it’s dissipating 6 watts, briefly exceeding its 0.4 watt rating 15 times
over. And it probably spends a fair bit of time dissipating more than
half that. So it’s probably going to overheat in its little bitty NS-B1
TO-92-like package.

 But, even before that, quite likely at 5 V 2 A we drive the poor
little transistor into second breakdown.

 The max you could theoretically switch with this transistor, if
second breakdown wasn’t a consideration, is 100 W. In a flyback
setup you won’t get more than 40 W; the flyback waveform is an
interrupted sawtooth, so its RMS value is half of its mean value, a
quarter of its peak value of 160 W. With a 5 V supply, though, you’ll
be lucky to control 10 W with it. And because of its lousy power
dissipation you can only control a tiny fraction of that continuously.

32¢ 2SD2504

 This is slightly more promising, specced to switch 5 A (9 A peak) at
up to 10 volts, and dissipate 750 mW from its TO-92-B1. But its
saturated Vce crosses 1 V at only 4 A; at 8 A it’s up to 2 V (and thus
16 W). So it’s just going to dissipate way too much power for this,
even if it doesn’t hit second breakdown (Panasonic forgot to include
the safe-operating-region plot in the datasheet this time).

 10 V / 5 A is a virtual impedance of 2 ohms.

55¢ 2STN1550

 This is a little bitty surface-mount SOT-223, which entitles it to
dissipate 1.6 watts, and it’s rated to switch up to 5 A (10 A peak) at up
to 50 V; at 5 A 5 V it says its (non-small-signal) beta is typically 95,
so you’d need 53 mA to avoid saturating, which is a bit much to ask
from a microcontroller. It turns on in 90 ns and off in 700 ns, so you
can switch efficiently at near-MHz rates.

 50 V / 5 A is a virtual impedance of 10 ohms.

https://www.digikey.com/en/products/detail/stmicroelectronics/2STN1550/2122365
https://www.digikey.com/en/products/detail/onsemi/MJB41CT4G/1481723
https://www.digikey.com/en/products/detail/stmicroelectronics/MD2001FX/2043597
https://www.digikey.com/en/products/detail/panasonic-electronic-components/2SD23210RA/972467
https://www.digikey.com/en/products/detail/panasonic-electronic-components/2SD250400A/972471
https://www.digikey.com/en/products/detail/panasonic-electronic-components/2SD250400A/972471

 ST omits the performance curve plots entirely, as it turns out, only
specifying a 0.26 V saturated Vce at 3 A.

 I feel like this transistor would probably work in a 12V system! But
in a 5V system we’re just asking too much current from it. Say we
can drive its base with another transistor so we don’t have to worry
about the 40 mA limit on AVR pins. 5 amps at 5 volts is a peak of 25
watts; in a flyback setup we can never get more than half of that,
since if the mean current of the sawtooth is 5 amps, its RMS current is
only half of that. So we’re talking about 12.5 watts, which is not
much of an arc furnace. If we were using 12 volts, though, we could
do 30 watts with a switch like this.

 I don’t know, I think we’d need to go for something a lot beefier to
get hundreds of watts of power into our stepdown flyback arc power
supply.

141¢ MJB41CT4G

 This is a TO-263-3 surface-mount version of the TIP41 power
transistor, specced to switch 6 A (10 A peak) at 100 volts, but with a
beta of only 15 and a transition frequency of only 3 MHz (which the
onsemi datasheet helpfully explains is the gain-bandwidth product),
which limitations would be fine for this application. You’d have to
use some kind of a driver circuit to drive its base: another transistor, a
step-down pulse transformer, something.

 100 V / 6 A is a virtual impedance of 17 ohms.

 It’s rated both for 2 watts and 65 watts dissipation, depending on
whether you’re holding the case or the ambient air at 25°. The
junction temperature max is 150°, junction-to-case thermal resistance
is 1.92°/W, and junction-to-ambient thermal resistance of 62.5°/W
(or 50°/W “when surface-mounted to an FR-4 board using the
minimum recommended pad size”). If you divide 150°-25° by
1.92°/W you get the 65-watt number, while 62.5°/W gives you the
2-watt number. So if you heatsink this guy well enough, you could
dissipate tens of watts.

 It says its saturated Vce is 1.5 V at 6 A, which would be 9 watts, so
that’s really all the heatsinking it needs if you’re using it as a switch.
At 5 volts it would be grossly inefficient, controlling a 3.5 V 6 A (21
watt) load at a cost of 9 watts. But if it were controlling, say, a
70-volt load, it might be fine.

232¢ MD2001FX

 This is a monster 700-volt bipolar 12-amp (18-amp peak) 58-watt
NPN BJT, marketed as “High voltage NPN power transistor for
standard definition CRT display”! It’s a transistor specifically
designed for the horizontal deflection output for a CRT, but
astonishingly it’s not marked as “obsolete” and it was only introduced
in 02007. Its beta is only 4.5, and it’s sloow, 2.6 microseconds storage
time.

 700 V / 12 A is a virtual impedance of 58 ohms.

Triacs

 Suppose you connect the flyback primary between the positive
power rail and a capacitor to ground and put a triac (or just an SCR)

across the capacitor. Initially when you plug it in there will be a
flyback pulse as the capacitor charges up, to twice the input power
rail, I think, but then when the cap starts to discharge, the flyback
secondary’s diode will go forward-biased and rapidly drain most of
the energy out of the circuit, so fairly rapidly the cap will be charged
to the power rail voltage, and everything will be quiescent. But if
you tickle the SCR gate, the cap dumps to ground and the whole
cycle starts again. You can control the amount of power delivered to
the output by doing this more or less often. A triggered spark gap
could maybe substitute for the triac in a pinch. I mean basically this is
just a Tesla coil.

 This doesn’t seem like it is going to be very efficient, but it would
definitely work.

 I am going to assume that the 46¢ Ween (formerly NXP, formerly
Philips) Z0109MN0 is a typical triac. It’s an SOT223 four-quadrant
triac that starts passing 1 A at 600 V (dropping 1.3 V) if you tickle its
gate with 1 V and 10 mA, until the current drops below 10 mA (or
maybe 30 mA?).

 600 V / 1 A is a virtual impedance of 600 ohms.

Topics

• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Power supplies (p. 1176) (10 notes)

https://www.digikey.com/en/products/detail/ween-semiconductors/Z0109MN0-135/2780441

Pocket kiln
Kragen Javier Sitaker, 02021-08-09 (updated 02021-08-15)
(7 minutes)

 As mentioned in Material observations (p. 633), my experiments
on materials are limited by needing a kiln that can maintain a
reproducible temperature somewhere in the 500°–1500° range for
probably considerably longer than 20 minutes.

 The thermal aspect of this seems like an eminently feasible thing to
do with the intumescent refractory recipes explored therein: I can
mix up some intumescent mix, maybe with a bunch of vermiculite
filler, mold it to a rough shape, and heat it with the torch enough to
get it to bubble up; then I can cut and grind it to shape with saws,
knives, bricks, bits of granite, and so on. Maybe a little hardfacing
with waterglass-bonded sand or alumina would be useful to improve
durability, or maybe a bed of vermiculite would be adequate. That
would already be a significant improvement over just an open bowl of
vermiculite or even the Monster-can forge I’ve been using.

 (If I didn't have a butane torch, a stove burner with a metal bowl,
or a wood fire, would probably work too. We’re getting into serious
bootstrapping territory here! Also worth mentioning is using a pile of
loose particulate, supported by the thing being heated up and possibly
fuel, instead of a solid refractory.)

 Temperature control involves at a minimum some kind of
electrical circuit, probably a temperature sensor, and probably one or
both of airflow control (say, with muffin fans well upstream of any
heating) and electrical heating, say with a resistive heating element.
Without electrical heating, blowing a variable amount of air through
ignited charcoal, ignited yerba mate, or some other burner (maybe an
oil burner like the one I made with the porous magnesium silicate)
could add a variable amount of heat to the chamber; mixing that air
with a second airstream could control the temperature of the air being
introduced to the kiln as well as reducing unburnt fuel contamination
and making the atmosphere oxidizing again if desired.

 Once I can do that, making further components from fired-clay
ceramics should be easy!

 Although this involves contaminating the kiln atmosphere with the
fuel, and it has a relatively low maximum temperature, this sort of
thing has the advantage that very high powers can be easily attained
without imposing a significant load on the electrical system. A typical
US$10 computer case fan might use 200 mA at 12 V and be able to
provide 30 “cfm”, cubic feet per minute, which is 14 liters per second,
which works out to 3.6 grams per second of oxygen (21% of 1.2 g/ℓ).
(Maybe that’s too pessimistic; the first fan I checked on Amazon
claims 56.3 cfm at 0.96 W, but a US$2 40mm fan claims 6.7 cfm at
1.2W.) Suppose you’re burning charcoal, and that it’s basically the
same as graphite; one mole of O₂ (31.998 g/mol) produces one mole
of CO₂ (44.009 g/mol), which has a standard enthalpy of formation
of -393.5 kJ/mol. So crudely you get about 12.30 kJ/gO₂, so at
3.6 g/s you get 44 kilowatts of heating power, while the fan motor is

https://www.amazon.com/ARCTIC-ACFAN00120A-Pressure-Optimized-Sharing-Technology/dp/B07GJGF56L/ref=sr_1_3
https://www.amazon.com/ARCTIC-ACFAN00120A-Pressure-Optimized-Sharing-Technology/dp/B07GJGF56L/ref=sr_1_3
https://www.amazon.com/Adda-40mm-10mm-Speed-2-Pin/dp/B07NKLKKP4/ref=sr_1_8
https://www.amazon.com/Adda-40mm-10mm-Speed-2-Pin/dp/B07NKLKKP4/ref=sr_1_8

only using 2.4 watts. The charcoal amplifies the fan’s heat output by a
factor of 18000. Or 86000 if we believe the Amazon large fan
number, or only 8200 if we believe the Amazon small fan number.

 (In a sense this design involves two combustion chambers: one
with fuel in it, which will increase the rate of fuel volatilization when
airflow through it increases, and a second one downstream from it,
which serves to ensure complete fuel combustion and perhaps restore
oxidizing conditions by adding enough oxygen to the exhaust from
the first combustion chamber, and which does not transmit heat to
the still-unburned fuel.)

 Fuel burning is of course much more difficult to control.

 Using a resistive heating element upstream from the kiln chamber
itself would enable me to maintain a reducing atmosphere in the kiln
(with a little sacrificial carbon or something, similar to the
ignited-charcoal-heater approach) without needing exotic heating
elements (graphite, carborundum, zirconia, platinum,
fused-quartz-encapsulated tungsten) that can withstand reducing
atmospheres at high temperatures.

 Running the flue gases through a scrubber would be pretty useful
to avoid poisoning the neighborhood, creating noxious smells, and
setting things on fire with hot gases. A bubbler, a spray-nozzle
column, or a sewage-treatment-style trickling-filter sort of
arrangement (see file liquid-packed-beds.md)would enable a large contact
surface area between the flue gases and the water. Driving the whole
thing with a suction pump at the output of the scrubber would keep
the pump itself from being exposed to hot gases and melting, as long
as the scrubber itself is cooling the gases adequately.

 Even if the kiln isn’t heated by combustion, flue gases are a
concern, because reactions inside the kiln can produce gases which can
be stinky, poisonous, or both, and of course the output will be hot.
But it may be possible to have less of them!

 Carbon monoxide (perhaps from incomplete combustion of
organics inside the kiln) is a particular concern because it’s hard to
remove; you pretty much just have to burn it.

 Alternatives to combustion for heating include direct resistive joule
heating, indirect resistive heating by way of an induction coil,
dielectric heating, microwave heating (which provides indirect
resistive and dielectric heating), direct arc heating with consumable
electrodes (typically graphite), indirect arc heating with microwaves,
self-propagating high-temperature synthesis, and solar furnaces like
Lavoisier’s. Of these, the last two have natural temperature limits,
and the others basically don’t.

 Once I have a refractory ceramic automated fabrication capability
working, it should be possible to make fan blades and even Parsons
turbines out of refractory ceramics, which straightforwardly would
seem to make it relatively easy to pump hot gases directly. But I’m
not sure how to transmit the rotation to the blades: through a long
shaft that traverses refractory gland packing? (This is a “bifurcated
fan” in industrial fan lingo.)

Topics

• Contrivances (p. 1143) (45 notes)
• Thermodynamics (p. 1219) (5 notes)
• Refractory (p. 1225) (5 notes)
• Heating (p. 1253) (4 notes)
• Insulation (p. 1290) (3 notes)

Cola flavor
Kragen Javier Sitaker, 02021-08-10 (updated 02021-08-15)
(2 minutes)

 I accidentally inhaled a little acid gas from heating diammonium
phosphate (see Material observations (p. 633).) It was just a whiff, but
it set me to thinking.

 It occurs to me that, because it polymerizes above 200° instead of
simply boiling like a decent liquid should, hot phosphoric acid with
some impurities might outgas a bunch of muriatic (-114.22°) or vitriol
(over 300°), which is a potential inhalation hazard from heating it
(something I hadn’t thought to consider hazardous); electrolysis of
ammonium compounds could suffer the same problem. (Brown &
Whitt 1952 say the aqueous azeotrope boils at 840° at 92.7%.)

 I wonder if the Potash Corp.’s helpful booklet mentions this?
Well, it says you should use rubber-lined (latex or chlorobutyl) steel,
PE, polyester, or (if you can keep Cl content below 15 ppm, so don’t
dilute it with chlorinated water!) 316L for the stuff. They especially
warn you away from carbon steel, and they warn that over 3000° F
(1650°) it decomposes into phosphorus oxides. They have reassuring
words about toxicity: LD₅₀ of 1530 mg/kg, slight dermal toxicity,
but it can cause acid burns, especially in eyes. Also on p. 24 they have
a reassuring graph of “vapor composition over boiling solutions”,
with <1% H₃PO₄ up to 300° (“at which point the acid strength is
about 103%”, i.e., some of it has become pyrophosphoric acid),
crossing 10% around 500°, and continuing up to about 57% at 800°. It
never mentions the risk of protonating other substances to create
volatile acid gases.

Topics

• Materials (p. 1138) (59 notes)
• Phosphates (p. 1184) (9 notes)

https://isolab.ess.washington.edu/resources/H3PO4.pdf

Constant current buck
Kragen Javier Sitaker, 02021-08-10 (updated 02021-08-15)
(4 minutes)

 I was talking about flashlights and mentioned that I’d tried
designing a constant-current buck converter without success. But
now I don’t see what was so hard about it. Maybe when I submit this
design to simulation I’ll find out.

 The basic constant-voltage buck converter is
GND->|-a-R1-b-L1-c-C1-GND. The input power waveform is
applied between GND and a; the output voltage appears across the
output capacitor C1. Subject to enough output load to keep it in
continuous conduction mode (CCM), the output voltage is the
average input voltage, so if the input voltage is a fixed voltage with a
fixed duty cycle, then the output voltage is inherently regulated and
will change very little with load. The current shunt resistor R1 allows
you to measure the average load current, filtered through the LC
low-pass filter that forms the output; when this is not necessary it can
be 0Ω.

 To drive this circuit, though, you need some kind of square-wave
oscillator that switches point a between between a constant input
voltage and open circuit (or, in CCM, between the voltage rails, in
which case you don’t need the freewheel diode ->|-.). You can use
an opamp configured as a relaxation oscillator, for example, or a
comparator between a sawtooth or triangle oscillator and a reference
voltage level which determines its duty cycle.

 My thought was that you should be able to use a single opamp as a
differential amplifier across points a and b to set the reference voltage
level for that comparator; for example, hook up point b to its
noninverting input and point a through a 10k resistor to its inverting
input, then a 100k resistor between its inverting input and its output.
So then if point a swings up 0.1V relative to point b, the output must
swing down by 1V to compensate.

 I think you can probably make it simpler, though: by adding an
error-integrating capacitor and positive feedback for a
Schmitt-trigger effect, you should be able to integrate the
square-wave generation into the same opamp rather than needing a
separate ramp generator and comparator. I’m kind of fuzzy on how
to actually do this, so I'm not sure you can do it all with a single
opamp, but I suspect you can.

 The capacitor across the output of the buck converter low-pass
filters the current signal you’re measuring and can briefly source or
sink immense amounts of current itself, so if you want a really
constant-current supply (perhaps because overshooting your current
limit will burn up your expensive laser diode) you might want to
make it very small or remove it entirely. Such extreme measures
would probably require clamping the output with a TVS or at least a
regular zener.

 This feedback circuit is pretty close to being a class-D amplifier — I
think you can use the same approach of modulating a square-wave

duty cycle with the integrated difference between a reference signal
and the variable-duty-cycle square wave itself to get a class D audio
amplifier. The only difference is that the “audio” amplifier input
here is tied to the low end of the current sensing shunt resistor. It
would be pretty cool if you could make a class D amplifier out of a
single op-amp.

Topics

• Electronics (p. 1145) (39 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Power supplies (p. 1176) (10 notes)

Methane bag
Kragen Javier Sitaker, 02021-08-10 (updated 02021-08-15)
(8 minutes)

 As explained in Material observations (p. 633), I filled a small
plastic shopping bag with methane, but to my disappointment it did
not rise into the air. Calculations suggest that methane has
(12+4)/(.79×2×14+.21×2×16) ≈ 55% of the density of air, so should
provide some 500 mg/ℓ of lift. I didn’t weigh this bag beforehand or
measure its volume, but it surely only contained a liter or two of air.
Average plastic shopping bags weigh about 5 g, but lightweight ones
weigh as little as 100 mg. None of the ones I have here weigh less
than 800 mg; a household garbage bag (550 mm × 480 mm) weighs
10.9 g, and another bag nearly as big (470 mm × 460 mm) only
weighs 4.5 g. A 1.1 g pharmacy bag (170 mm × 240 mm) weighed
1.1 g. Several bags of intermediate size weigh around 3 g. The sturdy
8-liter bags from the sandwich shop weigh a little over 9 g.

 If we approximate the volume of the 4.5-g bag as a 470-mm-long
cylinder wih 460-mm half-circumference, it would hold almost 32 ℓ,
enough to lift about 16 g, so it should definitely fly, but only by a
factor of about 3. (And so should the garbage bag.) If we scaled it
down by a factor of 3 to a 160-mm-long cylinder with 150-mm
half-circumference and 500 mg of mass, it would only hold 1.1 ℓ and
thus be just on the edge of buoyancy. Most of my bags seem to be a
lot thicker than that, so they’ll only fly if they hold several liters.

 4.5 g over twice 470 mm × 460 mm is 10.4 g/m², so if the plastic is
close to 1 g/cc (it is — it’s high-density polyethylene, not lead or
something) it’s about 10 μm thick, same as the aluminum foil we get
here. So this is probably about as good as it gets without going to
gold leaf or exotic composites. Note that this suggests that ordinary
balloons (and bladder and intestine tissue) stretch even thinner than
this.

 Lifting this body into the air would require 115 kg of lift, a sphere
of 2.8 m radius if filled with vacuum, or with methane (45% of the lift
of vacuum) 3.7 m, or 170 m² of surface area. Hydrogen would
probably be a less dangerous lifting gas for humans suspended below
it, with more tendency to rise upwards when there’s a rupture and less
tendency to radiate heat downwards if it catches on fire. There’s still
the problem of how to stop falling before the ground kills you,
though.

 Unfortunately Mina doesn’t want me to fill a bag with 32 liters of
inflammable gas in the kitchen, which I have to say is an entirely
reasonable preference. And either compressing the gas or running a
hose to the park seems daunting. And, although CNG cars are
common here, we don’t have a friend who has one.

 A hydrogen generator would be a much more portable solution,
and has the advantage that hydrogen is only 7% of the density of air,
so you get a little over twice as much lift. A 1-ℓ sphere 124 mm in
diameter has a surface area of 0.048 m² and would thus require
480 mg of 10-μm polyethylene to enclose it, so the critical limiting

scale with those materials would be about 50 mm in diameter: 65 mℓ,
0.0079 m², 79 mg of plastic, 79 mg of air displacement. 7% of 1.2 g/ℓ
is 80 mg/ℓ, so you’d need 80 mg of hydrogen to fill a 1-ℓ sphere.
Let’s pick 2 ℓ as a reasonable size, with a good bit of safety margin for
non-idealities. If we use a tubular bag that’s 120 mm in diameter, it
will be 177 mm long and, when stretched out flat, 188 mm wide. At
10 μm two such rectangles are 666 μℓ and thus about 666 mg of
HDPE. The requisite 160 mg of hydrogen is 0.079 mol, which the
universal gas law tells us is 1.9 ℓ — off by 5%.

 To make it we need to electrolyze 0.079 mol of water, about 1.4 g,
which seems like an eminently practical amount of water to carry to
the park. If our Faraday efficiency were 100%, each electron would
liberate a hydrogen ion, so we would need 0.158 moles of electrons,
about 9.5 × 10²² electrons, which turns out to be 15 kilocoulombs, 4.2
amp hours; at 2.4 volts that’s 37 kJ; at 200 watts that’s 3 minutes.
And in practice I think the Faraday efficiency will be more like 60%,
so it would be more like 6 minutes.

 NREL Conference Paper NREL/CP-550-47302 explains that
electrolysis requires 237.2 kJ/mol of electricity and 48.6 kJ/mol heat.
The number I came up with above is 234 kJ/mol (37/0.158 = 234), so
I guess I did the ideal-Faraday-efficiency calculation right, but it
didn’t occur to me that the reaction was endothermic! Although this
must be purely by chance, since they’re saying the actual voltage is
1.229 volts, not 2.4 volts. “Whereas the practical fuel cell operates
well below 1.23 volts (in the range of 0.750 to 0.900 volts), the
practical electrolysis cell operates above this voltage in the range of
1.60 to 2.00 volts.”

 Well, 285.6 kJ/mol * 1.8 V / 1.23 V = 420 kJ/mol, or 66 kJ for
0.158 mol. So basically 100 kJ.

 100 kJ of batteries is about US$4 of lead-acid batteries; the
US$8.30 2-kg 7-amp-hour Risttone battery mentioned in Energy
autonomous computing (p. 143) holds 300 kJ, 150 kJ/kg. A
lithium-ion version would be about ⅙ the weight for the same energy
capacity, or ⅓ for a high-power battery, but those cost ten times as
much per joule or more, and the limiting factor becomes power rather
than energy. So we’re probably talking about a battery that’s
practical, but a bit cumbersome, to carry to the park.

 A different alternative would be to fill the bag with azane, which
has even less lifting power (17.031 g/mol compared to methane’s
16.043 or air’s 28.9) but can be dissolved 30% by weight in water at
25°, forming a strongly basic 26°Bé (1.22 g/cc) solution; at 0° this
rises to 47% by weight, and at 60° to something like 10%. 20 ℓ of
ideal gas would be 0.831 mol, 24.0 g of air or 14.2 g of azane, thus
lifting 9.8 g. 14.2 g of azane could be dissolved in 47.3 g of aqueous
azane solution occupying about 38 mℓ, then liberated by heating it, as
in an absorption refrigerator. (And you’d need a “water separator” or
“moisture separator” or “mist eliminator”, also as in an absorption
refrigerator.) A disadvantage of this is that it has a strong smell that
the vulgar may associate with its use in witchcraft.

 At pure azane’s boiling point of -33.4°, its ΔᵥₐₚHΘ is 23.35 kJ/mol,
so perhaps at a higher temperature from aqueous solution it would be
a bit lower; maybe this would require 15 kJ of heating. This doesn’t

https://www.nrel.gov/docs/fy10osti/47302.pdf
https://www.nrel.gov/docs/fy10osti/47302.pdf

sound like much of an advantage over 66 kJ, but you could supply it
with a candle, or with thermochemical energy storage like muriate of
lime (combined with water in a separate chamber).

 The other traditional way to make hydrogen on demand is with lye
and aluminum foil; zinc and muriate of lime reportedly also work,
and hydride of calcium has been used for inflating weather balloons
for a long time. I guess I should figure out the stoichiometry of this;
a couple of liters seems like it ought to be doable...

Topics

• Materials (p. 1138) (59 notes)
• Pricing (p. 1147) (35 notes)
• Physics (p. 1157) (18 notes)
• Experiment report (p. 1162) (14 notes)
• Flying (p. 1296) (3 notes)
• Batteries (p. 1302) (3 notes)
• Azane (p. 1386) (2 notes)

Iodine patterning
Kragen Javier Sitaker, 02021-08-11 (updated 02021-08-15) (1 minute)

 Reading some random encyclopedia article, I came across a
reference to the dissociation energy of I₂ being (the photon energy of
light of wavelength) 578 nm, so that irradiating a mixture of H₂ and
I₂ with this light (kind of yellow-green apparently) accelerates the
formation of HI.

 It occurred to me that monatomic halogens can react with a
remarkably large number of things, so doping a thin layer of
something with I₂ might be a straightforward way to make it
photosensitive, so that you can pattern it with a yellow, green, blue,
violet, or UV laser. Where the laser strikes, free iodine radicals are
released, kicking off some kind of polymerization or
depolymerization or something.

 Dunno, I guess iodine is not a very convenient element.

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Patterning (p. 1282) (3 notes)

Heating a shower tank with
portable TCES?
Kragen Javier Sitaker, 02021-08-11 (updated 02021-08-15)
(6 minutes)

 The shower tank in Mina’s bathroom holds 25 ℓ, though a typical
shower is more like 20 ℓ, and the water is preheated by a gas
on-demand heater. Unfortunately the plumbing was apparently done
by the same idiot or would-be murderer who installed the deadly fake
electrical system, because the water arrives at the shower tank at a
lukewarm temperature of about 30°. Raising it to a luxurious 41°
would be desirable; currently I do this by pouring boiling water into
the top from a pot.

 If we disregard the variation of water’s specific heat over the
relevant range, v₀t₀ + v₁t₁ = 41° 20 ℓ, t₀ = 30°, t₁ = 100°, and v₀ + v₁
= 20 ℓ, so v₁ = 20 ℓ - v₀ and we have 30°v₀ + 100°(20 ℓ - v₀) = 41°
20 ℓ = (30° - 100°)v₀ + 100°20 ℓ, so v₀ = (41° - 100°)20 l / (30° -
100°) = (41° - 100°)/(30° - 100°)20 ℓ = (59/70)20 ℓ = 16.9 ℓ, so 3.1 ℓ
is the amount of boiling water to add, and indeed lerp(30°, 100°,
3.1ℓ/20ℓ) is 40.85°. If it’s just a matter of adding energy to 20 ℓ of 30°
water, though, it’s 921 kJ.

 But maybe we could use a much smaller heating unit using TCES,
for example with muriate of lime (see file muriate-thermal-mass.md in
Derctuo) sealed in a sturdy plastic bag. The idea is that you have
some kind of “heat pack” that you dunk in the tank, then activate,
and it adds 921 kJ of heat to the water, and you have a nice shower
and then fish it out of the tank and go recharge the heat pack.

 How small can 921 kJ be? Fully hydrating the anhydrous salt to the
hexahydrate gives you (2608.01 - 795.42 = 1812.59) kJ/mol (at
110.983 g/mol, that’s 16.3321 kJ/g), but I think you can get further
heat by dissolving the salt and diluting the solution; I’m not sure.
6 mol of water weighs 108.09 g, 2% less than the mass of the
anhydrous salt it would fully hydrate, dropping the energy density of
the heat pack to about 8.1 kJ/g.

 This would give us a 114-gram heat pack, which is a lot less than
the 3.1 kg of boiling water.

 It wouldn’t quite work that well, though: the hexahydrate
dehydrates to the tetrahydrate above 30°, and the tetrahydrate only
has an enthalpy of formation of -2009.99 kJ/mol, leaving only
1214.57 kJ/mol — a third of the stored heat is inaccessible at
temperatures above 30°. We need less water, though, only
72.06 g/mol. So you get 1214.57 kJ per 183 g of heat pack, or
6.6 kJ/g, pushing the heat pack mass up to 140 g.

 This same phenomenon limits the temperatures the heat pack will
expose its envelope to. The various hydration forms have these
characteristics, according to wikipedia and my calculations:

| H₂O | | decomposition | enthalpy of formation | |

 | | | |

|-----+-----------+------------------+-----------------------+--------------+----
--------+------------+----------------+--------------|

| 0 | 2.15 g/cc | 772–775° (melts) | -795.42 kJ/mol | 110.98 g/mol | 0
 | 8.274 kJ/g | 72.89 J/mol/K | 0.6568 J/g/K |

| 1 | 2.24 g/cc | 260° | -1110.98 kJ/mol | 129.00 g/mol | 2.4
46 kJ/g | 5.828 kJ/g | 106.23 J/mol/K | 0.8235 J/g/K |

| 2 | 1.85 g/cc | 175° | -1403.98 kJ/mol | 147.01 g/mol | 4.1
40 kJ/g | 4.134 kJ/g | 172.92 J/mol/K | 1.176 J/g/K |

| 4 | 1.83 g/cc | 45.5° | -2009.99 kJ/mol | 183.04 g/mol | 6.6
36 kJ/g | 1.638 kJ/g | 251.17 J/mol/K | 1.372 J/g/K |

| 6 | 1.71 g/cc | 30° | -2608.01 kJ/mol | 219.07 g/mol | 8.2
74 kJ/g | 0 | 300.7 J/mol/K | 1.373 J/g/K |

 The two reversed columns of energy density say that, for example,
the tetrahydrate (plus the water to hydrate it the rest of the way) is an
energy store of 1.638 kJ/g, but in hydrating the anhydrous salt to the
tetrahydrate we produced 6.636 kJ/g of heat. If that heat couldn’t go
anywhere else, it would have raised the temperature of the resulting
material by 4837°; the reason this salt doesn’t explode is that it stops
absorbing water once it gets warm enough.

 In particular, the corresponding calculation for the monohydrate
produces a result of 2970°, so if water is limited enough, even in a
small region, you should be able to reach 260° by hydrating the
muriate of lime.

 For a plastic bag, this might be bad; nylon 6 melts at 220° and
nylon 6,6 melts at 264°, and those are the likely plastics available in a
supermarket oven bag. It would also be a problem if one part of the
material reached 100° while nearby some water was still pure — the
water might boil, float the bag, and burst the bag with steam pressure.
So it might be best to compromise on energy density in order to limit
the maximum possible temperature; while in theory you could do
this by diluting anhydrous muriate of lime with glass beads or
something, I think it’s probably better to mix together two hydration
levels to set the maximum temperature they can reach when fully
hydrated to below 100°.

 Drying the muriate for reuse can be tricky; a 01964 US patent
3,339,618A describes the situation at the time. The guy had come up
with a spray-drying process using 370° air to produce anhydrous
calcium chloride.

 A different source gives a much lower enthalpy for hydrating
muriate of lime. A third source mentions that through repeated
cycling, some amount of the salt will hydrolyze into marine acid air;
I’d think that a small amount of chalk in the mix would be adequate
to prevent this, but they seem to think it’s a harder problem.

https://en.wikipedia.org/wiki/Nylon_6
https://en.wikipedia.org/wiki/Nylon_66
https://en.wikipedia.org/wiki/Nylon_66
https://patents.google.com/patent/US3339618
https://patents.google.com/patent/US3339618

Topics

• Materials (p. 1138) (59 notes)
• Energy (p. 1170) (12 notes)
• Thermodynamics (p. 1219) (5 notes)
• Heating (p. 1253) (4 notes)
• Enthalpy (p. 1369) (2 notes)
• TCES energy storage

Subset of C for the simplest
self-compiling compiler
Kragen Javier Sitaker, 02021-08-12 (updated 02021-12-30)
(6 minutes)

 What’s the smallest straightforward self-compiling compiler,
targeting a conventional assembly language, you could write in a
subset of C?

 That is, not the smallest subset of C; implementing a very small
subset of C means the compiler doesn’t have to do as much, but being
written in that same very small subset means that everything is more
difficult to do. Also, though, I’m thinking of something I could
reimplement straightforwardly in assembly.

 You need comments.

 You surely need subroutines --- syntactically C needs them at least
for main(), and almost certainly there will be things you want to do in
more than one place. There’s a question of whether or not to
implement recursion. Without recursion you could statically allocate
all variables and only have a single way to compile lvalue variables
and a single way to compile rvalue variables, but you need while.
With recursion you can use a recursive-descent parser, which you
probably should, but you probably need to store some variables in
global space and others in stack frames.

 Arguments and return values can be omitted by storing them in
global variables, but I think that will probably obscure the data flow a
lot. If there are arguments, you don’t need an arbitrarily large
number of them.

 Alternatives to recursive-descent parsing with local backtracking
(PEG parsing) might be more compact but are unlikely to be as
straightforward.

 You need some form of data structuring, either structs or arrays or
both, which means at least one additional kind of lvalue and rvalue.
You don’t need separate struct namespaces, and if you don’t have
them you can avoid having types for expressions at all, treating
characters, ints, and pointers interchangeably as words, as putchar()
and getchar() already do. Structs might be a big improvement, but
they probably mean you need data of varying sizes.

 You could reasonably support such composite data structures only
at global scope, so local variables are only scalars; and, if you do that,
shallow binding might be an alternative to using separate indexing
schemes for globals and locals. Locals would just be globals whose
value is saved and later restored.

 Structs are more appealing if you have dynamic allocation, so you
can build trees out of them using pointers.

 In terms of arithmetic, you almost certainly need addition,
subtraction, and integer constants. You don’t need pointer arithmetic,
and you probably don’t need bitwise operations, multiplication,
division, and modulo. You surely do need ==, !=, and at least one

kind of ordering comparison.

 Boolean operations &&, || might turn out to be painful to do
without. Similarly for augmented assignment +=, -= and pre- and/or
post-increment --, ++.

 In terms of control flow, you surely need if, and if you don’t have
else, you probably need early return (and thus return). I don’t think
there’s any advantage to not having nested blocks for if, and little
advantage for not requiring them. Early return is more complicated
with shallow binding (you’d probably want to jump to a shared
epilogue to restore the proper set of variables).

 I think that’s a sufficient set of statement types: either expression
statements or assignment statements and function calls; if; and
possibly while. If we have return values, we need return. Local variable
declarations are needed for local variables, and although C doesn’t
treat them as statements (in particular, you can’t precede them with a
label) I think that’s probably wrong. Still, it might turn out to be
simpler to require them to all be declared at the top of the function, as
in Smalltalk.

 Modern machines have enough registers that you could reasonably
statically allocate one register for a frame pointer, three or four
registers for arguments and returns, and, say, three or four other
registers as temporaries. Nested function calls would still require
storing the temporary result in someplace that isn’t clobbered by calls,
either in the stack frame or a callee-saved register, so having a few
callee-saved registers would be handy.

 All of that is far more complicated than just using a runtime stack
for expression evaluation and passing parameters and return values,
though. Variadic C functions sort of require the caller to pop the
arguments, but the subset doesn’t have to include variadic functions.
Or, as I said, arguments at all.

 At least ignoring #include is probably necessary in practice. Lacking
either #define or enum would be a pretty big impediment to readability,
though, comparable to lacking arguments.

 Writing a C compiler without string literals would be pretty hard.
Doing it without data initializers, like basically every Wirth compiler,
wouldn’t be particularly hard, but I think you do need string literals.
However, I think C-compatible string literals more or less require
some kind of pointer support; I don’t think we can pass them off as
offsets into a table of all constant strings, because we need to be able
to build up new strings at runtime. I think this pretty much forces on
us the ability to take a pointer into the middle of an array, and thus
C’s equivalence of a[b] with *(a+b), though, and thus *. Maybe we can
still get away without expression types (which we would need for the
implicit multiplication by sizeof) by shifting the pointers left by 2 or 3
bits before dereferencing them, but of course that would break ABI
compatibility with everything else. I’d sure like to find a way to
avoid this mess.

 For writing the tokenizer you probably also need character literals.

 If you didn’t need C compatibility, for many purposes, you could
in fact use indices into a global string table as your string type, with
maybe a couple of character buffers elsewhere used by other functions

to build up strings incrementally before interning them.

Topics

• Bootstrapping (p. 1171) (12 notes)
• Compilers (p. 1178) (10 notes)
• Small is beautiful (p. 1190) (8 notes)
• C (p. 1194) (8 notes)
• Control flow (p. 1299) (3 notes)

A compact bytecode sketch that
should average about 3 bytes per
line of C
Kragen Javier Sitaker, 02021-08-17 (updated 02021-09-13)
(66 minutes)
From Table I we see that the assignment, IF, CALL, RETURN and FOR
statements together account for 96 percent of the source statements. Therefore we
will design an instruction set to handle the object code from these statements
efficiently. To push local variables (including parameters) onto the stack, we
propose 12 distinct 1-byte (format 1) opcodes, one each for offsets 0-11. Twelve
instructions allow access to all the locals (and parameters) in 94.6 percent of the
procedures, and to more than 50 percent of the locals in the remaining procedures.
For example, opcodes 114-125 might be used for PUSH LOCAL 0, PUSH
LOCAL 1..., PUSH LOCAL 11.

 (Tanenbaum 01978, §5, p. 243)

 What would a compact stack bytecode for C look like? I think
you could usually manage to compile to about 3 bytes per line of C
code, which would enable you to run C programs of about 10kloc on
an Arduino or about 300kloc on an Ambiq Apollo3, in exchange for
nearly an order of magnitude worse power usage and runtime for the
interpreted code. This could expand the uses of such small computers
dramatically.

Why?

 There are two major reasons to do this: to pack more functionality
into less memory and to improve in-application programmability.

To pack more functionality into less memory

 There are lots of microcontrollers around now, but for traditional
personal computing purposes they have more speed than needed and
less memory. The 3¢ Padauk microcontrollers (the PMS150 family) as
described in file minimal-cost-computer.md in Derctuo has “512-4096
words of program memory and 64-256 bytes of RAM, all running at
up to 16 MHz (normally 8 MIPS) ... running on 2.2–5 volts at
750 μA/MHz,” though they’re out of stock everywhere last I saw. As
mentioned in A bargain-basement Holter monitor with a BOM
under US$2.50 (p. 323), the ATTiny1614 costs 82¢ from Digi-Key; it
has 16KiB of program memory (8192 words) and 2048 bytes of RAM
and runs at 20 MHz (≈20 MIPS). (The formerly cheaper
ATTiny25V-15MT is now out of stock due to the Chipocalypse and
its price has shot up enormously to US$1.82 in quantity 1000.) The
STM32F051C8T6 is still out of stock at Digi-Key with a standard
lead time of 52 weeks, and now the CKS32F051C8T6 is out of stock
at LCSC too, but at least they have the GD32F130C8T6: 64KiB
program memory, 8KiB RAM, 72 MHz Cortex-M3 (80 DMIPS?),
US$3.25. And the Ambiq Apollo3 mentioned in Energy autonomous
computing (p. 143) has 1MB Flash and 384KiB SRAM and is a
48MHz Cortex-M4F, running at about 10 μA/MHz at 3.3 volts.

 In How do you fit a high-level language into a microcontroller?

https://research.vu.nl/ws/files/110789436/11056
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32F051C8T6/3064610
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32F051C8T6/3064610
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32F051C8T6/3064610
https://lcsc.com/product-detail/Other-Processors-and-Microcontrollers-MCUs_CKS-CKS32F051C8T6_C556574.html
https://lcsc.com/product-detail/Other-Processors-and-Microcontrollers-MCUs_CKS-CKS32F051C8T6_C556574.html
https://lcsc.com/product-detail/GigaDevice_GigaDevice-Semicon-Beijing-GD32F130C8T6_C80735.html

Let’s look at BBN Lisp (p. 160) and Energy autonomous computing
(p. 143) I’ve written about how to effectively use off-chip memory in
order to kind of bridge this gap somewhat. Swapping in code or data
from off-chip Flash is a great deal faster than swapping from a
spinning-rust disk drive or loading overlays from a floppy, so it can be
a lot more transparent.

 However, an alternative approach is to make more frugal use of the
internal memory, and in How do you fit a high-level language into a
microcontroller? Let’s look at BBN Lisp (p. 160) (and in file
tiny-interpreters-for-microcontrollers in Dercuano) I explored compact
bytecode formats a bit.

 The Microsoft Excel team wrote their own C compiler in the
01980s for this purpose; as I understand it, to fit more functionality
into PCs of the time, such as the Macintosh, their compiler allowed
them to choose for each function whether to compile it to bytecode
or to native code.

 The MakeCode VM reportedly consists of about 500 bytes of AVR
machine code:
MicroPython and similar environments cannot run on the [Arduino] Uno due to
flash [32 KiB] and RAM [2 KiB] size limitations. We also ran into these
limitations, and as a result, developed two compilation modes for AVR. One
compiles STS [Static TypeScript, a JS-like language] to AVR machine code, and
the other (MakeCode VM) generates density-optimized byte code for a tiny (~500
bytes of code) interpreter. The native strategy achieves code density of about 60.8
bytes per statement, which translates into space for 150 lines of STS user code. The
VM achieves 12.3 bytes per statement allowing for about 800 lines. For
comparison, the ARM Thumb code generator used in other targets achieves 37.5
bytes per statement, but due to the larger flash sizes we did not run into space
issues.

 In exchange for this 4.9× code compression, they accepted about a
6.4× interpretive slowdown.

 The Aztec C compiler for the Apple (available for free download
)included a bytecode mode to reduce space, and you could compile
only part of your program with it:
As an alternative, the pseudo-code C compiler, CCI, produces machine language
for a theoretical machine with 8, 16 and 32 bit capabilities. This machine language
is interpreted by an assembly language program that is about 3000 bytes in size.
 The effects of using CCI are twofold. First, since one instruction can
manipulate a 16 or 32 bit quantity, the size of the compiled program is generally
more than fifty percent smaller than the same program compiled with C65 [the
Aztec C native code compiler for the 6502]. However, interpreting the
pseudo-code incurs an overhead which causes the execution speed to be anywhere
from five to twenty times slower.

 Chuck McManis famously reverse-engineered the Parallax BASIC
Stamp, based on a PIC16C56, and found that it used a
variable-bit-length “bytecode” system to take maximum advantage
of the 2048 bytes of its serial EEPROM. Most of the “tokens” in the
“bytecode” corresponded straightforwardly to BASIC tokens, but
some of them were significantly swizzled around; NEXT B0 compiles to
10111 CCCVVV VVVVVV F CCCVVV CCCVVV AAAAAAAAAAA where CCCVVV encodes
the increment 1, VVVVVV encodes B0, F encodes +, the second
CCCVVV encodes the ending counter value (255, say), the third
CCCVVV encodes the starting counter value (0, say), and the final
AAAAAAAAAAA encodes the address of the statement to jump to
(the first statement inside the loop). This is 41 bits, plus 16 in the

https://www.microsoft.com/en-us/research/uploads/prod/2018/07/lctes18main-p12-p.pdf
http://www.clipshop.ca/Aztec/docs/AztecC_minimanual.txt
http://aztecmuseum.ca/intro.htm
http://www.mcmanis.com/chuck/robotics/stamp-decode.html
http://www.mcmanis.com/chuck/robotics/stamp-decode.html

FOR token, for a total of 57 bits per loop.

 How big is, uh, functionality? The original MacOS Finder was
46KiB and fit on a 400KiB floppy with MacOS (“System”) and an
application and a few documents, making it possible to use the
Macintosh with a single floppy, though drawing on the 64KiB of
ROM including LisaGraf/QuickDraw (the 128KiB ROM didn’t
arrive until the Mac Plus?); MacPaint was under 50 KB and consisted
of 5804 lines of Pascal and 2738 lines of assembly, but that includes
blank lines and comments and excludes MyHeapAsm.a and
MyTools.a. A more reliable figure is 4688 lines of Pascal and 2176
lines of assembly, which is according to David A. Wheeler’s
“SLOCCount”. If we figure that a line of Pascal is about 5 lines of
assembly, according to the folklore.org figures, that’s the equivalent
of 6351 lines of Pascal, and under 7.9 bytes of compiled code per line;
or, using SLOCCount figures, 5123 Pascal-equivalent lines and under
9.8 bytes of compiled code per line.

 If you could get 4 bytecode bytes per Pascal-level line of code,
which seems plausible but difficult, you could fit MacPaint into about
20 KB. The same 2.5× compression would reduce the Mac ROM to
26 KB.

 There’s a nonlinear benefit to this kind of thing, too: the
functionality of software comes more from interactions among the
components than from individual components. If you can fit 12000
lines of code into your Arduino, there are nine times as many
potential pairwise interactions as if you can only fit 4000 lines of code
in. At least potentially, it's an order-of-magnitude increase in system
functionality.

To facilitate programmability

 So, the primary objective is to fit more functionality into less
memory. But a secondary objective is to improve “in-application
programmability” (that is, reprogrammability without popping the
microcontroller out of its ciruit and into a PROM burner) and thus
flexibility.

 Such a bytecode can help overcome several different obstacles to
in-application programmability.

 One-time-programmable devices like the PMS150C can only have
code burned into them once; any further changes requires either
making that code do different things based on what’s in RAM, or
replacing the chip with a fresh, unburned chip (3.18¢ according to file
minimal-cost-computer.md in Derctuo — but taking advantage of that
potentially involves desoldering and/or waiting for a package in the
mail). It has 1024 words of PROM but only 64 bytes of RAM, but
like the AVR and the GD32VF, it’s a Harvard-architecture device, so
it can’t execute native code from RAM. Only some kind of
interpreter can make it programmable.

 Moreover, RAM is often small, but loading code into RAM is
easier than loading code into program memory, when that is possible
at all. The PMS150C’s 64 bytes of RAM is enough for about 15 or 20
lines of C using a compact bytecode, but would be only about 5 lines
of C using native code. (And in practice you probably only have
about 48 of those bytes, since you need a few for stack and variables.)

https://www.folklore.org/StoryView.py?project=Macintosh&story=The_Grand_Unified_Model_The_Finder.txt
https://www.folklore.org/StoryView.py?project=Macintosh&story=The_Grand_Unified_Model_The_Finder.txt
https://en.wikipedia.org/wiki/Macintosh_128K
https://en.wikipedia.org/wiki/Macintosh_128K
https://www.folklore.org/StoryView.py?project=Macintosh&story=MacPaint_Evolution.txt&sortOrder=Sort+by+Date&topic=QuickDraw
https://www.folklore.org/StoryView.py?project=Macintosh&story=Font_Manager.txt&sortOrder=Sort+by+Date&topic=QuickDraw
https://www.folklore.org/StoryView.py?project=Macintosh&story=Font_Manager.txt&sortOrder=Sort+by+Date&topic=QuickDraw
https://computerhistory.org/blog/macpaint-and-quickdraw-source-code/

The 82¢ ATTiny1614 I mentioned earlier has 16384 bytes of Flash but
only 2048 bytes of RAM; 2048 bytes is enough for 500—800 lines of
C.

 Finally, compiling to bytecode can be considerably easier than
compiling to native code, which makes it more feasible to include a
compiler in the device itself. Its input format doesn’t necessarily have
to be C; it might be something like ladder logic, scientific-calculator
formulas, keyboard macros, Lisp, or Forth.

How?

 Probably the right thing to do, to be able to run existing
microcontroller-friendly code, which is mostly written in C, C++, or
the Arduino dialect of C++, is to write a C compiler to some kind of
very compact bytecode, along with a bytecode interpreter for it.

 A virtual machine designed for C probably needs a frame-pointer
register, but otherwise a registerless stack architecture will probably
result in more compact code. A lot of the usual C compiler
optimizations aren’t useful on a stack machine, though dead-code
elimination, constant folding, and common subexpression elimination
may be valuable.

 There’s a tradeoff between interpreter size and code size. In the
MakeCode case, they evidently had about 9–10 KiB left for STS user
code, and by using 500 bytes of it for the interpreter they were
effectively able to increase the functionality that fit in memory by
almost a factor of 5. But this is probably far from the optimum; if by
doubling the size of the interpreter they were able to increase the code
density from 12.3 to 10 bytes per statement, then instead of 800
statements, they would be able to fit 930 statements into the same
space. How much further could you take that approach?

 So it’s quite plausible that the right tradeoff for minimum space is
to use the majority of program memory for a really elaborate
interpreter. But we can’t do this simply by adding common
subroutines as built-in interpreter instructions written in native code;
we can certainly vector some built-in interpreter instructions to
common subroutines, but if we want to use minimum space, we
should still encode that common subroutine in bytecode, not native
code. (For the most part, anyway — for example, while you could
implement multiplication in terms of addition and bit tests, for
example, invoking a multiply instruction is going to be a lot simpler,
and similarly for most functionality commonly provided as part of the
CPU instruction set.) So what should we put in the interpreter
proper? Other than optimizations, of course.

 Probably a big part of the answer is “weird addressing modes”.

 For really tiny chips like the PMS150C with its 1024 instructions of
ROM, probably only 512-768 instructions or so of interpreter are
affordable; obviously 1024 instructions would not be. So I think it’s
worthwhile to think about what kind of kernel bytecode interpreter
you could fit inside that kind of constraint, even on an 8-bit machine,
before decorating it with richer functionality for machines with larger
memory.

 Elisp and Smalltalk bytecodes commonly have an operand field

within the byte, 3–5 bits of operand. Often these operands are
indexes into tables (of constants, selectors, or functions) that are
associated with the method or function, and which can contain more
data than the bytecode itself.

 I tend to think that variable-bit-length instructions like the BASIC
Stamp are hard to justify, particularly on machines like the AVR
where you apparently need to write a 5-iteration loop to shift a 16-bit
word by 5 bits. But variable-byte-length instructions are probably
easy to justify, where perhaps you have 3 bits of operand within the
instruction byte, perhaps another operand byte following, and
perhaps, with a different opcode, two operand bytes following.

 Making a global table of all subroutines is probably a win. Talking
to solrize about the subject, they made the observation that if a
subroutine is called zero times, it can be omitted from the compiled
program; if it is called once, it can be inlined; and if it is called twice
or more, then it is quite plausibly a savings to put its address into a
global table of subroutines, and refer to it elsewhere only with an
index into this subroutine table. For example, on the ATMega328 in
the Arduino Uno, a word-aligned address anywhere in the 32-KiB
program memory requires 14 bits, but if you can only fit 800 lines of
user code in there, you can’t plausibly have more than 160 user
subroutines, so you only need 8 bits for a subroutine-table index. Or
7.32 bits, really. So by putting a 16-bit address into the subroutine
table, you can invoke the subroutine with an 8-bit operand instead of
a 14-bit operand, which probably saves you the 2 bytes that it cost to
put it into the subroutine table. If there are more than 2 calls to it,
you’re in the black.

 Exceptions might include where there was one reference to the
subroutine, but you were passing its address rather than invoking it, so
it can’t be inlined; or where the alternative to a global table of
subroutines is a local table (like the ones Smalltalk and Elisp use) that
can be indexed with fewer bits, like 3–5 instead of 7.32.

 If a subroutine table is too large for a compact operand field to
index into it, the subroutines can be sorted so that the ones with the
most callsites come first, and the losers who drew the long addresses
can’t be invoked without a 2-byte calling sequence.

 We can improve in density over Elisp bytecode to the extent that
we can exclude K&R C’s generic variadic calling convention, where
the caller knows how many parameters are passed but the callee
doesn’t, and every function returns a value — because we don’t have
to encode the number of arguments at the callsite, and we don’t have
to explicitly discard void return values. A function header can specify
how many arguments there are, automatically moving them from the
operand stack into the function’s stack frame.

 C is pretty thorough about having byte-oriented memory. IIRC
you can do pointer arithmetic between nested struct members.
You’re not supposed to do pointer arithmetic between different
things in the same stack frame. On the other hand, you could very
reasonably allocate word-sized local variables in a separate area, even
if you take their addresses.

A sketch with a low-level bytecode

 Let’s look at some examples of what bytecode-compiled
subroutines might look like. My examples so far, with a strawman
bytecode I made up as I went along, are respectively 3.4, 3.1, 7.5, 3.4,
2.4, and 2.3 bytes per source line of code. I think this is a compelling
argument that 4 bytes per line of code is usually achievable and 3
bytes might be.

DrawTxScrap

 Here’s a Pascal subroutine from MacPaint; C and this Pascal are
almost identical.

{$S }
PROCEDURE DrawTxScrap(dstRect: Rect);
VAR i: INTEGER;
 myProcs: QDProcs;
BEGIN
 KillMask; { not enough room in heap for mask and font }
 ClipRect(dstRect);
 EraseRect(dstRect);
 InsetRect(dstRect,2,0);
 dstRect.right := Max(dstRect.right,dstRect.left + txMinWidth);
 dstRect.bottom := Max(dstRect.bottom,dstRect.top + txMinHeight);
 SetStdProcs(myProcs);
 thePort^.grafProcs := @myProcs;
 myProcs.textProc := @PatchText;
 i := CharWidth('A'); { swap in font }
 HLock(txScrapHndl);
 TextBox(txScrapHndl^,txScrapSize,dstRect,textJust);
 HUnlock(txScrapHndl);
 ClipRect(pageRect);
 thePort^.grafProcs := Nil; { restore to normal }
END;

 What would this ideally look like in bytecode?

 This only has three local variables, but two of them are structs
(records in Pascal). dstRect evidently has .top, .bottom, .left, and .right
members, which are probably integers, and it’s evidently being
modified by InsetRect, which I guess must take it as a var parameter.
The @ operator, an Apple extension, takes the address of a variable like
& in C, just as passing a var parameter does implicitly. thePort is a
global variable imported from elsewhere; txMinHeight, txMinWidth,
txScrapHndl, textJust, and pageRect are five of the 128 global variables in
this file; and PatchText is a procedure defined just above.

 The repeated use of the same txScrapHndl and thePort globals makes
me think that maybe a function could have an associated vector of
referenced global variable indices so that such repeated references only
cost one byte.

 Maybe in idealized bytecode assembly this would look something
like this:

; This next line compiles to a procedure header structure with bit
; fields. This procedure takes 8 bytes of “blob arguments” and
; has another 18 bytes of local blobs immediately after them; both
; of these are in the blob part of the activation record. It also

; takes 1 word of word (register-sized) arguments, which go into
; the word part of the activation record.
PROCEDURE DrawTxScrap argblob=8 localblob=18 localwords=1
globals txScrapHndl, thePort
 call KillMask
 lea_blob 0 ; load address of offset 0 into stack frame blobs
 call ClipRect
 lea_blob 0
 call EraseRect
 ; InsetRect(dstRect,2,0);
 lea_blob 0
 tinylit 2 ; push constant 2 (coded in a 3-bit field in the bytecode)
 tinylit 0
 call InsetRect
 ; dstRect.right := Max(dstRect.right,dstRect.left + txMinWidth);
 loadword_blob 1 ; load word from stack frame blobs at offset 1 word (.right)
 loadword_blob 0 ; load .left
 loadglobal txMinWidth
 add
 max
 storeword_blob 1 ; store max result into .right
 ; dstRect.bottom := Max(dstRect.bottom,dstRect.top + txMinHeight);
 loadword_blob 3 ; load .bottom
 loadword_blob 2 ; load .top
 loadglobal txMinHeight
 add
 max
 storeword_blob 3
 lea_blob 8 ; load @myProcs (@myProcs)
 call SetStdProcs
 lea_blob 8 ; load @myProcs (@myProcs)
 loadglobal thePort

 storeword_offset 5 ; using thePort value from top of stack, offset 5 words a
nd store result
 ; myProcs.textProc := @PatchText;
 loadfuncptr PatchText
 lea_blob 8
 storeword_offset 3 ; let’s say .textProc is the fourth word of myProcs

 ; i := CharWidth('A'); { swap in font } (oddly this return value i is n
ot used, but let’s compile it anyway)
 lit8 65 ; 'A'
 call CharWidth

 storeword 0 ; store into i, in the stack frame word-sized variables (
rather than blobs)
 loadglobal txScrapHndl
 call HLock
 ; TextBox(txScrapHndl^,txScrapSize,dstRect,textJust);
 loadglobal txScrapHndl ; not sure if this is a var parameter, I’ll assume so
 loadglobal_long txScrapSize ; this variable is 32 bits
 lea_blob 0
 loadglobal textJust
 call TextBox

 loadglobal txScrapHndl
 call HUnlock

 lea_global pageRect ; again, assuming this is a var parameter; if not we
must memcpy
 call ClipRect
 ; thePort^.grafProcs := Nil; { restore to normal }
 tinylit 0
 loadglobal thePort
 storeword_offset 0
 ret

 That’s 47 bytecode instructions, so 47 opcode bytes; how many
operand bytes? All but 5 of them have immediate operands, but
probably none of those operands need to be more than 1 byte, so we
have at most 39 operand bytes. 10 of them are call instructions (or 12
if we count the max instances); there are 211 functions and procedures
declared in this file, including EXTERNAL procedures, and each of
them is only called once in this function, so plausibly those 10 call
operations do need an operand byte to index into a global table of
subroutines. Another 10 operands are global variables; of these half
(thePort twice and and txScrapHndl three times) are referenced more
than once and could thus be usefully listed in the function’s
global-references vector so they could be referenced in a single byte;
the other 5 would require a separate operand byte. loadfuncptr
requires a separate operand byte, too. Of the other 21 operands, most
are small integers between -3 and 3 or between 0 and 6, so they could
be packed into a 3-bit immediate field; the only exceptions are 8, 8, 8,
and 65, so there would be 4 more bytes of operands, and 17 bytecodes
with embedded operands.

 So that’s 4 numeric operand bytes, 5 global-index operand bytes, 10
function-call operand bytes, and one loadfuncptr operand byte, for 20
operand bytes, and 44+20 = 64 bytes of bytecode. The procedure
header is probably 2 bytes, the procedure's address in the global
subroutine table is another 2 bytes, and then you have two
global-variable offset bytes, so all in all the subroutine is probably
about 64 + 2 + 2 + 2 = 70 bytes. This corresponds to 20
non-comment non-blank source lines of Pascal code, or 3.5 bytes per
line, which is about 2.8 times the density of the original MacOS
compiled program.

 All this is assuming that there are few enough bytecode operations
to fit into a single byte. The above code already uses call, lea_blob,
tinylit, loadword_blob, loadglobal, add, max, storeword_blob, lit8, storeword,
storeword_offset, and ret, which is 12, to 9 of which we are imputing
this 3-bit operand field (let’s call these heavyweight opcodes
“baryonic”); furthermore supersymmetry implies the existence of
such undiscovered massive particles as storeglobal, loadbyte_blob,
storebyte_blob, loadword_offset, storebyte_offset, and loadbyte_offset, which
bring us to 15 of the 32 major-opcode slots filled, plus leptons such as
subtract, multiply, divide, mod, bitand, bitor, xor. So I think it’s pretty
plausible that we’ll have plenty of opcode space, but it’s something to
watch.

 (If we wanted the bytecodes to be printable ASCII things might get

more difficult: from 32 to 128 we only have room for 11 baryons and
8 leptons, or 10 baryons and 16 leptons, with one of the baryons
missing the DEL character. But that’s probably too strict a restriction;
text in ISO-8859-1 (24 baryons instead of 12) or Windows CP1252
(most of 26, though maybe the A0 control characters would be best as
leptons due to the holes) would be more reasonable, and conceivably
UTF-8 would work well if operand bytes were trailing 10xx xxxx
bytes. Cyrillic and Greek codepages have many more homoglyphs.)

 It’s a little bit unclear how blob parameters are supposed to get
passed here. Do we pass them in word-sized chunks on the operand
stack, or is there a separate blob stack or something? If we assume
that the bytecode interpreter is equipped to go look at the function
header in memory when it’s interpreting a call, it might be reasonable
to put the call bytecode before the arguments so that the interpreter
can allocate the callee’s stack frame, allowing arguments to be poked
directly into it in the appropriate places instead of needing to be
copied there on subroutine entry.

strlcpy

 Here’s strlcpy, originally from OpenBSD, but this version is the
copy from avr-libc, for which SLOCCount reports 26 lines of code,
condensed down to 14 lines for ease of reading:

size_t strlcpy (char *dst, const char *src, size_t siz) {
 register char *d = dst;
 register const char *s = src;
 register size_t n = siz;

 if (n != 0 && --n != 0) {
 do { if ((*d++ = *s++) == 0) break; } while (--n != 0);
 }

 if (n == 0) {
 if (siz != 0) *d = '\0';
 while (*s++)
 ;
 }

 return(s - src - 1);
}

 Unlike the straight-line Pascal code above, this has a bunch of
control flow, seven conditional jumps. (Normally a while would also
involve an unconditional jump, but in this case the body is empty.)

 This has six local variables, all word-sized, but only five of them are
live at once; dst passes the torch to d early on, which can be
eliminated by the compiler.

 If we try encoding it in the same bytecode as before with a fairly
traditional compilation strategy, I think it looks like this:

PROCEDURE strlcpy argwords=3 localwords=2
 loadword 1 ; load argument 1, src
 storeword 3 ; store into word variable 3, s
 loadword 2 ; load siz (argument 2)

 storeword 5 ; n
 jz 5, 1f ; jump to label 1 if word variable 5 is 0
 decrword 5 ; decrement word variable 5
 jz 5, 1f
2: loadword 0 ; d, preparation for *d++
 incrword 0 ; d++
 loadbyte_offset 0 ; dereference pre-incremented pointer

 dup ; this will be used in an assignment whose result value is u
sed
 loadword 3 ; s
 incrword 3
 storebyte_offset 0
 jztos 1f
 decrword 5 ; --n
 jnz 5, 2b ; repeat do loop if word variable 5 still isn’t 0
1: jnz 5, 1f ; if (n == 0)
 jz 2, 3f ; if (siz != 0) using word variable 2
 tinylit 0 ; '\0'
 loadword 0 ; d
 storebyte_offset 0 ; *d =
3: loadword 3 ; s
 incrword 3 ; ++
 loadbyte_offset 0
 jnztos 3b
1: loadword 3 ; s
 loadword 1 ; src
 subtract
 tinylit 1
 subtract
 ret

 That’s 32 bytecode instructions. 4 of these are zero-operand
leptons (dup, subtract, subtract, ret), 7 are conditional jumps (6 with 2
arguments), and the other 21 are the same kind of one-operand
one-byte operations that dominated DrawTxScrap. Maybe jnz 5, 2b
gets encoded with 5 in the 3-bit immediate field, indicating that it’s
looking at local register-sized variable 5, and jumping to label 2,
looking backwards, if it is Not Zero. The byte offset to label 2 is
encoded in a following operand byte, within the range ±127; if it’s
-128 then two more operand bytes follow giving the real jump offset.
jnztos jumps if the top of stack is 0 instead of if a local variable is zero;
I think the way to do this is that if the 3-bit immediate field is 0
through 6, it tests that variable, but if it’s 7, it tests the top of stack
(and pops it). By contrast, in the other baryonic operations, I was
thinking 7 would indicate that the immediate parameter is in the
following byte, but if you want to test a local variable that’s higher
than 6, then you could just loadword it and then jztos.

 So, in addition to demonstrating the previously speculative
loadbyte_offset and storebyte_offset operations, this imposes new
baryonic opcodes on us: incrword, decrword, jz, jnz, and probably js, jns,
and jmp, bringing the total from 15 to 22 out of 32.

 So with the above-suggested encodings, we have 7 jump-offset
argument bytes, 2 bytes of procedure header, and 2 bytes of global

subroutine table entry, for a total of 32+7+2+2 = 43 bytes. That’s 1.7
bytes of bytecode per SLOCCount line or 3.1 bytes per physical
non-blank line in the above.

 You could very plausibly squeeze this down a bit more. The 8086’s
LOOP instruction provides the decrword/jnz functionality, its
LODSB instruction provides the loadword/incrword/loadbyte_offset
functionality, and its STOSB instruction provides
loadword/incrword/storebyte_offset. And of course the final expression
being returned admits all sorts of optimizations, including a
decrement-top-of-stack operation or an increment or decrement to
one of the variables being subtracted.

 In an alternative direction, note that this code has 7 jump
instructions, comprising 14 bytes, but only 4 labels; following Henry
Baker’s COMFY-65, if we could use a 1-byte instruction to set the
destination to jump to on failure or success, maybe we’d only need 4
bytes of jump destinations instead of 7.

proc_get_cam_register_3

 Let’s look at something a little less nice and pretty:
proc_get_cam_register_3 from linux-2.6/drivers/staging/rtl8192e/rtl_debug.c:

static int proc_get_cam_register_3(char *page, char **start,
 off_t offset, int count,
 int *eof, void *data)
{
 struct net_device *dev = data;
 u32 target_command = 0;
 u32 target_content = 0;
 u8 entry_i = 0;
 u32 ulStatus;
 int len = 0;
 int i = 100, j = 0;

 /* This dump the current register page */
 len += snprintf(page + len, count - len,
 "\n#################### SECURITY CAM (22-31) ######"
 "############\n ");
 for (j = 22; j < TOTAL_CAM_ENTRY; j++) {
 len += snprintf(page + len, count - len, "\nD: %2x > ", j);
 for (entry_i = 0; entry_i < CAM_CONTENT_COUNT; entry_i++) {
 target_command = entry_i + CAM_CONTENT_COUNT * j;
 target_command = target_command | BIT31;

 while ((i--) >= 0) {
 ulStatus = read_nic_dword(dev, RWCAM);
 if (ulStatus & BIT31)
 continue;
 else
 break;
 }
 write_nic_dword(dev, RWCAM, target_command);
 target_content = read_nic_dword(dev, RCAMO);
 len += snprintf(page + len, count - len, "%8.8x ",
 target_content);

 }
 }

 len += snprintf(page + len, count - len, "\n");
 *eof = 1;
 return len;
}

 This is 36 lines of code, which I think is maybe a little too much for
a sketch, so I’ll try just the first half of it, plus enough cleanup to get it
to compile, which brings it to 22 lines:

static int proc_get_cam_register_3(char *page, char **start,
 off_t offset, int count,
 int *eof, void *data)
{
 struct net_device *dev = data;
 u32 target_command = 0;
 u32 target_content = 0;
 u8 entry_i = 0;
 u32 ulStatus;
 int len = 0;
 int i = 100, j = 0;
 len += snprintf(page + len, count - len,
 "\n#################### SECURITY CAM (22-31) ######"
 "############\n ");
 for (j = 22; j < TOTAL_CAM_ENTRY; j++) {
 len += snprintf(page + len, count - len, "\nD: %2x > ", j);
 for (entry_i = 0; entry_i < CAM_CONTENT_COUNT; entry_i++) {
 target_command = entry_i + CAM_CONTENT_COUNT * j;
 }
 }
 return len;
}

 Let’s say our C is a 16-bit-pointer platform, like Arduino, so the u32
items all go into blobland instead of wordland. As before, I’ll elide
the copy from data to dev. And I’ll assume that the interpreter by
default initializes all local variables to zero, which is a reasonable thing
for a C implementation to do.

PROCEDURE proc_get_cam_register_3 argwords=6 localwords=4 localblob=16
const "\n#################### SECURITY CAM (22-31) ##################\n "
const "\nD: %2x > "
 lit8 100

 storeword 8 ; i. note that this implies a separate operand byte with 3-bit
immediate fields
 loadword 0 ; page *
 loadword 7 ; len
 add
 loadword 3 ; count *
 loadword 7
 subtract
 loadconst 0 ; the string *

 call snprintf
 loadword 7
 add ; len +=
 storeword 7
 ; for (j = 22; j < TOTAL_CAM_ENTRY; j++) {
 lit8 22
 storeword 9
1: loadword 9
 lit8 32 ; TOTAL_CAM_ENTRY
 subtract
 jstos 1f ; if result negative, skip loop
 incrword 9
 loadword 0 ; *
 loadword 7
 add
 loadword 3 ; *
 loadword 7
 subtract
 loadconst 1 ; the other string *
 call snprintf
 loadword 7
 add
 storeword 7
 tinylit 0 ; *
 storebyte_blob 0 ; entry_i = 0. In the blob because u8 *
2: loadbyte_blob 0 ; *
 lit8 8 ; CAM_CONTENT_COUNT
 subtract
 jstos 1f
 loadbyte_blob 0 ; *
 tinylit 1 ; *
 add
 storebyte_blob 0 ; *
 ; target_command = entry_i + CAM_CONTENT_COUNT * j;
 loadbyte_blob 0 ; *
 lit8 8 ; CAM_CONTENT_COUNT
 loadword 9 ; j
 multiply
 storelong_blob 0 ; target_command = *
 jmp 2b
1: loadword 7
 ret

 This is a mess! But a workable mess. 49 bytecode instructions. Of
these, 11 have no operands at all; another 14, marked with * above,
have operands that can be packed into a 3-bit field; the remaining 24
each need an operand byte. 73 bytes of bytecode! But by itself that
would be pretty okay for 21 lines of code (3.8 bytes per line). What
really kills us here is the 64-byte literal string and the other 12-byte
literal string, plus a constant vector (probably two 16-bit pointers).
All that, plus the 2-byte procedure header and 2-byte entry in the
global subroutine table, adds up to 73 + 64 + 12 + 4 + 2 + 2 = 157
bytes. That’s 7.5 bytes per line of code! Those two string literals
doubled the space this truncated subroutine needs.

 I think that if I were to add in the missing 15 lines of code, this
would get slightly less ugly, maybe another 64 bytes, which would get
the total down to about 4.4 bytes per line of code. But it would be
easy for someone to write code that really does have that many
quoted # signs in it.

 Of course, this particular code probably has no business running on a
microcontroller, even if I hadn’t snipped out the read_nic_dword call that
does the real work; it’s part of a Linux device driver for a Wi-Fi card
that I think requires a PCI bus to operate at all. But I think it’s a
good representative of workaday C code.

File_pipe2file

 This is from php5-5.4.4/ext/fileinfo/libmagic/compress.c:

protected int
file_pipe2file(struct magic_set *ms, int fd, const void *startbuf,
 size_t nbytes)
{
 char buf[4096];
 ssize_t r;
 int tfd;
#ifdef HAVE_MKSTEMP
 int te;
#endif

 (void)strlcpy(buf, "/tmp/file.XXXXXX", sizeof buf);
#ifndef HAVE_MKSTEMP
 {
 char *ptr = mktemp(buf);
 tfd = open(ptr, O_RDWR|O_TRUNC|O_EXCL|O_CREAT, 0600);
 r = errno;
 (void)unlink(ptr);
 errno = r;
 }
#else
 tfd = mkstemp(buf);
 te = errno;
 (void)unlink(buf);
 errno = te;
#endif
 if (tfd == -1) {
 file_error(ms, errno,
 "cannot create temporary file for pipe copy");
 return -1;
 }

 It... goes on for another 36 lines from there; that’s 30 lines. It’s not
super plausible that we could fit the PHP interpreter into an Arduino,
but we could surely fit it into an Ambiq Apollo3. The protected
suggests that this is not actually C at all but C++, but it’s pretty close.
Let’s see what this would look like in the strawman bytecode
assembly. Let’s imagine we do HAVE_MKSTEMP.

PROCEDURE file_pipe2file argwords=4 localwords=3 localblob=4096

const "/tmp/file.XXXXXX"
const "cannot create temporary file for pipe copy"
const 4096
globals errno
 lea_blob 0 ; buf
 loadconst 0 ; filename template
 loadconst 2 ; 4096, sizeof buf
 call strlcpy

 drop ; discard result, because of course that makes sense when call
ing strlcpy
 ; #ifndef HAVE_MKSTEMP drops the next N lines
 lea_blob 0 ; tfd = mkstemp(buf);
 call mkstemp
 storeword 6
 loadglobal errno ; te = errno
 storeword 7
 lea_blob 0
 call unlink
 drop
 loadword 7 ; errno = te
 storeglobal errno
 loadword 6
 tinylit -1
 subtract
 jnz 1f
 loadword 1
 loadglobal errno
 loadconst 1
 call file_error
 tinylit -1
 ret
1:

 So that’s 25 bytecodes, of which the four calls and the two
references to te require an operand byte. The others can all reasonably
be 1 byte each, so we have 31 bytes of bytecode, plus 43 + 17 = 60
bytes of literal strings, 6 bytes of constant table, 1 byte of global
vector, 2 bytes of procedure header, and 2 bytes of global subroutine
table entry, 31 + 60 + 6 + 1 + 2 + 2 = 102 bytes, nearly ⅔ in those
two stupid strings. Still, that’s 102 bytes for 30 lines of code: 3.4 bytes
per line. But only because 12 of those 30 lines were discarded by the
preprocessor!

 Like most of the PHP interpreter, this is a good example of really
pretty shitty C code that people nevertheless want to run, and run
correctly.

Insertion sort

 Here’s an excerpt from the latest .c file I wrote in my dev3
directory, which does an insertion sort on an array of ints (obviously a
programming exercise):

static inline void
swap (int *x, int *y)

{
 int tmp = *x;
 *x = *y;
 *y = tmp;
}

void
isort(int *a, size_t n)
{
 for (size_t i = 1; i < n; i++) {
 for (size_t j = i; j > 0; j--) {
 if (a[j-1] > a[j]) swap(&a[j], &a[j-1]);
 }
 }
}

 This counts as 16 lines of source code, although that’s pretty
generous! Let’s suppose our compiler does in fact inline swap and
cancel out the resulting *&:

void
isort(int *a, size_t n)
{
 for (size_t i = 1; i < n; i++) {
 for (size_t j = i; j > 0; j--) {
 if (a[j-1] > a[j]) {
 int tmp = a[j];
 a[j] = a[j-1];
 a[j-1] = tmp;
 }
 }
 }
}

 This is the first example we’ve seen that does real pointer
arithmetic, the kind where you have to multiply by the size of the
pointer. Using just the strawman bytecode above and no CSE I think
it looks something like this:

PROCEDURE isort argwords=2 localwords=3
 tinylit 1
 storeword 2 ; i
1: loadword 2
 loadword 1 ; n
 subtract
 jstop 2f
 loadword 2
 storeword 3 ; j
3: jz 3, 4f ; if j == 0, exit loop
 loadword 0 ; a for a[j-1]
 loadword 3 ; j-1
 tinylit 1
 subtract
 tinylit 2 ; sizeof int
 multiply

 add
 loadword_offset 0
 loadword 0 ; a[j]
 loadword 3
 tinylit 2
 multiply
 add
 loadword_offset 0
 subtract ; if >
 js 5f
 loadword 0 ; tmp = a[j]
 loadword 3
 tinylit 2
 multiply
 add
 loadword_offset 0
 storeword 4 ; tmp
 loadword 0 ; a[j] = a[j-1]
 loadword 3
 tinylit 1
 subtract
 tinylit 2
 multiply
 add
 loadword_offset 0
 loadword 0
 loadword 3
 tinylit 2
 multiply
 add
 storeword_offset 0
 loadword 4 ; a[j-1] = tmp
 loadword 0
 loadword 3
 tinylit 1
 subtract
 tinylit 2
 multiply
 add
 storeword_offset 0
5: decrword 3 ; j--
 jmp 3b
4: incrword 2
 jmp 1b
2: ret

 This is 61 bytecode instructions, which I think is pretty horrific. 5
of them are jumps which take an operand byte, so 66 bytecode bytes
in all, plus the usual 4 bytes of per-subroutine overhead, for 70 bytes.
That’s 4.4 bytes per line of code.

 However, there are a couple of directions to go to improve this.
One is that, despite the examples above, neither a[j-1] nor for (...; i
< expr; i++) is actually at all unusual in C. We could support the first
one with leptonic bytecodes to decrement top of stack and to do

base+index addressing:

 loadword 0 ; a[
 loadword 4 ; j
 decrtos ; -1
 loadword_indexed ;]

 You’d also have storeword_indexed, loadbyte_indexed, storebyte_indexed,
leaword_indexed, and maybe leabyte_indexed, though that last one is really
just add.

 And we could support the loop with a baryonic bytecode similar to
the 8086 LOOP instruction mentioned earlier, but for up-counting
loops; if at the bottom of the loop:

 loadword 1 ; n
 countup 2, 1b ; i < n? if so increment and jump back to label 1

 For the full C semantics, which loops zero times when n is 0, you’d
need to initialize the counter to one less than the initial value and then
unconditionally jump to that loop trailer; 5 bytes per loop in total.
Alternatively you could reverse the sense of the conditional jump, put
it at the top of the loop, and put the unconditional jump at the end of
the loop.

 The Forth way to handle counting loops is different; it stores the
loop counters, limits, and increments on the return stack instead. This
would require more analysis from the compiler (it has to verify that
the loop limit is a constant expression and that the loop counter is
only read from, insert an UNLOOP instruction at breaks) but it
would allow you to write the outer loop with two new leptonic
instructions as follows:

 tinylit 1 ; start value
 loadword 1 ; n, loop limit
 fortoloop ; stash loop counters and loop address on the loop stack
 ...
 continue ; update loop counter, maybe jump to address after fortoloop

 And the inner loop as follows:

 i ; get outer loop counter as start value
 0 ; loop limit
 tinylit -1 ; step
 fortosteploop
 ...
 continue

 These are respectively 4 bytes (32 bits) and 5 bytes (40 bits), which
are significantly less than the BASIC Stamp’s 57 bits despite using a
byte-oriented encoding.

 Instead of having Forth-like i, j, and k instructions, you could
maybe stick the loop counter in a regular word-sized local variable,
using a baryonic for-loop instruction. But suppose we go with the
leptonic approach above:

PROCEDURE isort argwords=2 localwords=1
 tinylit 1
 loadword 1
 fortoloop
 i ; outer loop counter, currently topmost
 tinylit 0
 tinylit -1
 fortosteploop
 loadword 0
 i ; inner loop counter, called j in the code, now topmost
 decrtos
 loadword_indexed
 loadword 0
 i
 loadword_indexed
 subtract ; if not <
 jns 1f ; skip body
 loadword 0 ; a[j] → tmp
 i
 loadword_indexed
 storeword 2
 loadword 0 ; a[j-1] → a[j]
 i
 decrtos
 loadword 0
 i
 storeword_indexed
 loadword 2 ; tmp → a[j-1]
 loadword 0
 i
 decrtos
 storeword_indexed
1: continue
 continue
 ret

 That gets us down to 34 bytecode instructions and 35 bytes of
bytecode, 39 bytes in all, 2.4 bytes per line of code.

 Finally, you could actually do common subexpression elimination
and stack-allocate the value of tmp:

PROCEDURE isort argwords=2 localwords=2
 tinylit 1
 loadword 1
 fortoloop
 i
 0
 tinylit -1
 fortosteploop
 loadword 0 ; &a[j-1]
 i
 decrtos
 leaword_indexed
 storeword 2

 loadword 0
 i
 leaword_indexed
 storeword 3 ; &a[j]
 loadword 2
 loadword_offset 0
 loadword 3
 loadword_offset 0
 subtract
 jns 1f ; if
 loadword 3 ; swap
 loadword_offset 0
 loadword 2
 loadword_offset 0
 loadword 3
 storeword_offset 0
 loadword 2
 storeword_offset 0
1: continue
 continue
 ret

 That gets it down to 33 bytecode instructions, 34 bytes of bytecode,
38 bytes in all, still 2.4 bytes per line. It’s surprising, though, how
little space those complicated compiler optimizations actually bought
us: one measly byte!

 However, we did need some complicated compiler optimizations to
use the above version.

 XXX what if we use the dumber loop operations? how about if
we don’t inline?

 Rob Kendrick mentions that DSP loop instructions are often
implemented as Intercal’s “COMEFROM”, which seems like
another approach that might be worth investigating — a for-loop
instruction that encodes the length of the loop, so that instead of

 tinylit 1
 loadword 1
 fortoloop
 ...
 continue
 ret

 you would write

 tinylit 1
 loadword 1
 fortoloop 2f
 ...
2: ret

 so that interpreting each instruction would require first checking to
see if you had hit the address of the end of the innermost for-loop.
This would improve compression over having a continue bytecode only

if the loop extent could be packed into the fortoloop byte, which limits
us to fairly short loops.

 Also, it might be worthwhile to have a special short form for for
(int i = 0; i < x; i++) where x and the loop end are the only varying
parameters, so the starting index doesn’t eat up a bytecode. Here’s a
random sampling of 16 for loops in C codebases I have handy, divided
into loops that fit that pattern and loops that don’t:

9base_6.orig/rc/trap.c: while(ntrap) for(i = 0;i!=NSIG;i++) while(trap[i]){
cmusphinx/multisphinx/sphinxbase/feat.c: for (i = 0; i < start_pad; ++i)
emacs24_24.5+1.orig/src/coding.c: for (reg = 0; reg < 4; reg++)
exopc/lib/libtermlib/mkinfo.c: for (i = 0; i < numcaps; i++)
flashlight-firmware/ToyKeeper/crescendo/crescendo.c: for(i=0;i<32;i++) {
gmp-5.0.5+dfsg/mpn/generic/mu_divappr_q.c: for (i = 0; i <= err_rec; i++)
linux-2.6/drivers/watchdog/sbc8360.c: for (i = 0; i != count; i++) {
linux-2.6/sound/soc/soc-dapm.c: for (i = 0; i < ARRAY_SIZE(dapm_up_seq); i++)
puzzles-20200513.c9b3c38/bridges.c: for (x = 0; x < params->w; x++) {

exopc/bin/less/charset.c: for (p = charsets; p->name != NULL; p++)
exopc/bin/less/opttbl.c: for (o = option; o->oletter != '\0'; o++)
exopc/bin/sh/show.c: for (p = arg->narg.text ; *p ; p++) {
exopc/sys/ubb/dependency.c: for(e = l_first(a->out); e; e = l_next(e, out_next))
gawk_4.2.1+dfsg.orig/cint_array.c: for (i = NHAT; i < INT32_BIT; i++) {
linux-2.6/drivers/atm/eni.c: for (*pre = 3; *pre >= 0; (*pre)--)
maru-2.4/eval.c: for (;;) {

 9 of these, the majority, though barely, fit that pattern, more or
less. Saving a tinylit 0 byte on half of all for loops seems like it would
be worthwhile. There’s substantial diversity in the termination
condition — <, <=, != — though in many cases <= err_rec is equivalent to
< err_rec + 1 or != err_rec + 1.

Anduril config_state_base

 Let’s look at some BudgetLightForum flashlight firmware, because
Anduril now compiles to over 8 KiB and so won't fit in some of the
smaller AVRs. Here’s a random 27-line function from
flashlight-firmware/ToyKeeper/spaghetti-monster/anduril/anduril.c, with
internal comments removed:

// ask the user for a sequence of numbers, then save them and return to caller
uint8_t config_state_base(Event event, uint16_t arg,
 uint8_t num_config_steps,
 void (*savefunc)()) {
 static uint8_t config_step;
 if (event == EV_enter_state) {
 config_step = 0;
 set_level(0);
 return MISCHIEF_MANAGED;
 }
 else if (event == EV_tick) {
 if (config_step < num_config_steps) {
 push_state(number_entry_state, config_step + 1);
 }
 else {

 savefunc();
 save_config();
 pop_state();
 }
 return MISCHIEF_MANAGED;
 }
 else if (event == EV_reenter_state) {
 config_state_values[config_step] = number_entry_value;
 config_step ++;
 return MISCHIEF_MANAGED;
 }
 return EVENT_HANDLED;
}

 Event is uint8_t. config_step is a “global variable” that no other
functions use. EV_enter_state is (B_SYSTEM|0b00001000). B_SYSTEM is just 0, so
EV_enter_state is just 8. MISCHIEF_MANAGED is EVENT_HANDLED which is 0. EV_tick
is (B_SYSTEM|0b00000001) or 1. EV_reenter_state is (B_SYSTEM|0b00001010), or 10.
config_state_values is an array of 3 uint8_t. number_entry_value is a volatile
global uint8_t. So maybe that function would look something like
this:

; event and num_config_steps are two argument blob bytes; arg and
; savefunc are two word args.
PROCEDURE config_state_base argwords=2 argblob=2
globals config_step
 loadbyte_blob 0 ; event
 lit8 8 ; EV_enter_state
 subtract
 jnz 1f ; if ==
 tinylit 0
 storeglobal_byte config_step
 tinylit 0
 call set_level
 tinylit 0
 ret
1: loadbyte_blob 0
 tinylit 1 ; EV_tick
 subtract
 jnz 3f
 loadglobal_byte config_step
 loadbyte_blob 1 ; num_config_steps
 subtract
 jns 1f ; if <
 loadfuncptr number_entry_state
 loadglobal_byte config_step
 incrtos
 call push_state
 jmp 2f
1: call savefunc
 call save_config
 call pop_state
2: tinylit 0
 ret
3: loadbyte_blob 0

 lit8 10 ; EV_reenter_state
 subtract
 jnz 1f

 loadglobal_byte number_entry_value ; config_state_values[config_step] = numb
er_entry_value
 leaglobal config_state_values
 loadglobal_byte config_step
 add
 storeword_offset 0
 loadglobal_byte config_step
 incrtos
 storeglobal_byte config_step
 tinylit 0 ; return MISCHIEF_MANAGED
 ret
1: tinylit 0 ; return EVENT_HANDLED
 ret

 That’s 44 bytecode instructions. 5 of these are calls, 2 are lit8s, 5 are
jumps, and 1 is loadfuncptr, and those 13 instructions will need a
separate operand byte. I think all the others can be single-byte
instructions, so this would be 57 bytes of bytecode. There would
additionally be 2 bytes of procedure header, 2 bytes of subroutine
table entry, and 1 or 2 bytes of global vector (to enable the function to
refer to config_step with a 3-bit immediate index field), for a total of 63
bytes, which is about 2.3 bytes per line of code.

 (There’s questions here of how this kind of thing affects the
instruction set, and whether there might be opcode space contention,
but I feel like there was enough headroom previously that I shouldn’t
worry about that.)

 I asked what this function looks like in AVR machine code; solrize
generously provided the following assembler output listing for a
slightly different version of the code, which I’ve edited down for
readability:

 4121 config_state_base:

 4134 0fc0 8830 cpi r24,lo8(8) ; config_st
ep = 0;
 4135 0fc2 01F4 brne .L348

 4138 0fc4 1092 0000 sts config_step.2502,__zero_reg__ ; set_level
(0);
 4141 0fc8 80E0 ldi r24,0
 4142 0fca 0E94 0000 call set_level

 4145 0fce 8091 0000 lds r24,button_last_state ; confi
g_step ++;
 4146 0fd2 8111 cpse r24,__zero_reg__
 4147 0fd4 00C0 rjmp .L350
 4150 0fd6 81E0 ldi r24,lo8(1)

 4151 0fd8 8093 0000 sts config_step.2502,r24 ; push_
state(number_entry_state, 0);

 4152 0fdc 00C0 rjmp .L362
 4154 0fde 982F .L348: mov r25,r24
 4155 0fe0 907F andi r25,lo8(-16)

 4158 0fe2 903B cpi r25,lo8(-80) ; if (confi
g_step <= num_config_steps) {
 4159 0fe4 01F4 brne .L351

 4162 0fe6 2091 0000 lds r18,config_step.2502 ; if (2
 == (arg % (TICKS_PER_SECOND*3/2))) {
 4163 0fea 4217 cp r20,r18
 4164 0fec 00F0 brlo .L352

 4167 0fee CB01 movw r24,r22 ; c
onfig_step ++;
 4168 0ff0 6DE5 ldi r22,lo8(93)
 4169 0ff2 70E0 ldi r23,0
 4170 0ff4 0E94 0000 call __udivmodhi4
 4171 0ff8 0297 sbiw r24,2
 4172 0ffa 01F4 brne .L353
 4175 0ffc 2F5F subi r18,lo8(-(1))
 4176 0ffe 2093 0000 sts config_step.2502,r18

 4179 1002 4217 cp r20,r18 ;
 set_level(RAMP_SIZE * 3 / 8);
 4180 1004 00F0 brlo .L350
 4183 1006 88E3 ldi r24,lo8(56) ; }
 4184 1008 00C0 rjmp .L360
 4188 100a 82E1 .L353: ldi r24,lo8(18) ; }
 4189 100c 00C0 rjmp .L360
 4193 100e 80E0 .L352: ldi r24,0 ; }
 4195 1010 0E94 0000 .L360: call set_level
 4196 1014 00C0 rjmp .L350
 4200 1016 903E .L351: cpi r25,lo8(-32)
 4201 1018 01F4 brne .L355

 4204 101a 8091 0000 lds r24,config_step.2502 ; push_
state(number_entry_state, 0);
 4205 101e 8823 tst r24
 4206 1020 01F0 breq .L361

 4209 1022 4817 cp r20,r24 ; push_
state(number_entry_state, 0);
 4210 1024 00F0 brlo .L361
 4214 1026 60E0 .L362: ldi r22,0 ; }
 4215 1028 70E0 ldi r23,0
 4216 102a 80E0 ldi r24,lo8(gs(number_entry_state))
 4217 102c 90E0 ldi r25,hi8(gs(number_entry_state))
 4218 102e 0E94 0000 call push_state
 4219 1032 00C0 rjmp .L350
 4223 1034 8A30 .L355: cpi r24,lo8(10)
 4224 1036 01F4 brne .L350
 4227 1038 6091 0000 lds r22,number_entry_value
 4228 103c 8091 0000 lds r24,config_step.2502
 4229 1040 F901 movw r30,r18

 4230 1042 0995 icall

 4233 1044 0E94 0000 call save_config ; pop_state
();
 4237 1048 0E94 0000 .L361: call pop_state ; }
 4241 104c 80E0 .L350: ldi r24,0
 4242 104e 0895 ret

 That’s 58 instructions, and with the 16-bit immediate address
arguments for instructions like sts and call, it turns out to be 144 bytes
of AVR machine code, 5.3 bytes per line of code, 2.3 times the size of
as the strawman bytecode above.

 The Anduril repo is fairly large; it draws from the 1703
SLOCCount lines of code in its parent directory and contains 2814
SLOCCount lines itself. But the majority of these lines are #ifdeffed
out in most configurations or are declarations or preprocessor
directives. A typical configuration might have 1200 logical lines of
code (with semicolons) that actually make it through the
preprocessor, a quarter of which are declarations. But that still
compiles to over 8 KiB of AVR code. So, although I could be
mistaken, I tentatively think that this sort of bytecode trick could be
useful even for existing embedded projects that have gone to
substantial trouble to fit into the limitations of tiny microcontrollers.

A sketch with an AST bytecode

 The above design corresponds pretty closely to machine operations,
although in some cases several of them. But, for example, loadbyte_blob
0 pushes a byte onto the stack from the beginning of blob space.

 A disadvantage of this is that, in a way, the type of every variable is
encoded redundantly all over the program. Every time config_step is
loaded or stored, the loadglobal_byte or storeglobal_byte instruction
repeats the fact that it’s a byte. This is fast but uses up a lot of the 32
possible baryonic opcodes: you need the cross product of {lea, load,
store}, {global, local}, and {word, byte}, which is 12, and at some
point you need to handle longs too, which I’ve given short shrift to
above, and maybe long longs, at which point you’d be at 24. (The
load and store instructions that use computed pointers on the operand
stack could be leptonic, although in the above sketch they contain a
rarely-used offset in their operand field, but the global and local
instructions need an operand field to specify which global or local
variable they’re referring to. Potentially you could supply the long
(or short, on a 32-bit system) and long long versions only in leptonic
form so they always take a pointer from the stack.)

 But you could imagine storing the fact that config_step is a byte just
once, in the config_step object, and just having loadglobal consult that
information. Moreover, you could even eliminate the distinct types
of storeword_offset etc. if the pointers on the stack carried a data type
with them (which could be overridden by an explicit cast operation).

 In a sense, your virtual machine ends up being dynamically typed,
purely in order to reduce the number of distinct opcodes; it mirrors
the structure of the C source code, where type information is
confined to variable declarations rather than replicated across all uses

of the variables. Aside from potentially making more efficient use of
opcode space (and thus getting a more compact bytecode) such
dynamic typing might be beneficial in two other ways: it might be
friendlier for interactive use, and it might allow library functions to
be polymorphic, so you could just invoke a linear-search function
rather than writing a linear-search loop.

 Self took this approach further; because its bytecode was intended
for JIT-compiling rather than direct interpretation, it was very nearly
just an abstract syntax tree of the Self program. Could this provide a
more compact representation? Consider my isort example above:

void
isort(int *a, size_t n)
{
 for (size_t i = 1; i < n; i++) {
 for (size_t j = i; j > 0; j--) {
 if (a[j-1] > a[j]) {
 int tmp = a[j];
 a[j] = a[j-1];
 a[j-1] = tmp;
 }
 }
 }
}

 As an S-expression, its abstract syntax tree might look like this:

(function isort ((pointer int) unsigned) ; argument types, words 0 and 1
 (unsigned unsigned int) ; local types, words 2, 3, 4
 (forto (word 2) (const 1) (word 1) ; i is word 2, n is word 1
 (fortostep (word 3) (word 2) (const 0) (const -1)
 (if (> (aref (word 0) (- (word 3) (const 1))) (aref (word 0) (word 3)))
 (progn
 (setf (word 4) (aref (word 0) (word 3)))

 (setf (aref (word 0) (word 3)) (aref (word 0) (- (word 3) (const
1))))
 (setf (aref (word 0) (- (word 3) (const 1))) (word 4))))))))

 Most of the node types here have a fixed arity; the exceptions are
progn and the function arguments and locals. So if we wanted to build
up this tree in RPN, we could use a setf operation that pops two
expressions off the stack and pushes a setf node, and so on, but for
progn we’d need some kind of marker. A dumb way of writing this
down might be:

isort:
 [; begin list
 int
 pointer ; make pointer of int
 unsigned
] ; end argument type list
 [; begin local variable type list
 unsigned

 unsigned
 int
]
 word 2 ; (for) i =
 const 1 ; 1 to
 word 1 ; n
 word 3 ; (for) j =
 word 2 ; i to
 const 0 ; 0 step
 const -1 ; -1
 word 0 ; a[
 word 3
 const 1
 -
 aref ;]
 word 0 ; a[
 word 3
 aref ;]
 >
 [; progn
 word 4 ; tmp =
 word 0 ; a[
 word 3 ; j
 aref ;]
 setf
 word 0
 word 3
 aref
 word 0
 word 3
 const 1
 -
 aref
 setf
 word 0
 word 3
 const 1
 -
 aref
 word 4
 setf
]progn
 if
 fortostep
 forto

 By my count, this is 52 AST-node building operations, each quite
plausibly encodable in a byte; const 1 corresponds rather closely to
tinylit 1, word 3 to loadword 3, etc. It’s pretty hard to read, as
stack-machine code often is, because the context that gives meaning
to the for-loop stuff at the beginning isn't provided until half a page
later. The type-building operations could conceivably use a separate
encoding from the expression-building operations like aref and -,
which could conceivably use a separate encoding from the

statement-building operations like if, forto, and]progn, but that would
probably also require a REBOL-like or LOGO-like non-reverse
Polish notation approach. That might look like this. The . token
represents a byte that terminates a variable-length thing like a progn;
word.2 represents a byte with 2 packed into the low 3 bits.

function isort pointer int unsigned .
 unsigned unsigned int .
 forto word.2 const.1 word.1
 fortostep word.3 word.2 const.0 const.-1
 if > aref word.0 - word.3 const.1 aref word.0 word.3
 progn
 setf word.4 aref word.0 word.3
 setf aref word.0 word.3 aref word.0 - word.3 const.1
 setf aref word.0 - word.3 const.1 word.4
 .

 (I’m not suggesting that writing in this format would be a good
way to program, just trying to write out the contents of the sketched
bytecode in a way that’s easy to run through wc and easy to see if I left
something out of.)

 These 52 tokens are almost the same tokens as before, but in a
different order. My earlier lower-level sketch of this using fortoloop
and fortosteploop and no CSE was more compact for the following
reasons:

• It doesn’t have 8 or more bytes of procedure header.
• It doesn’t specify where to store the loop counters; instead they are
stored on a loop counter stack, saving 2 bytes.
• Instead of saying - word.3 const.1 it uses decrtos, saving 3 bytes.
• Instead of if > it uses subtract; jns, but that's a wash.
• Instead of setf aref, it uses storeword_indexed, and instead of setf word, it
uses storeword, saving 3 bytes.
• Instead of using progn to delimit the innermost block, it uses
continue; continue; ret, which ought to use one more byte.

 So it was 34 bytes, and 34 + 8 + 2 + 3 + 3 - 1 = 51, which I think is
everything but the “function isort” at the beginning.

 If we apply the applicable improvements from the above, we get:

function isort pointer int unsigned .
 int .
 forto const.1 word.1
 fortostep i const.0 const.-1
 if > aref word.0 1- i aref word.0 i
 progn
 setword.4 aref word.0 i
 aset word.0 i aref word.0 1- i
 aset word.0 1- i word.4
 .

 This gets us down to, say, 40 bytes, which is still worse than the
low-level bytecode version.

 It’s a little annoying that aref needs to be explicit; in Forth you can

define and use an array-creating word as follows:

: array create cells allot does> swap cells + ; ok
5 array myarray ok
57 0 myarray ! 68 1 myarray ! ok
0 myarray ? 1 myarray ? 57 68 ok

 Here we have defined a 5-entry array called myarray and stored 57 in
its entry 0 and 68 in its entry 1. No explicit aref is needed, but this
being Forth, an explicit ? or @ is needed to fetch from it in rvalue
context anyway! But we could imagine avoiding that in an AST
format designed for C, somehow.

 However, aside from being (it seems) bulkier than the low-level
approach, this structure seems like it would be much more difficult to
interpret.

Notes on Tanenbaum 01978

 Tanenbaum and his students tackled this idea in 01978, with the
idea of implementing the interpreter as microcode and making their
computer faster and cheaper. Since they couldn’t measure how fast
unimplemented microcode was, they settled for measuring how small
their programs were, which was under the streetlight and is vaguely
related. The paper is sometimes cited as inspiring RISC, due to its
emphasis on measuring the frequencies of real operations in real
programs, but the actual “EM-1” instruction set they arrived at is
about as far from RISC as it is possible to be.

 Where RISCs have many general-purpose registers, EM-1 has
none, not even a single accumulator, instead using an operand stack
(which is also the call stack and storage for globals). Where RISCs
have a single instruction width, EM-1 has instructions of 1, 2, 3, and 4
bytes. Where RISC instructions typically have 3 operand fields,
EM-1 instructions have 0 or 1. Where RISCs have carefully laid out
bit fields to minimize instruction decoding latency, EM-1 declares,
“There is no need to have distinct “opcode” and “address” bits.”
Where RISCs are, like nearly all CPUs, untyped, and strive to keep
all instructions constant-time so that they can be implemented
without microcode, EM-1 has hardware support for bounds-checked
Numpy-like arbitrary-dimensional array descriptors and for
“accessing intermediate lexicographical levels in block structured
languages”, which latter seems to be defined handwavily and buggily,
and involves a single load or store instruction following an arbitrarily
long linked list through RAM.

 However, the EM-1 is RISC-like in that it’s roughly a load-store
machine: ALU operations operate strictly on the stack, not even
including the add-immediate instruction, which is included even in
the very frugal RV32E, except that the EM-1 has 14 increment
instructions, including one for TOS. And, like the EM-1, the
Berkeley RISC-I and -II (and their demon offspring SPARC) are
designed around reducing the cost of procedure call and return.

 The strawman bytecode outlined earlier is remarkably similar to
the EM-1! The biggest differences are:

https://research.vu.nl/ws/files/110789436/11056

• the EM-1 is a single-stack design.
• the EM-1 is substantially less aggressive about packing operands into
single-byte instructions.
• the EM-1 is not designed to be able to execute C, which makes
demands on pointer arithmetic that the EM-1’s array descriptors are
ill-suited to fulfill.
• the EM-1 apparently entirely lacks structs or records.

 The EM-1’s instruction set consists of the following:

• 12 one-byte pushlocal opcode bytes (“all the locals in 94.6% of
procedures”);
• 8 one-byte pushglobal opcodes;
• 3 one-byte pushconst opcodes (0, 1, and 2);
• 12 one-byte poplocal opcodes;
• 8 one-byte popglobal opcodes;
• 4 two-byte {push,pop}{global,local} opcodes;
• 2 two-byte pushconst opcodes for numerical constants in [-256,
255];
• 4 one-byte ALU opcodes (+, -, ×, ÷);
• 24 one-byte opcodes and 2 two-byte opcodes for zeroing and
incrementing locals;
• 4 two-byte local and global array-access opcodes (pushelement,
popelement);
• 1 two-byte lealocal opcode “for call-by-reference”;
• 1 two-byte dereference opcode, for the same reason;
• 3 one-byte “mark” opcodes for starting to set up a parameter list for
a subroutine call, which increment, decrement, or leave unchanged
the static nesting levels (for nested subroutines);
• 1 two-byte subroutine-call opcode for programs containing up to
256 subroutines, though they suggest that in most cases the special
context following a “mark” operation would allow some 200 opcodes
to context-dependently specify which subroutine to call;
• 1 two-byte opcode for allocating a stack frame, which is odd since
the destination of the call instruction is a “procedure descriptor” and
not a raw code address;
• 2 three-byte opcodes for FOR (one counting up and one down; the
second byte tells which variable to use, and the third gives the branch
offset), though you additionally need an unconditional jump back at
the end of the loop;
• 14 (?) two-byte opcodes for conditional branches;
• 141 unallocated opcode bytes;
• lots of other three- and four-byte instructions whose first byte is
255; they propose “accessing intermediate lexicographical levels”,
“multiple precision arithmetic, floating point, shifting, rotating,
Boolean operations, etc.”

 I seem to have omitted 10 opcode bytes somewhere. Unfortunately
they didn’t include an opcode table.

 Discussion of records (structs) is, bizarrely, completely lacking; in
the EM-1 design it seems to be impossible to heap-allocate linked list
nodes. Perhaps multidimensional arrays were the only
data-structuring mechanism contemplated, but 01978 is about 10
years too late for such an omission. Even arrays were accessed via
“descriptors” in the stack frame, suggesting that the EM-1’s stack

frames were considered to be homogeneous vectors of machine
words.

 There are lots of good ideas in this paper. They mention that 95%
of FOR loops have steps of +1 or -1, so maybe it’s best to support
those two with special for-loop instructions, and relegate other steps
to compilation as while loops. Their conditional branches combine
testing with jumping, like RISC-V, for example, and they propose an
assembler that sorts local variables by number of references.

Topics

• History (p. 1153) (24 notes)
• Performance (p. 1155) (22 notes)
• Lisp (p. 1174) (11 notes)
• Assembly-language programming (p. 1175) (11 notes)
• Compilers (p. 1178) (10 notes)
• Virtual machines (p. 1182) (9 notes)
• C (p. 1194) (8 notes)
• Microcontrollers (p. 1211) (6 notes)
• Instruction sets (p. 1214) (6 notes)
• FORTH (p. 1231) (5 notes)
• Bytecode (p. 1236) (5 notes)
• Reverse Polish notation (RPN) (p. 1243) (4 notes)
• Pascal (p. 1247) (4 notes)
• Sorting (p. 1272) (3 notes)
• AVR8 microcontrollers (p. 1387) (2 notes)
• Arduino (p. 1388) (2 notes)
• Ambiq (p. 1391) (2 notes)

Wiki models
Kragen Javier Sitaker, 02021-08-19 (updated 02021-12-30) (1 minute)

 I’ve been thinking about how to build simple models.

 Suppose I write the equations:

area = height * section.perimeter + 2 * section.area
volume = height * section.area

 These describe a cylinder or prism, and they imply some things
about section: it should have a property area that can be multiplied by
an integer or whatever height is, and a property perimeter that can be
multiplied by whatever height is and then added to an integer times
area.

 My editor should offer to create section and height, and in section it
should offer to create perimeter and area.

Topics

• Human-computer interaction (p. 1156) (22 notes)
• End user programming (p. 1217) (6 notes)
• Numerical modeling (p. 1229) (5 notes)
• Editors (p. 1257) (4 notes)
• Wiki (p. 1311) (2 notes)
• Calculation

Residual stream windowing
Kragen Javier Sitaker, 02021-08-21 (updated 02021-09-11)
(5 minutes)

 Suppose you want to transmit video data for a windowing system,
but you want something that’s simpler and less CPU-hungry than
H.264 encoding. Could you simply transmit a stream of
lossily-encoded residuals?

 PNG doesn’t really compress image data, necessarily; what it
compresses, like a lot of lossy audio and video codecs, are the
prediction residuals from some pixel predictor (called “filters” and
defined in §6.1 of the PNG spec), an approach Paeth calls
“prediction-correction coding,” a term which has not caught on.
These predictors are specified on a per-scanline basis:

• 0: predict 0, so the residual is the original pixel value, and we are
compressing the original image data;
• 1: predict the pixel to the left, or zero if it’s the first pixel on the
line, so the residuals are the pairwise differences between pixels on the
line;
• 2: predict the corresponding pixel in the line above, or 0 on the first
line, so the residuals are the pairwise differences between pixels in a
column;
• 3: predict the average of prediction #1 and prediction #2, rounded
down;
• 4: predict the Paeth predictor, a choice of one of the three pixels
above, to the left, and above and to the left, depending on a simple
linear calculation on those three pixels that estimates the local
gradient. This is a slight variation on the predictor Paeth published in
“Image File Compression Made Easy”, chapter 9 of Graphics Gems II;
he calls the gradient estimation calculation the “poor man’s
Laplacian”.

 The Paeth predictor is almost never much worse than any of the
previous four alternatives, but often it’s slightly worse, and you can of
course construct examples where it’s arbitrarily worse; you could get
a simpler graphics file format by using the Paeth predictor alone, as
Paeth does in his chapter, and it would compress only a little worse
than PNG. In fact, for small enough images, it might compress
better, because PNG specifies the predictor to use at the beginning of
each scan line, which adds extra data to compress.

 Now, in PNG, these residuals are compressed losslessly, so the
previous decompressed pixels input to the decompressor’s predictor
are exactly equal to the original image input pixels. So the benefit for
PNG is primarily that things like continuous gradients become
repeating patterns.

 A potentially much more exciting application is the residual-coding
approach used for lossy video encoding, where instead of compressing
the exact residual sequence, we compress a crude, low-bandwidth
approximation of the residual sequence. This means that the
decompressor’s predictor is working from pixels corrupted by the
approximation noise, so to get the system to work optimally, we need

to include the lossy-encoding step inside the feedback loop of the
compressor’s predictor, so that the “context pixels” it’s predicting
from are the same corrupted pixels the decompressor will see, rather
than the original image pixels. This ensures that the errors will not
accumulate nonlinearly.

 In the context of encoding a video stream, particularly of a
windowing system, it would be useful to use the previous frame, or a
previous frame, as context as well. If a screen region is unchanged
from the previous frame, the predictor will predict its contents
perfectly, so if there was no error in the previous frame, all the
residuals will be zeroes, which will compress very well. If it’s
unchanged from the previous frame, but the previous frame was
corrupted by lossy compression, then the residuals that are transmitted
will reduce the error.

 You could conceivably have 9 neighboring pixels in the previous
frame and 4 neighboring pixels in the current frame to use as a
“neighborhood” for your prediction. (Normal video codecs also use
motion compensation, but continuous motion is less common in
GUIs (though modern GUIs use it a bit more).) You could use those
13 values to compute a least-squares approximation of the
four-dimensional gradient and average, or just 7 of them (like Paeth’s
3), or you could use any four of them (the symmetrical choice would
be the corresponding pixels in the previous row, column, and frame,
and the diagonal pixel in the previous frame, but that doesn't give you
any information about whether pixels are changing frame to frame).
Moreover, you could very reasonably use a measure of the
neighborhood diversity to choose whether to do Paeth’s trick of
choosing one of them or to use the gradient extrapolation in the
continuous domain.

 Once you have your prediction, you need to code your residual
lossily. I think doing this in YUV space is probably perceptually
desirable, because it allows you to trade off more Y bits against less
UV bits. In many frames, you could use literally zero UV bits for
many of the pixels, as long as you eventually send some UV bits for
them so that they will converge to the correct color.

Topics

• Algorithms (p. 1163) (14 notes)
• Protocols (p. 1206) (6 notes)
• Compression (p. 1263) (4 notes)
• Video (p. 1312) (2 notes)
• The Paeth predictor (p. 1345) (2 notes)

Sandwich panel optimization
Kragen Javier Sitaker, 02021-08-21 (updated 02021-09-11)
(3 minutes)

 Wikipedia says the stiffness of a sandwich panel is ½(f(2h + f)²C)
where C is, I think, the stiffness (Young’s modulus) of the face
materials, f is the thickness of the face, and h is half the thickness of
the foam (or similar filling). This is ½C(4fh² + 4f²h + f³), which is
roughly 2Cfh² if h is big enough relative to f. If you want to
maximize stiffness for a given (areal) density, then ρ₀f + ρ₁h is some
constant total density k, half our total density budget (here ρ₀ is the
density of the face material and ρ₁ the density of the filling), so f =
k/ρ₀ - (ρ₁/ρ₀)h, and the stiffness is 2C(k/ρ₀ - (ρ₁/ρ₀)h)h². To find
the maximum we can drop out the constant 2C/ρ₀ and set the
derivative with respect to h to zero; differentiating (k - ρ₁h)h²,
getting -ρ₁h² + (k - ρ₁h)·2h = -ρ₁h² + 2hk - 2ρ₁h² = 2hk - 3ρ₁h².
This derivative obviously has a zero at h=0, where the stiffness is also
zero, and the other extremum will be when 0 = 2k - 3ρ₁h, 2k = 3ρ₁h,
h = 2k/3ρ₁ = ⅔k/ρ₁.
 I must be doing something wrong. This says the filling should just
be ⅔ of the total mass, regardless of the density or modulus of the face
material. Stiffness, fine, that’s just a constant linear factor on the
stiffness you get at any point along the tradeoff spectrum. But
shouldn’t it depend on the density of the face material? No, because
higher density just gives you proportionally less face material and thus
less stiffness, so it's also just a constant linear factor.

 And I guess this is actually correct. If ⅓ of your mass is in the faces,
then making the faces 2% thicker makes the panel 2% stiffer, but steals
1% of the mass from the filling, making the panel 1% thinner. Since
stiffness is quadratic in thickness, that 1% thinning reduces the stiffness
by 2% (actually 1.99%), and the resulting stiffness is only 99.9702% of
the original thickness. A similar thing happens if you make the faces
2% thinner.

 Interestingly, this generalizes to properties other than density that
scale with the volume of the material as well, in particular cost. If
you want to maximize sandwich panel stiffness with given materials
at a given cost, you should have ⅓ of the cost in the faces, ⅔ in the
filling. This is applicable to the roofing problem in Leaf vein roof (p.
600).

Topics

• Filled systems (p. 1161) (16 notes)
• Strength of materials (p. 1164) (13 notes)
• Foam (p. 1185) (9 notes)
• Composites (p. 1187) (9 notes)

https://en.wikipedia.org/wiki/Sandwich_theory

Glass wood
Kragen Javier Sitaker, 02021-08-21 (updated 02021-12-30)
(4 minutes)

 I was making some waterglass foam today, just by heating up some
liquid waterglass on aluminum foil in an aluminum-foil-covered steel
bowl over a fire, and it occurred to me that maybe it’s possible to get
the most crucial aspects of the structure of wood in a glass-fiber
composite in a very simple way.

 Specifically, I’m thinking that you ought to be able to soak a
glass-fiber tow or stack of unidirectional cloths in waterglass, then
bake it, just as I did without the fiber today. The waterglass will
attack the glass-fiber tow at high temperatures, but I think the whole
process can be done at a low enough temperature to keep that to a
minimum. The result should or might be a glass composite material
consisting of a lightweight foam holding together a lot of parallel
fibers.

 There are a number of potentially interesting aspects of this kind of
composite, but the primary one that interests me is the combination
of load-bearing capability with ease of mechanical shaping. In
general, materials that can bear a lot of load, such as diamond,
tungsten carbide, sapphire, quartz, steel, are also hard to shape
mechanically. There are at least two ways to escape from this:
post-shaping hardening (like concrete or heat treatments of steel, or
casting), and foams.

 Natural wood is a foam, with continuous parallel cellulose fibers
connected together with lignin glue, plus lots of empty space. The
empty space has several big advantages: it makes wood much easier to
cut; it makes the wood much stiffer, like a sandwich panel; it inhibits
crack propagation from one fiber to another, dramatically improving
impact strength, because cracks perpendicular to fibers must
propagate along a jagged zigzag path (“splintering”), greatly
increasing the energy required; and it allows impacts to plastically
deform the material without damaging fibers. (Bamboo is also a
fiber-foam composite, but with a different structure; see DOI
10.1007/s00226-007-0127-8.)

 Other solid foams, such as refractory firebrick, waterglass foam,
styrofoam, and polyurethane cushions, are also much easier to shape
than the corresponding bulk material would have been. Earlier
tonight I cut through waterglass foam with a box cutter; I could push
the unsupported blade all the way through 15 mm or more of foamed
waterglass, corresponding to about 1 mm of solid glass, only because
the particles displaced by the knife could move aside into the voids in
the foam.

 Ceramic-matrix composites get their improvement in impact
strength by recruiting a longer section of crack-bridging fibers to
elastically resist crack-widening movements than the section actually
within the crack; this is enabled by weakening the bonding between
the matrix and the fiber reinforcement. This seems closely analogous
to the splintering behavior of natural wood, but I’m not sure it’s quite

the same.

 So my thesis is that maybe a composite of glass foam and glass fibers
will be lightweight, rigid, easy to cut, and impact-resistant.

 Alternative or supplementary fiber reinforcements might include
steel, basalt, copper, carborundum, or carbon fiber.

 If the foaming of the glass is to happen rapidly and uniformly, it
would be helpful for the heat to be applied by a reaction within the
mixture (so-called “self-propagating high-temperature synthesis”),
but it is probably crucial that the direction of propagation of this
reaction be at right angles to the fiber direction; if it is in the
direction of the fibers it will not only stretch them but also kink them.
For this purpose it might be helpful to lay the reagents into the foam
in the form of “fibers” parallel to the structural fibers, so that the
reaction can propagate very rapidly along each “fiber” but much
more slowly from one “fiber” to another; to make these reagent
“fibers” hollow; and to apply the initial ignition simultaneously along
the whole length of the material. SHS could perhaps be usefully
applied to higher-temperature glass foaming reactions which might
yield stronger and more water-resistant foams than waterglass; the
conventional one seems to be reacting manganese dioxide with carbon
in a matrix of soda-lime glass, but many others are possible.

Topics

• Filled systems (p. 1161) (16 notes)
• Strength of materials (p. 1164) (13 notes)
• Foam (p. 1185) (9 notes)
• Composites (p. 1187) (9 notes)
• Anisotropic fillers (p. 1218) (6 notes)
• Self-propagating high-temperature synthesis (SHS) (p. 1241) (4
notes)
• Ceramic-matrix composites (CMCs) (p. 1265) (4 notes)

Maximizing phosphate density
from aqueous reaction
Kragen Javier Sitaker, 02021-08-21 (updated 02021-12-30)
(8 minutes)

 If you want to form phosphates of calcium, magnesium, or
aluminum with a reaction between a finely divided solid and a liquid,
for maximum strength, it would be desirable for a maximum amount
of the reaction mass to be incorporated into the final phosphate
product, and a minimal amount to be lost as waste products. But
you’d also like the reaction product to not be too much larger than
the original finely divided solid.

 What would the ideal materials be?

Phosphate sources

 The phosphate anion alone has a molar mass of 94.9714 g/mol.

 Monoammonium phosphate has a molar mass of 115.025 g/mol
(containing one phosphate, so it’s 83% phosphate by weight), weighs
1.80 g/cc, dissolves 36g in 100ml of water at 20°, and dissolves 173g in
100ml of water at 100°. So one ml of solid MAP contains 1.49 g of
phosphate. It decomposes at 200°.

 Diammonium phosphate is 132.06 g/mol (72% phosphate) and
1.619 g/cc, dissolves 57.5g/100ml at 10°, and decomposes at 155°. So
one ml of solid DAP contains 1.16 g of phosphate.

 Phosphoric acid, of course, has a molar mass of 97.994 g/mol and
also contains one phosphate, so it’s 97% phosphate. Its density is 1.834
g/cc when solid. It dissolves 548 g per 100ml of water at 20°, and
melts at 40-42.4°, so above that temperature no water is needed at all
to make it liquid; but dehydrating it can be very difficult. One ml of
solid phosphoric acid contains 1.78 g of phosphate.

 Trisodium phosphate is 163.939 g/mol (58% phosphate), has a
density of 2.536 g/cc (when not hydrated!), and dissolves 12g/100ml
of water at 20° or 94.6g/100ml at 100°. So one ml of solid TSP
contains 1.47 g of phosphate.

 Disodium phosphate is 141.96/mol (67% phosphate) and 1.7 g/cc
and dissolves 7.7 g/100ml at 20°, so one cc of it contains 1.14 g of
phosphate.

Calcium sources

 Calcium weighs 40.078 g/mol.

 Calcium chloride is 110.98 g/mol (36% calcium) and weighs 2.15
g/cc (0.8 g Ca/cc), and water dissolves 74.5 g/100ml at 20°. It’s also
soluble in acetic acid, ethanol, methanol, pyridine, all kinds of crazy
stuff. It’s a sticky pain in the ass to dry out, though.

 Slaked lime is 74.093 g/mol (54% calcium) and 2.211 g/cc, so each
cc contains 1.2 g of calcium. At 20° water only dissolves 0.173
g/100ml of it, but apparently it’s soluble in glycerol?

 Quicklime is 56.0774 g/mol (71% calcium) and 3.34 g/cc (2.4 g
Ca/cc) but reacts with water rather than dissolving in it.

 Calcium nitrate is 164.088 g/mol (24% calcium) and 2.504 g/cc, so
each cc contains only 0.6 g of calcium. Water dissolves 121 g/100ml
at 20° or 271g/100ml at 40°.

 Calcium acetate is 158.166 g/mol when anhydrous (25% calcium)
and 1.509 g/cc (0.4 g Ca/cc) but very hygroscopic, dissolving 34.7
g/100ml in water at 20°.

 Calcium formate is 130.113 g/mol (31% calcium) and 2.02 g/cc (0.6
g Ca/cc) and water dissolves 16 g/100ml at 0°. It decomposes at 300°.

Aluminum sources

 Aluminum itself weighs 26.9815384 g/cc, and is a candidate source
for aluminum ions. However, it ordinarily resists attack by
phosphoric acid reasonably well.

 Aluminum trihydroxide is 78.00 g/mol (35% Al) and 2.42 g/cc (0.8
g Al/cc). It starts releasing its hydroxyls at 300°. Water only
dissolves 0.1 mg/100ml of it.

 Sodium aluminate is 81.97 g/mol (33% Al) and 1.5 g/cc. Its
advantage over the hydroxide is that it’s highly water-soluble,
especially at high temperature and pH.

 (Di)aluminum (tri)sulfate (papermaker’s alum) is one of the
standard water-soluble aluminum salts; it weighs 342.15 g/mol (15.8%
Al) when anhydrous, and 2.672 g/cc. Water dissolves 36.4g/100ml of
it at 20°, making it acidic.

 Aluminum (tri)chloride is the other, even more soluble one; it
weighs 133.341 g/mol (20% Al) (when anhydrous) and 2.48 g/cc (0.5 g
Al/cc). Water dissolves 45.8 g/100ml at 20°. Interestingly, the
anhydrous form sublimes at 180°, suggesting the possibility of gassing a
mixture with aluminum. However, you cannot dehydrate the
hexahydrate by heating it, and the anhydrous compound fumes in
moist air! You have to form the anhydrous form anhydrously,
perhaps via SHS from copper chloride an aluminum metal.

 There are also soluble acetates of aluminum.

 Aluminum oxide weighs 101.960 g/mol (53% aluminum) and can be
extremely stable, or it can be relatively reactive, depending on how
it’s been treated since it was formed. It’s totally insoluble in anything.

Phosphate sinks

 Tricalcium (di)phosphate, one possible end goal, is 310.18 g/mol
(containing two phosphates, so 61% phosphate by weight, the rest
being calcium) and weighs 3.14 g/cc. Its solubility in water is 1.2
mg/kg, which I guess is 0.12 mg/100ml.

 Monocalcium (di)phosphate, another, is 234.05 g/mol when
unhydrated (81% phosphate) but tends to disproportionate into
phosphoric acid and “dicalcium” (di)phosphate, especially above 203°.
It’s dramatically more water-soluble than the tricalcium salt, at 2
g/100ml. Soluble acid monobasic phosphates like this may be useful

not only as phosphate sinks but also as phosphate sources to calm
down the reaction with things like calcium oxide, which might
otherwise be too violent.

 Dicalcium (mono)phosphate, a third, is actually CaHPO4, 136.06
g/mol (70% phosphate). WP says:
In a continuous process CaCl2 can be treated with [diammonium phosphate] to
form the dihydrate:
 CaCl2 + (NH4)2HPO4 → CaHPO4•2H2O + 2NH4Cl
 A slurry of the dihydrate is then heated to around 65–70 °C to form anhydrous
CaHPO4 as a crystalline precipitate, typically as flat diamondoid crystals, which are
suitable for further processing.

 There’s also a “dicalcium diphosphate”, to which it converts when
heated to 240°-500°, which is actually calcium pyrophosphate.

 Aluminum orthophosphate (AlPO4) weighs 121.9529 g/mol and
2.566 g/cc, thus being 78% phosphate and 22% aluminum, and
containing 2.0 g/cc of phosphate and 0.57 g/cc of aluminum.

 Monoaluminum phosphate is commonly used as a refractory
cement since Kingery’s dissertation, but unfortunately is not in
Wikipedia.

Fillers

 The idea of all this stuff is to form a lasting solid precipitate,
especially for 3-D printing applications. There are several possible
problems to solve.

 The first is reactions that are too slow and allow the materials to
escape.

 The second is reactions that complete adequately fast, but do not
produce enough solid product to form a solid mass.

 The third is reactions that are too fast and throw the materials apart
rather than producing a solid product.

 The fourth is that the phosphate material, even when fully formed,
may not be very strong, or may have other undesirable properties such
as being electrically insulating.

 Inert fillers should help with all four of these problems. The filler
particles impede diffusion and convection, allowing more time for the
reaction to complete. The new crystals need only bridge the existing
filler particles together rather than interlocking with other new
crystals. The filler particles add a great deal of thermal mass and
reduce the temperature rise associated with any exothermic reaction,
allowing even very exothermic reactions to take place safely in the
insterstices. And they can contribute many, though not all, desired
properties to the finished product.

 Kingery’s dissertation used kaolin and quartz sand as fillers for his
various refractory “bonds” such as monoaluminum phosphate.

 Wet-ground vermiculite may be an expedient functional filler for
this purpose, since vermiculite is easy to find and wet grinding is easy
to do. I suspect that talc and clays are probably superior for most
purposes.

 Other promising fillers include apatite, berlinite, synthetic
aluminum phosphates, sapphire, quartz sand, mullite, glass fiber,

https://en.wikipedia.org/wiki/Dicalcium_phosphate

basalt fiber, carbon fiber, recycled glass, glass microspheres, graphite,
carbon black, carborundum, and zeolites.

Topics

• Materials (p. 1138) (59 notes)
• Filled systems (p. 1161) (16 notes)
• Aluminum (p. 1180) (10 notes)
• Phosphates (p. 1184) (9 notes)
• Composites (p. 1187) (9 notes)
• Vermiculite (p. 1238) (4 notes)
• Kingery, the father of modern ceramics (p. 1288) (3 notes)

Lazy heapsort
Kragen Javier Sitaker, 02021-08-22 (updated 02021-09-11)
(6 minutes)

 Heapsort’s initial heapification phase is linear time, while its sorting
phase is linearithmic. One common reason for sorting things is to see
the first N items; heapsort, unlike quicksort, mergesort, or library
sort, can produce those top N items much sooner than it can produce
the rest of the sorted results.

Heapsort’s laziness

 I wrote a simple heapsort program that generates random integers
and heapsorts them. For ten items, it takes 4-7 swaps to initially
heapify them, then 21-25 swaps to finish sorting; for a hundred,
64-74 swaps and 500-520 swaps respectively; for a thousand, 700-740
and 8300-8400; for ten thousand, 7400 and 120 thousand; for a
hundred thousand, 74 thousand and 1.5 million; for a million, 740
thousand and 18 million; for ten million, 7.4 million and 220 million;
for a hundred million, 74 million and 2.5 billion. The heapifying
phase does about 4.7 record compares per swap, so about 3.5 per input
record.

 So, even with very small input sets, heapsort can generate the first
output value in only 20% of the time required to generate the whole
output set (though admittedly at this scale insertion sort is probably
faster), and for reasonable-sized results, the difference is more than an
order of magnitude, with the heapifying phase going as low as 3% of
the total. Moreover, it takes only about 3.5 comparisons per input
record, plus a logarithmic number per output record.

 This is relevant if you’re writing a sort utility that generates output
lazily, as when the shell sort command is piped to some other
command. This laziness-friendliness seems like a relevant attribute
for a generic standard-library sorting routine or toolkit: by heapifying
a data array into a max-heap and then performing a few extract-max
operations, we have a top-N algorithm.

 If you know at the outset how many output values you’re going to
need, you can do better than this by iterating over the input values,
conditionally adding them to a “shortlist” heap of the right size, from
which future values may possibly evict them. In the case where most
values never make it onto the shortlist, it’s easy to keep the number of
comparisons per input record below 1.2, but of course it cannot go
below 1.

Can we improve heapsort’s locality of
reference? An idea that fails

 Normally heapsort has relatively poor locality of reference, making
it unusable for external sorting. This has probably already been
investigated, but I think this can be cured by dividing the heap into
smaller heaps connected by queues.

 Suppose you have 256 GiB of 16-byte records (16 gibirecords) to

sort in 16 GiB of RAM (1 gibirecord). Your auxiliary storage is a
tebibyte SSD, which takes 100 μs to do a 4096-byte read or write,
potentially containing 256 records.

 One way to approach this problem is to build a bunch of
255-record min-heaps, each associated with a 255-record queue
containing records that precede its top (minimal) record.

 First, consider the output phase: we repeatedly consume a record
from the root queue. When a queue goes empty, we refill it from the
heap dangling off of it by repeatedly removing minimal items from
that heap and appending them to the queue. This usually involves
sifting up items that we would normally find in child heaps, but in
this case the child heaps are at the other end of their own queues, so
unless one of those queues goes empty, we only need the root queue,
the root heap, and its 255 (?) child queues in RAM, a total of 2056
kibibytes.

 However, every item added to the output queue shifts an item into
the root heap from one of those child queues, which has a 1/255
chance of going empty. At that point, we need to refill that queue, so
we temporarily switch to refilling that queue by draining 255 items
from its heap, each of which has a 1/255 chance of emptying one of its
child queues, unless it’s a leaf node. So on average we will recurse all
the way down to the leaves when we empty the root’s output queue,
but only once; sometimes we’ll get lucky and end the recursion early,
and sometimes we’ll get unlucky and have to recurse down to the
leaves two or three times.

 Draining a leaf node in this way only requires 4 KiB of RAM
buffer instead of 2056 KiB. (Its empty queue was already in RAM
because its parent node was draining it.)

 Each heap+queue node holds 512 records, so we need 32
mebinodes; with 255-way branching, these are about 3e-6% the root
node, 0.0008% its children, 0.2% the third level, 49.4% the fourth
level, and 50.4% the fifth level. The first three levels (and 6% of the
fourth level) fit in RAM, so every time we drain the root queue and
recurse down to our on-average-one-leaf, we’re paging in 50.4% of
the time a fourth-level 2052-kibibyte node with all its child queues,
plus one of the fifth-level leaf nodes. So we need, I think, 515 iops,
51.5 milliseconds, every other time we drain the root queue, which is
about 1 iops per record, which is... still unusably slow. If I’ve
calculated this correctly, it’ll take us 20 days to sort our data file this
way.

 By contrast, we can trivially mergesort the data file in two passes:
one to divide it into (worst-case) 16 16-gibibyte internally-sorted
hunks, and a second pass doing a 16-way merge. That’s a little less
than 4 hours.

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Algorithms (p. 1163) (14 notes)

• Real time (p. 1195) (7 notes)
• Sorting (p. 1272) (3 notes)
• Latency (p. 1358) (2 notes)

Recursive bearings
Kragen Javier Sitaker, 02021-08-23 (updated 02021-12-30) (1 minute)

 ABEC-7 608 roller-skate bearings cost 20¢ in the US, 40¢ here in
Argentina, but are only rated for like 1-2 kN of static load. SKF rates
their deep-groove 608 bearings at 1.37 kN static load. So what if you
need more than twice that?

 Well, you could support your shaft between three rollers at each
end, and support each of the six rollers on two bearings. That ought
to give you twice the load capacity: 4×1.37 kN. Also, it ought to
give you lower friction if the shaft is smaller than the rollers and the
rolling friction between the shaft and the rollers doesn’t itself
contribute an overwhelming amount of friction.

 If that isn’t sufficient, you can repeat the process recursively, by
mounting a roller on your new shaft and making six such assemblies
to support another shaft, containing 36 rollers of the smaller size and
72 skate bearings.

 This is silly, though, because at the point that you’re spending
US$15-30 on bearings, you might as well just buy a bigger bearing.

Topics

• Contrivances (p. 1143) (45 notes)
• Pricing (p. 1147) (35 notes)
• Mechanical (p. 1159) (17 notes)

https://www.skf.com/group/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-608
https://www.skf.com/group/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-608

A construction set using SHS
Kragen Javier Sitaker, 02021-08-24 (updated 02021-09-11)
(5 minutes)

 I was thinking earlier about “voxel 3-D printing” with
spot-welded bearing balls, where each new ball added to the
workpiece is located by contacts with three existing balls, then
spot-welded to each of them in turn. That way, the end effector
doesn’t need to have extremely precise location abilities, because the
location is in the precision of the bearing balls, which can easily and
very inexpensively be submicron.

 However, spot-welding them will both induce stresses on the
structure as the nugget expands and then contracts, and also reduces
the precision of the distance between the centers of the balls; the
bigger the spot welds, the bigger this effect. And with any practical
size of spot weld, the resulting structure will be much weaker than .
Also, it requires high power input from the end effector, even though
it’s electrical power.

 The standard mechanical-engineering solution to locating and
fastening parts accurately is to use locator pins (or other features)
separate from the fasteners, such as screws. By chamfering or tapering
locator features, it becomes possible to assemble parts with greater
precision than the precision of the manipulators, in the same way that
the balls in my first paragraph would provide high precision.
Somewhat analogously, the position of a lathe saddle can be indicated
much more precisely by a dial indicator (or, nowadays, a digital
readout) than by the graduations on the handwheel, because (aside
from backlash) the kinematic chain of the dial indicator does not have
to bear the load of feeding the tool into the work.

 The wedging action of a tusk-tenon joint makes such a permanent
joint for a somewhat related reason: the load on the joint is
orthogonal to the direction of movement of the wedge, so it does not
tend to dislodge it.

 So I think that perhaps the best way to assemble things for a
permanent, rigid mechanical connection is:

• Position them in a precise place using positioning features such as a
Maxwell kinematic coupling.
• Hold them in that place using a fastening system that can handle all
the variations in position that the positioning system can produce,
without producing large enough loads during the holding operation
to create positioning errors. For example, two parallel plates sliding
against one another are a planar joint, with three degrees of freedom,
until one or more screws through oversize holes in one into tapped
holes in the other add enough friction to prevent movement. A
spherical ball-and-socket joint also has three degrees of freedom until
enough friction is similarly added. With a serial kinematic chain of
three joints (of two or three degrees of freedom), you can provide all
six degrees of freedom; putting them close together and putting more
than one such chain in parallel can provide greater rigidity. (There
might be a way to do it with just two joints, but I can’t see it.)

• Lock the holding/fastening mechanism with something adequately
permanent, like self-propagating high-temperature synthesis to fuse
parts together, some safety lockwire, a jam nut, or just a circlip or
similar spring. The loads will be borne by the holding/fastening
mechanism, not by the positioning mechanism or by the locking
mechanism, because the locking mechanism only serves to prevent the
fastening mechanism from coming unfastened.

 These three functions are not always so independent; in a four-jaw
lathe chuck, for example, each jaw fulfills both the positioning
function (when the other jaw is far away) and the holding function
(when it’s adding pressure to the part and thus friction to both the
part and the other jaw). But I think separating them will generally
improve precision. At times, in a lathe chuck, the moving function in
two rotational degrees of freedom is provided by tapping the
workpiece up against the flat face of the chuck, before holding the
part in place by tightening the jaws.

 You could perhaps drench the balls in a viscous liquid that later
forms a glass, which can perhaps later be annealed into a
glass-ceramic, so that they are positioned by the precise Hertzian
contact between the balls, but then held in place by the glass or
glass-ceramic matrix. This will work best if the matrix is nearly as
hard as the balls (in the sense of Young’s modulus) or even harder. In
effect, the matrix foam is the real object; the balls are just there to
provide it with precise dimensions, and they could be hollow bubbles
or even removed entirely after the matrix hardens. Hollow
fused-quartz bubbles would probably be especially useful for this
purpose.

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• 3-D printing (p. 1160) (17 notes)
• Composability (p. 1188) (9 notes)
• Self-propagating high-temperature synthesis (SHS) (p. 1241) (4
notes)
• Fasteners (p. 1297) (3 notes)

Sorption vacuum pumps really
can’t operate continuously
Kragen Javier Sitaker, 02021-08-24 (updated 02021-09-11)
(5 minutes)

 Wikipedia tells me that sorption vacuum pumps cannot operate
continuously. I think that this might be incorrect, even though a
continuously-operating sorption pump may not have been built yet.
However, initial simulation results are not promising.

 Consider a very thin pipe divided into a series of stages, which I
will label A, B, and C:

A B C A B C
===========

 We alternately cool and heat these stages. Initially let us suppose
that all the stages are cold.

 In the first phase let us heat the A stages, desorbing their contents;
the leftmost A stage ejects half of its contents to the left, out the tube,
and half to the right, where they are sorbed by the B phase. The
other A stages eject their contents similarly, but into the C stages to
their left and the B stages to their right.

 In the second phase, let us heat the B stages. The leftmost B stage,
similarly, ejects half of its contents into the leftmost A stage, whence
they continue out the end of the pipe, and half of its contents into the
C stage to its right. (Under some assumptions, these proportions are
less even; perhaps some gas molecules make their way back to B from
A and proceed on to C. We will come back to that.) The other B
stages eject half their contents into the C stages to their right, and the
other half into the A stages to their left, whence they continue to the
following C stage to the left. So now all our gas is sorbed in the C
stages, except for the part that escaped out of the left side initially.

 In the third phase, we cool the A stages again. Because all the gas
in the pipe is already sorbed in the C stages, they do not sorb any gas,
except for the leftmost A stage, which sorbs gas that was previously to
the left end of the pipe.

 In the fourth phase, we finally heat the C stages. The rightmost C
stage expels half of its contents to the right end of the pipe, while the
others expel them evenly into the A stages to their left and right.

 In the fifth phase, we cool the B stages back down, which has no
effect on the gas distribution, because all of the gas is sorbed in the A
stages.

 In the sixth phase, we heat the A stages again, as in the first phase.
This expels half the contents of the leftmost A stage, which it sorbed
in the third phase, into the B stage to its right, and half back out the
end of the pipe.

 In the seventh phase, we cool the C stages back down, which
results in sorbing some gas from the right end of the pipe.

 The eighth phase is a return to the second phase, heating the B
stages, but now with a different distribution of gases. In particular,
half the gas sorbed from the leftmost A stage, which took it from
outside the pipe, is ejected back out the pipe, while the other half (one
quarter of the total initially sorbed) moves to the C stage to its right.
The cycle repeats from there.

 My thought is that, although gas diffuses in both directions
through the tube, it diffuses faster to the right.

 In the following simulation, however, this does not work at all:

def sim(output):
 gas = [1.0] * 20
 a = [i for i in range(1, len(gas)-1) if i % 3 == 1]
 b = [i for i in range(1, len(gas)-1) if i % 3 == 2]
 c = [i for i in range(1, len(gas)-1) if i % 3 == 0]
 temp = [0.0] * len(gas)
 temp[0] = temp[-1] = 3.0
 for t in range(1000):
 output(gas, temp)
 f = t // 5 % 6 + 1
 if f in [1, 3, 5]:
 for i in (c if f == 1 else a if f == 3 else b):
 temp[i] = 0.0
 else:
 for i in (b if f == 2 else c if f == 4 else a):
 temp[i] = 7.0

 deltas = [0.0] * len(gas)
 for i in range(len(temp)):
 for neighbor in [i-1, i+1]:
 if neighbor < 0 or neighbor >= len(gas):
 continue
 d = temp[i] * gas[i] * 0.05
 deltas[neighbor] += d
 deltas[i] -= d

 for i in range(len(temp)):
 gas[i] += deltas[i]

 In the simulation, the phases are applied correctly (from the second
phase, anyway) but the net gas movement is zero.

Topics

• Contrivances (p. 1143) (45 notes)
• Physics (p. 1157) (18 notes)
• Python (p. 1166) (12 notes)
• Vacuum

Electrodeposition welding
Kragen Javier Sitaker, 02021-08-25 (updated 02021-09-11)
(2 minutes)

 It’s relatively straightforward and doesn’t take much force to bend
a shape precisely out of wire, for example copper or steel wire; this
can even be a complex three-dimensional shape, although you have to
take into account springback and work-hardening. However, unless
the wire is very thick (which makes it harder to bend) the resulting
object is fairly weak unless the wires are then twisted together, which
may not always be feasible. If you weld adjacent wires together, you
can get a fairly solid structure, but this both distorts the overall
structure as the welds cool and introduces surface positioning error
locally due to surface tension.

 Electrodeposition is an interesting alternative to welding in this
context. It’s a terrible alternative to welding in the usual contexts,
because material deposition at any given position is very slow, and
you get almost no penetration into joints. But in the case of a
wireframe structure, the “joints” may initially have only grazing
contact or no contact at all, and it’s only necessary to deposit a
thickness of material comparable to the thickness of the original wire
to get a fully-strong structure. Even much smaller thicknesses of
deposition may provide adequate strength for many applications.

 Not only does the process introduce little or no side loading or
distortion, but submerging the workpiece in water actually reduces
the side loading resulting from the weight of the wire, though this is
not very significant if the wire is a dense material like copper.

 As Wolf Hilbertz discovered in 01976, cathodic deposition is
significant even in seawater, where it results not in electroplating but
in the precipitation of a hydromagnesite-aragonite stone due to the
hydroxyls formed at the cathode; apparently he got about 5 cm/year
(1.6 nm/s) with under 4 volts, though I vaguely remember the
Mother Earth News article recommending 12 volts. If you get to
choose the electrolyte you can do electrodeposition of metals much
faster than that; presumably that’s true of these carbonate minerals as
well. See Fast electrolytic mineral accretion (seacrete) for digital
fabrication? (p. 779) for more notes on seacrete.

 (Of course electrodeposition, either of metal or of stone, is also
interesting as a way to add strength to aluminum-foil structures,
including aluminum-foil origami.)

Topics

• Manufacturing (p. 1151) (29 notes)
• Electrolysis (p. 1158) (18 notes)
• Welding (p. 1181) (9 notes)

https://en.wikipedia.org/wiki/Biorock

Better screw head designs?
Kragen Javier Sitaker, 02021-08-25 (updated 02021-09-11)
(4 minutes)

 I was watching some videos the other day of factories in Sialkot,
Pakistan, and I was especially interested in the vises used in one
factory. It’s common to turn vise screws with a sliding round rod
permanently stuck through a round hole at one end of the vise screw,
but these guys just had the round hole; to turn the screws they had a
portable long L-shaped round-rod handle with a right-angle hook on
the end of it. By passing the hook through the hole in the vise screw,
they had a variable-angle lever available; without removing the hook
from the vise, the handle could then be rotated to be parallel to the
vise screw, perpendicular to it, or anywhere in between, thus
providing them with whatever mechanical advantage they wanted, up
to the limit of the handle’s length.

 In file swashplate-screwdriver.md in Derctuo, I described a way to
achieve the same thing with a mechanism inside a screwdriver. But I
thought this idea of drilling a hole through screw shafts to turn them,
rather than sawing a slot in the head, was appealing. Unfortunately, I
don’t think it’s compatible with screw heads being driven in flush
with a surface.

 The Robertson square drive, Allen hex drive, and Torx drive
approaches are also appealing, and although they don’t inherently
offer variable leverage, with ball-head screwdrivers they do offer the
possibility of off-axis driving, like a sort of universal joint.

 With such hole-based systems, there’s a three-way tradeoff
between screw-head strength, screwdriver strength, and screw-head
size. Making the screwdriver head larger without changing the
screw-head size makes the walls of the screw thinner, thus reducing
their strength, at least when they are not fully counterbored into
equally hard material. Ultimately the strength of the screw against
torsion is limited by its material and diameter — enough torsional
load, and the head will twist off — but, in grub-screw-like cases
where the screw head is not larger than the rest of the screw, I think
the weak point is either the screw head itself or the screwdriver shaft
where it enters the screw head, because these both must have scantier
cross-sections than the solid neck.

 I wonder if you can get some advantage by making a very deep
hole drive, perhaps going all the way to the end of the screw. This
would unavoidably weaken the screw, though. If you can’t, is there a
natural limit on how deep you can go before you stop gaining an
advantage?

 In hole-based screw heads like Torx, you could make the
screwdriver head slightly helical in order to pull the driver down into
the screw head as you’re twisting it, by way of elastic deformation of
the screw head. This would work best if you had separate screwdriver
and screwundriver heads with helices in opposite directions, so that an
increase in available force in one direction doesn’t translate to a
decrease in the other direction.

 By making the hole in the outermost part of the screw head
circular and gradually tapering it into the shape of the square, Star of
David, etc., you could make the screwdriver auto-align to the screw
head’s rotational position as it is inserted, at least if the user is
providing enough torsional compliance during insertion. This would
be very convenient, especially for screws you can’t see. Similarly, you
could taper the hole outward to the full diameter of the screw head so
that the screwdriver auto-aligns to the screw head’s translational
position as it is inserted, as box-end wrenches have done (on the
wrench side) for many generations.

 Probably a buttress thread profile like the ones used on toothpaste
tubes would be a better default (for fasteners, maybe vises and the like
too, though they might be better off with planetary roller screws). I
think it roughly doubles the screw thread’s strength against pullout.

 All in all, though, I think screw fasteners were a mistake. Much of
the above also applies to camlocks, scroll drives, etc.

Topics

• Contrivances (p. 1143) (45 notes)
• Mechanical (p. 1159) (17 notes)
• Fasteners (p. 1297) (3 notes)

Dense fillers
Kragen Javier Sitaker, 02021-08-25 (updated 02021-12-30)
(7 minutes)

 Making things feel heavy is cool because people feel like light
things are cheap and worthless. But there are cheap high-density
fillers.

 One of the very cheap things Ecoquimica sells (see Material
observations (p. 633)) is baryte. I was thinking I didn’t have any use
for that, but it occurs to me that it might be useful as a high-density
filler, with density theoretically 4.48 g/cc. And at Mohs 3–3.5 it
should be easy to mill to finer granulometry. Baryte-filled silicone
might be 3.4 g/cc and ought to be a bright, pure white, and much less
resonant than pure or quartz-filled silicone. I see it’s also used for
X-ray shielding, for making the first synthetic phosphor, Lapis
Boloniensis (through carbothermal reduction to the anomalously
water-soluble barium sulfide, which doesn’t melt until 2235°), and as
a metal-casting mold release (melts at 1580°, decomposes at 1600°), as
well as a source of barium for other materials like the remarkable and
dangerous BaO₂. I’m wary of using it in reactions, though, because of
barium heavy-metal toxicity.

 For just adding weight and whiteness to things, zinc oxide (5.6
g/cc) might be superior, and is also interesting for oxychloride and
phosphate uses, but from Ecoquimica it costs AR$5200/kg
(US$29/kg) to baryte’s AR$83/kg (46¢/kg). Other vendors have it
for lower prices like AR$1500/kg but nothing in the neighborhood of
baryte. And if you just want density, you can get scrap lead, copper,
and steel pretty cheap; a 30kg lead ingot is AR$13500 (AR$450/kg,
US$75/30kg, US$2.50/kg), and I’m pretty sure the scrap metal guy
around the corner pays something like AR$950/kg for copper,
AR$700/kg for brass, and AR$100/kg for lead, all of which are more
expensive than baryta (but denser). Steel is too cheap for him to even
deal with.

 For building machine tool frames, baryta’s vibration-damping and
density properties might be highly desirable.

 As a small dog nipped at my heels in the street, it occurred to me
that maybe magnetite might be denser than zinc oxide and also
cheaper, but as it turns out magnetite is only 5.17 g/cc, slightly less
dense than zinc oxide. Related fillers that really are higher density
include black cupric oxide (79.545 g/mol, 6.315 g/cc, boils at 2000°,
-156 kJ/mol) and the safer but less air-stable red cuprous oxide
(143.09 g/mol, 6.0 g/cc, boils at 1800°, -170 kJ/mol), both of which
contain one oxygen and some copper (63.546 g/mol, 8.96 g/cc, boils
at 2562°).

 Also, any of those four oxides could serve as an oxidizer for
self-propagating high-temperature synthesis (cf. SHS of magnesium
phosphate (p. 608)); magnetite is 231.533 g/mol and -1120.89 kJ/mol
(-280.223 kJ/mol O₁) and commonly used; zinc oxide is
81.406 g/mol, 5.606 g/cc, and a very tame -350.5 kJ/mol, and while it
boils at 1974°, zinc metal boils at only 907°, which is why welding on

https://en.wikipedia.org/wiki/Magnetite
https://en.wikipedia.org/wiki/Magnetite
https://webbook.nist.gov/cgi/cbook.cgi?ID=C1309382&Units=SI&Mask=2
https://en.wikipedia.org/wiki/Magnetite
https://webbook.nist.gov/cgi/cbook.cgi?ID=C1309382&Units=SI&Mask=2

galvanized metal is dangerous. In theory I ought to be able to make
black cupric oxide from recycled copper for AR$900/kg ×
63.546/79.545 ≈ AR$700/kg; copper dihydroxide (97.561 g/mol,
3.368 g/cc, -450 kJ/mol) dehydrates into cupric oxide at 80°.

 On 02021-08-24 I walked by the neighborhood recycler
(“COMPRO METALES, X MAYOR Y MENOR, Pago Mas!...”)
to check on scrap prices. He’s offering AR$600/kg for brass and
bronze (US$3.3/kg), AR$100/kg for aluminum (56¢/kg), AR$170/kg
for lead (95¢/kg), and AR$900/kg for batteries (US$5.0/kg), which it
turns out refers to lead-acid batteries, not disposable alkaline batteries
(mostly manganese dioxide and zinc) — the 95¢/kg is the price for
other lead, I guess things like tire weights, while the factory buys back
the dead batteries for more than US$5/kg, presumably because of the
high-purity lead content. He’s not buying copper at all today, it looks
like; I wonder if that means he has scrap copper he can’t sell?

 I've made copper hydroxide in the past by electrolysis, mixed,
probably, with cupric chloride and the acetate, both of which are
water-soluble, which should make separation easy. (Cuprous chloride
is less water-soluble, but its Ksp is still 1.72 × 10⁻⁷, 13 orders of
magnitude more than cupric hydroxide’s 2.20 × 10⁻²⁰, and at any rate
it’s difficult to make.) If my objective were to make a lot of pure
cupric oxide, I could use a plain vinegar electrolyte or a sulfate
electrolyte to eliminate the chlorides. I bet Mina would appreciate
the pigment, too.

 So the points on the Pareto tradeoff curve for density to cost are
something like:

• Osmium: US$13000/kg, 22.65 g/cc, or possibly iridium at more
than twice that price
• Tungsten: US$30/kg, 19.3 g/cc
• Tungsten carbide? Not sure what it costs but its density is 15.6 g/cc.

• Lead scrap: 95¢/kg, 11.3 g/cc
• Steel scrap: 21¢/kg, 7.9 g/cc
• Magnetite: 10¢/kg or so, 5.2 g/cc
• Quartz (as construction sand): 3¢/kg, 2.6 g/cc
• Water: .06¢/kg or so, 1 g/cc

 More briefly:

 22.65 g/cc Os (US$13000/kg), 19.3 g/cc W (US$30/kg), 15.6 g/cc
WC ($???), 11.34 g/cc Pb (95c/kg), 7.9 g/cc Fe (21c/kg), 5.2 g/cc
Fe3O4 (10c/kg), 2.6 g/cc SiO2 (3c/kg)

 I feel like WC is probably cheaper than W, because Wikipedia says
you can make it by heating WO₃ to 900° with graphite, and the
USGS’s Mineral Commodity Summaries put WO₃ prices at
US$148–US$270 per tonne for the last several years.

 Mercury, litharge, minium, and cinnabar should probably be on the
curve, too.

 Not making the curve but still pretty cool, in part because of their
colors:

• Baryte: 46¢/kg, 4.48 g/cc
• Zinc oxide: US$29/kg, 5.6 g/cc

https://www.metalary.com/osmium-price/
https://www.metalary.com/tungsten-price/
https://www.usgs.gov/centers/nmic/iron-and-steel-scrap-statistics-and-information
https://www.usgs.gov/centers/nmic/iron-ore-statistics-and-information
https://stockhead.com.au/resources/barry-fitzgerald-why-magnetite-is-hot-and-whos-making-it/
http://www.scientificamerican.com/article/israel-proves-the-desalination-era-is-here/
https://en.wikipedia.org/wiki/Tungsten_carbide

• Cupric oxide: US$3.90/kg, 6.315 g/cc
• Manganese dioxide: 5.026 g/cc

 I visited the recycler and bought a kg of copper wire from him,
which cost AR$1200 (US$6.70/kg). He explained that lead-acid
battery lead “is a different alloy” which is a reason for the higher
price, also indicating the plastic case as another reason, but I think he
sort of has those both backwards. Still, as a heavy filler, scrap lead
with other impurities is probably close to the same density as pure
battery lead.

Topics

• Pricing (p. 1147) (35 notes)
• Manufacturing (p. 1151) (29 notes)
• Filled systems (p. 1161) (16 notes)
• Argentina (p. 1200) (7 notes)
• Copper (p. 1234) (5 notes)

Selective laser sintering of copper
Kragen Javier Sitaker, 02021-08-30 (updated 02021-12-30)
(6 minutes)

 Copper selective laser sintering and similar powder-bed processes
have some interesting benefits. Metal powder for 3-D printers
apparently costs US$300-600 per kg, but copper is easy to powder
electrolytically. Also, copper powder is not an explosive hazard in air
as most other metal powders are. It’s not quite noble enough to sinter
in air, but you should be able to sinter it in nitrogen (Cu3N does exist
at room temperature, but decomposes with a little heating and is
estimated to have a positive enthalpy of formation around +74.5
kJ/mol, being a potential conductive copper ink material by this
route, and is consequently difficult to synthesize, requiring either
sputtering or both pre-oxidized copper and pre-cracked nitrogen), or
possibly even a reduced-oxygen air atmosphere or carbon dioxide.

 Lasers are a desirable way to pattern the surface because they can
achieve high precision and high power in a small area, which is
particularly important for very thermally conductive metals like
copper. Possible alternatives include electron beams (in vacuum),
arcs, localized electrodeposition (in an electrolyte), and an
inkjet-printed light-absorbing layer followed by illumination with a
strobe light.

 This last alternative requires delivering enough heat in the light of
the strobe to melt or at least sinter the surface copper layer before the
heat can diffuse out of the surface layer into the bulk material, similar
to skin burns from the flash of an atomic bomb; but it does need to
diffuse to the non-illuminated side of the copper particles in the
surface layer. Air-gap flashes can achieve 500 ns speed, but typically
their emission spectrum has a lot of blue and green, which might be
suboptimal, since copper’s reflectivity is not very high in those colors,
and we want the un-inked copper to be reflective. Doping the plasma
with something like strontium, lithium, or sodium might help to
increase emissivity in the red and green, increasing the contrast
between the ink and the copper. (Carbon dioxide mostly emits at
4300 nm, but I don’t think you can get enough power out of it.)

 Copper melts at 1084.62°, boils at 2562°, has a heat capacity of
24.440 J/mol/K near room temperature, and weighs 8.96 g/cc and
63.546 g/mol. This works out to 0.385 J/g/K or 3.45 J/cc/K, and so
reaching the melting point (almost necessary for sintering) starting
from 20° requires about 400 J/g or 3.7 kJ/cc. Its thermal
conductivity is 401 W/m/K, and this is the point at which I suddenly
wish I understood the heat equation.

 (You don’t really want to melt it, but if you did, its heat of fusion
would be another 13.26 kJ/mol = 0.2087 J/g = 1.87 J/cc.)

 Because I don’t understand the heat equation very well, I’m going
to work with a really dumb approximation to get a feel for orders of
growth.

 Suppose we have an 0.1-mm surface molten layer of copper (plus
an insignificant amount of carbon susceptor) which ranges from 1100°

https://www.sciencedirect.com/science/article/pii/S2187076414000876
https://www.sciencedirect.com/science/article/pii/S2187076414000876
https://www.sciencedirect.com/science/article/pii/S2187076414000876

to 2200°, and the 0.1-mm layer below it ranges from 20° to 1100°, and
that the specific heat and conductivity numbers are unchanged over
this range (which they aren’t, of course, but this is an approximation).
The thermal gradient then is 11 MK/m, giving us a heat flow of 4.4
GW/m², or in less overwhelming terms, 4.4 J/m²/ns. Moreover the
thermal energy present (disregarding the heat of fusion) is 3.7 kJ/cc ×
0.2 mm = 740 kJ/m², 74 J/cm². So reaching a situation somewhat
like this would require depositing those 740 kJ/m² at at least 4.4
GW/m², which requires a flash of less than 0.17 ms.

 A faster flash could melt a thinner surface layer, which would
contain less energy (proportional to the thickness of the surface layer)
and conduct it away from the surface faster (inversely proportional to
that same thickness). So, for example, for an 0.01 mm layer, ten times
thinner, you would need to deliver only 74 kJ/m², but at 44 GW/m²,
so instead of 0.17 ms you would need to do it in 0.0017 ms, a hundred
times faster, which is getting down to the limits of what an air-gap
flash can do.

 This approach would probably require stepping a focused area over
the copper surface and emitting repeated flash pulses, both in order to
keep the energy of a given flash manageably low, and in order to
bombard the copper from many directions with the light from a small
flash tube in order to be able to achieve a high temperature.

 Of course, a Q-switched laser can produce much faster pulses, and
much brighter than a blackbody, albeit at much lower efficiency.
And a gas-discharge laser might be limited to millisecond or longer
pulses, depending on the gas’s relaxation time, but you can easily
focus it into a 50-micron-diameter area, so even a 10-joule pulse gives
you 5 GJ/m² and 5 TW/m², a couple of orders of magnitude higher
than you need to melt the surface of copper.

Topics

• Physics (p. 1157) (18 notes)
• 3-D printing (p. 1160) (17 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Powder-bed 3-D printing processes (p. 1226) (5 notes)
• Copper (p. 1234) (5 notes)

Negative feedback control to
prevent runaway positive feedback
in 3-D MIG welding printing
Kragen Javier Sitaker, 02021-08-30 (updated 02021-12-30)
(3 minutes)

 3-D printing with a MIG welder (“WAAM”) suffers from a
positive-feedback problem which impairs geometrical precision: a
little bump on one layer tends to attract the arc of the next level and
consequently the droplets of metal, becoming a bigger bump on the
next level. (Marcin Jakubowicz says, “if you blast the power up, that
issue goes away,” but apparently it’s an issue lots of WAAM
companies have, and Joshua Pearce reports in the same conference call
that he was scrubbing his prints with a wire brush between layers to
reduce this problem.)

 Adam Blumhagen has proposed to Open Source Ecology that
maybe if you run a grinder over the surface after each layer, like the
Ability 3D and Big Metal, you could solve this problem (also
potentially getting better resolution than what MIG suffers from
surface tension). However, an alternative is to stabilize the system
with negative feedback: if you detect that the surface is slightly
higher, you can compensate by adding less metal to it.

 There are a variety of ways you could detect this. MIG welders in
particular are not really designed for this; they try to maintain a
constant arc length by maintaining a constant voltage across the arc,
but the amount of wire stickout is sort of uncontrolled, being the
integral of the difference between the meltoff rate (which is nearly
proportional to the current, which you can measure) and the wire
extrusion rate. A small error in measuring either of these will work
out to a large error in estimating the stickout over time.

 You could still use the wire as a conductive CMM probe by letting
it cool down first, then using a much smaller voltage and current to
probe the surface. If you instead periodically probe a known surface
that isn’t changing significantly, ideally a piece of graphite or
something, you can find out what the current stickout is, correcting
the accumulated error in the stickout estimation. Your stickout error
will still drift pretty fast, but maybe not fast enough for the positive
feedback problem to get out of control.

 Using a much thicker electrode, as in stick welding, would largely
solve the problem by reducing the linear speed of meltoff; so would
using an electrode that isn’t constantly melting off, as in TIG welding,
although if you’re constantly crashing your tip into the work it may
not retain its nominal geometry for very long, even if you wait for the
work and the tip to cool first.

Topics

https://youtu.be/ILw0MDsWhHQ
https://youtu.be/ILw0MDsWhHQ

• Digital fabrication (p. 1149) (31 notes)
• 3-D printing (p. 1160) (17 notes)
• Welding (p. 1181) (9 notes)
• Control (cybernetics) (p. 1262) (4 notes)

Fast electrolytic mineral accretion
(seacrete) for digital fabrication?
Kragen Javier Sitaker, 02021-09-01 (updated 02021-12-30)
(52 minutes)

 I was thinking that seacrete (electrolytic mineral accretion) is a
really interesting possible digital fabrication process, but it’s slow.
Seacrete deposition is claimed to be around 5 cm per year normally,
which is about 1.6 nm/s, so doubling the thickness of a 10-μm-thick
aluminum-foil origami figure would take about an hour, and getting
to a thickness of 3 mm would take about 11 days. So speeding up the
process would be very worthwhile. Fortunately, there seem to be
several likely routes to increase the deposition rate by an order of
magnitude or more.

More concentrated electrolytes

 First, maybe you could get better Faraday efficiency for depositing
seacrete by using a feedstock solution more concentrated than
seawater, and with less useless ions. Seawater is only 0.13%
magnesium and 0.04% calcium, so the large majority of cations you’ll
attract to the cathode are sodium (it’s 1.1% sodium). (Simply boiling
down seawater, or drying it out in ponds, to crystallize out most of
the sodium chloride leaving bitterns, would greatly improve the
situation.) Making most of the cations something that can participate
in the mineralization reaction ought to boost the Faraday efficiency of
the process by a factor of 6 or so.

 WP gives chalk’s solubility as .013 g/ℓ, or 1.3 mg/100mℓ, so maybe
that’s about how dilute a solution of bicarbonate and calcium ions
would need to be, though it gives calcium bicarbonate’s solubility as
16.6 g/100 mℓ, so maybe you can go that high; WP says bicarbonate
ions are 0.14% of all dissolved ions in seawater, which is 3.5% dissolved
ions, so maybe that’s about 5 mg/100 mℓ already (depending on
whether those numbers are both by weight, or whether one of them is
molar). Alternatively, magnesium hydroxide (brucite, Mohs 2.5–3),
might be a more practical primary electrolytic mineral accretion
material. However, maybe enough dissolved choke-damp could
enable higher chalk deposition rates.

 Supposedly Epsom salt dissolves 26.9 g/100 mℓ (anhydrous basis) in
water at 0°, and only 35.1 g/100 mℓ at 20°, so you could probably
dissolve at least 10 g/100 mℓ at -20°. It’s 120.366 g/mol, while
magnesium is 24.305 g/mol, so it’s 20.193% magnesium by weight, so
this would be a solution of about 2% magnesium, 15 times as high as
seawater; so we might expect a deposition rate on the order of 15
times as high, even without the improved Faraday efficiency from
getting rid of the useless sodium.

Upper bound estimations

 100% Faraday efficiency with divalent cations would be 3.12 × 10¹⁸
ions per coulomb, which is 5.18 micromoles per coulomb, or 0.126 mg

https://en.wikipedia.org/wiki/Bittern_(salt)
https://www.finishing.com/259/82.shtml
https://www.finishing.com/259/82.shtml
https://en.wikipedia.org/wiki/Magnesium_sulfate

of magnesium per coulomb. At 58.3197 g/mol, that would be 0.302
mg of brucite per coulomb. So at 10 amperes you’d deposit 3 mg of
brucite per second, or 10.8 g per hour. If this were distributed over
100 cm², with brucite’s density of 2.3446 g/cc, it would be
0.46 mm/hour, which is about 80× the reported rates for seacrete.
This is probably an achievable level of current with a tabletop (or
household freezer) setup, and depending on the voltage, it might be
10–50 watts, which is an acceptable power level; and you might be
able to reach 10–60% Faraday efficiency in real life.

 These 10 A/dm² would be 93 “amps per square foot” in the
medieval units used by US electroplating shops, which is on the high
end of the current levels commonly used for electroplating, so it may
be a little high but it’s not outrageously so. Nickel sulfamate baths for
nickel plating are operated as high as 15 A/dm² at the cathode.

 At the other end of the spectrum, suppose we can accrete
smithsonite, ZnCO₃ (125.4 g/mol, 4.5 g/cc). 5.18 micromoles per
coulomb here gives us 0.650 mg of smithsonite per coulomb, or
6.5 mg/s at 10 A, or 23.4 g/hour, and over 100 cm² that’s...
0.52 mm/hour. I was hoping for a way more exciting number, but I
guess the higher density of the smithsonite mostly cancels out its
higher molar mass.

 In theory you can use higher current densities than that, but if you
keep increasing the current density eventually you will boil your
electrolyte; there’s also the risk of primary nucleation somewhere
other than your cathode, forming a particle which might be swept
away and consumed. Somewhere in between, though, I suspect you
might be able to control the porosity with current density; higher or
lower porosities might be desirable in different situations. In
particular, higher porosity will give you higher strength, hardness, and
density, while lower porosity will give you easier ionic conduction,
faster mineralization (at least volumetrically), higher filler fractions (if
you’re using fillers), and greater flexural rigidity per material mass.

Temperature and pressure

 Doing the whole operation in the freezer would decrease the
solubility of the salts and products, but also of the product, which
might be a win on net. It would also increase the solubility of
choke-damp, as would higher pressures.

 I think lower temperature would also increase the resistance of the
electrolyte, which means lower thermodynamic efficiency. In
combination with inert fillers, it might reduce ion mobility to an
undesirable degree.

 So it might turn out that high temperatures rather than low
temperatures are most desirable.

Inert fillers

 If you buried the cathode “form”, of origami aluminum foil or
whatever, in sand or silt, perhaps the brucite or calcite forming
around the form would concrete the sand together, forming a real
concrete rather than the ersatz limestone type; this could both
dramatically increase the strength of the resulting material multiply
the effective deposition rate by a factor of 2–5, since sharp sand and

surface soil typically has a void ratio around 0.4, and subsurface soil is
commonly around 0.2. Void fractions as low as 0.1 (and thus
multipliers of 10×) might be practical with a combination of fillers,
though sufficiently low void fractions will impede ionic conduction.

 This could boost maximum theoretical performance in the scenario
described above from 0.46 mm per hour of brucite deposited to as
high as 4.6 mm per hour of brucite-cemented sand.

 Burying a pre-shaped cathode in sand may pose practical
difficulties; aluminum foil origami, bent thin wire, or a formed sheet
of knitted wire might bend under the weight of even a fairly small
amount of sand that settles on top of it. Depending on the shape, you
might be able to manipulate the cathode into an existing sand bed so
as to diminish the problem; an origami crane, for example, can be
inserted vertically into the sand up to its wings, which can then be laid
out horizontally on top of the sand, while its head and tail might be
able to stand up to the falling sand.

 The problem diminishes when the water becomes denser, adding
buoyancy to the sand, and when the sand is low-density, like quartz,
rather than high-density, like sapphire or forsterite. Using
aluminum-wire screening rather than aluminum foil is one attack on
the problem; another is to initially pour deflocculated silt over the
form, so that it flows around the form on all sides while being barely
denser than water, then flocculate it by adding flocculants.

 More generally, colloidal fillers, such as deflocculated clay,
deflocculated silt, or especially deflocculated micron-sized barytes,
might reduce the problem significantly; unlike sand and similar
particles, they can flow around the aluminum, and you can adjust
them to have density that is very close to that of aluminum to make it
closer to neutrally buoyant.

 Additional fillers like ground mica, talc, mullite, glass fiber, basalt
fiber, chopped rock wool, carbon fiber, and cellulose fiber should help
to improve the mechanical properties of the result, as well as
decreasing porosity and thus increasing effective deposition rate. Low
concentrations of metal fibers or graphite might be sufficient to
increase the strength of the result without being present in high
enough concentrations to form a conductive network; they might
also work to increase the effective surface area of the cathode, thus
enabling the use of higher currents and therefore higher deposition
rates. If they formed a continuous conductive network, the
mineralization would occur at the surface of the sand bed rather than
surrounding the cathode within it.

 Clays are commonly used as functional fillers in plastics, but I
suspect that they might be counterproductive in this application, since
even kaolin contracts significantly when dried. Less hygroscopic
phyllosilicates like mica and talc can fill their role; so, too, could platy
nanocrystals of non-phyllosilicate minerals.

 Normally in electrodeposition dendrites are to be avoided, since
they screw up the geometry. But in this case it might be worthwhile
to start with an initial stage of dendrite-forming electrodeposition to
increase the surface area of the cathode, safely ensconced within its
powder bed, before switching electrolytes for mineralization.

Powder-bed 3-D printing of cathodes

 By powder-bed 3-D printing the sand bed with conductive fillers
in it (for example, carbon black, powdered aluminum, powdered
silver, powdered gold, or powdered copper) you could produce an
anode with an elaborate form; it will not mineralize consistently,
since parts of the cathode that are shielded from the ionic current will
not electrodeposit, but this is likely acceptable for many uses.

 An alternative to printing conductive fillers is printing materials
that break down to conductive coatings; for example, silver oxalate
readily decomposes to silver and gases on gentle heating. Copper
formate similarly decomposes to copper and gases, and has the
additional advantage of being water-soluble and thus suitable for
inkjet printing; selectively coating sand grains with conductive
copper might also allow the use of smaller amounts of copper.

More anions, more and better cations

 Other useful abundant mineral-forming cations might include
ferrous, cupric, aluminum, ferric, nickel, cobalt, and zinc; less
abundant but still useful might be manganese, trivalent chromium,
beryllium, tin, vanadium, and titanium. In most cases the sulfate salts
would be nearly the most soluble, but using a variety of anions (not
just bicarbonate and sulfate but bromate, perchlorate, chloride,
chlorate, nitrate, nitrite, acetate, formate, fluorosilicate, bromide,
iodate, iodide, etc.) would permit a higher total number of cations
than the use of any single anion type. The ordering by solubility
(g/100 mℓ at 20°) might be something like the following:

• Calcium: bromate (230), chlorate (209), perchlorate (188), bromide
(143), nitrate (129), nitrite (84.5), chloride (74.5), iodide (66), acetate
(34.7), bicarbonate (16.6), formate (16.6), fluorosilicate (0.518)
• Magnesium: chlorate (135), iodide (140), bromide (101), nitrate
(69.5), chloride (54.6), acetate (53.4), perchlorate (49.6), sulfate (35.1),
fluorosilicate (30.8), bromate (<58), formate (14.4), iodate (8.6),
bicarbonate (0.077)
• Ferrous: perchlorate (299), bromide (117), nitrate (87.525, unstable
at room temperature), acetate (“highly soluble”), chloride (62.5),
sulfate (28.8)
• Cupric: chlorate (242), bromide (126), nitrate (125), fluorosilicate
(81.6), chloride (73), sulfate (32), formate (12.5), iodate (0.109)
• Aluminum: perchlorate (133), nitrate (73.9), chloride (45.8), sulfate
(36.4)
• Ferric: perchlorate (368), nitrate (138), chloride (91.8), sulfate (25.6),
iodate (0.36)
• Nickel: iodide (148), chlorate (133), bromide (131), perchlorate
(110), acetate (“easily soluble”), nitrate (94.2), chloride (66.8), sulfate
(44.4), bromate (28), formate (3.25)
• Cobalt: iodide (203), chlorate (180), fluorosilicate (118), bromide
(112), perchlorate (104), nitrate (97.4), chloride (52.9), bromate (45.5),
sulfate (36.1), iodate (1.02), nitrite (0.4)
• Zinc: bromide (446), iodide (432), chloride (395), chlorate (200),
nitrate (between 98 and 138), sulfate (53.8), acetate (30), formate (5.2)
• Beryllium: perchlorate (147), nitrate (108), chloride (42), sulfate
(39.1)

https://www.youtube.com/watch?v=auyCK8-DMP0
https://www.youtube.com/watch?v=auyCK8-DMP0
https://en.wikipedia.org/wiki/Magnesium_bicarbonate
https://en.wikipedia.org/wiki/Magnesium_bicarbonate

 Where an anion is missing from the list, it is sometimes because the
salt is insoluble and sometimes because I don’t know.

 So you could, for example, use a mix of calcium, magnesium, and
ferrous cations, with nitrate, chloride, and acetate ions; I think the
lowest solubility of the six is calcium acetate, 34.7 g/100 mℓ, so you
could probably get an electrolyte with over 100 g/100 mℓ of solutes.
Because of the low solubility of magnesium bicarbonate, you probably
can’t get a lot of calcium bicarbonate into solution if you also have
magnesium. (I suspect that most other cations would simply
precipitate the bicarbonate as an insoluble carbonate.) Similarly, you
can’t use sulfate as part of the mix if you’re trying to mineralize with
calcium ions.

 It might be worthwhile to pick anions that won’t corrode your
anode, which is another thing that’s less of a problem at lower
temperatures. If you have the luxury of using a gold, platinum, or
pyrolytic graphite anode, this is straightforward, but if you’re making
do with baser metals, you may have to be choosy. See below,
however, about anode protection.

 There’s the possibility of electrolytic iron plating, but it seems that
getting an iron metal deposit is actually somewhat difficult, involving
extreme pH and temperature conditions (like pH 0.5–1.5 and 87°-99°
) and often chelating ligands like tartrate or cyanide or TEA and
EDTA. So I suspect that under normal conditions you’ll get iron
oxides and oxyhydroxides.

 Nickel, cobalt, and copper plating out as metals might be a more
difficult problem to solve.

Carbonatation

 If only a metal hydroxide forms, it is likely possible to convert it to
a carbonate afterwards by exposing it wet to air or choke-damp, at
the cost of some volume expansion. For example, the very rare
theophrastite, Mohs 3.5, might form from nickel salts in the absence
of carbonate, but I think should carbonate to nickel carbonate
(gaspéite), Mohs 4.5. Aluminum is the exception, since it does not
generally form a carbonate, so electrolyzed by itself it would probably
produce only gibbsite.

| cation | hydroxide | carbonate |
|-----------+---------------------------+----------------------|
calcium	soluble portlandite (2)	chalk (3)
magnesium	brucite (2.5–3)	magnesite (3.5–4.5)
		hydromagnesite (3.5)
ferrous	???	siderite (3.75–4.25)
cupric	spertiniite (soft)	malachite (3.5–4),
		azurite (3.5–4)
aluminum	gibbsite (2.5–3)	μ
ferric	goethite, sorta (5–5.5)	???
cuprous	???	???
nickel	theophrastite (3.5)	gaspéite (4.5)
cobalt	(rather unstable)	spherocobaltite (4)
zinc	soluble rare sweetite (3)	smithsonite (4.5)
		(a type of calamine)
beryllium	behoite (4)	??? soluble

https://www.finishing.com/259/82.shtml
https://www.pfonline.com/articles/iron-plating(2)
https://patents.google.com/patent/US2714089
https://patents.google.com/patent/US2714089
https://www.mindat.org/min-3936.html
https://www.mindat.org/min-3936.html
https://en.wikipedia.org/wiki/Gasp�ite
https://en.wikipedia.org/wiki/Gasp�ite

 I think you could probably directly precipitate the carbonates by
keeping enough choke-damp dissolved in the water under pressure
and low temperature, which in most cases would produce a stronger
result.

 Goethite (FeOOH) is particularly interesting as the hardest mineral
in this table; limpets use goethite fibers (whiskers) to harden their
radula teeth, achieving tensile strengths of 3.0–6.5 GPa, several times
higher than Kevlar, any steel, or even spider silk, which is how
limpets can literally eat rocks; the elastic modulus measured 120 GPa.
Probably electrolytic deposition is not a useful way to grow whiskers,
much less protein/whisker nanocomposite metamaterials, but it’s
useful to have this approximation to goethite’s mechanical properties.

 Goethite is formed naturally through, among other processes, the
oxidation of siderite (FeCO₃), a process I suppose must swallow water
and throw off choke-damp and hydrogen. Ferrous ions tend to
oxidize to ferric in the atmosphere, and there seems to be no ferric
carbonate.

Firing the result

 If you heat the resulting accreted mineral, you may be able to
transform it into something more useful, but generally this will
involve the expulsion of some material (water, choke-damp, perhaps
hydrogen) and a reduction in volume, which can cause the shape to
crumble. Fillers as suggested above may be useful in keeping the
resulting stresses below cracking limits.

 Brucite (2.3446 g/cc, 58.3197 g/mol) decomposes to magnesia at
350° (periclase, Mohs 6, 3.6 g/cc, 40.304 g/mol) by the loss of a water
and, apparently, about 55% of its volume. Magnesia is not very strong
but is notable for not melting until 2852°, far exceeding wüstite
(1377°), sapphire (2072°) and even quicklime (2613°).

 Similar to brucite, aluminum hydroxide (gibbsite, 2.42 g/cc,
78.00 g/mol, Mohs 2.5–3) decomposes at 300° into poorly structured
alumina, which converts to α-alumina (sapphire, 3.987 g/cc,
101.960 g/mol) upon further heating, apparently losing 60.33% of the
original hydroxide’s volume. If it’s cementing together grains of
silica, you would expect the formation of aluminum silicates like
mullite at the sapphire-silica grain boundaries, and the silica might be
able to prevent the overall structure from crumbling from this
dramatic volume decrease, perhaps instead developing internal
porosity. (Silica has its own dunting problems, but they are much less
severe than the volume loss from dehydrating gibbsite.)

 Alternative fillers that might have less cracking problems include
sapphire, forsterite, mullite, larnite, phosphates such as those of
calcium and aluminum, and of course zirconia and other well-known
refractory materials.

Anode protection and solution
replenishment by digestion

 Perhaps you could put the anode (which ought to be something
inert, maybe lead or carbon) in a block of chalk or slaked lime, so that

https://royalsocietypublishing.org/doi/full/10.1098/rsif.2014.1326
https://en.wikipedia.org/wiki/Gibbsite

the acid formed at the anode harmlessly converts to calcium sulfate
rather than being released into the solution to attack the workpiece
being formed. (This is another advantage of the sulfate anion, aside
from its high solubility with most candidate cations.) However,
carbonic acid would attack the chalk and be neutralized by it. Other
anions like the chloride should instead liberate calcium ions from the
chalk to renew the solution, allowing the use of a smaller amount of
solution and lower solute concentrations, since the great mineral
reservoir is in the block of chalk. This process would also prevent the
anions from reaching the anode itself, where they could be oxidized
into undesired byproducts and erode the anode.

 Insoluble hydroxides and carbonates of other cations would also
work for this purpose. Of course, so would a sacrificial metal anode;
but perhaps smithsonite, magnesite, and siderite are cheaper than their
corresponding metals, and you can’t put calcium in water.

Alternative solvents

 Water has many nice features for electrolysis, particularly for this
purpose: it’s highly polar, relatively nontoxic, relatively stable at
commonplace temperatures and pressures, it provides hydroxyl ions
to the minerals being formed, and it will dissolve any water-soluble
products, which is desirable if you want the final product to withstand
contact with water. Still, many other polar solvents are known, and
one of them might be better for this purpose; polar solvents include
anhydrous ammonia, dimethyl sulfoxide, molten phosphoric acid,
acetonitrile, ethanol, ethyl acetate, sulfur dioxide, tetrahydrofuran,
nitromethane, dichloromethane, anhydrous formic acid, propylene
carbonate, acetone, hydrogen fluoride, anhydrous nitric acid,
anhydrous sulfuric acid, glacial acetic acid, formamide, molten salt
systems including low-temperature ionic liquids, deep eutectic
systems, and dinitrogen tetroxide, but there are many others.

 Some of these can contribute their own radicals to the substances
being formed through electrolysis; ammonia, for example, could
contribute amide and ammonium ions rather than hydroxyl ions, say
to precipitate struvite or metal amides like sodamide. I suspect that
molten phosphoric acid can dissolve many phosphates; for example,
perhaps you could dissolve magnesium ions or even frank
(tri)magnesium (di)phosphate in molten phosphoric acid, then
electrophoretically accumulate the magnesium anions at the cathode,
without reducing them to metallic magnesium? Phosphoric acid has
been used for 40 years as an electrolyte in phosphoric-acid fuel cells,
operating between 170° and 220°, but in that case it only has to carry
hydrogen, of which it is of course eminently capable. I don’t know
how to find out what else it can solvate.

 Propylene carbonate is another particularly promising solvent; it’s
commonly used as an electrolyte in primary lithium batteries, has a
stronger dipole moment and a wider liquid range than water (-48° to
242°), and, like phosphoric acid, is nontoxic and not inflammable.

Oh dude, what about aqueous phosphates?

 Phosphate has multiple protonation states very similar to carbonate,
with a similar effect on solubility.

https://en.wikipedia.org/wiki/Propylene_carbonate

 Acid (mono)calcium (dihydrogen) (di)phosphate dissolves
2 g/100 mℓ in water and melts at only 109°. By contrast, “dicalcium”
(hydrogen) (mono)phosphate, the mineral brushite (Mohs 2.5), is
100× less water-soluble, 0.02 g/100 mℓ, and tricalcium (di)phosphate,
the dehydrated version of hydroxyapatite, is less water-soluble still, at
0.00012 g/100 mℓ. Hydroxyapatite itself (Mohs 5) is perfectly
insoluble in water. So, if you have a saturated solution of
monocalcium phosphate, you ought to be able to get precipitation of
the more basic calcium phosphates around a cathode, where there’s
less phosphate and more calcium, as long as the region doesn’t get
phosphate-depleted by a factor of 100×. Perhaps more exciting, you
ought to be able to do this in molten monocalcium phosphate at very
accessible temperatures.

 5.18 micromoles per coulomb of dicalcium phosphate
(136.06 g/mol) is 0.705 mg per coulomb, and the density is only
2.929 g/cc, so under the conditions considered earlier (10 A over
100 cm²) we’d get 0.866 mm/hour at 100% Faraday efficiency, about
twice the growth rate of brucite. For brushite. Except probably
you’d end up converting most of it to TCP or hydroxyapatite, which
cuts the growth rate in half again.

 (Mono)magnesium (dihydrogen) (di)phosphate is not as friendly to
water, since it hydrolyzes into phosphoric acid and the insoluble
dimagnesium form, and I’m not sure about the aluminum salts.

Other polyprotic anions

 I don’t think there are corresponding opportunities with the
analogous ammonium/ammonia/amide and
sulfate/bisulfate/sulfuric-acid systems, at least not in water solution.
The sulfates of calcium, lead, strontium, and barium are reasonably
water-insoluble, but even calcium bisulfate doesn’t seem to exist at
all, except in homework-cheating websites and the catalogs of
fraudulent chemical merchants.

 The other polyprotic acids I’m familiar with are mostly similarly
unhelpful; nobody knows what hydrogenchromates would look like,
and hydrosulfide (“bisulfide”) and hydrogenoxalate (“bioxalate”) are
similar to bisulfate, with soluble sodium, potassium, and ammonium
compounds but no polyvalent cations. Potassium bioxalate is notable
as “salt of sorrel”; I’m not sure there’s a (di)potassium oxalate.

 I’m not sure about citrate, which is triprotic. The
magnesium/citrate system does at least have known trimagnesium
and (highly soluble) monomagnesium forms, but different sources
vary on whether the trimagnesium form is highly soluble or, like
tricalcium citrate, sparingly soluble. I also don’t know about
monocalcium and dicalcium citrate.

 Boric acid is triprotic but it’s hard to get it to react with things
other than itself and to form insoluble compounds; however, as with
silicates, there are nesoborates, soroborates (hypothetically),
cycloborates (hypothetically), inoborates, phylloborates, and
tektoborates. Boracite (Mohs 7–7.5, “very slowly soluble in water”)
is a tektoborate Mg₃B₇O₁₃Cl, which I guess is sort of like
trimagnesium heptaborate. The other known tektoborates are
chambersite (same thing but with manganese) and hilgardite (same

thing but with calcium (2½ borons per calcium) and a different crystal
structure). Why chlorine is always involved in these tektoborates is a
mystery to me (well, londonite and rhodizite lack it, but they’re
beryllium-based and may lack boron entirely). There’s a pure calcium
borate called nobleite (Mohs 3, 6 borons per calcium) which is a
phylloborate, and another called colemanite (Mohs 4.5, 3 borons per
calcium) which is an inoborate.

 I suspect the calcium borates might work for this: if the overall
electrolyte is mostly dilute boric acid with some anions to help keep
calcium dissolved (chloride or acetate, say) maybe the calcium
concentration around the cathode would get high enough to
precipitate insoluble calcium borates. But I’m just speculating,
lacking any real evidence that you could maintain an adequately
soluble calcium/borate electrolyte at any pH. Magnesium borates are
maybe more promising given their natural occurrence.

 It would be really interesting if you could solidify waterglass
electrolytically; maybe you could drive out those pesky alkali ions
that reduce its hardness and glass transition temperature so badly.
You’d be left with a silica gel rather than fused quartz, though. (See
below about Veeraraghavan et al., who seem to have had success.)

 There are about another 35 inorganic polyprotic oxoacids known
that might conceivably support the same kind of mineralization as
carbonic acid, but I mostly don’t know anything about them.

3-D printing stone by directing electric
fields

 The mineralization reaction, like any electrodeposition reaction,
can be limited by ion concentrations or by electric field strength. By
using a pointed anode, especially one that’s insulated except for the
tip, you can concentrate the electric field in a particular area and thus
accelerate the electrodeposition there. By varying the current
through several such anodes, you can vary the electric field spatially,
and possibly also the ion concentration; so by moving them around
you can perhaps deposit stone where you like. In the more immediate
vicinity of the anodes, however, you form acid, which will erode
hydroxide and carbonate minerals.

Demolding

 Suppose you electrolytically mineralize a thick sheet of hydroxide
or carbonate stone onto one surface of a metal sheet cathode which
has been bent into some sort of desirable shape. If you now reverse
the polarity of the electrolysis, acid should form at the surface of the
old cathode and attack the part of the stone that’s in direct contact
with it; in most cases, this will dissolve it, although there are
exceptions such as sulfate attacking calcium compounds or phosphate
attacking most things. Then you can remove the stone from the old
cathode easily. This could enable the use of such a metal sheet as a
reusable mold in a process similar to pottery slipcasting, making many
stone copies of the same metal form.

 The anodic dissolution process will tend to attack the form, but it’s
probably possible to get a long form life anyway with metals that are

https://en.wikipedia.org/wiki/Oxyacid

fairly resistant to that kind of attack, like lead, chromium, gold, or
platinum. And it may not be a very serious problem, since the stone
will quickly neutralize the acid thus generated.

Previous work

 Sometimes a month in the lab can save you an hour in the library.
What does the library have to say about this stuff?

Deng et al.
 Deng et al. report Faraday efficiencies of 50% to 76.5% in
electrolytic precipitation of 99.6% pure magnesium hydroxide with a
100cm² graphite anode 4 cm from a stainless cathode of the same size,
with a room-temperature electrolyte of 100 g of magnesium chloride
hexahydrate dissolved in 2 ℓ of deionized water and <1% Na⁺,
running 40 mA/cm² (thus 4 A) for 4 h. They report the best
efficiency at 0.5mol/ℓ Mg⁺⁺. This paper tells me exactly what I
wanted to know on the first page (the reproducible setup for their
experiment and their major results); the only missing information is
the voltage.

 The paper then goes on to explain what factors they found affect
Faraday efficiency: low magnesium concentrations lower Faraday
efficiency; current densities below 40 mA/cm² also lower Faraday
efficiency (above which it’s basically constant, though they only tried
up to 70 mA/cm², i.e., 7 A/dm² or 700 A/m²), which is the opposite
of what I expected; so do interelectrode distances under 4 cm because
they allow the MgCl₂ to recombine; so do Na⁺ concentrations under
1% (because they increase electrolyte resistance) or of 3% or over (for
obvious reasons), dropping Faraday efficiency from 70.5% at 1% Na⁺
down to 65% at 10% Na⁺. They don’t say whether that’s weight
percentage or mole percentage, or whether the denominator is the
salt, the cations, or the solution.

 The brucite precipitated was in the form of 40–200 nm
nanoparticles, so it must have been a royal pain in the ass to filter out.

 My only complaint is that I would have liked to see some numbers
from particular runs, though, including the actual measured mass of
the dried magnesium hydroxide rather than the calculated Coulomb
efficiency.

 At 76.5% faradaic efficiency they’d be getting 36.9 kilocoulombs
per mole of brucite (2.3446 g/cc, 58.3197 g/mol), thus 1.58 mg/C and
0.674 μℓ/C, or the other way around, 1.48 MC/ℓ or 633 kC/kg. If
we suppose that they were using 3 V, which has to be in the ballpark,
then that’s 4–5 MJ/ℓ or about 2 MJ/kg. At a nominal price of
4¢/kWh (11 nanodollars per joule, typical for wholesale power,
though solar has brought this down by a factor of 4 for new projects
in much of the world) this is about 2¢/kg, which is cheaper than
construction sand and enormously cheaper than portland cement. Of
course that doesn’t include the cost of getting hold of bittern, much
less purified magnesium salts.

Sano, Hao, and Kuwahara

 Sano, Hao, and Kuwahara report efficient electrolytic extraction of
magnesium from seawater as 99% pure magnesium hydroxide by

https://www.atlantis-press.com/article/25837650.pdf
https://www.sciencedirect.com/science/article/pii/S2405844018320735

using a cation exchange membrane and “deaerating” the seawater first
(either by boiling or by acidifying) in order to remove the
choke-damp and thus avoid precipitating chalk. Their objective
seems to have been to get magnesium as a structural metal or battery
electrode. They ran a solution of 5% sal mirabilis through their
“anode channel” (they didn’t want to use a chloride salt to avoid
chlorine production) and used platinum-plated titanium electrodes.

 If they bothered to say anything about the material properties of
the brucite thus formed, or the currents, voltages, current densities, or
electrode spacings they used, I must have missed it.

Johra et al.
 Johra et al. tested some seacrete; they produced some at
0.8 cm/year with 2.5 V in 25°–31° seawater off Thailand, and tested
some more that was accidentally produced by parasitic currents
around the Italy–Greece 400 kV submarine power transmission cable,
which had more magnesium and was consequently software. They
report that brucite deposits from seawater when the pH locally
reaches 9.2, and confirm my inference above that brucite is weaker
than calcite. The paper contains the following text apparently
plagiarized from http://www.globalcoral.org/faq/ (identical
matching text italicized):
Regarding the CO₂ budget of the calcium carbonate precipitation, one could
intuitively think that since limestone deposition is removing dissolved inorganic carbon
from the ocean, this should be compensated by absorption of atmospheric CO₂ into the
ocean. However, the opposite phenomenon occurs. This can be explained by the
fact that there is actually much more dissolved inorganic carbon in the ocean (in the form of
bicarbonate ion HCO₃̄) than there is CO₂ in the atmosphere. Consequently, the
predominant reaction for the precipitation o [sic] calcium carbonate is as follows:

Ca⁺⁺ + 2HCO₃ = CaCO₃ + H₂O + CO₂
 Therefore, for every two molecules of bicarbonate precipitated as limestone in the
ocean, one molecule of CO₂ is released into the atmosphere. On the geological time
scale, this is the major source of atmospheric CO₂ along with volcanic activity 9. More
information about Seacrete and materials formed by electrodeposition of minerals
in seawater can be found in the publications of Goreau [9,10].

 The corresponding text on the Global Coral Reef Alliance site says
(again, with identical matching text italicized):
It seems intuitively obvious that since limestone deposition is removing dissolved
inorganic carbon from the ocean, that this should be compensated by one molecule of
atmospheric CO2 [sic] dissolving in the ocean, but in fact the opposite happens.
 The reason is that there is much more dissolved inorganic carbon in the ocean, in the
form of bicarbonate ion, than there is CO2 [sic] in the atmosphere, and the ocean is a pH
buffered system due to dissolution of limestone sediments and also acid base
reactions [sic] involving weathering of oceanic basalts to clay minerals. So the
predominant reaction is:
 Ca++ + 2HCO3- = CaCO3 + H2O + CO2 [sic]
 That is to say, in order to preserve pH and charge balance, for each molecule of
bicarbonate precipitated as limestone in the ocean, one molecule is released as CO2 [sic] to
the atmosphere. On a geological time scale, this is the major source of atmospheric
CO2 [sic] along with volcanic* gases.

 Note that the text that isn’t copied verbatim is only a slight
paraphrase.

 This text has been on the Global Coral Reef Alliance website since
at least 02014-05-05, so it’s clear they didn’t plagiarize it from this
02021 paper, though it’s possible that the authors of the paper are the

https://www.sciencedirect.com/science/article/pii/S0950061820330294
http://www.globalcoral.org/faq/
https://www.youtube.com/watch?v=auyCK8-DMP0
https://web.archive.org/web/20140712191745/http://www.globalcoral.org/faq/#sink

Global Coral Reef Alliance, in which case no plagiarism would be
involved; or that both plagiarized the text from some third source,
such as the Goreau papers cited.

 However, the paper is not listed in
http://www.globalcoral.org/gcra-papers/, and the authors of those
papers are Thomas Goreau (husband of Dra. Nora Isabel Arango de
Urriola y Goreau, who died in 02016), Verena Vogler, Raymond
Hayes, Ernest Williams, Charles Mazel, Paul Andre DeGeorges, R.
Grantham, H. Faure, T. Greenland, N.A. Morner, J. Pernetta, B.
Salvat, V.R. Potter, Paulus Prong, Munandar, Mahendra,
Muhammad Rizal, Chair Rani, Ahmad Faizal, and herrzoox, who
Johra et al. fail to list as co-authors. Of these I think Thomas
Goreau, herrzoox, and maybe Paul Andre DeGeorges are actually
part of GCRA, and Wolf Hilbertz and Dra. Arango de Urriola were
also involved. Goreau seems to have predeceased his wife, but they
had a son also named Tom, and there seem to be new papers by
“Thomas Goreau” from 02020, so there may be two Thomas Goreaus
publishing on this topic.

 One of the Goreau papers is open access under CC-BY, and
doesn’t contain this text, being mostly a catalog of ways people have
screwed up their seacrete experiments, up to and including
connecting the cables backwards!

 Their apparent plagiarism aside, Johra et al. report that their
low-voltage seacrete was 80.8% aragonite, 18.9% brucite, and 0.3%
calcite, while the high-voltage seacrete was 52.3% brucite. They also
detected significant amounts of silicon, aluminum, strontium, iron,
chlorine, and sulfur in the seacrete samples. They report
2499.2 kg/m³ (σ=9.1 kg/m³) for the low-voltage seacrete and
1771 kg/m³ (σ=17.4 kg/m³) for the high-voltage seacrete due to
higher porosity. Disappointingly, they measured the compressive
strength of only the high-voltage seacrete (16.8 MPa), though they
did some imprecise improvised tests that suggest that the low-voltage
seacrete should be in the neighborhood of 25 MPa.

Alamdari et al.
 Alamdari et al. report that magnesium goes from 1272 ppm in
seawater to 30,000 ppm in the “end bitterns of NaCl production units
from seawater”, and they precipitated brucite from that bittern using
lye.

Veeraraghavan, Haran, Slavkov, et al.
 These researchers succeeded at electrodepositing sodium silicate on
galvanized steel for corrosion resistance in 02003, and they mention
that Speers and Cahoon had success with “anodic deposition at high
voltages” (E. A. Speers and J. R. Cahoon, J. Electrochem. Soc.,
145, 1812 (1998)):
Speers and Cahoon report the deposition of Si from alkaline silicate electrolytes by
anodizing Al at 350 V. However, this process is limited to Al or similar metals
which have stable anodic oxide films and also involves application of large
potentials. Recently, Chigane et al. reported formation of silica thin films on
copper substrates through cathodic electrolysis of pH 3.3 ammonium
hexafluorosilicate solution. In acid solutions, fluoride ions help keep the silica
stable in solution. In the absence of fluoride ions, the bath becomes unstable and
precipitates as Si(OH)₄. However, high pH and presence of fluoride ions limits the

http://www.globalcoral.org/gcra-papers/
http://www.globalcoral.org/gcra-papers/
http://www.globalcoral.org/memoriam-dr-nora-goreau-april-25-1921-december-18-2016/
http://www.globalcoral.org/memoriam-dr-nora-goreau-april-25-1921-december-18-2016/
https://www.scirp.org/journal/paperinformation.aspx?paperid=48444
https://www.researchgate.net/publication/244400927_Kinetics_of_magnesium_hydroxide_precipitation_from_sea_bittern
https://en.wikipedia.org/wiki/Bittern_(salt)
https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1170&context=eche_facpub
https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1170&context=eche_facpub

process developed by Chigane et al. to metals capable of withstanding corrosive
environments. Further, the deposits obtained by them were highly porous and
hence not suitable as a protective coating.

 I’m not sure that what precipitates is orthosilicic acid rather than
frank silica, but whatever.

 Veeraraghavan et al. were using a 3.22 SiO₂:Na₂O mole ratio
solution for their electrodeposition, which I think is similar to the
bottle I have here, and platinum-niobium anodes, and apparently they
electrodeposited zinc onto their workpieces themselves before
beginning the silicate deposition. Initially they diluted the waterglass
to 5.6 wt% sodium silicate, pH 10.5, and electrodeposited with a
potentiostat† at 12 V for 15' at 75°, and I guess they finally got a
1μm-thick silicate layer of zinc silicate followed by silica and
pyrosilicate (Si₂O₇). They report that at room temperature no silicate
formed, but further heating to 85° gave highly porous deposits but no
faster deposition.

 (For my purposes, the higher porosity would be desirable, but their
objective was to replace chromate conversion coatings for metal
protection, not grow rocks in a tank, and by that measure they
achieved an order of magnitude better performance, for which the
porosity was undesirable.)

 They were definitely depositing on the cathodes, not the anodes;
they say, “The silicate deposition was carried out in a two-electrode
plating cell made of glass with Pt-niobium anodes. Zinc-plated steel
panels (EZG-60G) of surface area 116 cm² each side, as-received from
ACT labs[,] were used as the cathodes.” They contrast their process
with the anodic deposition process of Speers and Cahoon:
Under an applied potential, before Si anions can be electrochemically reduced on
the surface of Zn, all the solvent water will be electrolyzed. The soluble silicate is a
complex mixture of silicate anions. Hence it can be expected that under large
applied electric fields, the negatively charged silicate species migrate to the anode
and are deposited. Speers and Cahoon report that the thickness of the silicate layer
formed using such method is limited only by the time of anodic deposition. They
report thickness up to 100 μm for 20 min of deposition. ... Note that the silicate
layer is not more than 1 μm thick. Unlike anodic silicate deposition, the deposits
are very thin 1–3 μm. The maximum thickness seems to be limited to 3 μm. These
results indicate that the mechanism of cathodic Si deposition in our case is more
complex than was previously reported.

 They report that drying the layer at 100° instead of room
temperature made it 0.69—2 orders of magnitude more resistive,
presumably by affecting the structure of the silica layer, and they
show that drying at 175° or 200° made the layer much less full of
cracks, and it retained corrosion resistance better afterwards.

 They explain the electrodeposition through an increase in
hydroxyls and thus pH around the cathode, which increases the
polymerization of the silicate and thus decreases its solubility. Weird
thing about that, waterglass usually precipitates with decreasing pH,
but maybe that’s because normally you’re adding Na⁺ or K⁺ ions to
the solution to increase the pH, and in this case they’re adding Zn⁺⁺
ions, or rather bizincate ZnO(OH)⁻ ions.

 If I had to criticize something about this paper, it would be that
they don’t mention anything about stirring, turbulence, anode size,
electrode distances, or the nature of the surface of their anode, which
could be important considerations to reproducing their results. Also,

they only analyzed the surface film with EDAX, which can show the
concentration of Zn, Si, Fe, and other such heavy elements, but is
useless for light elements like Na and O (their EDAX results for these
oxide coatings include an obviously spurious “0.00 wt%” oxygen
entry, and don’t mention sodium at all). But, from my point of view,
the sodium content of these protective films is one of the most
important questions, even for their declared objective of corrosion
resistance: the lower it is, the better the films will resist years-long
immersion in water. Presumably a Keim-like treatment with
alkaline-earth cations would help, but whether it’s necessary is clearly
an important question for the wide deployment of their process.

 † A “potentiostat” is usually the chemist’s name for a voltage
regulator. The main difference is that they cost US$3000. There are
also three-electrode potentiostats that use a third reference electrode
to keep the working electrode (the cathode in this case) at a fixed
voltage relative to the electrolyte, but Veeraraghavan et al. don’t
mention such a reference electrode and specifically say their “plating
cell” was “two-electrode”, so I think they were just using a 12-volt
voltage regulator.

Harman 01924

 R.W. Harman wrote an article in 01924 about reducing the
alkalinity of sodium silicate solutions by a method quite similar to the
chlor-alkali process, but starting from sodium metasilicate rather than
salt. They comment that silica precipitation on the anode was a
problem at high current densities:
The second method[,] of increasing the C.D. considerably hastens the removal of
the alkali and gave good results; but it has its limitations in the fact that, above a
certain limit, increase of C.D. causes separation of solid silica on the platinum
anode. This limiting C.D., above which silica separates on the anode, varies not
only with the dilution but also markedly with the ratio. The more concentrated
the silicate solution and the greater the proportion of silica in the ratio, the lower
must be the limiting C.D.

 They give the sodium/silicon ratios as “gram-equivalent” ratios of
sodia and silica, and concentrations as “weight normality” numbers N
w which I think are sodium ion molarities:

Throughout the whole of this work, the different silicates and mixtures will be
designated by the ratio Na₂O:SiO₂ in equivalent proportions, this being the
simplest and most convenient system of nomenclature and one already finding
general and serviceable use in industry. Thus a ratio of 1:2 contains one equivalent
of Na₂O in grams to two equivalents of SiO₂.
 All concentrations, except where otherwise stated, are expressed in weight
normality (Nw) with regard to their sodium content, i.e. in gram-equivalents of
sodium per 1000 grams of water. Thus, a 1 Nw solution of ratio 1:4 contains
½(Na₂O·4SiO₂) expressed in grams, in 1000 grams of water.

 WP explains:
By this definition, the number of equivalents of a given ion in a solution is equal to
the number of moles of that ion multiplied by its valence. If 1 mol of NaCl and 1
mol of CaCl₂ dissolve in a solution, there is 1 equiv Na, 2 equiv Ca, and 3 equiv Cl
in that solution. (The valency of calcium is 2, so for that ion 1 mole is 2
equivalents.)

 Given the above definition, I’m not totally sure but I guess a mole
of SiO₂ would be “two equivalents”. The problem is that SiO₂ isn’t
an ion! But we see that Harman considers Na₂O·4SiO₂ to be “1:4”.

 So, given all that, we have Harman’s account of what

https://pubs.acs.org/doi/10.1021/j150255a014
https://en.wikipedia.org/wiki/Equivalent_(chemistry)

circumstances were necessary for rapid mineralization on his
rotating-platinum-disc anode:
With a 2Nw [2 mol/ℓ Na⁺] solution of ratio 1:1 [Na₂O·SiO₂] or 1:2 [Na₂O·2SiO₂]
a C.D. of 0.044 amps per sq. cm. scarcely diminishes the alkalinity of the solution;
a C.D. of 0.15 amps per sq. cm. diminishes the alkalinity quite rapidly but yet does
[not?] cause separation of solid silica.

 The “not” here is missing from the published paper, but the
sentence structure (as well as a paragraph I will quote later) seems to
strongly suggest that it should be there, and the numerous
typographical inconsistencies and errors also suggest that such an error
is eminently possible, which unfortunately completely changes its
meaning.

 Harman continues:
With ratio 1:4 [Na₂O·4SiO₂] a 3Nw solution gave a very thick deposit of silica
with a C.D. of 0.11 amps per sq.cm. A 2Nw solution with a C.D. of 0.11 also gave
a thick deposit[,] but with a C.D. of 0.044 amps per sq.cm., although silica was
deposited on the anode, at the end of 4 hours the solution on analysis was found to
be 0.8Nw and its ratio was 1:5.2 [Na₂O·5.2SiO₂]. This solution was very opalescent
and after two days set to a gel and later on exhibited synaeresis. A 0.5 Nw solution
of ratio 1:4 with a C.D. of 0.13 amps per sq. cm. also deposited silica, but at the
end of 10 hours, during which time the C.D. gradually fell [I guess they weren’t
using a galvanostat], the resulting solution was found to be 0.08 Nw, with a ratio of
1:40 [Na₂O·40SiO₂!!]. This dilute solution showed no signs of gel formation.
 Thus with ratio 1:1 a 2Nw, solution may be electrolysed with a C.D. of 0.15
amps per sq. cm. but with ratio 1:4 a 1Nw solution gives a deposit with as low a
C.D. as 0.044. It has been found possible by this means to prepare 2 Nw solutions
of ratios 1:2, 1Nw 1:3, and 1:4. Higher ratios than these set to a gel, viz., 1:5 above
0.1Nw, but in very dilute solutions the removal of alkali can proceed until the
solution is practically one of pure silicic acid.

 It seems that they consider anodic deposition something to be
avoided (perhaps since the silica deposit robs the solution of silica,
while the objective of the procedure is to increase the
silica-to-sodium ratio), but they considered the 1:1 2Nw 0.15A/cm²
result to be acceptable. This reinforces my inference that the “not” I
inserted above should be there.

 Unfortunately the deposits are only ever described in qualitative
terms, as “thick” or “very thick”. I’d really like to know whether
“thick” means 10μm and electrically insulating, 100 μm, 1 mm, or
10 mm. WHAT DID YOU SEE, HARMAN?

 But Harman’s main concern here was measuring the conductivity
of the solutions, not electrolyzing them.

Weird metals

 Aerographite can be 180 g/m³ (180 μg/cc, six times lighter than air)
and 1 kPa UTS, soaring in strength to 160 kPa at 8500 μg/cc. The
fabrication process involves CVD of graphite at 760° onto a template
of ZnO (m.p. 1974°), which is then etched away with H₂, since zinc
boils at only 907°.

 Zinc is very similar to magnesium (b.p. 1091°) in many ways, but
electrodepositing zinc in aqueous solution is feasible, while for
magnesium you need to use molten salt. After selectively
electrodepositing zinc microwires, you could change chemistry to
electrodeposit zinc hydroxide (3.053 g/cc, 99.424 g/mol, amphoteric,
soluble in aqueous ammonia) in the same way described above for

https://en.wikipedia.org/wiki/Aerographite

brucite, then calcine it to ZnO at 125° with a loss of more than half its
volume (5.606 g/cc, 81.406 g/mol, and thus 69 mol/ℓ to the
hydroxide’s 30.7). Then, you can use it as a template for CVD or
PVD (of carbon or anything else that can withstand 907°) and
hydrogen-etch away the ZnO.

Topics

• Materials (p. 1138) (59 notes)
• Electrolysis (p. 1158) (18 notes)
• 3-D printing (p. 1160) (17 notes)
• Filled systems (p. 1161) (16 notes)
• Phosphates (p. 1184) (9 notes)
• Composites (p. 1187) (9 notes)
• Magnesium (p. 1213) (6 notes)
• Aluminum foil (p. 1237) (5 notes)
• Solubility (p. 1273) (3 notes)

Patterning metal surfaces by
coating decomposition with lasers
or plasma?
Kragen Javier Sitaker, 02021-09-03 (updated 02021-12-30)
(7 minutes)

 Normally you need high-power lasers (kilowatts) to mark metal.
One alternative is to lay down a layer of resist (for example, black
electrical tape, or permanent marker) and use a small laser (tens of
watts) to burn off the resist, then etch the metal electrolytically, with
acid, or with reactive ions.

 It occurred to me that when you’re burning a layer of resist off the
metal, you’re also producing reactive ions, and maybe those could
etch the metal directly if the “resist” were chosen for that purpose.
This is different from normal reactive ion etching, where you first lay
down a layer of real resist, and then later put the resist-patterned
workpiece into a vacuum chamber that you fill uniformly with a
plasma; in this technique, the “resist” is the plasma, after you blast it
with the laser, so you can do the whole thing at atmospheric pressure.
This saves you the trouble of running corrosive byproduct gases
through your vacuum pump.

 For example, nickel (tetra)carbonyl boils at 43°, and maybe you
could form it by heating an oxalate or formate salt on a nickel surface;
disodium oxalate, for example, decomposes at 290°, releasing carbon
monoxide. Similarly, iron (penta)carbonyl boils at 103°. (To make
iron carbonyl, sulfur is used as a catalyst and the process is normally
carried out at 5-30 MPa.) Carbonyl complexes are also known of
molybdenum, chromium, manganese, cobalt, titanium, ruthenium,
rhodium, osmium, iridium, platinum, tungsten, and vanadium, not to
mention many more reactive metals, so perhaps they could be etched
in the same way, but it might not be possible for all of them; it might
be easiest for nickel, followed by iron and rhenium. Doing the whole
process under a liquid solvent capable of dissolving the carbonyl
complex, such as glacial acetic acid, acetone, or carbon tetrachloride,
would likely help with increasing the pressure (and thus the
equilibrium carbonyl-complex concentration), controlling the
temperature, and reducing hazardous carbonyl emissions.

 Carbonyls also decompose under heating to deposit the metal, and
so if you were to laser-heat points on a surface in a metal carbonyl
atmosphere, you could selectively deposit the metal. (Historically this
chemical-vapor deposition process was used for nonselective nickel
plating, but abandoned for reasons of toxicity.) Many other chemical
vapor deposition processes could be selectively applied in the same
way by localized laser heating. This is called laser chemical vapor
deposition, and of course electron-beam-induced deposition is a
higher-resolution vacuum variant of the same technique.

 Alternatives to the ridiculously toxic carbonyls might include
seriously toxic organometallic complexes like tetraethyllead (boils at
85°), diethylzinc (boils at 117°, pyrophoric), or triethylaluminum

(boils at 128°, hypergolic with liquid oxygen.) In the particular case of
etching aluminum, chloride salts such as ammonium chloride
(reversibly decomposes at 337.6°) could perhaps be used to produce
aluminum trichloride (sublimes at 180°). If cupric chloride (melts at
498°, decomposes at 993°) were the chloride salt, you might be able
to deposit some metallic copper at the same time as etching the
aluminum.

 Either for etching or for deposition, you could probably use other
CVD feedstocks like tungsten hexafluoride; silane (pyrophoric gas at
room temperature), trichlorosilane, or TEOS; ammonia (e.g., for
depositing silicon nitride); germane; ferrocene (forms from hot
cyclopentadiene reacting with iron pipes, boils at 249°); uranium
hexafluoride; uranocene; nickelocene (formerly used to prepare
nickel films); cobaltocene (sublimes at 171°); cyclopentadienylcobalt
dicarbonyl (boils at 140°); pentachlorides of molybdenum, tantalum,
and titanium; methane; etc.

 If you can start by cooling the substrate metal to cryogenic
temperatures, you might be able to use “resists” that are unstable or
evaporate at higher temperatures. Fluorine, for example, boils at
-188.11° at one atmosphere, and somewhat more practical cryogenic
temperatures at higher pressures, and so if you cool your substrate
enough, you can bathe it in liquid fluorine which you then encourage
to etch it with local laser heating. A liquid “resist” would have the
earlier-mentioned advantage of producing higher pressure through
confinement, thus making it much easier to produce large complexes
containing low-boiling substances like tungsten hexafluoride, and also
permit repeated etching of the same spot.

 At higher temperatures, such as room temperature, you ought to be
able to use other liquids that are fairly inert until heated with lasers.
Gasoline or mineral oil, for example, could serve as a source of
hydrogen for etching carbon, silicon, or glass, while perfluorohexane
or hexafluorobenzene could serve as a source of fluorine for etching,
say, tungsten or glass. And of course there are all kinds of metal/acid
combinations that etch not at all or very slowly at STP, but which, at
high temperature and pressure, or when a surface film is disrupted,
etch very rapidly.

 There are a surprising number of very stable materials that have
low-boiling hydrides, silicon and carbon of course being the most
conspicuous, but boron also does. Virtually any acid “resist” could
contribute protons to facilitate such etching, but phosphoric acid
seems like one of the most promising alternatives due to its high
boiling point (over 800°) and willingness to part with its hydrogens.
At lower temperatures ammonium compounds might be a promising
alternative.

 Arcs, as in electric discharge machining, are another possible way of
inducing localized high temperatures and pressures at chosen points
on the surface of a workpiece, and so could also serve either to
promote the deposition or the destruction of solid material at the
surface of a workpiece.

 Traditional reactive ion etching feedstocks like sulfur hexafluoride
and carbon tetrafluoride would also be viable candidates for
producing the reactive ions on the surface of the workpiece, but

heavier perfluorocarbons like perfluoropentane, or sometimes even
carbon tetrachloride, would probably work better, both because by
virtue of being a liquid at room temperature, they have several
hundred times more fluorine atoms close to the surface, and because
of the increased pressure as mentioned above. Gases like carbon
tetrafluoride dissolved in some kind of solvent might also work better
than just gases.

 Glow-discharge plasmas are another possible way to supply reactive
ions. By moving one or many sharp-pointed electrodes around close
to a workpiece, you could selectively apply the reactive ions to certain
parts of it; this is routinely done with air for “activating” surfaces
with nonthermal plasmas, including even biological tissues, but of
course other gases would have different effects. The reactive ions will
tend to attack the sharp point as well, so it either needs to be inert to
the ions, or consumable like a mechanical-pencil lead.

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Patterning (p. 1282) (3 notes)
• Toxicology (p. 1316) (2 notes)
• Plasma (p. 1339) (2 notes)

Rock-wool-filled composites
Kragen Javier Sitaker, 02021-09-03 (updated 02021-12-30)
(2 minutes)

 I’ve been thinking about using rock wool as a cheap fibrous
reinforcing filler, but it’s difficult to find information about its
strength. A study in 01996 by Cáceres, García Hernández, and
Rincón tested some rock wool fibers they’d made in their laboratory
from Canary Islands basalt, using what seems to have been a sort of
10,000-rpm graphite cotton-candy machine they didn’t include a
drawing of, getting 639 and 717 MPa, with Young’s modulus of 89
and 86 gigapascals.

 I don’t know if this is comparable to the strength of commercial
rockwool, but it’s a few times higher than mild steel (A36 is 250 MPa)
and a few times lower than Spectra (2500-3500), basalt fiber (4840),
or S-glass (4710), and much higher than polypropylene (12-43),
PMMA (72), or HDPE (26-33). They remark that it’s lower than
other people report for basalt fibers, but point out that frictions
among the fibers in the wool would be expected to provoke surface
defects and breakage.

 The Young’s modulus they report is higher than concrete (30 GPa),
bone (14), wood (9-12), plastics (0.228-3.5), magnesium alloy (45.2) or
pure aluminum (68); similar to tooth enamel (83), Kevlar (70-112),
carborundum (90-137), or stinging nettle fiber (87); and lower than
brass (106), bronze (112), copper (110), titanium (116), or A36 steel
(200).

 A few different papers report that incorporating rock wool into
plastics weakens them; for example, Aykanat and Ermeydan, which
incorrectly claims that PLA biodegrades in 2-4 weeks, and didn’t use
any coupling agents. Also they seem to have gotten a lot of porosity
in their PLA.

Topics

• Filled systems (p. 1161) (16 notes)
• Strength of materials (p. 1164) (13 notes)
• Composites (p. 1187) (9 notes)
• Poly(lactic acid) (PLA) (p. 1281) (3 notes)

https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/download/530/578
https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/download/530/578
https://en.wikipedia.org/wiki/Ultimate_tensile_strength
https://en.wikipedia.org/wiki/Young's_modulus
http://jise.btu.edu.tr/en/download/article-file/1069323

Weighing balance design
Kragen Javier Sitaker, 02021-09-06 (updated 02021-12-30)
(9 minutes)

 You can get these US$6 scales that use a load cell to measure
weights of up to 500 g with 0.1 g precision, and they work
surprisingly well. Similar scales with 0.01 g precision are available, but
everyone seems to be out of stock. But for things like food coloring
or agar, 0.1 g precision is really not good enough even for making
things; and for evaluating the results of things like my waterglass
foam tests, it requires unreasonably large samples to get good
precision.

 A simple balance design to solve this problem is an unequal beam.
You put a weight of, say, 400 g on the pan of the balance, and you tie
a heavy wire or chain to the top of the weight and loop it over a
notch in a horizontal beam. A centimeter away on the bottom side of
the beam, there’s a fulcrum notch that rests on a knife edge; ten
centimeters past that, there’s another notch in the top, from which a
sample pan is hung. Each gram added to the sample pan pulls up on
the 400 g weight with a force of the weight of 10 g, so now you can
weigh 50 g with 0.01 g precision.

 The principle here is similar to the principle of a bismar balance, in
that the balance arms are unequal, but instead of measuring the point
along the beam where the center of gravity is located, we’re directly
measuring the force induced on one end of the lever by an unknown
force on the other end. It’s more similar to the Roman-steelyard type
of balance commonly used in doctors’ offices. Since we are not
moving the fulcrum, the moments exerted by the unknown mass
distribution of the beam remain constant and are tared out
automatically; and the inaccuracy of the position of the fulcrum can
be calibrated out by calibrating the apparatus with known weights,
and it will not move thereafter. Moreover, the movement of the
apparatus during weighing is very small (perhaps 100 microns), greatly
reducing the the importance of factors like the shifting distribution of
the weight of the balance arm itself, the imperfect sharpness of the
fulcrum inducing a change in effective fulcrum due to changing beam
orientation, or static friction from bearings at pivot points. None of
these advantages are shared by the steelyard in practice.

 This design inherently limits the force on the delicate load cell;
once the force applied is large enough to lift the 400-gram
counterweight entirely off the electronic scale’s weighing pan, the
system goes nonlinear and no further force is applied to the load cell.

 Of course after you build the thing you have to measure the
leverage multiplier; calibrating to a given multiplier is easy to do in
software if you have a way of getting the scale readings digitally.

 A second stage of leverage could add another factor of 10 or so,
allowing you to, say, measure weighs up to 5 g with 1-milligram
precision.xs

 Varying local gravitational fields can still introduce errors of ±0.5%,
as with any load-cell weighing scale.

http://www.topoi.org/wp-content/uploads/2017/06/etopoi_sp6_büttner-renn-1.pdf
http://www.topoi.org/wp-content/uploads/2017/06/etopoi_sp6_büttner-renn-1.pdf

 It occurred to me that maybe strain-gauge load cells are not the
best way to measure mass, not only for that reason, but also because
ultimately your measurement of the load cell is an analog voltage, and
those are hard to measure with any precision. Microchip app note
AN3183 goes into some of the issues involved, using a differential
amplifier to cancel things like unknown errors in the power supply
voltage; it mentions additional sources of error including
manufacturing imperfections, aging, ambient temperature, heating by
the excitation voltage, nonlinearity in the resistance change,
hysteresis, creep, and noise on the low-level output signal. The cheap
scales I mentioned earlier cancel some of these sources of error in part
by powering off at random times and retaring when you turn them
back on, which is extremely inconvenient if you had tared something
like a sample boat. Microchip’s appnote strongly recommends using
multiple different temperature sensors (which, conveniently, they sell)
and correcting temperature-induced errors in software.

 Nonlinearity and hysteresis in their sample load cell are ±0.05% of
full scale, but creep is ±0.05% per five minutes, and the temperature
effect on the zero point is ±2%/°, which means that if the scale
changes temperature by 20° during operation, its zero could drift by
40% of full scale; you wouldn’t even get one significant figure of
precision, much less the 3½ sig figs the other sources of error suggest
(and that the cheap scales mentioned earlier seem to deliver).

 It occurred to me that if you could convert the mass into a time
measurement rather than a voltage, maybe you could avoid some of
these problems; quartz crystal oscillators for wristwatches are
commonly accurate to 4½ significant figures. In simple harmonic
motion the angular frequency is sqrt(k/m), where k is the spring
constant, so if you calibrate to a fixed k, then you can square the
measured period to get a measurement of the mass. A small error in
the period will result in an error twice as large in the estimated mass;
so if the period is wrong by 0.001%, the mass will be wrong by
0.002%.

 This approach has the advantage of being immune to variation in
local gravitational force (unlike ordinary types of spring scales),
although it might suffer from creep and aging in your spring. I think
common spring steels are pretty stable, though, and their spring
constant isn’t temperature-dependent by anything close to 2%/°.

 The physical size of the oscillations in question could be very small
indeed. Ideally you’d like them to be fast enough that you can
measure them quickly, and you’d like to maintain a high Q for the
physical sprung-mass oscillation. If the whole sample pan with the
sample weighs 60 g, for sqrt(k/m) to be 10 kiloradians/s, the spring
constant must be 6 MN/m, which is 6 N/micron, about 10 times the
weight of the 60 g per micron; so to maintain the acceleration below
that of gravity (probably necessary to treat the sample mass as a lump
rather than separate particles interacting nonlinearly) we would need
to maintain the displacement below 100 nm.

 Such small displacements are challenging to detect accurately, even
though we don’t have to measure their amplitude; but a few microns
would be fairly easy. If the spring constant is only 600 N/m, then
sqrt(k/m) is 100 radians/second, and the displacement under the 60 g

http://ww1.microchip.com/downloads/en/Appnotes/DS00003183A.pdf
http://ww1.microchip.com/downloads/en/Appnotes/DS00003183A.pdf

weight is only 0.98 mm.

 I suspect that suspending the whole resonating mechanical system
with high compliance (or even locally zero rigidity by canceling
negative rigidity with positive rigidity) would be adequate to get high
Q. Without high Q your measured frequency will be subject to a lot
of error.

 You might have to measure six degrees of freedom between the
two masses in the resonating part of the scale; trying to restrain
unwanted vibrational modes with sliding-contact mechanisms would
surely introduce far too much friction to get good Q. Modern flexure
design techniques might allow you to restrain them in a friction-free
fashion and with adequate linearity.

 If, instead of getting the restoring force for resonance from a spring,
you got it from gravity, you’d have a sort of pendulum-clock scale.
(Reversing the usual situation, this kind of pendulum scale would be
subject to errors from local gravitational acceleration, while its
spring-based sibling described above is not.) By adding mass to the
pendulum, you can increase or decrease its effective length.
However, pendulum frequency is inversely proportional to the square
root of length (and directly proportional to the square root of
gravity), and a meter-long pendulum has a period of close to two
seconds (about 2.006 seconds), so a 100-Hz pendulum would have to
have an effective length of 25 microns, a scale at which gravity and
even mass are comparatively unimportant compared to effects like air
resistance and surface adhesion. So I think probably that is not a good
design direction.

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Mechanical (p. 1159) (17 notes)
• Ghettobotics (p. 1169) (12 notes)
• Bootstrapping (p. 1171) (12 notes)
• Precision (p. 1183) (9 notes)
• Metrology (p. 1212) (6 notes)
• Weighing (p. 1267) (3 notes)

Fast-slicing ECM
Kragen Javier Sitaker, 02021-09-08 (updated 02021-12-30)
(3 minutes)

 ECM can remove material at a speed limited by the area of the
interelectrode process gap, assuming adequate flushing. That is, with
the same current density distributed over twice as much electrode
area, you can remove twice the volume of material per unit time.
The maximum speed obtainable from a given composition of
electrodes and electrolyte can thus be expressed in meters per second,
and commonly it’s a few microns per second.

 If you want to slice a block of metal in half, one way to do this is to
use a wire electrode, which can cut a plane one line at a time. But if
you instead use an electrode in the shape of a saw blade, with
electrical insulation everywhere except the edge, the electrode surface
area is potentially many times larger, and so you can potentially cut
much faster.

 Taken to the extreme, this logic suggests using a long line of
needles or teeth, a few times wider than the process gap, as the cutting
cathode; or possibly two converging blades like a “mandolin” cutter.
If the tooth edges have a 10:1 slope, so that for each 1 mm of
advancement of the blade into the work they get closer together by
0.1 mm, they have 10.05 times the effective surface area of a wire and
thus perhaps ought to be able to remove material about 10.05 times
faster. Such aspect ratios, or even more extreme ones, should be
viable where they are not viable for a saw, because the only
mechanical stress experienced by the teeth is the process fluid flowing
around them (and probably through them). By the same token, it
should be feasible to make them thinner than a saw blade.

 However, around the point of each tooth, it would seem that the
material removal rate could be a limiting factor, since the point is
advancing into the material without this 10:1 “mechanical” advantage.
I’m pretty sure there are ways to overcome this and get a locally
higher material removal rate; the problem might take care of itself
spontaneously (for example by virtue of the high electrical field
around a sharp point), or we might be able to advance the tooth into
the work nearly parallel to one of its edges, so that only the other edge
“cuts” and the MRR required at the point of the tooth is no higher
than anywhere else.

 At first, when only the points of teeth are advancing into the
workpiece, the MRR will be lower than it would be with just a wire,
and also at the end when only small bits of workpiece are left in
between the valleys of the teeth; so the length of the teeth ought to
be small compared to the thickness of the workpiece.

 By applying the same principle in three dimensions with
pyramid-shaped “teeth”, we ought to be able to rapidly disintegrate
blocks of metal. By using many independently movable such teeth,
we ought to be able to rapidly shape a surface to any shape we want.

Topics

• Contrivances (p. 1143) (45 notes)
• Manufacturing (p. 1151) (29 notes)
• Electrolysis (p. 1158) (18 notes)
• Machining (p. 1165) (13 notes)
• ECM (p. 1186) (9 notes)

Switching kiloamps in
microseconds
Kragen Javier Sitaker, 02021-09-09 (updated 02021-12-30) (1 minute)

 What would you do if you wanted to dump a capacitor holding
100 joules at 1000 amps in a millisecond, briefly dissipating 100
kilowatts?

 Most IGBTs are not equipped to deal with pulse currents like this,
and I don’t think you can parallel them the way you can MOSFETs,
due to current hogging by the hottest device; the IXGX320N60B3
costs US$22 and is rated to dissipate 1700 watts itself, and IXYS
doesn’t publish a datasheet for it. Similarly for triacs.

 MOSFETs like the SIHB33N60E-GE3 are maybe more promising:
for US$6 you can switch 600 V and pulses of 88 A with 0.1Ω with a
150-nanosecond turn-on delay plus rise time, and you can safely
parallel them. (88 A is almost three times their maximum continuous
current of 33 A.) So if you put a dozen of them in parallel (US$70)
the datasheet claims you can get them to control a kiloamp pulse.
(Probably a good idea to add enough series inductance to keep the
pulse current from going higher than that.) The Infineon
IPA60R099C6XKSA1 is US$8 in quantity 1 and rated for 112-amp
pulses, so you’d still spend US$70.

 I wonder if a simple mercury-wetted reed relay would be a better
choice.

Topics

• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Power supplies (p. 1176) (10 notes)

https://www.digikey.com/en/products/detail/ixys/IXGX320N60B3/3586374
https://www.digikey.com/en/products/detail/infineon-technologies/IPA60R099C6XKSA1/2338038
https://www.digikey.com/en/products/detail/vishay-siliconix/SIHB33N60E-GE3/3900194
http://www.irf.com/technical-info/appnotes/an-941.pdf
https://www.digikey.com/en/products/detail/infineon-technologies/IPA60R099C6XKSA1/2338038
https://www.digikey.com/en/products/detail/infineon-technologies/IPA60R099C6XKSA1/2338038

Spot welding
Kragen Javier Sitaker, 02021-09-09 (updated 02021-12-30)
(8 minutes)

 In theory you should be able to do spot welds with arbitrarily small
energies if you do them fast enough and can somehow get the energy
to deposit at the place you want it.

 But suppose you want to melt a spherical nugget of steel of radius
1mm, which should be a practical thing to do with a carbon arc. Iron
is 7.8 g/cc and 55.845 g/mol, holds 25.10 J/mol/K, and sucks up 13.81
kJ/mol in melting, which it does when pure at 1538° but as steels
perhaps more typically at 1400° or so, which can be reasonably
approximated as 1400° above room temperature. This should require
about 30J:

You have: (1400 K * (25.10 J/mol/K) + 13.81 kJ/mol) / (55.845 g/mol)
You want: J/g
 * 876.53326
 / 0.001140858

You have: (1400 K * (25.10 J/mol/K) + 13.81 kJ/mol) / (55.845 g/mol) * spherevol(
1mm) * 7.8 g/cc
You want: J
 * 28.638589
 / 0.034917922

 Maybe make it 100 J to be safe.

 You could maybe preheat the workpiece to 200° to make this a
little cheaper, but the effect on the required energy is surprisingly
small. Preheating it more would rapidly oxidize the surface.

You have: (1200 K * (25.10 J/mol/K) + 13.81 kJ/mol) / (55.845 g/mol) * spherevol(
1mm) * 7.8 g/cc
You want: J
 * 25.701598
 / 0.038908087

 If we very roughly approximate that the temperature gradient is
1400°/mm over the surface of a 1mm-radius sphere, and use pure
iron’s thermal conductivity of 80.4 W/m/°, we can derive a power
for how fast this little weld puddle will be quenched, about 1500
watts:

You have: 4 pi (1 mm)**2 1400 K/mm * 80.4 W/m/K
You want: W
 * 1414.4707
 / 0.00070697825

 That means we have to deliver all of our 30 or 100 or 200 joules
within about 20-100 ms, or the steel will suck the heat away faster

than we’re pouring it in, and we’ll never get a melt. But 20-100 ms is
really not a very demanding specification at all.

 If, like a handheld point-and-shoot camera with an on-camera
strobe, we build up the energy over a period of time before releasing
it in a sudden burst to make the weld, thus avoiding the need for a
high-power power source, we need to store it in some kind of energy
storage element that can release it very rapidly, probably an inductor
or capacitor, although a flywheel attached to a motor-generator that
can briefly handle multi-kilowatt pulses is an amusing idea too. You
might reasonably be able to build up the energy over 100 ms or
1000ms.

 The energy of an ideal inductor is ½LI², so if you want 100 J in a
1-henry inductor, like those used in old 120V fluorescent-light
ballasts, you need to be running 14 amps through it. Actually, let’s
derive this. WP says, “A general lighting service 48-inch (1,219 mm)
T12[30] lamp operates at 430 mA, with 100 volts drop. High output
lamps operate at 800 mA, and some types operate up to 1.5 A. The
power level varies from 33 to 82 watts per meter of tube length (10 to
25 W/ft) for T12 lamps.” To drop 20 V at 430 mA the ballast needs a
reactance of 47Ω, which is 2πfL, so we need about 120 mH:

You have: 20V/430mA
You want: ohms
 * 46.511628
 / 0.0215
You have: 47 ohms / 2 pi 60 Hz
You want: H
 * 0.12467137
 / 8.0210876

 So maybe it’s common to use inductors of less inductance than that.
Regardless, it’s going to be a pretty annoying energy storage device,
the weight of my fist.

 The energy stored in a capacitor is analogously ½CV². A 1μF
2100V microwave oven capacitor is also about the weight of my fist
but is only rated to hold a couple of joules:

You have: half (2100V)**2 1 microfarad
You want: J
 * 2.205
 / 0.45351474

 Electrolytic capacitors might be a better option. A 400V 1000μF
capacitor from a switching power supply is rated to hold 80J and is
actually smaller:

You have: half 1000μF (400V)**2
You want: J
 * 80
 / 0.0125

 Electrolytics don’t have spectacular ESR and ESL ratings, so
they’re not useful for fast pulses, but 20ms is not a fast pulse at all.

The Cornell Dubilier 1200μF 380LX122M400A082 costs US$6 and is
supposed to have 0.152Ω, though that is of course at 120Hz, but
unexpectedly it’s supposed to be only 0.053Ω at 20 kHz; it’s 82 mm
tall and 35 mm in diameter, dramatically smaller than a microwave
oven capacitor. Discharging it from 400V in 20ms would take about
24 A, dropping an insignificant 4V across the ESR.

You have: 400 V 1200 μF / 20 ms
You want:
 Definition: 24 A
You have: 24 A .152 ohms
You want: V
 * 3.648
 / 0.27412281

 You’d also need some kind of switch that could turn on the
capacitor rapidly, handle 24 amps, and not drop much more than 100
volts itself (so under 4Ω, ideally under 0.4Ω). A US$2 IRF540N
MOSFET could almost do the job, but its voltage rating is a little low
at only 100V. Something like the US$8 STB45N65M5 would
probably be vast overkill; it’s rated for 650 V, 0.078Ω, 210 W (!), and
35 A continuous, 140 A pulsed. Something like the US$1.70
STU6N62K3 would work if we ease up a little: 22 amps pulsed drain
current, 620 V, 90 watts, 0.95Ω. And the US$1.40 TK650A60F-S4X
would be ample: 44 A pulsed current (11 A continuous), 600 V, 45
W, 0.54Ω.

 (You could probably even use a bipolar power transistor for this,
but MOSFETs seem to have higher pulse currents relative to their
continuous currents.)

 I suspect that the correct circuit for this is actually fairly similar to a
traditional fluorescent-light setup: the storage capacitor has an
inductor on its output, and the switching transistor shorts the
inductor to the other end of the storage capacitor, allowing current to
build up. When the current has risen to the correct level, the
transistor is turned off, and the resulting high voltage strikes the arc to
the workpiece, which then converts the small amount of energy
stored in the inductor and the large amount stored in the capacitor
into heat, while the inductor prevents the negative-resistance
characteristic of the arc from creating oscillations (although, would it
matter if it did?). Because DC-electrode-negative delivers about two
thirds of the power to the positively charged workpiece, perhaps
because electrons evaporating from the cathode cool it, you probably
don’t want to be shorting the inductor to ground with the transistor,
assuming your workpiece is grounded.

 That last reference, though, brings the alarming news that “the
actual melting efficiency of the arc welding process is relatively low
(i.e., on the order of 20 percent or less).” So maybe delivering 30
joules to the metal would involve dissipating 150 or 200 joules, which
eats up most of the safety factors in my notes above. However, if you
can deliver the same energy in much less than 20 milliseconds, or
deliver several kilowatts for a longer time, you should still get a
molten nugget.

 Perhaps resistance welding would have higher efficiency; it would

https://www.digikey.com/en/products/detail/cornell-dubilier-electronics-cde/380LX122M400A082/1699352
https://www.digikey.com/en/products/detail/cornell-dubilier-electronics-cde/380LX122M400A082/1699352
https://www.digikey.com/en/products/detail/stmicroelectronics/STB45N65M5/3088024
https://www.digikey.com/en/products/detail/stmicroelectronics/STU6N62K3/2035551
https://www.digikey.com/en/products/detail/stmicroelectronics/STU6N62K3/2035551
https://www.digikey.com/en/products/detail/toshiba-semiconductor-and-storage/TK650A60F-S4X/8570619
https://en.wikipedia.org/wiki/Gas_tungsten_arc_welding#Power_supply
https://en.wikipedia.org/wiki/Gas_tungsten_arc_welding#Power_supply
http://web.archive.org/web/20140824085415/https://eagar.mit.edu/EagarPapers/Eagar109.pdf

certainly simplify the circuitry.

Topics

• Pricing (p. 1147) (35 notes)
• Manufacturing (p. 1151) (29 notes)
• Physics (p. 1157) (18 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Welding (p. 1181) (9 notes)
• Thermodynamics (p. 1219) (5 notes)

Qfitzah: a minimal
term-rewriting language
Kragen Javier Sitaker, 02021-09-10 (updated 02021-12-31)
(62 minutes)

 Today Andrius Štikonas got the hex0_riscv64 bootstrap seed program
down to 392 bytes; it translates from hexadecimal into binary, though
much of the bulk of the program is opening and closing files. This led
me to thinking about the question of Qfitzat haDerekh, shortening
the path: can we teleport directly from a few hundred bytes of
machine code to something much more amenable to writing
compilers?

 Term rewriting languages like Q, Pure, Mathematica, Maude, or
Aardappel seem more amenable to writing compilers not only than
imperative languages like C but also more so than traditional Lisps; it
implicitly provides conditionals, pattern-matching for arguments,
ad-hoc polymorphism with multiple dispatch, and parametric
polymorphism. As Oortmerssen’s dissertation on Aardappel points
out (p. 9), term rewriting can be top-down (normal-order, leftmost
outermost) or bottom-up (applicative-order, eager, innermost),
nondeterministic, as well as other variants; and it can select rule
precedence according to source order, uniqueness, according to some
kind of specificity, nondeterministically, or in some other way. I
think the easiest thing to implement is probably bottom-up
source-order rewriting; though top-down evaluation could give you
laziness, you don’t need laziness or special forms to get conditionals
with term rewriting, the way you do with the λ-calculus or the
ur-Lisp.

 An interesting thing about this is that, despite the vastly increased
expressive power (especially for things like writing compilers), the
code to implement a term-rewriting interpreter is roughly as simple as
the code to implement an ur-Lisp interpreter, just much slower.
However, I don’t think it’s actually any simpler than the ur-Lisp, and
it’s surely a bit larger than hex0_riscv64. The surprising thing is that the
difference may not be that much.

 Still, the unfinished draft Qfitzah interpreter I wrote in assembly is
almost 1000 bytes, and for RISC-V (without the C extension) it
would probably be even bigger.

A Scheme strawman interpreter for term
rewriting

 The interpreter is pretty simple. Basically, to evaluate a
non-atomic expression, you first evaluate its components, and then
you loop over the rewrite rules, trying to match each one against the
expression, and when one of them succeeds you instantiate its
replacement with the match values, then evaluate the instantiated
replacement. Something like this in Scheme:

(define (ev t) ; eval, for term rewriting

https://www.muppetlabs.com/~breadbox/software/tiny/teensy.html

 (if (pair? t) (ap (map ev t) rules) t)) ; atoms don’t get rewritten

;; apply, for term rewriting, but the arguments are the top-level term
;; to rewrite, after all its children have been rewritten as above, and
;; the remaining set of rules to attempt rewriting with
(define (ap t rules)
 (if (null? rules) t ; no rewrite rules left? don’t rewrite
 (let ((m (match t (caar rules) '()))) ; initially no vars () match
 (if m (ev (subst (cadar rules) m)) ; rule matched? substitute & eval
 (ap t (cdr rules)))))) ; otherwise, try the other rules

 That depends on definitions of match, emptyenv, and subst. subst is easy
enough (though I got it wrong at first, and it might be nicer to handle
the case where the variable is undefined):

(define (subst t env)
 (if (var? t) (cdr (assoc t env))
 (if (pair? t) (cons (subst (car t) env) (subst (cdr t) env))
 t)))

 So, for example, (subst '(You #(vt) my #(np)) '((#(np) . wombat) (#(vt) .
rot))) evaluates to (You rot my wombat), as you’d expect.

 Then match needs to compute whether there’s a match, which
requires it to distinguish variables from other things. In its simplest
form we can consider variables that occur more than once an error,
but an error we don’t try to detect; then it might look like this:

(define (match t pat env)
 (if (var? pat) (cons (cons pat t) env) ; vars match anything
 (if (pair? pat) ; pairs match if the cars match and the cdrs match
 (and (pair? t) ; a pair pattern can’t match an atom
 (let ((a (match (car t) (car pat) env))) ; try to match car
 (and a (match (cdr t) (cdr pat) a)))) ; then, try the cdr
 (and (equal? pat t) env)))) ; atoms match only themselves

 Then you just need some kind of convention for marking variables.
The simplest thing in Scheme would be to use ,x, which is syntax
sugar for (unquote x), but that would have the unfortunate effect that
you can’t use the atom unquote in head position in either a pattern or a
replacement template. Instead I am using #(x):

(define var? vector?)

 (In other environments, you might use a different data type.)

 And that’s it. 19 lines of Scheme in terms of define, if, '(), cons, pair?
, let, car, cdr, caar, cadar, #f, and, equal?, assoc, map, and null? gives you a
bottom-up, source-order-precedence term-rewriting interpreter. If
we want to include implicit equality testing in patterns when a
variable occurs more than once, it’s a couple more lines of code, but
that’s about a 10% total complexity increase.

 Of course this approach to term-rewriting interpretation is very
inefficient, far more so than the standard Lisp tree-walker approach,
because every expression evaluation involves iterating over potentially

all the code in the entire program to see which ones apply. Aardappel
(and, I think, Mathematica) requires the head of each term to be an
atom, and compiles the usually small number of rules for each atom
down into a subroutine, so that when attempting to rewrite any term,
you can start by doing a hash table lookup, and then typically have a
small number of conditionals after that. So you’d probably want to
use this bootstrap interpreter only to run a bootstrap compiler.

Primitives and integers

 Formally speaking we don’t need arithmetic primitives, since we
can define numbers in a variety of ways via term rewriting, but for
practical efficiency we probably want access to machine arithmetic.

 I’m thinking that the way to handle things like arithmetic is to
have an additional class of constant atoms, the integers, and some
built-in rewrite rules that are implemented in machine code. Darius
Bacon suggests that perhaps only the right-hand side should be
implemented in machine code, and the pattern-match itself maybe in
a prelude.

 The question is how to handle them for matching: can you
pattern-match on integerness, or do you just have a “function”? In
the first case, you could allow an integer like 283 to match a pattern
like Int x and bind x to 283; or you could instead rewrite Int? 283 and
similar to Yes and Int? Qfitzat to No.

 If you were doing the pattern-match in the prelude, these
alternatives might look like:

+ (Int x) (Int y) :: 3
- (Int x) (Int y) :: 4
- x: - 0 x

 where the :: rather than : indicates that you’re supplying a
machine-code primitive index rather than a template, 3 being the
index of the addition routine and 4 that of subtraction; or, in the
other case:

If Yes a b: Do a
If No a b: Do b
&& x y: If x y x
|| x y: If x x y
Not Yes: No
Not No: Yes
Do Yes: Yes
Do No: No
+ x y: If (&& (Int? x) (Int? y)) (Int+ x y) (Add x y)
Do (Int+ x y) :: 3
- x: - 0 x
- x y: If (&& (Int? x) (Int? y)) (Int- x y) (Sub x y)
Do (Int- x y) :: 4

 These If rules are convenient here but maybe not ideal, both
because it’s easy to forget the Do when you try to define the results,
and because it’s easy to forget that the arguments within the consequent
and alternate blocks will be evaluated eagerly.

 You could define the usual arithmetic operations in terms of a
single machine-code primitive with multiple arguments, like
Mulsubdiv a b c d = (a*b - c)//d, with definitions in the standard
prelude like these:

+ (Int x) (Int y): Mulsubdiv -1 x y -1
- (Int x) (Int y): Mulsubdiv 1 x y 1
* (Int x) (Int y): Mulsubdiv x y 0 1
/ (Int x) (Int y): Mulsubdiv 1 x 0 y

 Alternatively you could have Arithmetic x y which evaluates to a
tuple containing all the results, like Results <x+y> <x-y> <x*y> <x//y> <x%y>,
and you could write

+ (Int x) (Int y): R15 (Arithmetic x y)
- (Int x) (Int y): R25 (Arithmetic x y)
* (Int x) (Int y): R35 (Arithmetic x y)
/ (Int x) (Int y): R45 (Arithmetic x y)
% (Int x) (Int y): R55 (Arithmetic x y)
R15 (a b c d e f): b
R25 (a b c d e f): c
R35 (a b c d e f): d
R45 (a b c d e f): e
R55 (a b c d e f): f

 Either would avoid needing four or five separate primitive
subroutines, four or five separate conditional cases to call them, four
or five separate subroutine table entries, etc. Though maybe a single
conditional case would be sufficient, Primop op x y, with an op number,
you’d still need a table of subroutines.

 For bitwise operations you could similarly use Norshift a b c = ~(a |
b) >> c and definitions like these:

B~ (Int x): Norshift x 0 0
Nor (Int x) (Int y): Norshift x y 0
| (Int x) (Int y): B~ (Nor x y)
& (Int x) (Int y): Nor (B~ x) (B~ y)
&^ (Int x) (Int y): Nor (B~ x) y
>> (Int x) (Int y): Norshift (B~ x) 0 y
^ (Int x) (Int y): Nor (Nor x y) (& x y)

 Probably three arguments is the maximum that would be tolerated
by ordinary decency, but if not, you could of course incorporate
Mulsubdiv and Norshift into a single six-argument monster.

 You’d also need some kind of comparison operation, minimally >0.

 Left shifts are easy enough to implement as rewrite rules with
addition:

<< (Int x) 0: x
<< (Int x) (Int y): If (>0 y) (Shift (+ x x) (- y 1)) (Negative-left-shift x y)
Do (Shift x y): << x y

 Possibly a better way to implement that would be:

<< (Int x) 0: x
<< (Int x) (Int y): <<2 (>0 y) x y
<<2 Yes x y: Shift (+ x x) (- y 1)

 There’s a separate question of how to handle system calls, which I
think can be bodged in pretty easily since evaluation is eager.

Some sketches of assembly implementations

 But that’s Scheme! In machine code it seems like it could be
significantly larger, even without garbage collection, which isn’t
necessary for a bootstrap interpreter on a modern machine, and
parsing, which is. You also have to actually implement cons, pair?, car,
cdr, equal?, assoc, map, and null?. Most of these are not very difficult.

 (None of the assembly code below is tested.)

 Because I still know almost no RISC-V assembly, I’m going to
sketch this out in the i386 assembly of my childhood.

Type tags in RAM

 In i386 code, using the simple approach I took in Ur-Scheme, cons
might be 18 bytes:

cons: movl $0x2ce11ed, 0(%ebx) # allocation pointer is in %ebx
 mov %eax, 4(%ebx) # car was arg 1, in %eax
 mov %ecx, 8(%ebx) # cdr
 mov %ebx, %eax # return the old allocation pointer
 lea 12(%ebx), %ebx
 ret

 Then pair?, leaving the predicate result in ZF, might be 7 bytes:

pairp: cmpl $0x2ce11ed, (%eax)
 ret

 And an unsafe cdr might be 4 bytes:

cdr: mov 8(%eax), %eax # probably better to open-code these 3 bytes
 ret

Type tags in pointer low bits

 But the SBCL approach of tagging the pointer would be shorter:

sbcons: mov %eax, 0(%ebx) # car was arg 1
 mov %ecx, 4(%ebx)
 lea 3(%ebx), %eax
 lea 8(%ebx), %ebx
 ret # 12 bytes, not 18

sbpairp:
 and $3, %al
 cmp $3, %al
 ret # this reduces to 5 bytes

sbcar: mov -3(%eax), %eax
 ret # still 4 bytes

sbcdr: mov 1(%eax), %eax
 ret

Type tags in pointer low bits where 00 denotes a pair

 If we instead use two low-order 0 bits to tag cons pointers, list
operations get smaller still, to the point where almost all of them are
so small that they need to be open-coded:

00000036 <altcons>: # 11 bytes
 36: 89 03 mov %eax,(%ebx)
 38: 89 4b 04 mov %ecx,0x4(%ebx)
 3b: 89 d8 mov %ebx,%eax
 3d: 8d 5b 08 lea 0x8(%ebx),%ebx
 40: c3 ret

00000041 <altpairp>: # 3 bytes
 41: a8 03 test $0x3,%al
 43: c3 ret

00000044 <altcar>: # 3 bytes
 44: 8b 00 mov (%eax),%eax
 46: c3 ret

00000047 <altcdr>: # 3 bytes
 47: 8b 40 04 mov 0x4(%eax),%eax
 4a: c3 ret

0000004b <altnullp>: # 3 bytes
 4b: 85 c0 test %eax,%eax
 4d: c3 ret

A sketch of subst in i386 assembly

 Here’s what subst might look like with that setup.

 In i386 assembly:

 # subst t env returns a version of t with var substitutions from env.
subst: push %ebp # callee-saved variable used here
 push %eax # %eax has t, %ecx has env
 push %ecx
 test $2, %al # ...10 is the pointer type tag for vars
 jz 1f

 call assoc # calls are 5 bytes. inherits both t & env
 mov 4(%eax), %eax # get the cdr
2: pop %ecx # discard saved arguments; labeled for
 pop %ecx # epilogue sharing
 pop %ebp
 ret

1: test $3, %al # ...00 is the pointer type tag for pairs
 jz 1f # if this isn’t a pair:
 jmp 2b # %eax is already t; implicitly return it

1: mov 4(%eax), %eax # get cdr t for (subst (cdr t) env)
 call subst # inherits our env.
 mov %eax, %ebp # save subst result
 mov 4(%esp), %eax # load saved t
 mov (%eax), %eax # car t
 mov (%esp), %ecx # second argument is saved env
 call subst
 mov %ebp, %ecx # second cons argument is (subst (cdr t) env)
 call cons
 jmp 2b # return cons result

 That’s 24 instructions and 58 bytes of machine code, and, although
I’m sure I missed a few tricks, I don’t think it’s going to get more
than about 30% smaller. That’s 14½ bytes per line of Scheme, which I
think is pretty good, but it puts the estimate of the whole 19-line
Scheme program at 275½ bytes, which doesn’t include the
non-open-coded primitives like cons (and assoc and map), the parser, or
I/O. I/O is actually almost all of hex0_riscv64.

 I went through and coded the whole thing in assembly language;
after trimming it down a bit, the resulting (untested) program is 100
instructions and 237 bytes of machine code (12.5 bytes per line of
Scheme), containing cons, subst, assq, match, evlis, ev, ap, and no
undefined symbols; so 275½ was actually a little high. I’m pretty sure
I could squeeze it down a bit more, but probably not below 200 bytes.
It’s still missing I/O, the reader, and the printer. In the process I
trimmed down subst itself to 20 instructions and 55 bytes, then later 22
instructions and 49 bytes.

 Adding an input reading loop cost 49 more bytes of code, plus 4 of
data; a printer (untested) cost another 81 bytes. Now I’m at 370 bytes
of code. I think all it’s lacking now is a reader, so I’m pretty sure it’ll
be under 512 bytes of machine code and data, thus under 1 KiB of
executable. I’m currently suffering 414 bytes of executable-format
overhead, mostly padding, but Brian Raiter’s work suggests that it
should be possible to get the executable-format overhead down to
about 45–52 bytes, but with strict ELF conformance he couldn’t get it
below 76 bytes, and with dynamic linking he couldn’t get it below
297 bytes; still, maybe I can get the whole executable under 512
bytes.

 P.S. a reader was 287 bytes.

 However, it’ll still be missing library functions to do useful things
like I/O and arithmetic.

 Trying to do this in RV64 without the C compressed-instruction
extension, like hex0_riscv64, would surely have much worse code
density; with the C extension it might be slightly more compact.

A sketch of subst in a stack bytecode

 In one of the bytecodes suggested in A compact bytecode sketch
that should average about 3 bytes per line of C (p. 720) this might

https://www.muppetlabs.com/~breadbox/software/tiny/somewhat.html
https://www.muppetlabs.com/~breadbox/software/tiny/revisit.html
https://www.muppetlabs.com/~breadbox/software/tiny/revisit.html
https://www.muppetlabs.com/~breadbox/software/tiny/somewhat.html
https://www.muppetlabs.com/~breadbox/software/tiny/somewhat.html

look like this:

PROCEDURE subst argwords=2
 loadword 0 ; t
 call var?
 jztos 1f ; if not a var (top of stack is 0/nil/false), skip
 loadword 0
 loadword 1 ; env
 call assoc
 call cdr
 ret
1: loadword 0
 call pair?
 jnztos 1f ; skip if it *is* a pair
 loadword 0 ; return t
 ret
1: loadword 0
 call car
 loadword 1
 call subst
 loadword 0
 call cdr
 loadword 1
 call subst
 call cons
 ret

 According to the hypotheses in that note, this might compile to 2
bytes of procedure header, 23 opcode bytes, 9 operand bytes for call
instructions, 2 operand bytes for jump targets, and a 2-byte entry in a
global subroutine table, for a total of 38 bytes. At this rate, the whole
Scheme program irresponsibly extrapolates to 180½ bytes, but of
course you’d have to add the bytecode interpreter on top of that. On
the other hand, if the bytecode interpreter is customized specifically
to run the term-rewriting interpreter, none of the call instructions
will need an operand byte, because there’s plenty of opcode space to
allocate each subroutine in this program a single-byte opcode. That
would bring it down to 29 bytes, half the size of the i386 machine
code, irresponsibly extrapolating the whole Scheme program to 137¾
bytes of machine code.

 A stack bytecode specifically designed for list processing might have
a decons-or instruction, which unpacks the pair on top of the stack into
a car and cdr, or if it’s not a pair, jumps to the given destination,
because usually pair? is associated with subsequent calls to car and cdr.
We could represent that in Scheme as a special binding form, here
introducing variables called a and d:

(define (subst t env)
 (if-pair t (a d) (cons (subst a env) (subst d env))
 (if (var? t) (cdr (assoc t env)) t)))

 In such a bytecode:

PROCEDURE subst argwords=2

 loadword 0 ; t
 decons-or 1f
 loadword 1 ; env
 call subst
 swap
 loadword 1
 call subst
 call cons
 ret
1: loadword 0
 call var?
 jztos 1f ; if not a var (top of stack is 0/nil/false), skip
 loadword 0
 loadword 1
 call assoc
 call cdr
 ret
1: loadword 0
 ret

 This reduces subst from 23 bytecode instructions to 19, and I think
it’s likely that a single omnibus pair?-and-jztos-and-car-and-cdr
procedure will also be smaller than three separate ones and their
opcode table entries. The cost is that, in the relatively infrequent case
where only one of those three operations is called for, it costs you an
extra byte per unwanted result.

Dynamic dispatch

 Because patterns can dispatch on more than just the function being
called, you can define “methods” on “classes”; one of the examples in
the Aardappel dissertation is defining a hash method for a point class:

hash(point(x,y)) = x*y

 Or, in S-expression syntax using vectors:

(hash (point #(x) #(y))) => (* #(x) #(y))

 Which you could feed into the Scheme strawman interpreter above
as follows:

(define rules '(((hash (point #(x) #(y))) (* #(x) #(y)))))

 Elsewhere you might define how to rewrite hash expressions applied
to other types of values; then a hashtable implementation can invoke
hash without worrying about the types of its arguments. The compiler
transformation described above would gather all the hash rules togther
into a subroutine, which then performs a sequence of conditional tests
to dispatch to one of them.

 This also permits CLOS-style multiple dispatch:

(* (scalar #(s)) (vec #(x) #(y) #(z))) =>
 (vec (* #(s) #(x)) (* #(s) #(y)) (* #(s) #(z)))

(* (scalar #(s)) (scalar #(t))) => (scalar (* #(s) #(t)))
(* (m #(r1) #(r2) #(r3)) #(vec)) => (vec (dot (vec . #(r1)) #(vec))
 (dot (vec . #(r2)) #(vec))
 (dot (vec . #(r3)) #(vec)))
(dot (vec #(a) #(b) #(c)) (vec #(d) #(e) #(f))) =>
 (+ (* #(a) #(d)) (* #(b) #(e)) (* #(c) #(f)))

 Those rules, for example, will rewrite

(* (m (1 2 3) (4 5 6) (7 8 9)) (vec x y z))

 to

(vec (+ (* 1 x) (* 2 y) (* 3 z))
 (+ (* 4 x) (* 5 y) (* 6 z))
 (+ (* 7 x) (* 8 y) (* 9 z)))

Higher-order programming

 In languages like C or Lisp, the atom-head requirement Aardappel
has would prevent you from doing any higher-order programming,
but not in term-rewriting languages, because you can use the same
dynamic-dispatch trick. You can define a higher-order mapcar
function as follows:

(map #(f) nil) => ()
(map #(f) (cons #(car) #(cdr))) =>
 (cons (call #(f) #(car)) (map #(f) #(cdr)))

 Then you can define patterns like this:

(call (cover #(material)) #(base)) => (some #(material) covered #(base))

 so that (call (cover chocolate) raisins) rewrites to (some chocolate covered
raisins). These rules compose so that

(map (cover leather) (cons armchairs (cons bikers (cons goddesses nil))))

 rewrites to

(cons (some leather covered armchairs)
 (cons (some leather covered bikers)
 (cons (some leather covered goddesses) nil)))

 I learned about this on p. 35 of the Aardappel dissertation, which
gives the example (in slightly different syntax):

apply(qsortcompare(x),y) = y<x
filter([],_) = ([],[])
filter([h|t],f) =
 if apply(f,h) then ([h|a],b) else (a,[h|b])
 when (a,b) = filter(t,f)

 In the syntax I used above, this would be written as

(apply (qsortcompare #(x)) #(y)) => (< #(y) #(x))
(filter nil #(_) => (pair) nil nil)
(filter ((cons #(h) #(t)) #(f))) =>
 (filter2 (filter #(t) #(f)) #(h) #(f) (apply #(f) #(h)))
(filter2 (pair #(a) #(b)) #(h) #(f) true) => (pair (cons #(h) #(a)) #(b))
(filter2 (pair #(a) #(b)) #(h) #(f) false) => (pair #(a) (cons #(h) #(b)))

 (This also demonstrates how the term-rewriting paradigm
implicitly provides conditionals.)

 Oortmerssen discusses this further in pp. 48–50 (§4.1.2).

 In the language implemented by the interpreter above, you could
just as well define things this way:

(map #(f) (cons #(car) #(cdr))) => (cons (#(f) #(car)) (map #(f) #(cdr)))
((cover #(material)) #(base)) => (some #(material) covered #(base))
((qsortcompare #(x)) #(y)) => (< #(y) #(x))
(filter ((cons #(h) #(t)) #(f))) =>
 (filter2 (filter #(t) #(f)) #(h) #(f) (#(f) #(h)))

 This would have the advantage that you could pass in the name of
any existing function. But compiling this efficiently might be
nontrivial.

 It might be worthwhile to implement lambda-lifting to get
closures. Aardappel experimented with this but ultimately rejected it.

A metacircular term-rewriting interpreter

 If you love term rewriting so much, why don’t you marry it, huh?
Why’dja write that “strawman” above in Scheme? Are you chicken?

 XXX the below lacks some bugfixes from the Scheme. Also I
definitely do not want to use the shitty Scheme syntax.

 Well, part of it is that I think Scheme is a better pseudocode for
assembly language, but maybe it would look something like this,
written in itself:

(ev (cons ,f ,a) ,r) => (ap (args (cons ,f ,a) ,r) ,r ,r)
(ev ,t ,_) => ,t
(args nil ,_) => nil
(args (cons ,a ,d) ,r) => (cons (ev ,a ,r) (args ,d ,r))

(ap ,t norules ,_) => ,t # no rules left to match
(ap ,t (rule ,pat ,tem ,r) ,r0) => # try to match a rule
 (ap2 ,t ,r (match ,t ,pat emptyenv) ,tem ,r0)
(ap2 ,t ,r nomatch ,_ ,r0) => (ap ,t ,r ,r0) # on failure try others
(ap2 ,t ,r ,env ,tem ,r0) => (ev (subst ,tem ,env) ,r0) # or subst & eval

(subst (cons ,a ,d) ,env) => (cons (subst ,a ,env) (subst ,d ,env))
(subst ,t ,env) => (subst2 ,t (lookup ,t ,env))
(subst2 ,t nomatch) => ,t
(subst2 ,t ,v) => ,v

(match ,_ ,_ nomatch) => nomatch # match failures always win
(match ,t (var ,v) ,env) => (bind ,v ,t ,env) # otherwise vars always do
(match (cons ,ta ,td) (cons ,pa ,pd) ,env) => # match cars and cdrs
 (match ,td ,pd (match ,ta ,pa ,env))
(match ,t ,pat ,env) => (match2 (equal? ,pat ,t) ,env)
(match2 true ,env) => ,env
(match2 false ,env) => nomatch

 So that’s 21 lines, about the same as Scheme, but I left out lookup,
which in Scheme is the standard procedure assoc:

(lookup ,_ emptyenv) => nomatch
(lookup ,v1 (bind ,v2 ,t ,env)) => (lookup2 ,v1 (equal? ,v1 ,v2) ,t ,env)
(lookup2 ,_ true ,t ,_) => ,t
(lookup2 ,v false ,_ ,env) => (lookup ,v ,env)

 Tht brings the total to 25 lines.

 I think I may have some unresolved confusion between (var x) and
x; which is supposed to occur in the template? In Scheme, (var x).
Also, which is supposed to occur in the environment? Also (var x).
Maybe instead of

(subst ,t ,env) => (subst2 ,t (lookup ,t ,env))

 I intended to write

(subst (var ,t) ,env) => (subst2 ,t (lookup ,t ,env))

 I should go back and review this.

 Also, equal? needs to be provided by the system, at least for atoms,
which requires some sort of special case like this:

(ap (equal? ,x ,y) ,_ ,_) => (equal? ,x ,y)

 This points out how easy it is to add special cases like this in a
term-rewriting system, though we need to make sure the rule
precedence is such that adding the rule has an effect. Of course, this
implementation doesn’t tell us anything about which definition of
equality is being used; this sort of thing is one of the common
objections to the use of metacircular interpreters to define semantics.

 If, instead of being a magic function name, it is provided through
multiple uses of the same variable name in a pattern, we could allow
this definition of equality to flow through the metacircular interpreter
in the same way; instead of

(match ,t (var ,v) ,env) => (bind ,v ,t ,env)

 we have

(match ,t (var ,v) ,env) => (match3 ,v ,t (lookup ,v ,env) ,env)
(match3 ,v ,t nomatch ,env) => (bind ,v ,t ,env) # new var, not bound
(match3 ,v ,t ,t ,env) => ,env # already bound to the same value
(match3 ,_ ,_ ,_ ,_) => nomatch # all other cases are conflicting bindings

 There’s an additional buglet: lookup should return its positive
results in a form that can’t be the symbol nomatch. So maybe instead of

(lookup2 ,_ true ,t ,_) => ,t

 we should say

(lookup2 ,_ true ,t ,_) => (got ,t)

 Also probably it’s confusing that lookup and match return the same
nomatch on failure.

 At least playing with it mentally like this, I feel like this
term-rewriting paradigm is a much more pliant medium than Lisps
are.

A note on syntax

 Above I’ve been slavishly following Scheme syntax; but it would
probably be an improvement if instead of writing

(args (cons ,a ,d) ,r) => (cons (ev ,a ,r) (args ,d ,r))

 we wrote something more like Darius Bacon’s syntax for
Pythological:

Args (Cons a d) r: Cons (Ev a r) (Args d r)

 in part because that cuts down awkwardly verbose lines like

(match (cons ,ta ,td) (cons ,pa ,pd) ,env) =>
 (match ,td ,pd (match ,ta ,pa ,env))

 to more manageable things like

Match (Cons ta td) (Cons pa pd) env: Match td pd (Match ta pa env)

 The concrete syntax here is something like this:

program: /\n/* definition* expression /[\n\t]*/
definition: expression _ ":" expression "\n"+
expression: term /[\t]+/ expression | term
term: _ symbol | _ var | _ "(" expression _ ")"
_: /[\t]*/
var: /[a-z_][a-z_0-9]*/
symbol: /[A-Z][a-z_0-9]*/

A draft Qfitzah interpreter

 Here’s my current test input for my draft interpreter:

(NB x) x
(NB (Simple Test File For Qfitzah))

https://github.com/darius/pythological/
https://github.com/darius/pythological/

(Do (Cover x) it) (Some x Covered it)
(Do (Cover Leather) Sofas)

(NB (Higher Order Programming))
(Map f Nil) Nil
(Map f (Cons car cdr)) (Cons (Do f car) (Map f cdr))

(Map (Cover Chocolate) (Cons Police (Cons Raisins (Cons Oreos Nil))))

(NB (Boolean Definitions))
(Not Yes) No
(Not No) Yes
(If Yes a b) (Do a)
(If No a b) (Do b)
(Do Yes) Yes
(Do No) No
(And a b) (If a b a)
(Or a b) (If a a b)

(NB (This Should Be A Built-in))
(Eq Yes Yes) Yes
(Eq No No) Yes
(Eq Yes No) No
(Eq No Yes) No

(NB (Boolean Truth Tables))
(Well (Not Yes) (Not No))
(Well (And Yes Yes) (And Yes No) (And No Yes) (And No No))
(Well (Or Yes Yes) (Or Yes No) (Or No Yes) (Or No No))

(All Nil) Yes
(All (Cons a b)) (And (Do a) (All b))
(Any Nil) No
(Any (Cons a b)) (Or (Do a) (Any b))

(Test Yes) Ok
(Test No) Fail

(NB (Boolean Tests))
(Test (All (Cons (And Yes Yes) Nil)))
(Test (Not (Any (Cons (And Yes No) (Cons (And No Yes) (Cons (And No No) Nil))))))
(Test (All (Cons (Or Yes Yes) (Cons (Or Yes No) (Cons (Or No Yes) Nil)))))
(Test (Not (Or No No)))

(NB (Peano Arithmetic))
(= Z Z) Yes
(= (S x) Z) No
(= Z (S x)) No
(= (S x) (S y)) (= x y)
(+ Z x) x
(+ (S x) y) (+ x (S y))
(2) (S (S Z))
(3) (S (2))
(4) (S (3))
(7) (S (S (S (4))))

(Test (= (+ (2) (2)) (4)))
(Test (Not (= (+ (2) (2)) (2))))
(Test (Not (= (2) (+ (2) (2)))))
(Test (= (+ (3) (4)) (7)))

(Empty List Is ())

 Upon being fed into my incomplete draft interpreter one line at a
time (the interpreter has a bug when it can read more than one line at
a time), it produces this output:

↪ ↪ (Simple Test File For Qfitzah)
↪ ↪ ↪ (Some Leather Covered Sofas)
↪ ↪ (Higher Order Programming)

↪ ↪ ↪ ↪ (Cons (Some Chocolate Covered Police) (Cons (Some Chocolate Covered Ra
isins) (Cons (Some Chocolate Covered Oreos) Nil)))
↪ ↪ (Boolean Definitions)
↪ ↪ ↪ ↪ ↪ ↪ ↪ ↪ ↪ ↪ (This Should Be A Built-in)
↪ ↪ ↪ ↪ ↪ ↪ (Boolean Truth Tables)
↪ (Well No Yes)
↪ (Well Yes No No No)
↪ (Well Yes Yes Yes No)
↪ ↪ ↪ ↪ ↪ ↪ ↪ ↪ ↪ ↪ (Boolean Tests)
↪ Ok
↪ Ok
↪ Ok
↪ Ok
↪ ↪ (Peano Arithmetic)
↪ ↪ ↪ ↪ ↪ ↪ ↪ ↪ ↪ ↪ ↪ ↪ Ok
↪ Ok
↪ Ok
↪ Ok
↪ ↪ (Empty List Is ())
↪

 Here’s the draft interpreter source code in amd64 assembly:

 ## Qfitzah, a leap or shortening: from a kilobyte
 ## or two of i386 machine code to a
 ## higher-order programming language with pattern matching,
 ## flexible parametrically-polymorphic data containers, and
 ## dynamically dispatched method calls with multiple dispatch.

 ## To build:

 ## $ gcc -Wl,-z,noseparate-code -static -m32 -nostdlib qfitzah.s -o qfitz
ah.bloated
 ## $ objcopy -S -R .note.gnu.build-id qfitzah.bloated qfitzah

 ## This version does *not* use bytecode. But it should
 ## be a good estimate for how much
 ## code is needed for a Qfitzah (with some primitive operations
 ## such as addition). 358 instructions, 731 bytes of code, 40

http://canonical.org/~kragen/sw/dev3/qfitzah.s

 ## bytes of data, 1184 bytes of executable.

 ## (Brian Raiter’s sstrip utility reduced the 1056-byte
 ## version of the executable to 828 bytes, a 228-byte
 ## reduction, but I don’t yet have that built into the build
 ## process.)

 ## The m4 manual says, “An important precursor of m4 was GPM;
 ## see C. Strachey, ‘A general purpose macrogenerator’,
 ## Computer Journal 8, 3 (1965), 225–41,
 ## https://academic.oup.com/comjnl/article/8/3/225/336044. GPM
 ## is also succinctly described in David Gries’s book Compiler
 ## Construction for Digital Computers, Wiley (1971).
 ## ...GPM fit into 250 machine
 ## instructions!” Well, Qfitzah isn’t quite that small yet,
 ## and it may not get there, but it’s a lot more agreeable to
 ## program in than GPM.

 ## Using variables in a template that are not matched in the
 ## pattern is a bug that the interpreter doesn’t detect,
 ## instead crashing:
 ## ↪ (Do Nothing) no
 ## ↪ (Do Nothing)
 ## Segmentation fault
 ##
 ## Using the same variable more than once is also an unchecked
 ## bug, but doesn’t crash:
 ## ↪ (Eq x x) (Yes x)
 ## ↪ (Eq 3 3)
 ## (Yes 3)
 ## ↪ (Eq 3 4)
 ## (Yes 4)

 ## On calling conventions:

 ## My initial thought was to use the standard i386 Linux ABI
 ## (stemming from Microsoft’s cdecl), where %ebx, %esi, %edi,
 ## %ebp, and of course %eip and %esp are preserved across
 ## calls, but %eax, %ecx, and %edx are not; but since my
 ## objective is to make things as small as possible, it was
 ## immediately obvious that passing all the parameters on the
 ## stack is unacceptably code-bloaty, so I was passing up to
 ## three parameters in %eax, %ecx, and %edx, and getting
 ## return values in %eax, and booleans in the flags. So,
 ## within some limits, I was free to use %ebx, %esi, %edi, and
 ## %ebp as global variables. I used %ebx as the allocation
 ## pointer, saving 12 bytes of code in the `cons` function,
 ## %esi as the parsing pointer, and %edi as the pointer to the
 ## global set of rewrite rules.

 ## However, I’ve come to the conclusion that this was a
 ## mistake, and callee-saved registers are generally not
 ## useful for i386 size optimization, especially not these.

 ## If you want to preserve a value across a call, you have two

 ## choices: you can push it on the stack (1 byte to push, one
 ## byte to pop) or you can allocate it in a callee-saved
 ## register. But that means that you have to save and restore
 ## the callee-saved register at entry and exit, which costs
 ## the same 2 bytes; moreover, if you got the value by calling
 ## another function, you need an additional byte to xchg the
 ## value from %eax into the callee-saved register. Also,
 ## pushing and popping lets you relocate it to a different
 ## register for free. In theory using a callee-saved register
 ## could still be a win if you have multiple calls across
 ## which to preserve a value, but so far it never has been.
 ## And you have to weigh this dubious benefit against the
 ## benefit of having fewer registers available for
 ## temporaries: 3 temporaries, shared with arguments, is
 ## pretty cramped!

 ## Moreover, in the 8086, the only registers that could be
 ## used as pointers were %ebx, %ebp, %esi, and %edi; while the
 ## i386 removed this restriction, addressing with those
 ## registers still produces tighter code in some cases (like
 ## lodsb and I think base+index), though not in the simplest
 ## cases:

 ## 804816e: 89 48 04 mov %ecx,0x4(%eax)
 ## 8048171: 89 4b 04 mov %ecx,0x4(%ebx)
 ## 804812c: 8b 09 mov (%ecx),%ecx
 ## 804832a: 8b 13 mov (%ebx),%edx
 ## 804816c: 89 03 mov %eax,(%ebx)
 ## 8048358: 89 01 mov %eax,(%ecx)
 ## 8048358: 89 07 mov %eax,(%edi)

 ## Indexing off %esp instead of %ebp does cost an extra byte
 ## tho.

 ## Using a register like %ebx instead of a memory location for
 ## a global variable like the allocation pointer costs an
 ## extra byte of initialization, because the initialization
 ## has to be done with a MOV instruction. Reserving %ebx in
 ## particular to be call-preserved also costs an extra
 ## push/pop pair around every system call, which is currently
 ## 4 bytes.

 ## So, for the time being, I’ve removed %ebx from the set of
 ## call-preserved registers, leaving only %ebp, %esi, %edi,
 ## and of course %esp and %eip. Somewhat to my surprise, this
 ## initially made the code a byte *larger*, plus 4 bytes of
 ## data; but I quickly recovered the difference by using my
 ## shiny new temporary register.

 ## All three of these remaining registers have global usages:
 ## %esi is used during parsing as the parsing input pointer,
 ## %ebp is used as a base pointer to the global variables, and
 ## %edi is used as the text output pointer (so you can output
 ## a bytes with three bytes: `mov $'(, %al; stosb`.)

 ## Here’s how we’ll define procedures:
 .macro proc name
 .text 1 # use subsection 1 for library code
\name:
 .endm

 ## Global variables are in the data segment, but in order to
 ## use smaller instructions, we load a pointer to the data
 ## segment into %ebp at startup and then never change it. So
 ## far I’m not using this everywhere.
 .data
globals:
 .macro my name, initval
 .pushsection .data
\name: .long \initval
 .popsection
 .endm

 ## Let’s define a macro for things to do at startup.
 .macro init
 .text 0
 .endm

init
 .globl _start
_start: mov $globals, %ebp

 ## We can use this mechanism to reduce the byte weight of
 ## calls to frequently called functions. The i386 lets you
 ## index into a function pointer table in an indirect-call
 ## instruction: call *4(%ebp), and that’s only 3 bytes, while
 ## a direct call would be 5 bytes, even though it’s
 ## PC-relative. So with 3 calls, we can reduce 15 bytes of
 ## direct call instructions to 9 bytes of indirect call
 ## instructions and 4 bytes of address data, thus shaving 2
 ## bytes.
 .irp routine, cons, skip_whitespace, read_factor, subst, ev, match
 my \routine\()_address, \routine
 .endr

 ## By using a conditional macro for our calls, we can switch
 ## calls to a given routine between direct and indirect just
 ## by editing the list above:
 .macro do name
 .ifdef \name\()_address
 call *(\name\()_address-globals)(%ebp)
 .else
 call \name
 .endif
 .endm

 ## This interpreter is largely concerned with manipulating
 ## list structure. Computers nowadays have large memories, so
 ## for any program that runs for a short time, perhaps under a
 ## second, we can get by without a garbage collector. The

 ## fundamental procedure for constructing list structure is
 ## cons, which creates a pair. It’s wrapped in a macro here
 ## to facilitate putting it physically after a later procedure
 ## that falls through into it.
 my allocation_pointer, arena
 .macro cons_here
proc cons
 ## This is 11 bytes instead of 21 bytes thanks in part to
 ## replacing two giant 6-byte memory access instructions with
 ## 3-byte things that index off %ebp.
 push %edi
 mov allocation_pointer-globals(%ebp), %edi
 stosl # arg 1, the car, is already in %eax
 xchg %eax, %ecx # arg 2, the cdr, is in %ecx
 stosl
 xchg %edi, allocation_pointer-globals(%ebp)
 xchg %edi, %eax # return value (old allocation pointer) in %eax
 pop %edi
 ret
 .endm

 ## We’re going to use pointer alignment to distinguish pair
 ## pointers from other kinds of pointers, including the empty
 ## list (nil); specifically, the low 2 bits of a pair pointer
 ## should be 0. For this, we define a couple of macros for
 ## jumping if a register does or does not point to a pair. To
 ## avoid wasting bytes, the \reg here should be a low-byte
 ## register: %al, %bl, %cl, or %dl. %al in particular makes
 ## the `test` instruction 2 bytes instead of 3.
 .macro jpair reg, dest
 test $3, \reg # will set ZF if it's a pair
 jz \dest
 .endm
 .macro jnpair reg, dest
 test $3, \reg
 jnz \dest
 .endm

 ## Extracting the fields of a pair:
 .macro car src, dest=none
 .ifeqs "\dest", "none"
 mov (\src), \src # this is only 2 bytes
 .else
 mov (\src), \dest # 2 bytes
 .endif
 .endm

 .macro cdr src, dest=none
 .ifeqs "\dest", "none"
 mov 4(\src), \src # 3 bytes
 .else
 mov 4(\src), \dest # 3 bytes
 .endif
 .endm

 ## Finally, we need some representation for the empty list,
 ## which needs to test as not being a pair. This is a little
 ## tricky; the chosen value (1) tests as a constant, but
 ## attempting to fetch its print name will crash.
 .macro setnil reg
 xor \reg, \reg
 inc \reg
 .endm

 ## For such a simple allocator to work, we need a large arena;
 ## and the allocation pointer needs to be aligned in it. We
 ## do this by aligning the arena to a 4-byte boundary and
 ## then incrementing the allocator pointer by multiples of 4.
 .bss 1
 .balign 4
arena: .fill 512*1024*1024

 ## The other kinds of elements in our list structure are
 ## constants, such as uppercase symbols and numbers, which are
 ## represented by words ending in ...01, and variables, which
 ## are represented internally by words ending in ...10, and
 ## externally as lowercase identifiers. So we have
 ## conditionals for these types corresponding to jpair and
 ## jnpair to test these tag fields:

 .macro jvar reg, dest
 test $2, \reg # will clear ZF if it’s a var
 jnz \dest
 .endm
 .macro jnvar reg, dest
 test $2, \reg
 jz \dest
 .endm

 ## XXX these aren’t actually used:
 .macro jconst reg, dest
 test $1, \reg # will clear ZF if it’s a const
 jnz \dest
 .endm
 .macro jnconst reg, dest
 test $1, \reg
 jz \dest
 .endm

 ## So, let’s define what it means to substitute some variables
 ## into a template:
 ## (define (subst t env)
 ## (if (var? t) (cdr (assq t env))
 ## (if (pair? t) (cons (subst (car t) env) (subst (cdr t) env))
 ## t)))

 ## This is wrapped in a macro in order to enable us to
 ## physically put it further down, where `ap` can fall through
 ## into it.

 .macro subst_here
proc subst
 jnvar %al, 1f # if t is not a var, jump ahead; otherwise
 do assq # look it up with assq (inheriting args), then
 cdr %eax # we take its cdr, then
 ret # return it
1: jpair %al, 2f # if t is not a pair, we just return it
 ret # (it’s already in %eax)
2: push %eax # we must preserve argument t across a call
 push %ecx # and env too.
 cdr %eax # get (cdr t) for that recursive call,
 do subst # which inherits env, but might clobber args;
 xchg %eax, %edx # socking away its return value in %edx,
 pop %ecx # restoring env for the second recursive call,
 pop %eax # and also t, before

 push %edx # saving the first subst return value on the stac
k;
 car %eax # what we want to subst now is (car t)
 do subst # so now our substed car is in %eax,
 pop %ecx # and our substed cdr in %ecx, so we can
 jmp cons # tail-call cons and return the result

 ## `assq` is our function for doing a variable lookup in an
 ## environment. To avoid an extra unconditional jump, I’ve
 ## relocated the tail end of the loop to before the loop entry
 ## point, which has the bizarre effect of putting it before
 ## the *procedure* entry point. It happens to set ZF when it
 ## succeeds and clear ZF when it fails, but `subst` ignores
 ## that at the moment. It might make things simpler if it
 ## returned its key argument when it fails, like `walk` from
 ## μKanren?

2: cdr %ecx # go to the next item before falling into assq
proc assq # look up an item %eax in a dictionary %ecx
1: jnpair %cl, 1f # nil or another atom terminates the dict
 car %ecx, %edx # get the item
 cmp %eax, 0(%edx) # is our dictionary key this item? CISC 4ever!1
 jne 2b # if not, restart the loop, or
 mov %edx, %ecx # on success we return the item, or on failure
1: xchg %ecx, %eax # return the non-pair we were examining
 ret
 ## Possibly it would be better to inline `assq` as a macro
 ## inside `subst`, since that’s the only thing that uses it so
 ## far.
 .endm # subst_here

 ## In a sense the inverse of `subst` is `match`. If #(vt) is a var vt,
 ## `(subst '(You #(vt) my #(np)) '((#(np) . wombat) (#(vt) . rot)))`
 ## evaluates to `(You rot my wombat)`, as you'd expect if
 ## you're some kind of psycho stalker, while
 ## `(match '(You rot my wombat) '(You #(vt) my #(np)) '())`
 ## evaluates to `((#(np) . wombat) (#(vt) . rot))`.

 ## In Scheme:

 ## (define (match t pat env)
 ## (if (var? pat) (cons (cons pat t) env) ; vars match anything
 ## (if (pair? pat) ; pairs match if cars match and cdrs match
 ## (and (pair? t) ; a pair pattern can't match an atom
 ## (let ((a (match (car t) (car pat) env))) ; match car?
 ## (and a (match (cdr t) (cdr pat) a)))) ; then, cdr?
 ## (and (equal? pat t) env)))) ; consts match only themselves

 ## In addition to returning an environment result in %eax,
 ## `match` also needs to indicate success or failure, which it
 ## does with ZF: ZF set indicates match (“equality”), ZF clear
 ## indicates match failure. Switching from CF to ZF reduced
 ## the weight of this subroutine from 85 bytes to 76 bytes,
 ## and with further work it’s down to 55.

 ## This has a bug; it treats () the empty list as a var. So
 ## (Gallygoogle ()) matches the same patterns (Gallygoogle x)
 ## would.

proc match
 ## Case for pattern being an unadorned var:
 jnvar %cl, 2f # If the pattern is a var,
 xchg %eax, %ecx # we want to (cons pat t), not (cons t pat)
 push %edx # save env
 do cons
 pop %ecx # now cons that pair onto the original env
 do cons
 xor %ecx, %ecx # set ZF to indicate success
 ret

 ## Case for matching a non-pair against a pair pattern:
2: push %ecx # for recursion, we must save pattern and
 push %eax # t, the term being matched.
 jnpair %cl, 2f # ensure pattern is a pair;
 jnpair %al, 1f # if term is not a pair, fail (clearing ZF);

 ## To match two pairs:
 car %eax # take car of both the term
 car %ecx # and of the pattern
 do match # and allow env to inherit in a recursive call;
 jne 1f # if that failed we bail out;
 # otherwise,
 xchg %eax, %edx # put the resulting env in the third param
 pop %eax # and get original term
 cdr %eax # for second recursion with (cdr t), and likewise
 pop %ecx # pat for
 cdr %ecx # (cdr pat).

 jmp match # tail-recursing; it’s my result, right (ZF) or w
rong (!ZF)

 ## To match a constant pattern:
2: cmp %ecx, %eax # Only succeed on exact equality,
 mov %edx, %eax # returning the supplied env

 ## Shared epilogue (XXX maybe unshare it?)
1: pop %ecx # discard 2 saved arguments
 pop %ecx
 ret

 ## ev evaluates a term by first evaluating all its children
 ## with evlis (which is just `(map ev t)`), then invoking
 ## ap(ply) on the result.
 ## (define (ev t)
 ## (if (pair? t) (ap (evlis t) rules) t))
 ## (define (evlis t)
 ## (if (pair? t) (cons (ev (car t)) (evlis (cdr t))) t))
proc evlis
 jpair %al, 1f
 ret
1: push %eax # save original t
 cdr %eax
 do evlis
 pop %ecx # restore original t
 push %eax # save return value
 xchg %ecx, %eax # 1 byte — shorter than mov %ecx, %eax
 car %eax
 do ev
 pop %ecx # pass evlis return value as cdr arg to cons
 # FALL THROUGH into cons (tail call)
 cons_here

 ## I’m thinking I’ll provide primitive procedures for
 ## arithmetic and file I/O by way of terms whose head is the
 ## integer “0”. For example: integer subtraction. Here we
 ## have the term in %eax. This untested strawman evprim
 ## weighs 25 bytes, plus 7 bytes for the test and branch in
 ## ev.
proc evprim
 cdr %eax
 car %eax, %ebx
 cdr %eax
 cmp $5, %ebx # (0 0 x y) returns x - y assuming both are ints
 jnz 1f
 car %eax, %ebx
 cdr %eax
 car %eax
 sub %ecx, %eax # XXX is this backwards?
 or $5, %al # low-order bits got zeroed by subtraction
1: ret

 my rules, -1 # global set of rules, initially nil
proc ev
 jpair %al, 1f
 ret # atoms always evaluate to themselves
1: do evlis
 car %eax, %ecx # check for primitive invocation
 cmp $5, %ecx # is the car of the list (tagged) 0?
 jz evprim
 mov rules-globals(%ebp), %ecx # initial rules argument to ap: the global

 # FALL THROUGH to ap

 ## (define (ap t rules)
 ## (if (not (pair? rules)) t ; no rewrite rules left? don't rewrite
 ## (let ((m (match t (caar rules) '()))) ; initially empty env
 ## (if m (ev (subst (cdar rules) m)) ; matched? subst & eval
 ## (ap t (cdr rules)))))) ; otherwise, try others
proc ap
 jpair %cl, 1f
 ret # return input t

1: car %ecx, %edx # get first rule
 push %eax # save input t
 push %ecx # save input rules
 car %edx, %ecx # get pattern part of rule
 setnil %edx
 do match # see if this rule matches inherited t in %eax
 je 1f # if that succeeded, go to the success case; or

 pop %ecx
 pop %eax

 cdr %ecx # move on to next rule and tail-recurse
 jmp ap

 ## Now we have found a match, with the env in %eax; now we
 ## must invoke subst with the template, then return the
 ## instantiated template.
1: mov %eax, %ecx # template is subst’s second argument
 pop %eax # load saved rules
 car %eax
 cdr %eax
 pop %edx # discard saved input t
 do subst
 jmp ev

 subst_here # XXX no longer necessary to be here

 ## Here are some macros from httpdito:
 .equiv __NR_exit, 1 # linux/arch/x86/include/asm/unistd_32.h:9
 .equiv __NR_read, 3
 .equiv __NR_write, 4

 ## System calls with different numbers of arguments.
 ## `be x, y` is a macro that does `mov x, y` or equivalent.
 .macro sys3 call_no, a, b, c
 be \c, %edx
 sys2 \call_no, \a, \b
 .endm

 .macro sys2 call_no, a, b
 be \b, %ecx
 sys1 \call_no, \a
 .endm

 .macro sys1 call_no, a
 be \a, %ebx
 sys0 \call_no
 .endm

 .macro sys0 call_no
 be \call_no, %eax
 int $0x80
 .endm

 ## Set dest = src. Usually just `mov src, dest`, but sometimes
 ## there's a shorter way.
 .macro be src, dest
 .ifnc \src,\dest
 .ifc \src,$0
 xor \dest,\dest
 .else
 .ifc \src,$1
 xor \dest,\dest
 inc \dest
 .else
 .ifc \src,$2
 xor \dest,\dest
 inc \dest
 inc \dest
 .else
 mov \src, \dest
 .endif
 .endif
 .endif
 .endif
 .endm

 ## To read input, we need an input buffer; to intern atoms, we
 ## need someplace to put the atom base+length pairs.
 .bss
input_buffer:
 .fill 65536
 .balign 8 # atoms need to be 8-byte aligned to free tag bits
atoms: .fill 8192
 my inptr, input_buffer
 ## Output is handled by setting %edi to point into this output
 ## buffer, then using stosb to add stuff to it.
 .bss
outbuf: .fill 131072

init
 mov $outbuf, %edi

 .data
prompt: .ascii "↪ "
prompt_end:
init
repl: mov $prompt, %eax
 mov $(prompt_end - prompt), %ecx

 do emit
 do flush
 sys3 $__NR_read, $0, inptr, $255
 test %eax, %eax # EOF on input?
 jz quit
 ## XXX missing loops for \n; could be multiple lines or partial lines
 mov inptr-globals(%ebp), %esi # copy old inptr to %esi for parsing
 add %esi, %eax # NUL-termination unnecessary due to zero fill
 mov %eax, inptr-globals(%ebp)
 do handle_line
 jmp repl
quit: sys1 $__NR_exit, $0

 ## XXX this needs a lot of attention for reducing code space
proc print
 cmp $1, %eax # treat nil like pairs (cmp is only 3 bytes!)
 je 5f
 jnpair %al, 1f # non-nil atoms treated otherwise
5: push %eax # save S-expression to print
4: mov $'(, %al
 stosb
 pop %eax
 ## loop over list items:
2: jnpair %al, 3f # XXX handle improper lists?
6: push %eax
 car %eax
 do print
 pop %eax
 cdr %eax
 jnpair %al, 3f
 push %eax
 mov $32, %al
 stosb
 pop %eax
 jmp 6b # XXX too many jumps?
3: mov $'), %al
 stosb
 ret
1: and $~3, %eax # convert var/constant → base/len pointer
 cdr %eax, %ecx
 car %eax
 ## FALL THROUGH into a tail call to `emit`

proc emit # output a string to output buffer
 push %esi
 mov %eax, %esi # string base is arg 1, length is arg 2 (%ecx)
 rep movsb
 pop %esi
 ret

proc flush # Send output buffer to actual stdout
 mov $outbuf, %ecx # base address of bytes to output
 push %ecx
 mov %edi, %edx
 sub %ecx, %edx # number of bytes to output

 sys1 $__NR_write, $1
 pop %edi # reset output pointer
 ret

 ## Our grammar looks something like:
 ## prog ::= _ (factor (_ "\n" | _ factor _"\n"))*
 ## factor ::= constant | var | "(" (_ atom)* _ ")"
 ## _ ::= " "*
 ## constant ::= [*-^][*-~]*
 ## var ::= [_a-~][*-~]*
 ##
 ## Constants and vars chew up as many characters as they can.
 ##
 ## A line with two S-expressions (“factors”) defines a rule; a
 ## line with just one offers an expression to evaluate
 ## according to the rules so far.

 ## On inputting a rule, it is added
 ## to the front of the rules list (thus taking precedence over
 ## older rules).

 ## Here’s a crude parser. Input pointer in %esi points
 ## into NUL-terminated input string.
proc handle_line
 cld # XXX not really necessary since DF is always clear
 do read_factor
 jz 1f # if blank line, ignore
 ret
1: push %eax
 do skip_whitespace
 lodsb # lodsb;dec: 2 bytes, cmp $'\n, %al: 2; cmp $':, (%esi): 3
 dec %esi # so this approach saves bytes only because of second cmp
 cmp $'\n, %al # if there’s only one expression on the line, not a rule
 jnz 1f
 pop %eax
 do ev
 do print
 mov $'\n, %al
 stosb
 ret
1: do read_factor # read replacement template for rule being defined
 pop %ecx # pop pattern
 jnz parse_error
 ## XXX ignoring the possibility of more than two things on the line
 xchg %ecx, %eax
 do cons
 ## FALL THROUGH into tail call to add_rule

proc add_rule
 mov rules-globals(%ebp), %ecx # cons onto the existing set of rules
 do cons
 mov %eax, rules-globals(%ebp)
 ## debug print out rules:
 ## do print
 ## mov $'\n, %al

 ## stosb
 ## do flush
 ret

proc parse_error
 mov $'!, %al
 stosb
 mov $'\n, %al
 stosb
 ret

proc read_factor
 do skip_whitespace
 lodsb
 dec %esi # peeking
 cmp $'(, %al # Is there a nested list?
 jne 1f
 lodsb
 do read_term
 push %eax
 do skip_whitespace
 lodsb
 cmp $'), %al # indicate success
 pop %eax
 ret
1: cmp $'*, %al # [*-^] starts a constant
 ## <https://stackoverflow.com/a/29577037> explains that with
 ## cmp $2, %eax, jg jumps when %eax > 2, though this is
 ## confusing as
 ## <https://en.wikibooks.org/wiki/X86_Assembly/Control_Flow>
 ## explains; so this comparison has the correct sense:
 jb 3f
 cmp $'^, %al
 ja 2f
 jmp read_constant
2: cmp $'_, %al # _ starts a variable
 je 2f
 cmp $'a , %al # [a-~] also starts a variable
 jb 3f
 cmp $'~, %al
 ja 3f
2: jmp read_var
3: cmp $'_, %al # guaranteed to fail and clear ZF, indicating failure.
 ret

 ## Advance input pointer %esi into NUL-terminated input string
 ## to first non-whitespace character.
proc skip_whitespace
 lodsb
 cmp $32, %al
 je skip_whitespace
 dec %esi
 ret

 ## Always succeeds (possibly returning nil), doesn’t set ZF.

proc read_term
 do read_factor
 jnz 1f # if it failed, skip ahead
 push %eax # save returned term
 do read_term # recursive call for tail of term
 push %eax
 do skip_whitespace
 pop %ecx
 pop %eax
 do cons # XXX tail call
 ret
1: setnil %eax # return nil if no factor found
 ret

 ## Always succeeds, sets ZF to indicate success.
proc read_constant
 do read_atom
 ## xor $3, %al is also 2 bytes, same as or $1, %al
 ## So XXX maybe one of these two should fall through into
 ## intern and the other should xor the output of intern with 3
 or $1, %al
 cmp %eax, %eax # set ZF
 ret

 ## Always succeeds, sets ZF to indicate success.
proc read_var
 do read_atom
 or $2, %al
 cmp %eax, %eax
 ret

 ## Octal to tagged integer. Digit count in %ecx, input starts
 ## at %esi. 19 bytes. Not used yet.
proc o2ti
 xor %eax, %eax
 xor %ebx, %ebx # accumulate result in %ebx
1: lodsb
 sub $'0, %al # convert digit from ASCII
 add %eax, %ebx
 shl $3, %ebx # by shifting after the add instead of before,
 loop 1b
 xchg %eax, %ebx
 add $5, %eax # we leave space for this type tag
 ret

 ## Decimal to tagged integer. Digit count in %ecx, input
 ## starts at %esi. 22 bytes. Not used yet. If the
 ## difference is only like 6 bytes maybe I’ll just use
 ## decimal.
proc d2ti
 xor %eax, %eax
 xor %ebx, %ebx # accumulate result in %ebx
1: lodsb
 sub $'0, %al # convert digit from ASCII
 imul $10, %ebx

 add %eax, %ebx
 loop 1b
 xchg %eax, %ebx
 shl $3, %eax
 add $5, %eax
 ret

 ## Tagged integer to octal, taking integer in %eax. Outputs
 ## to buffer at %edi. 25 bytes. Not used yet.
proc ti2o
 xchg %eax, %ebx
 xor %eax, %eax # clear high bytes of %eax for the loop
1: shr $3, %ebx # shift first to remove type tag
 mov %bl, %al # still only 2 bytes!
 and $7, %al # 2 bytes, shorter than `and $7, %eax`
 add $'0, %al # convert to ASCII
 test %ebx, %ebx # don’t recurse if no digits remain
 jz 1f
 push %eax # buffer up digit for later emission
 call 1b
 pop %eax
1: stosb
 ret

 ## I’m thinking about adding character string literals, in a
 ## form like this maybe. This function would be called after
 ## the open-quote. 51 bytes.
proc read_string
 xor %eax, %eax
 lodsb
 cmp $'", %al
 jne 1f
2: xor %eax, %eax # tagged integer 0 as list terminator
 mov $5, %al # this is 4 bytes rather than the 5 of mov $5, %eax
 ret
1: cmp $'\n, %al
 je 2b # just treat this as end of string
 cmp $'\\, %al # treat \" as embedded "
 jne 1f
 lodsb
 cmp $'\n, %al
 je 2b
1: push %eax
 do read_string # read rest of string
 pop %ecx
 xchg %eax, %ecx # get saved character back in %eax
 shl $3, %eax
 or $5, %al # add integer tag
 do cons
 xchg %eax, %ecx
 xor %eax, %eax
 mov $13, %al # tagged integer 1
 jmp cons # XXX probably place this closer to cons so this jump is short

 ## Always succeeds.

proc read_atom
 mov %esi, %edx # save address of start byte
1: lodsb
 cmp $'*, %al
 jb 1f
 cmp $'~, %al
 jbe 1b
1: dec %esi # put back last character read
 mov %esi, %ecx # save end address, then compute length:
 sub %edx, %ecx # $ecx -= $edx, due to confusing AT&T syntax
 xchg %eax, %edx
 ## FALL THROUGH into intern

 ## (intern base-addr len) checks to see if a string is already
 ## in the atom table, returning it if so, or inserting it if
 ## not; either way it returns the (4-byte-aligned) address.
 ## Can’t fail. Can’t use assq because it’s doing a string
 ## compare.
proc intern
 push %esi
 push %edi
 mov $atoms-8, %ebx
 ## At the top of the following loop, %ebx points into (or just
 ## before) the atoms table, %eax points to the string we’re
 ## trying to intern, and %ecx has its length.
1: add $8, %ebx # Advance to next table entry.
 mov (%ebx), %edi # Load string pointer from table.
 test %edi, %edi # null string pointer? indicates end of table
 # test %edi, %edi is one byte smaller than cmp $0.
 jz 2f # reached end of table without finding it
 cmp %ecx, 4(%ebx) # check to see if the lengths match
 jne 1b
 push %ecx # repe will clobber %ecx
 mov %eax, %esi # put pointer to needle string into %esi
 repe cmpsb
 pop %ecx
 jne 1b # go on to next entry unless we found it
1: mov %ebx, %eax # address of found entry (table pointer)
 pop %edi
 pop %esi
 ret
2: # not found, must insert
 mov %eax, (%ebx) # non-null pointer here says this is no longer the end
 mov %ecx, 4(%ebx)
 jmp 1b # now that we’ve inserted it, it’s “found”

 Here’s the resulting 956-byte executable in base64:

f0VMRgEBAQAAAAAAAAAAAAIAAwABAAAAuIAECDQAAAAAAAAAAAAAADQAIAADACgAAAAAAAEAAAAA
AAAAAIAECACABAiTAwAAkwMAAAUAAAAAEAAAAQAAAJQDAACUkwQIlJMECCgAAAAsIAMgBgAAAAAQ
AAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAL2UkwQIv8CzBQi4uJMECLkEAAAA6FYBAADoWAEAALr/AAAAiw20kwQIMdu4
AwAAAM2AhcB0D4t1IAHwiUUg6EkBAADrxTHbuAEAAADNgPbBAnQMkVL/VQBZ/1UAMcnDUVD2wQN1
GKgDdRiLAIsJ/1UUdQ+SWItABFmLSQTr0DnIidBZWcOoA3QBw1CLQATo8v///1lQkYsA/1UQWVeL
fRirkauHfRiXX8OLQASLGItABIP7BXULixiLQASLACnIDAXDqAN0AcPouf///4sIg/kFdNaLTRz2

wQN0AcOLEVBRiwox0kL/VRR0B1lYi0kE6+WJwViLAItABFr/VQzrw6gCdAnoIwAAAItABMOoA3QB
w1BRi0AE/1UMkllYUosA/1UMWel0////i0kE9sEDdQiLETkCdfKJ0ZHDg/gBdASoA3UkULAoqlio
A3UXUIsA6Ob///9Yi0AEqAN1B1CwIKpY6+mwKarDg+D8i0gEiwBWicbzpF7DucCzBQhRifopyjHb
Q7gEAAAAzYBfw/z/VQh0AcNQ/1UErE48CnUNWP9VEOiU////sAqqw/9VCFl1DpH/VQCLTRz/VQCJ
RRzDsCGqsAqqw/9VBKxOPCh1D6zoKwAAAFD/VQSsPClYwzwqchQ8XncC6zE8X3QIPGFyBjx+dwLr
LTxfw6w8IHT7TsP/VQh1EFDo9f///1D/VQRZWP9VAMMxwEDD6IQAAAAMATnAw+h6AAAADAI5wMMx
wDHbrCwwAcPB4wPi9pODwAXDMcAx26wsMGvbCgHD4vaTweADg8AFw5MxwMHrA4jYJAcEMIXbdAdQ
6O3///9YqsMxwKw8InUFMcCwBcM8CnT3PFx1Baw8CnTuUOjh////WZHB4AMMBf9VAJExwLAN6fv9
//+J8qw8KnIEPH52906J8SnRklZXu7iTBQiDwwiLO4X/dBI5SwR18lGJxvOmWXXqidhfXsOJA4lL
BOv0AFSBBAiwggQIfYIECLeBBAh6gQQIBoEECMCzBwj/////wJMECOKGqiA=

Topics

• Performance (p. 1155) (22 notes)
• Bootstrapping (p. 1171) (12 notes)
• Lisp (p. 1174) (11 notes)
• Assembly-language programming (p. 1175) (11 notes)
• Small is beautiful (p. 1190) (8 notes)
• Programming languages (p. 1192) (8 notes)
• Higher order programming (p. 1196) (7 notes)
• Syntax (p. 1221) (5 notes)
• Bytecode (p. 1236) (5 notes)
• Dynamic dispatch (p. 1259) (4 notes)
• Term rewriting (p. 1270) (3 notes)
• Scheme (p. 1274) (3 notes)
• Qfitzah (p. 1337) (2 notes)
• Aardappel

 A short list of the most useful
Unix CLI tools
 Kragen Javier Sitaker, 02021-09-15 (updated 02021-09-16)
(2 minutes)

 A list of handy tools (mostly CLI) developed from a discussion on
#scannedinavian on Libera.chat (formerly Freenode).

• most, less, bat: text viewing
• vi: text editing
• cat, cut, join, comm, sort, merge, uniq, grep, shuf, random: basic text query
• ack, rg, awk, ack-grep: advanced text query (sometimes filesystem
too)
• mpv, mplayer, evince, mupdf, xpdf, firefox, links, lynx, ebook-viewer: non-text
viewing
• find, xargs: filesystem query
• fzf, fd: advanced filesystem query
• jq, JSON query
• history: bunk
• sudo: sandwiches
• ls, cd, mkdir, rmdir, mv, ln, rm, cp, du: basic file manager
• dust: alternative to du
• exa: alternative to ls
• xdu, k4dirstat: disk usage explorers
• ls, lsof, ps, w, who, ip, ifconfig, netstat, df, vmstat, dstat, top, htop: system
status information
• thunar, bashmount, mkfs.vfat: mounting and formatting removable
media
• sudo, apt, apt-get, apt-cache, ifconfig, dpkg, apt-file, mtr: package
management and system administration
• ssh, nc, rsync, youtube-dl, gomuks, mtr, httpdito: networking
• rsync, diff, patch, cmp: file comparison and synchronization
• git, fossil, rcs: source code version tracking
• rsync, git, tar: backups
• %, bg/%&, jobs, kill, killall, pidof: multitasking
• time, tally, ulimit, ps, top, docker, lsof, pv: resource monitoring and
administration
• man, info, pydoc: online help
• [, [[, while, if, read, sleep, $((..)), echo: shell scripting
• caesar: toy encryption
• units, bc, dev3/calc.py: calculation
• bc, python2, python3, awk: programming languages
• TZ=America/New_York date: world clock
• printf '\e[3gf(\eHx,\n\ty)\n': escape sequences
• watch -d: GUIfication
• reset: recovering a horked terminal
• sloccount, cloc: counting lines of source
• asciinema, screen, tmux: terminal recording, disconnecting,
multiplexing
• visidata: data explorer
• darkdraw: ASCII art draw program
• dd: sorry, I can’t, tonight I’m driving

https://github.com/bootandy/dust
https://github.com/ogham/exa

• https://github.com/eradman/entr: run arbitrary commands when
files change, turning your filesystem into an event bus (originally just
a test runner)
• w, who, write, wall, talk: a chat system
• xclip, xmessage: sort of GUI integration

 Thanks to Shae Erisson and for the discussion this arose from!

 Topics

• History (p. 1153) (24 notes)
• Unix (p. 1268) (3 notes)
• Command-line interfaces (CLI) (p. 1378) (2 notes)

https://github.com/eradman/entr

Three phase differential data
Kragen Javier Sitaker, 02021-09-22 (updated 02021-12-30)
(4 minutes)

 Single-ended data transmission, as used in RS-232, is limited in
noise immunity, so higher-speed data is commonly transmitted with
differential signaling. Unfortunately, this requires twice as much
wire.

 AC power transmission faces a similar problem: unless you’re
willing to use the planet as your current return path (commonplace in
parts of Brazil and for submarine cables) you need to carry the current
from the power plant to the load — and then back again. In AC
power transmission, this problem (as well as the problem of starting
large AC motors) is solved with three-phase power transmission:
three wires carry alternating voltages 120° out of phase with one
another. The sum of the three phasors is zero: always approximately,
and for balanced loads like a three-phase motor, exactly. This permits
carrying thrice as much power over only 50% more wires than the
single-phase approach used in household outlets.

 If you replace your twisted-pair data transmission lines with
twisted triads, for 50% more wires you can’t get thrice the data rate,
but you can get twice the data rate, with roughly the same
noise-immunity benefit you get from twisted-pair differential
signaling. The third wire carries a balancing voltage and current
which maintains the triad’s net voltage and current at 0; the mutual
inductances and capacitances of the three wires remain constant along
their lengths, just like in a twisted pair, and because these mutual
inductances and capacitances are are all equal, crosstalk can be
accurately canceled. At low speeds this balancing voltage can be
arranged straightforwardly by driving the third wire with an opamp
that maintains a constant reference voltage at a summing Y junction;
higher speeds might require more elaborate drivers that multiplex the
third wire among, in the bilevel case, four compensation voltages.

 Attempts to extend this approach to differential quads, quintuplets,
and so on will suffer from the fact that the balancing wire and signal
wires cannot all be equidistant, at least in three-dimensional space.
The result is that either data edges on one signal wire that couple
equally to two other signal wires cannot be perfectly canceled on both
of them by a single balancing wire, or data edges on one signal wire
that couple unequally to two other signal wires cannot be perfectly
canceled on both of them by a single balancing wire. Also, if the
voltage levels on the three or more signal wires were uncorrelated, the
balancing wire would be subject to much larger voltage swings. Still,
MIMO approaches could yield fruit with n wires while retaining net
zero voltage and current on the wire bundle; in theory it’s just a
question of solving a well-conditioned, very nearly linear system of n
equations in n unknowns, one of which is the common-mode noise.

 The problem of unequal voltage swings and complex analog line
drivers can be solved, at the cost of reduced data rates, with a
constant-weight m-of-n code like the 2-of-5 code. In a sense the
1-of-3 encoding SETUN used for its three-way flip-flop(-flap?)s was

a constant-weight encoding providing 1.58 bits over three
“differential” wires. Decoding such a constant-weight code could be
considerably simpler than a more sophisticated MIMO approach,
merely amounting to comparing each wire to a threshold from a
summing junction; a balanced code on 8 wires would provide 6.1 bits
of data per clock (70 valid codes), and a 9-of-19 code on 19 wires
would provide 15.9 bits per clock (8314020 valid codes).

 More generally, if you can statically estimate (linear, memoryless)
crosstalk coefficients between particular wires, you can build a
summing junction that computes the “predicted” crosstalk for each
wire, to be used as the comparison threshold for that wire, thus
mostly canceling that crosstalk.

Topics

• Electronics (p. 1145) (39 notes)
• Protocols (p. 1206) (6 notes)
• Physical computation (p. 1208) (6 notes)
• Encoding (p. 1256) (4 notes)
• Setun (Сетунь)

Waterglass “Loctite”?
Kragen Javier Sitaker, 02021-09-22 (updated 02021-12-30) (1 minute)

 Loctite polymerizes in the presence of metal ions, which is how it
hardens in the screw threads but not in the plastic bottle. Guess what
else solidifies in the presence of (polyvalent) metal ions? Solutions of
soluble silicates: waterglass!

 Suppose waterglass by itself in a screw thread doesn’t harden
because the metal surface doesn’t spontaneously oxidize just because
it’s wet? Even if galvanic corrosion isn’t a viable source of cations,
maybe the surface can be induced to oxidize with some kind of nasty
oxidizing anions. For example, maybe you can use sodium chloride,
potassium sulfate, ammonium acetate, or some crossbreed of them to
provoke oxidation of iron, brass, or aluminum. Only a tiny amount
of oxidation is necessary, only enough iron ions to precipitate the
silicate, which itself should be present in only the minimal quantity
required to achieve the desired bond strength.

 Another interesting possibility I haven’t tried is baking soda.
Waterglass hardens in seconds upon contact with carbonic acid, and
baking soda releases carbonic acid upon being heated above 50°,
leaving behind its conjugate base, the more basic soda ash. Perhaps
this reaction could solidify waterglass in a thread if you heat the
whole assembly above 50°? I suspect that the carbonic acid solidifies
the waterglass by dropping the pH, and if that’s the case, it will not
work.

Topics

• Manufacturing (p. 1151) (29 notes)
• Waterglass (p. 1189) (8 notes)

Qfitzah internals
Kragen Javier Sitaker, 02021-09-24 (updated 02021-12-30)
(2 minutes)

 Qfitzah represents terms as cons lists in the conventional Lisp way,
exploiting the isomorphism between ordered trees and binary trees. A
term may be a constant, a variable, or a list; a list is represented as a
pair of the first item in the list, which may be any term, and the rest
of the list, which is either a pair or nil. Additionally, variables and
constants are symbols. I’m planning to add a new kind of constant
that is an unboxed small integer and not a symbol.

 Each of the values in a pair is represented by a 32-bit word, and the
pair is represented by two adjacent 32-bit words in memory; its three
low-order bits represent the type tag of the object pointed to. A pair
is represented by a pointer to the beginning of that pair, and its
low-order bits are ?00, 000 I think.

 Variables (represented in the concrete syntax as symbols beginning
with an uncapitalized letter or their ilk) are represented by words
whose low-order bits are 010, and constants are represented by words
whose low-order bits are 001. I’m planning to make numerical
constants be represented by words whose low-order bits are 101. Nil
is represented by -1, so its low-order bits are 111, so if you were
expecting a term and got nil, it would look like both a variable and a
constant. XXX this is a bug! There are bugs where empty lists are
concerned. Shit. They match things they shouldn’t, for example:

$./qfitzah
↪ () (W)
↪ (F)
Violación de segmento (`core’ generado)

 If you mask off the two low-order bits of the word that represents
a symbol, you get the address of a 32-bit word containing a pointer to
the characters of the symbol’s name; the following 32-bit word is the
length of the symbol’s name. These records are allocated sequentially
in the atom table, which is initially filled with zeroes.

 My thought is that if you shift an unboxed integer by 3 bits you get
the integer value.

Topics

• Term rewriting (p. 1270) (3 notes)
• Qfitzah (p. 1337) (2 notes)

Blowing agents
Kragen Javier Sitaker, 02021-09-29 (updated 02021-12-30)
(4 minutes)

 Pentane and CFCs are conventionally used for blowing styrofoam
and similar low-temperature materials; propane is used for aerosol
cans. For bread, yeast produces carbonic acid gas, and heating
produces water vapor, while in pancakes, cookies, and crackers,
baking powder produces carbonic acid gas from something like cream
of tartar (potassium bitartrate) and baking soda, or for a double-acting
powder, something like monocalcium phosphate and baking soda.
Salt of hartshorn (ammonium carbonate and carbamate) similarly
decomposes into ammonia, water, and carbonic acid gas at around
58°.

 At around 100°, water evaporates. It has the unique advantage of
weighing only 18 daltons, so a given mass of water will produce more
moles of vapor than just about any other condensed matter, except
that ammonia is only 17 daltons. By comparison, dioxygen is 32
daltons, dinitrogen 30, and carbonic acid gas 28.

 But what about higher temperatures? For blowing foams from
polymers like waterglass which require higher temperatures to soften,
we’d maybe benefit from solids that don’t become reactive until those
higher temperatures. For waterglass in particular it would be
desirable that the blowing agents not release polyvalent cations, since
those can raise the softening point of the waterglass to an
inconveniently high temperature.

 Various kinds of water-including complexes might work as fillers
that can retain water to higher temperatures. Phosphoric acid retains
some water up to 800°, although it’s probably not very compatible
with waterglass; and its melting point drops rapidly from 40° with
water content. But sal mirabilis, epsom salt, blue vitriol, alabaster,
and the chlorides of magnesium and calcium incorporate quite a lot of
water in their crystals, some of which evaporates at temperatures
somewhat above 100°. Of these, sal mirabilis is free of polyvalent
cations, and alabaster is relatively insoluble in water.

 Baking soda alone evolves carbonic acid gas upon heating past 50°
and fairly quickly at 100°, leaving washing soda, which I believe
releases a second carbonic acid molecule at above 850°. This,
however, leaves behind sodium oxide, which may not be desirable.

 Chalk, of course, also releases carbonic acid at 500°-850°, leaving
behind quicklime.

 The formate and chloride of ammonium both decompose into gas
upon heating (to 180° with traces of hydrogen cyanide in the first
case), but in the case of the chloride the process is reversible. I think
that the oxalate also decomposes to gases at 215°-265°, producing
carbon monoxide as well. Oxalates and formates of metals also tend
to produce gases when heated; those of lithium, calcium, sodium,
potassium, and magnesium are notable here.

 Aluminum trihydroxide (“trihydrate”, gibbsite) is commonly used
as a flame-retardant plastic filler. It’s fairly alkaline, but highly

water-insoluble, and does contain polyvalent cations. Upon heating
past 220° it produces a mole and a half of water, leaving amorphous
sapphire. Magnesium (di)hydroxide is similar, but doesn’t decompose
until 330°, leaving magnesia; and slaked lime of course does the same
thing, but at 400°-600°, leaving quicklime. Slaked lime is unstable in
atmospheric air because it slowly absorbs carbonic acid gas to become
chalk.

 Sulfur boils at 444.6°, but it melts first and then polymerizes, and
the vapor consists of mostly violet disulfur (64 daltons) above 720°; at
lower temperatures as much as 10% may be red trisulfur. Ignition in
air happens at a much lower temperature than this boiling. Sulfur has
the great advantage that it is not water soluble and pretty inert at
room temperature.

 Autoclaved aerated concrete uses a reaction between powdered
aluminum and water to generate hydrogen (2 daltons!) but of course
the total mass of the ingredients is much larger than if you were to
just boil the water.

 Metal hydrides might be an alternative hydrogen source, though
calcium hydride (hydrolith) doesn’t even melt until 816°, and even
LiH (8 daltons!) doesn’t melt until 688.7°. These readily produce
hydrogen gas with water, forming the hydroxides. Thermal
decomposition of LiH is feasible, but the resulting lithium metal
doesn’t boil until 1330°.

Topics

• Materials (p. 1138) (59 notes)
• Manufacturing (p. 1151) (29 notes)
• Foam (p. 1185) (9 notes)
• Azane (p. 1386) (2 notes)

Compliance spectroscopy
Kragen Javier Sitaker, 02021-09-29 (updated 02021-12-30)
(4 minutes)

 As I understand it, compliance is the derivative of position with
quasistatic force, and in a linear system this is a constant. Nonlinear
systems have compliance that varies with position; think of a probe
touching skin with subcutaneous fat over muscle and bone.
Compliance is high at first because of the fat, but with larger
displacements the fat is squashed out enough that now you’re
measuring the compliance of the muscle, which increases rapidly with
further displacement. I suspect that this kind of force-displacement
curve is important to the tactile sensations of softness, hardness, etc.

 Generally I think that, if you want to plot the curve, you want to
plot the derivative of force against displacement, which is to say, the
compliance as a function of displacement.

 Along a second dimension, we have the frequency at which the
force is being applied; for some systems, resonant modes will give
very large “compliances” at some frequencies and smaller ones at
other frequencies, tending to the quasistatic limit as the frequency
approaches zero. The degree to which the system exhibits these
resonances gives you some information about lossiness in its elasticity.
A steel spring might have the same compliance as a cotton pillow, and
you can taper the spring to make its compliance vary with
displacement (as mattress makers do routinely), but the cotton pillow
will lack any sharp resonant peaks because it’s very lossy, so you can
easily distinguish them. This is noticeable if you just tap both systems
with a coin. Other systems have other characteristic resonances.
Nonlinearity will produce vibrations at other frequencies, including
harmonics and subharmonics, vaguely like Raman emission but in the
acoustic domain, potentially adding a third dimension.

 This sort of “viscoelasticity spectroscopy” or “compliance
spectroscopy” is potentially useful for a number of different purposes:

• Teledildonics. Nonlinear compliance is crucial to reproducing the
tactile sensation of touching a human body.
• Somatic and haptic interfaces; by distinguishing a finger pressing a
button from a palm or a floor pressing it, software can distinguish
between different actions to take. Even pressing a button with the
same finger at different angles can be detected. Tiny total internal
reflection compound parabolic reflectors could be integrated into a
button to provide a simultaneous optical interface for coupling LED
illumination in and out of a finger without the discomfort occasioned
by the LED bumps traditional in pulse oximeters. This, too, has
obvious masturbatory uses: a vibrator can be programmed to respond
to not only the pressure it’s put under but also the compliance curve
of the tissues it’s stimulating.
• Material identification. This is somewhat trickier, because the
compliance spectrum of an object depends on many things other than
the material it’s made of; for example, what shape it is, how firmly
it’s being held, and what it’s being held in. But with the whole 2-D

spectrum, it might be feasible to tease out at least a guess.
• Material characterization. If you make a standard-geometry coupon
of the material being tested and hold it in a standard way, the above
variations go away, and you can compute quantitative viscoelastic
properties of the material. Alternatively, at high enough frequencies,
it should be possible to characterize just the material in the region
around the probe.
• Object identification. You can use compliance spectroscopy to
distinguish multiple objects, even if they are made of the same
material.

Topics

• Contrivances (p. 1143) (45 notes)
• Sensors (p. 1191) (8 notes)
• Scanning probe microscopy (p. 1242) (4 notes)
• Vibrators

Planning Apples to Apples, instead
of Planning Poker
Kragen Javier Sitaker, 02021-09-29 (updated 02021-12-30)
(6 minutes)

 Apples to Apples is a popular party game; as Wikipedia previously
explained it:
Each player is dealt seven “red apple” cards; on each is printed a noun or noun
phrase (Madonna, Lightning, Socks, Mahatma Gandhi, Street Gangs, London, The
Universe, A Locker Room, The San Andreas Fault, Science Fiction, etc.).
 One player is appointed as the first “judge”. She draws a “green apple” card on
which is printed an adjective (Scary, Smelly, Patriotic, Rich, Aged, etc.), and places
it face-up. Each of the other players places (face down) one of his red apple cards
which he feels matches the green apple card. The judge shuffles the red apple cards
then turns them face up (without knowing who submitted each) and chooses the
one she feels is the best match for the green apple card. The player who submitted
that red apple card wins the round, and takes the green apple card to signify the
win.

 (by Fritzlein, Vicki Rosenzweig, Zandperl, Fsufezzik, and Brian
Kendig)

 Cards Against Humanity is a Creative-Commons-licensed game
along the same lines with blacker humor.

 In Scrum, there’s a “planning poker” that is sort of structured as a
game, allowing the project to be planned based on estimates of costs,
but it doesn’t provide incentives for providing good estimates;
consequently the way a selfish player would keep their job or get
promoted is to spend as little effort as possible on estimates, with the
predictable result that the estimates are terrible. Perhaps “Planning
Apples” or “Planning Against Humanity” could provide correct
incentives, so that people who put the right amount of effort into
estimation would instead keep their job or get promoted. How
would that work?

 The first attempt is the jellybean-jar-game approach: each person’s
estimate of a task is anonymously recorded, and then when the task is
done, whoever had the closest estimate wins a point. The estimate
used for planning is some sort of average of the estimates; perhaps the
median is the best average to use, or perhaps a median weighted by
people’s scores.

 However, this creates a perverse incentive: if you get assigned a
task, you have an incentive to take the exact amount of time you
estimated. There’s a second-order perverse incentive: you have an
incentive to pad your estimate so that you’re pretty sure that, if you
get the task, you can sandbag your work to hit the estimate. This can
be ameliorated by disqualifying the performer’s guess if it happens to
be closest, assigning the point to the next-closest estimate, just as the
“judge” in A2A doesn’t get to play a red apple card. Then two
different people have to collude (against the interests of the rest of the
team) to win these points. In some social contexts that is a sufficient
control.

 Perhaps the perverse incentive can be solved entirely by giving a

bigger prize for beating the estimate that was used for planning. In the
case where that estimate was the median, this prize should be awarded
when the actual time taken was lower than the highest estimate that
was less than the median. So, for example, if the estimates were 2, 4,
7, 11, and 13, the median is 7, but you only win the prize if you
completed it with 4 units of work or less.

 That way, if you expect to be assigned the task, and you know
what the other players’ estimates are, by choosing your estimate
adversarially you can only push the estimated time up to the next
higher estimate.

 In the above example, suppose the estimates on the table are 2, 4,
11, and 13; this gives you the freedom to set the estimate to anything
between 4 and 11 by choosing a number in that range, or to set it to 4
or 11 by picking a number lower than 4 or higher than 11. If the real
difficulty of the task is in the 4-11 range, you aren’t going to be able
to get the fast completion prize by picking a number in that range, but
you can win the estimation prize by doing the best job possible at
estimating the difficulty, taking the estimation prize away from the 4
guy and the 11 guy. If you pick a number below 4, such as 3, you set
the estimate to 4 and forfeit the estimation prize, but you’d have to
beat your own estimate of 3 to win the early completion prize, which
is unlikely. But if you pick a number over 11, like 12, you set the
estimate to 11, but the early completion prize threshold to 4, which,
again, you probably can’t beat, and again you’re forfeiting the
estimation prize. So, even in that extreme case, your best strategy is
to estimate as honestly as you can.

 If the estimates on the table are 2, 4, 7, and 11, then the same holds,
but even more strongly. You can under some circumstances nudge
the median up to the next partition but you don’t win anything by
doing so.

 How do we measure completion times? Because of course if
they’re entirely self-reported you could claim that every task took
you 0 units or 1 unit and thus win an early-completion time for every
task you complete. If the other players judge your completion time,
they can try to push it closer to their estimate. Perhaps we could
assign each player a fixed number of points to allocate during the
iteration, or assign them in proportion to their billable hours. There
are additional tricky incentive-design problems there, but they may
be tractable.

Topics

• Incentives (p. 1230) (5 notes)
• Employment (p. 1370) (2 notes)

Liquid dielectrics for hand-rolled
self-healing capacitors
Kragen Javier Sitaker, 02021-09-30 (updated 02021-12-30)
(3 minutes)

 Suppose you wanted to hand-roll an oil capacitor out of paper, oil,
and aluminum foil. The capacitance is C = εA/d; ε₀ ≈ 8.8541878
pF/m, so with 100-μm-thick paper soaked in oil with a relative
permittivity of 5 (though both mineral oil and vegetable oil are closer
to 2, you get 0.44 μF/m². Two typical aluminum-foil rolls of 10 m ×
400 mm (see file aluminum-foil.md) with an equal amount of paper
will form a 3.5 μF capacitor. Mineral oil breaks down around 10–15
MV/m so this thickness is good to about 1000–1500 V.

 A more polarizable liquid like glycerin (relative permittivity
41.2–42.5) could improve capacitance and energy density by an order
of magnitude, if the dielectric strength doesn’t suffer; in fact it’s
reported to be 165 kV/cm = 16.5 MV/m at 55°, slightly higher, and
higher still at lower temperatures. Propylene glycol might be another
appealing alternative. Like most polar liquids, both of these are
hygroscopic and would therefore need to be sealed thoroughly against
water penetration if water is to be avoided. However, I’m not sure
that, even if anhydrous, you wouldn’t suffer the same
streamer-formation problem found in water-dielectric capacitors,
where upon prolonged exposure to high voltage, streamers
(high-conductivity paths maintained by current flow along them)
form through the fluid. Electrolysis is known to be a problem with
glycerin, presumably as a result of ionic contamination, but could
possibly be suppressed with a thin insulating layer of glass.

 To reduce water absorption, incorporating a stronger desiccant than
glycerin into the capacitor was suggested by EEVblog user Zero999;
coppercone2 listed desiccant alternatives, though I suspect some of the
stronger ones in their list might be able to deprotonate the glycerin!
P2O5 >> BaO > Mg(ClO4)2, CaO, MgO, KOH (fused), conc H2SO4, CaSO4,
Al2O3 > KOH (sticks), silica gel, Mg(ClO4)2·3 H2O > NaOH (fused), 95%
H2SO4, CaBr2, CaCl2 (fused) > NaOH (sticks), Ba(ClO4)2, ZnCl2 (sticks),
ZnBr2 > CaCl2 (technical) > CuSO4 > Na2SO4, K2CO3

 Metal hydrides beat anything on the list, I think.

 An important question for high-κ dielectrics is what their electrical
relaxation time is; glycerol evidently is on the order of 10 ns, much
longer than water but much shorter than the relaxation time of
ion-movement relaxation mechanisms. This means that at higher
frequencies a glycerin-dielectric capacitor would exhibit much lower
capacitances. Small amounts of water in the glycerin speed this up
enormously, down into the subnanosecond range with 20% water.
For non-RF uses of capacitors this is adequately fast. Other
researchers report much a slower relaxation time when encapsulated
in silicone, in the 10 μs range, but they didn’t extend their dielectric
spectroscopy to the sub-microsecond range, and it looks like the
relative permittivity of their composite only dropped from about 20
to about 13.

https://www.engineeringtoolbox.com/relative-permittivity-d_1660.html
https://www.engineeringtoolbox.com/relative-permittivity-d_1660.html
https://en.wikipedia.org/wiki/Dielectric_strength
https://en.wikipedia.org/wiki/Dielectric_strength
https://en.wikipedia.org/wiki/Relative_permittivity
https://en.wikipedia.org/wiki/Relative_permittivity
https://ieeexplore.ieee.org/document/8662210
https://ieeexplore.ieee.org/document/8662210
https://www.pupman.com/listarchives/1997/november/msg00362.html
https://www.pupman.com/listarchives/1997/november/msg00362.html
https://www.eevblog.com/forum/beginners/dielectric-constant-for-glycerin/msg2285412/#msg2285412
https://www.eevblog.com/forum/beginners/dielectric-constant-for-glycerin/msg2286903/#msg2286903
https://www.eevblog.com/forum/beginners/dielectric-constant-for-glycerin/msg2286903/#msg2286903
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428894/
https://backend.orbit.dtu.dk/ws/files/132699850/Glycerol_as_high_permittivity_liquid_filler_in_dielectric_silicone_elastomers_2_.pdf
https://backend.orbit.dtu.dk/ws/files/132699850/Glycerol_as_high_permittivity_liquid_filler_in_dielectric_silicone_elastomers_2_.pdf
https://backend.orbit.dtu.dk/ws/files/132699850/Glycerol_as_high_permittivity_liquid_filler_in_dielectric_silicone_elastomers_2_.pdf

Topics

• Materials (p. 1138) (59 notes)
• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Physics (p. 1157) (18 notes)

Deriving binary search
Kragen Javier Sitaker, 02021-10-01 (updated 02021-12-30)
(5 minutes)

 Let’s look at a binary search.

The binary-search problem

 We have some array or slice A such that some predicate P is true
for some possibly empty prefix of A, and then false for all following
elements, and we want to define a procedure bsearch(A, P) that
returns the first index for which it is false — which may be an index
off the end of A, if the prefix is the whole thing.

The solution

 If A is empty, then the answer is simple: it’s 0. In other cases we
can recurse.

 We choose an element from within A, which we can do because
we know it’s nonempty. We can choose M = #A // 2, rounding
down; this is always within the bounds of A. We test P(A[M]). If
it’s false, we know our return value is at most M, so we can recurse on
an interval that excludes it, returning bsearch(A[:M], P). This is
guaranteed to make progress toward an empty array because #A // 2
< #A for #A > 0.

 On the other hand, if it’s true, we know the return value is at least
M+1, so we can recurse, returning M+1 + bsearch(A[M+1:], P). This
also reduces the interval, possibly to size 0, but never past 0.

In Python

def bsearch(a, p):
 if not a: return 0
 m = len(a) // 2
 if p(a[m]):
 return m+1 + bsearch(a[m+1:], p)
 else:
 return bsearch(a[:m], p)

 Now, while this does work, it suffers from an efficiency problem in
Python: the recursive calls copy the relevant interval, which makes it
take linear time instead of logarithmic time. We can solve this by
representing the slice as a triple (a, i, j) to mean a[i:j]:

def bsearch(a, p):
 return bsearch2(a, p, 0, len(a))

def bsearch2(a, p, i, j):
 if i == j: return i
 m = i + (j-i) // 2
 if p(a[m]):
 return bsearch2(a, p, m+1, j)
 else:

 return bsearch2(a, p, i, m)

 This allows us to define the bisect_left and bisect_right functions
from Python’s bisect module:

bisect_left = lambda a, x: bsearch(a, lambda n: n < x)
bisect_right = lambda a, x: bsearch(a, lambda n: n <= x)

 Which brings me to the puzzle I was originally trying to solve,
which took me 3 minutes with those two functions:
Given a sorted array arr[] and a number x, write a function that counts the
occurrences of x in arr[]. (O(Log(N)))

def count(arr, x):
 return bisect_right(arr, x) - bisect_left(arr, x)

 Humblingly, though, without using the module, it took me
another 30 to get the binary-search code above right, because I was
writing it at the REPL instead of deriving it in the way I derived it
above.

Term-rewriting

 Here’s a description of the above bsearch procedure in terms of
rewrite rules with implicit equality testing:

bsearch(A, P) = bsearch'(A, P, 0, #A)
bsearch'(_, _, x, x) = x
bsearch'(a, p, i, j) = bsearch''(a, p, i, j, i + (j-i) // 2)
bsearch''(a, p, i, j, m) = bsearch'''(a, p, i, j, p(a[m]))
bsearch'''(a, p, i, j, True) = bsearch'(a, p, m+1, j)
bsearch'''(a, p, i, j, False) = bsearch'(a, p, i, m)

 This is somewhat verbose, and it might contain errors (I haven’t
tested it) but I think it’s straightforward to see how to compile the
Python version to a representation like this.

Rigor

 What would it mean to make rigorous the above argument about
correctness?

 First, we assume (have as a precondition) that the array is “sorted”,
which in this case means that if we step through its elements, if at
some point P becomes false, it stays false for all subsequent elements.
I think I can write this as
∀i ∈ [0, #A): ∀j ∈ [i, #A): ¬P(Aⱼ) ∨ P(Aᵢ)
 That is, if Aᵢ makes P false, then any Aⱼ after it within the array
must also make P false. (I’m implicitly restricting i and j to be
integers.)

 What we want to prove is that bsearch produces the right return
value: some value such that all elements before it make P true and all
other elements make P false; we also want it to be either a valid array
index or one past the end. That is:

https://github.com/twowaits/SDE-Interview-Questions/tree/master/Uber

bsearch(A, P) ∈ [0, #A]
 ∀i ∈ [0, bsearch(A, P)): P(Aᵢ)
 ∀i ∈ [bsearch(A, P), #A): ¬P(Aᵢ)
 This would probably involve first proving that such a value exists,
using induction and the precondition above. Such a value is
necessarily unique, which might or might not be necessary to prove.

 We would also need to prove that bsearch terminates, which can be
done with induction on j - i: that difference is always nonnegative,
terminating the function when it reaches 0, and recursive calls always
strictly diminish it. We also need to show that it doesn’t exceed the
array bounds of A:
i ∈ [0, #A) ∧ j ∈ [0, #A] ⇒ i + (j-i) // 2 ∈ [0, #A)

Topics

• Programming (p. 1141) (49 notes)
• Algorithms (p. 1163) (14 notes)
• Python (p. 1166) (12 notes)
• Term rewriting (p. 1270) (3 notes)

The sol-gel transition and selective
gelling for 3-D printing
Kragen Javier Sitaker, 02021-10-03 (updated 02021-12-30)
(6 minutes)

 As I was washing some dried pancake batter off a bowl, I realized
that there was a phase transition between the part of the batter that
had congealed into masses (stuck to the surface) and the part that
hadn’t and could simply be washed away with water. I think this is
the percolation-threshold behavior that also governs the sol-gel phase
transition: once the particles of flour are close enough together on
average, instead of forming small agglomerations of particles, they
form a continuous network of particles. The same thing happens in
paints at the critical pigment volume concentration (CPVC), and
similarly with latex paints when they’re diluted: if the drops in latex
or pigment particles in paint fail to form a continuous network, they
fall apart.

 Naturally my mind ran to how this could be used for digital
fabrication. This critical threshold is a point where a very small
change in composition provokes a phase change between a sol and a
gel, provoked, in the case of the pancake batter, by water evaporation.
If you can provoke this change in the places you want to solidify,
while keeping the rest of a solution as a sol, you can then just rinse
away the sol to extract a green gel object, which can provide
geometry for further processing. Until this point, the sol supports the
gel weightlessly, since they have essentially the same density.

 The new insight here is that the gelation stimulus can be made
arbitrarily small to within the precision with which you can control
the state of the near-critical sol.

 A wide variety of gelation stimuli can be used.

 The conventional approach with stereolithography 3-D printing is
to use ultraviolet lasers or spatially modulated ultraviolet illumination
through an LCD to produce free radicals, which locally initiate
polymerization. Two-photon polymerization, where the number of
free radicals produced is proportional to the square of the light
intensity rather than directly to the light intensity because two
photons are needed to initiate the reaction, is becoming popular. Any
of these approaches can be used; the benefit of the near-critical sol is
primarily in reducing the needed amount of light.

 The spatially controlled addition of small amounts of material is
another possibility, either a catalyst or a limiting reagent; this can be
done either at the surface of a sol bath, similar to powder-bed
printing, or throughout its volume with one or more movable
nozzles, similar to FDM printing, though this poses the risk of the
gelated material sticking to the nozzle instead of the workpiece.
Electrolysis is one appealing way to locally deposit some ions, and
electrolysis can also be used to initiate other reactions.

 Worth special mention here is the possibility of using inkjet nozzles
or gas jets scanned over the surface of a bath in order to precisely

deposit the reagent.

 Related to electrolysis, but different, is the possibility of plasma
activation, where corona discharge around sharp points is used to
stimulate some points on the surface of the sol but not others.

 Another possibility is locally altering the temperature, either down
(with a gas jet) or up (with a gas jet, flame, plasma, or laser or other
light). Almost any resin system that can will polymerize on its own in
enough time, such as commercial casting polyesters and epoxies, can
also be convinced to polymerize much more rapidly with some heat,
while a wide variety of bistable soluble gelling materials such as
agar-agar will gelate upon cooling to a critical gelation temperature,
but remain gelled up to a higher melting temperature.

 If the sol has an extremely low vapor pressure, or an e-beam
window can be moved very close to it, local gelation with an electron
beam is also a possibility. This potentially provides finer spatial
resolution than visible light.

 In an upside-down printing vat like those used for LCD UV
stereolithography resin polymerization printers, another possibility is
to electrostimulate the bottom of the resin capacitively, for example
by pushbroom-scanning a line of electrodes across the bottom of the
vat, outside the protective membrane, while modulating an RF signal
onto the electrodes. This would at least locally heat it up, which is
enough to have the desired effect, but maybe even resistive heating
through the membrane would be enough.

 By substituting a cathode-ray tube for the vat-bottom membrane,
it’s possible to stimulate the sol with light, X-rays, heat, or electron
beams that pass through the glass. Ion beams can be substituted for
electron beams, with the usual tradeoffs. Ideally the gel would
polymerize a slight distance away from the glass to avoid mechanical
forces on the glass; this would be least infeasible with the
electron-beam approach.

 The sol can be formulated with a wide variety of functional fillers
which, among other things, reduce the amount of material that needs
to be gelled to form a continuous network.

 The above gelation stimuli can also be used without the sol, of
course, as they are in conventional stereolithography.

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• Electrolysis (p. 1158) (18 notes)
• 3-D printing (p. 1160) (17 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Plasma (p. 1339) (2 notes)

Some notes on perusing the
Udanax Green codebase
Kragen Javier Sitaker, 02021-10-05 (updated 02021-10-08)
(12 minutes)

 Some notes on perusing the Udanax Green codebase, with
particular attention to how it thinks about version tracking.

 There’s a slightly updated version at
https://github.com/dotmpe/udanax-mpe.

Conceptual guides I’ve found

 A conceptual overview is in olddemo/demo_docs/Bizplan4.

 The place to start for nuts and bolts is quite likely green/man,
which contains man pages that GNU man can format with, e.g., man
green/man/fex.L, which documents the frontend UI. I suspect the
“Xanadu FeBe Protocol 88.1x” document might be more informative
if I could find it. man green/man/xumain.L offers an illuminating glimpse
into how Xanadu thought of documents at the time.

 Each document is evidently identified by a “docid”, a
dot-separated sequence of numbers called a “tumbler”; the numbers
constituting the tumbler are sometimes called “digits” or “tdigits”.
(Sometimes a tumbler is also called an “isa” in the source.) Tumblers,
like tilde-bearing WWW URLs, can contain in sequence a network
node identifier, a user account (/~kragen/, represented as a number in
a tumbler), a document ID within that account, and a region
identifier within that document; so they can identify finer-grained or
coarser-grained things than individual documents. A “span” is
specified in terms of character counts. I think? Bizplan4 says:
by combining a document's unique identifier with a character position within that
document, we can uniquely address any character stored in the entire system.
 By designating a particular (starting) character and a length we can address any
contiguous string of characters in the system. Such a string is called a “span.” By
clever use of tumblers instead of plain integers to represent character positions and
span lengths, it is possible to have spans which contain whole documents and cross
document boundaries.

 There doesn’t seem to be any thought given (in
green/olddemo/demodocs/ReplacingD, anyway) to the problem of updating
documents while retaining links. They do conceive of multiple
versions of a document, and in green/olddemo/demo_docs/Suespaper it says,
“Xanadu hypertext can maintain multiple versions of any given
document, efficiently storing the common portions in common, ...
All such editing wil [sic] be logged by Xanadu's historical trace
function. Xanadu can provide historical traceback information in
dated chronological order about any and all changes to a given
document.”; but in the status page on the WWW “Historical Trace”
is in the “Needs Implementation” column.

 The concern for the space required for multiple versions seems very
quaint now; it’s easy to forget that even when Subversion was
introduced in October 02000 the fact that it kept a separate “pristine”
copy of whatever source code you were editing was considered a

http://udanax.xanadu.com/green/download/udanax-1999-09-29.tar.gz
https://github.com/dotmpe/udanax-mpe
https://github.com/dotmpe/udanax-mpe
http://udanax.xanadu.com/green/status.html

major concern, and in 02001 crazy old Tom Lord’s arch’s policy of
keeping the entire version history on your development workstation
was, for many, considered a showstopper. (Today almost everybody
uses Git, except for people working with large binary assets, who
often use Subversion.)

The source base itself

 It’s surprising they chose C as an implementation language so early.
It’s archaic K&R C formatted with 2-space tab stops (in less, use -x2),
but it’s C. Before 01984 it doesn’t seem like it would have been an
obvious choice; it seems like at some point they decided to restart
from scratch on a 68000-based Sun. green/olddemo/demo_docs/Datamation,
which seems to be from 01982, says “running under Unix on a
Motorola 68000-based Onyx desktop computer,” but I think Onyx’s
Unix machines were Z8000/Z8002-based, running the first
microcomputer Unix in 01980, but even in 01981 people had a hard
time finding the company. Evidently the team was foresightful
enough to recognize the importance of Unix. The choice of C is a
pleasant surprise; it makes the codebase a lot more readable than, say,
EUMEL.

 In the context of the space concerns mentioned above, it’s sort of
surprising that the source base per se is 39,000 lines of C weighing 1.07
megabytes (16000 unique lines weighing 650 KB), in significant part
because they named their functions things like
klugefindisatoinsertnonmolecule.

 In the backend types are mostly named with the prefix “type”, as
in “typecuc” or “typetask”; in the frontend that is more typically a
suffix, as in “spectype” and “cutseqtype”.

 The source base seems to be fairly consistent in putting the names
of functions being defined (and only functions being defined) at the
left margin without indentation. I think this is an accommodation for
archaic versions of ctags, but it’s handy as a way to navigate the source
base without ctags.

 I’m inferring that maybe documents, at least in the frontend (
fe_source/vm.c) are referred to by “specs” (type spectype) and consist of
“charspans” (charspantype). The spec contains a specspanptr (which I
guess is a charspan?), which contains a sizeofspan, and a docid, which is a
“tumbler” and can be sent to the backend. Destroying a spec is done
with specfree(&specptr).

 They’ve implemented their own virtual memory system made of
objects of type vmthingtype. There’s a subtyping graph:

spectype* -> vmthingtype*
charspan* -> vmthingtype*

 The frontend evidently contemplates editing documents; there’s a
sendrearrange function in fe_source/sendtop.c which sends a “cutseq”, I
guess like an EDL for text?, to the backend. There’s also sendinsert,
which makes it seem like the granularity of edits is very small.

 A “link” is from a spec, to a spec, three a spec (“threesets are used
to describe the intended meaning of the link, such as if it is a jump
link or a footnote link”, the other possibilities evidently being

https://web.archive.org/web/20020810193147/http://www.dmsd.com/Onyx.history.html
https://web.archive.org/web/20020810193147/http://www.dmsd.com/Onyx.history.html
https://web.archive.org/web/20020614113953/http://www.heuse.com/1980.htm
https://web.archive.org/web/20020614113953/http://www.heuse.com/1980.htm
https://web.archive.org/web/20040414024027/http://rlab.cs.nyu.edu/ultra/reports/proton/01
https://web.archive.org/web/20040414024027/http://rlab.cs.nyu.edu/ultra/reports/proton/01

“quote” and “marginal note”). But when the frontend does
sendcreatelink to the backend, it also includes an additional docid, apart
from those in the three specs; this is explained in
olddemo/demo_docs/Bizplan4:
Links themselves are said to reside inside documents, located in a separate logical
address space from the text. A link may reside in one document and link from a
second document to yet a third. The location of residence of a link is entirely
independent of the contents of the link's end-sets. The fact that links are among
the potential contents of documents means that links themselves may be linked
from or to, just as characters may. Thus very general sorts of indirect structures
may be assembled.

 For the frontend they seem to have used curses, including its
windowing system (well, newwin, delwin, and wrefresh, anyway), and also
some kind of Sun GUI (it’s trying to #include <suntool/tool_hs.h>, call
win_setcursor, etc.) This seems to be the “sunwindow” system
sometimes called “SunWindows” and the “Sun Graphical User
Interface,” and later called SunView, mentioned in
http://homepages.rpi.edu/home/56/frankwr/afs/rpi.edu/campus/su
n/lang/2.01/SC2.0.1/include/CC_413/sunwindow/win_struct.h,
(which seems to be part of a huge repository of old Sun stuff that was
shipped to customers, up to Solaris 2.5) and documented in
http://bitsavers.trailing-edge.com/pdf/sun/sunos/4.1/800-1784-11A
_SunView_System_Programmers_Guide_199003.pdf; this window
system had a file descriptor per window.

 The backend refers to something called a “granfilade”, which I
think is one of the three possible types of enfilade: GRAN, SPAN,
and POOM.

Creating new versions

 The protocol documented in green/olddemo/demo_docs/Feidoc includes a
CREATENEWVERSION function:
A version is a document, the only distinction being that a version is descended from
a previously existing document. A new version inherits all of its immediate
ancestor's information, both textual and topological.

 Its tumbler is to be nested under the document it was created from:

For example, if there is only one version of document 23.0.17.0.256, this request
will create a document with the id 23.0.17.0.256.1.

 However, this isn’t always possible, because sometimes you create a
new version of a document that somebody else owns, and you don’t
get to inject it into their namespace like that. So, is there some way to
trace the history back to the original?

 The CREATENEWVERSION request type is defined in green/fe_source/requests.h
and green/be_source/requests.h as #define CREATENEWVERSION 13; the backend
vectors it to a createnewversion function in green/be_source/fns.c, which
calls docreatenewversion in green/be_source/do1.c, which eventually calls
docopyinternal with a new “isa” pointer (allocated, I think, by doopen)
and vspans and vspecs it got from the old document. As mentioned
above, “isa” is another name for “tumbler”, or maybe a certain kind
of tumbler.

 There’s a conditional at the top of docreatenewversion which checks to
see if the wheretoputit argument identifies a tumbler that belongs to the
user, invoking makehint differently; makehint invokes movetumbler,

http://homepages.rpi.edu/home/56/frankwr/afs/rpi.edu/campus/sun/lang/2.01/SC2.0.1/include/CC_413/sunwindow/win_struct.h
http://homepages.rpi.edu/home/56/frankwr/afs/rpi.edu/campus/sun/lang/2.01/SC2.0.1/include/CC_413/sunwindow/win_struct.h
http://homepages.rpi.edu/home/56/frankwr/afs/rpi.edu/campus/sun/lang/2.01/SC2.0.1/include/CC_413/sunwindow/win_struct.h
http://bitsavers.trailing-edge.com/pdf/sun/sunos/4.1/800-1784-11A_SunView_System_Programmers_Guide_199003.pdf
http://bitsavers.trailing-edge.com/pdf/sun/sunos/4.1/800-1784-11A_SunView_System_Programmers_Guide_199003.pdf
http://bitsavers.trailing-edge.com/pdf/sun/sunos/4.1/800-1784-11A_SunView_System_Programmers_Guide_199003.pdf

which is just a struct assignment macro which copies its left argument
over its right argument.

 Within docreatenewversion, in the case where the document does not
belong to the user, there is no evident dataflow from isaptr (the
tumbler of the document being copied) to createorglingranf (in
green/be_source/granf1.c, delegating to createorglgr in
green/be_source/granf2.c), which I guess allocates the new tumbler with
findisatoinsertgr (just below) and inserts it somewhere with insertseq.

 I’m not sure what an “orgl” or a “sporgl” is but evidently it’s some
kind of thing that gets stored on disk, an orgl being some sort of cuc,
and maybe a granfilade consists of null, texts, and orgls. In one place
ORGLRANGE and SPANRANGE are explained as “wid and dsp
indexes for sp”, which is pretty significant; widative and dspative are
the two major dimensions of enfilade theory. A diagram, however,
seems to suggest that this is not respective but orthogonal: both wid
and dsp have both ORGLRANGE and SPANRANGE.

 After createorglingranf, docreatenewversion builds a vspec and apparently
copies the original isaptr into it, and then invokes doopen with newisaptr
and without the vspec or the original isaptr, and then uses
docopyinternal to copy the old document to the new document, using
the vspec. Also, the thing that it’s copying is the stream of a vspan
obtained from doretrievedocvspanfoo, which delegates to
retrievedocumentpartofvspanpm, which sets the stream and width of the
vspan from two tumblers found in the orgl: cdsp->dsas[V] and
cwid->dsas[V]. I’m not quite sure what these are for; do they offer a
way to navigate back to the original version?

 The vspec passed to docopyinternal (containing the original isaptr) is a
“specset” to docopyinternal; it gets converted to a “spanset” named
ispanset. This is passed to insertpm and insertspanf. specset2ispanset loops
over the linked list of spanset objects (they have a ->next) and
specifically looks at the docisa copied into the vspec by docreatenewversion
, passing it as the third argument to findorgl, so it can use it to fetch the
orgl with fetchorglgr. But that's all it does with the docisa that
docreatenewversion copied from the isaptr.

 However, when docreatenewversion is being invoked from
createnewversion, it also gets the original document tumbler as its
wheretoputit argument! So actually there is data flow from the original
tumbler into both of the makehint cases, so the hintisa of the hint will
have the original document tumbler in it.

Topics

• Programming (p. 1141) (49 notes)
• History (p. 1153) (24 notes)
• C (p. 1194) (8 notes)
• Reading (p. 1244) (4 notes)
• Hypertext (p. 1291) (3 notes)
• Namespaces (p. 1351) (2 notes)

Fung’s “I can’t believe it can sort”
algorithm and others
Kragen Javier Sitaker, 02021-10-05 (updated 02021-12-30)
(5 minutes)

 Fung published “the simplest (and most surprising) sorting
algorithm ever” this year.

 The algorithm from the paper is indeed an astonishingly simple
sorting algorithm, and it is indeed surprising that it works, particularly
since at first glance it would appear to sort the array backwards (see the
paper):

void
cantbelievesort(int *p, size_t n)
{
 int tmp;
 for (size_t i = 0; i < n; i++) {
 for (size_t j = 0; j < n; j++) {
 if (p[i] < p[j]) tmp = p[i], p[i] = p[j], p[j] = tmp;
 }
 }
}

 That’s 10 lines of code according to David A. Wheeler’s
‘SLOCCount,’ though arguably 9 would be fairer. Its cyclomatic
complexity is 3, with a deepest statement nesting level of 4, and it has
5 variables: three locals plus two arguments.

0000000000001369 <cantbelievesort>:
 1369: f3 0f 1e fa endbr64
 136d: 48 89 f8 mov %rdi,%rax
 1370: 4c 8d 0c b7 lea (%rdi,%rsi,4),%r9
 1374: 49 39 c1 cmp %rax,%r9
 1377: 74 23 je 139c <cantbelievesort+0x33>
 1379: 31 d2 xor %edx,%edx
 137b: 48 39 f2 cmp %rsi,%rdx
 137e: 74 16 je 1396 <cantbelievesort+0x2d>
 1380: 8b 08 mov (%rax),%ecx
 1382: 44 8b 04 97 mov (%rdi,%rdx,4),%r8d
 1386: 44 39 c1 cmp %r8d,%ecx
 1389: 7d 06 jge 1391 <cantbelievesort+0x28>
 138b: 44 89 00 mov %r8d,(%rax)
 138e: 89 0c 97 mov %ecx,(%rdi,%rdx,4)
 1391: 48 ff c2 inc %rdx
 1394: eb e5 jmp 137b <cantbelievesort+0x12>
 1396: 48 83 c0 04 add $0x4,%rax
 139a: eb d8 jmp 1374 <cantbelievesort+0xb>
 139c: c3 retq

 With gcc -Os 9.3.0, that’s 52 bytes, 19 instructions. gcc -Os has
regressed; in 4.7.2, that used to be 44 bytes, 17 instructions:

https://arxiv.org/abs/2110.01111
https://arxiv.org/abs/2110.01111

4007cc: 31 c0 xor %eax,%eax
4007ce: eb 22 jmp 4007f2 <cantbelievesort+0x26>
4007d0: 8b 0c 87 mov (%rdi,%rax,4),%ecx
4007d3: 44 8b 04 97 mov (%rdi,%rdx,4),%r8d
4007d7: 44 39 c1 cmp %r8d,%ecx
4007da: 7d 07 jge 4007e3 <cantbelievesort+0x17>
4007dc: 44 89 04 87 mov %r8d,(%rdi,%rax,4)
4007e0: 89 0c 97 mov %ecx,(%rdi,%rdx,4)
4007e3: 48 ff c2 inc %rdx
4007e6: eb 02 jmp 4007ea <cantbelievesort+0x1e>
4007e8: 31 d2 xor %edx,%edx
4007ea: 48 39 f2 cmp %rsi,%rdx
4007ed: 75 e1 jne 4007d0 <cantbelievesort+0x4>
4007ef: 48 ff c0 inc %rax
4007f2: 48 39 f0 cmp %rsi,%rax
4007f5: 75 f1 jne 4007e8 <cantbelievesort+0x1c>
4007f7: c3 retq

 However, arguably, this sort routine is even simpler. It may or may
not be surprising that it works:

void
dumbsort(int *p, size_t n)
{
 int tmp;
 for (size_t i = 1; i < n; i++) {
 if (p[i] < p[i-1]) tmp = p[i], p[i] = p[i-1], p[i-1] = tmp, i = 0;
 }
}

 I don’t think I invented it, but I can’t remember who did.

 By the same metric, that’s only 8 lines of code (also only 8 by my
“fairer” metric), its cyclomatic complexity is only 2, its deepest
statement nesting level is only 3, and it has only 4 variables (the same
two arguments, but two locals instead of three). It compiles to only
15 amd64 instructions, occupying only 43 bytes:

 4007f8: b8 01 00 00 00 mov $0x1,%eax
 4007fd: eb 1e jmp 40081d <dumbsort+0x25>
 4007ff: 4c 8d 04 87 lea (%rdi,%rax,4),%r8
 400803: 48 8d 54 87 fc lea -0x4(%rdi,%rax,4),%rdx
 400808: 41 8b 08 mov (%r8),%ecx
 40080b: 44 8b 0a mov (%rdx),%r9d
 40080e: 44 39 c9 cmp %r9d,%ecx
 400811: 7d 07 jge 40081a <dumbsort+0x22>
 400813: 45 89 08 mov %r9d,(%r8)
 400816: 31 c0 xor %eax,%eax
 400818: 89 0a mov %ecx,(%rdx)
 40081a: 48 ff c0 inc %rax
 40081d: 48 39 f0 cmp %rsi,%rax
 400820: 72 dd jb 4007ff <dumbsort+0x7>
 400822: c3 retq

 Or, with more recent gcc, 55 bytes, 18 instructions:

000000000000139d <dumbsort>:
 139d: f3 0f 1e fa endbr64
 13a1: b8 01 00 00 00 mov $0x1,%eax
 13a6: 48 39 f0 cmp %rsi,%rax
 13a9: 73 28 jae 13d3 <dumbsort+0x36>
 13ab: 48 8d 14 85 00 00 00 lea 0x0(,%rax,4),%rdx
 13b2: 00
 13b3: 4c 8d 04 17 lea (%rdi,%rdx,1),%r8
 13b7: 48 8d 54 17 fc lea -0x4(%rdi,%rdx,1),%rdx
 13bc: 41 8b 08 mov (%r8),%ecx
 13bf: 44 8b 0a mov (%rdx),%r9d
 13c2: 44 39 c9 cmp %r9d,%ecx
 13c5: 7d 07 jge 13ce <dumbsort+0x31>
 13c7: 45 89 08 mov %r9d,(%r8)
 13ca: 31 c0 xor %eax,%eax
 13cc: 89 0a mov %ecx,(%rdx)
 13ce: 48 ff c0 inc %rax
 13d1: eb d3 jmp 13a6 <dumbsort+0x9>
 13d3: c3 retq

 Dylan16807 points out that if you tail-recurse to restart the
function instead of resetting the index, it gets even simpler.

Topics

• Programming (p. 1141) (49 notes)
• Performance (p. 1155) (22 notes)
• Algorithms (p. 1163) (14 notes)
• Assembly-language programming (p. 1175) (11 notes)
• Small is beautiful (p. 1190) (8 notes)
• C (p. 1194) (8 notes)
• Sorting (p. 1272) (3 notes)

https://news.ycombinator.com/item?id=28795143

Spanish phonology
Kragen Javier Sitaker, 02021-10-05 (updated 02021-12-31)
(15 minutes)

 I hacked together a Python script to analyze the syllabic structure
and pronunciation of Spanish text at the phoneme level, which it
seems to get about 97% right, about one error every 30 words. It
thinks each syllable consists of a (possibly empty) onset, a (nearly
always empty) liquid, a vowel nucleus (which may be a diphthong),
and a (usually empty) coda.

 Here’s some example output, containing asterisks where it failed:
divide.^[173] /di-bi-de/ Los /los/ detalles /de-ta-ʃes/ del /del/ ciclo /si-klo/
celular /se-lu-laɾ/ solo /so-lo/ han /an/ sido /si-do/ investigados
/in-bes-ti-ga-dos/ en /en/ el /el/ género /xe-ne-ɾo/ Sulfolobus, /sul-fo-lo-bus/
siendo /sien-do/ similares /si-mi-la-ɾes/ a /a/ los /los/ de /de/ bacterias
/bak-te-ɾias/ y /i/ eucariontes: /e-u-ka-ɾion-tes/ los /los/ cromosomas
/kɾo-mo-so-mas/ se /se/ replican /re-pli-kan/ desde /des-de/ múltiples
/mul-ti-ples/ puntos /pun-tos/ de /de/ partida /paɾ-ti-da/ (origen /o-ɾi-xen/ de
/de/ replicación) /re-pli-ka-sion/ usando /u-san-do/ ADN /ad-*/ polimerasas
/po-li-me-ɾa-sas/ que /ke/ son /son/ similares /si-mi-la-ɾes/ a /a/ las /las/
enzimas /en-si-mas/ equivalentes /e-ki-ba-len-tes/ eucarióticas.^[174]
/e-u-ka-ɾio-ti-kas/ Sin /sin/ embargo, /em-baɾ-go/ las /las/ proteínas
/pɾo-tei-nas/ que /ke/ dirigen /di-ɾi-xen/ la /la/ división /di-bi-sion/ celular,
/se-lu-laɾ/ como /ko-mo/ la /la/ proteína /pɾo-tei-na/ FtsZ /*-*-*-*/

 It’s using mostly IPA, except for č (“ch”) and ñ. You can see it
screwing up on a couple of words.

 Based on this sort of analysis, it produces the following statistics,
which I think are probably in the right ballpark, although it doesn’t
recognize “ai” or “ui” as valid diphthongs, and the significant figures
are mostly noise:

 onsets: : 19.17% t: 11.42% d: 9.20% s: 8.86% k: 8.68% l: 7.93%
 n: 6.30% m: 6.02% p: 5.56% b: 4.21% ɾ: 4.18% f: 2.35%
 g: 2.03% x: 1.64% r: 1.14% č: 0.69% ʃ: 0.48% ñ: 0.14%
 liquids: : 94.46% ɾ: 4.26% l: 1.28%
 nuclei: e: 28.16% a: 26.47% o: 19.84% i: 12.79% u: 5.91% io: 2.16%
 ia: 1.86% ie: 1.29% ue: 0.80% ua: 0.49% ei: 0.19% uo: 0.05%
 codas: : 62.14% s: 15.65% n: 10.11% ɾ: 5.72% l: 2.40% m: 1.51%
 k: 1.32% ks: 0.47% d: 0.20% p: 0.20% ns: 0.13% g: 0.08%
 b: 0.05%
 phones: e: 13.14% a: 12.44% s: 10.84% o: 9.52% i: 7.90% n: 7.14%
 ɾ: 6.11% l: 5.01% t: 4.93% k: 4.52% d: 4.06% m: 3.25%
 u: 3.13% p: 2.49% b: 1.84% f: 1.01% g: 0.91% x: 0.71%
 r: 0.49% č: 0.30% ʃ: 0.21% ñ: 0.06%

 This doesn’t capture all the structure of Spanish syllables; for
example, only some onsets can be followed by liquids. But it is at
least suggestive that the syllable structure is potentially exploitable for
both encoding and human input methods (as, undoubtedly,
stenographers already do.) The most common nucleus is /e/, followed
closely by /a/, which between them capture the majority of syllables.
The majority of syllables start with a vowel (19% empty onset) or
either /t/, /d/, /s/, or /k/ (usually spelled “c” or “qu”), nearly all

syllables lack a liquid following the onset, and the majority of codas
are empty. So a syllable containing only “e” is 5.01 bits, one
containing only “a” is 5.12 bits, the syllable “te” is 5.75 bits, and “tes”
(as in eucariontes or equivalentes) is 7.74 bits. By contrast, a memoryless
code represents “e” as 2.93 bits, more efficiently, but “tes” as 10.5 bits,
because “t” almost never occurs at the end of a syllable, and “s” is
much more common in the coda.

 (Actually, my program doesn’t allow it to, so it can’t parse
“habitat”, but it only very rarely encounters such a word.)

 “bes” is 9.16 bits analyzed as a syllable, or 11.90 bits as three separate
letters. “ti” is 6.87 bits as a syllable or 8.00 bits as two separate letters.
“ga” is 8.31 bits as a syllable or 9.79 bits as two separate letters. So I
guess often you could save about 20% of the effort that way.

 However, the sort of long tail of diphthongs and multi-consonant
codas is crushing my hopes for a human-written “relative positional”
notation in which the same symbol is used for consonants in some
places and vowels in others, and only the order of the symbols
distinguishes between those meanings. I feel like it would just be too
hard to learn given that all of the following occur in existing, if
archaic, words: “crue” (“crueza”), “cruen” (“cruenta”), “cue”
(“cuero”), “cuen” (“cuenta”), “que” (“que”), “quen” (“aquende”),
“cu” (“culo”), “cun” (“secundaria”), and “cuns” (“circunscribir”,
“circunstancia”). (I’m not totally sure bout “crueza” and “cruenta”,
which I think might be three syllables.)

 At the end of my program’s output it says:

bits per phone 3.879586262782223
bits per letter 3.586046123445401

 This is 3.9 bits per phoneme (such as /ɾ/, /k/, or /e/) and 3.6 bits
per letter (such as “h” or “c”), based on independently
entropy-coding each letter. This is about 25% smaller than just
flattening the usual Spanish alphabet, abcdefghijlmnñopqrstuvxyz, (to
which we might reluctantly add k and w) because lg 27 ≈ 4.75 bits per
letter, and the diaeresis for things like cigüeño and bilingüe; standardly
we would also add áéíóúý, but I’m ignoring that here.

 A pure Hamming phonetic code might assign 3-bit codes to /e/
and /a/, 4-bit codes to [soin], 5-bit codes to [ɾltkdmu], 6-bit codes to
[pb], 7-bit codes to [fgx], an 8-bit code to [r] (“rr”), 9-bit codes to č
[tʃ] “ch” and ʃ “ll”, and an 11-bit code to ñ. This would still leave
448 11-bit codes unassigned and would use 4.32 bits per phone or 3.99
bits per letter:

(- 2048 (+ 1 (* 4 2) (* 8 1) (* 16 3) (* 32 2) (* 64 7) (* 128 4)
 (* 256 2))) ; 448

(+ (* 3 .1314) (* 3 .1244) (* 4 .1084) (* 4 .0952) (* 4 .0790) (* 4 .0714)
 (* 5 .0611) (* 6 .0501) (* 5 .0493) (* 5 .0452) (* 5 .0406) (* 5 .0325)
 (* 5 .0313) (* 6 .0249) (* 6 .0184) (* 7 .0101) (* 7 .0091) (* 7 .0071)
 (* 8 .0049) (* 9 .0030) (* 9 .0021) (* 11 .0006)) ; 4.3196

(+ (* 1 .1314) (* 1 .1244) (* 1 .1084) (* 1 .0952) (* 1 .0790) (* 1 .0714)
 (* 1 .0611) (* 1 .0501) (* 1 .0493) (* 1 .0452) (* 1 .0406) (* 1 .0325)

 (* 1 .0313) (* 1 .0249) (* 1 .0184) (* 1 .0101) (* 1 .0091) (* 1 .0071)
 (* 1 .0049) (* 1 .0030) (* 1 .0021) (* 1 .0006)) ; 1.0001

 However, whether for human interface stuff or for data
compression, there’s no reason to restrict yourself to radix 2
nowadays; IBM’s arithmetic-encoding patents are long expired, and
I’m typing this on a 100-key keyboard, though the home row and the
keys above and below are only about radix 33. Still, it’s a good
ballpark that [ea] should be the easiest to write, followed by
[soinɾltkdmu], and then [pb], requiring about twice as much effort as
[ea], then [fgxr], then “ch” (č) requiring about three times as much
effort as [ea], then finally [ʃñ].

 You might omit č entirely, just spelling it out as /tʃ/, although that
would be pretty rough on speakers of other dialects of Spanish, even
worse than lumping [z] in with [s].

 If we wanted to divide this up in some sort of rational and
easy-to-learn way, we might try to express [pbfgxrčʃñ] as some kind
of modified version of [soinɾltkdmu], which could be divided up into
vowels [oiu], sonorants [lmnd], plosives [ɾtk], and the sibilant [s].
(Spanish /d/ has a fricative allophone [ð] and a plosive allophone [d].)
There’s inevitably going to be significant tension between fluent
writing and ease of learning.

 Here's the Python program:

#!/usr/bin/python3
"""Analyze phonetics and phonotactics of Spanish text.

The syllabification is somewhere around 97% accurate on the text I
tried it on, but it does have problems, for example with “mayoría”
(should be ma-yo-ri-a; same problem with “podrían”, “amoníaco”, and
“biotecnología”) and “inusuales” (should be in-u-sua-les). Also it
thinks “hay” and “muy” are two syllables each. It fails on
“habitats”, “atmosférico”, “plancton”, and “sulfhidrico”. And it
segments “aire” as “a-i-re”, which I think is wrong, and similarly
“causado” as “ca-u-sa-do”, "autodenominado" as “a-u-to-...”,
“contribuir” as “con-tri-bu-ir”, and “cuidadores” as “cu-i-da-do-res”.

No attempt is made to handle numbers, initialisms, or loanwords not
spelled using Spanish orthography.

It’s using a slightly deformed version of IPA. For [tʃ] I’m using the
Esperanto “č”, in the interest of having it be one letter for the
purpose of frequency tabulation, and for [ɲ] I’m using the Spanish
“ñ”, in the interest of readability. No attempt is made to select the
appropriate allophone for context (e.g., [ŋ] for /n/, [β] for /b/, [x]
for /s/). “*” is output on error. The pronunciation is mostly
Argentine. Here’s some sample output, containing one error:

> divide.^[173] /di-bi-de/ Los /los/ detalles /de-ta-ʃes/ del /del/
 ciclo /si-klo/ celular /se-lu-laɾ/ solo /so-lo/ han /an/ sido
 /si-do/ investigados /in-bes-ti-ga-dos/ en /en/ el /el/ género
 /xe-ne-ɾo/ Sulfolobus, /sul-fo-lo-bus/ siendo /sien-do/ similares
 /si-mi-la-ɾes/ a /a/ los /los/ de /de/ bacterias /bak-te-ɾias/ y /i/
 eucariontes: /e-u-ka-ɾion-tes/ los /los/ cromosomas /kɾo-mo-so-mas/

 se /se/ replican /re-pli-kan/ desde /des-de/ múltiples /mul-ti-ples/
 puntos /pun-tos/ de /de/ partida /paɾ-ti-da/ (origen /o-ɾi-xen/ de
 /de/ replicación) /re-pli-ka-sion/ usando /u-san-do/ ADN /ad-*/
 polimerasas /po-li-me-ɾa-sas/ que /ke/ son /son/ similares
 /si-mi-la-ɾes/ a /a/ las /las/ enzimas /en-si-mas/ equivalentes
 /e-ki-ba-len-tes/ eucarióticas.^[174] /e-u-ka-ɾio-ti-kas/ Sin /sin/
 embargo, /em-baɾ-go/ las /las/ proteínas /pɾo-tei-nas/ que /ke/
 dirigen /di-ɾi-xen/ la /la/ división /di-bi-sion/ celular,
 /se-lu-laɾ/ como /ko-mo/ la /la/ proteína /pɾo-tei-na/ FtsZ
 /*-*-*-*/

Here’s some more, containing three errors in 110 words:

> El /el/ hecho /e-čo/ tuvo /tu-bo/ tintes /tin-tes/ mafiosos
 /ma-fio-sos/ y /i/ elementos /e-le-men-tos/ que /ke/ ya /ʃa/ se /se/
 habían /a-bian/ visto. /bis-to/ Lo /lo/ protagonizó
 /pɾo-ta-go-ni-so/ un /un/ grupo /gɾu-po/ de /de/ encapuchados
 /en-ka-pu-ča-dos/ autodenominados /a-u-to-de-no-mi-na-dos/
 “mapuches” /ma-pu-čes/ en /en/ Río /rio/ Negro, /ne-gɾo/ el /el/
 domingo /do-min-go/ a /a/ la /la/ noche. /no-če/ Primero /pɾi-me-ɾo/
 ataron /a-ta-ɾon/ a /a/ los /los/ cuidadores /ku-i-da-do-ɾes/ de
 /de/ un /un/ predio /pɾe-dio/ de /de/ Vialidad /bia-li-dad/
 provincial, /pɾo-bin-sial/ después /des-pues/ dejaron /de-xa-ɾon/
 notas /no-tas/ intimidatorias /in-ti-mi-da-to-ɾias/ con /kon/
 amenazas /a-me-na-sas/ y, /i/ antes /an-tes/ de /de/ escapar,
 /es-ka-paɾ/ incendiaron /in-sen-dia-ɾon/ un /un/
 depósito. /de-po-si-to/

> El /el/ Gobierno /go-bieɾ-no/ rionegrino /rio-ne-gɾi-no/ calificó
 /ka-li-fi-ko/ como /ko-mo/ “un /un/ acto /ak-to/ terrorista”
 /te-ro-ɾis-ta/ el /el/ ataque /a-ta-ke/ y /i/ prepara /pɾe-pa-ɾa/
 una /u-na/ presentación /pɾe-sen-ta-sion/ ante /an-te/ la /la/
 Justicia /xus-ti-sia/ federal. /fe-de-ɾal/ En /en/ paralelo
 /pa-ɾa-le-lo/ pidió /pi-dio/ al /al/ Gobierno /go-bieɾ-no/ nacional
 /na-sio-nal/ el /el/ envío /en-bio/ de /de/ fuerzas /fueɾ-sas/
 federales /fe-de-ɾa-les/ para /pa-ɾa/ controlar /kon-tɾo-laɾ/ la
 /la/ situación /si-tua-sion/ que /ke/ viene /bie-ne/ escalando
 /es-ka-lan-do/ desde /des-de/ hace /a-se/ meses. /me-ses/ Se /se/
 suma /su-ma/ el /el/ incendio /in-sen-dio/ provocado /pɾo-bo-ka-do/
 en /en/ la /la/ Oficina /o-fi-si-na/ de /de/ Turismo /tu-ɾis-mo/ de
 /de/ El /el/ Bolsón, /bol-son/ ocurrido /o-ku-ri-do/ el /el/ sábado
 /sa-ba-do/ por /poɾ/ la /la/ noche. /no-če/

<https://www.clarin.com/sociedad/mapuches-incendiaron-campamento-vialidad-rio-neg
ro-gobernadora-pidio-apoyo-gobierno-nacional_0_ByRHc8tKZ.html>

Despite the problems mentioned earlier, I think it’s accurate enough
for these statistics to be mostly right:

 onsets: : 19.17% t: 11.42% d: 9.20% s: 8.86% k: 8.68% l: 7.93%
 n: 6.30% m: 6.02% p: 5.56% b: 4.21% ɾ: 4.18% f: 2.35%
 g: 2.03% x: 1.64% r: 1.14% č: 0.69% ʃ: 0.48% ñ: 0.14%
 liquids: : 94.46% ɾ: 4.26% l: 1.28%
 nuclei: e: 28.16% a: 26.47% o: 19.84% i: 12.79% u: 5.91% io: 2.16%

 ia: 1.86% ie: 1.29% ue: 0.80% ua: 0.49% ei: 0.19% uo: 0.05%
 codas: : 62.14% s: 15.65% n: 10.11% ɾ: 5.72% l: 2.40% m: 1.51%
 k: 1.32% ks: 0.47% d: 0.20% p: 0.20% ns: 0.13% g: 0.08%
 b: 0.05%
 phones: e: 13.14% a: 12.44% s: 10.84% o: 9.52% i: 7.90% n: 7.14%
 ɾ: 6.11% l: 5.01% t: 4.93% k: 4.52% d: 4.06% m: 3.25%
 u: 3.13% p: 2.49% b: 1.84% f: 1.01% g: 0.91% x: 0.71%
 r: 0.49% č: 0.30% ʃ: 0.21% ñ: 0.06%
bits per phone 3.879586262782223
bits per letter 3.586046123445401

"""
from __future__ import print_function, division
import collections, math, re, sys

syllable = re.compile(r'''
 (?P<syllable>
 (?P<onset>b|c|ch|d|f|[gq]u(?![lr])|g|h|j|k|ll|l
 |m|n(?![lr])|ñ|ph|p|rr|s|th|t|v|y|z|)
 (?P<liquid>l|r|)
 (?P<nucleus>a|ei|e|w|ia|io|ie|i|o|ua|ue|u|y)
 # The negative lookahead assertions are a hack to keep
 # from chomping up codas that really belong to the
 # onset of a following syllable: na ve gac ion,
 # en cic lo ped ia, etc.
 (?P<coda>(?:b|c(?!h)|d|g|l|m|ns|r|p|s|z)(?![aeiouylr])|x|n(?![aeiouy])|)
)
 | (?P<err> .)
''', re.VERBOSE)

accents = {'á': 'a', 'é': 'e', 'í': 'i', 'ó': 'o', 'ú': 'u',
 'ü': 'u'}

def syllabize(word):
 w = ''.join(d for d in (accents.get(c, c)
 for c in word.lower())
 if d == 'ñ' or 'a' <= d <= 'z')
 return list(syllable.finditer(w))

def pronounce(syllable, first):
 if not syllable.group('syllable'):
 yield '*'
 return

 onset = syllable.group('onset')
 liquid = syllable.group('liquid')
 nucleus = syllable.group('nucleus')
 coda = syllable.group('coda')

 mapped = {'ch': 'č', 'c': 'k', 'qu': 'ku', 'gu': 'gu', 'h': '',
 'll': 'ʃ', 'y': 'ʃ', 'ph': 'p', 'th': 't', 'v': 'b',
 'z': 's', 'rr': 'r', 'r': 'ɾ', 'j': 'x',
 }.get(onset, onset)

 if nucleus[0] in 'ei' and not liquid:

 yield {'c': 's', 'g': 'x', 'gu': 'g', 'qu': 'k'}.get(onset, mapped)
 else:
 # Treat “guas” from “aguas” as the same “ua” nucleus as “tuan”
 # as “interactuando”:
 if mapped.endswith('u'):
 mapped = mapped[:-1]
 nucleus = 'u' + nucleus

 # Treat “rra” from “tierra” the same as “rra” from “rápido”:
 if liquid and not onset:

 mapped = 'r' if liquid == 'r' and first else 'ɾ' if liquid == 'r' el
se liquid
 liquid = ''

 yield mapped

 if liquid == 'r':
 yield 'ɾ'
 else:
 yield liquid

 yield {'w': 'u', 'y': 'i'}.get(nucleus, nucleus)

 yield {'c': 'k', 'z': 's', 'x': 'ks', 'r': 'ɾ', 'j': 'x'}.get(coda, coda)

def pronounce_word(word):
 return [list(pronounce(s, i == 0))
 for i, s in enumerate(syllabize(word))]

def print_counter(name, counter):
 print("%8s:" % name, end='')
 total = sum(v for k, v in counter.items())

 nl = False
 for i, (k, v) in enumerate(counter.most_common()):
 if nl:
 print(' ' * 9, end='')

 nl = i % 6 == 5
 print('%2s: %5.2f%%' % (k, 100 * v / total),
 end='\n' if nl else ' ')

 if not nl:
 print()

def main(stdin):
 onsets = collections.Counter()
 liquids = collections.Counter()
 nuclei = collections.Counter()
 codas = collections.Counter()
 phones = collections.Counter()
 letters = 0

 for line in stdin:

 for word in line.split():
 p = pronounce_word(word)
 print(word, '/%s/' % '-'.join(''.join(s) for s in p), end=' ')

 if not any(s == ['*'] for s in p):
 for s in p:
 onsets[s[0]] += 1
 liquids[s[1]] += 1
 nuclei[s[2]] += 1
 codas[s[3]] += 1
 for c in ''.join(s):
 phones[c] += 1
 letters += len(word)

 print()

 print()
 print_counter('onsets', onsets)
 print_counter('liquids', liquids)
 print_counter('nuclei', nuclei)
 print_counter('codas', codas)
 print_counter('phones', phones)
 t = sum(v for v in phones.values())
 entropy = sum(-phones[c]*math.log(phones[c]/t)/math.log(2) for c in phones)
 print("bits per phone", entropy/t)
 print("bits per letter", entropy/letters)

if __name__ == '__main__':
 main(sys.stdin)

Topics

• Experiment report (p. 1162) (14 notes)
• Python (p. 1166) (12 notes)
• Compression (p. 1263) (4 notes)
• Natural-language processing (p. 1284) (3 notes)
• Speech synthesis (p. 1322) (2 notes)

Some notes on learning Rust
Kragen Javier Sitaker, 02021-10-06 (updated 02021-10-10)
(39 minutes)

 I want to learn Rust, so I’m reading the Rust book by Steve
Klabnik, Carol Nichols, et al., and I’m going to try writing an IRC
bot in it. I’ve done a few basic Rust tutorials in previous years, and I
had a Rust compiler installed in /usr/local/bin, but it’s from 02016.

 The Rust Programming Language book is very approachable, but it’s a
bit slow-paced and patronizing. Maybe it would be great if I were
extremely insecure about my abilities. The Rust Reference is maybe
closer to what I want, but the 57-page Rust for the Polyglot Programmer
is a night-and-day improvement over either as a starting point. For
example, after only 23 pages, it tells me, “There is no inheritance,”,
and on the next page, “this is how for x in y loops work: y must impl
IntoIterator”. These are things I’ve been wondering about through
hundreds of pages of TRPL. However, it is very much not
self-contained, so it is only a starting point.

Installing Rust was kind of a pain in the ass
and needed 294–1190 MB

 First, I got rustup:

curl https://sh.rustup.rs > rustup.sh

 Rustup insisted I uninstall the five-years-ago Rust, so I did:

sudo /usr/local/lib/rustlib/uninstall.sh

 Then I tried installing rust, but because I “only” had half a gig free,
it failed:

$ sh rustup.sh
info: downloading installer

Warning: Not enforcing strong cipher suites for TLS, this is potentially less sec
ure
Warning: Not enforcing TLS v1.2, this is potentially less secure

Welcome to Rust!

This will download and install the official compiler for the Rust
programming language, and its package manager, Cargo.

Rustup metadata and toolchains will be installed into the Rustup
home directory, located at:

 /home/user/.rustup
...
1) Proceed with installation (default)
2) Customize installation

https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://diziet.dreamwidth.org/10210.html
https://diziet.dreamwidth.org/10210.html

3) Cancel installation
>1

info: profile set to 'default'
...
info: installing component 'rust-docs'
 10.2 MiB / 17.0 MiB (60 %) 7.3 MiB/s in 1s ETA: 0s
info: rolling back changes

error: failed to extract package (perhaps you ran out of disk space?): No space l
eft on device (os error 28)
$ df -h .
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/debian-root 225G 214G 517M 100% /

 At this point I had deleted my previous Rust installation with no
way to get it back, but wasn’t able to install the current Rust.

 I was spending 3.2 gigs on the linux-2.6 Git repo that I hadn’t
updated since 02014, so I deleted that. Even if half a fucking gigabyte
isn’t enough space for a fucking compiler, 3.7 gigs should be. That’s
four times the size of my first Linux box.

 This time I tried the “minimal” profile instead, too. And it “only”
needed 294 megs:

 stable-x86_64-unknown-linux-gnu installed - rustc 1.55.0 (c8dfcfe04 2021-09-06)

Rust is installed now. Great!

To get started you may need to restart your current shell.
This would reload your PATH environment variable to include
Cargo's bin directory ($HOME/.cargo/bin).

To configure your current shell, run:
source $HOME/.cargo/env

 Before:

$ df -k .
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/debian-root 235891480 220134444 3774396 99% /

 After:

$ df -k .
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/debian-root 235891480 220427872 3480968 99% /

 Hmm, maybe I’ll try a fatter profile then:

warning: Updating existing toolchain, profile choice will be ignored

 Hmm, maybe not? I can’t find the uninstall script this time (it
turns out the command is rustup self uninstall as explained on p. 13 of

the book, which I hadn’t gotten to yet) so I’ll just delete it by hand:

$ rm -rf ~/.rustup ~/.cargo
$ df -k .
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/debian-root 235891480 220014156 3894684 99% /
$ sh rustup.sh
...
info: profile set to 'complete'
info: setting default host triple to x86_64-unknown-linux-gnu
info: syncing channel updates for 'stable-x86_64-unknown-linux-gnu'
info: latest update on 2021-09-09, rust version 1.55.0 (c8dfcfe04 2021-09-06)
warning: Force-skipping unavailable component 'miri-x86_64-unknown-linux-gnu'

warning: Force-skipping unavailable component 'rust-analyzer-preview-x86_64-unkno
wn-linux-gnu'
...
 stable-x86_64-unknown-linux-gnu installed - rustc 1.55.0 (c8dfcfe04 2021-09-06)
...
Rust is installed now. Great!
...
$ df -k .
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/debian-root 235891480 221200928 2707912 99% /

 So this time it’s using 1.19 gigs because I set the profile to complete.

hello, world

 But now it’s working:

: user@debian:~/devel/dev3; . ~/.cargo/env
: user@debian:~/devel/dev3; cat hello.rs
fn main() {
 println!("hello, {}", "world");
}
: user@debian:~/devel/dev3; rustc hello.rs
: user@debian:~/devel/dev3; ./hello
hello, world

Hello World is Fucking Huge
Smaller runtimes have fewer features but have the advantage of resulting in smaller
binaries. Smaller binaries make it easier to combine the language with other
languages in more contexts. While many languages are okay with increasing the
runtime in exchange for more features, Rust needs to have nearly no runtime, and
cannot compromise on being able to call into C in order to maintain performance.

 — The Rust Programming Language, §4.1 “Using threads to run code
simultaneously”, p. 423

: user@debian:~/devel/dev3; ls -l hello
-rwxr-xr-x 1 user user 3439804 Oct 6 22:50 hello

 That’s a completely unreasonable size, roughly two and a half
floppy disks for “hello, world”, between three and five orders of
magnitude larger than is needed, but it does run. And compiling it

takes about 250 milliseconds; again, three to five orders of magnitude
slower than compiling a three-line program ought to be, but tolerable.

 This is mostly (>90%) debug info. Unfortunately, the remainder is
still almost 300K, between two and four orders of magnitude too big:

: user@debian:~/devel/dev3; ls -l hello
-rwxr-xr-x 1 user user 3439804 Oct 7 23:00 hello
: user@debian:~/devel/dev3; strip hello
: user@debian:~/devel/dev3; ls -l hello
-rwxr-xr-x 1 user user 297312 Oct 7 23:01 hello

 Different optimization levels unsurprisingly don’t make much
difference:

: user@debian:~/devel/dev3; rustc -C opt-level=s hello.rs
: user@debian:~/devel/dev3; ls -l hello
-rwxr-xr-x 1 user user 3438548 Oct 7 23:03 hello
: user@debian:~/devel/dev3; rustc -C opt-level=z hello.rs
: user@debian:~/devel/dev3; ls -l hello
-rwxr-xr-x 1 user user 3438615 Oct 7 23:04 hello
: user@debian:~/devel/dev3; rustc -C opt-level=3 hello.rs
: user@debian:~/devel/dev3; ls -l hello
-rwxr-xr-x 1 user user 3438552 Oct 7 23:04 hello
: user@debian:~/devel/dev3; strip hello
: user@debian:~/devel/dev3; size hello
 text data bss dec hex filename
 281780 11288 576 293644 47b0c hello

 Apparently I’d have to not use the prebuilt libstd to fix this, which
requires nightly Rust, but that still leaves a 51-kilobyte executable, or
use #![no_std] to not use libstd at all. Dynamically linking libstd by
default isn’t an option because Rust doesn’t have an ABI, but you can
dynamically link with -C prefer-dynamic, which gives you a 10-kilobyte
stripped binary which by default doesn’t work because it doesn’t
know where to find Rust’s libstd:

: user@debian:~/devel/dev3; rustc -C prefer-dynamic hello.rs
: user@debian:~/devel/dev3; strip hello
: user@debian:~/devel/dev3; ls -l hello
-rwxr-xr-x 1 user user 10456 Oct 7 23:26 hello
: user@debian:~/devel/dev3; ldd hello
 linux-vdso.so.1 => (0x00007fff26df3000)
 libstd-008055cc7d873802.so => not found
 libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f05ead14000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f05ea987000)
 /lib64/ld-linux-x86-64.so.2 (0x00007f05eb12d000)
: user@debian:~/devel/dev3; ./hello

./hello: error while loading shared libraries: libstd-008055cc7d873802.so: cannot
 open shared object file: No such file or directory

: user@debian:~/devel/dev3; LD_LIBRARY_PATH=/home/user/.rustup/toolchains/stable-
x86_64-unknown-linux-gnu/lib ./hello

https://github.com/johnthagen/min-sized-rust#optimize-libstd-with-build-std
https://github.com/johnthagen/min-sized-rust#optimize-libstd-with-build-std
https://news.ycombinator.com/item?id=23498254
https://news.ycombinator.com/item?id=23498254
https://news.ycombinator.com/item?id=23498254
https://news.ycombinator.com/item?id=23498254
https://docs.rust-embedded.org/book/interoperability/rust-with-c.html
https://docs.rust-embedded.org/book/interoperability/rust-with-c.html
https://docs.rust-embedded.org/book/interoperability/rust-with-c.html
https://docs.rust-embedded.org/book/interoperability/rust-with-c.html
https://docs.rust-embedded.org/book/interoperability/rust-with-c.html

hello, world

 That seems pretty reasonable.

 There are, however, some other reasons that Rust compilation
output is bloated:

0000000000003b00 <_ZN4core3ptr9const_ptr33_LTimpl$u20$$BP$const$u20TGT$4cast1
7h2979c04ce50f48ccE>:
 3b00: 48 89 f8 mov %rdi,%rax
 3b03: c3 retq
 3b04: 90 nop
 3b05: 90 nop
 3b06: 90 nop
 3b07: 90 nop
 3b08: 90 nop
 3b09: 90 nop
 3b0a: 90 nop
 3b0b: 90 nop
 3b0c: 90 nop
 3b0d: 90 nop
 3b0e: 90 nop
 3b0f: 90 nop

Holy shit, thirty thousand HTML files?

 For some reason the rustup doc command just opens some kind of
Wine error dialog telling me how to install Wine. But it looks like
the docs are here:

: user@debian:~/devel/dev3; find /home/user/.rustup/ -name '*.html' | random 5000

/home/user/.rustup/toolchains/stable-x86_64-unknown-linux-gnu/share/doc/rust/html
/core/arch/x86_64/fn._pdep_u32.html

/home/user/.rustup/toolchains/stable-x86_64-unknown-linux-gnu/share/doc/rust/html
/core/arch/x86_64/fn._mm512_mask_reduce_add_pd.html

/home/user/.rustup/toolchains/stable-x86_64-unknown-linux-gnu/share/doc/rust/html
/core/arch/aarch64/fn.vaddv_s32.html

/home/user/.rustup/toolchains/stable-x86_64-unknown-linux-gnu/share/doc/rust/html
/core/arch/aarch64/fn.vaddl_s32.html

/home/user/.rustup/toolchains/stable-x86_64-unknown-linux-gnu/share/doc/rust/html
/core/arch/aarch64/fn.vmlsl_u32.html

/home/user/.rustup/toolchains/stable-x86_64-unknown-linux-gnu/share/doc/rust/html
/core/core_arch/arm_shared/neon/generated/fn.vqrdmlahq_laneq_s32.html

/home/user/.rustup/toolchains/stable-x86_64-unknown-linux-gnu/share/doc/rust/html
/core/core_arch/x86/avx512vbmi2/fn._mm512_mask_compress_epi16.html

: user@debian:~/devel/dev3; find /home/user/.rustup/toolchains/stable-x86_64-unkn

own-linux-gnu/share/doc/rust/html/ | wc
 30223 30223 3819176

 Thirty. Thousand. Files. Of documentation alone. Evidently, it’s
mostly one file per assembly-language instruction on any of the
supported architectures. What have I done?

: user@debian:~/devel/dev3; find ~/.rustup ~/.cargo | wc
 31994 31994 4029266

 Oh, I guess that’s not so bad, then.

: user@debian:~/devel/dev3; firefox /home/user/.rustup/toolchains/stable-x86_64-u
nknown-linux-gnu/share/doc/rust/html/index.html

 Well, that works. Nice comprehensive and polished
documentation, too, looks like.

My very first crate

 Let’s try making a crate. I don’t want to proliferate Git repos,
because then I can forget to check things in or push them, so I’m
using my standard hellbox repo:

: user@debian:~/devel/dev3; cargo new --vcs none hello_cargo
 Created binary (application) `hello_cargo` package

 (The Rust book says to use --bin but cargo new --help says that’s the
default.)

: user@debian:~/devel/dev3; cd hello_cargo/
: user@debian:~/devel/dev3/hello_cargo; cat > hello.rs
fn main() {
 println!("hello, world");
}
: user@debian:~/devel/dev3/hello_cargo; ls
Cargo.toml hello.rs src
: user@debian:~/devel/dev3/hello_cargo; mv hello.rs src/.
: user@debian:~/devel/dev3/hello_cargo; mv src/hello.rs src/main.rs
: user@debian:~/devel/dev3/hello_cargo; cat Cargo.toml
[package]
name = "hello_cargo"
version = "0.1.0"
edition = "2018"

See more keys and their definitions at https://doc.rust-lang.org/cargo/referenc
e/manifest.html

[dependencies]
: user@debian:~/devel/dev3/hello_cargo; cargo build
 Compiling hello_cargo v0.1.0 (/home/user/devel/dev3/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 0.72s
: user@debian:~/devel/dev3/hello_cargo; ls

Cargo.lock Cargo.toml src target
: user@debian:~/devel/dev3/hello_cargo; find target/
target/
target/.rustc_info.json
target/debug
target/debug/.fingerprint
target/debug/.fingerprint/hello_cargo-cb8f156fc8def340
target/debug/.fingerprint/hello_cargo-cb8f156fc8def340/bin-hello_cargo
target/debug/.fingerprint/hello_cargo-cb8f156fc8def340/invoked.timestamp
target/debug/.fingerprint/hello_cargo-cb8f156fc8def340/bin-hello_cargo.json
target/debug/.fingerprint/hello_cargo-cb8f156fc8def340/dep-bin-hello_cargo
target/debug/incremental
target/debug/incremental/hello_cargo-3fhio3llrdrxv
target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w.lock

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/3n8baekyl6jfd1zt.o

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/dep-graph.bin

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/5893w20ken98e8mr.o

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/15pcyh12hnx9h9yu.o

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/work-products.bin

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/2zukcvf9271rij44.o

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/3jf4rvldk0nwopmj.o

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/query-cache.bin

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/3vvwo10tkawer2dj.o

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/497974iq30wb32q0.o

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/2pe66p99jtgk2gt2.o

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq
59u4/4moexls4ruzzyfmb.o

target/debug/incremental/hello_cargo-3fhio3llrdrxv/s-g31wqj1itv-18kv17w-3u24lffwq

59u4/56vc5hmppbu1ww1q.o
target/debug/build
target/debug/.cargo-lock
target/debug/hello_cargo.d
target/debug/deps
target/debug/deps/hello_cargo-cb8f156fc8def340
target/debug/deps/hello_cargo-cb8f156fc8def340.d
target/debug/examples
target/debug/hello_cargo
target/CACHEDIR.TAG
: user@debian:~/devel/dev3/hello_cargo; ./target/debug/hello_cargo
hello, world

 Hmm, seems okay. A bit voluminous, I guess, but that’s a small
price to pay if it speeds up builds and/or makes them more reliable.

 Because I said --vcs none it didn’t create a .gitignore, so I do:

: user@debian:~/devel/dev3/hello_cargo; echo target > .gitignore

 Then I can add it to git, which I do, and then I can clone:

: user@debian:~/devel/dev3/hello_cargo; cd ../..
: user@debian:~/devel; time git clone dev3 dev3.copy
...
real 0m2.890s
...
: user@debian:~/devel; cd dev3.copy
: user@debian:~/devel/dev3.copy; cd hello_cargo/
: user@debian:~/devel/dev3.copy/hello_cargo; cargo build
 Compiling hello_cargo v0.1.0 (/home/user/devel/dev3.copy/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 0.72s
: user@debian:~/devel/dev3.copy/hello_cargo; ./target/debug/

build/ deps/ examples/ .fingerprint/ hello_cargo incremental
/
: user@debian:~/devel/dev3.copy/hello_cargo; ./target/debug/hello_cargo
hello, world

 Good enough. And it’s nice that it records the versions of
dependencies I’m building with in Cargo.lock by default.

 There’s a cargo run:

: user@debian:~/devel/dev3/hello_cargo; cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.00s
 Running `target/debug/hello_cargo`
hello, world
: user@debian:~/devel/dev3/hello_cargo; rm -rf target
: user@debian:~/devel/dev3/hello_cargo; cargo run
 Compiling hello_cargo v0.1.0 (/home/user/devel/dev3/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 0.71s
 Running `target/debug/hello_cargo`
hello, world

 Oof, 710 ms to build a three-line program. Four lines of code

compiled per second. This is not going to be fun. Oddly, the release
build happens faster, so possibly that was just a measurement error:

: user@debian:~/devel/dev3/hello_cargo; cargo run --release
 Compiling hello_cargo v0.1.0 (/home/user/devel/dev3/hello_cargo)
 Finished release [optimized] target(s) in 0.30s
 Running `target/release/hello_cargo`
hello, world

Cross-compiling depends on the C
toolchain (and other things)

 It seems like the Rust compiler I installed includes every Rust
backend known to history or myth:

: user@debian:~/devel/dev3; rustc --print target-list| wc
 166 166 4022
: user@debian:~/devel/dev3; rustc --print target-list| random 32
mips64-unknown-linux-muslabi64
mipsisa64r6el-unknown-linux-gnuabi64
powerpc64-wrs-vxworks
x86_64-unknown-illumos

 But because the binaries link with libc, you need to have a GCC or
similar toolchain installed for the target platform:

: user@debian:~/devel/dev3; rustc --target s390x-unknown-linux-gnu hello.rs
error[E0463]: can't find crate for `std`
 |
 = note: the `s390x-unknown-linux-gnu` target may not be installed

 = help: consider downloading the target with `rustup target add s390x-unknown-l
inux-gnu`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0463`.
: user@debian:~/devel/dev3; rustup target add s390x-unknown-linux-gnu
info: downloading component 'rust-std' for 's390x-unknown-linux-gnu'
info: installing component 'rust-std' for 's390x-unknown-linux-gnu'
 22.9 MiB / 22.9 MiB (100 %) 11.2 MiB/s in 1s ETA: 0s
: user@debian:~/devel/dev3; rustc --target s390x-unknown-linux-gnu hello.rs
error: linking with `cc` failed: exit status: 1
 |
 = note: "cc" "hello.hello.996e1e6f-cgu.0.rcgu.o" "hello.hello.996e1e6f-
...
e.rlib" "-Wl,-Bdynamic" "-lgcc_s" "-lutil" "-lrt" "-lpthread" "-lm" "-ldl" "
-lc" "-Wl,--eh-frame-hdr" "-Wl,-znoexecstack" "-L" "/home/user/.rustup/toolc
hains/stable-x86_64-unknown-linux-gnu/lib/rustlib/s390x-unknown-linux-gnu/li
b" "-o" "hello" "-Wl,--gc-sections" "-pie" "-Wl,-zrelro" "-Wl,-znow" "-nodef
aultlibs"

 = note: /usr/bin/ld: hello.hello.996e1e6f-cgu.0.rcgu.o: Relocations in generic
ELF (EM: 22)

 hello.hello.996e1e6f-cgu.0.rcgu.o: could not read symbols: File in wron
g format
 collect2: error: ld returned 1 exit status

error: aborting due to previous error

 This failure left a debris of 11 hello.*.rcgu.o files built for the S/390,
perhaps as a debugging aid.

 Among the more exciting targets included are x86_64-fuchsia,
wasm32-wasi, wasm32-unknown-emscripten,
riscv32i-unknown-none-elf, riscv64gc-unknown-linux-gnu,
nvptx64-nvidia-cuda, mipsel-sony-psp, arm-linux-androideabi, and
avr-unknown-gnu-atmega328. I actually have the cross-compiling
toolchain for the AVR, but trying to get Rust working for it fails in
an excitingly different way:

: user@debian:~/devel/dev3; rustup target add avr-unknown-gnu-atmega328

error: toolchain 'stable-x86_64-unknown-linux-gnu' does not contain component 'ru
st-std' for target 'avr-unknown-gnu-atmega328'

note: not all platforms have the standard library pre-compiled: https://doc.rust-
lang.org/nightly/rustc/platform-support.html

 (Here by “excitingly” I mean “disappointingly”.)

Notes on things that surprised me about the
language

 I’d say “notes about the language” but I’m not going to attempt to
describe the whole language, except very cursorily: the atomic
(“scalar”) types are {u,i}{8,16,32,64,size}, Unicode codepoints
(“char”), f{32,64}, and boolean. Built-in aggregate types
(“compound types” — oddly not “vector”, which is a standard library
growable array, as in the STL) are tuples, strings, arrays, structs
(chapter 5), enums (ADTs, chapter 6), plus references, mutable
references, and, rarely, pointers. Hmm, what about traits and
functions? Looks like closure types are trait types (Fn, FnMut,
FnOnce).

 Some of what follows probably sounds critical and might inspire
Rustaceans to feel defensive. I’d suggest they don’t read it, because
it’s not about Rust; it’s about me.

 It’s nice to be able to use underscores in numbers. Binary literals
(0b101) are nice. Array literals [x, y, z] are nice. String formatting
with println! (and format!, and even panic!) is nice. Snake case is nice.
Array indexes are checked at runtime, panicking like .expect() when
out of bounds. Type inference is nice, but unfortunately it doesn’t
extend to formal parameters or function return types, making the
subroutine mechanism a more costly form of generalization than it
would be. Implicit return and closure syntax, OTOH, reduce the
cost of the subroutine mechanism, and it’s nice that implicit return is
just a special case of a more general progn mechanism. (Closure syntax

does receive the benefit of type inference.) Unparenthesized conditions
in if and while are nice. Conditional expressions are nice, even if they
do have to be made out of blocks. Not sure I like the else if
special-case syntax, but I guess it’s easy to read and remember. for-in
is nice; not sure about the explicit .iter(). The (1..4).rev() syntax for a
Range is nice.

 I was thinking that maybe the cmp method from
std::cmp::Ordering implied that there was no operator overloading,
but evidently that’s not true; std::ops::Add<T> is the trait of things that
overload +. And Vec overloads [], which is even better news for
nefarious EDSL purposes. (Though Rust’s macro system is probably a
more capable way of doing EDSLs.)

 In general the error messages are really excellent:

: user@debian:~/devel/dev3; rustc add.rs
error: return types are denoted using `->`
 --> add.rs:1:13
 |
1 | fn f(i: i32): i32 {
 | ^ help: use `->` instead

 Though not always:

thread 'main' panicked at 'index out of bounds: the len is 1
but the index is 1', /stable-dist-rustc/build/src/libcollections/
vec.rs:1307

 That’s... not a useful error location.

 This is a very groovy way to almost implicitly propagate an
exception:

fn run(config: Config) -> Result<(), Box<Error>> {
 let mut f = File::open(config.filename)?;

 That sneaky little byte ? means “return the result if it’s an error”.

 I like the fact that each file forms a namespace of its own by
default. I dislike the fact that apparently the crate name has nothing
to do with the filename.

 I wonder if instead of a & sigil for borrowing an immutable
reference and no sigil for consumption or copying (the difference
between them being only whether the object has the Copy trait) the
unmarked case should be borrowing an immutable reference, while
copying and consumption each have their own sigils. Mina suggested
that consumption should use an arrow; instead of let s2 = s1 you
could say let s2 ← s1 to emphasize the “movement” aspect of the
value; in other consumption contexts (arguments, returns) that
wouldn’t quite work, but let s2 = ←s1 would.

 Syntactically, I am not a fan of the paamayim nekudotayim, but I
guess it could be worse; VMS used $.

 It’s interesting that library functions are private (like C file static, I
guess?) by default, if you don’t prefix them with pub. pub fn foo, etc.

 Recursive deref coercion for arguments surprised me.

Unhandled results are just a warning

 Unhandled result failures warn by default, which is nice:

: user@debian:~/devel/dev3; rustc greet.rs
warning: unused `Result` that must be used
 --> greet.rs:6:4
 |
6 | io::stdin().read_line(&mut s);
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: `#[warn(unused_must_use)]` on by default
 = note: this `Result` may be an `Err` variant, which should be handled

warning: 1 warning emitted

 But it was only a warning:

: user@debian:~/devel/dev3; ./greet
hi, what is your name?
bob
hello, bob
!

 There’s a linter standardly installed with the compiler called
“Clippy”; I’m not sure if this is a Clippy warning or not.

Unicode handling? Well, shit, at least it’s not Python

 The Rust book says:
Note: std::env::args will panic if any argument contains invalid Unicode. If you need to
accept arguments containing invalid Unicode, use std::env::args_os instead. That function
returns OsString values instead of String values. We’ve chosen to use std::env::args here
for simplicity because OsString values differ per-platform and are more complex to work with
than String values.

 So, on the plus side, at least command-line argument handling isn’t
completely broken in order to enable portability to broken operating
systems. On the other hand, the easiest interface to command-line
argument apparently is broken. I don’t understand why I should
suffer because other people use Microsoft Windows.

 But hey. At least I think my Rust programs won’t crash while
attempting to print a crash traceback because the traceback contains a
non-ASCII character, which is actually a thing that has happened to
me with Python 3. And probably there won’t be files I can’t open in
Rust because their names aren’t UTF-8. And I’m pretty sure my
Rust programs won’t stop compiling if I put curly quotes inside my
comments, which happened to me a lot in Python 2.

Strings

 The str/String distinction is a bit of a hassle. Nice that str (and
maybe String?) has .lines() iterator and a .contains() method, and that
String (and maybe str?) can be sliced by bytes. .to_lowercase() is a
longish method name but not commonly enough used to merit a
more ambiguous name.

Iterators

 Python’s iterator design is one of its strongest points, and Rust’s
iterator design is one of its strongest points. Both are external iterators
(they don’t receive a closure to evaluate on each item, so you can
build fairly general converging dataflow trees from them). And they
are very similar, consisting of only a next() method (renamed __next__()
in Python 3 for dubious reasons) that either returns the next item or
fails (with None in Rust, StopIteration in Python) and implicitly
mutates the iterator.

 It’s interesting that Vec “is an iterator” (you can directly iterate over
it with for-in) but the book implies some built-in collections aren’t;
you need to call .iter() on them. Though, which built-in collections
were they? Arrays evidently can be directly iterated over. The default
way of iterating over Vec is I think its .iter() method; it also has
.into_iter(), which consumes the vec, and .iter_mut(), which returns an
iterator of mutable references.

 The next() method in the Iterator trait takes a mutable self reference,
which makes it surprising that you can usefully make an immutable
iterator reference.

 Python added generators fairly soon after iterators, allowing you to
implement an iterator as a coroutine, which greatly improved the
clarity of iterator transformation. Soon after that it added generator
expressions, which are still terser.

 Python’s iterators are somewhat bug-prone because you can
confuse them with collections and attempt to use them again after
they’ve already been fully consumed, in which case they will
generally appear to be empty. Java’s iterator design solved this by not
treating iterators themselves as iterable, at the cost of not being able to
deal with sequences like lines from an input file. I think this
bug-proneness is less of a concern in Rust because normally anything
that iterates over an iterator will consume and drop the iterator; it
won’t be satisfied with a borrowed mutable reference.

 Another bug that Rust is better at detecting than Python is creating
a lazy iterator and then never consuming it, because at least iterator
adaptors are #[warn(unused_must_use)], like Err.

 Because Rust has traits instead of just protocols, things like map(),
filter(), enumerate(), zip(), sum(), reduce() (called .fold()), collect()
(like Python list(), dict(), etc.), and skip() (like APL drop I guess) are
methods on the iterator trait with default implementations, not
functions in a global namespace. This helps to reduce nesting
compared to Python, though a Python genex is still usually shorter
and clearer.

 Interestingly, both .collect() and .sum() have ad-hoc polymorphism
on their return type, similar to Perl’s scalar vs. list context, but
generalized. Any type that implements the FromIterator trait can be
returned from .collect(); any type that implements Sum can be
returned from .sum() (and similarly for Product and .product()).

 There is some implicit lifting into the Result and Option monads
for, e.g., .sum() and .product().

 In addition to what STL calls input and output (see below!)
iterators, I think Rust iterators can be forward iterators (by
implementing Copy or Clone) and random-access iterators (with the

Step trait).

Writing through iterators
 Because Rust iterators can yield mutable references, you can use
them as cursors into data structures you’re mutating as well, like C++
forward iterators. This is something Python iterators can’t do. This
took me 20 minutes of struggling through compiler errors, but I did
finally get it to work:

fn copy_iter<T: Copy>(src: &mut dyn Iterator<Item=&T>,
 dest: &mut dyn Iterator<Item=&mut T>) {
 loop {
 match (src.next(), dest.next()) {
 (Some(s), Some(d)) => *d = s.clone(),
 (_, _) => return,
 }
 }
}

fn main() {
 let mut v1 = vec![3, 4, 1];
 let v2 = vec![10, 20, 100];
 let mut i = v1.iter_mut();
 i.next();

 copy_iter(&mut v2.iter(), &mut i);
 println!("Now it's {:?}", v1); // outputs: Now it's [3, 10, 20]
}

 That, uh, doesn’t really emit reasonable code for copy_iter, though.
It does get specialized for the i32 integers it’s being invoked with, but,
oddly enough, not for vector iteration, presumably because of dyn:

0000000000002cb0 <_ZN4iter9copy_iter17h5fd7a53461d29648E>:
 2cb0: 48 83 ec 58 sub $0x58,%rsp
 2cb4: 48 89 7c 24 28 mov %rdi,0x28(%rsp)
 2cb9: 48 89 74 24 30 mov %rsi,0x30(%rsp)
 2cbe: 48 89 54 24 38 mov %rdx,0x38(%rsp)
 2cc3: 48 89 4c 24 40 mov %rcx,0x40(%rsp)
 2cc8: 48 8b 44 24 30 mov 0x30(%rsp),%rax
 2ccd: 48 8b 7c 24 28 mov 0x28(%rsp),%rdi
 2cd2: ff 50 18 callq *0x18(%rax)
 2cd5: 48 89 44 24 20 mov %rax,0x20(%rsp)
 2cda: 48 8b 44 24 40 mov 0x40(%rsp),%rax
 2cdf: 48 8b 7c 24 38 mov 0x38(%rsp),%rdi
 2ce4: ff 50 18 callq *0x18(%rax)
 2ce7: 48 89 44 24 18 mov %rax,0x18(%rsp)
 2cec: 48 8b 44 24 18 mov 0x18(%rsp),%rax
 2cf1: 48 8b 4c 24 20 mov 0x20(%rsp),%rcx
 2cf6: 48 89 4c 24 48 mov %rcx,0x48(%rsp)
 2cfb: 48 89 44 24 50 mov %rax,0x50(%rsp)
 2d00: b8 01 00 00 00 mov $0x1,%eax
 2d05: 31 c9 xor %ecx,%ecx
 2d07: 48 83 7c 24 48 00 cmpq $0x0,0x48(%rsp)
 2d0d: 48 0f 44 c1 cmove %rcx,%rax

 2d11: 48 83 f8 01 cmp $0x1,%rax

 2d15: 75 17 jne 2d2e <_ZN4iter9copy_iter17h5fd7a53
461d29648E+0x7e>
 2d17: b8 01 00 00 00 mov $0x1,%eax
 2d1c: 31 c9 xor %ecx,%ecx
 2d1e: 48 83 7c 24 50 00 cmpq $0x0,0x50(%rsp)
 2d24: 48 0f 44 c1 cmove %rcx,%rax
 2d28: 48 83 f8 01 cmp $0x1,%rax

 2d2c: 74 05 je 2d33 <_ZN4iter9copy_iter17h5fd7a53
461d29648E+0x83>
 2d2e: 48 83 c4 58 add $0x58,%rsp
 2d32: c3 retq
 2d33: 48 8b 7c 24 48 mov 0x48(%rsp),%rdi
 2d38: 48 8b 44 24 50 mov 0x50(%rsp),%rax
 2d3d: 48 89 44 24 08 mov %rax,0x8(%rsp)

 2d42: e8 09 0e 00 00 callq 3b50 <_ZN4core5clone5impls52_LTi
mpl$u20$core..clone..Clone$u20$for$u20$i32GT5clone17h4244c5f4dce8d8e8E>
 2d47: 89 44 24 14 mov %eax,0x14(%rsp)
 2d4b: 48 8b 44 24 08 mov 0x8(%rsp),%rax
 2d50: 8b 4c 24 14 mov 0x14(%rsp),%ecx
 2d54: 89 08 mov %ecx,(%rax)

 2d56: e9 6d ff ff ff jmpq 2cc8 <_ZN4iter9copy_iter17h5fd7a53
461d29648E+0x18>
 2d5b: 90 nop
 2d5c: 90 nop
 2d5d: 90 nop
 2d5e: 90 nop
 2d5f: 90 nop

 I mean, reading through the code, it’s not totally appalling, but does
this function really need an almost-90-byte stack frame? And what’s
going on here?

 2ce7: 48 89 44 24 18 mov %rax,0x18(%rsp)
 2cec: 48 8b 44 24 18 mov 0x18(%rsp),%rax

 And this in particular is kind of an embarrassing way to compile *d
= s.clone() in a production compiler optimizing for size:

 2d33: 48 8b 7c 24 48 mov 0x48(%rsp),%rdi
 2d38: 48 8b 44 24 50 mov 0x50(%rsp),%rax
 2d3d: 48 89 44 24 08 mov %rax,0x8(%rsp)

 2d42: e8 09 0e 00 00 callq 3b50 <_ZN4core5clone5impls52_LTi
mpl$u20$core..clone..Clone$u20$for$u20$i32GT5clone17h4244c5f4dce8d8e8E>
 2d47: 89 44 24 14 mov %eax,0x14(%rsp)
 2d4b: 48 8b 44 24 08 mov 0x8(%rsp),%rax
 2d50: 8b 4c 24 14 mov 0x14(%rsp),%ecx
 2d54: 89 08 mov %ecx,(%rax)

 I’d think something like this would be more reasonable:

 mov 0x48(%rsp), %rdi # s

 callq _ZN4core5clone5impls52_LTimpl$u20$core..clone..Clone$u20$for$u20$i32$
GT$5clone17h4244c5f4dce8d8e8E #WTAF
 mov 0x50(%rsp), %rcx # d
 mov %eax, (%rcx) # *d = ...

 That’s with -C prefer-dynamic -C opt-level=s. Without the
optimization the executable is three times the size. opt-level=3
doesn’t help but opt-level=1 is actually a little better, except that its
invocation of the next() method is much worse:

00000000000013a0 <_ZN4iter9copy_iter17h5fd7a53461d29648E>:
 13a0: 41 57 push %r15
 13a2: 41 56 push %r14
 13a4: 41 54 push %r12
 13a6: 53 push %rbx
 13a7: 50 push %rax
 13a8: 49 89 f6 mov %rsi,%r14
 13ab: 49 89 ff mov %rdi,%r15
 13ae: 66 90 xchg %ax,%ax

 13b0: e8 8b ff ff ff callq 1340 <_ZN91_LTcore..slice..iter.
.IterLTT$GT$$u20asu20$core..iter..traits..iterator..IteratorGT4next17h074db
47cc7af8891E>
 13b5: 49 89 c4 mov %rax,%r12
 13b8: 4c 89 f7 mov %r14,%rdi

 13bb: e8 b0 ff ff ff callq 1370 <_ZN94_LTcore..slice..iter.
.IterMutLTT$GT$$u20asu20$core..iter..traits..iterator..IteratorGT4next17h50
a12d7708b22495E>
 13c0: 4d 85 e4 test %r12,%r12

 13c3: 74 17 je 13dc <_ZN4iter9copy_iter17h5fd7a53
461d29648E+0x3c>
 13c5: 48 89 c3 mov %rax,%rbx
 13c8: 48 85 c0 test %rax,%rax

 13cb: 74 0f je 13dc <_ZN4iter9copy_iter17h5fd7a53
461d29648E+0x3c>
 13cd: 4c 89 e7 mov %r12,%rdi

 13d0: e8 ab fd ff ff callq 1180 <_ZN4core5clone5impls52_LTi
mpl$u20$core..clone..Clone$u20$for$u20$i32GT5clone17hb0e95370c1e5efa8E>
 13d5: 89 03 mov %eax,(%rbx)
 13d7: 4c 89 ff mov %r15,%rdi

 13da: eb d4 jmp 13b0 <_ZN4iter9copy_iter17h5fd7a53
461d29648E+0x10>
 13dc: 48 83 c4 08 add $0x8,%rsp
 13e0: 5b pop %rbx
 13e1: 41 5c pop %r12
 13e3: 41 5e pop %r14

 13e5: 41 5f pop %r15
 13e7: c3 retq

 (Maybe all those extra movs disappear into register renaming in early
stages of execution, though.)

 (On the plus side, compiling this 17-line program at any
optimization level takes 280–290 ms, barely longer than the 230 ms to
compile the three-line hello-world program. So it’s compiling...
about 300 lines a second? Probably that’s just happenstance and the
actual amount of code is a minimal factor here.)

 The explicit call to .iter() is necessary; maybe coercion to iterators
happens automatically in for-in loops for Vec, but not here:

error[E0277]: `Vec<{integer}>` is not an iterator
 --> iter.rs:17:15
 |
17 | copy_iter(&mut v2, &mut i);
 | ^^^^^^^ `Vec<{integer}>` is not an iterator
 |
 = help: the trait `Iterator` is not implemented for `Vec<{integer}>`
 = note: required for the cast to the object type `dyn Iterator<Item = &_>`

 The body of the loop is stupid, though, because it’s explicitly
calling .clone() on a Copy instance; it should instead say

match (src.next(), dest.next()) {
 (Some(s), Some(d)) => *d = *s,
 (_, _) => return,
}

 and, with this fix, the function is inlined into main() as it should be,
and fully unrolled, and I think maybe dead-store-eliminated as well.
This also works:

while let (Some(s), Some(d)) = (src.next(), dest.next()) {
 *d = *s;
}

 And so does this:

for (s, d) in src.zip(dest) {
 *d = *s;
}

FFI Callability

 One of the major draws of Rust for me is interoperability: being
able to call code from other languages and being able to call code in
other languages.

 It’s not obvious how you invoke the Rust compiler to build a .o file
you can link with C, though. All in all this seems like an
underdocumented aspect of Rust.

https://docs.rust-embedded.org/book/interoperability/rust-with-c.html
https://docs.rust-embedded.org/book/interoperability/rust-with-c.html
https://doc.rust-lang.org/stable/reference/items/external-blocks.html#abi
https://doc.rust-lang.org/stable/reference/items/external-blocks.html#abi

 The following seems to work (see SO question), but involves
compiling four lines of code into a 20-megabyte library which adds
4.7 megs to the binary, and adds dependencies on libpthreads, libdl,
libm, and librt to the C code:

: user@debian:~/devel/dev3; cat add2.rs
#[no_mangle]
pub extern "C" fn add(a: i32, b: i32) -> i32 {
 a + b
}
: user@debian:~/devel/dev3; rustc --crate-type=staticlib add2.rs
: user@debian:~/devel/dev3; ls -l libadd2.a
-rw-r--r-- 1 user user 19493732 Oct 7 23:51 libadd2.a
: user@debian:~/devel/dev3; cat calladd2.c
#include <stdio.h>

int add(int a, int b); /* prototype for function written in Rust */

int main(int argc, char **argv) {
 printf("3 + 4 = %d\n", add(3, 4));
 return 0;
}
: user@debian:~/devel/dev3; cc -L. calladd2.c -ladd2 -lpthread -ldl -lm -lrt
: user@debian:~/devel/dev3; ls -l a.out
-rwxr-xr-x 1 user user 4689773 Oct 7 23:52 a.out
: user@debian:~/devel/dev3; ./a.out
3 + 4 = 7

 (It sort of works with cc -static but gives terrifying warnings.)

 So it seems like doing this in practice would involve doing some of
the things mentioned in the “Hello World is Fucking Huge” section
above. Until your library is hundreds of thousands of lines of code,
anyway.

 Fontdue is a TrueType rasterizer written this way (a no_std crate) to
facilitate calling from C. It seems like I could probably learn a lot
from things like that about how to pull this off.

 However, it’s notable that building libraries like this evidently
doesn’t rely on having a working GCC toolchain, so cross-compiling
is easier for building C-callable libraries than for building executables:

: user@debian:~/devel/dev3; rustc --crate-type=staticlib \
 --target s390x-unknown-linux-gnu add2.rs
: user@debian:~/devel/dev3; ls -l libadd2.a
-rw-r--r-- 1 user user 37002666 Oct 8 00:13 libadd2.a
: user@debian:~/devel/dev3; ar tv libadd2.a
rw-r--r-- 0/0 1640 Dec 31 21:00 1969 add2.add2.a3d9fba4-cgu.0.rcgu.o
rw-r--r-- 0/0 2288 Dec 31 21:00 1969 add2.1o36m3z73gy3kp52.rcgu.o
...[188 lines omitted]...
: user@debian:~/devel/dev3; ar x libadd2.a add2.add2.a3d9fba4-cgu.0.rcgu.o
: user@debian:~/devel/dev3; ls -l add2.add2.a3d9fba4-cgu.0.rcgu.o
-rw-r--r-- 1 user user 1640 Oct 8 00:14 add2.add2.a3d9fba4-cgu.0.rcgu.o
: user@debian:~/devel/dev3; file add2.add2.a3d9fba4-cgu.0.rcgu.o

https://stackoverflow.com/questions/63617012/creating-and-linking-static-rust-library-and-link-to-c
https://github.com/mooman219/fontdue

add2.add2.a3d9fba4-cgu.0.rcgu.o: ELF 64-bit MSB relocatable, IBM S/390, version 1
 (SYSV), not stripped

 I don’t have cross-platform binutils installed, though:

: user@debian:~/devel/dev3; objdump -d add2.add2.a3d9fba4-cgu.0.rcgu.o

add2.add2.a3d9fba4-cgu.0.rcgu.o: file format elf64-big

objdump: can't disassemble for architecture UNKNOWN!

Creature comforts and affordances

 I’d really like to have Hypothesis. Rik de Kort has ported
minithesis but doesn’t recommend using it; he recommends the
Hypothesis-inspired proptest (docs) or quickcheck instead, which
latter is by BurntSushi (Andrew Gallant, the ripgrep guy) and also
comes recommended by DRMacIver. There are efforts to provide
proptest via symbolic execution in KLEE.

 It’s nice that there’s a standard test setup: the #[cfg(test)] attribute
on a mod, the #[test] attribute on each test function, the assert! macro
(or just panic!), and cargo test to run the lot (implicitly all in parallel!).
I don’t think the Rust book’s recommendation to put the tests mod in
src/lib.rs is optional or not; XXX try it. I like the recommendation
to put unit tests in the same file as the implementation; I guess Cargo
enforces the putting of integration tests in a tests/ directory and extern
crate importing your library module? XXX try a different directory.

Deep equality and deep printing

 One of the big advances in Python over Perl for me was deep
equality and printing by default (for lists, tuples, and dicts), The
semantics of equality used by assert_eq! are those of ==, which comes
from the PartialEq trait. As with printing, Rust doesn’t do the deep
comparison thing for structs and enums unless you opt into it with
#[derive(..., PartialEq)]. Not sure yet about the semantics of these with
built-in arrays, slices, tuples, and hash maps. XXX try it. Vec
evidently has a useful debug print format.

 Vec and std::collection::HashMap at least do the deep equality
thing by default. Given this code:

let xs = vec![3, 8, 12];

let mut ys = vec![3, 8];
ys.push(13);
assert_eq!(xs, ys);

 We get this behavior:

: user@debian:~/devel/dev3; ./veciter
thread 'main' panicked at 'assertion failed: `(left == right)`
 left: `[3, 8, 12]`,
 right: `[3, 8, 13]`', veciter.rs:6:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

https://github.com/Rik-de-Kort/minithesis-rust
https://github.com/Rik-de-Kort/minithesis-rust
https://docs.rs/proptest/0.10.1/proptest/
https://altsysrq.github.io/proptest-book/proptest/tutorial/macro-proptest.html
https://docs.rs/quickcheck/0.9.2/quickcheck/
https://alastairreid.github.io/why-not-both/
https://alastairreid.github.io/why-not-both/

 And similarly for HashMap. It formats okay with {:?} too.

Backtraces

 It’d be nice to have a stack data dump like Python cgitb, but I’m
not sure to what extent that’s implementable in Rust. With
RUST_BACKTRACE=1 in the environment, you do get some kind of backtrace,
but it doesn’t display the values of local variables, and if you compile
without -g it won’t even show you the line number in your code
where it failed:

: user@debian:~/devel/dev3; RUST_BACKTRACE=1 ./veciter
thread 'main' panicked at 'assertion failed: `(left == right)`
 left: `[3, 8, 12]`,
 right: `[3, 8, 13]`', veciter.rs:6:5
stack backtrace:
 0: rust_begin_unwind

 at /rustc/c8dfcfe046a7680554bf4eb612bad840e7631c4b/library/std/src/p
anicking.rs:515:5
 1: core::panicking::panic_fmt

 at /rustc/c8dfcfe046a7680554bf4eb612bad840e7631c4b/library/core/src/
panicking.rs:92:14
 2: core::panicking::assert_failed_inner
 3: core::panicking::assert_failed
 4: veciter::main
 5: core::ops::function::FnOnce::call_once

note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose back
trace.

 The suggested RUST_BACKTRACE=full gives you more stack frames,
machine-code addresses, and compilation hashes, but not more
variables, e.g.,

 17: 0x7ff3987a1c61 - veciter::main::hdfeb52505aea83ac
 at /home/user/devel/dev3/veciter.rs:6:5

 This would be useful if I were debugging the compiler or build
system but not if the bug is in my code.

Etc.
 Failing full backtraces, what does the debugger look like?
Evidently (Rust’s fork of) GDB and (Rust’s MacOS-only fork of)
LLDB are supported, and Tom Tromey has been working on it, but
DWARF can’t represent traits yet.

 There are some wrappers installed by Rustup (or Cargo?) that don’t
work:

: user@debian:~/devel/dev3; rust-gdb
gdb: unrecognized option '-iex'
Use `gdb --help' for a complete list of options.
: user@debian:~/devel/dev3; rust-lldb

https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html
https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html

lldb not found! Please install it.

 You'd think there would be a rustfilt analogous to c++filt for the
name mangling, but there doesn’t seem to be.

 There’s a crate called coredump to dump core on panic, which is
potentially a useful alternative to full backtraces, if you have a
working debugger, anyway.

 Printf debugging in tests is feasible but requires cargo test --
--nocapture.

 A lot of the things I’m accustomed to in the Python standard
library (JSON, XML, HTTP) aren’t in the Rust standard library;
you’re supposed to get them from Cargo. But which crates
(packages) do I use in Cargo for these things? For example,
apparently ureq is a lot smaller than reqwest for HTTP.

 I guess one possibility is to look at exemplary Rust projects and see
what dependencies they use. ripgrep, for example, has 46
dependencies (!). Among them are the FNV hash function used by
the Rust compiler, atty (which provides various OS-specific cversions
of isatty), libc (a wrapper around libc), itoa (a faster version than the
fmt::Formatter version), memmap2 (a fork of memmap-rs, supporting mmap
and similar facilities on other OSes), ryu (for float-to-string
conversion), and serde (similar to pickle). This gives something of a
flavor of the stuff left out of the standard library.

 Rust for the Polyglot Programmer recommends crates called slab,
slotmap, and generational_arena for memory management; itertools; the
locking-primitives crate parking_lot; the tokio runtime for async
programs; the alternative smol; pin-project and pin-project-lite for
dealing with some obscure async problems; futures; cxx, for calling
C++; inline-python and pyo3 for calling Python; wasm-bindgen, web-sys,
and rusty_v8 for WASM and the web; j4rs and jni for calling Java;
fehler, thiserror, eyre, and/or anyhow for error handling; num, num-traits,
and num-derive for numerical code and integer conversion; index_vec,
arrayvec, and indexmap for containers; easy-ext; rayon and crossbeam for
multi-thread parallelism; chrono and chrono-tz for datetime; libc or nix;
lazy_static and once_cell; log; tracing; regex; lazy-regex; glob; tempfile;
rand (also recommended by TRPL); either; void; ndarray; ndarray-linalg;
ring; rustls; bstr; bytemuck; serde, mentioned above, but also with the
objective of data interchange with other languages, saying they are
“considerably better for many tasks than anything available in any
other programming environment”; reqwest or ureq; hyper for raw
HTTP; rocket, actix-web, rouille (sync), or warp as a web server
framework; structop and clap or argparse for command-line parsing;
etc. It also suggests looking at “recent downloads” on crates.io to see
what other people are using. It specifically recommends avoiding
wasm-pack and stdweb.

 I think the easiest way to make Cargo get the source for a package
is to add it as a dependency to a project.

Topics

https://lib.rs/crates/coredump
https://arusahni.net/blog/2020/03/optimizing-rust-binary-size.html

• Programming (p. 1141) (49 notes)
• Rust

PBKDF content addressing with
keyphrase hashcash: a
non-blockchain attack on Zooko’s
Triangle
Kragen Javier Sitaker, 02021-10-08 (24 minutes)

 This note provides a cryptographically secure, moderately
decentralized way to link moderately human-memorable strings like
b8://grain-more-state-court/GenevievesDeliciousPies or
b8://lucy-cure-tommy-rinse/Francisco.H.Walz to public keys or
other data, without a blockchain or other consensus-arbitration
mechanism, at the cost of a few thousand dollars of proof-of-work for
each four-word keyphrase such as b8://grain-more-state-court/ or
b8://lucy-cure-tommy-rinse/, which creates a namespace of
unlimited size that can be securely delegated. Brute-force attacks on
the system’s cryptographic integrity are calculated to have infeasibly
large costs under standard assumptions, while intermediaries can
efficiently verify the integrity of data they convey, preventing the
propagation of malicious or accidentally corrupted data.

 I was writing Wordlists for maximum drama (p. 904), and I was
thinking about how a password using a reasonable PBKDF can be a
lot shorter than a secure content hash, even one that’s only secure
against second-preimage attacks. For example, in “How you should
set up a full-disk-encryption passphrase on a laptop”, I recommended
encrypting your disk with 2¹⁶ iterations of PBKDF2 (because LUKS
doesn’t support scrypt, though apparently LUKS2 has since added
argon2i support) and a 72-bit-of-entropy six-word passphrase.

 This suggests the idea: can we use a PBKDF for
content-addressing by hash?

 It turns out that not only can you use a PBKDF like scrypt to
expand a human-memorable password into a larger, strong hash; you
can also use a PBKDF to compress a larger, strong hash into a
human-memorable keyphrase. This gives you a decentralized,
human-memorable, secure naming system, but the resulting names are
generally not human-meaningful.

 It turns out that a hashcash-like approach to keyphrase stretching is
in some ways much better than an approach that relies only on the
cost-factor parameter of PBKDFs.

Using a PBKDF for content-addressing by
hash

 You hash a massive blob of content, or maybe somebody’s public
key, using something fast like SHA-256 or BLAKE3, then run the
result through a memory-hard PBKDF like scrypt or Argon2, then
encode the result with some kind of human-readable word list, like
the S/Key or Diceware word lists. This could potentially greatly
reduce the human effort involved in using such hashes, at the expense

http://canonical.org/~kragen/cryptsetup.html
http://canonical.org/~kragen/cryptsetup.html
https://www.gwern.net/docs/www/www.tarsnap.com/3f71c4a12cedf4c287d36304ace73e2cb5173d9f.pdf
https://news.ycombinator.com/item?id=21793705
https://news.ycombinator.com/item?id=21793705
https://github.com/P-H-C/phc-winner-argon2

of computer effort.

 Memory-hard key derivation functions are designed to increase the
cost of a brute-force attack by requiring large, fast memory. Right
now a 4 GiB RAM stick costs US$15 and is normally depreciated over
3 years, or US$5 per year, which works out to about 160 nanodollars
per second for 4 GiB or 4.6 attodollars per bit-second. Probably in
practice the cost of using this memory is around four times this
because of the cost of the non-RAM parts of the computer and of the
electrical energy to run it, but this conservative 4.6 attodollars per
bit-second is the estimate I’ll use below.

 Suppose we assume that the crypto works according to the standard
conjectures, and we’re willing to demand that a legitimate participant
in the system employ 4 GiB of RAM for 128 seconds to verify a hash,
which is 20 microdollars for an attacker with warehouse-scale
computers stuffed full of RAM cracking hashes. Suppose we are
content with resisting up to a quadrillion dollars’ worth of attack
(many years of current human economic productivity), a quadrillion
dollars buys you 2.2 × 10³² bit-seconds of RAM, or 4.9 × 10¹⁹ of these
128-second-4-GiB hashes. That’s about 2⁶⁵·⁴ hashes. So to resist a
second-preimage attack, a hash would only need 66 bits.

 Therefore, 2⁷² possible human-readable hash identifiers would be
adequate to resist a quadrillion-dollar attack. A random 72-bit
number like 3943234810267769014593 can be represented in many
different ways, including the following:

In hex: d5c3 603f c8fd 3889 41

In the first half of the alphabet to avoid cusswords, like Chrome: cjakmgljchcedd
egilkk
In lowercase letters, ideal for a cellphone keyboard: cjdhebmuvttqrjlx
In lowercase letters and digits: n46ukw493t154x
In letters and digits: 1dMffgtrOWF5T
In letters, digits, hyphen, and underscore, like YouTube: RsdwfYzZe8B1
In printable ASCII: j4l'/~4%s6t
In 12-bit words of 5 letters or less: todd guide port ros iron tubes
In the S/Key word list: BEE DEAF MULL WIRE FEAT SONG MEN

 I think that, of these, at least “Todd guide port ROS iron tubes”
and “bee deaf mull wire feat song men” are things that a person could
reasonably memorize, though not without effort.

 If instead of a quadrillion dollars we’re willing to succumb to
single-target second-preimage attacks of a billion dollars or more, we
can drop 20 bits. 46 bits of hash instead of 66 bits: “pork bring extra
asset” or “ni death col batty”, say.

 I’m assuming here that the work factor of the PBKDF in question
(the number of iterations or whatever) is fixed up front and doesn't
have to be incorporated into the human-memorized key. But it
wouldn’t have to be; you could reserve, for example, 4 bits of the
human-memorable key for the natural logarithm of the amount of
work required in gigabyte-seconds, thus permitting adjustment of the
time required to try a single hash from 1 gigabyte-second to 3269000
gigabyte-seconds. This involves making the phrases longer on
average, but note that my “46-bit” phrases above already have 2 bits

of slack, and my 72-bit phrases have 6 bits of slack.

 In many scenarios, the document being identified by such an
identifier is necessarily public, and so is the algorithm, so that anyone
can spend 128 seconds to verify that the document produces the
correct hash. This means that an attacker knows not only the desired
(truncated) PBKDF output but also the PBKDF input, which is the
file’s hash using BLAKE3 or SHA-256 or whatever. If the attacker
can find a second preimage of that hash, they don’t need to run the
PBKDF even once — they just run the other, much faster hash
function, potentially a much larger number of times. But the 256-bit
output size of BLAKE3 and SHA-256 is large enough to make that
infeasible, more than compensating for the enormously higher speed
of these hash functions. (This is the same property that makes client
offload secure for password authentication.)

 A useful aspect of content-addressable schemes in general is that
network intermediaries providing a storage service can authenticate
that files they cache are valid — they haven’t been corrupted either by
a malicious attacker or by, for example, cosmic rays hitting RAM. If
such authentication is infeasible or too expensive, they won’t do it,
and so a querent requesting a file by content-hash from an
intermediary is likely to get useless data that they eventually reject.

 With the scheme described above, verifying the hash costs 512
GiB-seconds of work, so we’d like the granularity of hashed files to
be fairly large. If there are 8192 intermediaries and 524288 end-users
in the world, and you do 512 GiB-seconds of work to compute an
independent phrase for a file you want to publish on that network,
instead of just getting someone else to include its hash in their own
file, in some sense you’re imposing 512×(8192+524288) GiB-seconds
of work on the rest of the world. Maybe it would be nice if there was
some way the original publisher could shoulder a disproportionate
share of that security burden. As it turns out, there is; see below
about leading-zeroes phrase stretching.

 As explained later, having a large number of files identified by
keyphrases in this way would make the system more vulnerable to
brute-force attacks, so it is desirable to use the human-memorable
hash for only the root of some kind of large Merkle DAG. It might
contain, for example, a public key for everyone in your city, or the
entire corpus of Project Gutenberg or Wikipedia. This property gives
the protocol a flavor more anarcho-syndicalist than individualist.

 (Of course, the hashes connecting the nodes in the Merkle DAG
should be normal, full-sized hashes of 256 bits or so, not these
expensively stretched hashes.)

 If the hashed data is some kind of efficiently traversable namespace,
it can assign human-memorable names to other particular blobs,
including public keys, IP addresses, and other identifiers. So instead
of identifying someone as b8://ni-death-col-batty/ we identify them
as b8://ni-death-col-batty/paul-hannigan, then Paul can share the
cost of setting up ni-death-col-batty with everyone else in that
namespace.

 If the hashed data is a public key, the retrieve-by-content-hash
storage network can be supplemented by a
retrieve-by-public-key-hash storage network, which distributes

streams of blobs that have been signed by a given private key. In this
way, such stable, unchanging keyphrases can securely identify a
time-varying data resource.

 To some extent this reintroduces the potential problem that
decentralized naming systems are supposed to guard against:
participants in ni-death-col-batty may disagree about which “Paul
Hannigan” should get the right to determine the binding of
b8://ni-death-col-batty/paul-hannigan. Wherever there is
community property, there is conflict. But it’s not as bad as in, for
example, the DNS, where if ICANN is persecuting Paul, no domain
name for him will remain stable for long.

Hashcash-like leading-zeroes phrase
stretching

 I think there is a way to get the original publisher to shoulder a
disproportionate share of the security burden, with an approach
similar to Hashcash or Bitcoin’s proof-of-work function. Suppose
that, to create a valid phrase, you have to do not one PBKDF
verification, but a probabilistically large number of them, say,
8192 — possibly in parallel, so this need not necessarily add latency,
just cost. This can be done by only accepting as valid PBKDF outputs
that begin with, say, 13 zero bits. As with Hashcash and Bitcoin, you
can do this by varying a nonce that you include in the hashed data,
thus producing 8192 different PBKDF outputs. If one of them begins
with a leader of 13 zero bits, you take its last, say, 48 bits, and encode
them as above as a phrase; any with a 1 bit in its first 13 bits are
rejected.

 The procedure for verifying a file that purportedly matches a
keyphrase such as “thorn foyer debut arson” is to hash the file with
your fast file-hashing algorithm such as BLAKE3, run your PBKDF
such as Argon2 on the hash for 512 GiB-seconds, and then verify that
the leading 13 bits are 0 and the trailing 48 bits encode to “thorn foyer
debut arson”. This costs the verifier only 512 GiB-seconds (0.002¢),
but costs the original publisher 4096 GiB-seconds (0.016¢), and
increases the cost of finding a second preimage by brute force by that
same factor of 8192 (to 2⁶¹ runs of the PBKDF, 2⁷⁰ GiB-seconds, 2¹⁰⁰
byte-seconds, which works out to US$47 trillion), without
lengthening the human-memorable phrase.

 That’s probably far too easy, though. Maybe a more reasonable
phrase-stretching difficulty factor would be a week on this old
16-GiB laptop: 2²³ GiB seconds = 2⁵³ byte-seconds (33¢). We could
reduce the verification effort to, say, 8 GiB seconds (0.32
microdollars), so we’d need 2²⁰ tries to produce a valid phrase: 20
leading zeroes in the PBKDF output. If we keep using 48-bit phrases
like “spade will of force”, then a brute-force second-preimage attack
would take on average 2⁶⁷ PBKDF invocations, each costing 8 GiB
seconds, which is also 2¹⁰⁰ byte-seconds as in the example above.

 A larger hashcash-like difficulty factor might be desirable, both to
reduce the number of trusted keyphrases floating around out there by
incentivizing people to band together a bit more (thus reducing the
number of targets for a shotgun bruteforce attack, as explained
below), and also to shorten the keyphrases. For example, if we

reduced the keyphrase to 36 bits of entropy (“grips halt seed”, “spelt
spear pose”, “thank graph ready”) and increased the difficulty by
another 13 bits (8192×, to 2³⁶ GiB seconds, 2⁶⁶ byte seconds), then
publishing a file would cost US$2700, while a brute-force
second-preimage attack would cost 2³⁶ times as much: US$190
trillion. US$2700 of computation would be a significant incentive to
pay someone else to include your key in their file rather than publish
your own file, but it’s still low enough to ensure dissidents could
establish a memorable identity.

 Such a small keyspace of course implies that unless the total
number of keyphrases ever created is small compared to 2¹⁸ = 262144,
there are likely to be collisions; this suggests that perhaps three words
is too optimistic, since that’s only US$700 million (of legitimate users
creating keyphrases) at current prices. If it costs US$2700 to create a
four-word keyphrase, then the 2²⁴ or so that would make a collision
likely would amount to an investment of US$45 billion from the
system’s legitimate users. The fourth word would raise the cost of a
brute-force second-preimage attack to the cost of creating 2⁴⁸
keyphrases: US$760 quadrillion.

 (2³⁶ GiB seconds would be 2³² seconds for this laptop, roughly 136
years. Or 136 such laptops could do it in a year.)

Leading-zeroes phrase stretching instead of a
PBKDF cost factor

 Is there any reason to use both a PBKDF and a phrase-stretching
leading zero count? Well, it's desirable to use a memory-hard
PBKDF like scrypt or Argon2 to make the attack memory-hard
instead of only CPU-hard, thus preventing vulnerability to future
ASICs like Deep Crack.

 But, suppose that, while still doing 2⁵³ byte-seconds of work to
compute the keyphrase, we reduce the PBKDF work factor to, say, 10
milliseconds on this laptop, so that converting a file hash to the
PBKDF hash from which the phrase is extracted takes only 10
milliseconds (0.16 GiB-seconds) instead of 500 milliseconds, as in my
example above. To compensate, we increase the difficulty from 20
bits to 26 bits: instead of an average of 2²⁰ nonces, my laptop will
have to try 2²⁶ nonces before hitting on one with the requisite pattern
of 26 leading zeroes in the output from its PBKDF (Argon2 or
whatever).

 That makes things easier for users and intermediary nodes, because
it’s 50 times easier to verify that a file matches a keyphrase; does it
make things any easier for attackers?

 Well, attackers also have to try 2²⁶ nonces for every one that is a
valid keyphrase, and, as before, they will have to compute on average
2⁴⁸ such keyphrases before they finally find a second preimage. So the
situation for the attacker has not improved at all: they still have to do
the same amount of work, it’s just that it’s divided into 50 times or 64
times as many separate nonces.

Weaknesses

Attacking many hashes at once

 If there are many unsalted hashes, the attacker might attack them
all simultaneously. For example, if there are 2⁴⁰ public keys in use,
each retrievable by its own keyphrase, or 2⁴⁰ documents, and the
attacker wins if they succeed in counterfeiting any one of them, their
attack speeds up by a factor of 2⁴⁰. And salting is not really a solution,
since the salt would have to be part of the human-memorized
authenticator; it’s equivalent to just using more hash bits.

 I think the best defense for this is to have relatively few
human-memorable keyphrases, each identifying a large namespace, as
explained above, by increasing the cost to create each keyphrase.

 Consider the parameters suggested above: the difficulty is set to
US$2700 to create each passphrase, and 48 bits of keyphrase are used,
for a cost of US$760 quadrillion to find a particular second preimage.
If there are 1000 known keyphrases and an attacker would be content
to find any of them, then the cost plummets to US$760 trillion; if a
million keyphrases exist, then it totally collapses to only US$760
billion, which is still more than a casual attacker will spend. As noted
above, though, soon after that point, at only around 2²⁴ keyphrases
created, accidental collisions begin to occur, at which point the cost of
an intentional shotgun attack is still US$45 billion.

 So, with those parameters, there’s still a reasonable degree of attack
resistance up to the limit of the system being able to function at all.

Collision attacks

 The birthday paradox pops up in another context as well.

 In some circumstances, second-preimage attacks are not the only
attack; birthday-paradox collision attacks have been demonstrated in
practice against TLS, for example, where an attacker generates two
certificate signing requests: one for their legitimate domain, and one
for the domain they want to spoof, which hash to the same hash. The
certifying authority signs the legitimate one, but the CA signature
enables them to masquerade as the other domain.

 Resisting such collision attacks would require twice as many bits,
and would thus double the length of the passphrase, so this scheme
should probably not be used to defend against a second-preimage
attack. Alternatively, you could use keyphrases of 6–12 words instead
of 3–6.

Quantum attacks

 As I understand it, Grover’s algorithm can find a second preimage
in the same O(√N) time required to find a birthday attack, so if
quantum computers scale up, this system would require keyphrases of
6–12 words instead of 3–6.

 Although Merkle graphs are in general relatively postquantum-safe
if the hashes are big enough, any public-key cryptosystems used with
this system would need to be postquantum-safe for the system as a
whole to resist quantum computation attacks.

Parameter downgrade attacks

 If the difficulty is encoded in a keyphrase — as in my above
example with encoding the PBKDF cost parameter in 4 of its bits, or
just by virtue of its length — attackers who want to mount collision

attacks could use intentionally weak keyphrases. This is not a concern
for second-preimage attacks, but it’s a concern anytime producing
two colliding files would be a concern.

Possible extensions inspired by time-lock
encryption

 Someone, maybe Gwern, proposed a one time-lock encryption
protocol that I will inaccurately summarize as follows. The speaker
computes 1024 random encryption keys for a symmetric cryptosystem
and computes 1024 truncated versions by, for example, zeroing the
last 20 bits of each key. Then, in parallel, they encrypt each truncated
key with the non-truncated version of the previous key (except for
the first truncated key, which has no previous key). They concatenate
the unencrypted first truncated key with the 1023 encrypted keys,
followed by a payload, encrypted with the last key; this is what they
publish.

 This takes them 1024× the work of encrypting a single key, but
since they do it in parallel on 1024 processors, it doesn’t add latency.

 To decrypt the payload, the recipient must try (on average) 2¹⁹
possible completions for the first key in order to decrypt the second
key, 2¹⁹ possible completions for the second key in order to decrypt
the third key, and so on. We assume they can distinguish a correct
decryption from a decryption attempt with the wrong key. In the
end they have done 2²⁹ decryption attempts and can finally decrypt
the payload; if they have 2¹⁹ processors they can do this in only 1024
times the time to perform a single decryption. Unless they have
enough processors to search the whole keyspace, this is necessarily a
serial process: they cannot do it faster because they don’t know the N
- 20 bits of the second key until they have finished guessing the first
key, etc.

 (Of course 1024 can be expanded to a larger number such as
1048576, and you can use a deliberately slow cryptosystem such as a
quadrillion rounds of AES-ECB with the same key, or a quadrillion
rounds of SHA-256 on a “key” to derive a key that’s used for
AES-ECB.)

 It would be nice to somehow apply this idea in reverse to the
hashcash problem: we would like attackers to have to work serially to
create a second-preimage key, but listeners and possibly legitimate
publishers to somehow be able to do whatever processing they need to
do in parallel. If there’s a way to do this, it might add another 10–30
effective bits to the keyphrase.

 Gwern also mentions Gregory Maxwell’s suggestion, possibly
anticipated by Ke et al., to do something analogous with ECC
cryptography. In many ECC systems, including Curve25519, public
keys are in an almost 1-1 correspondence with bitstrings of a certain
length, so you can generate a random bitstring that is a valid public
key and encrypt something to it. If someone takes the time to
bruteforce the private key — not feasible for Curve25519, but of
course feasible for elliptic curves over small enough Galois
fields — they can then read the message.

 Maxwell suggested a Bitcoin-like blockchain in which miners

https://www.gwern.net/Self-decrypting-files#chained-hashes
https://www.gwern.net/Self-decrypting-files#pooling-key-cracking
https://www.gwern.net/Self-decrypting-files#pooling-key-cracking

compete to publish the next private key for a predetermined infinite
sequence of random bitstrings taken as public keys; this provides an
incentive structure that makes it likely for a predetermined sequence
of certain private keys to be published at certain times in the future,
and the only way to get all the keys needed to unlock something
sooner than the miners do is to have more ECDLP computrons than
they do.

 This is vaguely similar to the chained-symmetric-keys approach.
Could it be applied to this namespace-claiming problem, maybe not
using a predetermined infinite sequence?

 Generically I think the answer is that the publisher needs to publish
some kind of noninteractive, easily verifiable zero-knowledge proof
that demonstrates that they know something “about” that keyphrase
that is computationally difficult to discover. They start with some
secret information, which they never reveal, from which the
keyphrase is derived, and which is used to sign the file the keyphrase
names. There’s an obvious approach that doesn’t work: you generate
a private key, compute the public key from it, append a signature and
the public key to the file, append a nonce, hash it, and if the result
isn’t a valid passphrase try a new nonce, for 150 CPU-years. This
doesn’t work because a different public key would work just as well,
so it doesn’t make a second-preimage attack any harder.

Topics

• Programming (p. 1141) (49 notes)
• Pricing (p. 1147) (35 notes)
• Security (p. 1224) (5 notes)
• Hashing (p. 1293) (3 notes)
• Passwords (p. 1344) (2 notes)
• Namespaces (p. 1351) (2 notes)
• Decentralization (p. 1374) (2 notes)
• Ccn (p. 1380) (2 notes)
• Quantum computing
• Crypto

Wordlists for maximum drama
Kragen Javier Sitaker, 02021-10-08 (updated 02021-12-30)
(16 minutes)

 I composed some lists of words for maximum vividness of random
imagery in minimal letters, then wrote shell scripts to generate
random combinations of them, vaguely like ars magna Lulli.

 This is potentially useful for encoding passwords or secure content
hashes, or naming novel concepts in a terse way that collides with
minimal existing terminology; “ehate” or “godfat” may not be a
good choice, but “medry” or “linhag” might be okay, especially if
you work a digit in there somewhere. “Linhag” is just an encoding of
the random number 322442 in base 661, but I’m probably not alone in
having an easier time attaching a novel meaning to “linhag” than to
“322442”. Plus, it’s easier to type.

 This is a potentially serious pareidolia hazard for anyone who has
taken a lot of psychedelics or just has natural psychotic tendencies.
Readers in these categories should abstain from reading this in order
to avoid delusions that this document contains secret messages from
God, extraterrestrials, transdimensional machine elves, or the CIA.
Selecting short words uniformly with a PRNG can’t compete for
pareidolia with ELIZA or GPT-2, but it's definitely good enough to
evoke vivid mental imagery.

 Try-hat oat-egg lin-hag apt-zen hip-ale sag-pry if-egg way-ho out-neo
poo-bud ask-emo tip-poo neo-fry flu-cis bye-kev dog-pug cab-try sun-len
cod-foe ex-won wye-dad ash-art or-par lit-oaf min-met lad-tab fop-dub
ack-hit elf-run keg-ha few-pun nor-git!

3-letter words

 Here’s a list of 661 of the 4031 three-letter words that occurred 5
times or more in the British National Corpus. I’ve tried to remove
non-words, abbreviations and acronyms not usually pronounced
(including “mrs”), and things that aren’t in most native English
speakers’ vocabularies, as well as the most offensive words, like “fag”,
“wog”, “nig”, and “gyp”. However, there are still lots of things in
there that might offend someone, including but not limited to “god”,
“ass”, “tit”, “vag”, “goy”, “rim”, “gag”, “fat”, “fop”, “pus”, “gay”,
and “fap”. I’ve left in many proper nouns (unfortunately not
capitalized, due to the source) as well as some morphemes that are
especially productive in modern English, like “neo”, “eco”, and “tri”.

 This is not suitable as a word-game list for ruling words in or out.
The words do not all have distinct pronunciations, so it is not a good
alternative to the various “biometric word lists” out there like the
S/Key word list.

 Selecting one word from this list with uniform probability encodes
9.37 bits of entropy; if we follow it with a space, that’s 4 bytes, and
thus 2.34 bits per character.

 Example three-word sequences:

$ for i in $(seq 10); do echo $(shuf -n 3 3-letter-words | awk '{print $2}'); don
e
key hem sun
fly tag tom
wad bay dow
emo ned boo
vie fen kev
tri fen ben
jug mat mid
ben sag ill
pan sim tit
bic doh one

 Not all of thes are hits, but it’s presumably easy to imagine Emo
Ned booing, Ben of three swamps, a jug in the middle of a mat, or a
pan that simulates a breast.

 Pairs of these words usually form a pronounceable nonexistent
English word:

$ echo $(for i in $(seq 10); do echo $(shuf -n 2 3-letter-words |
 awk '{print $2}') | tr -d ' '; done)
gagkim godfat kinoff yenflu cadice forvex gunark tonroc legten negeco

 Here’s the list:

6187927 the
2682878 and
923975 was
836687 for
695595 you
470949 are
462777 not
455906 but
445396 had
433599 his
380284 she
327014 her
262447 all
259443 has
236364 one
236165 can
206627 who
165016 him
163106 its
156114 two
151629 out
143429 did
137814 now
128513 may
125206 new
124108 any
118641 see
101517 how

99506 get
96280 way
95006 our
81601 got
71143 own
70169 too
67862 say
60680 day
60612 yes
60358 man
59364 use
55001 put
54610 old
50877 why
48851 off
48189 end
38892 men
38769 set
33752 yet
30379 six
27882 war
27873 car
26734 saw
25918 let
25486 far
25346 law
24712 big
22944 act
22803 job
21803 age
21377 run
20935 try
20419 pay
20274 ten
19810 ago
19401 ask
19161 few
19047 air
18885 god
18820 sir
18483 lot
15873 bed
15695 tax
15087 top
14816 art
14792 cut
14247 bad
13539 per
13290 boy
12985 bit
12857 son
12776 sea
12766 red
12470 nor
12394 low

12329 buy
10950 sat
10817 met
10520 cup
10243 oil
9930 led
9690 lay
9552 eye
9166 arm
9157 win
8859 hot
8766 sun
8742 ran
8710 box
8703 sit
8619 tea
8497 won
8316 sex
8238 add
8165 aid
8063 dog
7939 key
7882 mum
7750 bar
7549 eat
7328 gas
7169 hit
6846 dad
6623 dry
6499 fit
6101 aim
6040 due
5463 die
5343 leg
5299 bus
5166 aye
5063 tom
4984 sky
4909 bag
4762 net
4647 via
4630 row
4610 lie
4567 ooh
4482 odd
4481 bob
4341 sum
4337 joe
4323 jim
4242 van
4009 guy
3933 ref
3862 cat
3839 ice
3821 pub

3783 map
3686 lee
3491 gun
3443 sad
3422 bid
3401 tim
3335 gap
3270 fly
3228 wet
3163 ken
3150 mad
3150 ben
3137 hat
3131 sam
3106 bay
2990 pop
2987 cry
2876 ear
2837 fee
2781 joy
2770 wan
2745 fun
2717 ban
2678 bet
2616 rid
2583 aha
2582 ill
2509 egg
2472 raw
2425 san
2395 tie
2391 sue
2390 fat
2382 vat
2239 mix
2222 tip
2155 era
2120 pen
2020 pot
2011 tin
1985 ray
1950 ann
1921 mud
1895 lad
1884 pat
1864 gay
1806 cap
1784 roy
1767 fox
1765 bye
1760 ira
1759 hey
1756 ate
1720 pan
1717 don

1716 les
1688 kid
1686 liz
1684 tap
1648 fed
1646 fig
1535 pit
1511 kit
1480 rob
1466 lit
1445 yer
1430 fan
1425 cab
1420 jan
1410 eve
1392 inn
1375 max
1369 lip
1369 ham
1355 ali
1352 fix
1320 sin
1317 yep
1314 oak
1305 ace
1303 bow
1298 jet
1269 kim
1264 owe
1257 cow
1255 lap
1204 rod
1188 log
1175 shy
1172 dot
1159 pie
1155 fry
1143 ted
1123 pig
1119 pin
1112 ash
1087 lid
1083 wee
1057 von
1032 hut
1010 lea
1000 dig
989 owl
976 jaw
974 dan
959 bat
950 dos
947 par
942 rat
941 dug

939 non
928 fog
914 ron
896 leo
895 ego
872 fur
869 meg
858 rex
856 hay
847 wit
835 pet
821 gut
809 kin
808 dim
795 del
781 beg
780 jam
771 arc
748 bin
738 nil
734 vic
729 fax
723 ski
721 ram
714 mug
706 hip
699 nod
695 pro
694 hid
687 spy
682 min
681 axe
679 amp
671 icy
666 rug
651 zoo
651 mac
650 thy
649 ink
646 nut
644 dee
640 rub
639 opt
630 vet
628 pad
628 apt
626 lou
614 rev
608 eva
605 dip
601 jar
600 toe
588 web
585 mob
585 ale

578 cox
576 ads
570 flu
569 wax
566 gig
564 toy
553 lab
552 wed
551 jug
551 huh
549 peg
546 dam
545 rim
543 gel
542 pal
528 tag
528 ivy
527 yen
526 sly
523 bee
521 mid
521 mat
521 amy
518 rio
510 spa
510 awe
506 tug
503 gin
502 fen
501 pam
493 rot
492 tee
486 den
482 ton
478 wow
472 mam
466 len
464 ore
459 nan
455 kay
455 con
453 val
451 cot
450 ion
449 rig
449 doo
446 hen
445 nun
443 wry
443 ant
435 loo
434 rag
423 sod
422 hop
419 jew

404 sid
404 cue
402 sic
394 tan
389 sub
386 rue
383 rum
383 jon
382 cod
377 bum
376 dye
375 sec
375 gum
375 cop
374 cam
371 rib
367 jed
367 bud
367 abu
365 zen
365 rip
364 gym
363 tow
359 duo
348 sip
347 rye
343 hal
339 mod
336 bra
332 jay
331 kev
327 hum
325 doe
325 doc
324 mao
323 ono
320 hug
317 zip
315 wig
310 mel
308 hon
306 woo
297 zoe
297 rap
297 fin
295 bug
295 ass
293 nay
293 bog
291 tub
289 cis
283 hem
278 lag
278 foe
278 dup

270 ebb
262 dun
261 mop
260 sow
258 nip
258 bun
257 chi
254 hub
248 rep
247 gem
245 wes
245 lyn
242 pip
242 gee
242 dew
239 tab
233 ned
230 fir
226 nah
224 wye
222 aah
221 din
220 sob
220 lib
219 boo
217 ark
214 vow
214 roe
209 sap
209 ida
205 tit
205 hue
205 elf
205 coy
205 ape
204 ugh
203 yew
202 hun
200 tar
200 sew
193 elm
191 jen
190 pod
190 git
187 cal
186 nos
185 vax
181 alf
179 ada
178 paw
178 cad
176 pre
173 lax
172 oft
172 dis

169 pup
167 ole
167 koi
166 nap
165 pic
164 pep
163 jog
163 emu
160 pea
154 sib
154 lob
153 eel
151 pol
149 tor
149 rem
146 gag
145 lac
144 jot
142 lin
140 eco
139 hob
138 sac
138 pew
135 wad
135 orc
135 aft
132 pee
132 ewe
130 mom
128 vie
127 dab
127 cob
124 yum
124 tot
123 pun
122 hog
121 viv
121 orb
121 dub
120 tho
120 app
118 jab
116 gal
116 cub
115 cum
114 ado
111 yea
109 jig
108 sag
108 imp
108 ere
106 ply
105 yon
104 urn
104 mag

104 hee
103 fro
102 pap
101 soy
100 dow
99 gus
99 bey
98 sis
98 fad
96 rut
95 nag
95 hag
94 pus
94 alt
93 woe
93 doh
90 pow
90 fay
89 dev
86 ops
85 wag
82 pry
82 pox
81 yuk
81 bib
80 tat
80 ode
79 ilk
78 abe
75 hah
71 zia
71 sax
71 hoe
70 lam
70 kip
70 keg
69 lei
66 goo
65 oar
65 mic
64 sci
64 fab
62 mow
61 sim
60 poo
59 arf
58 jib
58 bop
58 alp
57 tic
57 ire
56 nab
56 gob
56 cog
54 cud

51 maw
50 tad
50 jag
49 ohm
48 aba
46 ail
45 boa
45 biz
44 lex
44 fob
43 yow
43 rad
43 mah
42 wok
42 sop
42 roc
42 phi
42 lug
42 ent
41 awl
38 dud
38 caw
38 bro
37 pug
34 zap
33 bio
33 bic
32 fez
31 yaw
31 nib
30 yak
30 jut
29 fop
28 lux
27 bah
26 zed
26 oaf
26 moo
25 tau
24 tri
24 gab
24 fib
23 ska
23 hex
21 zig
21 elk
20 mew
20 het
20 geo
19 fap
18 oat
18 neo
17 nix
17 hew
17 fam

17 erg
15 uzi
15 foo
14 yap
13 tox
13 org
13 lye
12 yup
12 vex
12 naw
12 fie
12 fem
12 boi
11 vag
11 lol
11 emo
9 kia
9 bub
8 tux
8 roo
8 hod
8 hep
6 goy
6 gnu
6 ack
5 zit
5 neg
5 glo

2-letter words

 Of the 577 two-letter words with 5 or more occurrences, I selected
46; a uniform selection encodes 5.52 bits, and so, in three bytes, 1.84
bits per byte. This is slightly lower entropy density than the
three-letter list; concatenating them produces a tiny increase in
entropy density, and breaks up monospace monotony a lot, but the
more useful use for this list is for when you really want a six-byte or
five-letter phrase instead of a six-letter or seven-byte phrase, and 14.9
bits of entropy is enough.

 Some randomly generated phrases:

$ for i in $(seq 10); do

 echo $((shuf -n 1 2-letter-words; shuf -n 1 3-letter-words) | awk '{print $2}
')
done
me dry
ad rim
eh ate
am val
ha paw
us pew
go for
or war

me sob
on gay
$ for i in $(seq 10); do
 echo $((shuf -n 2-letter-words; shuf -n 2 3-letter-words) | awk '{print $2}')
done
my cat sum
of phi ilk
we zip pay
ax zoo bun
am dow yer
ax zen few
it met map
if led roy
be aah ray
do why lin
$ for i in $(seq 10); do
 echo $(cat 2-letter-words 3-letter-words | shuf -n 3 | awk '{print $2}')
done
new bow pig
yak jig dos
zed koi joe
oil or sir
imp am far
din wes san
cod ken cal
pi mao mow
ah me hal
fad lyn of
$ for i in $(seq 50); do echo $(cat 2-letter-words 3-letter-words | shuf -n 2
 | awk '{print $2}') | tr -d ' '; done | fmt
wadmad nawfem ayeeel saddog leehop butail deldoc devgit bussag titpry
bitgit skitau bebus putwin owpup hisbiz irakin hadoc tryan yukugh jibaah
leetho jugpea yerhis yakpeg actaid feewed zoomod incox rexfib dohyak
niltry toothe ranrot dandup uziram toymat lowow ahaam beelie dinent
awemet gutbop suedie poomoo dunspa oarlaw dubyea inktom lidrob
$ for i in $(seq 32); do echo $(cat 2-letter-words 3-letter-words | shuf -n 2
 | awk '{print $2}') | tr ' ' '-'; done | fmt
try-hat oat-egg lin-hag apt-zen hip-ale sag-pry if-egg way-ho out-neo
poo-bud ask-emo tip-poo neo-fry flu-cis bye-kev dog-pug cab-try sun-len
cod-foe ex-won wye-dad ash-art or-par lit-oaf min-met lad-tab fop-dub
ack-hit elf-run keg-ha few-pun nor-git

 This is the list:

2941790 of
2544858 to
1849882 in
1089559 it
998867 is
697406 on
681379 he
664780 be
507370 by
478178 at
406705 as

370855 or
358792 we
344046 an
280701 do
237107 if
212158 so
209943 no
156837 up
152626 my
139028 me
90161 go
78198 us
68437 oh
26872 am
10091 ah
4721 un
4436 co
3618 ha
3492 eh
2860 ok
2005 ad
1700 ye
1490 di
1043 ho
1026 hi
834 ex
615 pi
476 vs
420 id
304 ow
192 ox
173 mu
65 ax
60 om
20 ew

This is probably a somewhat suboptimal
tradeoff for passwords and hashes

 A better tradeoff for the password or content-hash cases is probably
to use the 2048 most common English words of five letters or less,
which can encode 24 bits of randomness in two words, rather than
only 18.7; with my wordlist, for example, 7362508 is “bent ash”,
609933 is “why stud”, and 11152019 is “ropes cia”. A 48-bit
password, which is reasonably strong for many purposes if combined
with a good PBKDF, might be “karen sped ah cell”, which I think is
a little more memorable than “gas jug bad bye hee” or “yon sic ow
boi mop”, which are about the same strength.

Topics

• Programming (p. 1141) (49 notes)

• Security (p. 1224) (5 notes)
• Natural-language processing (p. 1284) (3 notes)
• Randomness (p. 1336) (2 notes)
• Passwords (p. 1344) (2 notes)
• Psychohazards
• Pareidolia

The spark-pen pointing device
Kragen Javier Sitaker, 02021-10-10 (updated 02021-10-12) (1 minute)

 I was watching the CHM David Liddle interview, and I was
surprised by his description of the “spark pen”, a 01970s pointing
device using a glass panel and microphones, using the audio transit
time of the sound of a spark to measure the position you were
pointing at.

 You can get several MHz of acoustic bandwidth through a glass
panel, and a spark gap has submicrosecond rise time, so you can get
submicrosecond positioning precision — maybe a millimeter or so.
Two things occurred to me about this:

• A very low-tech way to get the spark is by mechanically opening a
switch with the pen point, pushing two pieces of metal apart, while
running current through those pieces of metal in series with an
inductor, ideally with regulated current. This is maybe easiest if the
pen point doing the pushing is a glass rod, but metal would work too.

• If you instead have a spark gap that can be induced to spark
frequently by opening a high-voltage MOSFET in parallel with it,
you can send a pseudorandom sequence of sparks that sounds like
white noise, allowing you to track the pen’s position continuously
instead of only on command.

Topics

• Pulsed machinery (p. 1167) (12 notes)
• Sparks (p. 1240) (4 notes)
• Input devices (p. 1252) (4 notes)
• Audio (p. 1304) (3 notes)

https://youtu.be/k79rIfcNDfg

Beyond overstrike
Kragen Javier Sitaker, 02021-10-10 (updated 02021-12-30)
(13 minutes)

 In my childhood, I used a mechanical typewriter with no
exclamation mark “!”. It did have a vertical apostrophe “'” which
was nearly right, lacking only the dot at the bottom. The solution
was to type a “'”, press the backspace key, and then type “.”, thus
creating an exclamation mark on the paper. (The vertical nature of
the apostrophe allowed it to do double duty as a single-quote as well,
much as the letters “l” and “O” did double duty as digits on many
typewriters; I think that’s why typewriters with a separate “!” often
put it on the “1” key.) If memory serves, it also had an underscore key
(shift-6) used in the same way to produce underlined text.

 Typewriters for other languages, for which diacritics were
important, commonly had “dead keys” for accents. These would
place an accent mark on the paper without advancing the carriage, so
you can type â simply by typing ^a, without typing a backspace in the
middle.

Overstrike and glass ttys

 Traditional printers (including the ASR-33) are equipped with this
ability to “overstrike”, typically using backspace or a carriage return
without an accompanying line feed, which permitted them to do
boldface, accented letters, and underlining, without any dedicated
electronics or mechanics for those purposes. This is the reason ASCII
includes the characters “~”, “^”, and “`”, characters which don’t exist
in pre-ASCII English text. APL used this overstrike capability to
create an unlimited variety of new operator symbols; for example, by
overstriking Δ with |, you could get �, the ascending-sort-order
operator. Some printers also implemented superscript and subscript
with a half-linefeed feature, so you could write x² or xᵢ in a more or
less readable way — although these were the same font size due to
mechanical limitations.

 Glass terminals like the “DECScope” VT-50 did not implement
these feature, because taking an arbitrarily long period of time to
compose a glyph was not very compatible with scanning out pixels in
real time to a CRT electron beam. Instead, “printing” a new
character at the location of an existing character simply replaced it.
While this removed the ability to overstrike, it made it possible to do
real-time screen editing, updating any part of the screen to contain
arbitrary new contents.

PLATO

 One very notable exception was the terminals developed for the
University of Illinois PLATO project; after spending the 01960s
using Raytheon storage tubes, starting with PLATO IV, PLATO
terminals used Owens-Illinois Digivue gas-plasma screens with (in
the 01977 PLATO V incarnation) 8080 processors, and they did
support overstrike, potentially doing a bitwise OR of the various
characters in a character cell, an ability PLATO users used to compose

https://archives.library.illinois.edu/erec/University Archives/0713808/1974 Nov X-15 Plato IV Student Terminal Stifle.pdf
https://archives.library.illinois.edu/erec/University Archives/0713808/1974 Nov X-15 Plato IV Student Terminal Stifle.pdf
https://archives.library.illinois.edu/erec/University Archives/0713808/1977 Aug X-50 PLATO V Terminal Stifle.pdf
https://archives.library.illinois.edu/erec/University Archives/0713808/1977 Aug X-50 PLATO V Terminal Stifle.pdf

a variety of creative cartoons. The terminals’ protocol was wildly
nonstandard, involving 11-bit words from terminal to host and 20-bit
words (21 including parity) from host to terminal, and they could
handle overstrike because their quarter-megapixel screens were
bistable, like Tektronix 4014 DVBST. For output they used a
non-ASCII-related 6-bit character code with mode shifts, packed
three to an instruction word, and for input they used an unrelated
7-bit modeless character code embedded in that 11-bit word.

 Probably unsurprisingly, 5 of the built-in 128 characters in the
PLATO terminal’s ROM character set were accent characters
apparently designed to be overstruck with letters: ̃, ̈, ̂, ́, and ̀, at
positions 033 (octal) to 037 of the M1 font memory. (The character
bitmaps can be seen in Figure 2.8.2 on p. 25 of the 01977 PLATO V
terminal report.) There were also superscript and subscript control
codes to move the baseline up and down by 5 pixels.

 David Liddle explained the bistable nature of the panel:
The plasma panel was invented, or discovered, if you want to think of it that way,
that... if you, you probably remember this, though: it, of course, produced those
orange dots. But it also had memory, automatically! As you wrote something on
that screen, it stayed! You didn’t have to refresh it, rescan it, or anything.

 He explained that when they started the plasma-panel project in
01968, memory cost 1¢ a bit, so the 262144 bits in a flat-screen
PLATO display of the resolution of 512×512 they eventually settled
on would have cost US$2621.44, the price of a house; but by the time
they finished the project, memory prices had fallen by more than an
order of magnitude, greatly decreasing the advantage.

 The original 01970 PLATO IV terminal paper explains (pp. 2–3,
7–8/30):
The terminal should cost less than $5000 ...
 Direct viewing storage tubes may be used to overcome the flicker problem but
these devices suffer from low brightness and the inability to perform selective erase
operations on the displayed data.
 The use of a plasma panel, on the other hand, with its inherent memory,
eliminates the refresh memory while preserving the selective erase function.
Because each point is stored on the panel as it is displayed, the terminal electronics
need operate only fast enough to stay ahead of the incoming data. A panel writing
rate of 30 KHz is adequate for this [graphical computer-based instruction]
application. The digital nature of the plasma panel also eliminates the need for any
DA converters.

 Brian Dear’s “The Friendly Orange Glow” chapter 6 describes the
history and principles of operation of these bistable plasma displays in
more detail, starting with the January 01963 article “Large Displays:
Military Market Now, Civilian Next” in Electronics Magazine,
incidentally fingering Lear Siegler, later the maker of the ADM-3A,
as the first manufacturer of non-bistable plasma displays, and
mentions that Doug Engelbart had filed some patents in the 01950s.
It credits Gene Slottow at UIUC with the key insight of moving the
electrodes to the outside of the glass in 01964 or 01965, and said, “By
1967 Alpert and Bitzer had chosen the Owens-Illinois (OI) company,
wizards of glassmaking, to be the manufacturer of the displays.”

 (In Chapter 10 Dear explains that PLATO IV finally established
‘formal “prime-time” hours of service’ in 01974, despite getting
“hundreds of PLATO IV terminals” in 01972, so evidently it took a
while to get those plasma terminals rolled out in volume.)

https://www.ietf.org/rfc/rfc600.html
https://www.ietf.org/rfc/rfc600.html
https://www.ietf.org/rfc/rfc600.html
https://youtu.be/k79rIfcNDfg
https://youtu.be/k79rIfcNDfg
https://youtu.be/k79rIfcNDfg
https://archives.library.illinois.edu/erec/University Archives/0713808/1974 Nov X-15 Plato IV Student Terminal Stifle.pdf

 The rest of the terminal seems to have contained about 70 bits of
registers and 128 8×16 glyphs’ worth of softfont RAM, which are
programmed as 1024 16-bit words in “Mode 2” (§2.5) after a LDA
(“load address”) operation, each 16-bit word being a column of 16
pixels. So the display panel contained 262144/16384 = 16 times as
much memory as the entire rest of the terminak. The 64×32
character resolution of the terminal was slightly larger than the 80×25
VT-100.

 In 01977, although the PLATO V terminal expanded the Memory
Address Register set by a LDA request from 10 to 15 bits, but the only
increased the terminal’s RAM from from 2048 bytes of RAM to 8192
bytes of RAM, plus 8192 bytes of ROM. So, Liddle’s interview aside,
I think the memory plasma panel was still a killer advantage even in
01977, though perhaps the cost was set too high for it to go
mainstream.

 These 8192 bytes of RAM were used in part to expand from 128
softfont glyphs to 384 glyphs, and the base addresses of the softfonts
could be changed, allowing you to use all of the RAM for softfonts,
but you could also load 8080 code into it and run it on the terminal.
There seems to have been no way to read pixels from the display,
which would have quintupled the total storage available to the
program.

Inserting

 Anyway, back from the evolutionary dead end of PLATO to the
DECScope-style glass ttys and replaceable characters that modern
terminal emulators are emulating.

 Replacing characters in this way was not ergonomically optimal for
human editing of text, since although we do occasionally replace
some text with other text consisting of the same number of
characters, it’s much more common to insert text, delete text, or
replace text with text of some other length. So insertion became the
standard response to typing a key in text editors, thanks in part to
Macintosh, though in some sense Emacs and vi worked this way
pre-Macintosh, and I think Smalltalk as well. (See Pipelined piece
chain painting (p. 926) for some notes on how random-logic terminal
hardware could have been designed to handle this better.)

A torrent of pixels; why text?

 Framebuffer-driven displays like the Alto on which Smalltalk was
built and like the Macintosh (“bitmap displays”, early on) have now
become so ubiquitous that other kinds of displays have mostly been
forgotten; and GPUs are now fast enough to do many mathematical
operations per pixel per frame, so you can recompute all the pixels
every frame if you want. So now we can do whatever we want, and
the critical question is no longer what the hardware to do but what
would be most useful to do.

 Given the ease with which we can sling around pixels nowadays,
many people are surprised at the continuing primacy of textual
programming languages, and even textual formatting languages like
Markdown and HTML. My thought is that plain ASCII text has
several big advantages; two of them are:

• A tiny gulf of execution: you may not know what your code needs
to say, but once you do know what it needs to say, it isn’t difficult to
figure out how to type it in. If you want the code to say if x == 3 {
then you press the “i” key, followed by the “f” key, followed by the
space bar, etc. You don't have to try to figure out which menu the
"if" or the "==" is hidden inside of.
• A tiny gulf of evaluation: similarly, you can tell what your code
says, as long as none of the characters are confusingly homoglyphic.

 However, there are some drawbacks: ASCII text is not very
information-dense, and it's hard to get a lot of
preattentively-processable information into it. Consequently, we rely
rather heavily on mechanized refactoring tools and indentation.

 One approach to solving this is keyboard bucky bits, printing more
characters on more sides of your keyboard keys. In the early days of
APL this was an easy thing to do, and with the move to mass-market
keyboards and ASCII standardization in the 01970s it became
impractical. Now, with the profusion of input method editors on
cellphones and cheap custom keyboards, it would be feasible again.

 APL-style overstrike is another potential way to improve the
situation; by overstriking two or more characters into a bindrune like
⍞, �, or �, you can expand your symbolic vocabulary to some
degree without expanding the gulfs of execution and evaluation.

 Unicode combining characters are a potential way to get similar
benefits, though you must always beware of h̴̢̧̢̩͉͕̥͍̼̭̣́ͥ̾ͥ̏͆̆ͯ́̕͡͞ë̶̴̷̡̯̗̳̫̗̭̖͓́̉͐̒̊̏ͤ͋́͠͝͝ ̸̵̧̡̧̣̤̯̬͚̻̯͖͌̓̄͂̌̋̾ͮ͢͟͠w̵̶̷̢̻͙͍̪̪̪͚̫ͩ̐̈́̋̂̏ͩ̃́͠͠͞h̷̡ͣ̀̆ͣ͌ͫ̇̆͏̷̶̢̯̻̬͉̜͖̩̠͞͠o̴̵̡͋ͭͦ̎ͬ̽̑͐̕͘͝͝͏͇͕͖̱̠̞͈̫ ̂́̌̈́͛̐ͣ̓͏̷̴̴̛̹̻͙͚̞͎̝̹̀̕͡ẅ̶̢̨̛̝̬̟̦͇͉̩̈́̑̉ͤ̏̓̾̀̕͜͞ͅaͧ̅̈́ͭ́̂ͧ̚͏̛͏̷̢̨̨͉̟̭͉͚̪̘̘͝ḯ̷̴̵̺̜͇̱̻̟̘̀͑ͤ͌̏ͨͧ́̕͘͟͜ͅt̐ͨ̿̃̔͗͛̄͏̵́͝҉̶͏̱̙͖͖̠̠̘̰͠s̬̭̖̩͎̯̮̒̐̿ͩ́̿̎̓̀̕͘͢͜͡͝͞ͅ ̶̿ͭ̑̈̓̃̓ͦ́҉̢̛͜͏̛͖̱͙̲͔̝͕͖b̢͌̔̿̓͊̉̌̈́͏̢̕҉̧̢̙̘̙͕̙̝͓̥͞e̴̡̢̢̝̣̼͕͓̟̱̫ͭͦ͂͛̊̆̐͐́̕͢͠h̴̷̡̢̗̹͇͙̯̜̮̱͑̔̓͑́͛̆̃͟͢͝͞i̶̸̶̡̧̲͓̙̗̯̤͕̭ͮ̃̆̆̑ͮ̓̀̚͜͜n͛̔ͫͭ͑̊ͪ̀͜͏̵̨̢̟̳̫̲͈̗̟͈̕͢͝d̸̢̧̨̡̛̐̅ͭ͛̈̊͑̂̕҉̘̲̘̮̬̬̦͚
̷̶̷̴̶̢̪̞̟͉̰̮̱͙͑̾͐ͮ̿͛́̓́͢t̿̐͊ͤͯ̌ͨ͋͏̶̛̕͝҉̡̛̤͉̣͈̺̫̣̪hͭ̒ͮ̈́̇ͮ̔̐͘͏̵̴̢̠̲̪͈̝̟͚̩͘͟͡e̴̸̡̮̲̪̳̩̣̲̖̽̄̂̾͑̄̄́͜͡͠͝͠ ̨̖̬͕̜̣̰͖̱̔̃ͫ̋̈͂̒ͧ̀́́͟͞͞͝w̸̷̵̛̜͇̟̜̭̩͙̲͛͊͐͂ͨ̄̏ͫ́͜͠͞a̷̢̡ͩ͋́̽͆ͪ̓͛͜͜͜͡҉̼̗̖͈͚̰̹̙l̈͒ͬ̊ͮ͑ͣ͛҉͝͏̕͘͜͞҉̠̜͉͚̻͚̭̠l̛̆̒ͨͪͧ͊́́҉̶̷̲̖̭͙̙̫͇̮̕͘͢͠. They don’t extend all that far, they aren’t very orthogonal,
and they can be hard to read and hard to figure out how to type.

 What if we go beyond overstrike? There are more ways to
combine and modify existing characters? Superscript and subscript,
for example. How about changing colors or fonts? Stacking
characters vertically? Squishing or stretching characters vertically or
horizontally? You’d have to learn where to find the “stack vertically”
or “bold font” command on your keyboard, or the toolbar, but once
you did, you could apply it to any character at all.

Topics

• Pricing (p. 1147) (35 notes)
• History (p. 1153) (24 notes)
• Human-computer interaction (p. 1156) (22 notes)
• Graphics (p. 1177) (10 notes)
• Terminals (p. 1202) (6 notes)
• Post-teletype terminal design (p. 1207) (6 notes)
• Memory hardware (p. 1250) (4 notes)
• Illinois PLATO (p. 1280) (3 notes)
• Overstrike (p. 1347) (2 notes)

Pipelined piece chain painting
Kragen Javier Sitaker, 02021-10-10 (updated 02021-12-30)
(23 minutes)

 Before people started embedding a computer into every terminal,
as was done in the VT-100 (8085), Datapoint 2200 (discrete TTL),
and PLATO V (8080) terminals, the traditional way to make a
character-cell CRT terminal such as an ADM-3A was to build a
hardware character generator. Even some terminals introduced after
the Datapoint 2200, and of course many personal computer display
driver boards, used this approach to lower costs.

Traditional character generators

 We map each character cell to a fixed† position in a random-access
screen-buffer memory, then control its memory address bus with a
counter during raster scanout. A pixel counter overflows into the
column counter, which overflows into a scanline counter, which
overflows into a text-line counter. The pixel counter and scanline
counters are used to drive some address lines on a font memory
(often, tragically, a mask ROM) while the column and text-line
counters drive the screen-buffer address lines, the data from which
drives the other address lines on the font memory, perhaps delayed by
a clock cycle or two of latches.

 If the memory used for a screen buffer is fast enough, writes to it
can be interleaved with the character generator’s reads to avoid the
need for dual-ported RAM or the occurrence of CGA-clone snow.
One way to make the screen buffer faster is to make it wider, so that
it can be read two or four glyphs at a time rather than one. This
generally was not done at the time because video signal rates were so
much higher than baud rates that snow wasn’t a problem. Writes can
be delayed until an HBI with a little buffering logic, and I think that’s
what was generally done.

 This approach to driving the screen can produce a high pixel rate
even with relatively slow RAM. Typical numbers from this epoch
might be 60 Hz for vertical scan, 5 horizontal pixels per glyph, 80
glyphs per line, 8 scanlines per text line, 24 text lines per screen, and
about 10% horizontal blanking interval (HBI) and 10% vertical
blanking interval (VBI). A glass terminal might talk to the host over
an asynchronous serial line at 1200–9600 baud, or rarely 300; at 9600
baud, each character took 1042 μs, 1.04 million ns. Multiplying this
out, the visible part of the screen contains 192 scan lines, so including
the VBI it’s about 213, giving a horizontal scan frequency of 12.8 kHz
(78 μs per line). In practice this is low enough to produce an
annoying whine audible to many people, so often higher frequencies
were used; suppose the horizontal scan is instead 20 kHz, including
400 pixels and a 44-pixel HBI. Then our pixel clock is 8.9 MHz;
pixels come out 113 ns apart. This is fast enough to require significant
attention to signal integrity and path-length issues.

 One solution to this problem is to dump each character slice from
an N-bit-wide font memory into a shift register like a 74165. The

shift register needs to run at the full dot clock speed, but the font
memory can run N times slower; in this case, where N=5, that’s
1.78 MHz, 560 ns per access, which is easily attainable with memory
chips from the 01970s, and maybe even with faster kinds of core
memory. The screen-buffer memory runs at the same speed.

 To be concrete about sizes, the font buffer might contain 96 5×8
glyphs, 480 bytes in all, while the screen buffer is just under 2000
bytes. The VT50 or DECScope had only ROM for the font buffer
and only half that amount of RAM, 12 lines of 80 characters, 960
bytes, 7-bit IIRC. When even that amount of RAM was too
expensive, you were stuck with vector displays or printing terminals.

 One drawback of this organization is that the ordinary text-editing
operations of inserting or deleting a character require updating
potentially a whole line of text in the screen-buffer memory. Doing
this locally in the terminal was highly desirable, since retransmitting
all those characters from the host to the terminal at 1200 or 2400 baud
introduces a delay of a significant fraction of a second, and also likely
imposes the cost of interrupt handling and perhaps even context
switching on the host; but copying a variable number of glyph indices
one item forward or back in the screen-buffer memory, potentially as
many as a whole line’s worth, is also potentially slow, especially if the
screen-buffer memory is multiple glyph-indexes wide as suggested
above.

 † Scrolling the whole screen is usually necessary, and can be done in
a cheaper way than inserting or deleting text, by changing the starting
value the text-line counter has at the top of each frame. But inserting
or deleting lines is also expensive.

Traversing piece chains in hardware

 There’s an alternative which I think might be simpler than
embedding an entire computer into the terminal, which is to traverse
a piece chain in hardware. Instead of mapping each memory location
in the screen buffer to a fixed location on the screen (or one that is
fixed except for scrolling), we build linked lists. Suppose we divide a
2048-byte screen buffer into 256 60-bit words, so addresses are only 8
bits, and store one variable-length piece of text in each word. The first
byte of the word gives the address of the word holding the text to its
right. The next three bits specify how many characters are in this
piece, a number from 1 to 7, which is used to initialize a countdown
timer in the character generator. Then there are 1 to seven 7-bit
glyph indices, which are loaded into 7 shift registers whose low bits
drive address lines of the font memory. (There’s always at least one
glyph per piece to ensure that the pipeline doesn’t run dry.)

 (There are 128 bytes out of the 2048 which are unaccounted for
here, and note that we only support 1792 distinct characters on the
screen at once, only 93% of the usual 1920. This is probably still
enough for an 80×24 terminal screen almost all of the time, since
most lines have some blank space. A blank-space trailer can be drawn
with a single-glyph piece that points to itself, shared among all lines.)

 The video generation pipeline with this system is slightly longer
than that of a traditional character generator. The pixel counter,
character-cell counter, scan-line counter, and text-line counter work

as usual, but the character-cell counter is only used to detect the end
of the scan line, and the character-cell and scan-line counters are not
directly connected to the screen-buffer memory. There’s a 60-bit
buffer for the next piece; when the countdown of glyphs in the
current piece ends, it’s used to reload the countdown timer and the
glyph-index shift registers, and its next-pointer field is used to fetch
the next piece from the screen buffer. Before the HBI ends, the
buffer is instead loaded from a piece indexed by the text-line counter.

 If every piece on a line is one glyph long, then the character
generator will read a word from memory after every glyph, every
560 ns; if the memory is slow, this could reduce the bandwidth
available for processing of screen updates. However, serial data
transmission is so slow that I think this is unlikely to matter.

 Traditional vertical scrolling just involves changing the piece at
which each line starts.

 An alternative to using linked lists would be to use a piece index
vector for each line; you need between 11 and 80 pieces for each line
on the screen, so you could use 11 to 80 bytes for piece indices, maybe
reasonably in the neighborhood of 20. A disadvantage is that
sometimes an insertion would require moving a lot of piece indices
over by one to make room for the new piece, and if you were
dynamically allocating the piece index vectors in a piece index vector
memory, maybe you’d suffer from fragmentation. The potential
advantage is that you could share common pieces between lines,
providing data compression. Overall I think it’s not worth it.

 An intermediate approach, sort of a wheel-of-reincarnation thing,
would be to have a “piece index stack” (of some limited depth like 4)
and a “call bit” in each piece. If the call bit is 0, the behavior is almost
the same as described above — the pointed-to piece just replaces the
current piece. If the call bit is 1, then the current piece index is
incremented and pushed onto the piece index stack; and when the
call bit is 0 and the next-pointer is also 0, then the new piece index is
popped off the piece index stack. This allows the reuse of common
strings for data compression without making insertion difficult.

Serial protocols

 It’s clear that inserting or deleting a glyph can be done efficiently in
this representation, but it probably is not simple. Deleting a character
may involve removing a piece from the piece chain and returning it to
a free list; inserting a character may involve allocating a piece from a
free list, inserting it into the current piece chain, and moving some of
the characters from the current piece into it. While it would be
possible to do this kind of thing with microcode in the terminal, a
much more reasonable thing to do would be to do the logic on a
computer, then send to the terminal the commands to make the
necessary changes: set the next of (undisplayed) piece 167 to 81 and its
glyph count to 7, append the 3 glyphs “ges” to piece 167, set next(27)
to 167 and its glyph count to 4.

 That’s maybe 11 bytes (set7 167 81, append3 167 g e s, set4 27 167)
to insert a character, which would be a noticeable 92-ms delay at 1200
baud. You could maybe improve this by, when you might want to

insert into the middle of a piece, pre-copying the glyphs that follow
the cursor into a new not-yet-displayed piece, which you point at the
display list ahead of time: set7 167 81, append2 167 e s; then actually
inserting the glyph is just split4 27 167 g, four bytes that sets both the
size and next pointer as well as appending a glyph, or possibly set3 27
167, append1 27 g, six bytes. This is not as fast as the one byte needed
for insert mode on a VT100, of course, but it also doesn’t need an
entire computer embedded in your terminak.

 Probably a better option than a byte-oriented update state machine
is to simply transmit 68-bit piece updates over the serial interface: an
8-bit piece index plus a 60-bit word to load into it. Under some
circumstances this would impose a slight extra performance cost, but
it would be less significant at higher baud rates, and it would simplify
the terminal hardware significantly. When drawing bulk text this
would require 68 bits per 7-glyph piece, compared to the 72 bits
required by the byte-oriented approach above (or 90 bits if we’re
using N81 asynchronous serial with start and stop bits), while the
11-byte sequence above would be two piece updates (17 bytes), and
both the 6-byte pre-copying sequence and the 4-byte or 6-byte
splitting sequence would be one update (8½ bytes). Note that at
115200 baud, the fastest standard RS-232 baud rate, a 70-bit sequence
including a start bit and a stop bit would be 608 μs, roughly 1100
times slower than the fastest frequency at which the character
generator might need to read pieces.

 This word-transmission approach might actually be faster overall if
it permits the use of higher baud rates; the PLATO V terminal in
01977 ran its serial interface at only 1200 baud, perhaps in part so its 5
MHz 8080 could keep up.

 The word-transmission approach has the additional merit that it’s
idempotent, so retransmission is safe, and it’s weakly convergent in
the sense that if you keep sending messages then probably eventually
the state will be correct, instead of persistently diverging. Data
transmission errors are likely to induce psychedelic effects with any of
these data models, so this sort of convergence is important.

 If there’s no special support for scrolling, then scrolling a 24-line
display would require setting 24 60-bit words, 180 bytes, which
would take a janky 188 ms at 9600 baud and a totally unusable
1500 ms at 1200 baud. The easiest approach is to have an 8-bit
screen-start register S with the semantic that the first line on the
screen starts with piece S, the second line with piece S+1, and so on,
and then you can scroll just by creating a blank line and setting that
register. If you don’t do a modulo of the screen size, you can scroll a
window up and down over a larger area instantly, assuming you have
enough space for the text, but you’ll have to occasionally relocate live
data the scrolling is about to steamroll.

Overstrike

 If you fetch an average of 20 pieces for each scan line at 20 kHz,
that’s an average of one every 2500 ns. That’s pretty slow, so even
with 01970s hardware, you could imagine generating a couple of pixel
streams in parallel and ORing them together. That would allow you
to generate, for example, accented or struck-through characters. But

https://archives.library.illinois.edu/erec/University Archives/0713808/1977 Aug X-50 PLATO V Terminal Stifle.pdf
https://archives.library.illinois.edu/erec/University Archives/0713808/1977 Aug X-50 PLATO V Terminal Stifle.pdf

the second pixel stream would cost a similar amount of hardware to
the driver for the first pixel stream, so this might not really be
worthwhile.

Writable and proportional fonts

 A softfont, even one with only a few writable positions, extends the
graphical capabilities of such a device enormously. A transparent
pixel-granularity mouse pointer or other sprite can be emulated with
only four writable glyphs and unused glyph indices, and a few more
writable glyph positions is sufficient to enable applications like
schematic capture, dataflow diagrams, math, and limited foreign
language support.

 Of course, any kind of softfont capability requires some extra logic
to distinguish glyph-update requests from screen-update requests
(perhaps a 69th bit), and updating four 5×8 glyphs necessarily
involves at least 20 bytes of data if uncompressed; that’s only 21 ms at
9600 baud, but a janky 167 ms at 1200 baud.

 This setup can even be extended to support proportional fonts in an
analogous way: instead of initializing the pixel-within-glyph counter
always to 5, you initialize it to a value taken from a font-metrics
memory that’s indexed by the same glyph index used to index the
font-pixels memory. As before, you shift the glyph-index registers
when this counter hits 0. This would enable proportional fonts
without a framebuffer.

 Variable line heights could be done in a similar way but much more
easily, since they just involve conditionally resetting the scan-line
counter and incrementing the text-line counter during the HBI. But
once you have variable line heights you may start wanting the ability
to have non-aligned baselines on different parts of the screen. And at
that point you’ve just about moved to a scan-line rasterizer kind of
model.

Graphical effects

 The VT100 supported inverse video and, I think, some other
graphical effects, maybe including double-width, double-height,
bright, dim, and blinking characters. I think it had some
line-widening logic that extended each bright pixel horizontally by a
second pixel in order to reduce the size of the font ROM. Some
successor terminals supported smooth scrolling, where scrolling
happened a pixel at a time instead of a line at a time. The PLATO V
terminal supported “character magnification” to get different font
sizes.

 In addition to this sort of thing, you could imagine using an LFSR
to get “snowy” characters, either as foreground or background, or
adjusting the letter spacing or line weight; this could all be done with
a dedicated effects bitfield in each piece, avoiding any potential need
for blank spaces on the screen. If the frame rate were high enough, or
the display hardware possessed of sufficient persistence, you could also
use PDM to get various brightnesses, but probably this is usually
better done in other ways.

Alternatively, a display list

 Compositing from a display list into a single-scan-line
“framebuffer” is probably a better way to get things like overstrike,
and it would also allow you to do pixel-perfect positioning of text, so
variable line height is an easy thing to do. This “line buffer” would
cost 50 bytes with the figures described above, but double-buffered,
making 100 bytes.

 The idea is that, while one part of the hardware is spitting out your
pixels at 8.9 MHz from a 50-byte FIFO, another part of the hardware
is writing to another 50-byte “back-buffer” register. It’s driven by
the kind of piece-chain structure described above, but instead of
having a rigid grid of lines on the screen, you have a “display list”, in
which each item is a (y, x, height, piecenum) tuple, which is sorted by
y. As we iterate over the scan lines in a frame, the display-list
processor maintains two indices into this display list: the earliest item
that’s still visible, and the earliest item that’s not yet visible; and it
just draws all the piece chains in between those two indices into the
back buffer, one after another, using OR or AND or whatever.

 And then, when it’s time to move on to the next scan line, the back
buffer is loaded into the FIFO, and then the back buffer is cleared.
Hopefully the display-list processor finished traversing the display list
first, but at any rate it now starts rendering the new line.

 This is basically just standard scanline rendering like you might use
for a 3-D image rasterizer, but you need a barrel shifter or something
in the middle, unless you want to have a second shift register running
at 8.9 MHz in the middle of your otherwise relaxed sub-2-MHz
system.

 Alternatively, if you’re using a fixed-width font, and you’re willing
to snap your horizontal pixel positions to character cells or half
character cells or whatever, you can reduce the number of shifts you
need between your font memory and your back buffer. If the back
buffer is divided into 6-bit chunks, say, and the font is 6 pixels wide,
you can AND aligned 6-bit chunks from the font buffer into the back
buffer. If you allow 3-pixel shifts, then you need a 3-bit shifter that
you can write 6-bit pixel slices into and copy 3-bit-shifted 6-bit pixel
slices out of into the back buffer.

 This level of control complexity may be high enough that it’s
justifiable to use a real CPU to draw into your line buffer, even if you
have special-purpose hardware driving the actual video signal. At
that point it no longer makes sense to think of it as a “terminal”; you
want to run your entire program on that CPU as much as possible so
that it can be instantly responsive and have as high bandwidth as
possible to the display.

 This might even be a reasonable way to do PAL video out of a
working monochrome GUI on an ATMega328 Arduino: running at
16 MHz I think the TVout library can output pixels at 8 MHz, which
leaves enough space for 320,000 pixels in a 25-Hz PAL frame. PAL
(except for Brazil’s PAL-M) is a 625-line standard with 576 visible
lines (92.2% visible) with 51.95 μs of active video per 64 μs line. In
theory this means 415.6 horizontal pixels, which is actually enough for
80 columns of 5×8 text (400 pixels). You absolutely can’t do it with
an in-RAM framebuffer, because the ATMega328 doesn’t have
enough RAM, but you could maybe do it with a per-line

framebuffer.

 On the AVR the situation is a lot worse than in hardware, though:
because you don’t have the hardware parallelism, you can only render
into your line buffer during the horizontal blanking interval. That
gives you only about 200 clock cycles, which is not a lot of time,
maybe 60–100 instructions.

 I suspect it might be possible to steal part of the horizontal visible
part of the screen for computation — leave it black (or white) and
arrange for a timer interrupt at the right time to generate the back
porch and sync pulses. In fact, I think TVout already does this, since
it supports any output resolution (as long as you have enough
memory) but can only output pixels on integer clocks: every 2, every
3, every 4, or every 5 clocks, but not every 2.5 clocks. Every line is
still only 1024 clock cycles but you still ought to be able to do a few
hundred instructions that way.

Topics

• Programming (p. 1141) (49 notes)
• History (p. 1153) (24 notes)
• Performance (p. 1155) (22 notes)
• Graphics (p. 1177) (10 notes)
• Terminals (p. 1202) (6 notes)
• Protocols (p. 1206) (6 notes)
• Post-teletype terminal design (p. 1207) (6 notes)
• Tiled graphics (p. 1269) (3 notes)
• Illinois PLATO (p. 1280) (3 notes)
• AVR8 microcontrollers (p. 1387) (2 notes)
• Fonts

An algebra of partial functions for
interactively composing programs
Kragen Javier Sitaker, 02021-10-10 (updated 02021-12-30)
(3 minutes)

 Consider the statement:

y := x * x;

 One way to think of this is as a partial function from states of the
world to states of the world. The prior state (the one in the domain)
needs to have some variable x defined in it, and the posterior state has
that variable x and also a variable y. We could maybe write that
function as {x: x0, ...} -> {x: x0, y: x0², ...}, with the understanding
that the two ... tokens denote the same set of other variable
assignments.

 This is a partial function in the sense that it isn’t defined on states of
the world that don’t have an x in them. We could additionally argue
that maybe it requires an x for which multiplication to be defined in
some way, and describe this as a type.

 Similarly, we can consider the statement

z := y + 1;

 to mean {y: y0, ...} -> {y: y0, z: y0 + 1, ...}. Instead of being
undefined for environments that lack an x, this is undefined for
environments that lack a y.

 If we compose these two partial functions, the result corresponds to a
sequence or progn of two statements:

y := x * x;
z := y + 1;

 which denotes {x: x0, ...} -> {x: x0, y: x0², z: x0² + 1, ...}. The
second statement’s requirement for y in the environment has vanished
because the first statement satisfied it directly.

 (I’ve been thinking about a program-calculating environment
where you manipulate scraps of program like these, constructing
them bottom-up and combining them with elementary operations
like sequencing, alternation, and iteration (and their inverses), seeing
not only the procedures but the resulting extensional functions
visualized as you manipulate them. It would be useful to also have
additional non-elementary operations like specialization, loop
unrolling, subroutine extraction, and conditional hoisting.)

 This sort of inheritance of non-overridden variables is precisely the
semantics of indexing I have been thinking about for my “principled
APL” project.

 Some interesting avenues for further investigation:

• Conditionals (alternation) are straightforward to add to this way of
thinking about statements, but what about while-loops? Do they
drive us to Dijkstra’s weakest-precondition function? Or do they just
denote the least fixpoint of a conditional function?
• What do conditionals and while-loops correspond to in APL-land?
• Is subroutine call just a slightly different form of composition in
which most of the variable bindings from the called subroutine are
discarded?
• We can think of expressions as being functions from these
environments to non-environment values. The expression 45, for
example, denotes {...} -> 45, while a more interesting expression like
x * x denotes the more interesting function {x: x0, ...} -> x0².

Topics

• Programming (p. 1141) (49 notes)
• Composability (p. 1188) (9 notes)
• Programming languages (p. 1192) (8 notes)
• Program calculator (p. 1246) (4 notes)
• Apl (p. 1390) (2 notes)

Beyond op streams
Kragen Javier Sitaker, 02021-10-11 (updated 02021-12-30) (3 minutes)

 I was reading about PLATO a lot yesterday (see Beyond overstrike
(p. 922)); the PLATO IV terminal designed in 01970 had a relatively
simple control system, executing a series of 21-bit words received
over a 1200-baud serial line from the computer center. It included
line-drawing and character-painting hardware, but because its
gas-plasma panel display screen had inherent memory, it didn’t need a
framebuffer; the screen could be painted as slowly as necessary. And
the terminal wasn’t programmable at all; it was just a puppet of the
supercomputer in the computer center. If it detected a parity error, it
would stop processing and signal the error back to the supercomputer,
which would then retransmit the operation stream from the point of
the error. Keystroke handling was all done on the supercomputer.

 Although such terminals were replaced by personal computers in
the late 01970s and early 01980s, as I understand it, a similar sort of
instruction-stream-executing setup is applied by modern cellphone
LCD panels, is used by the “threads” in a GPU “warp” or
“wavefront”, and was used by the processors in early Connection
Machines, which had predication but no separate control. The LCD
panels do function as puppets of the CPU (or perhaps GPU), bringing
about a predetermined result like the PLATO terminals, but in the
other cases there is local data that computes a different result on each
processor.

 An interesting question to me is this: what’s the smallest amount of
additional local control you could add to such a system to make it
more powerful?

 Often such a system needs a current-instruction register, into
which it periodically clocks another instruction from the incoming
instruction stream. The simplest form of control would be to
conditionally not do that, instead remaining with the already-received
instruction, executing it a second time. But this needs some kind of
termination bit computed somehow, or entering such a repetition
mode would be permanent. A repetition-count field of 3–7 bits in
the instruction word is one approach, perhaps coupled with some
kind of chip-select line that allows you to load a repeated instruction
into one such executor, and then while it is running, into another, and
so on.

 In other cases, the execution unit needs to buffer a sequence of
recently received instructions, such as 8 or 16, in a small dual-ported
FIFO, which it maintains an execution index into, perhaps lagging
behind the incoming instruction stream. A backward-jump
instruction can then set up a loop. In such a case, the looping and
overwriting need not be conditional, as in the previous case; the
looping can simply continue until the loop gets overwritten, though
reliably synchronizing this with the loop execution could be tricky.

Topics

• Terminals (p. 1202) (6 notes)
• Post-teletype terminal design (p. 1207) (6 notes)

Inverse perspective
Kragen Javier Sitaker, 02021-10-11 (updated 02021-12-30) (1 minute)

 I just noticed that FreeCAD sometimes seems to be using
“backwards perspective”: the side of a part that is obscured by being
on the opposite side from the camera is projected as larger rather than
smaller. This is easy enough to achieve mathematically (you just
reverse the test for distinguishing visible surfaces from invisible ones)
and I understand that there are actually some physical lenses that
achieve this in real life as well, sometimes used for machine-vision
automted inspection systems.

 It occurred to me that this is actually a potentially powerful UI
technique for increasing the visibility of parts in CAD, since, with a
wide enough viewing angle, you can see the part from nearly all sides
at once. FreeCAD in particular is using a rather moderate viewing
angle, so the effect is somewhat subtle, and it doesn’t seem to be
happening all the time.

Topics

• Human-computer interaction (p. 1156) (22 notes)
• Computer-aided drafting (CAD)

Ranking MOSFETs for, say, rapid
localized electrolysis to make
optics
Kragen Javier Sitaker, 02021-10-11 (updated 02021-12-30) (8 minutes)

 In Dercuano I listed a bunch of “jellybean” FETs in 02017, coming
up with this table:

| PN | Vds | A | ohms | Qg (nC) | ¢ | W | type |
|--------------+-----+------+-------+---------+-----+-----+------------|
2N7000	60	.2	1.9	2	36	.4	
2N7002	60	.115	7	2	38		
IRF630	200	9	.4	45	86	75	
IRF9630	200	6.5	.7	29	151	74	P-chan
IRLI630G	200	6.2	.400	40	229	35	
IRLML6344	30	5	.029	6.8	36	1.3	
IRLML6402	20	3.7	.065	12	40	1.3	P-chan
EPC2036	100	1	.065	.910	97		GaN
SI3483CDV	30	8	.034	11.5	89	4.2	P-chan
FQP27P06	60	27	.070	43	134	120	P-chan
NTD4906N	30	54	.0055	24		2.6	obsolete
IRF7307	20	4.3	.140		83		dual (P&N)
BSS138	50	.200	3.5		24		
CPC3703CTR					70		depletion
2N5457	25	.01			230		JFET
2N5458	25	.01			230		JFET
SiS410DN	20	35	.0048	41	94	52	
PSMN4R0-40YS	40	100	.0056	38	88	106	holy shit
IRF540N	100	33	.044	71	145	130	fuck
IRF9540N	100	23	.117	110	189	110	P-chan
IRF9530	100	12	.300	38	138	88	P-chan SyC

 One heinous Python expression later and we have them ranked by
watts per cent:

>>> csv.writer(sys.stdout).writerows(sorted(
 ((float(v[1]) * float(v[2]) / float(v[5]), v[0], v[1], v[2], v[5])
 for v in [line.split('|')[1:] for line in t.strip().split('\n')]
 if v[1].strip() and v[5].strip()), reverse=True))
45.45454545454545, PSMN4R0-40YS , 40 , 100 , 88
22.75862068965517, IRF540N , 100 , 33 , 145
20.930232558139537, IRF630 , 200 , 9 , 86
12.16931216931217, IRF9540N , 100 , 23 , 189
12.08955223880597, FQP27P06 , 60 , 27 , 134
8.695652173913043, IRF9530 , 100 , 12 , 138
8.609271523178808, IRF9630 , 200 , 6.5 , 151
7.446808510638298, SiS410DN , 20 , 35 , 94
5.414847161572053, IRLI630G , 200 , 6.2 , 229
4.166666666666667, IRLML6344 , 30 , 5 , 36
2.696629213483146, SI3483CDV , 30 , 8 , 89
1.85, IRLML6402 , 20 , 3.7 , 40

1.036144578313253, IRF7307 , 20 , 4.3 , 83
1.0309278350515463, EPC2036 , 100 , 1 , 97
0.4166666666666667, BSS138 , 50 , .200 , 24
0.3333333333333333, 2N7000 , 60 , .2 , 36
0.18157894736842106, 2N7002 , 60 , .115 , 38
0.0010869565217391304, 2N5458 , 25 , .01 , 230
0.0010869565217391304, 2N5457 , 25 , .01 , 230

 That is, in theory, the PSMN4R0-40YS (unavailable in Argentina)
is capable of switching 4000 watts on and off for just under 90¢, so it
can control 45 watts per cent, while the IRF540N and IRF630
(available, even listed on MercadoLibre for 80¢ and 65¢) are almost
half as good, switching respectively up to 3300 watts or 145¢ (02017
price!) and 1800 watts for 86¢. I probably should have also listed the
popular IRFZ44N (55V, 49A, thus 2700W, 76¢ locally) or IRLZ44N
(55V, 47A, 87¢, thus 2600W, logic-level threshold).

 Six of these monster transistors, plus the appropriate drive circuitry
to control them, give you a three-way H-bridge to control a
multi-horsepower “brushless” motor. One may be sufficient for a
multi-kilowatt switchmode power supply, though maybe running off
Argentine 240VAC you’d want two or three in series.

 And, for electrolysis they can potentially drive material removal or
deposition with jitter under 10 ns and pulse times of 100 ns or so.
(This is inferred from the IRF630 datasheet, which has apparently
renamed “HexFET” to “STripFET”: “typ.” 118.5 ns reverse recovery
time, 5.6 ns turn-on delay time, 2.6 ns rise time, measured with 4.7
ohm gate resistance and 10 V; oddly they don’t state td so it must be
something terrible.) For pulses, all of these MOSFETs support even
higher powers; the IRF630 is rated for only 9 A continuous, but 36 A
pulsed.

 Of course you’d have to run the electrolysis through a step-down
transformer or SMPS if you wanted to deliver that kind of power in a
useful way; 3600 A at 2 V would be a lot more useful than 36 A at
200 V, which would mostly just heat up the water. Such a
transformer with 10MHz bandwidth might be hard to find.

 The gate charge is “typ.” 12 nC, so delivering it in 10 ns would
require driving the MOSFET gate with 1200 mA, which is I guess
why MOSFET gate driver ICs and pulse transformers are so popular.
Getting a 10-ns-rise-time edge through the rest of your circuit is also
doable, but nontrivial.

 Suppose we could deliver 3600 A at 2 V for 100 ns. That’s 0.72
millijoules of energy, a perfectly manageable amount for ordinary
circuits, and correspondingly 0.36 millicoulombs, or 2.2e15 electrons,
or 1.12e15 divalent cations, about 1.87 nanomoles; for copper that
works out to be 119 nanograms, and for iron 104 nanograms, assuming
perfect Faraday efficiency. That’s about a 30-micron-diameter sphere
of either of these metals: visible, but barely. (It would punch right
through aluminum foil, though.)

 (In practice such high current densities would be prevented by the
formation of an insulating salt film on the surface. Also 0.72
millijoules in 100 nanograms is 7200 kJ/kg, which is still plenty to
vaporize the metal.)

off

 If an electrolytic cathode is flying over a flat metal substrate at 25
m/s, like in a laptop hard disk (but full of water), 100 ns is about 2.5
microns. The 10-ns jitter guessed at above amounts to 250 nm of
imprecision. If you were using this to record information, you might
encode 4 bits into the delay before each new pulse, with an average of
180 ns per pulse and rest, giving a data rate of 22 megabits per second.

 If you wanted to archive a 10 GiB ZIM file of English Wikipedia
on nickel foil this way, it might take an hour or so. You might want
to reduce the current so you wouldn’t be gouging huge
20-micron-deep craters in the surface of the metal that would be hard
to tell apart; 130 mA for 100 ns would suffice to give you a
hemispherical 1-micron-radius pit. Spacing tracks 2.5 microns apart
would give you 400 tracks per millimeter, and 4.5-micron-long
pulse-and-rest cycles would give you 889 bits per millimeter, so 2200
bits or 278 bytes per square millimeter, so, all in all, you’d need 39
square meters of nickel.

 Consider instead the average material removal rate (or deposition
rate), supposing we can step down an average of 9 A at 200 V to 900
A at 2 V; that’s about 4.7 millimoles per second, about 300 mg/s of
copper or 260 mg/s of iron, supposing divalent ions and 100% Faraday
efficiency in each case. That’s about 1 kg per hour.

 However, 10-ns precision at 300 mg/s means 3-nanogram precision
in how much material you remove. If that’s spread over a square
millimeter at 9 g/cc, that’s an etching or electrodeposition precision
of 0.3 nanometers, roughly one atom. If we step down to the kind of
precision we need for optical systems of about 40 nm, that works out
to about a 90 micron by 90 micron area.

 So if you were using such a transistor to control the low-precision
hogging-out phase of cutting a first-surface mirror, your kg/hour
hogging-out process would hit its limit at 40-nm Z precision per
90-micron-square area. Of course, that assumes you’re using laser
interferometry or something for positional feedback of the electrode.

 Then, by turning down the current for a finishing pass, you could
overcome that resolution limitation and get the mirror surface more
precise, still at the same bandwidth of a few tens of megabits per
second.

 One of the more interesting devices that can be usefully controlled
at 10 MHz or more is a piezoelectric actuator. These don’t require a
lot of current but they do need relatively high voltages.

Topics

• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Digital fabrication (p. 1149) (31 notes)
• Electrolysis (p. 1158) (18 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Power supplies (p. 1176) (10 notes)
• Optics (p. 1209) (6 notes)
• Piezoelectrics (p. 1340) (2 notes)

The relation between solar-panel
efficiency for air conditioning and
insulation thickness
Kragen Javier Sitaker, 02021-10-11 (updated 02021-12-30) (3 minutes)

 I was watching Adam Booth’s video on the 3 kW generator he runs
his travel trailer’s air conditioner from, and I realized there was a
connection between solar-panel efficiency and insulation thickness.

 Straw bales conduct about 0.5 W/m/K of heat; modern insulation
materials like polyisocyanurate foam are closer to 0.2, and IIRC
firebrick is closer to 0.8. Mainstream solar panels are about 21%
efficient, the solar constant is nominally 1000 W/m², and
commonplace air-source air conditioners and similar heat pumps have
a coefficient of performance (for cooling) of about 2, so they pump
out about 2 W of heat for every W of electrical power they consume.

 Suppose you have a dwelling pod that’s perfectly insulated on every
side, except that one side is covered in solar panels and has sunlight
falling on it. The sun heats up the solar panels to 50°, even if the
outdoor air is a little cooler, but the interior needs to stay below 24°
to remain habitable. How thick does the insulation need to be for the
air conditioner (hypothetically not blocking any sun) to keep up with
the heat leakage through the insulation?

 Well, you’re getting 1000 W/m² of sunlight and 210 W/m² of
electrical power, which provides you with 420 W/m² of cooling.
The heat delta from the solar panel to the cool interior is 26° (26 K),
so straw insulation has 13 W/m flowing through it, which is to say, 13
W m/m². Multiplying 420 W/m² by 31 mm of straw gives you those
13 W/m. As little as 12 mm of styrofoam might be enough.

 If your pod has four times as much area exposed to the hot
outdoors as to the hot solar panel, like a travel trailer might, the
insulation needs to be four times as thick, like 150 mm of straw or 50
mm of styrofoam. This is still eminently feasible.

 Aside from heat leakage by conduction through the walls, every
square meter of sunlight you let in through a window adds 1000 W of
heating during the day; removing that requires just over 2 m² of solar
panels to power the air conditioner.

 Normally when you’re calculating the energy output of solar panels
you need to take the capacity factor into account, which may vary
from as little as 10% in polar countries like Germany or the UK to
more than 30% in very sunny places (California’s about 29%), but, in
this case, when the sun isn’t shining to power the air conditioner, it
also isn’t heating up your roof and walls.

 Possibly desiccant-based air conditioning systems are a better fit for
solar energy, since they can directly use the heat from the sunlight,
but nowadays PV panels are amazingly cheap even compared to solar
thermal collectors.

https://youtu.be/ciJX6eVLuH0
https://youtu.be/ciJX6eVLuH0

Topics

• Energy (p. 1170) (12 notes)
• Solar (p. 1203) (6 notes)
• Life support (p. 1251) (4 notes)
• Air conditioning

An even simpler offline power
supply than a capacitive dropper,
with a 7¢ BOM
Kragen Javier Sitaker, 02021-10-14 (updated 02021-12-30)
(7 minutes)

 Watching BigClive’s air “freshener” teardown I was surprised to
see an even simpler DC power supply for a microcontroller from the
powerline than I’d seen previously, but it turns out that it’s only
cheaper for microcontrollers dissipating less than about 25 mW.

 In the air freshener it consists of two 15K resistors in series, fed
from the powerline by a fuse and a diode used as a half-wave rectifier
(two diodes in series actually), across a 5V zener and a 100 microfarad
16-volt electrolytic storage cap, bypassed with a ceramic capacitor for
high frequencies. There is no galvanic isolation.

 I think this is even cheaper and simpler than a capacitor dropper:
fuse (in the air-freshener case, shared with the line-voltage heating
elements), resistor, diode, zener, and the two caps, six components in
all, and you have your 5 volts out. It’s extremely inefficient (maybe
2% efficient), but that’s nearly irrelevant at the power levels it’s
cheaper for; it isn’t very important if it’s wasting 0.1-1 W.

 You could cut it to five components if you used a fusible resistor,
of which Digi-Key has 140 in stock, like the US$0.05 Vishay
NFR25H0001001JR500, a half-watt “flameproof” 1-kilohm jobbie.
But how much resistance do we need, and how much power does the
resistor need to dissipate?

 Suppose the microcontroller draws no more than 10 mA (50 mW),
and you’re designing for a 240VAC environment. Your rectum-fried
DC will peak at 340V, but what’s more important here is probably
the RMS voltage, which is actually only 120V with half-wave
rectification, and the mean voltage, since we want the mean charging
current to be 10 mA. The mean of an ideally half-wave rectified
signal is about 0.318 of its peak, about 108 V in this case, so we’d need
no more than 10.8 kilohms of series charging resistance; lower
resistance would be fine but would produce more waste heat, so 4.7k
might be better. With 4.7k you get 23 mA average current, 26 mA
RMS current, and thus 3.2 watts of power burned in the resistor.
That’s a curtain-burner!

 So you need maybe a 5-watt resistor. These are off-the-shelf parts
like the Vishay AC05000004701JAC00, but they’re quite a bit more
costly; that one costs 71¢, while the 45¢ TE RR03J5K6TB would
almost work at 5.6kilohm and a 3-watt power rating. And, perhaps
unsurprisingly, none of the resistors Digi-Key lists in that power
range claim to be “fusible”.

 Evidently this simplification is only economical for
microcontrollers using significantly less power than that, because
using a capacitor to drop that voltage instead would be cheaper. The
air-freshener circuit being dissected used 30 kilohms instead of 4.7 or

https://youtu.be/3cm9AO0qD7k
https://www.digikey.com/en/products/filter/through-hole-resistors/53?s=N4IgjCBcoKxaBjKAzAhgGwM4FMA0IB7KAbRAGYAWAdhiqpH0pqoA4HzraBOdpmLnowoCWAJl7CuLChJFlZUuAF18ABwAuUEAGV1AJwCWAOwDmIAL74AtD2ggkkfQFc8hEuBBLLIK+LsPnVyJIUmVzcKA
https://www.digikey.com/en/products/detail/vishay-beyschlag-draloric-bc-components/NFR25H0001001JR500/614119
https://www.digikey.com/en/products/detail/vishay-beyschlag-draloric-bc-components/NFR25H0001001JR500/614119
https://www.digikey.com/en/products/detail/vishay-beyschlag-draloric-bc-components/AC05000004701JAC00/596732
https://www.digikey.com/en/products/detail/yageo/CFR-12JR-52-470K/17719

10, so evidently its microcontroller needs 3 mA or less. Accordingly
the resistor’s power is only half a watt, and that’s distributed over two
resistors, which I think are sized for half a watt each, and are located a
substantial distance apart on the board, perhaps with the objective of
avoiding a concentration of heat.

 The voltage across the dropper resistor is effectively the whole
half-wave rectified power supply voltage, so the power it dissipates is
linearly proportional to the current: 3.2 W at 23 mA (4.7 kilohms),
but 0.32 W at 2.3 mA (47 kilohms), and 0.03 W at 0.23 mA (470
kilohms). There’s actually a lot you can do even at 0.23 mA.

 At 10 mA the 100 microfarad capacitor would also be too small.
Because of the half-wave rectification, there’s a dead time of just over
10 ms when there’s no current charging up the cap, and in that time,
it would drop from 4.9 V to 3.9 V. So 100 microfarads is adequate for
maybe a 4 mA sustained current draw. But at a lower power level,
like 0.23 mA, 10 microfarads is likely enough.

 So here’s a parts list for a 5V 0.23 mA power supply:

• Dropper resistor: 470 kilohms, >0.03 W: Yageo
CFR-12JR-52-470K (0.97¢, 170 mW) or TE CRGCQ0402F470K
(0.28¢, 63 mW, SMD 0402, would need potting for creepage because
max working voltage is nominally only 50V because of the 0402
package).
• Diode: a 1N4004 or 1N4005 from, say, Micro Commercial Co.
(2.2¢, 400V, 1A).
• Zener: something like the Nexperia BZX84-C5V1-235 (1.96¢,
5.1V, 250mW).
• Electrolytic: something like the Würth 860020372001 (5.4¢, 16V,
10 microfarads ±20%, 35 mA max ripple, 5mm diameter, 12.5mm
long)
• Ceramic cap: maybe a Samsung CL05A104KA5NNNC (0.22¢,
25V, 100 nF, X5R SMD 0402)

 That gives us a total bill of materials of 10.75¢, almost exactly half
being the electrolytic. At such low currents, it might be feasible to
replace both the electrolytic and the ceramic with a ceramic like the
0805 Samsung CL21A106MQFNNNE, which is 10 microfarads,
rated for 6.3 volts, and costs 1.9¢, which would drop the BOM cost to
7¢.

 The fuse is essential for safety in case the rest of the apparatus fails
short, but it’s potentially just a piece of wire that’s free to melt
without setting anything on fire. The cheapest off-the-shelf fuse is
something like the Eaton C310T-SC-4-R-TR1, which costs 14¢,
twice the cost of the whole power supply. PowerStream’s fuse wire
chart suggest that 40-gauge copper wire (79 microns diameter) should
fuse at 1.8 amps, and anything 28-gauge or smaller (320 microns
diameter) should fuse below 15 amps, which is low enough to keep a
house circuit breaker from blowing.

 Using 58 megasiemens per meter as copper’s conductivity,
79-micron diameter wire (0.0049 square mm) gives you 3.5 ohms per
meter. At 1.8 amps, that’s 11.4 W/m, or 11.4 mW/mm, and so at
0.0049 mm³/mm we have 2.3 W/mm³. Copper is about 9 mg/mm³
so that’s about 2300 W/mg, which does seem like the kind of power

https://www.digikey.com/en/products/detail/yageo/CFR-12JR-52-470K/17719
https://www.digikey.com/en/products/detail/yageo/CFR-12JR-52-470K/17719
https://www.digikey.com/en/products/detail/te-connectivity-passive-product/CRGCQ0402F470K/8576261
https://www.digikey.com/en/products/detail/micro-commercial-co/1N4004-TP/773641
https://www.digikey.com/en/products/detail/nexperia-usa-inc/BZX84-C5V1-235/1156102
https://www.digikey.com/en/products/detail/w�rth-elektronik/860020372001/5728733
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL05A104KA5NNNC/3886701
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21A106MQFNNNE/3886956
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21A106MQFNNNE/3886956
https://www.digikey.com/en/products/detail/eaton-electronics-division/C310T-SC-4-R-TR1/5420163
https://www.powerstream.com/wire-fusing-currents.htm
https://www.powerstream.com/wire-fusing-currents.htm

that tends to melt metal.

 Because we have about a factor of 8000 between the fusing current
and the normal working current, it should be easy to provide enough
insulation to permit fusing without causing the fuse wire to go into
thermal runaway under normal loads.

 A few millimeters of such thin wire (far enough for safe creepage
allowances at 240VAC RMS) in an environment that won’t catch on
fire if the wire melts would be a perfectly adequate fuse.

Topics

• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Power supplies (p. 1176) (10 notes)

Trying to quantify relative speeds
of different digital fabrication
processes with “matter
bandwidth”
Kragen Javier Sitaker, 02021-10-15 (updated 02021-12-30)
(5 minutes)

 2-D cutting fabrication techniques like laser cutting, plasma torch
table cutting, waterjet cutting, and CNC milling are often immensely
faster than 3-D printing. But they typically require more assembly
steps and more difficult design.

 Cutting sheet metal in particular is promising because you can bend
it after cutting, both hardening it and getting a 3-D shape. Given
some sort of press, you can bend it by pressing it between dies cut
from the same sheet metal, either many of them stacked up or a
smaller number in a crisscross pattern (ideally not quite at 90°). With
something like a beading roller, you can use a fairly small die to make
a fairly large part. Metal has a lot of other advantages.

 Another potentially interesting process for getting a solid 3-D
surface from a 2-D contour is to roll up or accordion-fold a strip,
using some minimal number of alignment slots to get the successive
layers properly aligned.

 Laminated sheet metal is actually better than solid metal for
electromagnetic purposes, although random mild steel will perform
an order of magnitude worse than genuine electrical steel. Permanent
magnets are not needed for variable reluctance motors.

Matter bandwidth

 Ultimately I think the figure of merit that matters most for digital
fabrication processes is the "matter bandwidth", which (being rusty on
my Shannon) I roughly define as the number of bits exceeding the
noise floor you can impress into a physical object per second. If you
can produce a surface with 100-micron precision, then the height of a
point on that surface anywhere in a 3.2-mm range counts as 5 bits.
But if you have 10-micron precision, that's a little over 8 bits. The
reason is that if you can make things more precise, you can make
them smaller, while if you suffer less precision, they have to be bigger.

 And smaller is actually faster. After having a system that works at
all, speed is my most important goal: being able to iterate quickly will
enable me to overcome almost any obstacle at all, from fragility
(because I can make a stock of spare parts in time) to debugging
(because I can try many things) to political opposition (because it
arises too slowly to be relevant). This is an enormous reversal from
coal-age industrial processes in which mass production and mass
processing was of paramount importance.

 Very roughly, I think that for a production time of one month (2.6

megaseconds) and a production complexity of a million "voxels", one
voxel per 2.6 seconds is adequate. But an order of magnitude better
than that would get us out of marginal territory. Given that existing
machinery (e.g., laser and inkjet printers) is seven orders of magnitude
faster than this, and even RepRap FDM printers are about 10 voxels
per second, it seems likely to be achievable, but of course that's
drawing on billions of dollars of industrial infrastructure in the form
of semiconductor fabs.

 (Actually, if we figure 90 mm/s is a normal print speed, 500
microns is a normal trace width, and the resolution is 100 microns,
that's 4500 voxels per second.)

 Looking at the Maker's Muse product shill infomercial for the
US$2900 Phrozen Sonic Mega 8K LCD stereolithography printer, I
see it prints layers of 7680×4320 43-micron pixels. The salesman in
the video says it he set the first (50-micron) layer to cure for 50
seconds to get it to work reliably in his cold winter, but that this is a
really long cure time. I think 20 seconds is a more normal layer time
for these UV-cured resin printers, but if we suppose it's 30 seconds,
that's still 1.1 megavoxels per second. Later on, he showed that he got
10 hours 11 minutes for a build plate full of 35-mm-tall miniatures,
which I think works out to 52.4 seconds per 50-micron layer, mostly
due to peel time, since the cure time per layer was only 4 seconds.
(The company claims 70 mm/hour print speed, which would be
either 2.6 seconds per layer or, more likely, much thicker layers.) He
compared to the much smaller Photon Mono X with cure times of
1.5-2 seconds and 60 mm/hour maximum print speed with, I assume,
a similar layer height.

 If we compare to laser printers, they are typically 600 dpi
(23.6kp/m or 558Mp/m²), and the A4-sized ones (0.06237 m², thus
34.8 million pixels) typically print between 5 and 22 pages per minute,
which works out to 2.9 million to 12.8 million pixels per second.
They're not in very precise places, but the imprecision with respect to
the other pixels is predictable and consistent. Unfortunately, it's
difficult to convert laser-printed pages into almost anything else; if
you print on transparency film such as cellulose acetate, you may be
able to take a mold of the printout, but it's hard to stack that up.

Topics

• Digital fabrication (p. 1149) (31 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• 2-D cutting (p. 1201) (7 notes)
• Self replication (p. 1204) (6 notes)
• Independence (p. 1215) (6 notes)

https://www.youtube.com/watch?v=p6wljI-6EzI
https://www.youtube.com/watch?v=p6wljI-6EzI

Balanced ropes
Kragen Javier Sitaker, 02021-10-16 (updated 02021-12-30)
(7 minutes)

 Is there a really simple way to balance ropes?

Basic ropes

 I wrote a simple implementation of ropes last night in 45 minutes:

#!/usr/bin/python3
from collections import namedtuple
from functools import cached_property # 3.8 or later

def as_rope(obj):
 return obj if isinstance(obj, Rope) else Leaf(obj)

class Rope:
 def __add__(self, other):
 return Concat(self, as_rope(other))

 def __radd__(self, other):
 return as_rope(other) + self

 def __str__(self):
 return ''.join(self.walk())

class Leaf(Rope, namedtuple("Leaf", ('s',))):
 def __getitem__(self, slice):
 return Leaf(self.s[slice])

 def __len__(self):
 return len(self.s)

 def walk(self):
 yield self.s

class Concat(Rope, namedtuple("Concat", ('a', 'b'))):
 def __len__(self):
 return self.len

 @cached_property
 def len(self):
 return len(self.a) + len(self.b)

 def walk(self):
 yield from self.a.walk()
 yield from self.b.walk()

 def __getitem__(self, sl):
 if sl.start is None:
 sl = slice(0, sl.stop)

https://news.ycombinator.com/item?id=28885929

 if sl.stop is None:
 sl = slice(sl.start, len(self))

 if sl.start < 0:
 sl = slice(len(self) + sl.start, sl.stop)
 if sl.stop < 0:
 sl = slice(sl.start, len(self) + sl.stop)

 # Important special case to stop recursion:
 if sl.start == 0 and sl.stop == len(self):
 return self

 a_len = len(self.a)
 if sl.start >= a_len:
 return self.b[sl.start - a_len : sl.stop - a_len]

 if sl.stop <= a_len:
 return self.a[sl]

 # At this point we know we need part of a and part of b.
 # Since slicing a leaf creates a Rope, we can blithely just do this:
 result = self.a[sl.start:] + self.b[:sl.stop - a_len]
 # Avoid making Concat nodes for lots of tiny leaves:
 return Leaf(str(result)) if len(result) < 32 else result

Improvements

 The main critical flaw here is the problem of unbalance: if you
append a byte to something in a loop, you end up with a radically
unbalanced tree, so you will run out of recursion space trying to
traverse it, and also some operations that ought to be
logarithmic-time become linear-time.

 It occurred to me that the code would be better if we put most of
the hairy logic down in the concatenation code instead of the slicing
code. Empty string plus X? X. X plus empty string? Also X. X + Y
when the result is short? A new leaf. This would also avoid the
construction of suboptimal trees by non-slicing means.

Weight-balanced trees

 Can we solve the unbalance problem the same way? In a
concatenation node X + Y, if we want to concatenate Z, we can
improve balance by choosing whether to parenthesize (X + Y) + Z or
X + (Y + Z). It seems that we should perhaps choose whichever split
will be more even: the former if len(X) + len(Y) ≤ len(Z), the latter
otherwise. It might be better to have a bias toward the former, which
doesn’t involve visiting the child nodes of X + Y, so maybe the
criterion should be something like len(X) + len(Y) ≤ 2×len(Z). And
of course we have the symmetrical procedure for concatenating some
X onto concatenation node Y + Z. This amounts to balancing a
binary tree with single rotations.

 (In an OO language like Python, implementing this by overriding
concatenation for Concat nodes is appealing, since the children are
readily accessible and no explicit check for leaves is needed; but then

you need some kind of double dispatch to handle the case of
prepending a byte onto a giant tree.)

 Constructing all our concatenation nodes in this way would seem
to ensure that the depth of the tree is logarithmic, because descending
one level in a tree thus constructed always rules out at least ⅓ of the
bytes that were left over, so at most you have to descend
log(N)/-log(⅔) levels: at most 12 levels for 128 bytes (assuming at
least one leafnode per byte), at most 27 levels for 65536 bytes, at most
55 levels for 4 gibibytes, etc.

 But the very simplicity of the solution makes me suspicious of it: if
maintaining a balanced binary tree were that simple, surely someone
noticed this before 02021? Because I think it’s applicable to binary
search trees, too, not just ropes. This approach must have some killer
disadvantage for people to have invented AVL trees, B-trees, 2-3-4
trees, red-black trees, splay trees, treaps, and so on. What’s the catch?

 This structure, or a slight variation on it, seems to be known as a
weight-balanced tree, and normally it also requires double rotations.
(See below about this.)

 It seems straightforward that we can assure the weight-balance
property whenever we do a concatenation in the way I described
above, and that this will ensure that slicing is logarithmic time.
(Possibly slicing would be simpler if decomposed into a
prefix-removal operation and a suffix-removal operation, or perhaps
a single split-at-point operation, but almost certainly slower.) That
eliminates the possibility of a fatal flaw in traversal and slicing, leaving
only the possibility that concatenation itself according to this
algorithm is fatally flawed by taking more than logarithmic time.

 But that won’t be the case either. When we’re appending two trees
A + B, we only recurse down the right edge of A and the left edge of
B, and we only do an O(1) amount of work at each node, so we also
have a logarithmic bound on concatenation.

Splitting middle concatenees

 Aha! I think I found the fatal flaw with this simple approach: in
(X + Y) + Z, Y might be 1048576 bytes while X and Z are one byte.
So moving Y to one side or the other doesn’t help; you might have to
split it. Of course that presupposes that (X + Y) already violates the
balance condition, but if #X = 32, #Y = 64, and #Z = 32, you have
a transition from the balanced state into the unbalanced state. So
sometimes you need to split Y, which takes logarithmic time rather
than constant time. (And this reinforces the suggestion of building
slicing out of splitting rather than vice versa.)

 Can you use only such splitting? That is, if a concatenation would
violate the balance condition, can you just split the larger concatenee
in half, instead of rotating? I think the answer is yes, but the cost
might be O(lg² N) concatenation, because you could potentially end
up splitting a whole bunch of right-edge nodes in half for a single
concatenation.

 The standard approach here is to use double rotations, where
instead of considering three concatenees X + Y + Z you consider
four W + X + Y + Z, which can be concatenated as ((W + X) + Y)
+ Z, (W + X) + (Y + Z), (W + (X + Y)) + Z, W + ((X + Y) + Z),

https://en.wikipedia.org/wiki/Weight-balanced_tree
https://en.wikipedia.org/wiki/Weight-balanced_tree

or W + (X + (Y + Z)). WX+Y+Z+, WX+YZ++, WXY++Z+,
WXY+Z++, WXYZ+++.

Topics

• Programming (p. 1141) (49 notes)
• Algorithms (p. 1163) (14 notes)
• Python (p. 1166) (12 notes)
• Ropes (p. 1333) (2 notes)
• Tree rotation

Flexural mounts for self-aligning
bushings
Kragen Javier Sitaker, 02021-10-18 (updated 02021-12-30)
(3 minutes)

 I was watching a video about the Open Source Ecology large 3-D
printer and the problems they’re having with bushing misalignment.
Basically the problem is that they have this big 3-D-printed block
with spaces in it for bronze bushings, so that it will ride smoothly and
with low friction on a pair of steel rods, but it doesn’t.

 The problem is diagnosed to be misalignment: the bushings are
12-micron tolerance, so a 12-micron deviation in the shape of the
cavity they fit into is enough to get them out of tolerance, and
possibly kick the two bushings for a single rod out of parallel enough
that the rod can’t slide through the easily.

 It occurred to me that this is another case of needing to worry
about not only geometry but the derivative of geometry with respect
to force, which is to say, compliance. If there’s enough space around
the ends of the bearings for them to rotate a little bit in their seats to
comply with the rod, this wouldn’t be a problem, as long as the solid
ring around the middle of the bearing can support the necessary load.
(The idea of leaving some play to avoid binding is mentioned around
minute 39 of the OSE video, but I don’t really understand if they’re
talking about leaving play in the same place I’m talking about leaving
play here.)

 More generally you can leave space in the “solid” plastic around the
cavity which allows the cavity as a whole to rotate but not translate,
using established flexure designs to provide selective compliance
(whether using FACT or another design approach). Even just using a
softer plastic would diminish the binding problem, but that might
create undesired compliance in other degrees of freedom; spaces for
compliance, like a 3-D version of the Snijlab living hinge, can permit
large compliances in selected degrees of freedom with minimal
compromise on strength and the stiffnesses in other degrees of
freedom. Leaving such spaces can be done even with conventional
molding and subtractive manufacturing processes, but it’s much easier
with 3-D printing or digital 2-D cutting processes.

 Another aspect of the problem is that they’re building a gantry
with lots of prismatic joints (built, in turn, out of cylindrical joints),
which pose a lot of problems like binding under side loads, and
revolute joints would have been a better choice.

Topics

• Mechanical (p. 1159) (17 notes)
• 3-D printing (p. 1160) (17 notes)
• Flexures (p. 1232) (5 notes)

https://youtu.be/BnMIJprpCIA
https://youtu.be/BnMIJprpCIA

Triggering a spark gap with an
exploding wire
Kragen Javier Sitaker, 02021-10-19 (updated 02021-12-30) (1 minute)

 Sometimes a spark gap is used as a trigger for an exploding wire,
but it occurred to me that maybe you can do it the other way around:
use an exploding wire to trigger a spark gap.

 If you mechanically put a thin wire partway across a
near-breakdown spark gap, you will get corona discharge around the
end of the wire, which will supply ions to seed the arc and tend to
start forming a streamer. If that glow discharge turns into an arc, the
wire will start to heat up, and if it’s thin enough, it will explode into
plasma, completing the arc.

 If the wire manages to bridge the spark gap completely instead of
partly, then it might develop a hot spot where it touches one or the
other electrode, which could melt it down to a round knob that’s too
round to create corona discharge and too close to the electrode for
avalanche to kick in (below the Paschen minimum). Possibly a small
inductor in series with the wire (but only the wire, not the spark gap
itself) would avoid this danger.

Topics

• Electronics (p. 1145) (39 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Bootstrapping (p. 1171) (12 notes)
• Sparks (p. 1240) (4 notes)

Triggering a spark gap with low
jitter using ultraviolet LEDs?
Kragen Javier Sitaker, 02021-10-20 (updated 02021-10-23)
(8 minutes)

 The Akhilleus-heel of the spark-gap closing switch is its high jitter,
due to the stochastic nature of streamer formation and cosmic-ray
bombardment in the working gas. By stimulating the emission of
photoelectrons from a surface with a low work function, you can
lower the breakdown voltage of a spark gap significantly, enough to
get it to trigger reliably with low jitter; if you can drop the
breakdown voltage by more than about 25%, you should be able to
reliably trigger a discharge with little risk of prefires (and, in addition
to dropping the breakdown voltage, this photoemission also
significantly reduces the variability). But, historically, the only
reliable way to get the short-wavelength light necessary to stimulate
such photoelectron emission was either an incandescent object or
another electrical discharge, leading to a chicken-or-egg problem.

 LEDs in the 365–400-nm range are now widely available,
including US$10 high-power 3-watt jobbies, and for US$4.56
Digi-Key will sell you a 278nm 1-milliwatt Everlight
ELUC3535NUB-P7085Q05075020-S21Q UVC LED designed for
UV sterilization. LEDs normally have no jitter and can have rise
times measured in nanoseconds, though the larger ones have enough
junction capacitance to slow this down, and the time lag of
photoemission is typically also around a nanosecond.

 To reduce the threshold frequency of light necessary to provoke
photoemission from the spark-gap cathode, we can coat it with a
low-work-function surface; I think barium oxide is the traditional
choice for this in vacuum tubes. In a spark gap you would need to
ensure that the air within was dry enough not to allow the barium
oxide to become wet. Zinc might be a friendlier metal, but it still
must be protected from oxidation — or nitridation! This suggests you
might need a controlled atmosphere in the spark gap.

 I think hν is the energy of a photon, where h is Planck’s constant
6.63 × 10⁻³⁴ J/Hz, and ν is the frequency; and the threshold
frequency is that at which this energy is the work function of the
surface. This gives 3.1 eV at 400 nm, 3.4 eV at 365 nm, and 4.5 eV at
278 nm.

 Barium metal’s work function varies from 2.52–2.70 electron volts
on different crystal faces, putting it within the grasp of even the
400-nm “debatably ultraviolet” LEDs, though its enthusiastic
reactivity is problematic; also thus reachable are sodium at 2.36 and
lithium at 2.9, cerium at 2.9, and maybe yttrium at 3.1. The more
sedate cerium and yttrium are perhaps more promising, though they
are pyrophoric and quickly oxidize in air, the oxides are passivating.

 The 365-nm LEDs might additionally be able to spall
photoelectrons off manganese at 4.1 eV and neodymium at 3.2, and
the 278-nm ones could bring within reach zinc at 3.63–4.9,

https://www.digikey.com/en/products/detail/everlight-electronics-co-ltd/ELUC3535NUB-P7085Q05075020-S21Q/12177237
https://www.digikey.com/en/products/detail/everlight-electronics-co-ltd/ELUC3535NUB-P7085Q05075020-S21Q/12177237
https://www.digikey.com/en/products/detail/everlight-electronics-co-ltd/ELUC3535NUB-P7085Q05075020-S21Q/12177237

lanthanum at 3.5, molybdenum at 4.36–4.95, and even tin at 4.42 and
lead at 4.25. Unfortunately all the metals whose oxides are less stable
in air than the metals themselves (gold and some of the platinum
group) have work functions that are still out of reach.

 Barium oxide formed in a certain way on a silver substrate has a
work function around 3.2 eV, and the barium peroxide (which BaO
tends to turn into at room temperature, given the chance) is up
around 3.6. On tungsten, barium oxide mixed with oxides of
strontium and calcium lowers the work function below 2 eV, and
baria alone is calculated to be 2.7 eV. Magnesia, much more
chemically stable than baria, has apparently also been used to good
effect; although by itself its work function is 4.22–5.07 eV, a thin
film of it on a metal surface apparently reduces the work function? I
don’t know.

 So, this suggests a setup with a hermetically sealed gas-filled spark
gap where the anode has one or more holes in it through which an
ultraviolet LED can shine onto the cathode; the cathode has a partial
coating of one of the above systems, such as a thin film of barium
oxide on top of a coating of titanium, or a coating of cerium, a
coating of lead, a coating of zinc, a coating of lead-tin solder, or a
coating of tin. When the spark gap is held a little below its
breakdown voltage, a pulse of current through the LED can initiate
abundant photoemission into the interelectrode gap, lowering the
breakdown voltage enough that the spark gap triggers without any
voltage change, and with a jitter measured in nanoseconds.

 The advantage of having many holes is that a larger area of anode is
exposed to the photoelectron-enriched region of the gas, potentially
permitting higher current. The advantage of not having many holes is
that lower arc inductance can be achieved by having many parallel
arcs around the edges of a single round hole, and it’s easier to
fabricate.

 All of these same techniques can also be applied to a pseudospark
switch, and of course any other low-work-function material can also
be used. Pseudospark switches normally have jitter down in the tens
of ns.

 Although UV irradiation drops the breakdown voltage, I’m not
sure it drops it below the lowest safe non-UV-irradiated breakdown
voltage. If that is the case, this approach will always have a significant
chance of prefires. (I don’t know why free electrons in the gap don’t
drop the lowest breakdown voltage, but apparently free ions in the
gap from a previous firing do.)

 A hybrid approach, however, should work extremely well: use an
UV LED to illuminate a conventional electrically-triggered spark
gap, using a third triggering electrode (whether insulated with quartz
or not). This should give jitter that’s as low as could be hoped for
with the LED, while eliminating the risk of prefire. You still need a
low-work-function electrode surface to keep the work function low
enough to overcome with a mere LED. (Hofstra sells a
UV-illuminated spark gap using this principle, but I think it uses
conventional a mercury-discharge-lamp UV source rather than LED
illumination; it appears to be hand-sized.)

 There are reports that in the twilight zone below the Paschen

https://www.sciencedirect.com/science/article/abs/pii/S0039602814002027
https://www.sciencedirect.com/science/article/abs/pii/S0039602814002027
https://aip.scitation.org/doi/10.1063/1.1646451
https://aip.scitation.org/doi/10.1063/1.1646451
https://aip.scitation.org/doi/10.1063/1.1646451

minimum, where pseudospark switches operate, electron injection is
adequate to reliably trigger a discharge, and “UV flash” is an existing
triggering approach. Perhaps electron injection via
UV-LED-induced photoelectrons would be sufficient. Normally
pseudospark switches operate at neon-sign-style vacuums (10–50 Pa)
in order to get past the Paschen minimum, but you could instead
simply make them very small (micron-sized gaps), reducing the
distance factor rather than the pressure factor.

 To avoid arcing to the low-work-function “seed” surface — for
example, if it’s delicate, has annoyingly high resistivity, or would
contaminate the dielectric gas undesirably — it can be placed closer to
the anode than the main cathode is, connected to the rest of the
cathode with a heavy high-value resistor. As long as only the
photocurrent is flowing in the gap, the voltage across the high-value
resistor is effectively zero, but once the spark initiates to the seed, the
seed quickly reaches the potential of the anode, so the spark will
rapidly propagate to the rest of the cathode through the gas, since
now the entire gap’s breakdown voltage is across the much shorter
distance between the two parts of the cathode, and across the resistor.

Topics

• Contrivances (p. 1143) (45 notes)
• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Sparks (p. 1240) (4 notes)
• LEDs (p. 1286) (3 notes)
• Photoemission (p. 1341) (2 notes)

Binomial coefficients and the
dimensionality of spaces of
polynomials
Kragen Javier Sitaker, 02021-10-20 (updated 02021-12-30)
(4 minutes)

 The number of coefficients of a general polynomial of a given
degree in a given number of independent variables is a binomial
coefficient, nCm. This is surely well known, but it was surprising to
me.

 The general quadratic polynomial in two variables is ax² + bxy + cy
² + dx + ey + f; it has six coefficients. Each of its terms has degree 2
or less.

 (By introducing a third variable z=1 we can make them each have
degree 2 exactly: ax² + bxy + cy² + dxz + eyz + fz². So 6, the number
of coefficients, is also the number of ways to get 2 by adding up three
natural numbers (including 0): 2+0+0, 1+1+0, 0+2+0, 1+0+1,
0+1+1, 0+0+2.)

 In one variable, the number is 3: ax² + bx + c. In general, in one
variable, the number of coefficients for degree d is d+1.

 In no variables or in degree 0 for any number of variables, the
number is 1: k.

 One way to factor ax² + bxy + cy² + dx + ey + f is as a quadratic in
x, ax² + dx + f, plus y times a linear in x, y(bx + e), plus y² times a
constant in x, cy². In matrix form:

[f e c] [y⁰]
[dx bx 0] [y¹]
[ax² 0 0] [y²]

 So it seems like the number of coefficients in a two-variable
polynomial will be a triangular number; to extend this to cubics, for
example, we’d add a new leftmost column that’s a general cubic in x,
some zeroes to fill out the bottom row, and y³ to the bottom of the
vector.

 This is a general property: the general degree-d polynomial in n
variables is a sum of the general polynomials of all degrees up to and
including d in n-1 variables, each multiplied by the appropriate power
of the newly introduced variable to bring it up to the correct degree.

 If we instead try the same trick to go to a quadratic in three
independent variables, introducing, say, w, we can take this general
two-variable quadratic and multiply it by w⁰, take a general
two-variable linear polynomial (3 coefficients) and multiply it by w¹,
take a general two-variable constant polynomial (1 coefficient) and
multiply it by w². So we have 1 + 3 + 6 = 10, but not because it’s the
fourth triangular number; rather, because it’s the third tetrahedral
number.

 Without formally proving it, it seems like this is a matter for

Pascal’s triangle of binomial coefficients, (a+b)!/(a! b!):

 1 0 0 0 0 0 0 0 0 0 0
 1 1 0 0 0 0 0 0 0 0 0
 1 2 1 0 0 0 0 0 0 0 0
 1 3 3 1 0 0 0 0 0 0 0
 1 4 6 4 1 0 0 0 0 0 0
 1 5 10 10 5 1 0 0 0 0 0
 1 6 15 20 15 6 1 0 0 0 0
 1 7 21 35 35 21 7 1 0 0 0
 1 8 28 56 70 56 28 8 1 0 0
 1 9 36 84 126 126 84 36 9 1 0
 1 10 45 120 210 252 210 120 45 10 1

 The number of coefficients for polynomials in zero variables are in
the first column; for polynomials in one variable in the second
column; for polynomials in two variables in the third column; and so
on.

 The fourth column says that in three variables, a degree-0
polynomial has one coefficient; a degree-1 polynomial, 4; a
degree-two polynomial, as explained above, 10; and a degree-three
polynomial, 20.

 This also means that the number of coefficients in a polynomial in
three variables grows as O(d³); specifically, it's (d+1)(d+2)(d+3)/6.

Topics

• Math (p. 1173) (11 notes)

Finite element analysis with sparse
approximations
Kragen Javier Sitaker, 02021-10-20 (updated 02021-12-30)
(2 minutes)

 Normally finite elements are constant, linear, quadratic, or cubic,
so you have a relatively limited number of trial functions per element,
and a relatively large number of elements. In a three-dimensional
element, an arbitrary scalar cubic polynomial has 20 degrees of
freedom (coefficients). In three dimensions, the number of
coefficients ((d+1)(d+2)(d+3)/6, see Binomial coefficients and the
dimensionality of spaces of polynomials (p. 957)) grows as the cube of
the degree, which gets annoying quickly, so normally instead of
adding more coefficients you just use smaller elements. (Also, as I
understand it, normally you impose continuity conditions which
reduce this dimensionality greatly, as with cubic splines in one
dimension.)

 (There are lots of sets of 20 polynomials you can use as a basis for
this 20-dimensional space, even a convenient orthogonal basis.)

 But suppose that, instead of using low-degree piecewise
polynomials, we use a smaller number of larger elements, each with a
much-higher-dimensionality function space, and then try to keep
things computationally tractable by seeking a sparse approximation in
that larger space, or at least, a sparse state evolution rule over time?

 In a sense this is the farthest thing from a new idea; it’s how
Fourier solved the heat equation and Wiener solved everything, by
lumping the entire system into a single element and picking basis
functions that were eigenfunctions of temporal evolution, so the
system evolves independently in each of these “vibrational modes”,
making computation enormously easier.

 Fourier space is of course a useful space to seek a sparse
approximation of lots of things, but there are numerous other
alternatives, including chirplets and all kinds of wavelets.

Topics

• Math (p. 1173) (11 notes)
• Numerical modeling (p. 1229) (5 notes)
• Sparsity
• Finite-element methods (FEM)

 Implementation and applications
of low-voltage Marx generators
with solid-state avalanche
breakdown?
 Kragen Javier Sitaker, 02021-10-20 (updated 02021-12-31)
(39 minutes)

 It occurred to me that a back-biased red or green LED or
base-emitter junction might make an interesting substitute for a spark
gap in a tiny Marx generator. These often break down in avalanche
mode with minimal or no damage to the semiconductor, often at
voltages under 10 volts. So you could easily produce a pulse train at
100 volts or more, perhaps from a 5-volt source using only tiny
surface-mount components. This led me to dig a bit into the existing
literature on similar devices.

 Possible characteristics of such
semiconductor-switched Marx generators
 The average achievable power of the device probably will not be
large, since especially base-emitter junctions are not optimized for
power dissipation, and, according to folklore, high-power LEDs
generally do not tolerate avalanche breakdown well. Moreover, the
properties the device relies on here (avalanche energy tolerance,
reverse breakdown voltage) are not among the properties the
manufacturer normally specifies, except I guess on JFETs. But JFETs
are tiny high-precision devices, so JFET gate junctions are probably
even worse for this application.

 I suspect that, at least with silicon, you won’t get a good avalanche
effect until 7 volts or more; below that, the less abrupt Zener effect
will dominate. Purpose-built “zener” avalanche diodes might also
work, but since they’re sold as voltage references, they might be
designed to spike as little as possible — the spikes we’re after here are
troublesome noise in voltage-reference applications. At least you’d
have a well-characterized and optimized power rating. And of course
diacs would definitely work and have been used in production Marx
generators in the past. (Can you get MOS latchup out of power
MOSFETs? Probably not.)

 Looking at Can you get JLCPCB to fabricate a CPU for you
affordably from “basic” parts? (p. 347), I see that 5% 1k resistors
occupying half an 0402-equivalent cost 0.385¢ soldered (and a few
other values are available); discrete 1% 0402s are 0.305¢ in a wide
variety of sizes; 0402 MLCCs are 0.4¢, while 1206 MLCCs are 1.3¢;
NPN S9013 transistors are 1.58¢ and MMBT3904 is 1.32¢; red 0805
LEDs are 1.54¢; zeners only come in 5.6V and 3.3V and cost 1.35¢;
5.8V TVSs cost 2.91¢. Each Marx stage requires an avalanche
element, a cap, and two resistors, so maybe an MMBT3904 (3 mm ×
3 mm?), an 0402 cap (1 mm × ½ mm), and two 0402 resistors, for a
total of 2.33¢ and 10½ mm², probably 25 mm² in practice.

 A particularly interesting question is how fast the device completes
its avalanche discharge and recovers (through recombination of the
freed-up charge carriers). It wouldn’t surprise me to find a transistor
was capable of producing higher frequencies in this avalanche-diode
mode than when being used as a real transistor. But are we talking
about potential pulse repetition rates of 10 kHz, 100 kHz, 1 MHz,
10 MHz, 100 MHz, 1 GHz, 10 GHz? How high do the harmonics go?
I’m guessing that they’re much faster than a corona-stabilized spark
gap (≈20 kHz repetition rate) but I don’t know how much. Even
high-voltage SCRs typically manage 10 kHz.

 Possible applications

• Pulsed power for operating LEDs at higher power without time for
thermal runaway through current hogging. Probably very inefficient.

• Neuron-style spike-train computation, in which a stimulus pulse
can produce a much larger (synchronized) response pulse if the
“neuron” is currently charged up enough — so you get implicit
addition of spikes that arrive nearby in time;
• Phase-locked spike-train computation (a technique published in a
blog comment by Pete Castagna in 02016 and probably long before),
in which a “clock” spike train defines 2–5 phases at which “slave”
oscillators can run; depending on their charging rate, their phase can
be advanced by feeding them one or more additional stimulus pulses
at the right time. Although the hardware is different, higher-level
logic design out of such devices might be similar to the bistable
elements described in Snap logic, revisited, and four-phase logic (p.
115) and in my Derctuo note about “majority DRAM logic”.
• There’s no need for all the slaves to have the same period; this
would result in nonstop phase displacement among them. Three
slaves of periods 3, 4, and 5 produce a period-60 counter, spiking at
the same time once every 60 clock spikes.
• Low-jitter pulse amplification for trigger pulses for larger devices.
• RF signal generation, either for UWB communication and ranging,
or to produce a crude high-voltage VCO (CCO?) that can then be
filtered to a band of interest. Because the time-domain comb signal
from an idealized free-running Marx includes equal amounts of all
harmonics (dc, f, 2f, 3f, etc.) the actual frequency of interest may be
far above the spike frequency.
• If you drive two divide-by-2 slave generators from the same master
clock, then the difference between them will only contain the odd
harmonics of the slave frequency: f, 3f, 5f, etc., notably excluding dc.

• Pulse density modulation, in which the device is either triggered or
not triggered every microsecond or so. This is appealing not only
because of power gain (which it might or might not provide) but also
because of the potential for driving high-impedance analog loads like
piezoelectrics.
• RF demodulation: by keeping the Marx generator charged to the
instantaneous voltage of a poorly filtered radio signal, then reliably
triggering it with a “sampling-comb” pulse train at some harmonic of
the desired frequency (say, 2×, 3×, or 4×), you will selectively
amplify the subharmonics of the pulse-train frequency, effectively

http://dangerousprototypes.com/blog/2013/07/20/avalanche-pulse-generator-and-some-scope-porn/#comment-5451593
http://dangerousprototypes.com/blog/2013/07/20/avalanche-pulse-generator-and-some-scope-porn/#comment-5451593

multiplying it by a sampling comb in the time domain, and therefore
convolving it with a comb in the frequency domain, converting every
subharmonic of the sampling frequency to baseband. For this
application, the Marx generator itself is a somewhat suboptimal
many-pole RC low-pass filter, which should mitigate the aliasing
problem. This requires avalanche times an order of magnitude or
more above the frequency of interest. Honestly a regular S&H is
probably a lot better for this unless you can’t get a fast enough
transistor.
• Polyphase analog filtering: by running multiple slave oscillators at
the same period and different phase shifts, you can generate spike
trains to multiple different analog samplers.
• Similarly for CDMA-type time-domain communication
applications, where instead of “sampling” at regular intervals, you
sample at times pooped out by an LFSR or something. If you have
two such sampling devices, each powering an integrator (or one
charging an integrating cap and one discharging it), you ought to be
able to decode your signal of interest from the difference. This of
course requires extreme temporal synchronization, but that might be
doable in a simple PLLish way, letting the sequence generator run
free at a slightly wrong speed until it detects a signal, and then
running two detectors off it at a slight delay to get the phase error to
drive the PLL.
• Powering a Cockcroft–Walton generator, for example, to fire a
xenon strobe lamp on a camera.
• RF switching: if the capacitors in the Marx are reverse-biased
diodes, their capacitance goes down and their impedance goes up as
they charge up. Every time you erect the Marx, they will discharge
and briefly be low impedance to RF signals, before charging up again.
This potentially allows you to sample more than just a point on a
signal. It probably requires inductors on the avalanche elements in
order to slow the edge and remove interference it would otherwise
create in the band of interest, plus of course bias tees to couple the RF
signal in and out.
• Generating magnetic pulses for magnetoforming, for example,
aluminum foil.

 One particularly amusing hackish thought: the avalanche elements
can be back-biased diodes, the capacitors can be beefier back-biased
diodes, and the charging speed limiters could also maybe be tiny
diodes instead of resistors, though that’s a trickier proposition; this
would enable you to do digital logic entirely out of diodes! If it’s
possible, and fast, this seems like it would have been a killer advantage
in the 01950s and early 01960s, when transistors were expensive and
hard to get, and vacuum tubes more so; some Russian electronics
were “ferrite/diode” systems in which the diodes took care of the
combinational logic and (square-loop?) ferrite transformers handled
memory and inversion.

 When I was 9, I proposed solid-state switching elements for
computation that worked on the neon-lamp-like principle of
avalanche breakdown in ionic solids. Those are not practical, because
the device would require very high voltages, and its crystal structure
would rapidly lose integrity (almost certainly, anyway). But
avalanche discharge in solid-state semiconductors is commonplace;

it’s the way diacs, triacs, and other thyristors and SCRs work.

 Notes on other people’s work
 Kerry Wong’s minimal 2N3904 pulse generator
 Kerry Wong built a 2N3904-based pulse generator, running it off
120V (!!) and back-biasing the collector—base junction, which he says
consistently avalanches around 100V, saying:
 Avalanche transistors can be used to generate fast rise time pulses. Their usage in
the hobby world was made popular following an application note ([Linear] AN72
2 [now at Analog[9]]) by Jim Williams and was further publicized via this
EEVBlog video. ...
 R2, C1 along with the NPN transistor form a relaxation oscillator. The
capacitor gets charged via R2 and then rapidly discharges when the
collector-emitter voltage reaches the avalanche voltage. The discharge current
flows through R1 during the avalanche and forms a fast-rise pulse between ground
and the emitter. The choice of R2 and C1 is pretty liberal. In general, C1 can
range from a few pF’s to tens of pF’s and R2 can range from 100K to 1M. The
larger the value of C1, the wider the avalanche pulses due to increased discharging
RC (R1C1) constant. But C1 cannot be too large as the energy released during the
short avalanche period could cause the PN junction to fail. The RC constant
(R2C1) determines the operation frequency. For the values given [220kΩ and
22pF], the pulsing frequency is at roughly 30 kHz. R1 is chosen to match the
characteristic impedance of the load. ...
 During my build process, I sampled a large batch of 2N3904’s, and found that
most can avalanche pretty consistently at around 100V. ...
 ...The following picture shows the same pulse observed on a Tektronix 2445
(150MHz bandwidth) with matching input impedance. The measured rise time is
around 1.5 ns which corresponds to a bandwidth of approximately 230 Mhz
[0.35/Tᵣ].

 His pulses look like only 50 volts, though, suggesting that they
might actually be much faster than 1.5 ns, and being limited by the
oscilloscope’s 150MHz input bandwidth. Oddly,
log(120V/100V)/(220kΩ 22pF) works out to about 16 kHz, not
30 kHz.

 Using the huge collector-base junction instead of the teensy
emitter-base junction probably means you can handle a lot more
power, and it is at least a somewhat controlled process parameter,
since people actually do often require that their transistors resist a
back bias on the base-collector junction; ST’s 2N3904 datasheet
specifies a minimum of 60 V for the base-collector reverse breakdown
and, surprisingly, provides a minimum value for the base-emitter
reverse breakdown voltage as well: 6 V. Interestingly, its delay time
and rise time (for normal transistor operation) are specced as 35 ns,
with 200 ns for storage time and 50 ns for fall time, and a 270 MHz
transition frequency.

 This means that the pulse’s rise time is more than 20 times faster
than the pulse you’d get using the transistor as a transistor switch, but
maybe no faster or even a bit slower than if you were using it in its
linear region. But probably the transistor is not the limiting feature
here.

 He also cites a 01997 paper by Kilpelä and Kostamovaara and a
pulse generator project by Andrew Holme.

 Holme’s 2N3904 pulse generator

http://www.kerrywong.com/2013/05/18/avalanche-pulse-generator-build-using-2n3904/
http://cds.linear.com/docs/en/application-note/an72f.pdf
http://cds.linear.com/docs/en/application-note/an72f.pdf
http://www.eevblog.com/2012/07/06/eevblog-306-jim-williams-pulse-generator/
http://www.eevblog.com/2012/07/06/eevblog-306-jim-williams-pulse-generator/
https://www.sparkfun.com/datasheets/Components/2N3904.pdf
http://icecube.wisc.edu/~kitamura/NK/Flasher_Board/Useful/research/RSI02253.pdf
http://www.aholme.co.uk/Avalanche/Avalanche.htm
http://www.aholme.co.uk/Avalanche/Avalanche.htm

 Holme used a 2N3904 and an open coax transmission line rather
than a 22-pF cap to get a rectangular pulse with about a 400-ps rise
time, which he says is limited by his oscilloscope. Astonishingly, he
did this with through-hole components.

 The coax transmission line suggests how to get arbitrarily high
gain from such a circuit, considered as an amplifier: an arbitrarily
short input pulse can produce an arbitrarily long output pulse, as long
as the current is high enough to maintain the avalanche but not high
enough to overheat the transistor. (I think you can do this with a
capacitor too — it’s just messier.)

 Holme mentions that you can trigger the circuit by applying short
pulses to the base, which is a thing I hadn’t thought of; both Wong
and Holme are taking their main signal from the emitter and just
tying the base to ground through a big resistor. I suppose that you’d
pull the base negative to trigger it in that case, thus increasing |VCB|
enough to cause an avalanche — just treating the transistor as a pair of
back-to-back diodes? (This is wrong; see below.)

 Holme also cites Jim Williams’s Linear AN72 and AN94. I guess
when Analog bought Linear they broke the link, but I found it
anyway.

 AN94: The Taming of the Slew
 Jim Williams’s AN94 is about measuring an amplifier slew rate at
2.8 GV/s, for which he had to build a 360ps-rise-time 15–20V pulse
generator for this purpose, because his fancy 1-ns rise-time pulse
generator was too slow for the amplifier he was measuring, but
subnanosecond-rise-time pulse generators cost US$10k–30k. So he
used a 2N2501 (or maybe a 2N2369) as an avalanche transistor,
biasing its collector to 70 volts above ground. Interestingly, my
understanding of triggering with a base pulse is incorrect, at least for
this circuit: he uses a positive-going trigger pulse into the base of the
avalanche transistor to trigger the avalanche, which I’d’ve thought
would be counterproductive. He AC-couples the trigger pulse with a
5pF cap and protects the avalanche transistor’s base with a Schottky
up from ground.

 The 2N2501 looks like a perfectly ordinary (but old) small-signal
NPN transistor: 350 MHz, β≈50 (or >3.5 for small signals), 40V
minimum V(BR)CBO, 1.2 W, 100 mA; the 2N2369 is pretty similar,
but maybe 500 MHz and 200 mA. The datasheets show them in a
01960s-style TO-18 metal can rather than a modern TO-220 or
similar epoxy package; an advertisement for the 2N2501 appeared in
the May 4, 01964 issue of Electronics, though with only 20V “BVCBO
”, and both transistors appear in the 1965 Motorola Semiconductor
Data Manual, with ratings more like the 40V I mentioned earlier.
Neither is billed as an avalanche transistor or has a datasheet with
avalanche characteristics, and there’s nothing to suggest that they can
in any way be used to generate 400-picosecond edges.

 I wonder if Williams used them even in 02003 instead of more
modern parts because the modern parts were “much improved” — in
the sense of having an inconveniently higher base-collector
breakdown voltage. (Does that also imply a larger junction
capacitance?) Williams comments that not every transistor of this
model was suitable:

http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1154,D4183
https://www.analog.com/media/en/technical-documentation/application-notes/an94f.pdf
https://www.analog.com/media/en/technical-documentation/application-notes/an94f.pdf
https://www.analog.com/media/en/technical-documentation/application-notes/an94f.pdf
https://www.rfcafe.com/references/electronics-mag/motorola-transistors-electronics-mag-may-4-1964.htm
https://www.rfcafe.com/references/electronics-mag/motorola-transistors-electronics-mag-may-4-1964.htm
https://www.rfcafe.com/references/electronics-mag/motorola-transistors-electronics-mag-may-4-1964.htm
https://archive.org/details/1965MotorolaSemiconductorDataManual
https://archive.org/details/1965MotorolaSemiconductorDataManual

 Q5 requires selection for optimal avalanche behavior. Such behavior, while
characteristic of the device specified, is not guaranteed by the manufacturer. A
sample of 30 2N2501s, spread over a 17-year date code span, yielded 90%. All
"good" devices switched in less than 475ps with some below 300ps.⁶ In practice, Q5
should be selected for “in-circuit” rise time under 400 picoseconds.
 Note 6: 2N2501s are available from Semelab plc. Sales@semelab.co.uk; Tel.
44-0-1455-556565 A more common transistor, the 2N2369, may also be used but
switching times are rarely less than 450ps. See also Footnotes 10 and 11.

 AN72: A Seven-Nanosecond Comparator
 Previously Williams wrote AN72, which also covers the
technique, but at less length; most of AN72 is a primer on the basics
of working with VHF and faster circuits, or explanations of what you
might want to use Linear’s new high-speed LT1394 comparator for.
But in pp. 32–34 and in appendix B, he gives a couple of simplified
versions of the AN94 design using a 2N2369, with a 2pF capacitor
instead of a transmission line. Here he also explains the measures
necessary to prevent the 250-ps-rise-time avalanche pulse from
overwhelming the output of the comparator providing the trigger
pulse: 100Ω and six ferrite beads! There must be a reason a diode
wasn’t enough but I don’t know what it is.

 This suggests that after writing AN72 he found that the 2N2501
gave better results than the 2N2369, which implies that probably
most transistors will be significantly worse.

 He describes the transistor a couple of times as “a 40V breakdown
device”.
 The avalanche pulse measures 8V [4.8V where text is duplicated in appendix for
slightly different circuit] high with a 1.2ns base. Rise time is 250ps [216ps in
appendix], with fall time indicating 200ps [232ps in appendix]. The times are
probably slightly faster, as the oscilloscope’s 90ps rise time influences the
measurement.
 Q5 may require selection to get avalanche behavior. Such behavior, while
characteristic of the device specified, is not guaranteed by the manufacturer. A
sample of 50 Motorola 2N2369s, spread over a 12-year date code span, yielded 82%.
All “good” devices switched in less than 600ps [650ps in appendix]. C1 is selected
for a 10V amplitude output. Value spread is typically 2pF to 4pF. Ground plane
type construction with high speed layout, connection and termination techniques is
essential for good results from this circuit.

 Note that 8V is a lot less than the 70V or 90V to which the 2pF
capacitor is charged via a 1MΩ resistor; he says that 90V gives about a
200kHz free-running frequency.

 In AN94 he reported that he was having a hard time getting down
to 300 ps, so maybe that 250-ps transistor was just a super good one,
or maybe he decided it wasn’t really 250 ps.

 You might think that it would be hard to get less than 2pF
parasitic capacitance between PCB traces and stuff, but in the photo it
seems he just constructed that part of the circuit soldered to the
backside of a BNC connector.

 This circuit also reconfirms that, contrary to my previous
expectations, he was triggering the avalanche by forward-biasing the
base-emitter junction, just like you normally would to operate a
transistor.

 For more information about avalanche transistors for pulse
generation Williams refers us to these references:

https://www.analog.com/media/en/technical-documentation/application-notes/an72f.pdf

 17: Williams, J. “High Speed Amplifier Techniques,” Linear
Technology Corporation, Application Note 47 (August 1991)

 20: Tektronix, Inc., Type 111 Pretrigger Pulse Generator
Operating and Service Manual, Tektronix, Inc. (1960) (Williams says
his method “borrows heavily from” this device.)

 22: Williams, J., “Practical Circuitry for Measurement and
Control Problems,” Linear Technology Corporation, Application
Note 61 (August 1994)

 27: Haas, Isy, “Millimicrosecond Avalanche Switching Circuits
Utilizing Double-Diffused Silicon Transistors,” Fairchild
Semiconductor, Application Note 8/2 (December 1961)

 28: Beeson, R. H., Haas, I., Grinich, V. H., “Thermal Response
of Transistors in the Avalanche Mode,” Fairchild Semiconductor,
Technical Paper 6 (October 1959)

 Tektronix Type 111 Pretrigger Pulse Generator
 This could be used with the Tektronix Type N Sampling Plug-In
Unit, back when Tektronix was an oscilloscope company; in 01960
the Type N claimed an 0.6-ns rise time on its front panel; it was used
to trigger an oscilloscope to repeatedly sample an otherwise-too-fast
signal in the analog domain:
 The sampling system thus formed permits the display of repetitive signals with
fractional nanosecond (10⁻⁹ second or nsec) risetimes. By taking successive samples
at a slightly later time at each recurrence of the pulse under observation, the Type
N reconstructs the pulse on a relatively long time base. ... The sampling system
formed by the combination of the N Unit and a conventional oscilloscope is quite
different in operation from normal oscilloscope systems. A conventional
oscilloscope system traces out a virtually continuous picture of waveforms applied
to the oscilloscope input; a complete display is formed for each input waveform.
The sampling system, however, samples the input waveform at successively later
points in relative time on a large number of input pulses. From this sampling
process, a series of signal samples is obtained. The amplitude of each signal sample
is proportional to the amplitude of the input signal during the short time the
sample is made. Input waveforms are then reconstructed on the screen of the
oscilloscope, as a series of dots, from these signal samples. The oscilloscope
bandpass required to pass the “time stretched” signal samples is much less than the
bandpass which would be required to pass the original input signal.

 The Type 111 pulse generator was used to transmit the timing
information to the type-N sampler:
 As described previously, to trigger the Type N Unit you must first connect a
triggering signal to either the TRIGGER INPUT or REGENERATED
TRIGGER INPUT connector. When triggering signals are applied to the
TRIGGER INPUT connector of the N Unit you must adjust the TRIGGER
SENSITIVITY control for stable triggered operation.
 ...
 When the Type 111 Pretrigger Pulse Generator is used, no triggering
adjustments are necessary except to turn the TRIGGER SENSITIVITY control of
the N Unit fully counterclockwise. The N Unit is started automatically each time
a pulse from the 111 is applied to the REGENERATED TRIGGER INPUT
connector of the N Unit.

 I haven’t been able to find the “Type 111 Operating and Service
Manual”, just the “Instruction Manual” from 01965 (59 pp.) This
explains that it runs at up to 100 kHz (“kc”) and has a risetime of
500 ps at at least 10 volts, which is astounding for 01960: “Determined
from observed system risetime of 615 psec using a Tektronix sampling
oscilloscope with a risetime of 350 psec. See Calibration section.”

 It evidently used an external coax “charge line” to produce a
rectangular pulse, so you could hook up different lengths of cable
there to produce pulses of different lengths, but only up to 142 ns for
serial numbers below 800: “Exceeding these limits may damage the
avalanche transistor, Q84.” Higher serial numbers could use pulse
widths up to 1500 ns, so I guess they beefed up Q84.

 You could also couple the pulse generator’s output pulse into the
device under test, I guess so that what you were viewing on the
oscilloscope was its pulse response.

 The circuit is explained (p. 3–2, 22/59):
Output Pulse Generator (S/N 800-Up)
 The positive output pulse from the Comparator blocking oscillator is applied to
the Output Pulse Generator (avalanche stage) through C75 and D80. Since the
collector voltage of Q84 is set just short of the point where the transistor will
avalanche, when the voltage pulse from T60 turns on D80, a fast current pulse is
applied to the base of Q84, causing the transistor to avalanche. This allows the
internal charge line (and the external charge line, if any) to begin to discharge. The
resulting positive voltage step at the emitter of Q84 produces the start of the
output pulse.
 ...
 Output Pulse Generator (S/N 101-799 only)
 The positive output pulse from the Comparator blocking oscillator is applied to
the Output Pulse Generator (avalanche stage) through two paths.
 One path is through C75 and R75 to the collector of Q84. The pulse which
takes this path is a current pulse and is most effective when short time duration
charge lines are used. The collector voltage of Q84 is set just short of the point
where the transistor will avalanche. Consequently, when the positive pulse from
Q60 is applied to the collector of Q84, the signal is sufficient to cause Q84 to
avalanche.
 The second path, from T60 through C76 to the outer conductor of the internal
charge line and to R77 and R78, couples a positive voltage pulse to the collector of
Q84. This pulse is more effective than the current pulse at getting Q84 to
avalanche when long charge lines are used. The internal charge line is passed
through a ferrite toroid core (T78) to prevent the voltage pulse from being shorted
to ground. The toroid core effectively isolates one end of the internal charge line.

 So, fascinatingly, they redesigned the circuit to trigger through the
base instead of by adding more voltage to the collector, starting with
serial number 800! I guess they didn’t realize they could do that in
01960 and only figured it out around 01965.

 There’s a parts list in the manual starting on p. 49 and absolutely
beautiful schematics on pp.54–55/59 (initialed TR 964 and TR 366),
annotated with expected oscilloscope traces in callouts and dc voltage
levels as well. There are only three transistors in the whole
instrument!

 The all-important Q84 avalanche transistor was originally
“Selected from 2N636”, but switched at serial number 800 to
“Silicon Avalanche, checked”, with Tektronix part numbers. In the
pre-800 schematic I think its VBC is given as 37 volts, and its base is
pulled down to a (germanium) diode drop below ground.

 C75 is a 47 pF ceramic up to S/N 799, 10 pF in 800 and up, 500 V.
The resistors are [carbon?] composition; R75 is 1kΩ, ±10% ½W up to
799, ±5% 1W in 800 and up. R77 and R78 are ½-W 10-Ω jobbies,
deleted in 800 and up. T60, cleverly arranged so that the
trigger-pulse-generating transistor Q60 that triggers Q84 turns itself

off, is a TD20 toroidal transformer up to 799, a 4T bifilar transformer
in 800 and up (actually trifilar on the schematic).

 D80 is exotic: for serial numbers X241–799 it’s a Tektronix
germanium diode, and for 800 and up it’s a Tektronix gallium
arsenide diode. (To be fair, most of the 16 diodes were germanium;
only 2–4 were silicon, plus five more in a typewritten erratum stuck
in the back of the manual.)

 This probably explains why Williams didn’t use a diode to block
the current pulse surging back through the base of his avalanche
transistor: his diodes were too slow! He probably didn’t have a
superfast GaAs diode handy, so he opted for ferrites.

 The General Electric 2N636 was a 15MHz germanium NPN
transistor specified for 20 volts of “BVcb”, 200 mA, and β=35,
according to one 01962 compendium, or 300 mA and β=70,
according to one from 01973. It appears in GE’s 01958 Transistor
Manual, categorized as “computer” rather than “audio”, “amplifier &
computer”, “unijunction”, “tetrode”, or “IF”, and rated for 300 mA,
β=35, and only a 15-volt “punch through voltage” (p. 145, 143/167).

 Fullwood 01960
 Fullwood says:
 The pnp transistor types 2N501, 2N502, 2N504, 2N588, as well as the npn types
2N635, 2N636, 2N697, 2N706, and 2N1168 have all been found to avalanche with
the same order of rise time [which he states in the abstract and later to be about 1
ns]. However, the decay time that is observed varies greatly with type, being
related to the transistor’s normal performance as a switch. ... One hundred and
twenty 2N504 were tested as to whether or not they would avalanche at all in the
circuit of Fig. 1. About 80% were found to operate satisfactorily with the zero bias
arrangement as shown and without oscillating at this steady current.

 An interesting thing about this is that he was triggering the
avalanches with a pulse on the base, unlike the 01960 version of the
Tektronix device. Because the 2N504 was pnp, it was a
negative-going pulse, and the circuit was driven from a -300 V power
supply. Trigger pulses were supplied from a “mercury pulser”.

 DOI 10.1063/1.1716847, “On the Use of 2N504 Transistors in the
Avalanche Mode for Nuclear Instrumentation", by Ralph Fullwood
(under Walter Selove) at U Penn (later at RPI), Review of Scientific
Instruments, Volume 31, Number 11, November, 01960, interestingly
the same journal that published Kilpelä and Kostamovaara 37 years
later (see below).

 He cites:

• D. J. Hamilton, J. F. Gibbons, and W. Shockley, Proc. IRE 47,
1102 (1959).
• I. A. D. Lewis and F. H. Wells, Millimicrosecond Pulse
Technique (Pergamon Press, New York, 1959), 2nd ed.

 This paper is interesting because it has a number of very simple
circuits that do interesting things, like amplify the tiny pulses from a
photomultiplier tube.

 AN122: Never has so much trouble been had by so
many with so few terminals

http://bitsavers.org/components/derivationAndTabulationAssociates/1962_DATA_Transistor_Characteristics_Tabulation.pdf
http://bitsavers.org/components/derivationAndTabulationAssociates/1962_DATA_Transistor_Characteristics_Tabulation.pdf
http://www.bitsavers.org/components/sams/Transistor_Specifications_Manual_6th_Edition_1973.pdf

 After Holme’s project, Williams and David Beebe revisited pulse
generators in Linear AN122 in 02009. In Appendix B,
“Subnanosecond Rise Time Pulse Generators for the Rich and Poor”,
on p. 11/20, they explain:
 The Tektronix type 111 has edge times of 500ps, with fully variable repetition rate
and external trigger capabilities. Pulse width is set by external charge line length.
Price is usually about [US]$25. ... Residents of Silicon Valley tend towards inbred
techno-provincialism. Citizens of other locales cannot simply go to a flea market,
junk store or garage sale and buy a sub-nanosecond pulse generator.

 Then they again present the circuit from AN94, unmodified as far
as I can tell, but this time its performance has been derated again, to a
400ps rise time. And in Appendix F, they explain, “The Tektronix
type 109 mercury wetted reed relay based pulse generator will put a
50V pulse into 50Ω (1A) in 250ps.” Perhaps this is the “mercury
pulser” Fullwood was talking about.

 Wong’s Reverse Avalanche
 Kerry Wong revisited the theme in 02014 using the lower-voltage
emitter-base junction as I suggested above, producing the following
table of emitter reverse breakdown voltages with a 1000μF (!!!) cap:
 2N4401 ~12.5V
 SS9014 ~12.5V
 2N4124 ~12V
 2N3904 ~12V
 BD137 ~11V
 BD139 ~11V
 BC337 ~9V
 SS9018 ~8.2V

 He found some important limitations:
 Also, while I could get most NPN transistors to oscillate in their reverse
breakdown regions I could only get a couple of BD138 PNP transistors to oscillate
using the same circuit above (power polarity is reversed). And the oscillation only
occurred at a very tight voltage interval (e.g. ±0.05V).
 One of the useful features of a standard avalanche pulser (like this one [linking
to his other project]) is its extremely fast rise time (subnanosecond), so can we use
negistors to build similar pulsers?
 Well, the short answer is no. After some experiments it appeared that the rise
time of a negistor pulser is magnitudes higher (e.g. ~100ns) than a typical avalanche
pulser.
 ...the capacitance cannot be arbitrarily small. In my case, 100nF seems to be near
the lower limit.

 Importantly, he says in the comments:
 Just the e-b junction won’t work, it would just act like a Zener diode.

 analogspiceman posted the following SPICE model in the
comments:

* UpsideDown.asc – a single transistor relaxation oscillator model for LTspice
V1 1 0 10
R1 1 2 1k5
C1 2 0 1µ Rser=8m
XQ1 0 NC_01 2 2N2222r
*
.subckt 2N2222r e b c ; this subckt just turns the NPN upside down
Q1 c b e 2N2222r
.model 2N2222r npn Is=10f Xtb=1.5 Rb=10 ; nondirectional parameters

https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/26/an122f.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/26/an122f.pdf
http://www.kerrywong.com/2014/03/19/bjt-in-reverse-avalanche-mode/

+ Br=200 Ikr=0.3 Var=100 tr=400p ; reverse (forward) parameters
+ Bf=7 Ikf=0.5 Vaf=10 tf=100n Itf=1 Vtf=2 Xtf=3 Ptf=180 ; fwd (rev) params
+ Re=.3 Cje=8p Ise=5p ; emitter (collector) parameters
+ Rc=.2 Cjc=25p Isc=1p BVcbo=7 ; collector (emitter) parameters
.ends 2N2222r
*
.opt plotwinsize=0
.tran 0 10m 0 1u uic

 Wong mentions the term “negistor” Richard Phares used in
Popular Electronics in 01975 for this configuration (an avalanche
discharge has negative differential resistance, so “negative resistance
transistor”). Phares notes that germanium transistors and pnp
transistors will not work, recommending the MPS-5172, the 2N2218
(7.7V), the 2N2222, or the 2N697. Unfortunately, the term
“negistor” seems to have been largely co-opted by Keelynet crackpots
lacking even the most basic knowledge of physics and electronics.
However, Alan Yates, for example, built some oscillators using the
term. Prolific electronics hacker sv3ora reports, “The 2N4124 gave
the lowest oscillation voltage, around 6.8V,” and confirms that
grounding the base kills the oscillation. Jean-Louis Naudin reports
oscillation at 16.4 volts on a 2N2222A and also characterizes its
available stable avalanche currents ranging from 5.47 V at 10 mA up
to 6.54 V at 2 mA.

 Kilpelä and Kostamovaara’s 01997 laser
 These folks wanted to make 5–10-ns semiconductor laser pulses for
LiDAR, but at tens of amps. They said a transistor in avalanche mode
is faster than a thyristor or MOSFET, though GaAs thyristors were
reported to have reached the 500-ps-level most of the above
discussion has centered on. They tried an MJE200, a 2N5190, two
2N5192s, and a Zetex ZTX415 SOT-23 avalanche transistor; the
MJE200 started breaking down below 100V but was consistently only
about 15A no matter how high the voltage, while the others all
required 250V to break down, reaching 70 A at 400 V. These all got
rise times in the 2.5–4 ns range; this extreme slowness (ha!) is
probably because parasitic inductances matter more at 70 amps than at
1 amp.

 Their circuit is very different from all the others I’ve seen, full of
inductors, and I don’t understand it yet. The paper has lots of good
explanation about how avalanche transistors work, though.

 70 A at 400 V for 10 ns is 28 kW, but only about 0.28 mJ.

 Alex McCown’s
 Alex McCown (onebiozz) built a pulse generator to test his
oscilloscope around a 2N3904, getting a 1.56-ns rise time (which he
thinks is the scope’s limit, not the circuit’s) but wished he’d used a
BFR505:
 I have to say this was a fun $0 project, but if i were to spend some cash what
would i have done differently knowing what i do now? Well for one i would not
use an 2N3904, the BFR505 appears to be a better solution at a simple 30v
avalanche of ~200-300pS.

https://web.archive.org/web/20120329231651/http://www.schematicsforfree.com/files/Components/Circuits/Negistor Explained - The Mysterious Negistor.pdf?action=download
https://web.archive.org/web/20120329231651/http://www.schematicsforfree.com/files/Components/Circuits/Negistor Explained - The Mysterious Negistor.pdf?action=download
http://www.vk2zay.net/article/157
http://www.vk2zay.net/article/157
http://www.vk2zay.net/article/157
http://www.qrp.gr/negistor/index.html
http://www.qrp.gr/negistor/index.html
http://jlnlabs.online.fr/cnr/negosc.htm
http://jlnlabs.online.fr/cnr/negosc.htm
http://icecube.wisc.edu/~kitamura/NK/Flasher_Board/Useful/research/RSI02253.pdf
https://dodgyengineering.com/2016/08/10/junk-box-2n3904-avalanche-pulse-generator/
https://dodgyengineering.com/2016/08/10/junk-box-2n3904-avalanche-pulse-generator/

 M. Gallant’s speed-of-light measurement
 Michel I. Gallant put 20ns pulses through an infrared LED using a
2N2369a avalanche transistor to measure the speed of light to within
about 1% in his living room, but the 25 MHz Vishay TSFF5210 LED
he chose slowed their rise time to 10ns. Very simple perfboard circuit.
As a detector he used a 200 MHz Vishay BPV10 PIN photodiode
amplified by an AD8001 configured for 35× gain and 50MHz, but
they also built the circuit on a solderless breadboard, so it might have
suffered some signal integrity problems from that and from the long
leads on their components too.

 Also interesting for fast-circuit purposes, he measured the response
of different common LEDs up to 10MHz: the TSFF5210 had
drooped less than 1dB at 10MHz, a red 08LCHR5 AlInGaP drooped
3dB, and a white 08LCHW3 InGaN drooped 3dB at 2MHz and 6dB
at 3MHz. Presumably that’s a composite of fast blue and slow yellow,
but the pulse response he shows doesn’t show much fast blue.

 Michael Covington’s notes
 Covington notes that the avalanche effect of the emitter-base
junction makes a good white noise source, and also a good
low-leakage low-capacitance “zener diode”, citing EEVBlog #1157.

 Topics

• Electronics (p. 1145) (39 notes)
• Pricing (p. 1147) (35 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Numerical modeling (p. 1229) (5 notes)
• Sparks (p. 1240) (4 notes)
• LEDs (p. 1286) (3 notes)
• LiDAR (p. 1355) (2 notes)
• Avalanche breakdown

https://www.jensign.com/sol/index.html
https://www.jensign.com/Discovery/LEDFrequencyResponse/index.html
https://www.jensign.com/Discovery/LEDFrequencyResponse/index.html
http://www.covingtoninnovations.com/michael/blog/1909/index.html#x190920
http://www.covingtoninnovations.com/michael/blog/1909/index.html#x190920

The astounding UI responsivity of
PDP-10 DDT on ITS
Kragen Javier Sitaker, 02021-10-22 (updated 02021-10-23)
(28 minutes)

 I just watched Lars Brinkhoff’s demo of PDP-10 programming in
the DDT debugger under ITS, (cheat sheet for mostly using DDT as
a shell, newbie guide to using DDT for debugging, AIM-147a
describing an earlier version of DDT from 01971) which is truly
astounding. Why couldn’t GDB be half this good?

 To be clear, it’s not that DDT can do anything GDB can’t. GDB is
vastly more powerful, and I think that was true even in its earliest
versions. It’s that the things DDT can do are done with great grace
and fluency, and they are closely analogous to things I do all the time
in GDB, where they are very clumsy.

Summary of the video

 Brinkhoff, an enthusiastic PDP-10 novice, demonstrates
“programming in the debugger”, a technique Minsky was famous for,
interactively writing a hello-world program in PDP-10 assembly (I
think 7 instructions), incrementally, then saving the resulting memory
image as an executable. He works by repeatedly executing the partly
written program; when it tries to execute uninitialized (zeroed)
memory, it halts and disassembles the offending instruction, and then
Brinkhoff adds assembly instructions to it, then continues execution.
In that, it’s fairly similar to its contemporary interactive environments
for BASIC, FORTH, or LISP in the 01970s, and MS-DOS’s
DEBUG.COM and CP/M’s DDT.COM were capable of similar
feats, although I don’t think they had an easy way to initialize
memory to all illegal instructions or debug breaks.

 The UI seems to be designed for a teletype printing terminal,
though a full-duplex one (ESC is echoed as $, as in TECO and
CP/M ED.COM), which is pretty limiting; it’s impossible to have a
live display of anything, even the current program counter or registers.
And I don’t want to do all my programming in assembly language,
and interactively patching the machine code of a broken or
incomplete program is not something I spend a lot of time on, and it’s
what Brinkhoff spends most of the video on. So, what’s so great
about it?

The ways DDT is head and shoulders better
than GDB

 What’s amazing to me is the stuff Brinkhoff can do instantly, which
don’t take up much of the video, but which make up most of what I
do in GDB.

Examining memory

 To see what’s at location (octal) 100, he types 100/; DDT
immediately responds with the disassembled instruction at that

https://youtu.be/7Ub36q03vkc
https://youtu.be/7Ub36q03vkc
https://github.com/PDP-10/its/blob/master/doc/DDT.md
https://github.com/PDP-10/its/blob/master/doc/DDT.md
https://github.com/PDP-10/its/blob/master/doc/debugging.md
https://dspace.mit.edu/handle/1721.1/6153
https://dspace.mit.edu/handle/1721.1/6153
https://stackoverflow.com/questions/34257162/gdb-how-to-examine-memory-backwards

location, or, failing that, its numeric value, leaving the cursor ∎ at the
end of the line to permit more operations on either the location (like
putting an instruction there) or the value (like following it to where it
points in memory with another /:

$g
ILOPR; 100>>0 0/ 0 0/ 0
100/ 0 ∎

 As it happens, / actually uses the last 18 bits of the expression as the
pointer, because the PDP-10 used 18-bit addressing. The significance
of this will be explored later.

Numeric display and label definition

 In this case, he types .= to ask for the value of ., the current
location, interpreted numerically, and then . go: to define a new
symbol GO with that value, all without ever hitting Enter:

100/ 0 .=100 . go: ∎

 In a sense, the three spaces are like FORTH's ok prompt, but don’t
send you to a new line. (But at this point Brinkhoff hits Enter to go
to a new line anyway, for reasons I do not know.)

 (As it happens, according to the September 01971 DDT reference
manual, §XII, p. 38 (40/84), not even this is needed; Brinkhoff could
have just typed go:, leaving . implicit, but the ITS mentorship lineage
has been broken, and Brinkhoff is reviving it from artifacts. It’s
possible he’s using a version of DDT whose semantics had changed,
too.)

Disassembling memory in GDB

 A similar command to 100/ in GDB, but using a longer address since
0x40 is in the zero page Linux never maps:

(gdb) x/i0x80495c5
 0x80495c5 <addr>: add (%eax),%al

 Instead of /, one keystroke, I had to type x/i↵, 4 keystrokes, with
the address in the middle.

Numeric value display

 GDB stores the address in the convenience variable $_, so instead of
typing .= to see it (perhaps superfluous in this case, since GDB
automatically displayed it as part of the x output) I can type:

(gdb) p $_
$6 = (int8_t *) 0x80495c5

 That’s p $_↵, 5 keystrokes instead of 2.

Convenience variable creation in GDB

 Now, if I want to store that in a new variable called go (I haven’t
found a way to get GDB to create new labels at runtime) instead of .

http://pdp10.nocrew.org/docs/instruction-set/pdp-10.html
https://dspace.mit.edu/handle/1721.1/6153
https://dspace.mit.edu/handle/1721.1/6153

go: (4 keystrokes) I can type p $go=$↵ (8 keystrokes), where $ is GDB’s
name for the last value output by p. (set $go=$↵ is silent and doesn't
clobber $, but is more awkward to type.)

(gdb) p $go=$
$8 = (int8_t *) 0x80495c5

Intermission: GDB is 10 strokes over par and in the
sand trap

 So at this point the golf score is 7 (key)strokes for ITS DDT, 17 for
GDB, not counting typing the address. Programming golf is not a good
metric on which to compare programming languages, but in this case
we’re counting user interface actions that must be taken to reach a goal.

 But we haven’t really reached the same goal, because DDT will use
the label GO to make future disassembly more readable, and GDB
won’t.

Easy or hard variable and memory access

 Brinkhoff’s next move is to see the value of GO go= (superfluous in
both GDB and DDT) and then examine memory there, ↵go/ (which I
think could have just been /):

go=100
go/ 0 ∎

 To do the same in GDB is 10 keystrokes instead of 7:

(gdb) p $go
$10 = (int8_t *) 0x80495c5
(gdb) x $
 0x80495c5 <addr>: add (%eax),%al

 (As it happens, the data I have stored there is actually a sockaddr_in
struct, but GDB doesn’t know that; it’s disassembling because the last
time I told it how to examine memory it was with x/i.)

Focus on the PC

 A funny thing about GDB is, not only doesn’t it disassemble the
instruction the program counter is at by default, the default thing to
examine is the thing after the thing you last examined, and the default
format is the format you last examined something in. For example:

(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: ...

Breakpoint 1, 0x08048151 in main ()
(gdb) x
0x80495cb <addr+6>: 0x0000
(gdb) x $pc
0x8048151 <main>: 0x73b9

(gdb) x/i$pc
=> 0x8048151 <main>: mov $0x8049573,%ecx

 That x/i$pc↵ at the end is what DDT does by default, with no
keystrokes, because when it hits an exception (or, I think, a
breakpoint), it sets the current location . to PC.

 In this case the instruction contains an immediate which is in fact a
pointer. It might be useful to look at memory at this pointer, but in
GDB the most convenient way to do this by copying and pasting the
address from the screen so you can type x 0x8049573↵. On the PDP-10,
such immediates are packed into the right half of the instruction word
(as I understand it, this instruction might have said MOVEI 2,563 to load
octal address 563 into accumulator 2) so you could just type /.

 Effectively, DDT turns not just the living data of your program
into hypertext, but even the machine code, so you can just follow the
link with a single keypress. (It even had a $e command for searching
all of memory for such pointers to a given address.)

Switching between alternate display representations:
SIXBIT and sockaddr_in

 Later after Brinkhoff has added an instruction, he disassembles the
same place again with go/ and then continues on to disassemble the
next word (the PDP-10 was a 36-bit word-addressed machine) with,
I think, ^J, which displays the address relative to the most recent
defined label:

go/ OPEN TYOC,
GO+1/ 0 ∎

 Typing ↵ in GDB (or ^J) will also continue to disassemble the next
instruction, because it repeats the last command (with slight tweaks),
but using my convenience variable $go to contextualize it:

(gdb)
 0x80495c7 <addr+2>: pop %ds

 That also isn’t really an instruction; it's actually the first byte of a
TCP port number. Brinkhoff encountered a similar problem with a
variable he called TTY. It packed two variables into a 36-bit word;
one is an 18-bit I/O unit number (?), and the other is the
three-character SIXBIT string “TTY”. But DDT tries to
disassemble it as an instruction when he types tty/, treating them as an
opcode and an operand:

tty/ TYOC,,646471 ∎

 So, to change his view of the memory, he types an apostrophe ' to
see it as SIXBIT:

tty/ TYOC,,646471 '$1' !TTY' ∎

 The $1' syntax DDT outputs is the same input syntax it supports
for SIXBIT strings, but Brinkhoff had terminated his with altmode

http://pdp10.nocrew.org/docs/instruction-set/Full-Word.html

(ESC, $) which I think is mandatory.

 As far as I can tell, the shortest way to do the corresponding thing
in GDB is x/h$_↵, 6 characters:

(gdb) x $go
 0x80495c5 <addr>: add (%eax),%al
(gdb) x/h$_
0x80495c5 <addr>: 0x0002
(gdb)
0x80495c7 <addr+2>: 0x961f

 Here h means “halfword”, 16 bits, which is appropriate because the
first two fields in a sockaddr_in are 16-bit fields, though unfortunately
the port number is in network byte order, and the i386’s byte order is
not network byte order.

Switching between alternate display representations:
floats and ASCII strings

 The ; key in DDT prints a value in “semi-colon” mode, initially
floating-point, instead of SIXBIT or octal or machine instruction or
whatever. (There are two-character commands to change semicolon
mode to be any of the available “type-out modes”.)

 Sort of amusingly, DDT doesn’t remember the types of the values
Brinkhoff stores; for example, the words starting at his label HELLO
are actually strings (in ASCII (§X.B.5), which supports lowercase but
only gets five bytes per 36-bit word, using $1" instead of $1' in the UI).
So he has to tell it again. Here’s the part of the session where he first
enters the strings, then starts looking at them, and it starts
disassembling them as instructions:

hello/ 0 $1"hello$
HELLO+1/ 0 $1" worl$
HELLO+2/ 0 $1"d

$
hello/ TLCE B,@466337(15) ∎

 At this point he presses " and sees the right view, then presses (I
think) ↵ to go to the next word, repeating the process:

hello/ TLCE B,@466337(15) "$1"hello$
HELLO+1/ MOVES 13,@771331(15) "$1" worl$
HELLO+2/ TRZ 6,@200001(A) "$1"d^M^J$ ∎

 So to see those three words of ASCII, given the start address, he
had to type /"↵"↵", 6 bytes. In some sense GDB is a little better about
this sort of thing, part of which is because character data is much less
of a pain on a byte-oriented computer; I only need x/s$_↵, also 6
bytes, to change my view to NUL-terminated text:

(gdb) x &text_plain
0x80496e3 <text_plain>: 25972
(gdb) x/s$_

0x80496e3 <text_plain>: "text/plain; charset=utf-8text/css; charset=utf-8applica
tion/pdf\r\n\r\n"

 (Let’s forget about the & here for the time being; it’s a thing that I
constantly mess up, because even though GAS demands $ prefixing,
when I’m programming in assembly I think of text_plain as being the
address where I set that label (or the value I EQU it to), but GDB
thinks text_plain means “the contents of memory at address text_plain”;
this is particularly confusing because x/i main↵ will in fact treat the
symbol for function main as the memory address to examine, rather
than a place to look for a pointer to it. But it’s not clear which
interpretation actually imposes more keystrokes on the debugger
user.)

GDB UI mode errors

 GDB’s cleverness here can lead to subtle mode problems in the UI,
because /s isn’t quite a unit size specifier as strongly as it is a format
specifier:

(gdb) x/h$_

0x80496e3 <text_plain>: u"整瑸瀯慬湩※档牡敳㵴瑵\x2d66琸硥立獣㭳挠
慨獲瑥甽晴㠭灡汰捩瑡潩矢摰��\n"

 Getting back to seeing memory as two-byte integers requires an
explicit output format, thus x/dh$_↵ (7 keystrokes) instead of DDT’s =:

(gdb) x/dh$_
0x80496e3 <text_plain>: 25972

Stepping backwards and changing memory

 Above I mentioned that in both GDB and DDT you can move
forward in memory you’re examining by just hitting ↵. But later on
Brinkhoff steps backwards in memory to get back to an instruction he
wants to change, using apparently the two-keystroke sequence ↑↵,
which his terminal renders as ^:

LOOP+4/ 0 . die:
die/ 0 .value
^
LOOP+3/ JRST LOOP ^
LOOP+2/ .IOT A,B ^
LOOP+1/ JUMPE B, ∎

 Stepping backwards over i386 instructions is probably too much to
ask for, since in numerous cases there are i386 instructions that are
proper suffixes of other i386 instructions. But what about halfwords?
The best approach I’ve found is x $_-1↵ (7 keystrokes instead of 2).

(gdb) x/xh&addr
0x80495c5 <addr>: 0x0002

(gdb)
0x80495c7 <addr+2>: 0x961f
(gdb) x $_-1
0x80495c5 <addr>: 0x0002

 Surely, in many cases, the whole necessity to step backwards is
avoided by GDB’s facility at dumping vaast tracts of ... memory:

(gdb) x/20xh &bind_args

0x80495b9 <bind_args>: 0x0000 0x0000 0x95c5 0x0804 0x0010 0x0000 0x0002 0
x961f

0x80495c9 <addr+4>: 0x0000 0x0000 0x6962 0x646e 0x2928 0x0000 0x0000 0
x0500
0x80495d9 <listen_args+5>: 0x0000 0x6c00 0x7369 0x6574

 (The egregious display misalignment of the DDT output was
bothering me, but here we’ve caught GDB at it too. Also, those lines
are 86 characters wide.)

 In recent GDB 7.12, negative repeat counts have been added to x to
allow you to examine memory backwards. So you can start stepping
backwards through memory with something like x/-1↵↵↵, returning
to stepping forward with x/1↵.

 But, in the video, Brinkhoff was navigating backwards in order to
find where he wanted to set something, a pointer to a label in fact,
although the place he was poking it into was an instruction. I feel like
this is a thing you might reasonably want to do with GDB too. For
example, I might want to change the port number the server binds to
to 1536, which byte-swaps to 6; DDT is really designed for this kind
of thing, allowing you to type numbers or assembly code whenever
you want and just poking it into memory wherever you are, so you
could set a variable to 6 just by typing “6↵”. Here’s what the
interaction looks like in GDB:

(gdb) x/xh&addr
0x80495c5 <addr>: 0x0002
(gdb)
0x80495c7 <addr+2>: 0x961f
(gdb)
0x80495c9 <addr+4>: 0x0000
(gdb) x $_-1
0x80495c7 <addr+2>: 0x961f
(gdb) p*$_=6
$19 = 6
(gdb) x/3 &addr
0x80495c5 <addr>: 0x0002 0x0006 0x0000

 To set the current memory location to 6, I typed p*$_=6↵, 7
keystrokes instead of 2. Or 6 keystrokes instead of 1, if we leave out
the actual value I’m setting it to.

Of course I don’t want to switch to DDT,

https://stackoverflow.com/questions/34257162/gdb-how-to-examine-memory-backwards
https://stackoverflow.com/questions/34257162/gdb-how-to-examine-memory-backwards

I’m not insane

 Well, I mean, I am insane, just not in that particular way. GDB
supports the computer I actually have, high-level programming
languages, and operating systems I actually want to use like Linux.
It’s scriptable, including in Python (as well as in its own UI command
language, which is not only unreadable but also by far the slowest
interpreter I’ve ever used) and I can sort of remedy the annoying fact
that it defaults to not disassembling the instructions it’s stopped at,
even for programs with no debug info where it obviously can’t show
me the high-level source, by launching its TUI with layout asm or just
display/i $pc. It has time-travel debugging, though it’s far too slow to
use for anything but very short runs, and watchpoints, which are fast.
It remembers not just 8 printed-out expressions but all of them.
(According to the 01971 manual, DDT has a ring of the last 8 locations
and another of the last 8 previous expression values.)

 Moreover, modern debugger UIs like WinDbg, radare2, and the
IntelliJ IDEA debugger offer lots of improvements, like expression
watch windows, memory view windows, and graphical control-flow
graphs.

 Here’s an edited excerpt of one of my GDB sessions a few months
ago:

(gdb) p *seq

$30 = {capacity = 0, used = 93824992367072, arena = 0x0, elements = 0x5555555c172
8}
(gdb) s
262 uint8_t b = 0;
(gdb)
263 HCountedArray *seq = H_CAST_SEQ(p->ast);
(gdb) n
264 size_t digits_processed = 0;
(gdb) p *seq
$31 = {capacity = 4, used = 2, arena = 0x5555555bfbd0, elements = 0x5555555c17a8}
(gdb) p $.elements
$32 = (struct HParsedToken_ **) 0x5555555c17a8
(gdb) p *$@2
$33 = {0x5555555c1da8, 0x5555555c2558}
(gdb) p *$[0]

$34 = {token_type = TT_UINT, {bytes = {token = 0x7 <error: Cannot access memory a
t address 0x7>, len = 0}, sint = 7, uint = 7,

 dbl = 3.4584595208887258e-323, flt = 9.80908925e-45, seq = 0x7, user = 0x7},
index = 0, bit_length = 0, bit_offset = 0 '\000'}
(gdb) p *$$[1]

$35 = {token_type = TT_UINT, {bytes = {token = 0xd <error: Cannot access memory a
t address 0xd>, len = 0}, sint = 13, uint = 13,

 dbl = 6.4228533959362051e-323, flt = 1.821688e-44, seq = 0xd, user = 0xd}, in
dex = 0, bit_length = 0, bit_offset = 0 '\000'}

 By contrast, following a cdr-linked list in ITS DDT was a matter

https://dspace.mit.edu/handle/1721.1/6153

of typing a / or [(which forces numeric output) at each node, if each
word contained two pointers with the (18-bit) cdr packed into the
right half of the word. If you instead wanted to follow a pointer in
the left half of the word, maybe a car, it was $/ or $[. p*$[0]↵ is not
only more than three times as long, it’s also a lot harder to type, with
two shifted keys not adjacent to the home row (four for me, since I've
swapped () and [], but I mean for normal people).

 (Remember that in DDT $ is “altmode”, the ESC key, which was
not shifted and usually in a much more convenient place than on
modern keyboards.)

 It’s really thought-provoking that the things I do most of the time in
GDB, which require awkward commands full of hard-to-type line
noise characters, like following chains of pointers or getting an
alternate display of the thing I just looked at, require dramatically less
typing in the debugger Stallman maintained and used on a daily basis before
he wrote the first version of GDB, because they’re bound to
single-keystroke commands. And there’s apparently no way at all to
add a label to an address once you figure out what it means so that
GDB will use it in its output. I have no idea how this could have
happened! My best guess is that he thought a DDT-like user
interface would be too alien to Unix programmers accustomed to
dbx, so they wouldn’t use it. But Unix had adb, which was very
similar (see below).

Lessons for debuggers and similar programs

 I think there are a few principles to extract here.

 One is the use of single-keystroke commands for the most common
things; the difference between 7 keystrokes and 10 is maybe marginal,
but the difference between 1 keystroke and 4, or even 1 keystroke and
2, is enormous, if it’s something you’re doing frequently, especially
repeatedly. Unfortunately, this clashes pretty strongly with modern
modeless UI conventions; the / key should always insert a /, not do
something like follow a pointer. Some possible compromises here:

• Insert the /, and then react to the textual change, which is sort of
what DDT is doing.
• Use control-/ or alt-/.
• Use an onscreen button, perhaps contextually available.

 (Uses of DDT as a command shell, file manager, task manager, etc.,
also followed this approach; instead of ls↵ you would just type ^F,
and instead of bg↵ or %&↵ you would type ^P.)

 Another is the importance of immediate feedback. Even if 7
characters like p*$_=6↵ is a reasonable length for a command to set a
memory location (given how much less important the debugger is
nowadays as a way of loading data into memory), it would be better
to display the current contents of the memory once you get to p*$_,
and maybe to use a postfix operator (like DDT’s / or Pascal’s ^)
instead of the prefix * operator used in C and Rust. Like recent
versions of Android’s calculator app, you should compute and display
the value of any expression being entered whenever this has no side
effects.

 A thing that barely reared its head here is the importance of

reversibility for user interfaces; this is really the main reason I don’t
use debuggers much. Following a pointer or stepping forward
through memory is normally reversible (Brinkhoff maybe didn't
know this, because he would start over when he followed a pointer
chain too far, but $↵ goes to the previous location in the . ring buffer)
but single-stepping a program rarely is, so when I’m using a debugger
I often go very slowly to avoid having to restart my debugger session
from the beginning.

 By contrast, when the program runs fast enough, I can debug it by
progressively adding tests, assertions, and logging, and running it a
very large number of times, without ever having to slow down to
avoid stepping just one step too far and losing minutes or hours of
work. As computers have gotten faster and faster, this monotonic
approach has become more and more appealing. A debugger in which
almost all actions could be undone (and in which the irreversible
actions were easily distinguishable) would allow me to use it much
more quickly.

 A lot of DDT’s UI’s advantage over GDB’s is its implicit focus on
“the current location” and “the current value”, analogous to “the
selection” in many GUI systems or “the top of the stack” in systems
like HP RPN calculators, Forth, and PostScript; this avoids GDB’s
requirement to explicitly name $ or $$ or $_ all the time. It’s not yet
clear to me to what extent this transfers to touchscreen UI design, but
it seems pretty central to keyboard UIs. In csh I would frequently use
$! to avoid having to name the same file repeatedly in subsequent
commands, and in bash I use M-. all the time for the same reason.
The big difference is that, in a debugger, the values of interest are not
numbers or filenames, but regions of memory with associated
interpretation information — you might say “with types”, but this
information might also include things like how many digits of
floating-point precision you want to display or whether child nodes
should be collapsed or expanded.

 It’s surprising that GDB didn’t copy this from DDT or one of its
predecessors, particularly since MDB did:
MDB retains the notion of dot (.) as the current address or value, retained from the
last successful command. A command with no supplied expression uses the value
of dot for its argument.

> /X
lotsfree:
lotsfree: f5e
> . /X
lotsfree:
lotsfree: f5e

 MDB copied this from Stephen Bourne’s adb; quoting the ADB
tutorial from 01977:
ADB maintains a current address, called dot, similar in function to the current
pointer in the UNIX editor. When an address is entered, the current address is set
to that location, so that:

0126?i
 sets dot to octal 126 and prints the instruction at that address. The request:

.,10/d

https://www.cs.dartmouth.edu/~sergey/cs258/2009/chpt_mdb_os.pdf
https://www.cs.dartmouth.edu/~sergey/cs258/2009/chpt_mdb_os.pdf
https://en.wikipedia.org/wiki/Advanced_Debugger
https://en.wikipedia.org/wiki/Advanced_Debugger
https://wolfram.schneider.org/bsd/7thEdManVol2/adb/adb.pdf
https://wolfram.schneider.org/bsd/7thEdManVol2/adb/adb.pdf

 prints 10 decimal numbers starting at dot. Dot ends up referring to the address of
the last item printed. When used with the ? or / requests, the current address can
be advanced by typing newline; it can be decremented by typing ^.

 It’s interesting to note that /, ^ (or ↑ in ASCII-1963), and . have the
same functions as in DDT, but in adb they required you to type a
newline, as I think they did in some versions of DDT. adb also, like
DDT, uses : as a prefix for some extended commands. I’m not sure
whether these feature are inherited from Dennis Ritchie’s earlier
Unix debugger DB.

 Another aspect of this is the ease with which DDT switches
between different presentations of the current value, with keys like ',
", =, and ;. In DDT’s case, these are a fixed, closed set, and entirely
insensitive to context, but even more useful would be an extensible
set of pretty-printers like GDB has — obviously posing the difficulty
of how to assign keys to them, for a keyboard interface — and perhaps
the possibility of backtracking as parsers do.

 A lightweight version of this facility is present in DDT in the sense
that by defining symbols you can enhance its future display of
addresses and instructions: it will use those symbols to clarify its
output; instead of JRST MAIN+21 perhaps it will say JRST MAINLOOP.

 WinDbg can also switch between presentations of different
memory regions without having to name the region explicitly, but it’s
a pull-down menu, so it requires three mouse operations, roughly
equivalent to keystrokes. At least it by default displays the memory
around PC, but AFAICT none of the memory-dump options is
“disassemble”, which is usually what I want to do around PC.

 One benefit of command-line interfaces like GDB’s is that they
provide an easy and somewhat readable extension mechanism: by
putting a sequence of commands in some sort of container, you have a
macro-command; and in GDB, hitting ↵ repeats the most recent
command line, which thus allows you to repeat a complex command.
The GDB manual gives this example:
One of the ways to use a convenience variable is as a counter to be incremented or
a pointer to be advanced. For example, to print a field from successive elements of
an array of structures:

 set $i = 0
 print bar[$i++]->contents

 Repeat that command by typing \<RET>.

 A sequence of DDT commands can of course also be canned; it’s a
keyboard macro. And sometimes that’s the best you can do. A simple
improvement over most such macro facilities would be to
interactively roll up the last N commands as a “macro” after the fact,
once you realize you want to repeat them.

 But I suspect that a more complete
programming-by-demonstration facility could provide a great deal of
programming power in a much more usable way.

Topics

• Programming (p. 1141) (49 notes)
• History (p. 1153) (24 notes)
• Human-computer interaction (p. 1156) (22 notes)
• Assembly-language programming (p. 1175) (11 notes)
• End user programming (p. 1217) (6 notes)
• Debugging (p. 1375) (2 notes)

Example based regexp
Kragen Javier Sitaker, 02021-10-24 (updated 02021-12-30)
(5 minutes)

 Programming by example ought to be easily applicable to regular
expressions, and by extending that with computations and assertions,
it should be possible to make a usable nondeterministic programming
system.

 By typing the string “bye” I am writing a program that generates
the string “bye”, and if I’m doing it in Emacs’s incremental-search, all
the instances of “bye” will be highlighted. If I then back up back to
the “b”, maybe by twisting a time-turner or hitting shift-backspace,
and type “ad”, I have programmed the regexp “b(ye|ad)”, which is a
nondeterministic program that can generate the strings “bye” and
“bad”. I might then want to hit some other key to cross the two
streams back together and then type “law”, so I have the regexp
“b(ye|ad)law”. A third key could progressively cast a spell of Kleene
closure over a gradually-increasing number of the last few nodes in
the graph, giving the following progression:

b(ye|ad)law
b(ye|ad)law*
b(ye|ad)l(aw)*
b(ye|ad)(law)*
b((ye|ad)law)*

 As I’m doing this, it’s reasonable to concurrently display random
strings generated from the program, the shortest strings generated
from it, a FSM diagram of it, a derivation tree of the regexp itself, the
matches it finds in searching some corpus of text, and/or derivation
trees for those matches as well.

 It is, I think, straightforward to add zero-width negative lookahead
assertions and positive lookahead assertions to the UI in the same way.
Providing a UI for tagging some subexpression of the regexp for
reuse, then reusing it elsewhere, is straightforward from the UI
perspective, but of course increases the expressiveness of the system to
the point where it can no longer be parsed precisely with a finite state
machine.

 If, instead of typing a string of characters, I type a sequence of
assignment statements, then my program, instead of producing a
sequence of characters from nothing, produces an output set of
variable assignments from a (usually smaller) input set. In the same
way, I can move around my program and add alternatives or iteration
to parts of it, making it nondeterministic; if I then add assertions to
parts of it, which fail if some condition is not met, I may be able to
make it deterministic again.

 Such a program can have arguments, which are variables that it
may read from before assigning to them. If all my operators are
monomorphic, it can infer some sort of types for all of these variables,
and inject some example values. And extracting an expression or
sequence of statements into another subroutine is, if not trivial, at

least a straightforward thing to do. All of this can be displayed as I’m
typing.

 The traditional and terser alternative to this sort of
assertion-pruned nondeterministic control flow is Boehm-Jacopini
control flow, consisting of sequencing, conditional repetition, and
if-else conditionals. You could imagine a key to extend an if-block
backwards from your cursor, whose condition was initially just true
and whose else-block was initially empty (or inserted assignments to
any variables needed to keep the following parts of the program
happy), and perhaps a while-block could initially use the condition
false, with the selection left on the condition in either case.

 A different approach is Dijkstra’s guarded-command language, in
which I suppose you could do the analogous thing.

 The approach I’m most interested in at the moment, though, is
Baker’s COMFY approach. While the Boehm-Jacopini constructs,
like Kleene’s constructs, have a single entry and a single exit, Baker’s
forms of combination have one entry and two exits: a success exit
(“win”) and a failure exit (“lose”). His conditionals and loops are
ruled not by a value computed by their conditionals, but, as in Icon
and Unicon, by whether those “conditionals” succeed or fail. IIRC
you can reduce Baker’s combinations to three, like those of Kleene
and those of Boehm and Jacopini, consisting of the following
connections:

do x y:
 entry = x.entry
 x.win = y.entry
 y.win = win
 x.lose = y.lose = lose

if x y z:
 entry = x.entry
 x.win = y.entry
 x.lose = z.entry
 y.win = z.win = win
 y.lose = z.lose = lose

while x y:
 entry = x.entry = y.win
 x.win = y.entry
 x.lose = win
 y.lose = lose

 This straightforwardly permits the construction of early exits from
loops or from subroutines, error handling, and short-circuit Booleans,
and it is easy to compile with a recursive strategy starting from the
end of a subroutine.

Topics

• Programming (p. 1141) (49 notes)
• Human-computer interaction (p. 1156) (22 notes)

• Program calculator (p. 1246) (4 notes)
• Domain-specific languages (DSLs) (p. 1260) (4 notes)
• Kleene algebras (p. 1287) (3 notes)
• Control flow (p. 1299) (3 notes)
• COMFY-* (p. 1300) (3 notes)
• Incremental search (p. 1362) (2 notes)

Adversarial control
Kragen Javier Sitaker, 02021-10-25 (updated 02021-12-30)
(13 minutes)

 Model predictive control is now the standard approach to control
systems: given a model of the system and an objective function, you
use an optimization algorithm to seek a behavior that maximizes your
objective by modeling the effects of different candidate behaviors on
the system.

 The reinforcement learning problem is in some sense more general,
in the sense that in model predictive control, the control system is
given a model of the system being controlled (the “plant”) which is
presumed to be correct, so it can predict the effects of its actions, but a
reinforcement learner doesn’t initially know what behaviors will have
what effects; it must build that world model by observing the results
of different behaviors. This means that it benefits greatly from doing
some undirected exploration, focusing its actions on the parts of the
possibility space where its predictions are the least confident.

 This is somewhat disquieting for someone contemplating control
systems for a chemical plant or a satellite, where incorrect control
commands could end a million-dollar mission or cause a toxic-waste
release into the neighborhood. But of course it is not only undirected
exploration of the system’s parameter space that can cause such
results; running a model predictive control system with an incorrect
model can also cause them.

 The amount of undirected exploration that is needed diminishes
over time as the control system solidifies its system model, a process
sometimes called “system identification” in the literature on
dynamical systems modeling and control theory, so one way this can
be handled is by initially training the control system in some sort of
“sandbox” where its ability to cause damage is limited; the humans
call this “childhood” when they provide it for their larvae.

 Another safety strategy is to focus experimentation on the
possibilities that your existing system model tells you have low
probability of causing significant harm, but which have high
uncertainty in some other dimension that isn’t so costly. Call this
“safe experiment design”: a human might use high-powered lasers to
can observe effects only observable with high-powered lasers, but
wear the correct laser goggles to reduce the chance of being blinded in
the process.

 But a third, and I think most important, strategy for this kind of
system identification is dreaming, and generative adversarial networks
(GANs) are a strategy used with great success for dreaming in the
world of artificial neural networks. Essentially the idea of a GAN is
to optimize a generative model of some kind of probability
distribution, such as the probability distribution of photographs of
dogs, or the probability distribution of satellite telemetry traces, by
playing off two networks against one another: a generator and a
discriminator. The generator generates random deviates from its
approximation of the distribution, and the discriminator distinguishes

these adversarial inputs from real training-set inputs.

 You alternately optimize these two networks, typically with some
variant of gradient descent driven by automatic differentiation. By
carrying out automatic differentiation all the way through the
generator and discriminator, we can find the gradient of the
generator’s parameters that would worsen the discriminator’s ability
to discriminate, using that to drive an optimization algorithm like
Adam; and by differentiating just through the discriminator, we can
find the gradient of the discriminator’s parameters that would
improve its ability to discriminate. It’s important to optimize these
somewhat in lockstep; if either network gets too far ahead of the
other, the loser will stop improving. If done correctly, the generator
produces inputs that are very, very difficult to distinguish from real
inputs from the training set.

 (The typical “networks” here are standard ANNs, where matrix
multiplies and weight-vector additions alternate with ReLU and
maybe convolutional and pooling stages, but almost any
computational model could potentially be used. Being differentiable
enables the use of derivative-based optimization algorithms, and it’s
important to have enough expressivity to reasonably represent the
distribution in question but not so much that you overfit the training
set, but there is an enormous field of unexplored models here.)

 As far as I know, nobody is using GANs for system identification
for control systems, much less model predictive control in particular.
There are several particular ways I think it would be useful to apply
such “adversarial control”.

• You can use a GAN to produce a black-box system model from the
observed behavior, which you use in the usual model-predictive way:
use any standard optimization algorithm to compute a control
strategy (in the sense of a sequence of planned control outputs) that
maximizes your utility function (or, equivalently, minimizes your
cost or loss function), by using the generator from the GAN to
predict what would happen if each candidate strategy were followed.
The generator normally needs to be stochastic, since there are always
unobserved variables driving the behavior seen in the training set, and
so it’s possible to get estimates of uncertainty — at least by drawing
several deviates from the generator and looking at their spread.

 It’s fairly straightforward to use this to assess the “risk” of the
candidate strategy — you just look at the spread of objective-function
evaluations, or possibly even the derivative of the objective function
with respect to the hidden variables that you feed to the generator to
make it act stochastic — but I feel like there’s also some way to derive
from this the “learning value” of the proposed strategy as an
experiment. I think the story is that you first differentiate the
objective function (over the whole distribution the generator can
generate), or possibly its derivative with respect to those hidden
variables, with respect to the parameters of your generator, to get a
gradient that tells you which parameters of your generative model are
most important to simulate accurately; and then you assess the
learning value of the proposed control strategy by calculating how
much you’re likely to update those parameters with that strategy.

 That is, you’re looking for parameters of your generator which the
outcome of this experiment would nudge in a way that makes a
significant difference in your objective function in some scenarios, but
ideally not the scenario you’re facing at the moment (the safe
experiment design problem). By dreaming of being chased by
monsters (a scenario drawn from your generator in which a bad
strategy results in you dying horribly) you learn which aspects of
reality your generator needs to model better, and so what you should
try to find out by taking actions in real life; for example, you may
want to look under your bed, because it’s a safe thing to do, but if
there are monsters there, you will see them and can update your
system model in a way that will greatly increase your utility.

 This is not a metaphor; I’m proposing that the humans’ neurology
actually works in the way similar to what I’m describing above,
though it doesn’t use automatic differentiation and backprpagation,
and that is why they literally look under their beds for monsters; or at
least that this formalism is a good way to get similar kinds of
intelligent behavior.
• You can use a GAN to optimize a control network built out of
whatever components are inexpensive in your deployment context,
such as transistors, resistors, capacitors, and diodes, or Mark Tilden’s
BEAM-robotics Nv neurons, or opamps, or FPGA LUTs and
flip-flops, or links and kinematic pairs, by simulating different such
candidate control networks in a wide variety of scenarios and scoring
their performance on an objective function. The appeal of this
approach is that it allows you to build a control system that can
handle low-level control tasks with very low latency and low cost,
while being itself controlled by a higher-level control system which
provides them with some kind of time-varying set point. A feedback
loop consisting of a few RF transistors and some passives has a
potential latency in the nanoseconds rather than the milliseconds
typical of hard-real-time software control loops, but it will necessarily
be wildly nonlinear and have many unpredictable characteristics due
to manufacturing variation, aging, and temperature.
• Applying the adversarial-control approach recursively, in order to
accurately model your control network, you can build a generative
adversarial model of your circuit components and of circuits built
from them: the discriminator tries to distinguish data measured from
real circuits processing real signals from simulations generated by the
generator, while the generator tries to simulate the real circuit so
faithfully that the discriminator can’t tell the difference.
• In a further level of self-reference, if the discriminator is a recursive
neural network or other dynamical system, we can give it another
tool to beat the generator with: let it generate test signals to feed into
the circuit and observe the response, thus exploring corners of the
circuit’s behavior that the generator hasn’t yet succeeded in
simulating. (In some cases you will have to optimize the
discriminator not to generate signals that your simulations suggest will
damage the circuit.)
• If both your control network and your generator are themselves
differentiable, you can differentiate not just your objective system but
the system’s state vector with respect to either the initial system state
vector or the hidden-variable inputs that make the generator
stochastic, which has an established name that I forget. (Sometimes

https://www.nature.com/articles/s41593-021-00857-x
https://www.nature.com/articles/s41593-021-00857-x

people talk about things like “the latent space of faces”, and though I
think that’s more a variational autoencoder kind of thing than a GAN
kind of thing, that’s the kind of hidden variables I’m talking about.)
One potential benefit of this is that it allows you to make statements
about the stability of your control-stabilized system in a way that you
can’t with standard MPC. Another is that it makes the kind of
experiment design that I described in point #1 above amenable to
gradient-driven optimization, because you can tell how to tweak your
control network so that it will spontaneously engage in safe
experiments.

 In the case of time series, both the generator and the controller will
generally need some history to start from rather than just a single
observed state vector, because they need to infer the state of some
variables in the system that are not directly observable. For example,
if something has been warming up significantly even though you
aren’t applying heat, maybe there’s an unobserved heat source in
contact with it; the generator needs to simulate this situation for the
purpose of evaluating strategies, and the controller needs to take it
into account when formulating them, applying less heat than it would
otherwise. And if you’re planning a candidate toolpath or simulating
its effects, you’ll need to know at what height the tool touched off on
the touch-off sensor, even if that was several minutes ago.

 Controlling digital fabrication is a particularly important
application because it enables the materialization of controllers, and it
is particularly interesting in several ways. It includes parameters that
vary over a wide range of timescales, which is especially challenging
to simulate: a machine may wear out year by year; the air around a
machine may be hotter in summer than in winter, causing parts to
cool down slower; a tool may wear as it cuts, getting progressively
shorter and rougher minute by minute; the temperature of a tool or
hotend may increase second by second; and a tool that chips will
suddenly cut differently. It normally takes into account many
physical phenomena: vibrational modes of parts, rigidity of machines,
temperatures, electric currents, side forces, measurement error,
acceleration force, etc. And the objective function to optimize may
shoot through the entire design process: for example, how can we
position such-and-such a thing under such-and-such loads for the
lowest manufacturing cost?

Topics

• Programming (p. 1141) (49 notes)
• Digital fabrication (p. 1149) (31 notes)
• Manufacturing (p. 1151) (29 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Control (cybernetics) (p. 1262) (4 notes)
• Artificial neural networks (p. 1307) (3 notes)
• Mathematical optimization (p. 1348) (2 notes)
• Gradient descent (p. 1364) (2 notes)
• Generative adversarial networks (GANs) (p. 1366) (2 notes)
• Dreaming (p. 1373) (2 notes)

Constant weight dithering
Kragen Javier Sitaker, 02021-10-28 (updated 02021-12-30)
(5 minutes)

 Suppose you want to encode some digital data in a one-bit-deep
(black-and-white, no grey) image, but you want the image to also
depict something; to make this simpler, let’s say that what it depicts is
independent of the data encoded. One way to do this is with
M-of-N or constant-weight codes.

 Consider a 2×2-pixel area of this image; there are 16 possible
patterns: one all black, four three black and one white, six two black
and two white, four three white and one black, and one all white.
This gives you five possible levels of brightness for this 2×2-pixel
area, but three of these levels have multiple possible ways to achieve
them. With conventional dithering, you use the choice among them
to improve the high-frequency reproduction of the image — the
precise locations of edges and things like that.

 Suppose, instead, that you dither the image down to a 5-level
grayscale image, then replace each pixel of the 5-level grayscale with
one of these 2×2 blocks, with the appropriate brightness. You can use
a 1-of-4 code, a 2-of-4 code, or a 3-of-4 code (the complement of the
1-of-4 code) within these blocks to encode arbitrary data. The 2-of-4
code gives you lg 6 = 2.58 bits per block, while the other two give
you 2 bits per block. If the image’s contrast is destretched enough to
put essentially all of the dithered 5-level pixels within that range of
grays, you might get about 2.2 bits per 4-pixel block, which is 0.55
bits per pixel. That is, a slight majority of the data in the final image
is devoted to encoding your chosen data. (By histogram equalization
you can arrange to distribute the image brightness across the available
levels in almost any conceivable nontrivial way, though possibly at the
cost of beauty or comprehensibility.)

 If instead of 2×2 blocks we use 3×3 blocks, then instead of 1 4 6 4 1
possibilities at the different gray levels, we have 1 9 36 84 126 136 84
36 9 1, allowing us to encode respectively 0, 3.17, 5.17, 6.39, 6.98, 6.98,
6.39, 5.17, 3.17, and 0 bits, averaging 4.34 bits per 9-pixel block; if we
exclude the ends, it’s 5.43 bits, or 0.60 bits per pixel, 10% better than
the 2×2 case with less compromise of the contrast. With a little more
compromise on contrast, you can probably push that past 6 bits per
9×9, 0.67 bits per pixel. The tradeoff, of course, is that you’ve lost
more than half of the spatial resolution previously devoted to
encoding the carrier image, in the sense that you’re encoding less than
half as many 9-level grayscale pixels as you were 5-level grayscale
pixels.

 This can be straightforwardly extended to the case of
non-monochrome images. Instead of 2 possibilities per pixel, you
might have 4 (RGB), 5 (CMYK), 8 (superposable RGB), 16
(superposable CMYK), or more, so each of the constant-weight codes
you’re using to encode the data is no longer a binary constant-weight
code, and the reduced-palette image you’re encoding from is no
longer grayscale.

 In most practical uses of this method, you would need error
correction coding.

 It’s possible that this method is already covertly in use for printer
tracking dots, with the justification being the prevention of
counterfeiting paper money. Other possible uses include:

• Provenance information, such as EXIF data, in a photograph, which
ought to only be done by the voluntary choice of the photographer;
• A machine-readable circuit model in a circuit schematic;
• A machine-readable version of a program in a printed program
listing;
• Including a machine-readable version of a program in the program’s
output;
• For example, including the equations and parameters used to
generate a fractal image in the rendered fractal;
• Steganographic communication between people seeking privacy;
• Including a machine-readable data table in a data plot;
• Privacy-invading watermarking uses similar to the tracking-dots
approach mentioned above, allowing the producer of many versions
of an image to track down the first step of path by which a particular
image made it to a particular recipient;
• Watermarks claiming credit or copyright, like the easter egg in
Commodore PET Basic Version 2 which would display
“MICROSOFT!” when you typed “WAIT6502,1” or the Stolen
From Apple logo in the Macintosh firmware following the Franklin
Ace lawsuit.

Topics

• Programming (p. 1141) (49 notes)
• Graphics (p. 1177) (10 notes)
• Security (p. 1224) (5 notes)
• Encoding (p. 1256) (4 notes)
• Communication (p. 1264) (4 notes)
• Barcodes (p. 1385) (2 notes)
• Dithering

https://www.pagetable.com/?p=43
https://www.pagetable.com/?p=43
https://www.pagetable.com/?p=43
https://www.folklore.org/StoryView.py?story=Stolen_From_Apple.txt
https://www.folklore.org/StoryView.py?story=Stolen_From_Apple.txt
https://www.folklore.org/StoryView.py?story=Stolen_From_Apple.txt

Hashing text with recursive
shingling to find duplication
efficiently
Kragen Javier Sitaker, 02021-10-30 (updated 02021-12-30)
(6 minutes)

 Suppose you divide a text into consecutive four-byte windows. If
the text is not a multiple of four bytes long, one of the windows will
not be full; traditionally we pad at the end, but we can also pad at the
beginning. There are four ways to do such sequence alignment. If we
hash the text in each of these windows into some alphabet, perhaps
one large enough that hash collisions are improbable, each of these
window alignments converts the text into a text from a larger
alphabet with one fourth the length.

 At this point we have converted the original N-byte text into four
N/4-letter texts; call them “first-level summaries”. Suppose that we
choose only three of these, for a total of 3N/4 letters. Repeating the
process on each of the 3 first-level summaries gives us 9 second-level
summaries, each 1/16 the size of the original text (though in a larger
alphabet) by repeating this until we are reduced to a single letter, we
end up with (almost) 3N hashes for different parts of the text, each
computed over four letters, so this process takes linear time.

 Suppose the text consists of two copies of some motif concatenated.
Then the hashes in the first level will be mostly the same. If the
original motif is a multiple of 4 bytes, all the hashes in the first-level
summaries will be the same, except those overlapping the boundary;
but if not, then the second copy of the motif will be byte-misaligned.
Suppose that the misalignment is 1; then, the hashes in first-level
summary #1 of the first copy of the motif will be found a second time
in first-level summary #2 of the second copy, those of first-level
summary #2 of the first copy will be found in first-level summary #3
of the second copy, while the hashes in first-level summary #1 of the
second copy and first-level summary #3 of the first copy will not be
found again. The other possible misalignments, 2 and 3, have similar
properties: two thirds of the hashes in the first-level summaries will
occur twice.

 In higher-level summaries we have the same sort of property, that a
repeated motif results in two or three repeated sequences of hashes in
the summaries of all levels small enough for the plaintext of the motif
to be entirely contained inside a single hash at the next level up.

 By starting at the topmost level summary and working down, we
can efficiently detect duplicate text of any length anywhere in a
corpus — in linear time, if we treat hash-table probing as constant
time, or linearithmic time in a more realistic scenario. This provides
an efficient solution to the basic version of the sequence alignment
problem, the rsync problem (without using sliding hashes), and, I
think, the diff-with-rearrangement problem.

 A given 4-byte substring is not guaranteed to be covered by a hash

in the first-level summary, but of the two 4-byte substrings of a given
5-byte substring, one or both will be. Similarly, in a 17-byte
substring, one or both of its two 16-byte substrings will be covered by
a 4-letter substring in the first-level summaries, which may or may
not have a hash in the second-level summary, but a 5-letter substring
in the first-level summaries is guaranteed to have one, and every
21-letter substring of the original string is thus guaranteed to contain
at least one second-level hash. So the maximal size of an
unrepresented substring in a given summary level proceeds by this
logic of f(i) = 4f(i-1) + 1: 5, 21, 85, 341, 1365, 5461, 21845, 87381,
349525, 1398101, etc.

 (There might be some way to stagger the skipping across
summaries to get this series to increase a little slower.)

 I think that, by this scheme, you would add 15 levels of summary to
a gibibyte of text, as follows:

• 1,073,741,824 bytes of text;
• 805,306,368 hashes, 6,442,450,944 bytes in 8-byte hashes, each
covering 4 bytes;
• 603,979,776 hashes, 4,831,838,208 bytes in 8-byte hashes, each
covering 16 bytes;
• 452,984,832 hashes, 3,623,878,656 bytes in 8-byte hashes, each
covering 64 bytes;
• 339,738,624 hashes, 2,717,908,992 bytes in 8-byte hashes, each
covering 256 bytes;
• 254,803,968 hashes, 2,038,431,744 bytes in 8-byte hashes, each
covering 1024 bytes;
• 191,102,976 hashes, 1,528,823,808 bytes in 8-byte hashes, each
covering 4096 bytes;
• 143,327,232 hashes, 1,146,617,856 bytes in 8-byte hashes, each
covering 16384 bytes;
• 107,495,424 hashes, 859,963,392 bytes in 8-byte hashes, each
covering 65536 bytes;
• 80,621,568 hashes, 644,972,544 bytes in 8-byte hashes, each covering
262,144 bytes;
• 60,466,176 hashes, 483,729,408 bytes in 8-byte hashes, each covering
1,048,576 bytes;
• 45,349,632 hashes, 362,797,056 bytes in 8-byte hashes, each covering
4,194,304 bytes;
• 34,012,224 hashes, 272,097,792 bytes in 8-byte hashes, each
covering 16,777,216 bytes;
• 25,509,168 hashes, 204,073,344 bytes in 8-byte hashes, each covering
67,108,864 bytes;
• 19,131,876 hashes, 153,055,008 bytes in 8-byte hashes, each covering
268,435,456 bytes.

 (Actually, I think I’m slightly overestimating the higher levels
because I’m omitting the hashes that would be hashing entirely
missing data off the end of the file.)

 This is 26,809,069,296 bytes, about 25 gibibytes in all, the original
gibibyte plus almost 24 gibibytes of summaries. If you are only
interested in finding large coincidences, more than 5, 21, 85, 341, or
1365 bytes, you can discard the first few levels of summaries, saving
you most of those gibibytes.

 The hash function you use needs to be reasonably good to avoid
false positives. If you’re willing to accept a small false positive rate,
you can use a smaller hash, such as 4 bytes. Collisions only matter
within a summary level, so it might be reasonable to use smaller
hashes at higher levels.

Topics

• Performance (p. 1155) (22 notes)
• Algorithms (p. 1163) (14 notes)
• Hashing (p. 1293) (3 notes)

My Heathkit H8
Kragen Javier Sitaker, 02021-11-03 (updated 02021-12-30)
(2 minutes)

 (Comment on
https://hackaday.com/2021/10/27/vcf-east-2021-preserving-heathki
ts-8-bit-computers/.)

 My H8 was hooked up to an H19 terminal and H17 floppy drives,
so the experience was similar to using a TRS-80 or an IBM PC. On
HDOS there were Microsoft BASIC, the less capable Benton Harbor
BASIC, lots of video games using the semigraphics character set (and
the H8’s built-in speaker), text editors called PIE and SCRIBE, text
formatters similar to nroff called TEXT and RUNOFF, and text files
traded on disk at user-group meetings, including porn. For electronic
engineering, you could do a lot of calculation and simulation in
BASIC that would have been really hairy on a programmable
calculator, although its ability to plot graphs on the screen was pretty
limited.

 I was a kid, so my favorite use was the games (and the porn). My
favorite games included Munchkin (a Pac-Man clone), Invaders,
SEABATTL, A Remarkable Experience (a puzzle-solving text
adventure similar to ADVENT or Zork), CASTLE, and Star Trek,
where you would fly around shooting Klingons with your phasers and
photon torpedos and try not to fly the Enterprise into a star. Other
games I played included Lunar Lander, Hammurabi, Towers of
Hanoi, Reversi, chess, and a significantly enhanced non-turn-based
version of the "robots" game in the bsdgames package.

 Under CP/M there was WordStar, a mostly WYSIWYG word
processor with only a few nroff-style dot commands left, and
SuperCalc, a spreadsheet. There was a huffman-coding utility called
SQ[ueeze]. Later I installed MODEM7 under CP/M and dialed up
BBSes with a modem, and I could upload and download files with
XMODEM. Sometimes, though, I couldn’t download a file unless
the BBS sysop was kind enough to break it up into pieces that were
smaller than the (100KiB) floppy disks.

 Despite the availability of PILOT, effectively everything that
wasn’t written in BASIC was written in assembly language; both
HDOS and CP/M came with an assembler, a linker, and a library
facility to pull only the library routines you needed out of a library.
Later on BDS C and Turbo Pascal brought high-level languages to
the platform, but they were too late and not competitive in
performance with assembly language or beginner-friendliness with
BASIC. Unfortunately, I never learned how to program in assembly.

Topics

• History (p. 1153) (24 notes)
• BASIC (p. 1303) (3 notes)

https://hackaday.com/2021/10/27/vcf-east-2021-preserving-heathkits-8-bit-computers/
https://hackaday.com/2021/10/27/vcf-east-2021-preserving-heathkits-8-bit-computers/
https://hackaday.com/2021/10/27/vcf-east-2021-preserving-heathkits-8-bit-computers/

Orthogonal rational vectors
Kragen Javier Sitaker, 02021-11-04 (updated 02021-12-30)
(4 minutes)

 Consider measuring four values x0, x1, x2, and x3 (for any value of
“four”). One way to do this is to take a separate measurement of each
value, but often this is difficult to do, for example because your
measuring tools have unknown offsets. So sometimes you might
prefer to measure four linear combinations of x0, x1, x2, and x3;
then, any fifth measurement will allow you to determine such an
unknown offset.

 Popular bases for this include the Fourier basis, in which you
measure the average value and the dot products with three sine waves.
But that has the awkward problem that in many cases the coefficients
are transcendental; it also has the property that some of the
coefficients may be 0, as in the case of four values, where I think the
Fourier basis is x0 + x1 + x2 + x3, x0 - x2, x1 - x3, and x0 - x1 + x2
- x3. The Hadamard-Walsh basis is another alternative, in which all
the coefficients are either 0 or 1, but these are also sparse, in the sense
that they don’t depend on all the values; or, alternatively, you can use
-1 and +1.

 In some sense the simplest kind of number that could give you an
orthonormal basis for this kind of thing is rational numbers. It
occurred to me that with one or more Pythagorean triples, you can
construct an arbitrary number of orthonormal bases with rational
coefficients. Consider the triple 3-4-5. This gives us the orthonormal
basis [[3/5, 4/5], [4/5, -3/5]]. We can use this to rotate an arbitrary
rational orthonormal basis into another rational orthonormal basis;
for example, starting with the identity-matrix basis:

[1 0 0 0] [3/5 0 4/5 0] [3/5 0 4/5 0]
[0 1 0 0] [0 1 0 0] [0 1 0 0]
[0 0 1 0] [4/5 0 -3/5 0] = [4/5 0 -3/5 0]
[0 0 0 1] [0 0 0 1] [0 0 0 1]

 By iterating this sort of rotation we can get an infinite number of
orthonormal bases, and after a few such rotations our matrix is dense.
For example,

[[-900, -1200, 2500, -1125],
 [1293, -776, 1200, 2460],
 [-2376, -1293, -900, 1280],
 [1280, -2460, -1125, -900]]/3125

 or equivalently

⎡ -36 -48 ⎤
⎢ ──── ──── 4/5 -9/25⎥
⎢ 125 125 ⎥
⎢ ⎥
⎢ 1293 -776 48 492 ⎥

⎢ ──── ───── ─── ─── ⎥
⎢ 3125 3125 125 625 ⎥
⎢ ⎥
⎢-2376 -1293 -36 256 ⎥
⎢────── ────── ──── ─── ⎥
⎢ 3125 3125 125 625 ⎥
⎢ ⎥
⎢ 256 -492 -36 ⎥
⎢ ─── ───── -9/25 ──── ⎥
⎣ 625 625 125 ⎦

 is a dense rational orthonormal matrix representing five such
rotations. So, returning to our original measurement problem, we
could measure -900 x0 - 1200 x1 + 2500 x2 - 1125 x3, 1293 x0 - 776
x1 + 1200 x2 + 2460 x3, and so on, and by multiplying by the
transpose of this matrix and dividing by 9765625 (3125 squared), we
should get the original values of x0, x1, etc. For example, for [11, 5, 8,
-2] we get [254/125, 15023/3125, -42361/3125, -1084/625] when we
divide by 3125 once, and multiplying back through the transposed
original matrix does indeed give us back [11, 5, 8, -2].

 Even though I don’t know how to define norms in a prime field,
you can convert a rational matrix like this into its equivalent in some
prime field, and do the same thing in that field, and you’ll still get
back the original numbers.

 A thing that’s bothering me is that it seems like you ought to be
able to do something like this that gives you back more values than
you put in, and somehow use that for erasure coding, or N-of-M
secret sharing, or for noise reduction in noisy measurements. But this
requires giving up orthogonality; you can’t have five orthogonal
vectors in a four-dimensional space, so you can’t just transpose the
matrix, you have to use some other approach to solving it, like
calculating the pseudoinverse.

Topics

• Math (p. 1173) (11 notes)

Thread rolling roller screw
Kragen Javier Sitaker, 02021-11-04 (updated 02021-12-30) (1 minute)

 A roller screw can have its rollers either move with the shaft
through the middle, in which case only a short length of the shaft
needs to be threaded, but the entire outer tube needs to be threaded
on the inside; or it can have the rollers move with the nut, in which
case the rollers will attempt to engage a thread along the entire length
of the shaft.

 It’s possible to arrange for the advance of the roller screw to be
arbitrarily small in a differential fashion, potentially a tiny fraction of
the thread pitch per rotation. This suggests that, by using tapered,
hardened rollers, it should be possible to use a roller screw to roll a
thread onto a previously unthreaded shaft, with an extremely
manageable low torque, much like a hand thread-cutting die, but
rolling a thread on the shaft rather than cutting one. The threads on
the nut would be tapered to compensate.

 By a similar principle, it should be possible to roll threads onto the
inside of a hole by using a tapered shaft with tapered thread rollers
rolling around it.

Topics

• Contrivances (p. 1143) (45 notes)
• Mechanical (p. 1159) (17 notes)
• Hand tools (p. 1197) (7 notes)
• Roller screws (p. 1275) (3 notes)

Viscoelastic probing
Kragen Javier Sitaker, 02021-11-04 (updated 02021-12-30)
(2 minutes)

 If you have a probe pressing against a material, its force and
position are functions of time. If you’re using a spring attached to an
actuator, you can try to jam it in harder or less hard, which will tend
to increase or decrease the force, respectively; but the material can
then yield. Viscoelastic materials will yield to different degrees at
different time scales, and every material is somewhat viscoelastic; this
gives us a complex spectrum in which the real part at a given
frequency is the elasticity (or resonance) and the complex part is a
frictional loss.

 If you apply a Heaviside step function to the probe, in theory this
contains all frequencies and so you can determine the material’s entire
viscoelasticity spectrum from its response to the step function. In fact,
though, your step function is going to be bandlimited, and the
material’s response at low frequencies may be lost in the noise. By
applying a sequence of such step functions, sometimes in opposite
directions, at random times, you can get more data points, which will
allow you to estimate not only the viscoelastic spectrum of the object
but also the frequency and Q of its vibrational modes.

 A piezoelectric actuator can straightforwardly produce frequency
components up to a megahertz or so, and a strain gauge or
piezoelectric force sensor can measure its special mix of force and
displacement at similar speeds.

 You can use the same approach for dielectric spectroscopy of
time-dependent permittivity and magnetic spectroscopy of
time-dependent permeability.

Topics

• Electronics (p. 1145) (39 notes)
• Sensors (p. 1191) (8 notes)
• Piezoelectrics (p. 1340) (2 notes)

An aluminum pencil for marking
iron?
Kragen Javier Sitaker, 02021-11-06 (updated 02021-12-30)
(2 minutes)

 Aluminum forms a brittle intermetallic with iron (as well as some
other elements like nickel and cobalt), which I think is the cause of
steel screws seizing in aluminum when unlubricated. Perhaps you can
exploit this property to mark visible lines on iron and steel using an
aluminum rod. I think there are three fundamental obstacles: surface
preparation, activation energy, and aluminum cohesion.

 If the aluminum is in contact with grease or iron oxide rather than
raw iron, it won’t be able to react. I think that if the surface is
reasonably clean to begin with, it should be possible to surround the
aluminum “pencil lead” with a friable abrasive “wood” to adsorb the
grease and grind through the oxide, maybe a mixture of things like
talc, kaolin, aluminum oxide, and binders.

 The activation energy problem is that the aluminum needs to be at
a relatively high temperature to get this reaction. Since it happens by
accident with screws, I think this is a feasible thing to achieve by
hand, but it might help if the aluminum is in smallish particles, a foam
or sponge, or thin aluminum-foil-like layers, so it won’t conduct the
heat away from the reaction surface. Maybe thin fibers of something
very hard inside the aluminum would also help by scratching hot
particles off the iron.

 The aluminum cohesion problem is that we want the newly
formed intermetallic to stick to the steel rather than the aluminum.
For this we want to keep the “pencil lead” from having too much
structural strength of its own; if the aluminum is in the form of,
again, small particles, foils, or foam, that should help with this. This is
somewhat in conflict with the desire to apply a great deal of pressure
to the surface in order to overcome the activation-energy barrier.

Topics

• Materials (p. 1138) (59 notes)
• Contrivances (p. 1143) (45 notes)
• Aluminum (p. 1180) (10 notes)
• Hand tools (p. 1197) (7 notes)
• Steel (p. 1222) (5 notes)

Embedding runnable code in text
paragraphs for numerical modeling
Kragen Javier Sitaker, 02021-11-06 (updated 02021-12-30)
(6 minutes)

 Watching a demo of Keras in TensorFlow in IPython, I thought a
Python comment was a Markdown header. And it occurred to me:
why not have formatted text comments in your code? Or code in
your text document?

 Literate Haskell works like this: you write text like normal, but
mark your code with a leading >:

> 3 + 4

 You could imagine a sort of word processor that works this way,
automatically displaying the results of your code within the
document, like a spreadsheet or like Darius Bacon’s Halp. You could
even put bits of code in the middle of a paragraph, displaying the
code, its result, or both at your whim. This works best with
non-procedural programming paradigms like logic programming and
pure functional programming.

 Programs normally contain a mix of commentary with executable
code. Traditional programming languages make the code primary,
relegating the commentary to a secondary role, while literate Haskell
reverses this. Python doctest docstrings do something similar: the
docstring can contain code, but it is specially marked with >>> or
IPython and ObservableHQ notebooks follow a middle way, treating
either code or commentary as primary depending on which kind of
cell you’re in. But I think that normally the commentary should be
primary and the code secondary.

 Ideally when your cursor was near something easily identifiable as a
quantity, like 3, 3.17 bits, 23 AWG, 45 psi, or 2.4 GHz, it would become
available for naming, referencing, and calculations; maybe you’d have
a sidebar that showed you the names, definitions, and current values
of nearby bits of code. Maybe as part of this sidebar you’d have a
stack of active data, so that by typing alt-+, alt--, alt-/ or alt-* you
can apply arithmetic operations on the top item on the stack, or by
typing some other magic key like alt-X you can invoke some named
operation on it, such as getting some property.

 So you might type “23 AWG wire has a cross-sectional area of ”,
and then, looking at the object in the sidebar which represents a
cylinder with a diameter of 0.57 mm and an unknown length, type
alt-X and begin typing the name of the “base area” property,
releasing Alt when you’ve typed enough to disambiguate; but on
seeing that 2.58e-7 m² appears in your document but is not a very
useful way to display it, type alt-A or something to get a menu of
likely units, then select mm² (rather than, say, argentina_area or 分地),
thus changing the display of the value to 0.258 mm².

 Then you can type “ and, if copper, a resistance of ”. Maybe the

system recognizes that “copper” is the name of an entity which has
properties, so it shows up in the sidebar, or maybe you have to open a
search box for it; either way, you get its resistivity of 16.78 nΩ⋅m (at
20 °C) or, according to units(1), copperconductivity of 58 siemens m
/ mm^2 (the Wikipedia value above works out to 59.59). At this
point you can divide the resistivity by the surface area, or multiply the
conductivity and then take the reciprocal, with a couple of
keystrokes, to get the resistance: .0668 kg m / A^2 s^3, which is to
say, .0668 Ω/m. (Ideally that would be the default way it was
presented.)

 At this point you can go back and drag your mouse over the “23
AWG” to change the wire gauge, or click on a dropdown arrow next
to “copper” to select other metals.

 Of course, many wire resistance calculators already exist, and you
can do this problem in units(1) as well:

$ units
Currency exchange rates from FloatRates (USD base) on 2019-05-31
3460 units, 109 prefixes, 109 nonlinear units

You have: 1/circlearea(awg(23)/2) copperconductivity
You want: ohms/m
 * 0.066785595
 / 14.973289
You have:

 But it typically requires a fair bit of blundering around to get there,
and in fact I solved the problem wrong the first time.

 (Perhaps the “focused item” in the sidebar should have an
expanded view that tells you what the result of each property and
possible operation would be.)

 A different approach to solving this would be to instantiate a
cylinder by binding the “material” property of the 23 AWG cylinder
to “copper” and its length to 1 meter; this defines its mass, volume,
surface area, electrical resistance, thermal resistance, etc. Then you
could just pop in the electrical-resistance property.

 Once you’ve reached this point, you can name the resistivity result,
the wire metal, and the wire size as properties of the current
document, and incorporate some more text: “If iron, ” and then
construct this{metal=iron}.resistivity, the resistivity property of an
instance of the current document with the metal changed to be iron.
This is just bog-standard Bicicleta.

 You might also want to do things like plot the resistivity against
AWG or against, say, mass per meter, perhaps for different metals.
You might want to include a table of the current calculations for, say,
a variety of different materials. You might want to apply gradient
descent to maximize some property.

Topics

• Human-computer interaction (p. 1156) (22 notes)

• End user programming (p. 1217) (6 notes)
• Numerical modeling (p. 1229) (5 notes)
• Editors (p. 1257) (4 notes)
• Bicicleta (p. 1384) (2 notes)

Paeth prediction and vector
quantization
Kragen Javier Sitaker, 02021-11-06 (updated 02021-12-30) (1 minute)

 Suppose you want constant frame rate video over a
bandwidth-limited channel with very simple encoding and decoding.
Paeth’s predictor predicts that each new pixel will be equal to one of
the three pixels N, NW, and W of it, based on an estimate of the
gradient from those three pixels, and then you encode, normally, a
precise residual from that prediction. This approach can be
straightforwardly extended to use a three-dimensional prediction
incorporating the previous frame as well.

 However, instead of transmitting a precise residual, you could
transmit a quantized approximate residual. For example, you could
transmit a choice of 0, ±1, ±4, ±16, or ±64, which is 9 choices, 3.17
bits per pixel per color channel. If an image holds still for a little
while, it’ll settle down to the correct image fairly quickly.

 However, this still sucks, because the compression ratio is less than
a factor of 3. You can do a little better by transforming to YUV
(16-bit maybe) and subsampling the chroma, but to do a lot better by
some such approach, you need to not transmit any bits for most pixels.

Topics

• Graphics (p. 1177) (10 notes)
• Compression (p. 1263) (4 notes)
• The Paeth predictor (p. 1345) (2 notes)

Wire brush microscope
Kragen Javier Sitaker, 02021-11-06 (updated 02021-12-30) (1 minute)

 If you want to measure the shape of a metal surface, you can gently
touch it with a bunch of sharp springs, insulated from one another
and constantly separately tested for electrical continuity with the
metal. By moving this springy brush around, you can measure when
each wire enters and leaves contact with the surface; by only barely
touching the surface, you keep the stresses on the spring tips low
enough to avoid plastic deformation. Using springs with a slight
curve or coil to them, rather than straight bristles, reduces the stress
for a given strain, protecting the tips from being blunted.

 It’s important that the bristles not bend plastically or creep, so it is
advisable to make them out of a brittle substance with a high melting
point, such as tungsten, or such as aluminum oxide with thin metal
plating. Sharp points can be achieved by growing crystals with a
naturally acicular habit, like mullite or some phosphates of calcium,
which will normally have atomically-sharp points which will be
blunted slightly by the metallic plating, or by electrolytic sharpening
of metallic points.

Topics

• Contrivances (p. 1143) (45 notes)
• Precision (p. 1183) (9 notes)
• Sensors (p. 1191) (8 notes)
• Scanning probe microscopy (p. 1242) (4 notes)

New nuclear power in the
People’s Republic of China
Kragen Javier Sitaker, 02021-11-09 (updated 02021-12-30)
(2 minutes)

 Comment on https://news.ycombinator.com/item?id=29151741.

 “The cost of China’s new nuclear ambition has been estimated at
US$440 billion.” But it doesn’t say how much power that is, just that
it’s 150 new reactors, so it’s about US$3B per reactor.
https://archive.md/A5B6S shows that the article didn’t say how
much power it was 9 hours ago either. So, is this 15 GW, 150 GW, or
1500 GW?

 PV modules are about US$0.2/Wp, so if it were PV panels,
US$440B would buy them 2.2 terawatts peak. At an average capacity
factor of 20% (though, as pfdietz points out, most new utility-scale
solar has single-axis tracking, which pushes it to 30%) that would be
440 GW, but China’s historical PV capacity factor has been terrible,
more like 12% IIRC (maybe due to a Chinese version of the irrational
misregulation robomartin documents in California in
https://news.ycombinator.com/item?id=29155094). 12% would
make it more like 260 GW. But a PV power plant includes things
that aren’t panels; balance of plant (inverter, wiring, grid connection,
monitoring, mounting, security) is typically roughly equal to the
module cost. So it would be more like 130 GW. (Total costs of
utility-scale solar in the US are about twice that in China
https://www.irena.org/-/media/Files/IRENA/Agency/Articles/201
7/Jul/Bonn-Uni-Lecture--True-costs-of-renewables.pdf?la=en&has
h=B7DD1720455A1ED042094C007D8B8C74F274AAFC at about
US$0.89/Wp according to pfdietz
https://news.ycombinator.com/item?id=29155644.

 In the US, nuclear plants cost about US$8/We. If China’s
program was at the same cost, it would provide 55 GW. If it was
closer to the cost of US nuclear plants in the 01970s about US$1/We
(and if the US$440B number is correct), it would provide 440 GW.

 The threads at
https://birdsite.xanny.family/pretentiouswhat/status/1293961095892
279296 and
https://birdsite.xanny.family/pretentiouswhat/status/13188380548915
73249#m provide some more context, suggesting that the
“HPR1000, aka Hualong One 华龙一号”, is the reactor being used at
these 150 sites.
https://www.sciencedirect.com/science/article/pii/S20958099163015
15 says the HPR1000 is 3.050 GW thermal, 1.070 GW electric, net.
(See also
https://www.ukhpr1000.co.uk/the-uk-hpr1000-technology/hpr1000
-design/ and https://en.wikipedia.org/wiki/Hualong_One.) So 150
of them would produce 161 GW electric, which (if that’s US$440B)
would put the cost around US$3/We, about twice the cost of the
same generation capacity via PV with single-axis tracking, not
including any cost of storage. But maybe that’s 150 power plants, each

https://news.ycombinator.com/item?id=29151741
https://archive.md/A5B6S
https://archive.md/A5B6S
https://news.ycombinator.com/item?id=29155094
https://news.ycombinator.com/item?id=29155094
https://www.irena.org/-/media/Files/IRENA/Agency/Articles/2017/Jul/Bonn-Uni-Lecture--True-costs-of-renewables.pdf?la=en&hash=B7DD1720455A1ED042094C007D8B8C74F274AAFC
https://www.irena.org/-/media/Files/IRENA/Agency/Articles/2017/Jul/Bonn-Uni-Lecture--True-costs-of-renewables.pdf?la=en&hash=B7DD1720455A1ED042094C007D8B8C74F274AAFC
https://www.irena.org/-/media/Files/IRENA/Agency/Articles/2017/Jul/Bonn-Uni-Lecture--True-costs-of-renewables.pdf?la=en&hash=B7DD1720455A1ED042094C007D8B8C74F274AAFC
https://www.irena.org/-/media/Files/IRENA/Agency/Articles/2017/Jul/Bonn-Uni-Lecture--True-costs-of-renewables.pdf?la=en&hash=B7DD1720455A1ED042094C007D8B8C74F274AAFC
https://news.ycombinator.com/item?id=29155644
https://news.ycombinator.com/item?id=29155644
https://birdsite.xanny.family/pretentiouswhat/status/1293961095892279296
https://birdsite.xanny.family/pretentiouswhat/status/1293961095892279296
https://birdsite.xanny.family/pretentiouswhat/status/1293961095892279296
https://birdsite.xanny.family/pretentiouswhat/status/1318838054891573249#m
https://birdsite.xanny.family/pretentiouswhat/status/1318838054891573249#m
https://birdsite.xanny.family/pretentiouswhat/status/1318838054891573249#m
https://www.sciencedirect.com/science/article/pii/S2095809916301515
https://www.sciencedirect.com/science/article/pii/S2095809916301515
https://www.sciencedirect.com/science/article/pii/S2095809916301515
https://www.ukhpr1000.co.uk/the-uk-hpr1000-technology/hpr1000-design/
https://www.ukhpr1000.co.uk/the-uk-hpr1000-technology/hpr1000-design/
https://www.ukhpr1000.co.uk/the-uk-hpr1000-technology/hpr1000-design/
https://en.wikipedia.org/wiki/Hualong_One

with nuclear reactors, not 150 nuclear reactors?

Topics

• Energy (p. 1170) (12 notes)
• The future (p. 1220) (5 notes)
• China (p. 1379) (2 notes)
• Nuclear

Ivan Miranda’s snap-pin fasteners
and similar snaps
Kragen Javier Sitaker, 02021-11-11 (updated 02021-12-30) (3 minutes)

 For his “mini tank” video, Ivan Miranda developed a very neat
snap fastener. Adjacent segments of his tank treads are held together
by a pin that runs through a series of holes alternating between tabs on
the two segments, as is usual for a pin hinge. The surprising feature is
how the pin is prevented from sliding out the end of the hole: it’s
flexible, and the end of the hole is curved, so you create a matching
curve in the pin as you begin to insert it into the hole, then move the
curve along the pin to finish inserting it.

 So far this is just a spring-loaded friction connection, like a screw
fastener or a nail. The nifty bit is that there’s a notch cut into the
outside of the curve for the end of the pin to snap into, once you
insert it far enough. At this point the pin is pressed up against the
notch at one end and the end of the hole at the other. So you have a
snap fastener with a significant energy barrier to overcome in order to
disconnect it.

 In order to make the pin removable, Miranda includes another hole
at right angles to the pin at the end of the notch, through which you
can insert a rod to bend the pin back into the curve, and a smaller hole
at the other end of the pin’s hole through which you can press the pin
back out.

 This seems like an astoundingly neat idea, and I don’t understand
why I haven’t seen it before. It entirely eliminates the need for screw
fasteners in such loose-fit cases, while being immensely more
vibration-resistant than screws. If the end of the notch (or the pin) is
slightly slanted, the bending force of the pin will produce a preloaded
compression force on the pin.

 It isn’t necessary for the pin to be entirely enclosed; for example,
the tusk of a tusk tenon could be used as such a “pin” by merely
sliding in a curved groove, or by pressing against two dowels
protruding from the surface it slides against.

 It’s not obvious how to do a precisely analogous thing in a 2-D
cutting environment, since there’s no way to curve the holes through
which a fastener slides. But if the fastener instead expands after
sliding through two holes, or rather slots, we have a standard
spring-hook fastener, which can also be built onto the edge of a panel
to slide through a single other slot rather than through two separate
slots.

Topics

• Contrivances (p. 1143) (45 notes)
• Flexures (p. 1232) (5 notes)
• Fasteners (p. 1297) (3 notes)
• Snaps (p. 1325) (2 notes)

https://youtu.be/-IaqWdcE4Y4

Rendering 3-D graphics with
PINNs and GANs?
Kragen Javier Sitaker, 02021-11-11 (updated 02021-12-30)
(10 minutes)

 (This is pretty much talking out of my ass since I’ve never done
anything with neural networks and almost nothing with automatic
differentiation and gradient descent.)

 Physics-informed neural networks (PINNs) are an interesting
approach to numerical solution of partial differential equations: you
train a neural network to map (x, y) or (x, y, z, t) values to the value
of the PDE solution. The training procedure involves running some
sample points through your candidate network and calculating the
derivatives of the output with respect to the input coordinates, thus
giving the derivatives that you’re trying to impose conditions on, and
then calculating a loss based on how far the conditions are from being
true. You typically need to make sure you have a number of points
on your boundary in your training set in order to sample the
boundary conditions.

 A potential question here is how to decide which points to pick,
because it may be the case that it’s easy to get a solution that works
correctly most places but is way off in a few crucial places. A solution
that seems promising to me is to train a GAN (“generative adversarial
network”) to generate (x, y, z, t) tuples from some random number;
the GAN is optimized to find tuples that produce a large loss for the
PINN.

 An interesting thing here is that, unlike more typical ways to
numerically solve PDEs, there’s no sample grid. The trained network
represents the solution in a fully continuous fashion; you feed it any
arbitrary (x, y) pair and it tells you what it thinks the value is at that
point.

 It occurs to me that you ought to be able to use the same approach
to ray-trace a scene or film: train a network to map an (x, y, t) triple
to an (r, g, b) triple in such a way as to minimize the error from some
“ground truth” raytracing. You feed the same (x, y, t) tuple into a
real raytracer written in the normal way to get the “ground truth”
pixel; by applying automatic differentiation to the raytracer you can
get the color gradient and movement at the sample, and by applying it
twice we can get a Wronskian (?) that tells us how these gradients are
varying. Then we can compare these results to the corresponding
results from the neural network to compute the loss.

 By training a GAN to generate difficult coordinates we can focus
our optimization efforts on the places in the image which are
particularly hard to approximate well, or at any rate particularly
poorly approximated so far.

 You might get better results by training a couple of stages of the
raytracing network separately: for example, one stage that maps (x, y,
t) tuples to (x, y, z, t) tuples where the ray intersected something, then
a second stage that transforms these tuples into something like (x, y, z,

u, v, oid, t), and then a third stage that transforms that into the actual
color. The benefit here is that you can use the traditional raytracer to
train these intermediate tuples.

 It might be possible to solve the rendering equation spatially by this
method as well, deriving a neural network to approximate the light
field: at any given point in space, looking in a particular direction,
you see a particular color. In free space this color is the same that you
would see if you moved in that direction; on a diffuse surface,
looking into the surface, you see the color at the surface illuminated
by the color you’d see integrated over all possible viewing directions;
etc.

 For numerical integration, maybe you could train a neural network
(or other universal approximator, such as a spline) to approximate the
indefinite integral of the function you want to integrate, generating
random (or adversarially generated) points at which to compare the
derivative of your approximation with the original function to
compute your loss. It’s hard to imagine how such an approach could
ever be cheaper than just doing Gaussian quadrature in one
dimension, but maybe if you have multiple independent variables, or
if the limits of integration or a parameter of the function vary?

 Another way to apply the PINN idea to rendering is to sample
some pixels from a “real” raytracer, either the conventionally
implemented raytracer or a universal approximator as described
above, and then try to extrapolate the rest of the image from those
pixels, in the same way that a PINN extrapolates the rest of the field
from its boundary conditions. That is, you train an image-generating
network to generate a visually plausible image that has the correct
values at the sampled pixels, computing its loss from the error at the
sampled pixels and a canned GAN discriminator network (probably a
convnet) that judges visual plausibility. A second adversarial network
can be used to decide which pixels to sample, looking for pixels with
a large error, since you can sample more “test set” pixels once your
image-generating network is trained.

 This might be faster if you start with an image-generating network
that already generates visually plausible images.

 Normally you train a PINN simultaneously to satisfy both its
constitutive PDEs (which in the above case are replaced with a
discriminator) and its boundary conditions. You might be able to get
a speedup on this by starting with a PINN pre-trained for the same
PDEs and retraining it with new arbitrary boundary conditions, but a
different approach is to include some samples from the boundary
conditions among the PINN’s inputs, along with (x, y[, z, t]). If this
works, it gives you a PINN that solves an entire class of PDE
problems instead of just one, allowing you to change the boundary
conditions without retraining the network. To get a precise solution,
you still might have to retrain the network.

 Training a PINN to produce the SDF of a scene might be an
interesting approach; the SDF is constrained to have value zero at
objects’ surfaces, negative inside them, positive outside, and to have a
gradient with magnitude unity almost everywhere, in the sense that the
cusps in the SDF (where the gradient has some other value) have
measure zero, unless the surface geometry is fractal. So, if you’re just

sampling at random, you’ll find those cusps with probability zero.

 A different way to use a PINN as an SDF is as a cheap-to-compute
lower bound, training it to produce the tightest lower bound you can.
Using interval arithmetic you can exhaustively evaluate the PINN
and the real SDF over various parcels of space and find a bound on the
worst case where the PINN drops below the true SDF; by adding
this number to the PINN’s output, you get a true lower bound. You
can evaluate this cheap function for most SDF probes, only falling
back to the true SDF (or maybe a small part of the true SDF) when
the conservative approximation falls below 0.

 A third approach to render images with a PINN is holographically:
to look for solutions to a wave equation representing the propagation
of waves through the scene. I think this can be a static field (i.e., a
3-dimensional problem rather than 4-dimensional) if the state
variables at each point are complex rather than real, thus encoding not
only amplitude but phase. For everyday macroscopic objects,
diffraction effects normally only become noticeable at dramatically
smaller scales than we normally look at (micron-scale, say), so the
wavelength of the waves can usually be considerably longer than that
of light. With a finite-element or sample-grid representation, this
would reduce the computational effort enormously, but I’m not sure
if it will matter for a PINN. If it doesn’t matter much, that would be
a huge advantage for computational holography, which unavoidably
must use light’s real wavelength.

 Simulating polarization, for example for compound
Fresnel-equation reflection, probably requires more than the two reals
suggested above per point in the field; I don’t know how many you
need. Doing color probably requires doing three separate simulations.

 It seems likely that three-dimensional or four-dimensional
convolutional neural networks are likely to be useful for PINNs, but
perhaps not as intermediate layers on their own; rather, you might
need some intermediate layers that have convnets in parallel with
conventional fully-connected layers.

 The standard rendering problem is, given scene geometry (and
materials, etc.), compute one or more 2-D images. From a certain
point of view, vision is exactly the opposite problem: given one or
more 2-D images, compute the scene geometry. Gradient descent
and other generic optimization algorithms are thus applicable to turn
any rendering algorithm into a vision algorithm, and they can
additionally be guided by a neural network that is trained to produce
geometries that are more probable (an approximate prior over world
scenes).

Topics

• Graphics (p. 1177) (10 notes)
• Optics (p. 1209) (6 notes)
• Numerical modeling (p. 1229) (5 notes)
• Artificial neural networks (p. 1307) (3 notes)
• Generative adversarial networks (GANs) (p. 1366) (2 notes)

Aqueous scanning probe
microscopy
Kragen Javier Sitaker, 02021-11-12 (updated 02021-12-30)
(7 minutes)

 STMs and AFM can achieve deep subatomic resolution (10 pm is
common), but STMs are limited to conductive materials, and in air
they are limited to those that don’t form a nonconductive oxide:
mostly gold and graphite. Anything else requires not just vacuum but
pain-in-the-ass UHV, worse even than an STM. And, as I
understand it, their failure mode is to crash the probe if there’s
insulating crud on the surface, potentially destroying it.

 Optical microscopes are normally limited to about 200’000 pm (a
nominal wavelength of 600 nm divided by twice an oil-immersion
NA of 1.5), four orders of magnitude worse. If you can see something
at all in a visible-light optical microscope, it’s probably at least 400
atoms across, which means it contains 64’000’000 atoms: seven orders
of magnitude coarser than the atoms you can see with an STM.
Ultraviolet microscopy can get partway into that region, but at a
wavelength below 124’000 pm you run into the wall of vacuum
ultraviolet, to which all gases and all liquids are opaque, so you’re
stuck around 40’000 pm, about 80 atoms across, 512’000 atoms or so
per particle.

 Can’t we do anything to get into this region? Well, scanning
near-field optical microscopy can help us with going under this limit;
it can reach 20 nm (20’000 pm) with evanescent-wave illumination
bringing it to life, but that’s still more than three orders of magnitude
away from STM/AFM resolution, 64’000 atoms or so. And it’s
limited to fluorescent samples, for which there are a number of other
techniques available.

 Here’s a possible alternative for conductive samples, which includes
anything we can sputter metals onto. If we have a convex conductive
sample, we can immerse it in a fluid of high permittivity, such as
water, glycerol, or propylene glycol, and set up an alternating
low-voltage electrical field between the sample and some “reference
electrode” in contact with the same liquid some distance away. The
contour surfaces of constant voltage that form in the fluid can then be
measured with a needle probe that is heavily isolated with a
low-permittivity dielectric such as teflon, polyethylene, or beeswax,
except at the tip. Assuming the resistivity of the sample is much
lower than that of the fluid, one of these contour surfaces will be the
surface of the sample itself, and others will be nearby; this should
permit scanning the probe over the surface while maintaining a fixed
distance, without crashing it, and without especial concern around the
formation of insulating oxide films on the surface, etc.

 The reason for the relative permittivities of the fluid and the probe
insulation is that the potential gradient through the fluid (the electric
field) should be fairly weak, while the potential gradient through the
insulating sheath should be very strong indeed, so that the voltage we
measure on the other end of the probe, somewhere outside the liquid,

which is the same as the voltage at the probe tip, is the same as the
voltage that would be present if the probe were absent. This requires
minimizing the capacitive coupling between the shaft of the probe
and the liquid it passes through.

 An electrolyte liquid, such as saline water, can be used instead of a
pure dielectric, if its conductivity isn’t too high and the voltage is low
enough to avoid destructively large amounts of electrolysis or other
reactions at the surface.

 If we stick the probe inside a cavity in the sample surface, though,
the potential gradient should entirely disappear. To correct this
problem, we can use a second scanning probe as the reference
electrode, so that we can insert it into the cavity at the same time. By
shortening the distance, this method also greatly increases the
potential gradient (which is to say, the electric field strength) we can
apply, so that our microscopy resolution is limited not by the
electrode potentials of potential electrolysis reagents but by the
avalanche breakdown of the high-permittivity fluid.

 Water’s dielectric strength is sometimes cited as being around 70
MV/m, but such numbers strongly depend on the timescale; it can be
enormously higher over short (subsecond) timescales, or much lower
over long (multi-hour) timescales. Also, I think the Paschen
minimum happens with avalanche breakdown in things that aren’t
gases as well, so the effective dielectric strength at submicron distances
might be smaller. 70 MV/m is 70 mV/nm, and 70 mV is not a
terribly challenging voltage to amplify (my stereo is faithfully
amplifying submillivolt signals as I write this), so subnanometer
resolution is probably attainable with this method.

 At high frequencies high permittivity shades into conductivity;
capacitors pass high frequencies, and if the dielectric is lossy enough,
the current comes into phase with the voltage. The conventional
value for the resistivity of deionized water is 18.2 megohm cm, which
would give you about 200 teraohms (2e14) over a 1-nm channel with
a square nanometer of cross-sectional area. Using a relative
permittivity of 80, we get a capacitance of 7e-19 F for the same
dimensions (C = εA/d = 80 × 1 nm² × 8.85e-12 F/m / 1 nm) and a
reactance (X = 1/2πfC) which becomes smaller than the resistance at
about 1 kHz and gets down to 200 megohms a bit above 1 GHz.

 So on one hand the intuition that the water will polarize in such a
way that it acts mostly capacitively is correct, but on the other hand
detecting the current through such a tiny capacitance would be very
challenging, if possible at all. Even at 1μm² of tip area positioned 1μm
away from the workpiece we only get 0.0007 pF.

 However, I’m confident that if we load up the solution with
enough ions, we’ll be able to detect the voltage from the ionic
current. Maybe a porous tip, or a dendritic tip, or one with lots of
micro-slots cut into it, would enable a larger contact area with the
ion-rich liquid. And you might have to use a lowish frequency to
give the ions time to move around. The final distribution of ions will
probably give a very nonlinear voltage distribution, but that should be
okay if we’re running the tip along a voltage contour.

Topics

• Contrivances (p. 1143) (45 notes)
• Physics (p. 1157) (18 notes)
• Sensors (p. 1191) (8 notes)
• Scanning probe microscopy (p. 1242) (4 notes)

Redundancy in self-replicating
systems such as hundred-eyed
chickens
Kragen Javier Sitaker, 02021-11-12 (updated 02021-12-30)
(4 minutes)

 A complex self-replicating system such as a hen contains a large
number of somewhat unreliable subsystems, such as an intestine. If
the intestine ruptures, the chicken will die without being able to
produce another chicken; if the ovary dies, the hen will survive but
will produce no further eggs. (Hens normally have only one
functioning ovary.) As the number of such SPOFs grows, the chances
that one of them will fail prior to self-replication also grows; for the
total fertility rate to remain above the replacement threshold, the
reliability of each of these systems must also increase.

 The replication rate of hens is somewhat complicated to calculate:
they start laying at 18–24 weeks of age, up to 250 eggs per year,
maybe 75% fertile, requiring 21 days of incubation time. Commercial
broiler operations kill their hens at one year of age, because fertility
declines below 50% at a year, and egg operations at one or two years
but otherwise chickens will typically live 3–7 years, laying less eggs
each year: maybe 250, 200, 175, 150, 125, 110, 90. Half the eggs will
be roosters. A hen can incubate 12–15 eggs at a time, and normally
only does this (“goes broody”) once a year, and never more than three
times a year, so the figures below will assume artificial incubation.

 A simple simulation (with a slightly simplified version of that
model) reveals that this works out to something like a rate of increase
of 3.3% per day, a doubling time of about 21 days. Naïvely, this
would suggest that, disregarding infant mortality, as long as the hens’
MTBF is more than 21 days, they would still produce replacements,
but I don’t think that’s actually true; only 1 in 101 would live to 20
weeks, and on average would produce less than 21 offspring. I think
the actual crossover point (without calculating it) is an MTBF of just
over 32 days, at which point more than 1 in 21 hens survive to
reproductive age.

 If hens have a single SPOF, then, such as an ovary, it needs to have
an MTBF of over 32 days to reach replacement fertility. If they have
two SPOFs, such as an ovary and an intestine, one or both of them
needs to have an MTBF of over 64 days. If they have 32 SPOFs, all
but one of them need to have an MTBF of over 1024 days.

 A little bit of redundancy can help somewhat here, but without
regeneration, it has rapidly diminishing returns. Hens have two eyes,
and usually die quickly if they go blind, so getting to 32 days of
MTBF only requires each eye to have about 21 days of MTBF. If
they had ten eyes, each eye would only need to have 11 days of
MTBF. For Argos hens with 100 eyes each, to reach 32 days, each eye
only needs to have 6.2 days of MTBF. Actually, though, the situation
is much worse than that, because the number of surviving sighted
hens drops off much faster than the usual exponential distribution;

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775730/
https://www.purinamills.com/chicken-feed/education/detail/how-long-do-chickens-lay-eggs-goals-for-laying-hens
https://www.purinamills.com/chicken-feed/education/detail/how-long-do-chickens-lay-eggs-goals-for-laying-hens
https://silkie.org/how-many-chicks-can-a-chicken-look-after.html
https://randyschickenblog.blogspot.com/2017/02/a-blind-hen.html

with 6.2 days of MTBF for 100 eyes, less than 1 of every 1000 hens
survives to 14 days, and less than one in a million to 21 days.

 Alternation of generations and multiple genders are a significant
subject here. In most animals the alternation of generations is subtle
and easy to dismiss, but plants like ferns make it much more visible.
Multiple “genders” of manufacturing plants might be specialized to
produce particular parts or materials, which then must all be
combined.

Topics

• Self replication (p. 1204) (6 notes)

DSLs for calculations on dates
Kragen Javier Sitaker, 02021-11-14 (updated 02021-12-30) (1 minute)

 https://github.com/mvrozanti/dte is a DSL for doing calculations
on dates, but it doesn’t attack my biggest pain point, which is (as
described in https://news.ycombinator.com/item?id=29136554)
timezones. I want to know what local time is 5 PM US Eastern or 11
AM US Pacific, or how long it is from now until 8 PM UTC.
Occasionally I want to know how long it is between 02021-11-15
21:55 and 02021-11-17 05:00, or convert to or from Unix timestamps,
or to know how many days it is since 01983-05-21, or until Christmas.
Occasionally I’d like to know the tzolkin date, the phase of the moon,
or the time of sunset. Most of dte is useless to me; I never want to
convert 23h:23 to 23:23:00.

 Timezone selection is the hardest thing to do in a DSLish way,
because any conceivable way to do it or debug it noninteractively
involves memorizing something about every timezone you want to use.
You really want some kind of interface that gives you a list of the
possibilities.

Topics

• Human-computer interaction (p. 1156) (22 notes)
• Domain-specific languages (DSLs) (p. 1260) (4 notes)
• Command-line interfaces (CLI) (p. 1378) (2 notes)

https://github.com/mvrozanti/dte
https://news.ycombinator.com/item?id=29136554

Some notes on reading parts of
Reuleaux’s engineering handbook
Kragen Javier Sitaker, 02021-11-17 (updated 02021-12-30)
(7 minutes)

 Reading F. Reuleaux’s The Constructor, in Henry Harrison Suplee’s
01893 English translation of the German fourth edition, 340 pp.
including the covers and title pages. Apparently the first edition dates
from 01861! But Suplee says his 01893 translation is the first English
edition.

 I think it’s reasonable to see The Constructor as mostly a
19th-century version of the Machinery’s Handbook, the 01924 sixth
edition of which has been in the public domain since January 1, 02020
, except that Reuleaux focuses almost exclusively on the machines to
be built, not the processes of building them. (Before the Handbook,
Oberg started out by writing a toolmaker’s handbook for small tools.)
It is only one tenth the size of the Handbook (or a little over one fifth
the size of its 1610-page 01924 edition) and it is enormously more
readable.

Guiding tables

 An introduction briefly covering Reuleaux’s theory of kinematics
and “phoronomics” is given on pp. vi–xv (12-21/340). A table of
contents is present on pp. xvi–xviii (22-24/340). An alphabetical
index occupies pp. 303–312 (327–336/340). An introduction to
strength of materials, with various kinds of stresses and strains, but
excluding the buckling of Euler columns, is given on pp. 1–18
(column buckling is covered on pp. 82–84), and a graphical method of
calculation (“graphostatics”) is given on pp. 22–38. The remainder of
the book, except for a short series of mathematical tables on pp.
291–301, is Section III, mostly organized as a catalog of different
kinds of mechanisms and machine construction, accompanies with
both lucid theoretical explanations and data tables.

 Not included are optics, chemistry, metallurgy (except in the
broadest sense), machining processes (such as drilling, grinding,
lapping, and boring), metrology, feedback control, vibrations and
resonances, fluid mechanics (?), ceramics, cams, testing,
thermodynamics, textile processes such as weaving and spinning,
lithography, and electricity; but substantial attention is given to
hydraulics (though not to sliding seals), pneumatics, and tension
members such as belts and ropes, as well as some other sorts of
manufacturing processes such as rolling. And of course no attention is
given to polymers except for rubber, since that art was but little
developed in 01893.

 Listing of chapters of section III (add 24 to page numbers to get
offset in the PDF):

• Riveting (strength, sheet metal gauges, boilers, etc.) pp. 39–44.
• Hooping (by shrinkage, cold, dimensions, etc.) pp. 45–46.

https://archive.org/details/constructor01reul
https://archive.org/details/constructor01reul
https://archive.org/details/machineryshandbo00indu
https://archive.org/details/machineryshandbo00indu

• Keying (longitudinal, cross, for propellers, securing, etc.) pp. 47–50.
• Bolts and Screws (Whitworth, Sellers, metric, threadforms, etc.) pp.
50–60.
• Journals (lateral, thrust, friction of, etc.) pp. 60–67.
• Plain Bearings (lateral, thrust, wooden, etc.) pp. 68–78.
• Bearing supports (columns, etc.) pp. 79–84.
• Axles (circular, annular, ribbed, wooden, etc.) pp. 85–92.
• Shafting (line, deflection of, journals for, etc.) pp. 92–94.
• Couplings (rigid, flexible, clutch, automatic, etc.) pp. 95–101.
• Simple levers (cast iron, rock-arm, strength of, etc.) pp. 101–103.
• Cranks (wrought iron, cast iron, multiple, hand, etc.) pp. 104–109.
• Combined levers (walking beams, scale beams, etc.) pp. 110–111.
• Connecting rods (for crank pins, round, cast iron, etc.) pp. 112–118.
• Crossheads (free, for link connections, for guides, etc.) pp. 118–121.
• Friction wheels (rolling-element bearings, as gears, etc.) pp.
122–126.
• Toothed gearing (spur, cycloidal, pin, hyperboloidal, etc.) pp.
127–150.
• Ratchet gearing (spring, multiple, checking, continuous, etc.) pp.
150–171.
• Tension organs (hemp, wire, stiffness of, sheaves, etc.) pp. 172–185.
• Belting (self-guiding, pulleys, efficiency, lacing, etc.) pp. 186–194.
• Rope transmission (specific capacity of, hemp, wire, etc.) pp.
194–206.
• Chain transmission, strap brakes (efficiency, etc.) pp. 211–216.
• Pressure organs (pumps, valves, hydraulic tools, etc.) pp. 216–241.
• Pipes (iron, copper, steam, lead, stuffing boxes, pistons, etc.) pp.
242–259.
• Tanks (cast iron, riveted, steam, air, etc.) pp. 260–273.
• Valves (lift, flap, round, spiral, rotary, etc.) pp. 273–289.

 Incomplete listing of figures:

• Fig. 132, common wrought-iron rivet, p. 39 (63/340)
• Fig. 971a, Siemens Geyser pump.
• Fig. 975, the common lift and suction pump and force pump, p. 223
(247/340)
• Fig. 976, Muschenbrœck’s pump for moderate lifts, Donnadieu's
pump for deep wells, and the Althaus telescope pump, p. 223
(247/340)
• Fig. 977, differential pump, Rittinger’s pump, and Trevethick’s
pump, p. 224 (248/340)
• Fig. 1134, bell valve, p. 276 (300/340)
• Fig. 1135, a set of 19 valves as used in the Heidt shaft at Hermsdorf,
p. 276 (300/340)
• Fig. 1136, a cone of ring valves, p. 276 (300/340)
• Fig. 1167, p. 286 (310/340)
• Fig. 1169, Cuvelier’s valve, p. 286 (310/340)
• Fig. 1170, double-seated valves, mislabled Fig. 1770, p. 286
(310/340)
• Fig. 1171, p. 286 (310/340)
• Fig. 1172, an oscillating valve by Wilson, p. 286 (310/340)
• Fig. 1173, Wilson’s balanced valve, p. 287 (311/340)
• Fig. 1174, the balancing of the valves of the Porter-Allen engine,
and Sweet's balanced valve, p. 287 (311/340)

• Fig. 1175, the direct and inverted siphons, p. 287 (311/340)
• Fig. 1176, a water trap in a pipe, p. 287 (311/340)
• Fig. 1177, p. 288 (312/340)
• Fig. 1178, Hoffman’s furnace, p. 288 (312/340)
• Fig. 1179, Wilson’s water gas furnace, p. 288 (312/340)
• Fig. 1180, Hero's Fountain, p. 288 (312/340)
• Fig. 1181, the water trap apparatus of Morrison, Ingram, & Co., p.
288 (312/340)

Translation

 Terminology has changed substantially since Reuleaux’s time.
“Latent forces” are now, I think, called “stiffness” or “rigidity”.
Most confusingly, Reuleaux’s “strain” S is what we now call “stress”.
His “tensile strength” is a stress, and I think it is the ultimate strength,
not the yield stress. “Modulus of resistance” T seems to mean yield
strength, and “modulus of rupture” K seems to be the ultimate
strength, same as “tensile strength”, suggesting I’m misunderstanding
one of them. “Modulus of elasticity” E is the familiar Young’s
modulus of elasticity. “Theoretical resistance” is, I think, the force (as
opposed to the stress or strain) exceeding the yield strength.
“Toughness” has its modern meaning.

 (The 01924 edition of the Machinery’s Handbook already uses the
modern terminology, so possibly Suplee rather than antiquity is to
blame for the nonstandard terminology.)

 In many cases Reuleaux tried to introduce new terminology that
was not adopted: he considers valves to be “ratchets for pressure
organs” (or rather the pawls thereof), pipes to be “conductors for
pressure organs”, etc.

Topics

• Contrivances (p. 1143) (45 notes)
• History (p. 1153) (24 notes)
• Mechanical (p. 1159) (17 notes)
• Reading (p. 1244) (4 notes)

A simple 2-D programmable
graphics pipeline to unify tiles and
palettes
Kragen Javier Sitaker, 02021-11-18 (updated 02021-12-30)
(6 minutes)

 The problem of a CRTC is, in some sense, to compute a function
from screen coordinates to color, where the function is largely given
by a pipeline of some lookup tables. In the bitmap or TrueColor case,
you have just a single lookup table, the framebuffer, which directly
converts from screen coordinates to color. In paletted modes, aka
pseudocolor, there are two lookups: first from screen coordinates to
palette index, then from palette index to color. In a character
generator, there are also two lookups, but they are slightly different:
first from truncated screen coordinates to glyph index, then from glyph
index combined with differently truncated screen coordinates to
color. Or, sometimes, to a foreground/background selector, which is
then used in combination with the truncated screen coordinates to
index a table of character colors. In a tiled video game console like
the NES, the situation is fairly similar to the
colored-character-generator case, but there’s also a palette for each
tile, an offset added to the screen coordinates for scrolling, and some
sprite compositing as well.

 Nowadays there is less call for this sort of elaborate stuff for 2-D
graphics, because human eyes are still the same resolution they were
in the 01960s, while computer memories have gotten much larger and
CPUs faster, and by storing the scene to be drawn in a framebuffer,
you can draw whatever you want in the framebuffer. For 3-D stuff
it’s much more elaborate still, with shader programs doing arbitrary
GPU computations that might take an arbitrary length of time.

 I was thinking that an interesting sort of intermediate level of
complexity would be a sort of reconfigurable systolic array (maybe
the kind sometimes called a “diastolic array”, though I’m not sure of
the distinction). Essentially the idea is that you set up an APL-style
array computation on the whole vector of screen coordinates to
produce the desired colors, and then the CRTC executes this
computation in a pipelined fashion, producing each pixel value as it is
needed. Each node in the abstract syntax tree is assigned to some
computing resource, such as a memory, an adder, or a FIFO, and they
all communicate through some sort of routing fabric. In the most
general case, this could be a sort of crossbar scheme, but even a simple
fixed-function pipeline where each stage has the option to pass
through its input would be useful in many cases. More flexible
routing fabrics and data processing units permit more efficient
assignments of operations to nodes, but a limited degree of flexibility
might be sufficient for many uses.

 I was thinking that a particularly interesting kind of node for this
might be a round-robin memory, for example for fonts and colors. It
might appear as, for example, eight LUT resources in the

computational fabric, consisting in fact of a counter, eight output
latch registers, and an input multiplexer multiplexing the address bus
among eight inputs, controlled by a counter. On each cycle, the
counter latches the current memory word into the current output
register and advances to the next input. In this way, a single memory
could be dynamically divided among different functions, such as tile
palette and glyph atlas, which vary less often than once per pixel.
Thinking further, though, I’m not sure this kind of processing
element is actually useful at all, unless more than one of the functions
can usefully use the same data in memory (for example, for
compositing multiple layers of text); eight memories that each
contained about one eighth the amount of data would occupy almost
exactly the same amount of chip space, and they wouldn’t be limited
to changing their value every eighth cycle (or fifth, or whatever, if
you set the counter to reset more frequently). You’d have eight
address buses and eight data buses, but they’d each be connected to
one eighth as much memory, so that’s not actually worse. The only
drawback is really the static partitioning.

 Even static partitioning could be overcome to some degree.
Suppose you have an incoming 11-bit index and your memories only
have 512 words. You can feed the low 9 bits of the index to four
different memories, and then in a subsequent processing stage or two
use the other two bits of the index to demultiplex one of the four
memory outputs. This is energy-inefficient and adds a cycle of
latency, but it doesn’t reduce throughput over the case where you had
a single 2048-word memory.

 Unlike in the strict array-processing paradigm, the system could
easily accommodate stateful processing. The simplest example might
be generating pixel indices modulo 5 for a 5-pixel font; this can be
done with a counter whose low three bits cycle to 0 and generate a
carry after reaching 5, and which is synchronously reset to all 0 at the
beginning of each scan line. A perhaps more interesting example is a
boxcar filter using a prefix-sum node, a FIFO, and a subtractor.
Doing the same thing vertically requires a buffer of the size of a scan
line.

Topics

• Electronics (p. 1145) (39 notes)
• Graphics (p. 1177) (10 notes)
• Systems architecture (p. 1205) (6 notes)
• Displays (p. 1261) (4 notes)
• Tiled graphics (p. 1269) (3 notes)

Interesting works that entered the
public domain in 02021, in the US
and elsewhere
Kragen Javier Sitaker, 02021-11-20 (updated 02021-12-30)
(15 minutes)

 Writing Some notes on reading parts of Reuleaux’s engineering
handbook (p. 1019) I learned that the 01924 Sixth Edition of the
Machinery’s Handbook has finally served its sentence of copyright and
graduated into the public domain. It occurred to me to check what
else had recently thus graduated, in 02021 and 02020.

 Evidently there was a 7-volume Machinery’s Encyclopedia, also by
Oberg and Jones, but unfortunately only Volume 7 seems to be in the
Archive so far, and that one is scanned by Google, though it was less
ineptly carried out than the great mass of Google’s book scans. It is
the “Index and Guide to Systematic Reading”. Strangely, the
Encyclopedia, or at least that volume thereof, seems to be devoid of
illustrations.

 Oberg died in 01951, but his coauthor Franklin Day Jones didn’t die
until 01967. As I understand it, this means that, in countries that
sentence copyrighted works to life plus 70 years, and do not observe
the rule of the shorter term, even the 01914 First Edition of
Machinery’s Handbook will not be set free until 02037. Argentina and
the EU do observe the rule of the shorter term, for example, but
Germany does not.

 Edgar Rice Burroughs’s Tarzan and Barsoom stories call attention;
though they were published since 01925, Burroughs has been dead
since 01950, so in countries that limit copyright to life plus 70 years,
they are now fair game. Similarly Shaw; Orwell’s Animal Farm and
1984; Olaf Stapledon; Rex Ingram’s The Prisoner of Zenda, the first
Ruritanian fiction; all of Korzybski’s œuvre on General Semantics;
Edna St. Vincent Millay; and Schumpeter. Gurdjieff died in 01949,
and so did Margaret Mitchell (Gone with the Wind) and Richard
Strauss.

 In countries that limit copyright to life plus 50 years, the work of
everyone who died in 01970 has now graduated into the public
domain, notably Carnap, Russell, E. M. Forster, Jimi Hendrix,
Mishima, Nasser, Rube Goldberg, and the Death be not Proud of
Gunther. Adorno, Eisenhower, Gropius, Kerouac, Meher Baba, and
John Wyndham died in 01969. Unfortunately of these only Nasser is
actually from such a country, so this doesn’t help those of us laboring
under more oppressive copyright regimes, even if they observe the
rule of the shorter term. Taiwan, New Zealand, Thailand, Qatar, the
UAE, Tunisia, Bolivia, Iran, and the PRC are notable bright spots
here, and Mexico observes life + 50 for deaths before 01944-01-01,
and Russia and Switzerland, 01943-01-01. India and Venezuela are
currently life plus 60 years.

 And Tom Lehrer effectively released all his songs to the public

https://archive.org/details/machineryshandbo00indu
https://archive.org/details/machineryshandbo00indu
https://archive.org/details/machineryshandbo00indu
https://en.wikipedia.org/wiki/2021_in_public_domain
https://en.wikipedia.org/wiki/2020_in_public_domain
https://en.wikipedia.org/wiki/Machinery's_Handbook
https://en.wikipedia.org/wiki/Machinery's_Handbook
https://archive.org/details/machinerysencyc00jonegoog
https://archive.org/details/machinerysencyc00jonegoog
https://en.wikipedia.org/wiki/Franklin_D._Jones
https://en.wikipedia.org/wiki/Rule_of_the_shorter_term

domain in 02020, using his own website.

 The rule of the shorter term has liberated all US works published
up to 01925 (and, less significantly, all works published up to 01925,
for users in the US); in 02021, that gave us The Great Gatsby, Woolf’s
Mrs. Dalloway, and Agatha Christie’s The Secret of Chimneys, and in
02020 Burroughs’s Tarzan and the Ant Men, Agatha Christie’s The
Man in the Brown Suit, Doctor Dolittle’s Circus, Gershwin’s Rhapsody in
Blue, and W.E.B. Du Bois’s The Gift of Black Folk. The Boxcar
Children was published in 01924, and The Velveteen Rabbit in 01922.
Sinclair Lewis’s Babbitt also seems to be popular, and his Main Street
was published in 01920. Not until 01926 would The Sun Also Rises
and Winnie-the-Pooh appear (which last was published first in
England), and we don’t get The Sound and the Fury or A Farewell to
Arms until 01929.

 In nonfiction, 01925 gave us Ronald A. Fisher’s Statistical Methods
for Research Workers, in which frequentism was born; Walter
Lippmann’s The Phantom Public, on Mussolini’s manipulation of
public opinion, proposing the agent/bystander dichotomy; Napoleon
Hill’s The Law of Success, from which the entire genre of soft-headed
modern self-help books derives; The Bolshevik Myth, by anarchist
Alexander Berkman, who committed suicide in 01936, who was the
lover Emma Goldman’s, who died in 01940, written after he was
deported to Russia, following Goldman’s My Disillusionment in Russia
and My Further Disillusionment in Russia. 01924 gave us Haldane’s
Daedalus; Crookshank’s virulent pseudoscientific racist The Mongol in
our Midst; and the Lessons of October and New Course by Trotsky,
assassinated 01940. 01923 gave us Santayana’s epistemological
Scepticism and Animal Faith, Henry Smith Williams’s ten-volume
Story of Modern Science, the first two volumes of Churchill’s World
Crisis, Bernays’s Crystallizing Public Opinion, and Jepson’s Manual of
the Flowering Plants of California.

 01922 gave us Liddell’s Handbook of Chemical Engineering and
Born’s _Einstein’s theory of relativity.

 H.G. Wells was English, mostly published first in England, and
died in 01946, so his works have mostly been in the public domain
since 02016, since the UK sentences works to life + 70; this notably
includes his 01919 Outline of History, which rejects racism. In 01924
Wells published A Year of Prophesying, a compilation of his columns.
The Everlasting Man, published in 01925, was by Chesterton, who was
also English, but who died in 01936; it is a rebuttal to Wells’s Outline.

 The US doesn’t observe the rule of the shorter term for works
published in 01926 to 01977 unless they were in the public domain in
their source country on 01996-01-01, so I think Wells’s post-01925
works are not yet free in the US, but Chesterton’s are. (Churchill and
Eliot didn't die until 01965.)

 Other public-domain works that catch my eye in the Archive:

• East of the Sun and West of the Moon, 01922, published in New York,
a book of folk tales I enjoyed as a kid
• History of the Cherokee Indians and their legends and folk lore, published

https://www.marketplace.org/2020/10/21/satirist-tom-lehrer-put-his-songs-into-public-domain/
https://www.marketplace.org/2020/10/21/satirist-tom-lehrer-put-his-songs-into-public-domain/
https://tomlehrersongs.com/
https://web.law.duke.edu/cspd/publicdomainday/2021/
https://web.law.duke.edu/cspd/publicdomainday/2020/
https://web.law.duke.edu/cspd/publicdomainday/2020/
https://archive.org/details/babbittlew00lewi
https://archive.org/details/babbittlew00lewi
https://en.wikipedia.org/wiki/Category:1925_non-fiction_books
https://en.wikipedia.org/wiki/Statistical_Methods_for_Research_Workers
https://en.wikipedia.org/wiki/Statistical_Methods_for_Research_Workers
https://en.wikipedia.org/wiki/The_Phantom_Public
https://en.wikipedia.org/wiki/The_Law_of_Success
https://en.wikipedia.org/wiki/The_Bolshevik_Myth
https://en.wikipedia.org/wiki/Category:1924_non-fiction_books
https://en.wikipedia.org/wiki/Daedalus;_or,_Science_and_the_Future
https://en.wikipedia.org/wiki/Daedalus;_or,_Science_and_the_Future
https://en.wikipedia.org/wiki/The_Mongol_in_Our_Midst
https://en.wikipedia.org/wiki/The_Mongol_in_Our_Midst
https://en.wikipedia.org/wiki/Lessons_of_October
https://en.wikipedia.org/wiki/Category:1923_non-fiction_books
https://en.wikipedia.org/wiki/Scepticism_and_Animal_Faith
https://en.wikipedia.org/wiki/Scepticism_and_Animal_Faith
https://en.wikipedia.org/wiki/The_Story_of_Modern_Science
https://en.wikipedia.org/wiki/The_Story_of_Modern_Science
https://en.wikipedia.org/wiki/The_World_Crisis
https://en.wikipedia.org/wiki/The_World_Crisis
https://en.wikipedia.org/wiki/The_Jepson_Manual
https://en.wikipedia.org/wiki/The_Jepson_Manual
https://archive.org/details/HandbookOfChemicalEngineeringI
https://archive.org/details/HandbookOfChemicalEngineeringI
https://archive.org/details/einsteinstheoryo00born
https://en.wikipedia.org/wiki/List_of_countries'_copyright_lengths
https://en.wikipedia.org/wiki/The_Outline_of_History
https://guides.library.cornell.edu/copyright/publicdomain
https://archive.org/details/eastofsunwestofm00asbj
https://archive.org/details/historyofcheroke00lcstar

in Oklahoma, 01921
• The Babur-nama in English, published in London, 01922, translated
by Annette Susannah Beveridge, née Akroyd, who died in 01929
• The Poetic Edda, translated by Henry Adams Bellows (died 01939),
published in New York, 01923
• English Industries of the Middle Ages, by Louis Francis Salzman, died
01971, published at Oxford, 01923 (not public domain outside the
US)
• The Joy of Cooking, first published in the US in 01923 with
unchanged reprintings up to 01957; Irma S. Rombauer died in
01962, but her daughter Marion Rombauer Becker didn’t die until
01976. So the original editions are public domain in countries
observing the rule of the shorter term, but not those that sentence
foreign works to life + 70 years.
• Fuel and Refractory Materials, poorly scanned in Bangalore, by
Alexander Humboldt Sexton, published in Glasgow and Bombay in
• Sexton seems to have been born in 01853 and retired from the Chair
of Metallurgy in 01909, so he almost surely died before 01950, but I
have not found death records yet.
• A History of Magic and Experimental Science During the First Thirteen
Centuries of Our Era, Volume I, by Lynn Thorndike (died 01965),
published 01923 by Columbia University Press (New York and
London) and the Macmillan Company, describing the evolution of
science from Roman times (Pliny, Seneca, and Ptolemy) up to the
13th century (Roger Bacon, Raymond Llull, Albertus Magnus).
• Among the Ibos of Nigeria, published in London, 01921, by George
Thomas Basden, died 01944, about the Igbo, covering marriage
customs, slavery, religion, etc., with many high-resolution
black-and-white photos.
• A course of pure mathematics, by Godfrey Harold Hardy (died 01947),
Third Edition, published at Cambridge in 01921, a textbook of basic
analysis (complex numbers, continuous functions, derivatives,
integration, circular functions, exponentials, infinite series).
• Advanced laboratory practice in electricity and magnetism, published in
New York and London in 01922 by McGraw-Hill, by Earle Melvin
Terry, died 01929. Covers units, switches, rheostats, galvanometers,
Ohm’s Law, Weston cells, Kelvin balances, ammeters, voltmeters,
wattmeters, capacitance, resonance, electron-tube oscillators, alpha
rays, beta rays, gamma rays, optical pyrometers, etc., with exercises.
Scanned in color at 400 dpi with numerous schematics and
engravings.
• Servant of Sahibs, excerpts from the travel diary of famed Ladakhi
explorer Ghulam Rassul Galwan (died 01925), who named the
Galwan river, published in London in 01923. This edition seems to be
devoid of illustrations.
• Mazes and Labyrinths: a General Account of Their History and
Developments, by William Henry Matthews, who died in 01948,
published in 01922 by Longmans, Green, & Co., in London, New
York, Toronto, Bombay, Calcutta, and Madras., dedicated to his
daughter Zeta (01914-02000), with 151 photos and other illustrations.
Though it focuses mostly on British mazes it also covers, for example,
Pima and Mesa Verde mazes, and Troy.
• Welsh Fairy Tales, by William Elliot Griffis (died 01928), published
in 01921 in New York by the Thomas Y. Crowell company. A book

https://archive.org/details/baburnamainengli01babuuoft
https://en.wikipedia.org/wiki/Annette_Beveridge
https://archive.org/details/poeticedda00belluoft
https://archive.org/details/EnglishIndustriesOfTheMiddleAges
https://en.wikipedia.org/wiki/Louis_Francis_Salzman
https://en.wikipedia.org/wiki/Louis_Francis_Salzman
https://archive.org/details/in.ernet.dli.2015.126676
https://archive.org/details/FuelAndRefractoryMaterials
http://onlinebooks.library.upenn.edu/webbin/book/lookupname?key=Sexton, A. Humboldt (Alexander Humboldt), 1853-
http://www.glasgowwestaddress.co.uk/1909_Glasgow_Men/Sexton_A_Humboldt.htm
http://www.glasgowwestaddress.co.uk/1909_Glasgow_Men/Sexton_A_Humboldt.htm
https://archive.org/details/historyofmagicex00thor
https://archive.org/details/historyofmagicex00thor
https://archive.org/details/amongibosofniger00basd
https://archive.org/details/coursepuremath00hardrich
https://archive.org/details/advancedlaborato00terruoft
https://archive.org/details/in.ernet.dli.2015.173801
https://en.wikipedia.org/wiki/Rasool_Galwan
https://theprint.in/opinion/ghulam-rassul-galwan-the-man-who-named-the-galwan-river-the-site-of-india-china-stand-off/432533/
https://theprint.in/opinion/ghulam-rassul-galwan-the-man-who-named-the-galwan-river-the-site-of-india-china-stand-off/432533/
https://archive.org/details/mazeslabyrinthsg1922matt
https://archive.org/details/mazeslabyrinthsg1922matt
https://www.labyrinthos.net/C23 WH Matthews.pdf
https://archive.org/details/griwels
https://en.wikipedia.org/wiki/William_Elliot_Griffis

of children’s stories.
• A Treatise on Probability, by John Maynard Keynes, reprinting of
01921 first edition by Macmillan and Company. I didn’t know
Keynes had written a textbook on probability; on skimming, this
seems to spend as much time on epistemology as on mathematical
proofs.
• The Prophet, published 01923 in the US, by Kahlil Gibran (died
01931), poorly scanned by Digital Library of India.
• Heraldry and Floral Forms as Used in Decoration, published 01922 in
London, by English book illustrator Herbert Cole, died 01930.
Abundant engravings scanned at 500 dpi.
• Sir Isaac Newton’s Daniel and the Apocalypse, by Sir William Whitla,
died 01933, published 01922 in London, with the Latin translated into
English.
• The Inscriptions of Asoka, by Eugen Hultzsch, died 01927, published
at Oxford 01925, with many black-and-white photos of the
inscriptions, beautifully scanned at 300 dpi, along with transcriptions,
transliterations, and translations.
• Leonhari Euleri, Opera Omnia (Opera Mathematica Volumen
Septimum): Commentationes Algebraicae: Ad Theoriam Combinationum
et Probabilitatum Pertinentes, published by Louis Gustave Du Pasquier,
died 01957, published 01922, 644 pp., evidently mostly in French,
with French notes by L. G. D., including manuscripts published here
for the first time; though some Latin is present. I’m not sure whether
Euler’s French is Euler’s or a translation by L. G. D. This is the 7th
volume of the Complete Works of Leonhard Euler (Oeuvres complètes de
Léonard Euler). The scan is not very good because it’s by
Akce-Universal Digital Library, but it’s not totally fucked up like
their other scans. L. G. D. taught at the University of Neuchâtel in
Switzerland. I’m not sure where this was published but I’m pretty
sure it wasn’t the US, so it’s probably not in the public domain
elsewhere.
• Selected stories from O. Henry, died 01910, including The Gift of the
Magi (first published 01905), edited by his friend C. Alphonso Smith,
“late head of the Department of English at the United States Naval
Academy”, died 01924, published by the Odyssey Press, New York,
in 01922.
• The Story of Little Black Sambo, by Helen Bannerman (died 01946),
published in New York in 01923 by the Frederick A. Stokes
Company, following a London publication in 01899. Frequently
criticized for racism, the story itself contains no racist stereotypes, but
the illustrations do; around World War II the name Sambo became a
byword for racism, though perhaps originally it derives from Foulah
sambo “uncle” or Hausa sambo “second son”.
• Lyman Churchill Newell’s 01922 extremely basic introductory
textbook for children, with exercises; originally published by D. C.
Heath & Co. (Boston, New York, Chicago), and he died in 01933.
Scanned in color at 500 dpi, with 215 or so grayscale photographs and
other figures. The 560-page PDF is compressed very badly, inflicting
fatal damage on most of the hundreds of photographs and other
illustrations, but the original JP2 files are available and are not so
corrupted. Organic is relegated to “fuels and illuminants”, “other
carbon compounds” and “food”, pp. 260-315, which I suppose in part
represented the state of knowledge at the time. Imperial units are

https://archive.org/download/ATreatiseOnProbability
https://archive.org/details/in.ernet.dli.2015.536146
https://archive.org/details/heraldryfloralfo00colerich
https://en.wikipedia.org/wiki/Herbert_Cole
https://archive.org/details/danielandtheapoc00newtuoft
https://en.wikipedia.org/wiki/William_Whitla
https://archive.org/details/InscriptionsOfAsoka.NewEditionByE.Hultzsch
https://en.wikipedia.org/wiki/E._Hultzsch
https://archive.org/details/LeonhariEuleriCommentationsAlgebraicae
https://archive.org/details/LeonhariEuleriCommentationsAlgebraicae
https://archive.org/details/LeonhariEuleriCommentationsAlgebraicae
https://en.wikipedia.org/wiki/L._Gustave_du_Pasquier
https://en.wikipedia.org/wiki/L._Gustave_du_Pasquier
https://archive.org/details/selectedstoriesf00henr
https://en.wikipedia.org/wiki/C._Alphonso_Smith
https://archive.org/details/storyoflittleblabanner
https://en.wikipedia.org/wiki/The_Story_of_Little_Black_Sambo
https://en.wikipedia.org/wiki/The_Story_of_Little_Black_Sambo
https://www.etymonline.com/word/sambo#etymonline_v_22666
https://archive.org/details/practicalchemist00newe
https://archive.org/details/practicalchemist00newe

used throughout except for temperature. “The topics suggested by
the College Entrance Examination Board and the Board of Regents
(New York) have been incorporated.” The low information content
of this book is hard to overstate; Gibbs free energy is not mentioned,
and the notion of equilibrium is relegated to p. 152.
• In Praise of Folly, by Desiderius Erasmus, in which he castigates
royalty and the Church, published in New York by Peter Eckler
Publishing Co. in 01922, with numerous engraved illustrations by
Hans Holbein. Peter Eckler himself wrote the preface, which is
followed by a brief biography of Erasmus, who died in 01536. The
book seems to be printed entirely in English, but the biography and
translation are uncredited. Erasmus did presumably speak English, as
he lived in England from 01510 to 01515, but the first edition was
published in Latin and Greek (mostly Latin), with engravings by
Holbein, who evidently died in 01543. Eckler had previously
published Walt Whitman’s Drum-Taps in 01865, and The Canon of the
Bible in 01877, so he must have been very old by 01922! My best
guess is that Eckler was reprinting an earlier English translation, but
not John Wilson’s 01668 translation, which is notably different and
worse.

Topics

• History (p. 1153) (24 notes)
• Reading (p. 1244) (4 notes)
• The United States of America (USA) (p. 1314) (2 notes)
• Law
• Copyright

https://archive.org/details/erasmusinpraiseo00erasiala
https://en.wikipedia.org/wiki/In_Praise_of_Folly#/media/File:HolbeinErasmusFollymarginalia.jpg
https://en.wikipedia.org/wiki/In_Praise_of_Folly#/media/File:HolbeinErasmusFollymarginalia.jpg
https://la.wikisource.org/wiki/Moriae_encomium
https://en.wikipedia.org/wiki/When_Lilacs_Last_in_the_Dooryard_Bloom'd#Publication_history
https://en.wikipedia.org/wiki/When_Lilacs_Last_in_the_Dooryard_Bloom'd#Publication_history
https://en.wikipedia.org/wiki/When_Lilacs_Last_in_the_Dooryard_Bloom'd#Publication_history
https://en.wikipedia.org/wiki/When_Lilacs_Last_in_the_Dooryard_Bloom'd#Publication_history
https://www.gutenberg.org/ebooks/30132
https://www.gutenberg.org/ebooks/30132
https://www.gutenberg.org/ebooks/30132
https://en.wikisource.org/wiki/The_Praise_of_Folly/The_Praise_of_Folly

 At small scales, electrowinning
may be cheaper than smelting
 Kragen Javier Sitaker, 02021-11-21 (updated 02021-12-30)
(25 minutes)

 I was thinking that on small scales (sub-meter, especially
sub-millimeter) it might be more economical to reduce metals from
ores by aqueous electrowinning than by smelting, because maintaining
large thermal gradients is very difficult.

 If the things being constructed are themselves small, the strength
of materials is not very important, because at small scales even very
weak materials are strong enough to hold together except at very
large accelerations. Metals, however, have some other interesting
properties: they can conduct electricity, they have very low vapor
pressures and so can withstand exposure to space, and they can be
readily shaped by electrochemical machining.

 Macroscopically, hardness is very important for abrasion or
cutting, but I suspect that these shaping processes, like sliding-contact
joints, will not be very usable at small scales because of the rapidity of
surface wear and the comparatively large forces involved in surface
contact. However, at scales above where this is true, hardness is still
important, because it determines what can cut what else.

 Casting and molding are also very important shaping processes at
the human scale. At submillimeter scales, the same thermal problems
that impede XXX

 pH, CO2, H2O, O2

 pressure

 Thermal versus electrical insulation: what
about not electrowinning?
 Consider the Ellingham diagram for iron, which shows that
smelting iron requires a temperature of at least 700°, more practically
1000° or more. If outside the smelting apparatus the temperature is
25° then we have some 975° of temperature difference. If we have a
meter of refractory insulation, that’s 975 K/m. Vermiculite’s
insulating value is about 16-17 K m/W, a conductivity of about 0.06
W/m/K, giving about 60 W/m² with that gradient, a heat flux
which is, in the steady state, uniform throughout the thickness of the
material. Aerogel is about three times as good, insulating firebrick
about three times worse, and most other insulating materials are in
between. The worst insulator of all, diamond, is about 1000 W/m/K.

 Now suppose we scale the apparatus down by a linear factor of
1000, cutting the insulation thickness to 1 mm. Because the thermal
gradient has increased by a factor of 1000, we are now losing 60
kW/m². This poses a real difficulty inside the apparatus. Because the
surface area covered by insulation has increased by a factor of a
million (say from 600 m² to 600 mm²) so we are dissipating only one
thousandth as much power as before to maintain the kiln at smelting

https://en.wikipedia.org/wiki/Ellingham_diagram
https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page)
https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page)
https://www.corrosionpedia.com/definition/660/immersion-plating
https://www.corrosionpedia.com/definition/660/immersion-plating

temperature; but the volume over which that power must be
generated has diminished by a factor of a billion (say to 1 milliliter),
requiring a million-fold increase in the power density of our heating
elements, say to 35 W/ml, which is achievable but problematic.
Scaling down further rapidly becomes impossible; at 1 micron
thickness we are losing 60 MW/m², which for a 10-micron cube
amounts to 36 milliwatts.

 It also poses a difficulty outside the apparatus, because removing
60 kW/m² requires either radiation at an uncomfortably high
temperature (“60 suns”, as they say for solar concentrators) or a lot of
coolant, but this is a less serious problem.

 Scaling in the opposite direction, we would reach a point where
even shitty insulating materials would thermally insulate adequately.

 High-temperature processes are possible in a low-temperature
environment at the micron scale if they can be carried out very
quickly and intermittently. For example, a cubic micron of material,
weighing on the order of 5 picograms, can be heated to 2000° for a
short period of time with an energy on the order of 10 nanojoules. It
cools off through conduction with on the order of a milliwatt, so
several milliwatts is required to reach this temperature, which then
cools off on a timescale on the order of a microsecond. Lasers and
electron beams are straightforwardly capable of being switched with
submicrosecond timescales and delivering such power densities.

 Resistance heating is also straightforward. 10 milliwatts at 10 volts
is a milliamp and thus 10 kΩ. If our joule heater is amorphous carbon
at 6 × 10-4 Ω m, a 1-micron cube of it would give us 600 ohms; we
could either increase the current to 4 mA and reduce the voltage to
2.4 volts, or we could increase the aspect ratio of the heating element,
but either way it seems clear that we will have no trouble reaching the
desired temperatures on the desired timescale with easily constructed
circuitry.

 Electric arcs and pseudosparks are another candidate method for
achieving such temperatures rapidly enough.

 By contrast, no metal needs as much as ten volts to reduce it.
Common insulators have electrical resistivities of 1011 Ω m and up, the
best ones exceeding 1023 Ω m, while conductors are in the
neighborhood of 10-9 Ω m. Ten volts across a millimeter of a 1015 Ω
m substance like sulfur or dry wood produces a current of about 10
pA/m² and thus 100 pW/m², almost 15 orders of magnitude less than
the thermal leakage calculated above through a thermal insulator for
the temperature needed to smelt iron. If the linear approximation for
conductivity were accurate this far down, a 1-nanometer-thick layer
of such an insulator would permit only 0.01 mA/m² (and 0.1
mW/m²) of conduction. In fact breakdown voltage becomes a much
more significant concern than energy loss to conduction; fused silica
can withstand some 500 volts per micron, but other materials are
closer to 10, so they’d need over a micron of insulation. At small
scales vacuum becomes the best choice of insulator, since most metals
don’t suffer field emission until over a gigavolt per meter, which
would be 0.01 microns of insulating vacuum.

 A micron-thick wire at 10-9 Ω m has 1.2 kΩ/m of resistance,
which is an almost entirely insignificant 1.2Ω/mm. So electrical

https://en.wikipedia.org/wiki/Electroless_nickel_immersion_gold
https://en.wikipedia.org/wiki/Electroless_nickel_immersion_gold
https://en.wikipedia.org/wiki/Dielectric_strength#Break_down_field_strength
https://en.wikipedia.org/wiki/Field_electron_emission
https://en.wikipedia.org/wiki/Field_electron_emission

transmission is not perfectly efficient but it does not pose feasibility
problems for micron-scale electrowinning in the way that thermal
conductivity does for micron-scale carbothermic reduction.

 Metal selection
 The eight ancient metals are iron, gold, copper, lead, tin, silver,
mercury, and, in India, zinc. Today I think the most important
metals are aluminum, iron, copper, zinc, tin, tungsten, nickel,
chromium, lead, cobalt, molybdenum, vanadium, magnesium,
titanium, platinum, gold, zirconium, and the semimetals carbon and
silicon. LME’s “non-ferrous” category includes aluminium, copper,
zinc, nickel, lead, tin, aluminium alloy, NASAAC (“North American
Special Aluminum Alloy Contract”), “aluminium premiums”,
alumina, and aluminium scrap; “precious” is gold, silver, platinum,
and palladium; and “EV” (“electric vehicle”) is cobalt, molybdenum,
and lithium.

 Of course many other metallic elements are widely used, in an
oxidized form, such as calcium, sodium, and potassium, and there are
niche uses of almost all of the metals. But what I’m mostly concerned
with here is reducing metals from their oxidized form.

 Aluminum
 Aluminum is resistant to corrosion in air, nearly as abundant as
iron, and although it is not as strong as steel per volume, it is stronger
per weight, much easier to shape, and more conductive per mass than
copper. It also has an astoundingly high boiling point, 2470°, and an
extremely useful oxide. 65 million tonnes are mined per year, and it
costs about US$2/kg.

 Unfortunately, there is no known way to electrowin aluminum in
an aqueous solution; metallic aluminum has a -2.33-volt standard
electrode potential to reduce to hydroxyls, while hydrogen is only
-2.23 volts, so aluminum will steal oxygens from hydronium. Instead
aluminum is electrowon by dissolving alumina in cryolite Na3AlF6,
which requires a temperature around 1000°; neat cryolite melts at
1012°, but the eutectic is only 960°.

 Of my list of “important metals” above, magnesium, titanium, and
zirconium have the same problem, but the others should all be
electrowinnable with low-temperature processes.

 Alternative processes for reducing aluminum might include plasma
electrolysis, mass spectrometry, electron-beam reduction in vacuo, and
simple carbothermic reduction using intermittent heating.

 Iron
 Iron is one of the most abundant and strongest metals, and it can
withstand moderate heat (1500° or so without oxygen, much more
than aluminum or brass, though not in the same ballpark as sapphire,
graphite, tungsten, molybdenum, etc.). It’s the main metal used for
construction and machinery, having mostly displaced the more
expensive bronze and brass as the humans improved their techniques
for shaping the more stubborn iron. A couple billion tonnes of it are
mined per year, and I think scrap iron costs about 25¢/kg

(US$213/ton in 02020).

 Electrolytic iron is commercially used in cases that require
especially high purity or small particles, such as cereal fortification,
powder metallurgy, or high-coercivity powdered-iron magnetic
cores.

 US Patent 4,134,800 from 01979, by Prasanna K. Samal and Erhard
Klar, describes one process, using a bath of ferrous sulfate (36-40 g/l
of iron ion) and ammonium sulfate (24-28 g/l of ammonia ion), with
1.4-1.6 grams of iron per gram of ammonium, a pH of 5.6-6.0, a
temperature of 38°-49°, and 18-26 amps per square foot (194-280
A/m²), which they say isn’t critical. Their declared aim was to make
the iron more brittle so it could be ground, which they hoped to
achieve by iron hydroxide formation. As a “prior art bath” they gave
as an example 50 g/l ferrous ions, 13 g/l ammonia ions, pH 5.4,
38°-43°, 22 A/ft² (237 A/m²). They carefully didn’t mention their
voltage, electrode spacing, agitation, aeration, electrolytic cell size (1
liter or 1 tonne?), or Faraday efficiency, and they didn’t mention any
other additives, which hopefully they didn’t have.

 If you had sulfate, you could presumably digest iron ores with it
and then follow this process. In fact, you could probably
continuously digest iron oxides in the sulfate electrolysis bath.

 Samal and Klar cite patents 2,464,168 (Fansteel, 01949), 2,481,079
(Chrysler, 01945), and 2,626,895 (Fansteel, 01944). A little further
searching turns up patents 1,782,909 (Pike, 01930), 2,464,889 (Pike
and Schoder, Tacoma Powdered Metals, 01949), 2,503,235 (Cain,
Sulphide Ore Process Co., 01950), 1,162,150 (Estelle, 01915),
2,538,990 (Trask, Buel Metals, 01951), 3,041,253 (Audubert and
Lacheisserie, 01962) and, for nickel, patents 3,414,486 (Nordblom and
Bodamer, ESB, 01968) and 483,639 (Strap, 01892).

 The Estelle patent is particularly interesting for being over a
century old and claiming to make iron pyrite an economic source of
iron, which it is not at present (though the name of Cain’s company
above suggests it used to be). He was electrolyzing ferrous chloride,
formed by digesting the pyrite with muriatic acid, and then recycling
the resulting ferric chloride solution into muriatic acid and ferrous
chloride by reducing it with sulphuretted hydrogen (produced in the
first step), producing sulfur as a byproduct. He says that nickel,
cobalt, and zinc can be co-precipitated with the iron, but the zinc is
easily enough driven off.

 Cain’s patent is especially helpful in telling us that at the time
(01946) there were two main processes for electrodeposition of iron,
one involving the dissolution of an iron anode and one that doesn’t
(because it’s digesting an oxide or something similar); and that
usually you use an asbestos anode bag to contain the crap formed on
the anode. He says it’s good to keep the pH below 2 with muriatic
acid. (You’ll pardon me if I prefer polyethylene or polyester to
asbestos.)

 Audubert and Lacheisserie (concerned with fine particle size) say
you can use most ferrous salts, but sulfate and chloride are best, and
that if you’re getting oxidized iron, either you have oxygen dissolved
in the bath or you have too much ferric iron, and that they use 0.65
volts.

https://patents.google.com/patent/US4134800A/en
https://patents.google.com/patent/US483639A/en

 Anyway, so it seems like it’s slightly tricky, but not nearly as tricky
as you’d assume from the negative standard electrode potential of
iron. And I guess it would have to be not that tricky for Edison’s
nickel-iron battery to be rechargeable.

 Copper
 While iron is crucial for moderate temperatures and strength, the
much less abundant copper is crucial for electrical conductivity,
low-friction bearing surfaces for iron parts, corrosion resistance in
oxygen atmospheres, and high thermal conductivity for heat
exchangers. 25 million tonnes are produced per year; it costs
US$6.20/kg.

 Copper is so easy to electrodeposit (and electro-etch) that it’s
easier to enumerate the cases where it won’t work: where you’re
trying to form an adherent deposit on an electrode that copper will
spontaneously oxidize, such as iron, and when the anions in your
electrolyte don’t form a soluble copper salt (among the usual suspects,
these are iodide (mostly), cyanide (without enough ammonia),
thiocyanate, hydroxide (i.e. bases or just water), oxalate (again,
without enough ammonia), and phosphate). The USGS says that
there are currently 3 electrolytic refineries for copper in the US and 14
electrowinning facilities.

 Zinc
 Zinc is used to add corrosion resistance to iron in oxygen
atmospheres (its main industrial use today), in Zamak, as an alloying
element for copper to form brass, and in its oxidized form, as a white
pigment. It has a remarkably low boiling point, 907°. 12 million
tonnes are produced per year; it costs US$2.40/kg.

 Despite the name “galvanization”, zinc coating was originally done
not as electroplating but as a hot-dip process, which is still the most
common way to do it today. But electroplating zinc is also a common
thing to do, and there’s lots of historical work on producing zinc
powder electrolytically.

 “Zamak” is a family of low-temperature zinc-based casting alloys,
some of which have strength comparable to steel; Zamak 2 (4%
aluminum, 2.7% copper, 0.04% magnesium) has a tensile strength of
330 MPa, a Young’s modulus of 96 GPa, and melts over the range
379-390°. Unfortunately the aluminum is a necessary component,
and slight lead impurities will wreck Zamak with zinc pest.

 Brass
 In modern practice, brass (about 20% zinc, US$5.40/kg) has mostly
been displaced by steel, which is stronger, harder, stiffer, lighter, and
cheaper (more than 20× cheaper by weight), and, in high-carbon
cases, can be hardened by heat treatment. But brass still has many
small-volume niches.

 It is enormously easier than steel to cast or, especially with a bit of
lead, to cut.

 It’s more corrosion-resistant in oxygen atmospheres and in water,
especially salt water; “admiralty brass” is 70% copper, 29% zinc, and
1% tin (see below) and is an especially good formulation for this.

 Brass has higher thermal and electrical conductivity than steel, and
so in particular it lasts much longer for EDM electrodes.

 It has much lower friction on steel than steel does, so it can be used
for plain bearings (journals), as a cheaper and less durable alternative
to bronze (though babbitt is often better still).

 It’s used as a solder to join steel parts (“brazing”), which allows a
stronger connection than bolts, with lower temperatures and less
distortion than welding, and it can join a wider collection of materials
than welding, including tungsten carbide (see below).

 Because it’s softer than steel, brass doesn’t produce sparks and
doesn’t mar steel surfaces, so in some environments and for some
purposes brass hammers and other tools are preferred to steel.

 Finally, its yellow color is often used for aesthetic purposes. With
just zinc and copper, you can make silver (zinc), red (copper), and
yellow (brass).

 Galvanizing
 Galvanized steel, steel coated with zinc, has mostly replaced
tinplate as an anti-corrosion coating. Zinc is somewhat toxic in food
(the oral rat LD50 of the highly soluble zinc chloride is 350 mg/kg,
and it’s also used topically to induce skin necrosis in “black salves”)
and produces toxic fumes when heated near its boiling point, so this
isn’t done for tin cans or cooking pots, but it’s widespread for things
like buildings. As mentioned above, this is usually done as a hot-dip
thing, but it can be done through electrodeposition.

 Tin
 Tin is crucial for soldering electronics; alloyed with copper it is
bronze; alloyed with copper and antimony it is babbitt; coating steel
it prevents corrosion; and it melts at only 232°. The largest of its
many uses today is as a nontoxic anti-corrosion coating for steel in
“tin” cans. Bronze can withstand both higher temperatures and more
stress than brass, while retaining brass’s easy castability. Babbitt,
which makes the best plain bearings, is tin with 2.5-5% copper
(occasionally as high as 8.5%) and 4-8.5% antimony. Some 0.3 million
tonnes of tin are mined per year, and it costs about US$18/kg.

 You might think its numerous oxidation states (2+ (stannous) and
4+ (stannic), sometimes + and 3+, as well as neutral and negative
states) would make it difficult to electrowin. The sulfate, bromide,
chloride, and fluoride, all divalent, are water-soluble; the iodide is
mildly so, and the bromide is additionally soluble in donor solvents
like DMSO. There are also a tetravalent bromide, chloride, fluoride,
iodide, sulfide (sphalerite), and nitrate; the tetravalent chloride is a
liquid that mixes with all kinds of nonpolar liquids, and the
tetrabromide is also water-soluble. The nitrate is, unusually, unstable
in water. The sulfate is preferred when stannic ions are undesired,
because there is no stannic sulfate.

 Tin electroplating is widely practiced using acid baths (I’m guessing
sulfuric), alkaline baths (I’m guessing stannate; you can get sodium
stannate by digesting tin with lye), and methylsulphonic acid baths.
It’s often codeposited with lead, copper, silver, zinc, and/or bismuth.

https://www.sharrettsplating.com/blog/the-tin-plating-process-a-step-by-step-guide/

 Tungsten
 Tungsten has the highest melting point of any metal (3422°),
almost as high as carbon’s sublimation temperature of 3642° and the
melting points of tantalum hafnium carbide (3990°), tantalum carbide
(3880°), and hafnium carbide (3928°), though well short of tentative
results for hafnium carbonitride (4200°). Tungsten also has the
highest boiling point of all elements, an astounding 5930°. It’s an
essential ingredient in high-speed steel, though vanadium and
molybdenum can replace it to some extent, and tungsten carbide (the
main current use of tungsten) has largely replaced high-speed steel in
modern steel-cutting practice. It’s also essential to TIG welding and
important in vacuum tubes and incandescent lights. Some 84000
tonnes are mined per year, 80% in China, but I don’t know what it
costs.

 Carbides of vanadium, molybdenum, niobium, and the
titanium-group metals are possible substitutes for tungsten carbide.

 The current industrial process for smelting tungsten is long and
involved, but the main article of commerce is tungsten trioxide,
which is then either carbothermally reduced or reduced with
hydrogen.

 Experiments have been made in electrowinning of tungsten at
1080°, but also US patent 2,384,301 (Harford, 01944) and others
describe electrodeposition methods for reducing tungsten. Harford
recommends complexing your tungsten with 25% ethylenediamine in
water, using 25 A/ft², but he explains that people previously just used
cyanide.

 The titanium group
 I think low-temperature electrowinning of titanium, zirconium,
and hafnium is basically a lost cause with current electrochemistry.
This is a real shame, because titanium is as strong as iron and much
lighter.

 Perhaps even more interesting than the metals, though, are the
carbides, nitrides, borides, and oxides of this group, which are
outstanding materials in many ways: ultra-high temperature
ceramics, superhard, transformation-toughened, solid electrolytes,
photocatalysts, super-high-kappa dielectrics, resistant to chemical
attack, high-conductivity semiconductors, etc. They are often
produced from the metals, but for example zirconium diboride can be
made from refined zirconia, boria, and metallic magnesium, or from
boron and zirconia, or boron carbide and zirconia. Nitrides can be
made by reacting the oxides with ammonia or nitrogen, etc.

 However, of the oxides, only titania (rutile or anatase) occurs in
nature. Zirconia (mixed indiscriminately with hafnia) is obtained
from zirconium silicate (zircon or jargoon) by calcining.

 Electrowinning to separate metals
 In most cases it’s difficult to electrodeposit alloys; metals tend to
get separated from each other by the process. Sometimes this is
because of differing solubilities; lead sulfates, for example, are
insoluble, so lead won’t electrodeposit from a sulfate bath.

https://phys.org/news/2020-05-scientists-heat-resistant-material.html
https://www.911metallurgist.com/electrolysis-tungsten-metal-tungsten-carbide/
https://patents.google.com/patent/US2384301
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747801/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747801/

(Chromium has both soluble and insoluble sulfates, and of course
barium and calcium have insoluble sulfates, but they’re too reactive to
electrodeposit from water.) But that’s not unique to electrochemistry;
that’s just regular heap-leach mining chemistry.

 The much more interesting fact is that by setting the voltage low
enough, you can generally electrodeposit just a single metal from an
electrolyte containing different kinds of cations, because no two
metals have exactly the same electrode potential. This is potentially
very interesting: it’s a high-throughput, high-efficiency, small,
low-temperature way to separate many different ionic species. It
won’t work for every case, because of considerations like those
mentioned above for iron. But it will work in many cases.

 By the same token, it’s often possible to dissolve just one metal out
of an alloy anode by setting the voltage at the right level.

 Single displacement and the Tree of Saturn

 In general if a metal can be electrowon it can also be precipitated
by a single displacement reaction from a more reactive metal.
Standard electrode potentials include:
 solutes metal E°/V electrons
 Li+ + e- Li(s) -3.0401 1
 Na+ + e- Na(s) -2.71 2
 Mg2+ + 2e- Mg(s) -2.372 2
 Al3+ + 3e- Al(s) -1.662 3
 Ti2+ + 2e- Ti(s) -1.63 2
 Zr4+ + 4e- Zr(s) -1.45 4
 V2+ + 2e- V(s) -1.13 2
 2H2O + 2e- H2(g) + 2OH- -0.8277 2
 Zn2+ + 2 e− Zn(s) -0.7618 2
 Ta3+ + 3 e− Ta(s) -0.6 3
 Fe2+ + 2 e− Fe(s) -0.44 2
 Co2+ + 2 e− Co(s) -0.28 2
 Ni2+ + 2 e− Ni(s) -0.25 2
 Sn2+ + 2 e− Sn(s) -0.13 2
 Pb2+ + 2 e− Pb(s) -0.126 2
 2H+ + 2 e− H2(g) 0 2
 Cu2+ + 2 e− Cu+ +0.159 1
 Cu2+ + 2 e− Cu(s) +0.337 2
 O2(g) + 2H2O + 4e- 4OH- +0.401 4
 Cu+ +  e− Cu(s) +0.52 1
 Ag+ +  e− Ag(s) +0.7996 1
 Au3+ + 3 e− Au(s) +1.52 3

 So, if you have some divalent lead salt such as lead acetate in
water, and you put a less noble metal into the water, such as
aluminum, titanium, zirconium, vanadium, zinc, tantalum, iron,
cobalt, nickel, or even tin, you should expect the lead to precipitate,
dissolving the other metal into the water; this is the famed Tree of
Saturn of the alchemists, and when instead done with a soluble salt of
silver, it is the Tree of Diana. The same thing explains the immersion
plating of silver ions onto copper with brief immersion at 50° to 60°,
immersion plating of gold onto copper at 80° to 90°, immersion

https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page)
https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page)
https://www.corrosionpedia.com/definition/660/immersion-plating

plating of gold onto nickel, and so on.

 As I understand it, the difficulty in electrowinning aluminum,
magnesium, and the titanium-group metals is precisely that they have
a more negative electrode potential than hydrogen, so they form an
“immersion plating” of hydrogen, consuming the water and the
metal. Normally they are protected from this reaction by an
impermeable oxide layer, so they don’t dissolve spontaneously in
water the way lithium and sodium do.

 So, in theory, you ought to be able to precipitate out any of the
nobler metals from solution by starting with a hunk of zinc.

 Topics

• Materials (p. 1138) (59 notes)
• Electrolysis (p. 1158) (18 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Aluminum (p. 1180) (10 notes)
• Minerals (p. 1210) (6 notes)
• Steel (p. 1222) (5 notes)
• Small things (p. 1223) (5 notes)
• Copper (p. 1234) (5 notes)
• Refining (p. 1335) (2 notes)

https://en.wikipedia.org/wiki/Electroless_nickel_immersion_gold
https://en.wikipedia.org/wiki/Electroless_nickel_immersion_gold

Micro ramjet
Kragen Javier Sitaker, 02021-11-22 (updated 02021-12-30)
(3 minutes)

 Most of the fuel of a rocket is its oxidizer. For the air, ramjets are
an appealing alternative: just carry the reducer, squirt it into a
combustion chamber, and let the hot compressed incoming air
maintain the combustion!

 The autoignition temperature of heptane is 223°, and it’s nearly as
energy-dense as diesel or regular jet fuel: gasoline is 34 MJ/l versus
diesel’s 39 or kerosene’s 35. So if the incoming air can get over 250°
or so, a bit less than doubling its input temperature, we’re golden;
from there it’s just a matter of adding the heptane or whatever
gradually enough to avoid cooling the air below ignition temperature.

 How much compression does that need? For an ideal gas, PV =
nRT; in an isothermal process, where nRT is constant, PV = some
constant C. So the short answer is that we need to double PV. But
when we increase P, V decreases. By how much?

 Well, in adiabiatic heating and cooling, PVn = C, where n is the
adiabatic index, 7/5 for diatomic gases. So, I guess, if the volume is
cut in half, then the pressure needs to increase by a compensating
factor of 27/5 = 2.64, which means that the product PV and therefore
the temperature increased by 32% (22/5 = 1.32). So to double the
temperature we need to decrease the volume by 25/2 = 5.66, which
will increase the pressure by 5.667/5 = 11.314, and 11.314/5.66 = 1.999.

 (I had to write 24 lines of Python to figure that out.)

 So we need about 11 atmospheres of pressure on the front of the
ram in order to run the jet. How fast is that?

 As I understand it, in isentropic compressible flow, the stagnation
pressure is (1 + ½(n-1)M²)(n/(n-1)) times the static pressure of the
surrounding air, at Mach M. Here n is 7/5, n-1 is 2/5, n/(n-1) is thus
7/2, so this simplifies to (1 + M²/5)7/2. So, to get 11 times higher
stagnation pressure:
11 = (1 + M²/5)7/2

 112/7 = 1 + M²/5
 5(112/7 - 1) = M²
 M = (5(112/7 - 1))½

 This works out to be about Mach 2.22, about 760 m/s at sea level,
if I’ve calculated everything correctly. But I suspect that it isn’t
correct because Wikipedia talks about subsonic ramjets, and they
surely aren’t using fuel that ignites at a much lower temperature than
heptane, right? Indeed, WP says that they’ve been run as low as 45
m/s, but need to run at at least Mach 0.5 to be self-sustaining.

 A crucial thing here is that the stagnation pressure and thus the
stagnation temperature doesn’t depend on the scale or shape of the
ramjet in any way; it’s the same for a millimeter-wide ramjet or a
kilometer-wide ramjet. I’m not sure if that’s part of my error,
though. The ideal-gas assumptions break down in the transonic
region, as I understand it, but I don’t think that’s my problem.

https://en.wikipedia.org/wiki/Energy_density#In_chemical_reactions_(oxidation)
https://en.wikipedia.org/wiki/Energy_density#In_chemical_reactions_(oxidation)
https://en.wikipedia.org/wiki/Adiabatic_heating#Adiabatic_heating_and_cooling
https://en.wikipedia.org/wiki/Stagnation_pressure#Compressible_flow
https://en.wikipedia.org/wiki/Stagnation_pressure#Compressible_flow
https://en.wikipedia.org/wiki/Ramjet

Topics

• Physics (p. 1157) (18 notes)
• Facepalm (p. 1199) (7 notes)
• Small things (p. 1223) (5 notes)
• Flying (p. 1296) (3 notes)

Vernier indicator
Kragen Javier Sitaker, 02021-11-22 (updated 02021-12-30)
(6 minutes)

 I was thinking of SunShine’s flexure indicator 3-D printed from
PLA, just using a couple of “blade flexures” that converge on an
indicator needle, nearly at the same point, perhaps 0.1 mm apart; the
needle is about 20 mm long. Although he doesn’t have the thing
calibrated, he was able to use it to detect the thickness of a
50-micron-thick sheet of paper, which produced about a millimeter
of movement.

 (I’ve put quotes around “blade flexures” because each “blade” is
made up of a set of parallel wiggle bars in order to allow them to
connect to the same bar at almost the same point without interfering;
“we stagger the layers”, as he says.)

 In SunShine’s mechanism, most of the actual flexing takes place far
away from the indicator itself, which unfortunately greatly reduces
the amplification factor to only about 20:1; this could be remedied
with a more rigid flexure design, at the cost of increasing plunger
force, but a better flexure design is also possible. He also has sinned
against flexures by making the plunger shaft a sliding contact with the
8mm indicator stem rather than using parallel blades or some similar
prismatic flexure joint.

 The total range of motion of his indicator needle is about 10 mm,
which reduces the precision of readings available, even if you calibrate
the device. It occurred to me that using the vernier principle it
should be possible to make much smaller rotations easily visible. By
printing a disc that rotates relative to a fixed disc with graduations at a
slightly different frequency, you can visually see quite small rotations.
Better still, I think, would be to print each disc with a series of holes
or slits in it, rather than merely graduations on the surface, and place
the two in sliding contact with one another, or a flexural
approximation thereof, so that the place where the holes coincide
moves around the dial much more rapidly than the holes themselves.

 It ought to be possible to get 200-micron holes with conventional
3-D printing and laser-cutting processes, which ought to afford about
20-micron visible precision on the outer edge of the dial. If the
mechanical advantage can be set to 50:1, this would provide
400-nanometer resolution.

 As with a ruler or caliper, thermal expansion or contraction will
introduce error in the measurement. However, uniform expansion
either of the dials or of the plunger and stem poses no such risk,
because such expansion doesn’t change the angles; it’s specifically the
part of the plunger outside the stem, and to a much greater extent,
the lever arm over which the plunger’s translation is transformed into
rotation, which determines the calibration. Thus it should be possible
to incorporate a small piece of wood, invar, glass, sapphire, carbon
fiber, or fused quartz into that part of the movement, or build it like a
gridiron pendulum, to get a measurement tool that is immune to such
problems, differential though it is.

https://youtu.be/RFkn6gMkz78

 A simpler way to cancel thermal expansion in one dimension than a
gridiron pendulum is with the following structure:

 0 1 2 3
 ####### #######
A ######### ######### A
 # #
 ## ##
B ##@@@@@## B
 ## @@@ ##
 ## ##
 ## ##
 ## ##
 ## ### ##
C ######### C
 0 1 2 3

 Here the # represents a material with a large thermal coefficient of
expansion, and the @ represents a (normally more of a pain in the ass)
material with a smaller but still positive TCE. There are six flexural
joints in this setup: A1, A2, B1, B2, C1, and C2; let’s suppose that
essentially all the flexion happens there, while the rest of the structure
remains rigid. Consider the ratio of distances AB:AC. If this is the
same as the ratio of TCEs between the two materials, then uniform
heating will not change the distance A1A2. By putting B a little bit
further down, we can get a negative coefficient of expansion for A1A2,
which could be chosen, for example, to cancel the coefficient of
expansion for A0A1 and A2A3, so that the distance A0A3 is invariant
with uniform heating.

 In this literal form the structure would not be very stable; in
practice you would want to stiffen it. Making just B1 and/or C1
perfectly rigid would probably answer for many purposes, and even if
C2 were rigid the structure might work adequately with the right
corrections. If it could be arranged to be under constant compression,
the low-expansion B1B2 member could possibly be a ball bearing (
steel: 12 ppm/K), or a glass marble (8.5 ppm/K), perhaps held in two
lengthwise V-grooves in the A1C1 and A2C2 members, so that any
necessary rotation can happen by rolling, without stick-slip
movement. Constant stress, whether compression or not, would
probably rule out the use of low-melting and therefore high-creep
materials like PLA.

 Many materials might serve. Radial expansion for Douglas fir is
given as 27 ppm/K, while parallel to the grain it is 3.5, but it is also
sensitive to humidity. Brass is 19, aluminum 23, fused quartz 0.59.

 Getting back to the indicator, a simple expedient might be to
laser-cut the whole thing from one to three sheets of steel. Steel has
significant thermal expansion and contraction, but it’s much smaller
than that of many alternative materials; polypropylene’s TCE is
given as 150, 12 times higher, and even PLA is about 40 ppm/K. And,
unlike them, steel isn’t hygroscopic and doesn’t creep significantly at
ambient temperature.

https://en.wikipedia.org/wiki/Thermal_expansion#Thermal_expansion_coefficients_for_various_materials
https://en.wikipedia.org/wiki/Thermal_expansion#Thermal_expansion_coefficients_for_various_materials

Topics

• Contrivances (p. 1143) (45 notes)
• Precision (p. 1183) (9 notes)
• Hand tools (p. 1197) (7 notes)
• Metrology (p. 1212) (6 notes)
• Flexures (p. 1232) (5 notes)
• Length (p. 1356) (2 notes)

Some notes on Bhattacharyya’s
ECM book
Kragen Javier Sitaker, 02021-11-25 (updated 02021-12-30)
(11 minutes)

 Reading Bhattacharyya’s 02015 book on electrochemical
micromachining. Seems like the guy invented a significant part of the
field.

By chapter

 This section of my notes is organized more or less in parallel with
the book, which is to say, it’s not organized. The idea is to add a later
synthesis section below (or above).

 Things I’m hoping to see but might not:

• Flexures.
• Recursion.
• Control loop characteristics.
• Machining speeds.
• “Speeds and feeds” (coolant speed, current, voltage, vibration speed
and amplitude, current waveforms, electrolyte choice).
• Alternating ECM with selective electrodeposition.

Preface

 I’m surprised to see that you can electrochemically machine
semiconductors (p. xviii), since they aren’t held together by metallic
bonds. I look forward to learning more.

 “EMM”, “EMST” (“electrochemical microsystem technology”),
and “ENT” (“electrochemical nanotechnology”) are new terms to
me. “SECM” is mentioned next to “STM” and “AFM”, and might
mean “scanning electrochemical microscopy”.

 The English of the preface is lamentably somewhat broken, but I
guess Bhattacharyya earned his merit by building things, not writing
English poetry, and he chose to publish his book through Elsevier
instead of a publisher who actually has editors. But it means the next
couple hundred pages will be a bit of a slog.

 At the end of the preface there’s this tantalizing note:
To assure that the reader is exposed to wider coverage of EMM, the book includes
EMST and ENT for updating further applicability of anodic dissolution or
deposition which promises significant advances not only in micromachining but
also for nanofabrication as well as nanotechnology applications.

1. Introduction

 The English gets worse:
In prehistoric age, fragments stone, bone and wood were first used as tool by
human beings for shaping the material to fulfill their urgent needs of day-to-day
life. Progress in machining technology started from those early days. It was in
about 4000 BC that use of drilling and cutting tools started in ancient Egypt...

 Clearly there’s some imprecision being introduced here due to the

poor editing, because that would imply that ancient Egypt lacked
cutting tools such as hand axes for the previous two million years.

 Ugh, and on p. 3 he misspells the title of Drexler’s book as “Engine
of Creation”.

 It’s astounding to see him equate (also p. 3) top-down
nanotechnology with nanometer-scale subtractive manufacturing.
(He repeats the error in his Figure 18 diagram on p. 22, where his
“bottom up approach” category includes “Rapid prototyping (RP)”,
by which I assume he means 3-D printing, CVD, PVD,
electroforming, and “electron beam direct writing”.)

 On p. 6 he’s careless about scale, suggesting that the universe is on
the order of 1015 meters in scale, when actually that’s only about 0.1
light years, so it’s too small by 11 orders of magnitude.

 Page after page of this carelessness is making me wish I was reading
Nanosystems, which has the unfortunate drawback that none of the
systems it describes have been built.

 This is a boner too (p. 7):
When the size of the microcomponent becomes smaller to atomic scale, it is not
possible to utilize the top-down approach. However, developments are taking
place to improve some of the techniques such that machining and fabrication can
be successfully made at the molecular level and may be extended even to subatomic
scale.

 Oh really.

 On p. 8 we have a taxonomy of micromachining processes: TBM,
USMM, AJMM, AWJMM, WJMM (mechanical micromachining);
EBMM, LBMM, EDMM, EDMM again, IBMM (“thermal beam
based micromachining”); PCMM and EMM (chemical and
electrochemical micromachining); and ECSMM, ECG, EDG, and
ELID (hybrid micromachining). No expansions are given for any
acronym.

 On p. 9 we have the first useful assertion: that the cutting-edge
radius on micro-scale conventional tools can be “up to 10 micron”,
with a diagram showing the removal of a chip that’s much thinner
than the tooltip radius. “The main drawbacks of this process are high
tool wear, rigidity requirement of the machine tool, and heat
generation at the tool-work interface.” I’d’ve thought the surface
finish would be a bigger drawback!

 I think AJMM, AWJMM, and WJMM are supposed to be abrasive
jet micromachining, abrasive waterjet micromachining, and waterjet
micromachining. However, he seems to have forgotten to cover
AWJMM and WJMM, and TBM is not mentioned but maybe means
micro-scale conventional cutting tools.

 Micro-USM (p. 10) ultrasonic machining might be the meaning of
the enigmatic “USMM” on p. 8. P. 10 also has a nice (though badly
pixelated) diagram of abrasive-jet machining at 0.2-0.8 MPa with
500-1000 nm abrasive particles and a photoresist film to abrade
selectively, none of which is mentioned in the text.

 On p. 11 he says boron carbide is “often chosen as the abrasive [for
ultrasonic machining] for almost all materials except diamond due to
its cost effectiveness and ease of use.” I wonder if maybe it’s actually
boron nitride, which he hasn’t mentioned.

 There are some useful figures on USM on p. 11: abrasive grain size
from 200 to 20000 nm, 100 to 20000 nm vibration amplitude, 0.1 to 1
N force, and 20-40 kHz (p. 10). This information is very valuable,
but I wonder if it’s as unreliable as the other information presented
previously.

 “EDG” is “electrodischarge grinding” (p. 12).

 “LBM” is “laser beam machining” (p. 12), so maybe LBMM is
“laser beam micromachining”.

 “PAM” is “plasma arc machining” (p. 13), which wasn’t
mentioned in the taxonomy diagram; maybe “PCMM” is intended
to mean it. The diagram is just a more pixelated version of a standard
plasma cutting torch.

 “IBM” is “ion beam machining” (p. 14) but the diagram is actually
a diagram of e-beam machining (the next section) because it contains
no ion source. I’m guessing “IBMM” is “ion beam
micromachining”, although, really, ion-beam machining pretty much
has to be “micro” in order to be useful at all.

 “EBM” is “electron beam machining” (p. 14), so maybe “EBMM”
is that too.

 On p. 15 he talks about “micro-CM” or “chemical
micromachining (CMM)” which he describes as the way
“microdevices like semiconductor devices, ICs, etc.,” are made. I
don’t think I’ve ever heard chip fabrication called “CMM” before.

 Aha! On p. 18 there’s a chart of speed-and-feed stuff explaining
what sets EMM apart from regular ECM. It answers immediately
one of the things that’s been puzzling me about ECM, namely, why
people haven’t been using it to make ridged mirrors: accuracy of
±0.02-0.1 mm, down to 0.01 mm for EMM, which is two orders of
magnitude worse than what you need for optics.

2. Electrochemical machining: macro to micro

 On p. 26 he gives a historical overview, which I’m hoping is
actually accurate:
In 1929, the Russian researcher W. Gusseff first developed a process to machine
metal anodically through electrolytic process. In 1959, Anocut Engineering
Company of Chicago established the anodic metal machining techniques as a
commercially suitable technique. After 1 year, Steel Improvement and Forge
Company followed with a commercial application of this technique, based upon
research by the Battelle Memorial Institute. The technique was applied mainly for
machining of large components made of advanced and difficult-to-cut metals in
the 1960s and the 1970s, particularly in the gas turbine industry. Electrical
discharge machining at that time was a more accurate technique and was preferred
over ECM, because ECM was less accurate and its waste is hazardous to the
environment. But ECM was able to achieve much higher machining speed.

 It would be nice to get some specific information about the
environmental hazards so we can mitigate them. If this was a major
industrial consideration in the 01960s they must have been amazing
environmental hazards; that was the period when they were
investigating open-cycle nuclear-powered jet engines, chlorine
trifluoride rocket fuel, and borate zip fuel, and the EPA and
Superfund didn’t exist yet.

 On p. 26 his account of the effects of changing the process gap
implicitly assume a constant-voltage source.

 On p. 27 his diagram suggests that the standard way to separate the
sludge is with a centrifuge.

 On p. 28 there is a list of four major recent improvements:
vibrating axes permit maintaining a 100-micron process gap (because
the electrolyte can flush out during the other part of the vibration
cycle); pulsed current rather than constant direct current;
microfiltration for electrolyte regeneration; and CAD for cathode
tool profiles. After having waded through 40 pages of tiresome sales
pitches for ECM I sure hope the book explains how to do these things
at some point.

 On p. 29 there is a fundamental error:
During electrical conduction through electrolyte ... Distribution [sic] of anion and
cation remains uniform; hence the electrical potential at all points in the electrolyte
is also uniform. Application of an external electric field causes migration of one ion
species with respect to other. [sic]

 When the electric potential at all points in the electrolyte is the
same, no current flows. I hope this is just a careless error and not
something he really believes. (In Fig. 2.11 on p. 42 he gives a correct,
if only qualitative, diagram of how the electrical potential differs at
different points in the electrolyte.)

 On p. 30 he gives Faraday’s constant as “96.485 C mol-1”, which is
correct if we read the “.” as a thousands separator.

 I’m not sure about his description of electrolysis on pp. 30-33. I
need to come back and reread it. But at least it’s real information
instead of the sales pitch.

 On p. 33 the concept of chemical equilibrium is incorrectly
contrasted with a description of chemical equilibrium:
When no current is flowing, the electrochemical changes occurring at an electrode
are in steady state, i.e., atoms leave the electrode and become ions and the ions
move to the electrode and becomes [sic] atoms. The process continuous [sic] till
[sic] equilibrium is reached. A potential difference exists between
electrode-electrolyte interfaces [sic], which is known as “electrode potential.”

 On p. 34 there is a description of different anodic dissolution
regimes (pitting, polishing, both) that I need to reread.

Topics

• Materials (p. 1138) (59 notes)
• Electrolysis (p. 1158) (18 notes)
• ECM (p. 1186) (9 notes)
• Reading (p. 1244) (4 notes)

Chording commands
Kragen Javier Sitaker, 02021-11-26 (updated 02021-12-30)
(7 minutes)

 Emacs has some key commands involving pressing multiple keys at
once that are sometimes described as “chord commands”, which can
be pretty inconvenient to type. I’m using C-M-v to scroll down the
other window, for example, and M-{ and M-} to move by
paragraphs, which require the shift key. I also use M-< and M-> to
move to the beginning or end of file pretty often. M-^ (M-shift-6)
joins lines together, which I do regularly. M-% (M-shift-5) is search
and replace, which I use pretty often. M-| (M-shift-\) passes the
region to a shell command. C-M-w does “append-next-kill”, which
is occasionally useful. M-: (M-shift-;) is the eval-expression
command, which I probably use as often as M-x. C-@ and C-_ are
common commands that would be similarly inconvenient, but
fortunately C-SPC and C-/ do the same thing. I occasionally use
C-M-left and C-M-right to move over parenthesized expressions.

 Key sequences like the infamous C-x 8 RET, C-x 8 _ a, C-x RET
C-\, and so on, are also inconvenient; of course, like the chords,
they’re hard to discover; but also you have to type them in the right
order, which slows you down, it’s a real pain to do one of them
repeatedly, and they amount to a short-lived modal interaction,
which causes mode errors.

 So in some ways the chords are preferable, but they cause repetitive
stress injury. Also, in one way, even the chords are not real chords:
on a piano it doesn’t matter if you hit the G key 4 milliseconds before
the C key or 4 milliseconds after, but Emacs definitely cares a lot
about whether you press A and then Ctrl, or Ctrl and then A. So
even the chords are slower than they need to be.

 But there are about 132 keybindings in global-map and another 32
in esc-map, plus more commands provided by one mode or another (
apropos finds 3685 commands currently loaded), and only about 88 keys
on this keyboard, most of which normally have to be used for writing.
Most of the ones that aren’t for writing (Esc, F3, Insert, the arrow
keys, etc.) are in very inconvenient places. So it would seem that
inconvenient chords or key sequences are inevitable.

 But can we do better?

 The home row has 12 keys on it, if we omit the nonstandard
position of \, and there are another 24 keys almost as easily reachable
above and below, plus the space bar, the)} key, and on this keyboard
the >< key, for a total of 39. In a spectacular feat of perversity, this
doesn’t include the number keys, Esc, Enter, Backspace, Ctrl, Alt, or
the left Shift key. But it does include Tab and the worthless Caps
Lock. (I usually press Alt with my spacebar thumb, so maybe we
have 40 convenient keys.)

 It occurs to me that a much more manageable sort of chord would
be one where you simultaneously press some magic “command key”
and one or more keys for the command. So, for example, Alt-Q might
be one command (and should act identical regardless of whether you

press the Alt first or the Q first), and Alt-Q-O might be another
command (the same command as Alt-O-Q). So any permanent
effects of the command wouldn’t take effect until you started
releasing keys. (They could totally change your view, though, since
that’s reversible.)

 Here are the keys conveniently reachable by each finger:

• left pinky (6): tab, capslock, <, q, a, z
• left ring (3): w, s, x
• left middle (3): e, d, c
• left index (6): r, f, v, t, g, b
• left thumb (2): leftalt, space
• right thumb: nothing except space
• right index (6): y, h, n, u, j, m
• right middle (3): i, k, ,
• right ring (3): o, l, .
• right pinky (6): (,), ;, ', /, rightshift (disregarding the nonstandard
\)

 If the left pinky is tied up with capslock, then there are 3 × 3 × 6 ×
2 × 6 × 3 × 3 × 6 = 34992 possible capslock-based chord commands,
and there’s an even larger number of chords accessible with Alt as the
command key, but we probably want to limit ourselves to chords that
don’t involve too many fingers, both due to human limitations and
due to key jamming and ghosting. Even chords that involve only two
fingers can be awkward; try Alt-E-X, for example.

 A very simple sort of first-level command set is the number of
chords that involve Alt, one key from the left hand, and one key from
the right hand, since those are all guaranteed to be easy to type. There
are 17 left-hand non-thumb keys (15 if we remove capslock and the
Spanish-keyboard-only <) and 18 right-hand non-thumb keys, giving
306 commands. This is a promising number of commands, and I
think that key jamming and ghosting won’t be a problem at all on any
reasonable computer keyboard with Alt plus two regular keys.

 You’d think that in 02021 keyboards would handle at least three,
but in fact even without Alt, this keyboard gets key jamming between
Q and S when A is depressed, between A and W when S is depressed,
between Z and S when X is depressed, and so on. Perhaps more
alarmingly, FGH, HJK, CVB, and VNM also form such jamming
triples, even though they’re physically all in separate columns of the
keyboard. It may not be a coincidence that these all include pairs of
keys that are supposed to be pressed with the same finger (FG, HJ,
VB, and NM respectively); the keyboard may be designed (using the
term generously) for correct touch-typing technique. Still, it makes
me worry that some common keyboard out there will jam on
easy-to-type combinations like FJK.

 I think that generally the difficult-to-type chords are difficult to
type because they have fingers of the same hand two rows apart: QV,
ZT, WC, XR, Y., but not QF, AV, ZG, AT, WD, SC, SR, XF, YL,
or J.. I think this gives a large number of four-key chords in
consisting of Alt with the thumb, one key or two keys in adjacent
rows or the same row on the fingers of one hand, and one key or two
keys in adjacent rows or the same row on the fingers of the other

hand. Crudely I guesstimate that this is about five thousand
combinations.

Topics

• Human-computer interaction (p. 1156) (22 notes)
• Editors (p. 1257) (4 notes)
• Keyboards (p. 1289) (3 notes)
• Emacs (p. 1298) (3 notes)
• Chording

Exotic steel analogues in other
metals
Kragen Javier Sitaker, 02021-12-01 (updated 02021-12-30)
(8 minutes)

 Iron is a pretty economically attractive material: extremely
abundant (5.6% of Earth’s crust, 32% of Earth), moderately refractory
(doesn’t melt until 1600°), can form carbides called “cementite” that
make it into a very hard and strong “alloy” called steel (arguably
really a cermet), and can be heat-treated to increase its hardness
further. But could we make “steels” based on other similar metals, if
we had enough of them? I think we could.

Ridiculously oversimplified steel

 Steel is a very complex system, and I am doing it a bit of an
injustice by simplifying its behavior to just “derives its strength from
cementite”.

 Regular iron cementite (Fe₃C) has a “hardness” of 7–11 GPa,
which I take to mean that its ultimate tensile strength is 7–11 GPa.
Jiang and Srivilliputhur calculate ideal tensile strengths for cementite
between 15 and 30 GPa in different directions, though I haven’t really
read their paper. When steel changes phase from austenite to ferrite,
the solubility of carbon in the iron phase drops greatly, precipitating
submicron-thickness layers of cementite alternating with ferrite in a
structure called “pearlite”. (I don’t think they’re thin enough to be
below the flaw-tolerant critical size, which is estimated at 30 nm for
goethite fibers such as those found in limpet teeth, but which exists
for any material; nacre actually uses 200–500-nm-thick crystals,
similar to the thickness of cementite layers in some pearlite. The
cementite layers in bainite might be thin enough to be flaw-tolerant.)
As a consequence, pearlite wires can reach tensile strengths over 6
GPa. But cementite is unstable above 723°, so steels become soft and
malleable when they transition to the austenitic phase.

Tungsten and the chromium group

 Mushet steel, the nascent form of high-speed steel, includes
1.5–2.5% carbon, 4–12% tungsten, which also forms a hard carbide
with carbon, and 2–4% manganese. As I understand it, the manganese
makes it austenitic at room temperature, allowing it to be
air-hardened without quenching and to have much greater toughness
than earlier hardened steels. I think that most of the carbon in
Mushet steel and similar high-speed steels ends up in tungsten carbide
rather than carbides of iron or manganese, and that nearly all the
tungsten does.

 Tungsten carbide’s tensile strength is normally cited as being only
around 0.4 GPa, but because it’s a brittle ceramic, I suspect that
number is dominated by flaw-sensitivity. It doesn’t decompose until
2800°, and I think this is why Mushet steel and the modern
high-speed steels that are based on tungsten remain hard at high

https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth's_crust
https://en.wikipedia.org/wiki/Abundance_of_the_chemical_elements#Earth
https://www.tf.uni-kiel.de/matwis/amat/iss/kap_7/articles/umemoto_cementite.pdf
https://www.researchgate.net/figure/Fe3C-under-tensile-and-shear-deformations-a-Stress-strain-curves-under-100-010-and_fig2_236192150
https://www.researchgate.net/figure/Fe3C-under-tensile-and-shear-deformations-a-Stress-strain-curves-under-100-010-and_fig2_236192150
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387522/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387522/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387522/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC156246/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC156246/
https://en.wikipedia.org/wiki/Pearlite
https://en.wikipedia.org/wiki/Pearlite

temperatures.

 I think you could probably make a “steel” consisting of tungsten
and a little carbon. The solubility of small amounts of carbon in
tungsten rises up to 2715°, so you could probably get some kind of
interspersed pearlite-like microstructure by quenching tungsten down
to a lower temperature. It wouldn’t have to be anywhere near room
temperature; quenching it to 1091° in molten magnesium or 907° in
molten zinc would be just fine. (There’s a second tungsten carbide,
but it only becomes important at higher concentrations.) But at room
temperature tungsten is kind of brittle, and of course tungsten itself is
a very rare element (0.17 ppm of Earth by weight, 1.25 ppm of the
crust), which sometimes matters.

 Tungsten is a group-6 transition element, along with chromium,
molybdenum, and the wildly radioactive and presently irrelevant
seaborgium.

 Chromium (4700 ppm of Earth, 100 ppm of Earth’s crust) is a bit
more refractory than iron (melting at 1907°), is the base of some
stainless steels, and is commonly plated on top of steel to make it
harder, shinier, and more corrosion-resistant. In many ways it’s
reasonable to think of it as a sort of half-assed tungsten. So what
about its carbides?

 Well, chromium has three carbides, which are indeed refractory
(1895°, so less refractory than metallic chromium), very hard, and
corrosion-resistant, and they’re commonly used to improve the wear
and corrosion resistance of metals. So far so good. I should look up
the chromium–carbon phase diagram.

 Molybdenum is damn near as refractory as tungsten itself, melting
at 2623°, but also damn near as rare: 1.7 ppm of Earth, 1.2 ppm of its
crust. Its oxide is a lot more volatile than tungsten’s, limiting its
refractory usefulness in applications exposed to air, but it also has a
very hard refractory (2687°) carbide. I should look up the relevant
phase diagram.

Covalent binder alternatives to carbon

 So far, we’ve looked at carbides of iron, tungsten, chromium, and
molybdenum, all of which are very hard and refractory due in part to
the somewhat covalent character of their bonding. But there are
other elements that can play a similar role: boron, oxygen, nitrogen,
and sulfur, as well as oxoanions like phosphate. Some of these are
counterproductive in iron itself: the oxides, nitrides, and sulfide of
iron are all weaker and less refractory than iron itself. But iron boride
is somewhat of a hit (Vickers hardness of 15–22 GPa, melts at 1389°,
already in use as a steel ingredient for hardness and used for surface
hardening), and iron tetraboride is superhard, and, in combination
with other metals, some of these elements produce very interesting
ceramics.

 Sticking to just the metals so far mentioned, tungsten borides have
Vickers hardnesses of 20–30 GPa and WB₄ is described as “an
inexpensive superhard material” because you can make it with just arc
melting from the elements; chromium borides are also very hard and
strong and can be made by SHS, especially if you add aluminum; and
molybdenum borides are predicted to be superhard but apparently

https://en.wikipedia.org/wiki/Chromium(II)_carbide
https://en.wikipedia.org/wiki/Boron_steel
https://en.wikipedia.org/wiki/Boron_steel
https://en.wikipedia.org/wiki/Boriding
https://en.wikipedia.org/wiki/Boriding
https://en.wikipedia.org/wiki/Iron_tetraboride
https://en.wikipedia.org/wiki/Tungsten_borides
https://en.wikipedia.org/wiki/Tungsten_borides
https://www.pnas.org/content/108/27/10958
https://www.pnas.org/content/108/27/10958
https://www.pnas.org/content/108/27/10958
https://en.wikipedia.org/wiki/Chromium(III)_boride
https://en.wikipedia.org/wiki/Chromium(III)_boride
https://www.sciencedirect.com/science/article/pii/B9780128041734000302
https://www.sciencedirect.com/science/article/pii/S0272884212003197
https://arxiv.org/abs/1907.05665
https://arxiv.org/abs/1907.05665

nobody has managed to produce them in volume yet.

 As for the oxides, I’ve mentioned the iron oxide goethite above
(not usually thought of as superhard, but the limpets manage);
tungsten trioxide has 5–7 GPa hardness at 800°; chromium oxides
include chromia (viridian) which melts at 2435° and has Mohs
hardness 8 as the mineral eskolaite; and, though it melts at only 802°,
molybdenum trioxide has a hardness of 18.7 GPa, though as a mineral
it’s only Mohs 3–4.

 Nitriding, carbonitriding, and nitrocarburizing are commonly used
as a surface hardening process for steel, chromium, and molybdenum,
and nitriding has been used to harden iron since antiquity, with urine,
leather, and hooves being preferred case-hardening ingredients.
Tungsten nitride is also hard, but it decomposes in water, limiting its
use in air-contact applications.

 Many elements also have interesting oxynitrides, oxyborides,
borocarbides, boronitrides, borocarbonitrides, carbonitrides, and
oxycarbonitrides. Oxycarboborides and oxyboronitrides seem to be
either neglected or too difficult to make, and although some
“oxycarbides” are reported (including a molybdenum oxycarbide),
many more are just carbonyls or oxalates, which are neither hard nor
refractory.

Other metals

 What about nickel, cobalt, vanadium, manganese, titanium,
zirconium, hafnium, silicon, niobium, and tantalum? They also form
carbides! That makes 110 more candidate ceramics to investigate!

Topics

• Materials (p. 1138) (59 notes)
• Strength of materials (p. 1164) (13 notes)
• Steel (p. 1222) (5 notes)
• Ceramic-matrix composites (CMCs) (p. 1265) (4 notes)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278358/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278358/
https://www.sciencedirect.com/science/article/abs/pii/S0167577X20311253
https://www.sciencedirect.com/science/article/abs/pii/S0167577X20311253
https://en.wikipedia.org/wiki/Molybdite
https://en.wikipedia.org/wiki/Molybdite

Simplest blinker
Kragen Javier Sitaker, 02021-12-01 (updated 02021-12-30)
(9 minutes)

 There are lots of LED blinker circuits around, most driven by a 555
or a transistor-based astable multivibrator. But there are enormously
simpler options.

 In some sense the simplest LED blinker is two red LEDs in
antiseries, in parallel with a capacitor and resistor, in series with
another resistor, powered by a voltage around 9–48 V. That is,
9V-R1-(->|-|<- || R2-C)-GND. When the reverse-biased LED
goes into avalanche discharge at Vbr, around 5 V, the capacitor
discharges down to the minimal voltage necessary to sustain avalanche
conduction in the backward-biased LED, after subtracting the
forward voltage drop of the forward-biased LED, and with time
constant R₂C, with a pulse energy ½Vbr²C, lighting the
forward-biased LED. When the current drops too low to sustain
avalanche conduction, the reverse-biased LED begins to block again,
and the capacitor recharges toward the power supply voltage with
time constant (R₁ + R₂)C.

 (Most reverse-biased PN junctions have that kind of bistable
avalanche behavior, and it’s an annoying source of noise when using
avalanche diodes as voltage references, but not all. Note that the plots
in Infineon’s appnote linked above do not exhibit this bistability; it is
the source of MOS latchup. You could probably force such
recalcitrant circuits into oscillation with sufficient series inductance:
9V-R1-L-(->|-|<- || R2-C)-GND.)

 This is very similar to the basic neon lamp flasher, except for the
R2 current-limiting resistor (which may not be necessary!), the lower
voltage, the potentially much higher speed, and the complication that
the LED that provides the circuit’s bistability doesn’t light
(avalanche-mode LEDs do emit, but at two orders of magnitude
lower radiative efficiency), so a second LED is needed.

 In theory you could make R1 small enough that the LED would
just stay lit until the avalanching LED burned out, but that seems
unlikely in practice. And in theory you could leave out R2 and allow
the LED to set its own current, since the energy of the pulse will be
limited to the energy stored in the capacitor, but even arbitrarily short
high currents can damage semiconductors through non-thermal
damage mechanisms, so it might be better to leave it in.

 Let’s calculate some values so that this circuit is likely to flash
visibly. The current through the LEDs should probably be around
20 mA to be brightly visible without much risk of damage, and I
think the reverse voltage drop of an avalanching LED is pretty small,
maybe around 1 volt. The forward voltage drop of the illuminated
LED should be around 1.6 V, so we have about 5 - 1 - 1.6 = 2.4 volts
across R2, which means something like 100Ω is appropriate, which
would give us 24 mA. Let’s shoot for about 1 Hz overall repetition
rate. I suspect that even 1% duty cycle (10 ms) would be bright
enough to be visible, but let’s shoot for 50 ms (5%) to be safe.

https://www.infineon.com/dgdl/Infineon-ApplicationNote_Some_key_facts_about_avalanche-AN-v01_00-EN.pdf?fileId=5546d462584d1d4a0158ba0210977cde

 At this point I realize I don’t have any idea how much current is
necessary to maintain avalanche conduction. If I pretend that the
avalanche sustaining voltage and the LED forward voltage drop are
constant with respect to current, and any amount of current is
sufficient to sustain the avalanche, the result is that the capacitor
voltage asymptotically approaches the 1 + 1.6 = 2.6 V and never
reaches it, and the circuit never turns off, so this is not a useful
approximation. I’m sadder but no wiser after reading a couple of
application notes about avalanche breakdown.

 So, just guessing, maybe you need four RC time constants (54×
lower current) to turn off. 50 ms ÷ 100Ω = 500 μF, so a 470 μF
electrolytic ought to work. Then we just need to set R₁ to get an
off-time of around a second.

 The off-time is determined by the time to charge from the
avalanche cutoff voltage (plus the forward-biased LED’s voltage
drop) up to the breakdown voltage on its way up to the source
voltage: from 2.6 V up to 5.0 V out of 9.0 V, which is to say, the
remaining voltage should drop from 6.4 V to 4.0 V, a factor of 0.625,
about √e, so half a time constant. Thus a time constant of about two
seconds would be right, which works out to about 4.3 kΩ, so a 4.7kΩ
resistor ought to work.

 The visual brightness of the LED should mostly depend on how
much charge goes through it, not how long it takes. If we were going
to discharge 2.4 volts out of a 470 μF electrolytic at a constant 20 mA,
it would take about 56 ms, which is plenty long enough to see the
LED flash. So I think probably the LED flashing will be visible. The
energy of each flash is about 2.3 mJ, about half dissipated in the
resistor, with the other half split almost equally between the two
LEDs, so it’s unlikely that the LEDs will be damaged by heating.

 The reverse-biased capacitance of the LED is down in the
picofarads, so the stored energy is in the dozens of picojoules,
insufficient to damage it much.

 So the final circuit is:

9V-4k7-(->|[red LED]-|<[red LED]-||100Ω-470μF)-GND

 Such a circuit is sensitive to every electronically relevant aspect of
its environment: temperature, voltage, light, EMI, and radioactivity.
Its off-time is inversely proportional to the difference between the
input voltage and the turn-off voltage, though its on-time varies little
with that. The avalanche breakdown voltage increases with
temperature (Infineon’s appnote above says that in silicon MOS it
varies about 5% per 100°), so its both its off-time and its on-time
would increase with temperature; but the threshold voltage of the
forward-biased diode also changes with temperature, and I think that
voltage decreases, which may have a larger effect on the on-time
(though it isn’t immediately obvious to me which way). Both diodes
are photosensitive, so the circuit can be triggered with a flash of light,
and its frequency will vary with the ambient light level. EMI can also
advance the timing of the oscillator, so under some circumstances it
can phase-lock to weak signals coupled in capacitively or inductively;
but even in the absence of EMI, avalanche breakdown is somewhat

random, perhaps because it detects radioactive decay as well.

 An interesting question is whether this sort of behavior is useful for
anything. Of course, if you can mostly isolate the circuit from
variations in voltage, light, EMI, and radioactivity, you can use it to
measure temperature; if you can mostly isolate it from variations in
temperature, voltage, EMI, and radioactivity, you can use it to
measure light; etc. But digital logic seems potentially more
interesting.

 In Implementation and applications of low-voltage Marx
generators with solid-state avalanche breakdown? (p. 960) I’ve
argued that such triggerable oscillators can be used as clocked logic
elements. With ordinary LEDs you ought to be able to get up into
the MHz, but with avalanche diodes built on an IC, tens of GHz
ought to be attainable. Large resistances or capacitances on chip
require large areas, but by running with a supply rail closer to the
breakdown voltage and increasing the duty cycle from 5% up to
maybe 20%, you ought to be able to use equal or nearly equal
resistances for R1 and R2, so neither needs to be particularly large.
On chip it might be reasonable to use C ≈ 20 fF, R1 ≈ R2 ≈ 2kΩ,
with a frequency around 10 GHz.

 Why would you use this kind of dynamic logic instead of regular
CMOS? As I understand it, a regular CMOS flip-flop needs 6 (or 8)
transistors, and a CMOS NAND gate requires 4. Such an oscillator
requires a capacitor, two diode-connected transistors, and two
resistors, so it might permit higher density than regular CMOS, but
be less power-hungry than four-phase logic (see Snap logic, revisited,
and four-phase logic (p. 115)). (But really that's not attacking the
crucial aspect of CMOS density, which is routing.)

Topics

• Electronics (p. 1145) (39 notes)
• Pulsed machinery (p. 1167) (12 notes)
• Physical computation (p. 1208) (6 notes)
• LEDs (p. 1286) (3 notes)

Capacitive linear encoder sensors
Kragen Javier Sitaker, 02021-12-11 (updated 02021-12-30)
(7 minutes)

 I was thinking about the kind of capacitive linear encoder sensor
used by digital calipers today. It occurred to me that it’s a wonderful
way to increase the precision of machinery, stage by stage, and it
ought to be straightforward to manufacture a bootstrapping version
by hand.

 The basic primitive is that you have a couple of “combs” with the
same spacing on two different circuit boards. Each comb consists of a
sequence of parallel wide conductive lines with wide spaces between
them, which are all connected electrically together with some sort of
conductor elsewhere. The boards are placed on top of one another,
with the lines parallel, with a thin dielectric between them. When
the two combs on the different boards are in phase, which is to say
spatially aligned, there is a large capacitance between the two combs.
When they are out of phase, so that the lines of one are adjacent to
the spaces of the other rather than its lines, the capacitance is instead
very small. By measuring the capacitance between such a pair of
combs, you can detect when they come in and out of phase.

 To get a usable linear encoder, you put three interleaved combs on
one board instead of one. When the comb on the other board is
coming out of phase with one of the three combs, it is coming into
phase with a second one, so the total capacitance is always the same,
or nearly so. You need only make a ratiometric measurement of the
three capacitances to uniquely identify the phase relationship of the
two boards.

 To be more concrete, suppose the combs are 10 mm wide, 100 mm
long, drawn on two fired-clay ceramic surfaces, and separated by a
50-micron-thick layer of paint with a relative permittivity of about 5.
The area of each comb is about 300 mm², so we can calculate the peak
capacitance we see when two combs are in alignment at about 270 pF,
while the parasitic capacitance between two out-of-alignment combs
is probably only about 1 pF. If we assume the graphite itself has a
resistance on the order of a kilohm, then the circuit becomes
primarily resistive above about 600 kHz. Above that frequency it
becomes harder to detect small changes in the capacitance because the
graphite’s resistance hides them. (Measuring the time constant of a
step function response is probably a more practical measurement
method, whether with analog or digital circuits.)

 If we can reliably measure an 0.1% ratiometric change between two
of these capacitances, for example with an ENOB-10 ADC, we
should be able to measure the phase to about a milliradian. So if the
lines on the combs are 2 mm wide, separated by a 1 mm space, and
thus have a full cycle every 9 mm, a radian is 1.4 mm, and a
milliradian is 1.4 microns, maybe 350 times more precise than the
manufacturing precision required for the original combs. However,
this is more precise than is realistic, as will be seen below.

 This setup is particularly appealing because of how many forms of

manufacturing error it tends to cancel out or average out. It really
only cares about the surfaces being flat or cylindrical (so there’s a
constant separation), the right total length, and having the right
number of lines distributed over that length, so that the average
spacing of a comb is correct. If all the teeth on one circuit board or
the other are too big or too small, that affects the absolute capacitance
but almost doesn’t affect the ratio in a given position at all.

 Random errors in the shape of a single comb tooth are averaged out
across all the comb teeth; in the above setup, there are 33 total teeth
on the interleaved plate, 11 in each of the three combs, so this doesn’t
help that much: an 0.5 mm standard deviation in edge location
averages out to an 0.15 mm standard deviation in average edge
location. However, with larger numbers of teeth, this is very
powerful. Consider, for example, 30-micron-wide teeth separated by
15-micron gaps, presumably with a thinner dielectric. In 100 mm,
there are 2220 total teeth, 740 per comb, so a 1-micron standard
deviation in edge position for each edge works out to 34 nm standard
deviation for the average.

 So in practice it can only give errors on the order of 30 times
smaller than the average local manufacturing error, not 350 times
smaller; to get to 100 times smaller, you would need ten thousand
teeth per comb. And the global manufacturing error is only slightly
diminished: if you make the nominally 100-mm-long combs 101 mm
long instead, or if thermal expansion makes them grow by that much,
then all your displacement measurements will be off by 1%. Still, a 1%
error in a 1-mm displacement is only 10 microns.

 (1% error in steel or concrete at 12 ppm/K is 830°. In a 100 ppm/K
material like many plastics, it would be only 100°.)

 By putting such a comb around the outside of a circle rather than
on a linear slide, you can get a pretty good relative angular
measurement rather than a displacement measurement (a rotary
encoder rather than a linear one), and you also avoid the variation in
amplitude as more or less of the boards overlap. A 100-mm-diameter
circle is 314 mm in circumference. If we have 314 teeth per comb,
making each tooth about 300 microns wide, and the random error in
each tooth edge has a standard deviation around 50 microns, the
resulting random error for the whole dial will be about 2.8 microns,
which is 56 microradians. This is an error well under a micron for
things near the center of the dial, at which point the uncertainties in
the bearings are a bigger source of error than anything in the
electronic realm or in the ruling of the dial.

 At a smaller scale, such sensors should provide even better
precision. If you have a 10-mm-long comb with 10-micron tooth
spacing, 30 microns per comb, then you have 999 total teeth, 333 per
comb, and the necessity to position the combs within a micron or two
without touching. If the standard deviation per tooth is 1 micron,
then the standard deviation of the average should be 55 nanometers.
Capacitive and micromagnetic feedback systems can measure smaller
displacements (for decades now) but over a much shorter total travel.

 See also tiltmeter.

https://www.eevblog.com/forum/projects/suggestions-for-high-resolution-tiltmeter-(inclinometer)-sensor/msg1531160/#msg1531160

Topics

• Electronics (p. 1145) (39 notes)
• Ghettobotics (p. 1169) (12 notes)
• Bootstrapping (p. 1171) (12 notes)
• Precision (p. 1183) (9 notes)

Two finger multitouch
Kragen Javier Sitaker, 02021-12-11 (updated 02021-12-30) (3 minutes)

 If you have some slips of paper on a table, you can translate and
rotate them around the table with two fingers. But you can’t move
the fingers further apart without tearing the paper or slipping on it,
and if you move them closer together, the paper buckles and maybe
wrinkles.

 In typical early multitouch demos, this two-finger drag gesture was
used to arrange photos or other objects on a surface, resizing them in
the process. I’ve also seen people use it in SnapChat to place text on a
photo while resizing it. Mostly it seems to have fallen out of favor,
though.

 What if you had an infinite canvas on which you could rotate and
move objects, like these slips of paper, but also interact with them by
moving your fingers nearer and further? For many objects it isn’t that
useful to expand and contract them, or even to rotate them. You
could use these extra degrees of freedom in the two-finger touch to
control one or two continuously variable parameters of the object or
to invoke actions on it.

 The single-finger drag has become an idiomatic way to scroll in
multitouch environments, and single-finger taps either select an
object or invoke a button. So a two-finger drag as a universal way to
move movable objects seems like a promising interaction paradigm. It
potentially conflicts with the idiomatic pinch-zoom interaction, but I
think that you can still support zooming by pinching on the
background.

 What these objects should be or do depends on the application, but
one of the most appealing features of a potentially universal UI
paradigm like this one is that it permits the modeless coexistence of
objects from different applications.

 Container objects can do a few different things. The simplest thing
they can do is to move the objects they contain when they are
themselves moved, maybe rotation too. If they support a copy
operation, they can copy the objects they contain in the process;
similarly for a hide operation, perhaps provided by a tabbed view
widget. They can do layout for the objects they contain, for example
radial or table layout. They can also publish and subscribe to
communicate with the objects they contain; those inner objects can
then be used as tools to alter the outer object, or vice versa.

 Tool objects that can alter other objects are a major way to extend
this approach, since without interaction between objects, each object
is limited to only two parameters or some sort of menu system. But if
you can target a tool object at it, for example bringing it under some
sort of magnifying glass or selecting it to bring up its attributes as
separate on-canvas objects, you have arbitrary freedom.

Topics

• Human-computer interaction (p. 1156) (22 notes)
• Composability (p. 1188) (9 notes)
• GUIs (p. 1216) (6 notes)
• Multitouch

The Habitaculum: a modular
dwelling machine
Kragen Javier Sitaker, 02021-12-13 (updated 02021-12-31)
(16 minutes)

 Suppose we have a bunch of Lego-like bricks that can be attached
together to make a temporary or permanent dwelling space. They
might include LEDs for lighting, 240VAC outlets, speakers,
mattresses, cabinets, drawers, carpets, mirrors, ovens, stove burners,
air conditioners, refrigerators, toilets, etc. If the size and connectors
are standardized, they can be composed in a variety of different
Minetestish ways to make temporary or permanent furniture or
dwelling spaces, perhaps inside of an existing suboptimal dwelling
space.

 You could imagine locking together a few dozen such
independently wheelable blocks into a modular “dwelling machine”
or “habitaculum” inside an arbitrary apartment, perhaps occupying
some 10 m² of floor space and containing bed, desk, and shower,
standing off the floor on short legs.

 (I read a book from the 01970s recently that mentions in passing
that the author’s friends did something like this in their shitty
apartment in La Boca in Buenos Aires. I think it might have been
Hennessey and Papanek’s Nomadic Furniture 2 or Papanek’s Design in
the Real World.)

 Some of the deficiencies of existing dwelling spaces that can be thus
remedied:

• Inadequate air conditioning. Here in Argentina many windows
have roll-down shutters above them which permit wind to blow right
through, and the regulations require 100 cm² openings in the walls
where gas appliances are installed to prevent gas buildup. The
resulting quantity of airflow on a hot windy day makes adequate air
conditioning very difficult to achieve. A small, relatively sealed inner
space without gas appliances can be free of such unwanted air leaks
and can be air conditioned much more cheaply.
• Air filtering. The covid pandemic has made us aware that our
indoor air is generally of very poor quality, and that this is a major risk
not only for contagion of respiratory diseases like covid, but also for
health in general. One of the biggest problems, especially in big cities
like Buenos Aires with lots of high-sulfur diesel, is particulate
pollution; pollen and mold spores are problems for sensitive people
even in other places. Again, this is a difficult problem to solve
without being able to limit the ingress of bad air, but an easy one to
solve with controlled airflow.
• Thermal insulation, which makes air conditioning much more
reasonable. Most buildings here are made of concrete with
single-paned windows. The 10 m² habitáculo suggested above might
have 45 m² of surface area (25 m² of walls and 20 m² of ceiling and
floor). If this is all sheathed with 100 mm of 0.3 W/m/K insulating
material, maintaining a 20° difference through the wall (e.g., from 21°

within to 41° without, or 21° within to 1° without) requires 2700 W
of heating or cooling power; with a typical CoP of 3, this is an air
conditioner of only 900 W. Thicker insulation than this may be
feasible, cutting the required power further, and usually the
temperature delta is much smaller.
• Storage. Many apartments and houses do not have much storage
built in, being designed for consumers or socialites rather than
craftspeople or the self-sufficient.
• Flooding. I just found a roll of toilet paper that had been
water-damaged under the sink today; I guess the pipes are leaking
again. I’ve had my clothes, neatly stacked in the closet, turn moldy
from water leakage from a poorly constructed bathroom. When it
rains, the roof here has leaked in two different rooms, creating big
puddles on the floor before the landlord fixed the roof. In the
apartment where I lived in La Boca, there was such a big hole in the
roof that there were mushrooms growing down from the ceiling.
Sometimes there’s widespread flooding when rains outpace the storm
sewers, although here in Buenos Aires the last big floods were about
10 years ago before they fixed the storm sewers. Most commonly
only a centimeter or two of water gets onto your floor, but that’s
enough to ruin your computer, short out your power strip, ruin your
mattress (if it’s on the floor), destroy your tatami, and demolish your
books (if they’re on the floor). All of this can be avoided if everything
is up off the normal floor, especially if the habitaculum itself is
watertight.
• Lighting. Most buildings are inadequately lit (50-500 lux), which
possibly causes seasonal affective disorder, widespread depression, and
sleep phase disorders. Full daylight is 10-25 kilolux in the shade,
about 100 times brighter, and direct sunlight is 100 kilolux. A lux is a
lumen per square meter; to illuminate a black room to 1 kilolux
requires a kilolumen per square meter, while a white or mirrored
room may be about five times as efficient. For our example 10 m²
habitaculum with 45 m² surface area, if we paint it white, we might
need 9 kilolumens per kilolux. Both Samsung and Philips are
shipping 200-lumen-per-watt LEDs since 02017, ordinary fluorescent
tubes can hit 100 lm/W, ordinary LED bulbs are in the neighborhood
of 75 lm/W, and sunlight is 93 lm/W. So reaching 10 kilolux might
require 90 kilolumens and thus 450-1200 watts powering the lights,
or less in a smaller area, and about US$20 worth of fluorescent tubes
or US$500 worth of LEDs.
• Mosquitoes. In the Boca apartment with mushrooms growing from
the ceiling, we constantly had mosquitoes because, as with most
Argentine houses, there were no screens on the windows. (For a
while I dated a woman who had moved into an apartment in terrible
condition with screens on all the windows. As part of her renovation,
she removed the screens because she didn’t like how they looked.)
Excluding mosquitoes from a small space without windows is easier
than excluding them from a large space with windows.
• Spaces totally without amenities. There are numerous industrial and
storage spaces, both in Argentina and in the rest of the world, that
have electrical power, or can get it, but lack running water, climate
control, floors, sewage treatment, and so on. These spaces are often
much cheaper to rent than more livable spaces in the same area. An
easily portable modular habitaculum could provide a convenient

alternative to a camping trailer.
• Noise. If you have many centimeters of some kind of
sound-absorbing material between you and the outside world, you
will be less annoyed by the superchargers on buses interrupting your
conversation.
• Portability. Moving out is a huge pain in the ass. This was a major
motivation for Papanek’s Nomadic Furniture and _Nomadic Furniture 2.

• Coziness. A small space can be much more comfortable than a large
one if properly organized.
• Saving wear and tear on the property. When you move out, it’s
nice if you don’t have to repaint.

 Standard residence doors range from 625 mm up to maybe 900 mm
in width, and from 2000 mm on up in height. Standard residence
ceilings are about 2.6 m high, though occasionally there are small
areas with lower ceilings; you need at least 2 m of height inside the
habitaculum for most people to stand up comfortably, and probably
more like 2.2 m. The oppressive feeling of such a low ceiling can be
relieved by covering most of it in mirrors, doubling the visual height
of the space to 4.4 m.

 For individual modules to fit through a standard door under the
power of a single person, they ought to have wheels built into them
or trivially attachable, be no wider than 500 mm (to permit passing
through a 620-mm doorway at up to a 36° angle), be no taller than
2000 mm (they can be tilted over to go through low doors), and be no
longer than 1000 mm in order to be manageable in size for a single
person. This ½ × 2 × 1 m size is roughly that of a stack of three
single-bed-sized mattresses, or half of two Minetest blocks. To be
comfortably pivotable on a corner, they ought to weigh no more than
80 kg, so you never have to lift more than 40 kg; a weight of 40-60
kg, or even less, would be much better.

 This presumes that the modules should have the shape of a
rectangular paralellepiped. While aesthetically and in terms of
structural strength this might leave something to be desired, walls are
traditionally vertical so as to be in a local gravitational stable
equilibrium, and floors, beds, counters, and tables are necessarily
horizontal. So polyhedra of higher degrees of symmetry like the
Platonic dodecahedron, or of lower numbers of connection points like
the tetrahedron, would seem to be impractical.

 If your wall modules are exactly 2 m tall, your ceiling or floor
module will need to have some extra space to get up to 2.2 m inside
space; 2.0 m is rather cramped.

 So a minimal construction set for a 3.5 m × 3.5 m space (12.25 m²)
might consist of 16 outer wall modules (0.5 m × 2 m × 1 m), 4 ceiling
corner modules (0.25 m × 2 m × 1 m), 4 non-corner ceiling modules
(same), and another 8 floor modules, 32 modules in all, occupying
some 24 m³ in storage and enclosing 3.5 m × 3.5 m × 2.2 m = 26.95
m³. Some of the modules might contain Murphy beds, others closet
space, others air conditioners.

 The minimal volume to merely enclose that space would of course
be much smaller, consisting of thin cubicle-like panels (or panels
similar to Symons forms), perhaps only 20 mm thick. That would

reduce the total volume when disassembled to something like 0.64 m³.

 The modules could connect together at the corners with
twistlock-like connectors, modified to permit watertight connections
between them, or with wedge connectors like the “wedge bolts” that
connect concrete-form panels. Probably the walls will not have to
withstand more than 2 kN of force, which probably will not have
more than a 4:1 mechanical advantage against the corner connectors
(spread across two corners), so with 250 MPa A36 mild steel
connectors you only need about 16 mm² of tensile cross-section per
connector to keep the modules together. So it ought to be easy
enough to use snap connectors like those used in seatbelts. However,
connectors should not protrude from the surfaces when not in use
(that would make the modules uncomfortable to sit on or lean
against), and because you might want to disconnect a module that’s
currently connected to two or more other modules, it needs to be
possible to disengage the connections while the modules are still in
contact; turning a knob should enable you to engage or disengage
them. (Knobs are less likely to be actuated unintentionally than
buttons, levers, and the like.)

 The modules could probably be built as welded angle iron frames,
plus panels to give them rigidity. Each wall module has 14 meters of
edges (4 × (½ + 1 + 2)). Metals Depot will sell you hot rolled A36
12mm × 12mm × 3mm angle iron for US$5/m, and they say it
weighs 570 g/m, so this would work out to 7.9 kg and US$70, which
is a lot less than 80 kg but a bit pricey. 18-gauge A513 12mm × 12mm
square tube is a little lighter but costs more than twice as much. They
also sell ASTM A527 18-gauge (1.3 mm) galvanized steel sheet for
US$73/m², saying it weighs 10.5 kg/m², which is a slightly lower
price per kg.

 On Mercado Libre, Almacen Techista here in Buenos Aires sells
30-gauge (“C30”) galvanized (0.3 mm) for AR$2100 for a 1×2 m
sheet, weighing 5.05 kg. At today’s quote of AR$194.50/US$ that’s
US$10.80, US$5.40/m², or US$2.14/kg, a dramatically lower per-kg
price than Metals Depot. They also sell 18-gauge cold-rolled (1.25
mm) for AR$6050 for 1×2 m, which would be about 20 kg, US$31,
and US$1.58/kg, which is cheaper than the galvanized (at Metals
Depot cold-rolled is dearer than hot-rolled, which is dearer than
galvanized).

 Also on Mercado Libre, Gramabi sells 20 mm × 20 mm × 1.25 mm
square steel structural tubing for AR$1600 for 6 m, US$8.22,
US$1.37/m. I think that’s 1.19 kg, so US$6.90/kg, which is more
similar to the Metals Depot prices. But this might be a better grade of
steel than the galvanized roofing sheet metal.

 Some of these modules include things that can be controlled or
monitored electronically without a lot of bandwidth, such as LEDs,
fluorescent lights, air conditioners, heat exchangers, speakers, or
thermometers. If each face of a module where it can be latched onto
another module has an electronic connector as well, and the
microcontroller in each module can identify its module type,
distinguish between the different connectors, and detect their
orientation, then they can build a constantly updated model in

memory of the whole assemblage of modules and all of their
hardware, permitting it to be controlled and monitored from a larger
computer.

 It’s maybe not necessary for the modules to have electronic (and
electrical power) connectors on every surface. Legos only have
mechanical connectors on two of their surfaces, only four connectors
in the simplest general case; tee connectors have only three ports and
are capable of being assembled into two- and three-dimensional
networks. (Think of a cube that can couple to other cubes on three of
its faces.)

 This idea seems really cool: you could snap together some modules
into a custom ad-hoc dwelling machine that is immediately reflected
in the mirror world inside your laptop, from which you can control it.

 Interestingly, although I had forgotten this, Nomadic Furniture 2
profiles a system of modular cubes called “Palaset” by Ristomatti
Ratia, which is in some ways very similar. They’re polystyrene cubes
designed for storage (shelving, drawers, cabinets) that you can also sit
on, with a 13½” outside size and ¼” walls (345 mm and 6 mm), linked
together with doublestick tape and by inserting asterisk-shaped plastic
“dowels” into holes on their faces. Some of these are evidently still
available 49 years later at palaset.com for about 20 euros each, though
perhaps not as many as were profiled in the book.

 The ClicBot educational robot kit works more or less the way I
describe above, with sensors and connectors to create a VR model of
the physical robot that you can then program, but it’s for building
tabletop robots, not dwelling-machines.

Topics

• Composability (p. 1188) (9 notes)
• Life support (p. 1251) (4 notes)
• Household (p. 1363) (2 notes)

Against subjectivism
Kragen Javier Sitaker, 02021-12-15 (updated 02021-12-30)
(36 minutes)

 XXX note that fallibility is mentioned in the fallibility section and
also the section on people confusing social constructions with real
things

 In a discussion recently, I saw someone say (slightly edited for
readability and formatting):
The truth? Engage in discussion in a productive way? These really don’t seem to
be my things. ... I’m not interested in discussing things with people who believe in
the truth (or that they know it). ... In my opinion, truth is being established between
people, within communities. Truth is not a given, it does not exist outside of a
social context and it certainly does not inhabit any discussion before common
ground is found.

 I want to emphasize that this is not a straw man; it is a literal
transcript of something that someone actually said to me, improbable
as it sounds. Therefore I think it is worthwhile to clearly explain why
it is untrue.

 It struck me as a particularly clear statement of a malignant
doctrine, a collective variant of metaphysical solipsism, that I’ve often
seen in a more covert form. It’s a hopelessly confused metaphysical
doctrine which eliminates both the possibility of rational action and
the possibility of any basis for agreement, other than submission or
compromise; scholars call it “global alethic relativism”.

The truth in global alethic relativism

 First, though, let me explain what is true about this view.

People cannot distinguish social constructions from
objective truth

 There are many statements that people commonly accept as “true”
that are in fact socially constructed rather than objectively true in any
sense: my property extends up to such-and-such a line; masturbating
in public is unacceptable; The Da Vinci Code is not yet out of
copyright; saying that someone is “nice” is saying that they treat
others well. Clearly the community could change its collective mind
about where the property line is drawn, what sorts of behavior are
acceptable and unacceptable, what causes bizarre human behaviors,
the terms of copyright, and the definitions of words.

 People nearly always act as if things like national boundaries,
corporations, ghosts, demonic possessions, marriages, and land tenure
rights exist in the same objective, material sense that stone walls or
puppies do. This is very practically useful: you cannot run through a
stone wall by disbelieving in it, and in the same way you cannot run
through a heavily armed international border by disbelieving in
it — even though the border is socially constructed, the armaments
and the border guards wielding them are objectively, materially real.

 But, in fact, when it comes to such things, there is indeed no such
thing as the truth; the truth of a marriage, a corporation, a national

https://plato.stanford.edu/entries/relativism/

border, or a law is established between people, within communities.
It does not exist outside of a social context and does not “inhabit any
discussion before common ground is found.” It is a shared opinion,
not a fact about the material world.

 The relevant difference is that if the border guards stop believing in
the national boundary, or can be tricked about where it is, then you
can cross it without changing anything in the material world other
than people’s beliefs and expectations. This does not work with stone
walls.

People are fallible

 Everyone has had the experience of being wrong about things, and
dialogue with other people is usually the way we find out we are
wrong — in cases like land tenure rights and national boundaries, some
sort of communication with other people is the only way to find out,
because those things don’t physically exist in the material world,
except as beliefs in people’s minds. Everyone has also had the
experience of encountering someone who is unwilling to consider the
possibility that they are wrong.

 Everyone has also had the experience of having beliefs that they
thought were objective truth, which turned out to only be
opinions — usually because they met someone with different opinions.

 Given this background of experience, how can we justify any belief
at all in the truth, or a truth that exists outside of any social context?
How do we know that we aren’t just confusing ourselves again,
switching from one set of beliefs to a more popular one, without ever
making any contact with objective reality?

People’s understanding of the objective world is filtered
through social constructions

 A different aspect of this proposition is that people are not mentally
equipped to grapple directly with the immense mass of brute facts in
the objective world, so they retreat to what Walter Lippmann terms
“fictions”:
Now in any society that is not completely self-contained in its interests and so small
that everyone can know all about everything that happens, ideas deal with events
that are out of sight and hard to grasp. Miss Sherwin of Gopher Prairie is aware
that a war is raging in France and tries to conceive it. She has never been to France,
and certainly she has never been along what is now the battlefront.
 Pictures of French and German soldiers she has seen, but it is impossible for her
to imagine three million men. No one, in fact, can imagine them, and the
professionals do not try. They think of them as, say, two hundred divisions. But
Miss Sherwin has no access to the order of battle maps, and so if she is to think
about the war, she fastens upon Joffre and the Kaiser as if they were engaged in a
personal duel. Perhaps if you could see what she sees with her mind’s eye, the
image in its composition might be not unlike an Eighteenth Century engraving of
a great soldier. He stands there boldly unruffled and more than life size, with a
shadowy army of tiny little figures winding off into the landscape behind.
 ...
 In all these instances we must note particularly one common factor. It is the
insertion between man and his environment of a pseudo-environment. To that
pseudo-environment his behavior is a response. But because it is behavior, the
consequences, if they are acts, operate not in the pseudo-environment where the
behavior is stimulated, but in the real environment where action eventuates. If the

https://gutenberg.org/cache/epub/6456/pg6456.html
https://gutenberg.org/cache/epub/6456/pg6456.html

behavior is not a practical act, but what we call roughly thought and emotion, it
may be a long time before there is any noticeable break in the texture of the
fictitious world. But when the stimulus of the pseudo-fact results in action on
things or other people, contradiction soon develops. Then comes the sensation of
butting one’s head against a stone wall, of learning by experience, and witnessing
Herbert Spencer’s tragedy of the murder of a Beautiful Theory by a Gang of Brutal
Facts, the discomfort in short of a maladjustment. For certainly, at the level of
social life, what is called the adjustment of man to his environment takes place
through the medium of fictions.
 By fictions I do not mean lies. I mean a representation of the environment
which is in lesser or greater degree made by man himself. The range of fiction
extends all the way from complete hallucination to the scientists’ perfectly
self-conscious use of a schematic model, or his decision that for his particular
problem accuracy beyond a certain number of decimal places is not important. A
work of fiction may have almost any degree of fidelity, and so long as the degree of
fidelity can be taken into account, fiction is not misleading. In fact, human culture
is very largely the selection, the rearrangement, the tracing of patterns upon, and
the stylizing of, what William James called “the random irradiations and
resettlements of our ideas.” [Footnote: James, Principles of Psychology, Vol. II, p.
638] The alternative to the use of fictions is direct exposure to the ebb and flow of
sensation. That is not a real alternative, for however refreshing it is to see at times
with a perfectly innocent eye, innocence itself is not wisdom, though a source and
corrective of wisdom. For the real environment is altogether too big, too complex,
and too fleeting for direct acquaintance. We are not equipped to deal with so
much subtlety, so much variety, so many permutations and combinations. And
although we have to act in that environment, we have to reconstruct it on a
simpler model before we can manage with it. To traverse the world men must
have maps of the world. Their persistent difficulty is to secure maps on which their
own need, or someone else’s need, has not sketched in the coast of Bohemia.

 So these “fictions” or “pseudo-environments” are products of
social contexts and evolve from the interplay and negotiation between
people. Lippmann’s “fictions”, however, have “degrees of fidelity”:
they are referred to an underlying environment, and may be better or
worse at it, so they can be more or less true in ways that have nothing
to do with social consensus.

Why alethic relativism is false

 But this extremist form of relativism does not stop at pointing out
that people commonly accept social constructions as facts, are fallible,
and understand their environment in a way that is profoundly altered
and simplified by their social context; it calls into question even
propositions such as whether there is a stone wall in front of you, the
commutativity of integer multiplication, or whether Elvis Presley is
still alive.

The obvious problem is that it affirms nonsense

 At first glance it would seem to foreclose only the possibility of any
basis for agreement other than mere popularity. It entails that
geocentrism was actually true until Copernicus and Galileo made it
unpopular, and heliocentrism was false, because the community of the
Catholic Church had established the truth of geocentrism. It argues
that whether there is or is not a stone wall in front of you is a truth
that can only exist inside of a social context, established between
people, within communities; the right social context would allow
you to run through the stone wall as easily as you can run across a
state line in the US. It entails that exterminating sparrows and deep
plowing in the Great Leap Forward was to result in abundance rather

than famine, because the social context had established that it would.
It asserts that the only difference between truth and lies is that people
disbelieve lies.

 That is, it cannot distinguish between truth and collective
ignorance or self-delusion.

Worse, it can’t even agree on which nonsense to affirm
in which context

 But, in fact, the problem goes much deeper! According to this
radical form of relativism, it isn’t even objectively true that the
Catholic Church was preaching geocentrism, or that the Inquisition
put Galileo under house arrest for teaching heliocentrism, or for that
matter that our own community subscribes to heliocentrism. If
saying that some proposition X is true means only that some
community has accepted X as true, then it would be equally valid for
the following “truths” to “exist” by “being established” within a
different community or social context:
The Catholic Church was teaching heliocentrism and Galileo, who was never put
under house arrest, was teaching geocentrism. Nowadays most people accept
geocentrism. The Great Leap Forward did not promote exterminating sparrows or
deep plowing.

 That is, the question of what a given community establishes, or
established, as truth, is itself a question of objective fact, so relativists
are in some sense smuggling in a hidden dependency on

Alethic relativism contradicts itself when we look at
what people believe

 In an ontological sense, this is incoherent, in a way shown by Plato;
the SEP summarizes his argument as follows:
Most people believe that Protagoras’s doctrine is false.
 Protagoras, on the other hand, believes his doctrine to be true.
 By his own doctrine, Protagoras must believe that his opponents’ view is true.
 Therefore, Protagoras must believe that his own doctrine is false.

 Plato’s version of this argument is considerably lengthier and is
quoted in full at the end of this note; as the SEP notes, though, this
argument begs the question, implicitly relying on a notion of absolute
rather than relative truth. Protagoras must believe that his opponents’
view is true for them.

 This argument is contingent on what the actual social consensus is;
in a world where everyone agreed with Protagoras, it would lose its
force. Nevertheless, we do not live in such a world. People routinely
make factual assertions based on an evident belief that some
statements are true and others are false in a fashion that is independent
of people’s opinions.

And it makes predictions very much at odds with
reality

 Borges, in Tlön, Uqbar, Orbis Tertius writes (my translation below):
Siglos y siglos de idealismo no han dejado de influir en la realidad. No es
infrecuente, en las regiones más antiguas de Tlön, la duplicación de objetos
perdidos. Dos personas buscan un lápiz; la primera lo encuentra y no dice nada; la
segunda encuentra un segundo lápiz no menos real, pero más ajustado a su
expectativa. Esos objetos secundarios se llaman hrönir y son, aunque de forma

https://plato.stanford.edu/entries/relativism/#AleRelChaSelRef
http://fcaglp.fcaglp.unlp.edu.ar/~sixto/borges/ficciones/jardin/tlon.htm
http://fcaglp.fcaglp.unlp.edu.ar/~sixto/borges/ficciones/jardin/tlon.htm

desairada, un poco más largos. Hasta hace poco los hrönir fueron hijos casuales de la
distracción y el olvido. Parece mentira que su metódica producción cuente apenas
cien años, pero así lo declara el Onceno Tomo. Los primeros intentos fueron
estériles. El modus operandi, sin embargo, merece recordación. El director de una de
las cárceles del estado comunicó a los presos que en el antiguo lecho de un río había
ciertos sepulcros y prometió la libertad a quienes trajeran un hallazgo importante.
Durante los meses que precedieron a la excavación les mostraron láminas
fotográficas de lo que iban a hallar. Ese primer intento probó que la esperanza y la
avidez pueden inhibir; una semana de trabajo con la pala y el pico no logró
exhumar otro hrön que una rueda herrumbrada, de fecha posterior al experimento.
Éste se mantuvo secreto y se repitió después en cuatro colegios. En tres fue casi
total el fracaso; en el cuarto (cuyo director murió casualmente durante las primeras
excavaciones) los discípulos exhumaron —o produjeron— una máscara de oro, una
espada arcaica, dos o tres ánforas de barro y el verdinoso y mutilado torso de un rey
con una inscripción en el pecho que no se ha logrado aún descifrar. Así se descubrió
la improcedencia de testigos que conocieran la naturaleza experimental de la busca...
Las investigaciones en masa producen objetos contradictorios; ahora se prefiere los
trabajos individuales y casi improvisados. La metódica elaboración de hrönir (dice el
Onceno Tomo) ha prestado servicios prodigiosos a los arqueólogos. Ha permitido
interrogar y hasta modificar el pasado, que ahora no es menos plástico y menos
dócil que el porvenir. Hecho curioso: los hrönir de segundo y de tercer grado —los
hrönir derivados de otro hrön, los hrönir derivados del hrön de un hrön— exageran las
aberraciones del inicial; los de quinto son casi uniformes; los de noveno se
confunden con los de segundo; en los de undécimo hay una pureza de líneas que
los originales no tienen. El proceso es periódico: el hrön de duodécimo grado ya
empieza a decaer. Más extraño y más puro que todo hrön es a veces el ur, la cosa
producida por sugestión, el objeto educido por la esperanza. La gran máscara de oro
que he mencionado es un ilustre ejemplo.
 Centuries and centuries of idealism have not ceased to influence reality. Not
infrequently, in the oldest regions of Tlön, lost objects are duplicated. Two people
seek a pencil; the first finds it and says nothing; the second finds a second pencil no
less real, but more in keeping with their expectations. These secondary objects are
called hrönir and are, though only slightly, somewhat longer. Until recently the
hrönir were accidental children of distraction and forgetfulness. Incredibly, their
methodical production is only a hundred years old, so the Eleventh Volume says.
The first attempts were fruitless. The modus operandi, however, is worthy of note.
The director of one of the state prisons told the prisoners that in the riverbed were
certain sepulchres, promising liberty to whoever should bring him a significant
find. During the months preceding the excavation, they were shown photographic
slides of what they were to find. This first attempt showed that hope and greed can
inhibit; a week of labor with shovels and picks failed to exhume any hrön but a
rusty wheel, of a date later than the experiment. This was kept secret and repeated
in four workshops. In three the failure was nearly total; in the fourth (whose
director died coincidentally during the first excavations) the disciples
exhumed — or produced — a golden mask, an archaic sword, two or three
amphoras of mud, and the greenish and mutilated torso of a king with a still
undeciphered inscription on his chest. Thus they discovered the uselessness of
witnesses who understood the experimental nature of the search... Mass research
produces contradictory objects; now preference is given to individual and almost
improvisational experiments. The methodical production of hrönir (says the
Eleventh Volume) has provided prodigious benefits to archaeologists. It has
permitted the interrogation and even modification of the past, which is now no less
flexible and docile than the future. Curious fact: the hrönir of second and third
degree — the hrönir derived from another hrön — exaggerate the aberrations of the
first; those of the fifth degree are almost uniform; those of the ninth degree are
confused with those of the second; in those of the eleventh there is a purity of line
that the originals lack. The process is periodic: the hrön of twelfth degree begins to
decay. Stranger and purer than any hrön is, at times, the ur, the thing produced by
suggestion, the object educed by hope. The great mask of gold I have mentioned is
an illustrious example.

 Along the same satirical lines, Douglas Adams writes, in Life, the
Universe, and Everything:
“Recreational Impossibilities” was a heading which caught Trillian’s eye when, a

short while later, she sat down to flip through the Guide again, and as the Heart of
Gold rushed at improbable speeds in an indeterminate direction, she sipped a cup of
something undrinkable from the Nutrimatic Drink Dispenser and read about how
to fly.
 The Hitch Hiker’s Guide to the Galaxy has this to say on the subject of flying.
 There is an art, it says, or rather a knack to flying.
 The knack lies in learning how to throw yourself at the ground and miss.
 Pick a nice day, it suggests, and try it.
 The first part is easy.
 All it requires is simply the ability to throw yourself forward with all your
weight, and the willingness not to mind that it’s going to hurt.
 That is, it’s going to hurt if you fail to miss the ground.
 Most people fail to miss the ground, and if they are really trying properly, the
likelihood is that they will fail to miss it fairly hard.
 Clearly, it’s the second point, the missing, which presents the difficulties.
 One problem is that you have to miss the ground accidentally. It’s no good
deliberately intending to miss the ground because you won’t. You have to have
your attention suddenly distracted by something else when you’re halfway there, so
that you are no longer thinking about falling, or about the ground, or about how
much it’s going to hurt if you fail to miss it.
 It is notoriously difficult to prise your attention away from these three things
during the split second you have at your disposal. Hence most people’s failure, and
their eventual disillusionment with this exhilarating and spectacular sport.
 If, however, you are lucky enough to have your attention momentarily
distracted at the crucial moment by, say, a gorgeous pair of legs (tentacles,
pseudopodia, according to phylum and/or personal inclination) or a bomb going
off in your vicinity, or by suddenly spotting an extremely rare species of beetle
crawling along a nearby twig, then in your astonishment you will miss the ground
completely and remain bobbing just a few inches above it in what might seem to be
a slightly foolish manner.
 This is a moment for superb and delicate concentration.
 Bob and float, float and bob.
 Ignore all considerations of your own weight and simply let yourself waft higher.

 Do not listen to what anybody says to you at this point because they are unlikely
to say anything helpful.
 They are most likely to say something along the lines of, “Good God, you can’t
possibly be flying!”
 It is vitally important not to believe them or they will suddenly be right.
 Waft higher and higher.
 Try a few swoops, gentle ones at first, then drift above the treetops breathing
regularly.
 Do not wave at anybody.
 When you have done this a few times you will find the moment of distraction
rapidly becomes easier and easier to achieve.
 You will then learn all sorts of things about how to control your flight, your
speed, your manoeuvrability, and the trick usually lies in not thinking too hard
about whatever you want to do, but just allowing it to happen as if it was going to
anyway.
 You will also learn how to land properly, which is something you will almost
certainly cock up, and cock up badly, on your first attempt.
 There are private flying clubs you can join which help you achieve the
all-important moment of distraction. They hire people with surprising bodies or
opinions to leap out from behind bushes and exhibit and/or explain them at the
crucial moments. Few genuine hitchhikers will be able to afford to join these clubs,
but some may be able to get temporary employment at them.
 Trillian read this longingly, but reluctantly decided that Zaphod wasn’t really in
the right frame of mind for attempting to fly, or for walking through mountains or
for trying to get the Brantisvogan Civil Service to acknowledge a
change-of-address card, which were the other things listed under the heading
“Recreational Impossibilities”.

 Such Wile E. Coyote techniques do not work in our world,
individually or in groups, so we can conclude that alethic relativism is
false; that there exists a truth, an objective reality, independent of our
communities, outside of a social context, even before common
ground is found.

 Of course, this too begs the question — it relies on the presumption
that it is objectively true that such events do not happen in our world,
while a relativist might argue that for us they do not happen, while for
them such events do happen. I have not yet met a relativist who has
dared to make such an argument, but in this way alethic relativism
could insulate itself from all possible disproof, just as ordinary
solipsism does.

 As the Wikipedia article on social constructionism complains, “It
has been objected that strong social constructionism undermines the
foundation of science as the pursuit of objectivity and, as a theory,
defies any attempt at falsifying it.”

Alethic relativism is malignant because it
would render science, engineering, and the
rest of philosophy impossible

 So what? Why is it worth talking about? Many people believe
many false and incoherent things, but we don’t spend all our time
constructing detailed refutations of each of them. What makes this
doctrine so “malignant” it’s worth our attention?

 I have two major concerns with this sort of willful blindness to
objective reality, which accepts popularity contests as superior to
empirical evidence or logical reasoning: it is guaranteed to render
disagreements unresolvable, and it makes rational action impossible.
It’s a collective variant of solipsism in the sense that, rather than
proposing that I am alone in the universe, it proposes that we are alone
in the universe; every other fact is taken to be merely a social
consensus, only “true” relative to the community that established it,
possibly “false” relative to other communities. By deluding its
adherents into rejecting the universe, it tempts them to “establish
truths” by collective partisan violence rather than by logic and
evidence, violence that ultimately ends in self-destruction.

 As Borges writes:
Este monismo o idealismo total invalida la ciencia. Explicar (o juzgar) un hecho es
unirlo a otro; esa vinculación, en Tlön, es un estado posterior del sujeto, que no
puede afectar o iluminar el estado anterior. Todo estado mental es irreductible: el
mero hecho de nombrarlo -id est, de clasificarlo- importa un falseo. De ello cabría
deducir que no hay ciencias en Tlön -ni siquiera razonamientos. La paradójica
verdad es que existen, en casi innumerable número. ... El hecho de que toda
filosofía sea de antemano un juego dialéctico, una Philosophie des Als Ob, ha
contribuido a multiplicarlas. Abundan los sistemas increíbles, pero de arquitectura
agradable o de tipo sensacional. Los metafísicos de Tlön no buscan la verdad ni
siquiera la verosimilitud: buscan el asombro. Juzgan que la metafísica es una rama
de la literatura fantástica.

 My translation:
This monism or total idealism invalidates science. Explaining (or judging) a fact is
uniting it to another; this linking, in Tlön, is a posterior state of the subject, which
cannot affect or illuminate its prior state. Every mental state is irreducible: the

https://en.wikipedia.org/wiki/Social_constructionism

mere fact of naming it — that is, of classifying it — imports a falsehood. From this
one could deduce that there are no sciences in Tlön — not even reasoning. The
paradoxical truth is that they do exist, in an almost uncountable number. ... The
fact that all philosophy is from the beginning a dialectical game, a Philosophie des
Als Ob, has contributed to multiplying them. Incredible systems abound, but of
agreeable architecture or of a sensational type. The metaphysicians of Tlön do not
seek the truth or even plausibility: they seek surprise. They consider metaphysics
to be a branch of fantasy literature.

 Of course, people commonly disagree on empirical questions like
whether Elvis Presley is still alive or not, as well as logical or
mathematical questions like whether it is true that every even whole
number greater than 2 is the sum of two prime numbers, for example
due to access to differing evidence or due to limitations in their
reasoning.

 And people commonly differ in their interpretation of language;
one person may interpret a sentence as a proposition that is true, while
another interprets it as a diiferent proposition that is false. For
example, the sentence “every even whole number is the sum of two
prime numbers” depends on the definition of “prime number”; it is
trivially false according to our modern definition (in which 1 is not a
prime number), because 2 is a example, but when Euler originally
stated Goldbach’s conjecture, he stated it that way because he was
using a definition of “prime numbers” (or rather, “prīmī”, using a
Latin word) that included 1 as a “prime”. Thus our interpretation of
a sentence, for example in English, German, or Latin, depends on the
socially constructed meanings of the words in it. (“Nice” used to
mean “insignificant”, too.)

 But these sorts of disagreement presuppose the existence of an
objective reality that could, in principle, resolve them. Alethic
relativism, by contrast, claims that it is merely a matter of social
consensus — opinion — whether Elvis is alive or dead, or whether 2 +
2 = 4. It claims that there is no objective sense in which Elvis is dead
or alive, or in which 2 + 2 = 4, so there is no point in talking about it
except to establish social consensus.

Alethic relativism as gaslighting

https://en.wikipedia.org/wiki/Chain_of_Command_%28Star_Trek:
_The_Next_Generation%29

Plato’s version of the self-refutation
argument

 This version is somewhat more long-winded than the SEP version I
quoted above:
Socrates Let us then get the agreement in as concise a form as possible, not through
others, but from his [Protagoras’s] own statement.
 Theodorus How?
 Socrates In this way: He says, does he not? “that which appears to each person
really is to him to whom it appears.”
 Theodorus Yes, that is what he says.
 Socrates Well then, Protagoras, we also utter the opinions of a man, or rather, of
all men, and we say that there is no one who does not think himself wiser than
others in some respects and others wiser than himself in other respects; for

https://en.wikipedia.org/wiki/Goldbach's_conjecture
https://en.wikipedia.org/wiki/Goldbach's_conjecture
https://en.wikipedia.org/wiki/Chain_of_Command_(Star_Trek:_The_Next_Generation)
https://en.wikipedia.org/wiki/Chain_of_Command_(Star_Trek:_The_Next_Generation)
https://en.wikipedia.org/wiki/Chain_of_Command_(Star_Trek:_The_Next_Generation)
https://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.01.0172:text=Theaet.:section=169e

instance, in times of greatest danger, when people are distressed in war or by
diseases or at sea, they regard their commanders as gods and expect them to be their
saviors, though they excel them in nothing except knowledge. And all the world
of men is, I dare say, full of people seeking teachers and rulers for themselves and
the animals and for human activities, and, on the other hand, of people who
consider themselves qualified to teach and qualified to rule. And in all these
instances we must say that men themselves believe that wisdom and ignorance exist
in the world of men, must we not?
 Theodorus Yes, we must.
 Socrates And therefore they think that wisdom is true thinking and ignorance
false opinion, do they not?
 Theodorus Of course.
 Socrates Well then, Protagoras, what shall we do about the doctrine? Shall we
say that the opinions which men have are always true, or sometimes true and
sometimes false? For the result of either statement is that their opinions are not
always true, but may be either true or false. Just think, Theodorus, would any
follower of Protagoras, or you yourself care to contend that no person thinks that
another is ignorant and has false opinions?
 Theodorus No, that is incredible, Socrates.
 Socrates And yet this is the predicament to which the doctrine that man is the
measure of all things inevitably leads.
 Theodorus How so?
 Socrates When you have come to a decision in your own mind about something,
and declare your opinion to me, this opinion is, according to his doctrine, true to
you; let us grant that; but may not the rest of us sit in judgement on your decision,
or do we always judge that your opinion is true? Do not myriads of men on each
occasion oppose their opinions to yours, believing that your judgement and belief
are false?
 Theodorus Yes, by Zeus, Socrates, countless myriads in truth, as Homer says,
and they give me all the trouble in the world.
 Socrates Well then, shall we say that in such a case your opinion is true to you
but false to the myriads?
 Theodorus That seems to be the inevitable deduction.
 Socrates And what of Protagoras himself? If neither he himself thought, nor
people in general think, as indeed they do not, that man is the measure of all things,
is it not inevitable that the “truth” which he wrote is true to no one? But if he
himself thought it was true, and people in general do not agree with him, in the
first place you know that it is just so much more false than true as the number of
those who do not believe it is greater than the number of those who do.
 Theodorus Necessarily, if it is to be true or false according to each individual
opinion.
 Socrates Secondly, it involves this, which is a very pretty result; he concedes
about his own opinion the truth of the opinion of those who disagree with him and
think that his opinion is false, since he grants that the opinions of all men are true.
 Theodorus Certainly.
 Socrates Then would he not be conceding that his own opinion is false, if he
grants that the opinion of those who think he is in error is true?
 Theodorus Necessarily.
 Socrates But the others do not concede that they are in error, do they?
 Theodorus No, they do not.
 Socrates And he, in turn, according to his writings, grants that this opinion also is
true.
 Theodorus Evidently.
 Socrates Then all men, beginning with Protagoras, will dispute—or rather, he
will grant, after he once concedes that the opinion of the man who holds the
opposite view is true—even Protagoras himself, I say, will concede that neither a
dog nor any casual man is a measure of anything whatsoever that he has not
learned. Is not that the case?
 Theodorus Yes.
 Socrates Then since the “truth” of Protagoras is disputed by all, it would be true
to nobody, neither to anyone else nor to him.

 Protagoras’s argument doesn’t become any more coherent when
applied to communities rather than individuals.

Topics

• Flying (p. 1296) (3 notes)
• Ontology (p. 1350) (2 notes)
• Galileo (p. 1367) (2 notes)

Solid rock on a gossamer skeleton
through exponential deposition
Kragen Javier Sitaker, 02021-12-15 (updated 02021-12-30)
(11 minutes)

 Suppose you have made a lightweight model of something out of
aluminum foil or thin aluminum mesh, for example by origami or
stamping or bending, and you’d like to solidify that geometry. But
the aluminum foil is very lightweight and flimsy (see Aluminum foil
(p. 413), typically 10 μm) and so it can’t withstand much force at all
without deforming dramatically.

 Extending this to thinner metal sheets such as gold leaf would be
desirable but seems much more challenging.

 One approach to this is cathodic deposition, whether of metals or
of other minerals; see Fast electrolytic mineral accretion (seacrete) for
digital fabrication? (p. 779). That file covers many candidate
approaches to cathodic deposition of nonmetals. But there are some
other approaches I want to explore.

Waterglass spray systems

 Another thing you can do is to coat the foil with waterglass, for
example by spraying. I think this is sort of the opposite of spray
drying: as in spray drying, you want very fine droplets, under 10 μm,
so that they don’t collapse the aluminum with their weight, but you
probably need the air to be sufficiently humid that the fine droplets
do not dry before they can stick to the aluminum, where they are
smoothed out by the surface tension of the solution and the
hydrophilicity of the surface. (You may need to functionalize the
surface to be more hydrophilic first.) With sufficiently outrageous
pressure, you should be able to atomize even a fairly concentrated
waterglass solution (≈30%) through a small orifice.

 By this means you ought to be able to deposit an additional 10 μm
or so of waterglass on the surface of the aluminum to stiffen it; upon
exposing the object to dry, hot air, such a thin film should be able to
dry fairly quickly. The resulting silica gel might be 5 μm thick on
both sides of the foil, doubling its thickness. Silica xerogel is not very
stiff, with a Young’s modulus in the neighborhood of E = 3 GPa
(compare to aluminum’s E = 70–90 GPa).

 If the surface is sprayed in the same way, either before or after the
silicate, with a solution of a salt containing polyvalent cations that will
not displace aluminum in the metal, with anions that will not
decompose to oxidize the aluminum (such as the acetate or formate of
magnesium, calcium, manganese(II), zinc, copper, or iron, especially
ferrous but even ferric; or the acetate, sulfate, nitrate, iodide, or
chloride of aluminum or magnesium; or the nitrate or iodide of
calcium) it should immediately render the silicate insoluble upon
contact, in the same way as in Keim’s process for mineral painting
(Keimfarben), but much more rapidly because of the thinness of the
layer and because of carrying out the whole process at an elevated

https://mdpi-res.com/d_attachment/gels/gels-01-00256/article_deploy/gels-01-00256.pdf
https://mdpi-res.com/d_attachment/gels/gels-01-00256/article_deploy/gels-01-00256.pdf

temperature.

 In addition, some of the resulting silicate compounds might be
stiffer than a simple silica xerogel; some silicates of aluminum and
magnesium are notable for their outstanding quartz-like hardness. I
think aluminum and magnesium are also more advantageous in this
respect because there is no danger that they will displace the
aluminum metal, so they afford a wider choice of salts than zinc,
copper, or iron, and because they contain more valence electrons per
mass; I fear that the acetate, sulfate, nitrate, iodide, or chloride of
zinc, copper, or iron might corrode the aluminum, though I think
they normally are not sufficiently aggressive to corrode it in the time
available.

 (In general, lower alkalinity waterglasses will not only be able to
solidify with smaller additions of polyvalent cations, but will also
produce stiffer materials, because the silicate network tends to provide
most of the mineral’s strength.)

 Alternative ways to rapidly solidify waterglass include carbonic acid
gas, and alcohols such as methanol or ethanol, but these last are
reputed to produce a rubbery effect which would be
counterproductive in this context.

Aqueous phosphate spray systems

 As an alternative to waterglass in this process, sources of soluble
phosphate can be used, such as phosphoric acid and the soluble
monobasic, dibasic, or tribasic phosphates of sodium, potassium, or
azanium. These can be reacted with polyvalent cations in the same
way as the soluble silicates to form insoluble mineral phosphates, some
of which are competitive in hardness with the silicates. In many cases
the reactions are not as calm as the corresponding silicate reactions.

 Sufficient quantities of phosphoric acid can convert aluminum foil
into the water-soluble acidic monoaluminum
tri(dihydrogen)phosphate, though normally this reaction takes hours,
while the more usual 1:1 aluminum phosphate is aggressively
insoluble. Another possible disadvantage of phosphoric acid is that it
would be much harder to dry out. I don’t think the other phosphates
are aggressive enough to attack aluminum foil.

 The azanium phosphates are particularly interesting here because
the azanium can be driven off by heating, leaving the anhydrous acid
if this is done before adding the other reagent; the monobasic
phosphate decomposes around 200°. In the case where the salt
contributing the polyvalent cations is a muriate, fluoride, iodide, or
formate, the heating step can remove the azanium-salt byproduct
entirely after combining the two solutions, leaving only the desired
mineral. Of these, the azanium muriate gas is probably the least
objectionable.

 Pyrophosphates or metaphosphates are likely alternatives to
orthophosphates here; as with lower-alkalinity soluble silicates, these
longer-chain phosphates may require smaller amounts of polyvalent
cations and produce stiffer materials. If this effect exists, it would be
much weaker than with the silicate systems.

General remarks on aqueous spray systems

 Getting sprayed drops of the right size onto the aluminum is
probably best done by producing the spray in a chamber with a slight
updraft which will carry the smaller drops to the workpiece, while
allowing larger drops to fall and be recycled. In the cases other than
waterglass/carbonic acid, it would be best to use one such chamber
for each liquid so that they do not react in the spray chamber and can
be recycled safely.

 Micron-sized filler particles, such as clay, talc, mica, silica (as in
sol-silicate paint), or nanotubes (whether of carbon, BCN, boron
nitride, halloysite, or some other material) could further enhance the
stiffness of the resulting material and reduce the quantity of
polyvalent cations required. These could be mixed into either of the
two solutions.

 As the object gets thicker layer by layer, it will become stiffer in
proportion to the square of its thickness, so after a while it will be
possible to deposit thicker layers.

Foamable systems

 A possible alternative approach is to form your original shape out of
not one but two layers of aluminum foil which are stuck together with
drops of dried waterglass before being formed. Upon heating the
formed shape, the waterglass softens, and the substantial amount of
water locked inside its gel structure bubbles out, forming a foam,
which pushes the two sheets of aluminum some distance apart. If the
waterglass layer is continuous before foaming, this will badly distort
the shape and quite likely rip the aluminum foil, but if adequate space
is present laterally between the drops, they will have space to expand
without damaging the foil or distorting the shape much, while still
forming a continuous foam network and doing most of their
expansion perpendicular to the surface. Once cooled, the resulting
sandwich panel is potentially substantially more rigid than the original
easily-formable material.

 According to a preliminary test on a much larger scale (see Material
observations (p. 633), section 02021-08-20) waterglass foamed by
heating commonly expands in volume by about a factor of 10; so a
layer of 10-μm-thick waterglass drops that is half waterglass drops and
half air might expand 5× in thickness to 50 μm, making the total
sandwich panel 70 μm and, I think, 9× its original rigidity ((60/20)²).
If you can manage full density, no spaces between drops, without
ripping the foil, you can get to 100 μm and 30× the original rigidity
((110/20)²).

 By placing the waterglass drops along a pattern of crisscrossing
lines, rather than uniformly distributed over the whole plane, it may
be possible to use less total material at the expense of less increase in
thickness and thus in rigidity.

 If instead of a sandwich between two layers of foil we deposit the
drops of waterglass on a wire mesh, they are more likely to chip off,
but they will tend to distort the form less when heated, forming a
solid foam piece.

 If instead of waterglass we use drops of dried phosphates of
azanium, heating will drive off azanium instead of water, melting the
resulting phosphoric acid and allowing it to foam up with the

azanium gas. A slow-acting source of polyvalent cations, inert to
phosphates of azanium at room temperature but reactive with warm
anhydrous phosphoric acid, can be mixed in with the phosphates.
Oxides of zinc, copper, aluminum, iron, or magnesium would
probably work well for this with the grain size and grain surface
structure adjusted to get the right level of reactivity.

 In either case, including a small amount of a polyvalent cation in
the waterglass or phosphate solution before drying, but not enough to
precipitate on its own, might enable it to gel at a higher water
content, thus providing a greater foaming structure.

 Borax is another material that foams up at temperatures below the
melting point of aluminum, because like waterglass it softens up and
water is driven out, but it’s not as easy to precipitate a water-insoluble
material from. It might be possible to convert it into hydroboracite
(CaMgB₆O₁₁·6H₂O) by reacting it with both calcium and magnesium
ions, but this is far from the enthusiasm with which the phosphate
and silicate systems form insoluble products, and even hydroboracite
is not very hard.

 Mixing pyrophosphates, orthophosphates, and metaphosphates
together may be useful to encourage phosphates to form an
amorphous gel (that can trap a lot of water) rather than crystals
(which in a few cases can be quite hydrated, for example the
decahydrates of di- and trisodium phosphate.)

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• Phosphates (p. 1184) (9 notes)
• Foam (p. 1185) (9 notes)
• Waterglass (p. 1189) (8 notes)
• Aluminum foil (p. 1237) (5 notes)

3-D printing in poly(vinyl alcohol)
Kragen Javier Sitaker, 02021-12-15 (updated 02021-12-30)
(2 minutes)

 Because polyvinyl alcohol can be (ionically) crosslinked with borate
to gel, forming a much less water-soluble polymer (though still a
thermoplastic), I think you could do a useful 3-D printing system by
extruding a solution of polyvinyl alcohol in water, either spraying the
surface with a solution of borax or boric acid in between layers to
solidify it, or submerging it into a tank of the same.

 The polymer is already widely available, sold as a mold release, for
about US$50/kg, and is biodegradable and non-toxic. (Borate is also
pretty nontoxic, but it’s not in the same league as PVA.) It’s quite
strong and stiff, comparable to PLA.

 This system would have the following potential advantages over
the now-conventional PLA FDM process developed by the RepRap
project:

• No heating is needed for the extruder.
• The polymer is crystal-clear, enabling the production of transparent
objects; films of it are commonly used in optical devices.
• The hydrogel resulting from adding the borate is elastomeric and
sufficiently hygroscopic to resist dehydration under ordinary
conditions.
• Various functional fillers can easily be added. I have some PVA
glue here that’s full of glitter.
• When dry, it has extremely low oxygen permeability for an organic
material.
• Because the polymer is mixed with a solvent, it can form a lower
volume fraction of the final product; I think loadings under 10% are
common in school glue. This should permit higher filler loadings in
the final product than in filled PLA systems, which may permit better
filler-induced properties, such as mechanical strength, stiffness,
magnetism, conductivity, porosity, glitteriness, etc.

 Alternatively, you could use it for a liquid-vat-hardening process
similar to SLA, in which the liquid is selectively hardened not by
selective exposure to light but by selective deposition of borate on the
surface of a vat of liquid, using one or many nozzles, alternating with
raising the level of liquid in the vat slightly. With the right
crosslinking initiators, you could probably induce PVA to crosslink
with light, too, which would probably form a covalently linked
thermoset rather than the ionically crosslinked thermoplastic formed
by the PVA/borate system.

 There exist alternative crosslinkers for PVA that produce higher
strength without UV, such as glutaraldehyde, which creates a
covalently crosslinked material.

Topics

• Materials (p. 1138) (59 notes)
• Digital fabrication (p. 1149) (31 notes)
• 3-D printing (p. 1160) (17 notes)
• Poly(vinyl alcohol) (PVA) (p. 1245) (4 notes)
• Glutaraldehyde (p. 1294) (3 notes)
• Cross linking (p. 1377) (2 notes)

Ghetto electrochromic displays for
ultra-low-power computing?
Kragen Javier Sitaker, 02021-12-16 (updated 02021-12-30)
(9 minutes)

 Tungsten oxide, Prussian blue, and some other metal compounds
can go through a reversible electrolytic redox reaction that changes
their color or transparency; commonly this involves intercalating
lithium ions into them. But of course you can also electrolytically
oxidize silver to black silver oxide or, if sulfur ions are available, to
sulfide, and then reduce it again by reversing the current; this sort of
thing is also done by artisans to add contrast to copper objects,
typically using liver of sulfur rather than electrolysis.

Display design

 This suggests that by running, say, silver or copper
“electrochromic” strips in one direction and thin wire counter
electrodes over them in the other direction, filling the space between
with a thin electrolyte (maybe a hydrogel), you could get a very
simple electrochromic display. It might not be fast or last through
many switching cycles but it should still be interesting. Like other
electrochromic displays it would be fairly bistable and thus potentially
very energy efficient for passive reading.

 If you apply higher voltages to speed up the reactions, unless you
use a per-pixel diode or transistor, you might get some bleedover into
other pixels in the same row and column, as well as the rest of the
display. If you’re applying +2.1 V to a pixel, then any pixel not in the
same row or column is in series with a pixel in the same row and a
pixel in the same column with +0.7 V, -0.7 V, +0.7 V respectively.
By a similar route, unless there are per-pixel diodes, different pixels
will tend to drive currents through one another even when the driver
is open-circuit, which will tend to equalize the charge and therefore
the colors along each row and column.

 With either per-pixel diodes or per-pixel transistors, the idea is that
one of the two electrodes (let’s say the counter electrode, though the
electrochromic electrode would work too) is divided into one section
per pixel. In the diode case, there are two insulated wires for that row
or column, one with a diode from it to the electrode, which can thus
make the electrode an anode, and the other with a diode from the
electrode to it, which can thus make the electrode a cathode. Ideally
these would be germanium diodes, Schottky diodes, or both, to
reduce the voltage error.

 In the transistor case, the channel of a FET switchably connects the
electrode to a power-supply line, which itself can be brought low or
high, so you still have two insulated wires but you no longer have a
voltage error. We’re using low enough voltages that the FET body
diode probably doesn’t matter; if it does, you might be able to use a
silicon carbide MOSFET (which has a larger body diode forward
voltage because of carborundum’s 3.3 V bandgap, triple silicon’s; the

https://www.mouser.com/pdfDocs/infineon-CoolSiC-MOSFET-Revolution.pdf

MSC040SMA120B4 is rated for -4.0 V but the plot shows
appreciable body-diode current at only -1.5 V, depending on Vgs) or I
think you can get MOSFETs where the body terminal is brought out
as a fourth pin, in which case you could tie that to a third power
supply wire. (However, the 4-pin discrete MOSFETs I’ve been able
to find use the fourth pin as a Kelvin-connection probe for sensing
the voltage at the source on chip.)

 The electrolytic reactions at the wire counter electrodes must also
be taken into account; if they produce gas, for example, it will
deplete the electrolyte, mechanically stress the device with gas
bubbles, and may create an explosion risk. If the “wires” are, for
example, transparent ITO strips, anything that forms on their surface
will also be in the optical path; alternatively they could be the same
metal as the electrochromic electrode, though they will probably have
different overpotentials due to smaller surface area and thus higher
current density.

 You need the electrolyte to be on the same order of thickness as the
pixel width in order to change the color of the whole pixel, though if
the reaction passivates or “polarizes” the electrochromic electrode it
might just be a question of how soon the color changes in each part of
the pixel. That effect could be used to get, in effect, multiple pixels
per intersection: whatever part of the electrochromic electrode is
closest to the counter electrode would react first.

 It may be useful to have reference electrodes that run along either
rows or columns in order to control the voltage on the electrochromic
electrode more precisely.

 Such a device could presumably be used as short-term nonvolatile
memory as well, using the thickness of the passivation layer thus
formed to record a bit, measured by the ratio of resistive impedance
to capacitive impedance by probing it at two frequencies.

 Some materials have different extinction coefficients (opacities) for
different wavelengths, so the color of their films depends on their
thickness, quite aside from iridescence. For oxide layers that are not
very opaque at any wavelength, the iridescence effect will tend to be
stronger than the inherent color of the oxide formed, though it will
be weaker in contact with water than with air, since the index of
water is 1.33, close to common glasses. However, zinc oxide is 2.4,
hematite is close to 2.9, tenorite is 2.9-3.1, titania is 2.6, and the
strength of the reflection at the interface is roughly proportional to
the square of the difference of the indices, so such materials would
still have great potential for iridescence.

 In general these devices will act faster at higher temperatures.

Copper oxides

 The Pourbaix diagram for copper shows that above about pH 7 and
above about +0.3 volts the equilibrium favors black cupric tenorite,
CuO; as pH increases to about 12.5 the critical voltage decreases to
about -0.2 volts. But there’s a small region, for example from about
-0.1 V to about +0.2 V at pH 8, where instead red cuprite, Cu2O, is
favored. (Different sources disagree on exactly how big this window
is.) At more negative voltages, the equilibrium favors the reduction
back to copper metal.

http://ww1.microchip.com/downloads/en/DeviceDoc/Microsemi_MSC040SMA120B4_SiC_MOSFET_Datasheet_A.PDF
http://ww1.microchip.com/downloads/en/DeviceDoc/Microsemi_MSC040SMA120B4_SiC_MOSFET_Datasheet_A.PDF
https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://refractiveindex.info/?shelf=main&book=Fe2O3&page=Querry-e
https://refractiveindex.info/?shelf=main&book=Fe2O3&page=Querry-e
https://www.sciencedirect.com/science/article/abs/pii/092702489390027Z
https://en.wikipedia.org/wiki/Fresnel_equations#Power_(intensity)_reflection_and_transmission_coefficients
https://en.wikipedia.org/wiki/Fresnel_equations#Power_(intensity)_reflection_and_transmission_coefficients
https://en.wikipedia.org/wiki/Fresnel_equations#Power_(intensity)_reflection_and_transmission_coefficients

 In this case the electrolyte would need to be slightly alkaline, and
maybe you could get three colors: copper yellow, red, and black.
Possibly turning a pixel red might take weeks.

 There also exists an unstable olive-green copper peroxide, but I
don’t think you can make it in this way; you need pre-existing
peroxide groups.

 If the copper forms dissolved copper salts, they will of course be
green, and when it redeposits as metallic copper it will often be
yellow rather than shiny. Oxides of copper are very insoluble,
though, so this presumes some other materials in the electrolyte.

 Copper oxide itself is an electrochromic material and when it
contains some cuprite it is reported to be somewhat reddish-gray even
when only 60-500 nm thick.

Iron oxides and hydroxides

 Iron oxides can have many different colors, especially with water
hydroxylating them: in pottery commonly red, green, grey, or brown
; there are sixteen known oxides, including black Fe3O4 magnetite,
black FeO wüstite, red Fe2O3 hematite, orange/brown FeOOH
goethite which can be yellow to black depending on things including
limonite at the yellow end, and green. This is another possible
multicolored pixel, although you probably can’t get all of those
colors; the Pourbaix diagram for iron in water at 25° says that starting
about pH 8.1, you get iron up to about -0.5 V, (green?) fougèrite up
to about -0.3 V, black magnetite up to about 0 V, red hematite up to
about 1.2 V, and then aqueous ferrate solution, “pale violet... one of
the strongest water-stable oxidizing species known” (!). However, I
suspect that most of these reactions are very slow.

Nickel oxides

 Nickel is pretty passive most of the time, but nickel oxide is used in
pottery to produce blue, grey, yellow, and black, and its usual NiO
form is green, while the trivalent oxide-hydroxide is black. I’m not
sure if you can form the divalent green compound in water; the
Pourbaix diagrams I’m finding are contradictory.

Topics

• Materials (p. 1138) (59 notes)
• Electrolysis (p. 1158) (18 notes)
• Ghettobotics (p. 1169) (12 notes)
• Bootstrapping (p. 1171) (12 notes)
• Optics (p. 1209) (6 notes)
• Copper (p. 1234) (5 notes)
• Displays (p. 1261) (4 notes)
• Spatial light modulators (SLMs) (p. 1327) (2 notes)
• Silver (p. 1328) (2 notes)

https://www.sciencedirect.com/science/article/abs/pii/092702489390027Z
https://digitalfire.com/material/iron+oxide+red
https://en.wikipedia.org/wiki/Iron_oxide
https://en.wikipedia.org/wiki/Iron(II,III)_oxide
https://en.wikipedia.org/wiki/Iron(II)_oxide
https://en.wikipedia.org/wiki/Iron(II)_oxide
https://en.wikipedia.org/wiki/Iron(III)_oxide
https://en.wikipedia.org/wiki/Goethite
https://en.wikipedia.org/wiki/Goethite
https://en.wikipedia.org/wiki/Iron(III)_oxide-hydroxide#Properties
https://en.wikipedia.org/wiki/Limonite
https://en.wikipedia.org/wiki/Limonite
https://en.wikipedia.org/wiki/Foug�rite
https://www.substech.com/dokuwiki/doku.php?id=pourbaix_diagrams
https://en.wikipedia.org/wiki/Ferrate(VI)
https://digitalfire.com/material/nickel+oxide+black
https://en.wikipedia.org/wiki/Nickel(II)_oxide
https://en.wikipedia.org/wiki/Nickel(II)_oxide
https://en.wikipedia.org/wiki/Nickel_oxide_hydroxide

 Electrolytic 2-D cutting and
related electrolytic digital
fabrication processes
 Kragen Javier Sitaker, 02021-12-16 (updated 02021-12-30)
(48 minutes)

 As I’ve written about at some length previously, some of the most
promising computational fabrication technologies at macroscopic
scale are 2-D cutting processes like laser cutting, waterjet cutting, and
CNC plasma table cutting. See Layers plus electroforming (p. 1100)
for notes on the scaling laws. Cooper Zurad has prototyped an
electrolytic 2-D cutting process using a needle-shaped cathode, but
his process is very slow and imprecise because he’s cutting at a single
point, and because he’s not doing the usual ECM things: closed-loop
control of the process gap, using pulsed current, or vibrating the
electrodes to reduce the tradeoff between flushing and cutting speed.
Traumflug did similar experiments in 02011.

 However, even without gap control, pulsing, and vibration, if
you’re cutting over a large area rather than just a point, you should be
able to get a proportionally higher material removal rate. And if
you’re cutting a thin sheet of material, even a low material removal
rate might be adequate.

 Unlike other ways of cutting a thin sheet of material, this sort of
electrolytic cutting leaves no burrs and does not produce heat-affected
zones or mechanical stresses in the material being cut — though for
very thin sheets the surface tension of the electrolyte may be big
enough to plastically deform the workpiece, possibly requiring
supercritical drying if the workpiece is ever to be removed from
water.

 In addition to cutting sheet metal, this process can be used to
selectively remove a metal coating (as on a printed circuit board) or to
etch or anodize a surface.

 Cathode patterns
 One way to do this is, as I wrote in Dercuano in 02016, to have an
array of separate cathodes close to the anode workpiece, controlling
the voltage or current of each cathode to either dissolve the
workpiece near it, or not. A different way is to prepare the pattern of
the cuts in a material form, for example as a printed circuit board, a
network of wires on an insulating plate, or a pattern of apertures in an
dielectric mask placed over a continuous-sheet cathode, and make this
pattern the cathode. Then you can “print” this cut pattern on a series
of sheets of metal.

 One particularly interesting cathode-patterning possibility is to
produce the insulating “mask” by laser-printing on paper, ideally
paper that will not fall apart when soaked with the electrolyte. If the
laser printing is sufficiently solid to be used for other toner-transfer
methods, it should also work for this electrolytic sheet cutting
approach; unlike the other toner-transfer methods, it might be

https://hackaday.com/2021/12/17/simple-mods-turn-3d-printer-into-electrochemical-metal-cutter/
https://reprap.org/wiki/Electrochemical_Machining#A_Study_on_Suitability_for_PCB_Manufacturing
https://reprap.org/wiki/Electrochemical_Machining#A_Study_on_Suitability_for_PCB_Manufacturing

possible to get more than one metal copy from a single paper pattern.

 Thermal wax printers may or may not produce a better dielectric
pattern.

 Separators between the cathode and anode
 In either case, the cathode is placed very close to the anode
workpiece; the most practical way of doing this is probably to
separate them with either some sort of fabric, such as a paper towel or
other nonwoven cloth or a woven cloth, or with a thin porous
membrane full of holes, for example a thin porous layer of
polyethylene. (In the case of laser printing on paper, the paper itself
provides the separator.) Once the current is turned on, the cuts are all
made simultaneously, though some may take longer to finish than
others. Voltammetry should be adequate to determine when the
process completes.

 With this approach, the porous separator, plus any space it
produces around the cathode, need to be able to absorb the metal salts
produced by the cutting, since vibration or indeed flushing at all
would be very difficult.

 Containment: inner and outer cut
contours
 In cases where the cut pattern contains some cuts that are
completely surrounded by others, for example holes “drilled” in a
part to be cut out, there is a potential problem. If we feed the anode
current in from the edge of the anode workpiece, it may not be able
to reach the inner cuts if the outer cuts happen to complete first.
There are several possible ways to solve this problem:

• We can do the cutting in two phases, first cutting out the inner
contours and then later the outer contours. This is a common tactic in
single-point 2-D cutting processes like those I mentioned above,
because it prevents the outer piece from falling out of plane before
you’ve cut the holes in it. This would result in slower cutting but
prevents the problem. It requires setting up the cathode pattern in
two or more electrically separate parts.
• We can feed in the current to the anode with an inert conductive
backing anode, thus coupling in current to the workpiece over its
entire back surface rather than only at the edge. This will reduce the
efficiency of the process and perhaps eliminate the usefulness of
voltammetry for measuring its completion.
• We can try to leave “tabs” around the outside of each cut, so that
when the process is finished all the desired parts are still all connected
together and must be removed from their support in a separate step.
This is commonly done in casting, molding, and, especially in the case
of thin materials, 2-D cutting by means such as lasers. It might be
possible to calibrate the process with enough precision that the tabs
are barely thick enough to maintain electrical continuity until the
inner contours are all cut out, but continuing the process a little
longer severs the tabs.

 Example setups

• As one example, as I wrote in “Dead bugging” in Derctuo, it’s easy
enough to find 100-μm-thick copper conductors (a) in stranded
copper wire. You could paste these in the desired pattern (b) onto a
high-impact polystyrene surface (c) with PVA glue (d), bridging
disconnected parts of the cut pattern with fine varnish-insulated
magnet wire (e). After allowing the PVA glue to dry, you make it
water-insoluble by treating with a borax solution. You lay a paper
towel (f) onto the pattern and soak it with sodium nitrate (g). You
lay a sheet of 10-μm-thick household aluminum foil (h) onto the
paper towel and press the whole assembly together, then apply a low
voltage power supply for long enough to dissolve more than 10 μm of
aluminum. The results should be, for example, if your current
density is enough to cut 100 μm/s, that the cut is completed in
100 ms. Applying electricity for less time will result in etching the
surface rather than cutting through.
• You can heat up example 1 to make the cutting go faster, using a
heated press such as are commonly used in dye sublimation, laundry
pressing, and vinyl transfer onto cloth.
• For the foil (h) in examples 1 or 2 you can substitute heavy-duty
aluminum foil, commonly available in thicknesses such as 50 μm;
aluminum flashing; aluminum sheet from aluminum cans (typically
100 μm) after cleaning nonconductive contaminants off of one of its
two sides; aluminum sheet as is commonly available from metal
vendors like Metals Depot, commonly in thicknesses as low as .032"
(81 μm) or any other source of sheet aluminum. Thicker sheets will
take proportionally longer to cut, produce less precise cuts, and, above
a certain thickness, will also require a thicker separator (f). Cutting
multiple stacked layers of metal (h) in a single run is a possibility that
may increase the efficiency of the process in several ways, such as
amortizing the setup time over multiple produced pieces, but will
reduce the precision achieved.
• For the sodium nitrate (g) in examples 1, 2, or 3 you can substitute
any other soluble salt whose anion forms a soluble aluminum salt or
aluminate, such as sodium chloride, azanium acetate, iron sulfate, or
potassium hydroxide, among dozens of other possibilities; particularly
appealing are the chloride, acetate, sulfate, and hydroxide salts of
azanium and the alkali metals, due to their high solubility and low
toxicity; the corresponding salts of iron and zinc are also relatively
safe and, except for the hydroxides, soluble. More toxic options
include sodium perchlorate. In cases such as potassium hydroxide
which are capable of corroding the aluminum rapidly without
electricity, it will be necessary to stop the reaction, for example by
washing the pieces thus produced with water, a buffer solution, or an
acid that will not attack the aluminum. Salts which produce a
passivating “anodized” layer on the aluminum at lower voltages may
be preferable, because although they reduce efficiency, they will
restrict the electrolytic etching to areas at sufficiently high voltages,
improving the precision of the process. It is probably also useful to
include additives such as metal borates, metal EDTA, metal
tetrasodiumglutamatediacetates (GLDA) to prevent the formation of
aluminum hydroxide, metal cyanides, SPS (CAS 27206-35-5), MPS
(CAS 17636-10-1), ZPS (CAS 49625-94-7), polyethylene glycol,

polyvinyl alcohol, polyvinyl acetate, glycerine, propylene glycol,
dipropylene glycol, DPS (CAS 18880-36-9), surfactants (such as SLS,
alkali stearates, EN 16-80 (CAS 26468-86-0), or EA 15-90(CAS
154906-10-2)), UPS (CAS 21668-81-5), PPS (CAS 15471-17-7),
NAPE 14-90 (CAS 120478-49-1), sodium benzoate, saccharin,
coumarin, metal tartrates, metal citrates, metal sulfonates not
otherwise mentioned, metal urates, thiazole, benzaldehyde, thiourea,
quaternary azanium salts, phthalimide, metal methanesulfonates,
metal ethylene sulfonates, depolarizers (such as manganese dioxide,
metal sulfates, silver oxide, or metal chromates and dichromates,
among many other possibilities), the acid forms of the anions
mentioned here, or these anions’ salts with organic cations or
azanium, as well as other additives used in electrodeposition and
ECM. Also, the solvent in which the salt is dissolved can be replaced
with any other solvent suitable for the salts employed, such as
DMSO, ammonia, ethyl acetate, THF, DCM, acetone, acetonitrile,
DMF, formamide, acetic or formic acid, alcohols (such as methanol,
ethanol, and isopropanol, among many others), organic carbonates
(such as propylene carbonate, ethylene carbonate, diethyl carbonate,
or dimethyl carbonate, among many others), glycerol, nitromethane,
molten methylsulfonylmethane, deep eutectic systems, or other ionic
solvents, among hundreds of others, or mixtures of these, with or
without water; such substitution can permit the use of higher
temperatures or electrolyte salts that either react undesirably in water
or will not dissolve in it, and may be able to reduce the surface tension
to less mechanically damaging levels. Generally the more important
solubility consideration will be the solubility of the salts produced at
the anode workpiece, since you cannot choose their cations, rather
than the electrolytic etchant (g).
• For the paper towel (f) in examples 1, 2, 3, or 4 you can substitute
any other porous material that will not be attacked too rapidly by the
salts and is not too electrically conductive except ionically; for
example, asbestos, fiberglass, carbon fibers, carborundum fibers, rock
wool, basalt fiber, ordinary paper, buckypaper, nonwoven
polypropylene, nonwoven polyester, nonwoven cotton, nonwoven
rayon, onion-skin paper, other thin papers such as crepe paper and
those used for tracing drawings and rolling cigarettes, perforated
polyethylene film, perforated PET film, perforated polypropylene
film, hydrogels (such as gelatin, agar, borated polyvinyl alcohol, or
silica gel), woven textiles of the above-mentioned fibers, and porous
ceramics such as glass frits or unglazed fired clays, among dozens or
hundreds of other possibilities. Woven textiles will tend to add their
weave pattern to the etched pattern, which may be considered a form
of error in some applications. You can stack more than one such
layer; for example, a layer of perforated polyethylene film can be
used to separate a layer of borated PVA hydrogel from the cathode,
preventing adhesion. Perforated boPET or polyethylene films can
easily be made under 10 μm in thickness, a feature which might
enable reproducing details not much larger than that.
• For the varnish-insulated magnet wire (e) in examples 1, 2, 3, 4, and
5, you can substitute wire insulated by other means such as thin layers
of dielectric polymers, or you can pierce holes in the dielectric
backing (c) to pass through conductors from a region devoid of
electrolyte or at least separated from the workpiece by a dielectric or

by distance.
• For the borate-crosslinked PVA glue (d) in examples 1, 2, 3, 4, 5,
and 6, you can substitute any other material that will hold the pattern
conductors in place while permitting electrolytic access to them; for
example, agar, gelatin, cross-linked starch, hydrogels used for contact
lenses (such as silicone hydrogels, hydroxyethyl methacrylate),
sodium polyacrylate as used in maxi pads, polyethylene glycol
(perhaps treated to crosslink it into an insoluble gel as is commonly
done for cell encapsulation), and porous ceramics such as glass frits or
those made by unglazed fired clay. Alternatively, the separator
material (f) can simply be bonded permanently to the cathode, which
would require the electrolyte to be washed out between runs rather
than merely replacing the separator as you would normally do.
Alternatively, instead of holding the cathode pattern in place with any
kind of continuous material, you can hold it in place with occasional
thin fibers of dielectric material either bonded to the dielectric
separator (c) or passing through it, as is done in embroidery or
furniture decoration to hold certain kinds of thread or piping on the
surface of the material.
• For the dielectric backing material (c) in examples 1, 2, 3, 4, 5, 6,
and 7, you can substitute any other dielectric material that will not be
too readily attacked by the electrolyte and in particular the alkaline
solution that will tend to form in contact with the cathode, such as
glass, polyethylene terephthalate, poly(methyl methacrylate),
polymerized linseed oil, shellac, polyethylene, polypropylene, epoxy
resins, teflon, fluorinated ethylene propylene, other polyester resins,
aluminum oxide, or other metal oxides, among many others. A stack
of such layers may be useful. Extremely inert backing materials such
as teflon introduce the problem that firmly adhering the cathode to
them with the PVA glue (d) or its alternative may be more difficult;
stacking a readily adherable material such as HIPS on top of a more
inert material such as polyethylene is one possible solution, and
welding the backing (c) to the glue (d) will also improve adhesion in
difficult cases.
• For the fine copper conductors (a) in examples 1, 2, 3, 4, 5, 6, 7, and
8, you can substitute nearly any other conductive material at all as
long as it’s sufficiently cathodically protected; for example, copper,
aluminum, gold, silver, platinum, palladium, rhodium, tantalum,
niobium, vanadium, molybdenum, graphite, glassy carbon, non-glassy
amorphous carbon, nickel, stainless steel, chromium, lithium metal,
sodium metal, or ordinary steel, or mixtures of these, among
hundreds of other possibilities, in the form of fine wire, foil, thin film,
or plating. Some of these possibilities rule out the use of certain
electrolytes; for example, sodium metal probably cannot be used in
contact with water regardless of how well it’s cathodically protected.
The use of nobler metals such as tantalum and gold does not affect the
anodic dissolution process and permits the use of more aggressive
electrolytes. Thinner metals such as gold leaf, especially together with
thinner separator layers and thinner workpieces, permit finer
patterning of the workpiece. Additionally, you can provide the
pattern instead by using a continuous layer or mesh of any of these
materials as the cathode, superposed on a selectively nonporous mask
of some dielectric material, such as the laser-printer toner mentioned
earlier or materials such as those listed in example 9 above.

• In examples 1, 2, 3, 4, 5, 6, 7, and 8, as an alternative to a pattern (a)
supported on a dielectric backing (c) as described above, you can use a
conductive plate (i) made out of any conductive material such as those
mentioned in example 9 above with a selectively patterned
impermeable dielectric “stop-off” or “mask” (j) on it, so that
electrolysis can only proceed where the mask is absent or at least
porous. For example, you can use sheet steel or any other sheet metal
with nail polish selectively painted onto it; or a dielectric photoresist
deposited on it and optically patterned in the way that is common for
fabricating integrated circuits or printed circuit boards; or laser
printer toner transferred onto it; or a dielectric coating selectively
deposited by inkjet printing, perhaps then baked to improve the
coating; or “permanent” marker ink; or “dry erase” marker ink;
shellac (an idea due to Mina); cellophane tape; paraffin; powder coat
paint, as commonly used for painting industrial machinery; glass, as in
cloisonné; dried soluble silicates, if heated between uses to drive out
excess water; a layer of a passivating compound formed from the
surface of the conductive plate (i) itself, for example by heating or
anodizing; polymerized linseed oil; photoresists; teflon; rosin; spray
paint; shellac; or any other dielectric that is sufficiently resistant to
the electrolyte. Many of these dielectrics can be applied in a
continuous layer and then selectively removed by laser ablation, for
example with a low-wattage laser cutting and engraving machine like
those commonly used for cutting MDF, or by some other method
such as stamping, grinding, abrasive jet blasting, or scraping. The
mask (j) can be a separate removable layer rather than firmly adhered
to the conductive plate, as in the earlier example of laser-printed
paper; the screens used in silkscreening or the waxed fabric in batik
would work well for this. A nonwoven thermoplastic cloth can
combine the functions of the mask (j) and the electrolyte bearer (f) by
being melted in the regions to be “masked”, rendering it nonporous,
as is commonly done to join nonwoven thermoplastic cloths.
• In example 10, instead of protecting parts of the pattern electrode
surface (i) with a solid dielectric, you can protect parts of the pattern
surface by recessing them far enough that when the conductive
pattern plate is brought into contact with the electrolyte-soaked
porous material (f), the recessed parts are separated from it by an air
gap.
• In example 10, instead of protecting parts of the pattern electrode
surface (i) with a solid dielectric, you can cut spaces in the
electrolyte-soaked porous material (f), or otherwise pattern it to fill
only a part of the space between the two electrodes. For example, a
thin stranded string of fiber can be shaped into the desired pattern,
moistened with electrolyte, and squished between the two plates
before applying the power.
• In examples 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, if you use an electrolyte
that can dissolve the aluminum workpiece at zero voltage, such as
alkali-metal hydroxides or hydrochloric acid, you can reverse the
voltage to cathodically protect the workpiece rather than the pattern.
This will result in dissolution of the workpiece in a positive pattern
(leaving workpiece where the pattern is present rather than where it is
absent) rather than a negative one. In this case it may be convenient
to first subject the whole workpiece to cathodic reduction (using it as
a cathode with an unpatterned anode, possibly with a different

electrolyte) to eliminate possible passivating oxide films, before
reversing the polarity. This approach can also result in the dissolution
of the pattern, possibly in an uneven fashion resulting from parts of it
remaining connected longer, as with the tabs mentioned earlier. (A
similar consideration applies to ensuring the electrical continuity of
the protected part of the workpiece until the end of the process.) This
can be prevented by using a nobler material for the pattern than for
the workpiece and operating at a moderate enough voltage to prevent
the pattern from being attacked. Stainless steel wire or graphite is
probably the most convenient pattern material in cases where copper
is insufficiently noble. As an alternative to preventing this electrolytic
pattern erosion, if the pattern is thick enough, you can alternate
between patterning a workpiece cathode in this way, and
electrodepositing new metal on the pattern to replace the lost metal.

• In examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, and 13, as explained earlier,
rather than using a dielectric backing (c) with a patterned electrode (a)
on it, you could use an array (k) of independently controlled electrode
pixels insulated from one another.
• In examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12, rather than
dissolving the workpiece, you can deposit oxides or other insoluble
metal salts on its surface by a suitable choice of electrolyte (g), known
as “anodizing”. This can be used, among other things, to selectively
passivate it for future use as a pattern electrode (as mentioned in
example 10), to selectively passivate it to selectively resist some other
etching process or reaction, to selectively harden the surface, to color
it with opaque compounds, or to color it with iridescence by
controlling the layer thickness, a process which is less effective for
aluminum than it would be with some other metals. It may be
possible to modulate the current density over time to spatially
modulate the density of the oxide layer to form a rugate filter.
• In examples 1, 2, 3, 4, 5, 6, 7, 8, 9, and 14, instead of a dielectric
backing (c) with a patterned cathode, you can use one or more
movable cathodes (m) that electro-etches the anode workpiece (h)
where it touches the porous material (f) and not elsewhere. Some
useful forms of patterned cathode for this purpose might include one
or more a narrow rollers like pizza cutters, which cut along a line
rather than at a single point while exerting minimal friction on the
porous material (f); one or more needles which are touched to the
surface of the porous material (f) at different points at different times;
a metal ball like that used in ballpoint pens and ball bearings, which
can roll like the pizza cutters; outlines of various forms, such as circles
and semicircles of different diameters, the edges of razor blades, the
whole shapes of parts, logos, letters, cartoon characters, and halftone
patterns, which can be placed at different points on the material at
different times and etched to varying depths. These “stamps” can be
made in many different ways, including engraving or etching a solid
metal or graphite surface, and bending wire. A soft wire brush is
another candidate cathode, as in brush electroplating. The roller
approach and the seal approach can be combined in a rolling seal. A
wire or metal tape can be used to etch a straight line of variable length
all at once, either by hand or under the control of a machine similar to
an old automatic wire-wrap machine.
• In example 15, the porous material (f) can be attached to the

movable cathode or cathodes (m) rather than to the workpiece (h),
and the pattern can be in the porous material rather than the cathode,
as in example 12.
• In examples 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16, the
aluminum sheet (h) can be replaced by a sheet of almost any other
metal or conductive ceramic with a corresponding change of
electrolyte (g), though platinum and a few related substances are
considered impossible to dissolve anodically. This opens up more
interesting anodizing possibilities, such as bluing steel, or depositing
iridescent layers on metals with transparent oxides with high
refractive indices such as titanium. This cutting process is particularly
appealing for very hard metals, ceramics, and cermets.

 Patterning the “paper”
 In the cases where the porous material (f) is held fixed relative to
the workpiece (h), the result of the process includes not only the
etching of the anode (h) but also metal ions impregnated into parts of
the porous material (f). In some cases this directly produces a visible
pattern on the paper or similar material, but whether it does or not,
onchrome or afterchrome dyeing can be used to produce a permanent,
colorfast pattern. Mordants commonly used for dyeing include salts
of copper, tin, iron, aluminum, chromium, and tungsten, so
electro-etching anode metals containing these metals can be used to
selectively mordant a textile in this way — either one that is dyed
afterwards (“onchrome”) or one that is pre-impregnated with the dye
(“afterchrome”) and then merely washed to reveal the pattern. For
this it is necessary to use a dye that cannot be effectively mordanted
with whatever cations are present in the electrolyte before
electro-etching; I think azanium ions are safe for all dyes.

 Ferrous (Fe²⁺) ions from the photodecomposition of organic ferric
(Fe³⁺) complexes (ferrioxalate, ferricitrate, ferric oxalate, ferric
tartrate) are commonly used in this way to tone siderotypes with
various kinds of vegetable pigments, as explained in Mike Ware’s
Cyanomicon §3.5 (p. 77). It also explains the possibility of using the
ferrous ions to “reduce the compounds of a ‘noble’ metal, such as
platinum, palladium, silver or gold, to the metallic state”, which also
leaves an indelible mark in the paper. Below about pH 9, the
Pourbaix diagram for iron says there’s a wide stability range for
ferrous ions; unfortunately this range extends below 0 V, to about
-0.6 V, so if we look only at the equilibrium, this range can only be
used directly in the examples above in the “positive” process, where
the workpiece is a cathode that is dissolved except where it is
cathodically protected. However, I think that in practice the
spontaneous reaction rates may be low enough to permit the use of
the “negative” process where the iron electrode is anodically
dissolved, particularly if there’s a little bit of postprocessing to
cathodically draw some of the dissolved iron out of solution.

 It would be exciting to be able to do the same trick with an ion
that could be further oxidized to reduce something a little less noble
(and expensive) like copper. But I can’t think of anything.

 Imaging is not the only way of using this selective ion
impregnation. The polyvalent cations thus obtained can selectively
catalyze other reactions if the porous material is supplied with the

https://en.wikipedia.org/wiki/Iron(III)#Chemistry_of_iron(III)
https://en.wikipedia.org/wiki/Iron(III)#Chemistry_of_iron(III)

reagents, and they can (noncatalytically) harden soluble silicate and
phosphate solutions, which can thus selectively stiffen the porous
material, thus forming a ceramic/fiber composite object with flexible
blades of fibrous material joining stiff blades of fiber-reinforced
ceramic.

 Ware’s book also reports (§4.2 “Pellet’s process”, p. 89):
 The new feature that Pellet introduced to solve the problem of fixing the
positive-working process was based on earlier observations by Alphonse Poitevin in
1863, that ferric salts cause gum and similar colloids to harden and become
insoluble in water, whereas ferrous salts do not.

 In §4.10 on p. 113 he explains the gel lithography process:
 Gel lithography was also variously known in its hey-day by several proprietory
[sic] names: Lithoprint, Ferro-gelatine, Fotol, Ordoverax, Velograph or Fulgur
printing. The method took an over-exposed, but unprocessed negative blueprint
image as its source, which was lightly squeegeed into contact with a matrix of
moist gelatine, known as a “graph”, containing a ferrous salt. Diffusion of excess
potassium ferricyanide out of the lightly-exposed and unexposed regions of the
cyanotype (the image shadows) formed Prussian blue in the gelatin matrix, with
the effect of hardening it locally (see §4.1.1), where it became receptive to a greasy
lithographers’ ink, which was still repelled by the moisture in the unhardened
regions of the gelatin. After a minute or so, the cyanotype was peeled off and the
jelly surface inked with a roller. About 25 positive copies of the original image
could be ‘pulled’, using little pressure, from the jelly, which was re-inked between
each.

 I’m not sure whether the effect of hardening the gelatin was due to
the complexed ferric ions in the ferricyanide (but Ware asserts that it
is, and we can probably trust him) or some other effect of forming the
Prussian blue.

 Faraday efficiency and energy usage
 Aluminum has only one common oxidation state (3+), so the
Faraday efficiency of the setup should be near perfect with aluminum.
It’s 27.0 g/mol. At 96485.34 coulombs per mole, times three, we
have 10.7 megacoulombs per kilogram:

You have: avogadro 3 e / (aluminum g/mol)
You want: MC/kg
 * 10.727928
 / 0.093214641

 At an ordinary electroplating current density of 10 A/dm² and 2.70
g/cc this is almost a year per meter:

You have: avogadro 3 e / (aluminum g/mol) / (10 A/dm^2) * 2.70 g/cc
You want: days/m
 * 335.24776
 / 0.0029828685

 This works out to only 35 nm/s, which would take 300 seconds to
cut through a 10 μm household aluminum foil. We ought to be able
to use a much higher current density for electrochemical machining
because we don’t have to worry about forming dendrites, but the
1000 A/dm² we’d need to do the cut in three seconds sounds pretty

extreme. Is it?

 Considering the 100-μm-diameter copper wires I was talking
about at the beginning, how much current are we talking about?
Suppose one such wire is 100 mm long; it then covers an area roughly
100 μm by 100 mm on the porous medium (f), 10 mm². Then 1000
A/dm² would be just 1 amp. Suppose we’re feeding it from both
ends. At a nominal copper conductivity value of 58 siemens m / mm²
(from definitions.units) this works out to 2.20 Ω/m and thus 0.11 Ω in
the 50 mm; if all the current came out in the middle it would be
500 mA in each side through that 0.11 Ω, with a resulting voltage drop
of about 55 mV, which is probably bearable. But actually the current
is hopefully coming out evenly along the length of the wire, so the
situation is a little better, with that 500 mA though 2.20 mΩ/mm
initially dropping 1.1 mV/mm, but linearly dropping to 0 mA and
thus constant voltage in the middle of the wire. Without actually
doing the algebra, I think this works out to a voltage drop of 27 mV.

 This is a very reasonable voltage drop. I think it also works out to
about 7 mW, which normally would be a large enough power to
worry about in a tiny wire like this, but maybe not when it’s
immersed in water.

 The standard electrode potential of reducing 2H₂O to H₂ and
2OH⁻ is -0.8277 V (per electron), and that for oxidizing Al to Al³⁺ +
3e⁻ is -1.662 V (per electron). If I understand this stuff right, which I
might not be, that means you need at least 834 mV between the
electrodes before you start electro-etching the aluminum. This is a
very easy voltage to supply and implies that the overall power needed
to do these cuts is only about 800 mW, plus whatever gets wasted on
Joule heating of the electrolyte and the cathode (about 3.4% in the
electrode in the above example). If you have something in the
electrolyte that’s more likely to deposit on the cathode than sodium
or aluminum — copper, say — then you might not have to pay even
that much; but then your cathode becomes less precise.

 If we use the conductivity of seawater, 50 mS/cm and an
electrolyte path of 100 μm, we get 2 Ω:

You have: 100 um / (50 mS/cm * 100 um 100 mm)
You want: ohms
 * 2
 / 0.5

 At 1 A this would be a joule-heating voltage drop of 2 V, giving a
total of 2.859 V: 2.000 V in the electrolyte, 0.832 V in the electrolytic
interfaces, and 0.027 V in the wire. The conductivity is proportional
to the ion mobility, the ion concentration, the ion charge, and the
temperature (≈2%/°); with more concentrated solutions, and
concentrations with highly mobile ions (hydronium beats sodium
7×), we ought to be able to get it down to 0.2 Ω and thus 0.2 V, so
that even at 1000 A/dm² (100 mA/mm²) we spend 80% of the energy
on electrolysis. And of course at lower currents the ohmic losses
become insignificant.

https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page)
11

 At significantly higher currents the voltage drop along the wire
would become sufficient to provoke different electrolytic reactions in
different places, which is not the desired effect. This would also
produce different current densities in different places, and thus
reaction speeds, cutting speeds, and potentially cut widths; a
higher-resistivity electrolyte will tend to avoid this problem, at the
expense of wasting more energy as heat.

 A power supply that can produce 3 V at 1 A is straightforward to
cobble together from common components; in the most primitive
form, two resistors and a power-transistor emitter follower can
produce this from many USB chargers, though it would produce a lot
of heat. A more efficient switcher design is also not very demanding
and would be a lot safer.

 So in fact cutting through hand-sized aluminum foil in a few
seconds with submillimeter precision is eminently attainable, and
should be reasonably efficient, using minimally 8 mJ per millimeter
and realistically 30 mJ/mm. If you could manage a thinner kerf, it
could be even more efficient. Scaling the cutting up to higher speeds,
larger workpieces, or very complex cuts might start to be a challenge,
though.

 Workpiece materials
 Different metals require somewhat different amounts of current,
but the density of the electron gas you’re sucking out of the metal
doesn’t vary nearly as much as other properties of metals such as
hardness, toughness, mass density, and electronegativity; here are my
calculations for a selection of metals including the common ones
(excluding the air-unstable sodium, potassium, calcium, strontium,
and barium and the brittle manganese):
 metal molar mass density valence current required melts
 Silver 107.868 g/mol 10.49 g/cc 1 9.38 A/mm²/(mm/s)
1234.93 K
 Gold 196.967 g/mol 19.30 g/cc 1? 9.45 A/mm²/(mm/s)
1337.33 K
 Lead 207.2 g/mol 11.34 g/cc 2 10.6 A/mm²/(mm/s) 600.61 K

 Tin 118.710 g/mol 7.265 g/cc 2? 11.8 A/mm²/(mm/s) 505.08
K
 Zirconium 91.224 g/mol 6.52 g/cc 4 13.8 A/mm²/(mm/s)
2128 K
 Magnesium 24.305 g/mol 1.738 g/cc 2! 13.8 A/mm²/(mm/s)
923 K
 Titanium 47.867 g/mol 4.506 g/cc 4? 18.2 A/mm²/(mm/s)
1941 K
 Zinc 65.38 g/mol 7.14 g/cc 2 21.1 A/mm²/(mm/s) 692.88 K
 Iron 55.845 g/mol 7.874 g/cc 2? 27.2 A/mm²/(mm/s) 1811 K

 Copper 64.546 g/mol 8.96 g/cc 2? 27.2 A/mm²/(mm/s)
1357.77 K
 Aluminum 26.98 g/mol 2.70 g/cc 3 29.0 A/mm²/(mm/s)
933.47 K
 Cobalt 58.9332 g/mol 8.90 g/cc 2? 29.1 A/mm²/(mm/s) 1768
K

https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth's_crust

 Nickel 58.693 g/mol 8.908 g/cc 2? 29.3 A/mm²/(mm/s) 1728
K
 Molybdenum 95.95 g/mol 10.28 g/cc 3? 31.0 A/mm²/(mm/s)
2896 K
 Chromium 51.9961 g/mol 7.19 g/cc 3 40.0 A/mm²/(mm/s)
2180 K
 Tungsten 183.84 g/mol 19.3 g/cc 6? 60.8 A/mm²/(mm/s)
3695 K

 (The unit A/mm²/(mm/s) is equivalently A·s/mm³, GA·s/m³, or
GC/m³, but I find these units less intuitive.)

 This ordering more closely aligns with those of malleability,
ductility, and hardness than with any other property I can think of:
gold is the most malleable metal, very nearly the fastest cutting, and
soft enough to dent with your teeth (as are lead and magnesium),
while tungsten is the brittlest and nearly the hardest, and chromium is
actually the hardest and also quite brittle.

 If you wanted to design a material to be more rapidly cut by
ECM, you’d probably want a composite of two or more phases, such
that most of the volume of the material was in a discontinuous phase
cemented together by a metallic continuous phase, and you could
electrolytically cut the continuous phase without having to cut the
discontinuous phase. The discontinuous phase might be a liquid or
gas, making the material a gel or foam; it might be some other
conductive substance, such as a metal with a more positive electrode
potential, in which case it would need to be physically removed from
the cut for it to proceed; or it might be an insulator. In any case the
grain size of the discontinuous phase would need to be smaller than
the desired cuts. A metal volume fraction of 15%, corresponding to a
6× ECM speedup, seems reasonable:
 There is some overlap between [metal matrix composites] and cermets, with the
latter typically consisting of less than 20% metal by volume.

 See below for notes on suitable solid nonconductive reinforcing
discontinuous phase materials. Foams are appealing for increasing
stiffness without increasing mass or cutting time.

 Zirconium is particularly appealing as an electrolyzable matrix
material here; though it is not as abundant as iron, aluminum,
magnesium, or titanium, it is more abundant (in Earth’s crust) than
copper, zinc, nickel, chromium, tin, lead, molybdenum, or tungsten,
on par with carbon or vanadium; even as a pure element it is about as
strong as steel (230 MPa yield stress, 330 MPa ultimate tensile
strength, with Young’s modulus of 94.5 GPa; grade 705 is alloyed
with 2.5% niobium to get 500 MPa yield stress, 600 MPa ultimate
tensile strength, higher than Zircaloy); while being substantially less
dense, having a higher melting point, and being biocompatible; and it
should electrolyze twice as fast as iron, copper, nickel, or
cobalt — assuming you can sufficiently disrupt its protective oxide
layer during electrolysis, a problem which also arises with titanium.
You could imagine a zirconium-cemented composite consisting
principally of submicron grains of yttrium-stabilized zirconia
(assuming cubic zirconia adheres as well to zirconium as the
protective oxide layer does) that can be cut electrolytically five times
as fast as steel. Zirconium also potentially supports the formation of

https://en.wikipedia.org/wiki/Metal_matrix_composite
http://www.matweb.com/search/datasheet.aspx?matguid=6e8936b3ad994f13bfb29923cc1506a9&n=1&ckck=1
http://www.matweb.com/search/datasheet.aspx?matguid=6e8936b3ad994f13bfb29923cc1506a9&n=1&ckck=1
http://www.matweb.com/search/DataSheet.aspx?MatGUID=084b3ac6dc06492d936cd066aa02b2a7&ckck=1
http://www.matweb.com/search/DataSheet.aspx?MatGUID=084b3ac6dc06492d936cd066aa02b2a7&ckck=1
http://www.matweb.com/search/DataSheet.aspx?MatGUID=084b3ac6dc06492d936cd066aa02b2a7&ckck=1

hardening carbide grains like those in steel, though I’m not sure if
there’s a way to form a pearlite-like structure in zirconium. (See
Exotic steel analogues in other metals (p. 1050) for more thoughts on
this theme.)

 (Zirconia is notable for its electrical properties, but at room
temperature it is an insulator, because its conductance is mediated by
the mobility of oxygen ions.)

 Metallic magnesium is also appealing here because it has not only a
high electrolysis rate but also a very low standard electrode potential
(-2.372 V) and many conveniently soluble compounds. It has alloys
with reasonable strength: yield strength of casting alloys “typically
75–200 MPa, tensile strength 135–285 MPa … Young’s modulus is
42 GPa.” ASTM A36 steel, for reference, has yield strength 250 MPa,
UTS 400–500 MPa, Young’s modulus 200 GPa, so these alloys have
a substantial fraction of steel’s strength and (to a lesser degree)
stiffness. (Pure magnesium is much weaker, only about 20 MPa,
though another source says 65–100 MPa, and some wrought alloys are
stronger, as high as 300 MPa yield strength.) Stiffness can be improved
with discontinuous reinforcing fillers to a much greater extent than
strength. Its greatest drawbacks are its inflammability, its intolerance
of high temperatures (worse even than aluminum) and creep. (Fillers
tend to eliminate creep.)

 Suitable nonconductive reinforcing
discontinuous phases
 Ideally these would be in the form of submicron particles,
especially submicron-length whiskers or laminae; they might include
carborundum, carbon nanotubes, carbon fibers, halloysite nanotubes,
other clays, boron nitride nanotubes, basalt fiber, goethite, asbestos,
zirconia, zircon, sapphire, talc, cubic boron nitride, boron carbide,
silicon nitride, topaz, diamond, silica, rutile, chrysoberyl, beryl, spinel,
mica, aluminum magnesium boride, boron, or iron tetraboride.
(Titanium nitride and zirconium nitride are too conductive.)
Composites drawing most of their strength from such
high-aspect-ratio functional fillers may actually benefit being bonded
with a soft, malleable metal (like tin, magnesium, or zinc), rather than
a harder, stronger metal (like tungsten, chromium, or cobalt), because,
as with intentional weakening of the fiber–matrix bond in
ceramic-matrix composites, it allows pullout, impeding crack
propagation and distributing the load along the length of the fibers or
plates. With this sort of nanostructure it should be possible to take
advantage of the extra strength of reinforcement whose thickness is
below the critical dimension for flaw-insensitivity.

 Laminar functional fillers can enjoy flaw-insensitivity by having
only one of their particle dimensions below the critical dimension,
and can theoretically provide high strength in two dimensions, thus
providing on average twice the strength of the same material as a
fibrous filler, but high filler loadings for laminar fillers are only
possible by aligning the laminae parallel. I saw a paper about 10 years
ago which achieved this with bentonite and PVA (rather than a
metal) by depositing them in alternate layers (“layer-by-layer (LBL)
assembly”), but I haven’t seen examples since then. (I think some of

https://en.wikipedia.org/wiki/Magnesium_alloy
https://en.wikipedia.org/wiki/Magnesium_alloy
https://www.azom.com/properties.aspx?ArticleID=618
http://www.totalmateria.com/Article138.htm

steel’s strength can be attributed to pearlite and bainite having
precisely this structure, with ceramic cementite nanolayers alternating
with soft metallic ferrite.) I posted the paper to kragen-fw with the
headline “new high-strength composite made of “nanoclay” and
PVA”:
 Charles Griffiths told me about this October 4 article from Physorg, “New plastic
is strong as steel, transparent”:
 http://www.physorg.com/news110727530.html
 Apparently, by alternating layers of polyvinyl alcohol and “clay nanosheets”,
Nicholas Kotov and a bunch of other people at UMich (many from his own lab),
plus some folks at Northwestern (in some earlier research; see below) have
fabricated an extremely high-strength composite. It gets its strength from parallel
layers of clay nanosheets glued together with thin layers (monolayers?) of PVA. ...

http://www.sciencemag.org/cgi/content/abstract/318/5847/80
doi:10.1126/science.1143176
 Science 5 October 2007: Vol. 318. no. 5847, pp. 80-83.
 The authors are Paul Podsiadlo, Amit K. Kaushik, Ellen M. Arruda, Anthony
M. Waas, Bong Sup Shim, Jiadi Xu, Himabindu Nandivada, Benjamin G.
Pumplin, Joerg Lahann, Ayyalusamy Ramamoorthy, and Nicholas A. Kotov, all of
whom are from UMich and five of whom are from Kotov’s lab.

 In this work, for which Google Scholar finds 1563 citations, by
crosslinking the polyvinyl alcohol with glutaraldehyde (widely sold as
a disinfectant at 2–2.5% strength under names like Surgibac G and
Sertex), they achieved 400 MPa strengths, stronger than many steels.
They’d previously done the same thing with a mussel glue amino
acid, L-3,4-dihydroxyphenylalanine, achieving lower strengths.

 Electrodeposition would seem to offer a low-temperature
codeposition route to fabricating such layered structures in bulk rather
than a few nanometers at a time: first, compact the mass of filler to a
high density, then electrodeposit a metal matrix in its interstices,
similar to the molten metal infiltration technique for tungsten carbide
, also used for Al/SiC metal matrix composites:
 AlSiC metal matrix composites are formed by pressure infiltrating molten
aluminum into silicon carbide preforms. This method of casting is typically used in
applications where solution requirements include high strength, lightweight,
custom CTE and high thermal conductivity. PCC offers AlSiC with a
composition varying between 30% to 74% silicon carbide by volume, depending on
the application. This flexible material system allows PCC Composites to produce
a part that can be tailored to exact solution requirements.

 Conceivably electroless plating would work better.

 For metal matrix composites or cermets, a crucial question is the
adhesion of the metal matrix to the filler; as mentioned above,
adhesion that is too strong can propagate cracks into the filler
particles, eliminating their flaw-insensitivity, but of course in the
limit of weak adhesion the composite is no better than a foam with
extra dead weight.

 The high filler loadings that would be ideal for electrolytic
machinability are more similar to the area of practice generally known
as “cermets” than to the area of practice generally known as “metal
matrix composites”. Nonconductive reinforcing discontinuous phases
used in cermets seem to include sapphire, glucina, magnesia
(periclase), zirconia, phosphates of calcium, fluoroaluminosilicate
glass, rutile, boron carbide, carborundum, aluminum nitride, sodalite,
and quartz.

http://www.physorg.com/news110727530.html
http://www.sciencemag.org/cgi/content/abstract/318/5847/80
https://arruda.engin.umich.edu/wp-content/uploads/sites/170/2014/08/2007-Ultrastrong-and-Stiff-Layered-Polymer-Nanocomposites-Science.pdf
https://www.sciencedirect.com/science/article/pii/S2187076417301495
http://matweb.com/search/datasheet.aspx?MatGUID=40182acd06bc4bca81c8b6a87510d57d

 A truly 2D material like graphene or a MXene would also make a
great functional filler for this kind of thing if, like nitrides of titanium
and zirconium or like the MAX phases, you could find one that isn’t
conductive. The problem with conductive fillers is that, once the
surface of the metal is etched, they would screen the electric field
from the metallic matrix surface in their interstices, so it would stop
being etched.

 Topics

• Digital fabrication (p. 1149) (31 notes)
• Electrolysis (p. 1158) (18 notes)
• Filled systems (p. 1161) (16 notes)
• Frrickin’ lasers! (p. 1168) (12 notes)
• Aluminum (p. 1180) (10 notes)
• Composites (p. 1187) (9 notes)
• 2-D cutting (p. 1201) (7 notes)
• Magnesium (p. 1213) (6 notes)
• Anisotropic fillers (p. 1218) (6 notes)
• Poly(vinyl alcohol) (PVA) (p. 1245) (4 notes)
• Patterning (p. 1282) (3 notes)
• Glutaraldehyde (p. 1294) (3 notes)
• Codeposition

Layers plus electroforming
Kragen Javier Sitaker, 02021-12-16 (updated 02021-12-30)
(7 minutes)

 2-D cutting (laser cutting, waterjet cutting, CNC plasma table,
2-D wire EDM, the electrolytic method described in Electrolytic 2-D
cutting and related electrolytic digital fabrication processes (p. 1085),
etc.) is a highly efficient way to make things, especially at large scales
and when you have high precision. It occurred to me that by
combining it with electroforming and anodic dissolution (ECM) it
can be substantially more powerful.

Sheet lamination

 If you want to 3-D print a 100-mm prolate spheroid that is 50 mm
in its minor diameters, you need to 3-D print 131 milliliters of
volume. With a typical 30% infill, this works out to 39 milliliters of
actual plastic for the interior. If you use an 0.8-millimeter line width
to print 3 perimeters around each layer, you have about 2.4 mm of
thickness on the shell, which is 38 of those 131 milliliters, leaving only
93 mℓ for the infill, using 28 mℓ of plastic, for a total of 66 mℓ. At a
typical layer height of 0.2 mm this is 138 meters of extrusion; at a
typical 50 mm/s, this is 46 minutes of printing.

 XXX recalculate that, it’s calculated with a shell thickness of 2.4
mm which is wrong on the bottom and top

 By contrast, if you instead print out the same object by sheet
lamination (“laminated object manufacturing”), you only need to cut
the perimeters. If you were to use the same 200-μm layer height, you
would only need to make 78.5 meters of cuts, which at the same
movement speed of 50 mm/s would only take 26 minutes. The
resulting object is normally fully dense, which is an advantage in some
contexts, since it makes it stronger and stiffer. In cases where it is not,
if the inside contour of the object (where infill would have been
placed) is not strictly defined, you can often hollow it out by nesting
multiple layers one inside the other, avoiding the need for extra
cutting time.

 Often the movement speed is not the same; many 2-D cutting
processes can run at much higher speeds than additive processes can
usually manage.

 This advantage increases for larger objects and decreases for smaller
ones; for a meter-scale object instead of a factor of 1.8 it’s a factor of
18. Larger objects tend to benefit more from being fully dense,
because they need proportionally more cross-sectional area to support
their own weight, or their own mass under the same accelerations.

Electrolytic welding

 By electrodepositing a thin layer of metal on a metal object made
by metal sheet lamination as described above, we can get several
important advantages:

• The layers are connected together by the deposited metal. Although

it won’t penetrate the layers, under some circumstances it can have
sufficient adhesion to them to form a solid object. This depends
crucially on their surface condition, which is more controllable in this
situation (sheets freshly cut out, produced by a controlled process)
than under some other circumstances.
• The alternative to connecting the lasers is to run slots or holes
through many layers and put a sliding fastener through them; such
fastener-based or sliding-joint construction can also be fixed
“permanently” by such electrodeposition. (If the glue metal being
deposited can be anodically dissolved at a more moderate voltage than
the base metal, the glue metal can be selectively removed later by
electrolysis, permitting disassembly.)
• The electrodeposited metal can smooth out layer lines which could
otherwise interfere with appearances, fluid flow, optical performance,
smooth sliding, human comfort, etc.
• The electrodeposited metal (or composite) can be a material that
can’t be processed by the original sheet-cutting process, or with more
difficulty. For example, copper and nickel cannot be cut with
oxy-acetylene torches, but you can very rapidly cut out a form from
cheap mild steel on a CNC oxy cutting table, then electrodeposit
them on its surface. This is especially true of nanolaminates, whose
properties can be tuned to the application.
• If the originally deposited sheets can be anodically dissolved at a
more moderate voltage than the newly electrodeposited metal,
contrary to the anodic ungluing process described above, they can be
selectively removed after the electroforming process is complete.

Subtractive 3-D printing with ECM

 Electrodeposition suffers from a positive feedback process of
dendrite growth, in which protuberances on the surface are exposed
to greater electric fields; as a secondary, much weaker, effect, they
physically obstruct ion transport (“mass transport control”) to nearby
parts of the surface. Consequently small protuberances grow into
larger protuberances, potentially bridging all the way to the cathode
while most of the material is only thinly plated. This is exacerbated
by the anisotropic nature of crystal growth; as I understand it, many
“brighteners” used in electroplating work by introducing grain
boundaries to prevent the creation of large crystals. Others work by
reducing ionic flow so that deposition rate is limited by ionic
concentration rather than electric field.

 Electrolytic cutting or electropolishing suffers no such effect (on
the workpiece); instead of causing small irregularities in the surface to
grow faster, it causes them to shrink faster, making the feedback
negative. This permits the usage of much larger currents and
correspondingly larger material removal rate.

 So you can get faster free-form fabrication by alternating electroless
plating with anodic removal of the unwanted part of the deposited
layer, for example using a movable array of separately controlled
cathode electrodes, each removing a controlled amount of material in
a particular area of the workpiece. By limiting the degree to which
the workpiece is dipped into the electroless plating bath, you can
prevent material from depositing elsewhere on the workpiece than
the current layer, enabling a layer-by-layer printing process. With

electroless codeposition you can even print in a metal-matrix
composite, and with the right choice of baths you can switch between
two or more different baths to produce a nanolaminated material.

 This procedure, as described, requires moving the workpiece back
and forth between an electroless plating bath and a second bath where
it is electrolytically cut by cathodes in precise positions relative to it
(which may be moved in the process). You probably cannot use a
single bath because the electroless plating solution will probably all
plate out on your cathodes; you might be able to find a cathode
material that doesn’t do this, but it may be difficult. An alternative
using a single bath is to alternate between selective electrodeposition
(at higher current densities than are normal for electroplating) and
selective electropolishing (to smooth out any irregularities in the
surface that are unwanted). This permits much finer layers and
eliminates the dead time and material loss between the two baths.

 Unfortunately, both the negative feedback in electropolishing and
the positive feedback in electrodeposition increase with the resistivity
of the electrolyte.

Topics

• Digital fabrication (p. 1149) (31 notes)
• Electrolysis (p. 1158) (18 notes)
• Welding (p. 1181) (9 notes)
• ECM (p. 1186) (9 notes)
• 2-D cutting (p. 1201) (7 notes)

https://www.pfonline.com/articles/a-pulsepulse-reverse-electrolytic-approach-to-electropolishing-and-through-mask-electroetching

MOSFET body diodes as Geiger
counter avalanche detectors?
Kragen Javier Sitaker, 02021-12-17 (updated 02021-12-30) (1 minute)

 MOSFET body diodes are PIN diodes, according to
Characterization of body diodes in the-state-of-the-art SiC FETs
-Are they good enough as freewheeling diodes?. The paper is about
carborundum FETs, but presumably this is true of silicon FETs too. I
suspect this means that they would make usable ionizing particle
detectors, perhaps even in reverse-biased avalanche mode; power
MOSFETs are commonly very robustly constructed with very low
capacitance between the source and drain, increasing the chance that
they could survive such treatment.

 Silicon MOSFETs would probably be better for this than GaN
HEMTs or carborundum FETs, because carborundum’s higher
critical breakdown field strength is 7x higher than silicon’s,
permitting the carborundum device to be much smaller for a given
maximum voltage rating. This, in turn, means a smaller area over
which to capture particles.

 This may be an appealing alternative to purpose-built PIN diodes
for detecting ionizing particles, especially in places or times with
supply-chain weaknesses and breakdowns, because power MOSFETs
are very widely available, both as discrete parts easily salvaged from
broken equipment (with sufficiently powerful soldering irons) and,
because they are often the first part of the equipment to fail, as
replacement parts.

Topics

• Electronics (p. 1145) (39 notes)
• Physics (p. 1157) (18 notes)
• Sensors (p. 1191) (8 notes)
• X rays (p. 1310) (2 notes)

https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2585927/EPE2018v10.pdf?sequence=1
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2585927/EPE2018v10.pdf?sequence=1
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2585927/EPE2018v10.pdf?sequence=1
https://www.mouser.com/pdfDocs/infineon-CoolSiC-MOSFET-Revolution.pdf

The user interface potentialities of
a barcoded paper notebook
Kragen Javier Sitaker, 02021-12-18 (updated 02021-12-30)
(6 minutes)

 (Posted originally on the orange website.)

 I wonder what value you could add to this [service for building
websites by writing on paper] with a digitally referenced notebook?
By printing an unobtrusive sort of barcode on each page, you could
determine which part of which page of which notebook each scanned
pixel came from, and what lighting conditions it was photographed
under. What could you do with that?

 Well, the simplest and most greyface application is forms; you can
define particular areas of each page as being particular form fields. If
you’re blogging, you might have a field for a “slug” that appears in
the URL, for example, or a field for tags, or checkboxes for some tags
(plus a special page to declare the meanings of the checkboxes). Or, if
you’re tracking expenses, you could have a checkbox for each expense
category and columns for the date and the amount.

 For me, the special feature of paper notebooks that cellphones and
other computers suck at is drawing. If I want to draw a diagram or
illustration, it just works much better on paper: my pencil point
occludes much less drawing area than my finger does, there’s no
tracking error where the ink appears 2 mm to the side of the point, it
has much lower latency, and I can draw finer lines. But scanning
those drawings into a computer is a pain, because I have to illuminate
them evenly and hold them flat while I photograph them, which still
probably involves some perspective distortion. Barcodes on the paper,
together with reference lines and reference color swatches, could solve
that problem, as well as providing information about which parts of
the paper are occluded, if any.

 For a few special applications like numismatics and entomology,
the paper could provide a precise physical measurement reference for
specimens.

 Combining drawing with filling out forms, you can make a font
from your handwriting; this is enormously easier if you can correct
the various distortions. In http://canonical.org/~kragen/oilpencil/ I
spent about 24 hours fiddling with various graphics programs, but
there was a website I found somewhere where you can print out a
form, draw the font on it, upload the scan, and download your
TrueType font. This kind of thing might help with training OCR,
too, especially if you don’t have access to GPT-3. (Or if OpenAI
decides to peremptorily destroy everything you’ve built because one
of your users uses your service to write about their dead fiancee:
https://towardsdatascience.com/openai-opens-gpt-3-for-everyone-f
b7fed309f6)

 Other ways to combine drawing and filling out forms include
sketching orthographic projections to build 3-D models; coloring a
coloring book; drawing maps for Minetest and similar grid-cell

http://canonical.org/~kragen/oilpencil/
https://towardsdatascience.com/openai-opens-gpt-3-for-everyone-fb7fed309f6
https://towardsdatascience.com/openai-opens-gpt-3-for-everyone-fb7fed309f6
https://towardsdatascience.com/openai-opens-gpt-3-for-everyone-fb7fed309f6

games (especially 2-D ones); drawing heightfields; and sketching
different keyframes of an animation to automatically morph between.
You could even draw a 2-D continuum of keyframes, thus providing
an animation character that’s continuously variable along two
different axes; you might put time on the theta axis and some sort of
emotion along the radius axis.

 (You can also apply these ideas with drawings that are input via
other media, such as touchscreens, Wacom tablets, and mice, not only
scanning paper. When you’re scanning paper it’s hard to get feedback
as you’re drawing, although you could maybe glance at your
cellphone screen periodically, or use a projector like DynamicLand, or
have a continuously updated monitor using a webcam feed. It could
even use the occlusion information from the barcode to patch in
remembered images wherever your hands were occluding the paper.)

 What should the barcodes look like?

 In 02001 Anoto announced their “Digital Paper” approach:
https://www.wired.com/2001/04/anoto/. As explained in
https://en.wikipedia.org/wiki/Digital_paper this uses an unobtrusive
2-D barcode scanned by a camera in a “digital pen” (later called the
“Fly Pen”, 02005) to locate the pen in an enormous global “virtual
desktop”; I think the NeoLAB “Neo smartpen” works the same way.
This was all before cameraphones went mainstream and high
resolution. They got 300 patents but fortunately everything they filed
in 02001 expires this year. Anoto’s barcodes use a grid of slightly
displaced grid dots.

 The Fly Pen provided a sort of graphical user interface on the
paper, using audio for output. It was sort of aimed at kids doing
schoolwork and playing games. It failed in 02009. The founder
started a new company called Livescribe focusing on notetaking; the
Livescribe smartpen allows you to spatially organize and annotate a
continuous audio recording. It has been more commercially
successful: https://en.wikipedia.org/wiki/Livescribe

 Tiny unobtrusive dots might not reproduce reliably on a cellphone
camera, though having been published in WIRED in 02001 means
the technique is in the public domain (or will be next year). A better
idea might be to use thin horizontal and vertical grid lines whose
thickness varies slightly, perhaps in a pastel subtractive primary like
cyan, magenta, or yellow; then you can optionally remove them in
software after scanning. Scanning a whole page at a time, instead of a
tiny area around a pen point like the “digital pens” described above,
gives you a great deal more space for redundant page ID data in the
barcode; probably 48 bits or so is sufficient.

Topics

• Human-computer interaction (p. 1156) (22 notes)
• Barcodes (p. 1385) (2 notes)

https://www.wired.com/2001/04/anoto/
https://www.wired.com/2001/04/anoto/
https://en.wikipedia.org/wiki/Digital_paper
https://en.wikipedia.org/wiki/Digital_paper
https://en.wikipedia.org/wiki/Livescribe

Aluminum refining
Kragen Javier Sitaker, 02021-12-20 (updated 02021-12-30)
(3 minutes)

 Methylsulfonylmethane, a nontoxic useless dietary supplement the
FDA deems “generally recognized as safe”, melts at 109° and can
reportedly dissolve aluminum trichloride, from which a new paper
reports that aluminum metal can be electrolytically deposited under
an anhydrous argon atmosphere in a glove box (I think the paper said
at 140°). (Aluminum trichloride alone reportedly sublimates at
182.7°, so some kind of solvent is needed.)

 Aluminum trichloride is itself relatively safe; PubChem says it’s in
antiperspirants at up to 15% concentration, though it “may cause
severe irritation to eyes” and is “toxic by ingestion” (hexahydrate
LD₅₀: 3311 mg/kg rat (oral); anhydrous 380 mg/kg). A tricky thing
is that it’s maybe best to consider the anhydrous form as a separate
compound from the hexahydrate — if you heat the hexahydrate
((Al(H₂O)₆)Cl₃)), it doesn’t dehydrate to the anhydrous form, but
rather releases muriatic acid and forms alumina at 100°! The Merck
Index says, “Fumes in air, strong odor of HCl; when heated in small
quantities volatilizes without melting. Combines with water with
explosive violence and liberation of much heat.”

 It’s normally produced from aluminum metal, as explained in US
patent 3,343,911, though US patent 3,760,066 documents a process for
producing it from chlorine, carbon, and alumina at 800°–1000°, part
of the patent office’s classification “C01F7/60 - Preparation of
anhydrous aluminium chloride from oxygen-containing aluminium
compounds”.

 At the risk of making a fool of myself by trivializing a patent
classification with 16 patents in it (all expired: 01919, 01923, 01925,
01926, 01927, 01928, 01932, 01964, 01971, 01973, 01975, 01977,
01978, 01982, 01990, and 02004), this reaction seems like it would be
pretty straightforward:

2 Al(OH)₃ + 6 HCl → (Al(H₂O)₆)Cl₃ + AlCl₃

 That is, if you react dry aluminum hydroxide with anhydrous
muriatic acid, you should get a 1:1 molar ratio of the hexahydrate and
the anhydrous, which you then must separate. Without using water!
Worse, you probably don’t really have this neat separation of
water-complexed aluminum ions from non-complexed ones; I think
you’ll get polymeric aluminum chlorohydrate.

 But I bet that if you heat up the mixture to drive off the HCl
you’ll end up with a mix of anhydrous aluminum chloride and
alumina, and I bet the alumina is insoluble in methylsulfonylmethane.

 This is particularly interesting because purified Al(OH)₃ is the
result of the Bayer process by which aluminum is electrowon
today — but by dissolving alumina in cryolite, rather than aluminum
chloride in methylsulfonylmethane. Crudely we should expect this

https://en.wikipedia.org/wiki/Methylsulfonylmethane
https://en.wikipedia.org/wiki/Aluminium_chloride
https://pubchem.ncbi.nlm.nih.gov/compound/Aluminum-chloride
https://pubchem.ncbi.nlm.nih.gov/compound/Aluminum-chloride
https://patents.google.com/patent/US3343911A/en
https://patents.google.com/patent/US3343911A/en
https://patents.google.com/patent/US3760066A/en
https://patents.google.com/patent/US3760066A/en
https://en.wikipedia.org/wiki/Aluminium_chlorohydrate
https://en.wikipedia.org/wiki/Bayer_process

process to be cheaper because it runs at such a low temperature.
Could this be a new economic route to aluminum refining?

 It would be even more exciting if it turned out to be possible to do
the same trick with, for example, magnesium chlorate, magnesium
formate, magnesium perchlorate, or titanium tetrachloride.

 (Thanks to Mina for help with the calculations!)

Topics

• Materials (p. 1138) (59 notes)
• Electrolysis (p. 1158) (18 notes)
• Aluminum (p. 1180) (10 notes)
• Refining (p. 1335) (2 notes)

Regenerative muffle kiln
Kragen Javier Sitaker, 02021-12-21 (updated 02021-12-30)
(19 minutes)

 If they are not to be huge, pottery kilns necessarily use a largish
amount of power, because during the peak temperatures of the firing,
they need to maintain their contents at 1000° or so above ambient
temperature. Under conservative assumptions about the kiln walls
(≈0.1 m², ≈0.1 m, ≈0.5 W/m/K) this requires hundreds or thousands
of watts (500 W in this case; cutting it to 100 W would involve
thickening the effective wall thickness to 0.5 m — over a cubic meter
for an internal volume of just 3 ℓ = spherevol(sqrt(.1m^2/4pi))) or
using refractory insulating vacuum panels which, as far as I know,
don’t exist. A kiln the size of a domestic microwave oven requires
more like 5 kW and thus cannot run on a regular 120 VAC circuit; it
would need close to 42 amps.

 This can be a problem for residential power consumption and
wiring installations. 5 kW is a lot for a single circuit even in 240VAC
countries — though not unheard of, it typically requires a
purpose-installed circuit, which may not be an option for residential
renters.

Firing with fire

 Traditionally pottery was fired with actual fire. CO₂ has ΔfH
⦵

298
= -393.5 kJ/mol and 12 grams of carbon per mole, so burning 12
grams of carbon gives you 393.5 kJ, 32.8 kJ/g. So 5 kW of carbon
burning is only 152 mg per second, about two hours per kilogram of
carbon. Unlike 42-amp electric circuits, 5-kilogram bags of carbon
are readily available at convenience stores around the world, and
refining pure carbon from biomass for fuel has been common practice
since long before recorded history.

 The combustion of small amounts of fuel can be readily controlled
with much smaller amounts of electrical power, on the order of
1–10 W.

 There are three main disadvantages to firing with fire:

• The pottery (or other thing being treated with heat) is exposed to
the gases from the fire; typically these are reducing gases with almost
no oxygen and a significant proportion of CO, and there may also be
ashes, nitrogen oxides, sulfur dioxide, etc.
• It’s difficult to control the heating from the fire.
• The gases have to be released somewhere, and they are usually toxic.

 These three problems can be solved in a variety of ways; here is
one way.

The main combustion chamber

 First, to control the amount of heat produced from the fire, you
can restrict the entry of air into the fire. If the fire is in a
well-insulated chamber, it can remain hot enough to stay alive for
many minutes without any air input at all; even a small air input will

suffice. The necessary oxygen for 5000 W and thus 152 mg/s is 32/12
of that, or 405 mg/s; oxygen is about 21% of air, so that’s about 1.9 g
of air per second, which is about 1.6 ℓ/s, or 3.4 cfm in the quaint units
used for fans. But less than that should be fed into the main
combustion chamber itself, since the fire there will not produce
entirely CO₂.
 (Of course this flow should be under the control of a
microcontroller, like everything else described in this note.)

The afterburner

 Running the fire always in the lean conditions described above
ensures that the exhaust gas is maximally reducing and thus
maximally toxic, though probably devoid of nitrogen oxides. To
diminish the toxicity of the exhaust gas, it should have more air
injected into it in an “afterburner” to complete the combustion
process; this will produce more heat but, I think, in general reduce
the output temperature, approaching, I think, the adiabatic flame
temperature of carbon, 2180°. By this means the reducing exhaust gas
can be converted into an oxidizing exhaust gas whose only important
remaining toxic component is CO₂; this process also burns off other
unwanted materials like PCAHs and other components of tar, though
it introduces nitrogen oxides. Further air injection after complete
combustion is probably usually desirable to lower the exhaust
temperature to more convenient levels.

The regenerator

 As I understand it, the standard way to transfer this heat to the
interior of a (non-electric) muffle kiln is to run it through pipes that
heat the kiln. But the pipe walls are necessarily of fairly limited
surface area, so most of the heat will not be thus transferred. A
recuperator-type heat exchanger, heating gas to be fed into the kiln or
recirculated through it, is another alternative, and in file
capillary-heat-exchanger in Dercuano I explained how to build one that’s
orders of magnitude denser than existing microchannel heat
exchangers. But what I want to explore here is regenerative heat
exchangers, because those don’t require exotic fabrication technology.

 So you run this hot oxidizing exhaust through a regenerator
chamber packed full of refractory balls of, for example, glucina,
quartz, forsterite, mullite, silicon, philosopher’s wool, thoria, sapphire,
chromia, quicklime, fluorspar, zirconia, yttria, carborundum, or
aluminum phosphate. I don’t know of any other fluorides that are
refractory enough, and I think almost anything that’s not an oxide,
fluoride, or phosphate would be oxidized under these
conditions — even chromium, which would also suffer nitrogen
attack. Carborundum is a special case because it forms a refractory
protective oxide layer. Silicon and fluorspar are low-melting, 1414°
and 1418° respectively, but the others mentioned have adequate
temperatures.

 Smaller balls present more surface area to absorb the heat but also
leave smaller spaces for gas flow, with the result that they consume
more head. High-conductivity materials like glucina (330 W/m/K at

room temperature), carborundum (360–490), or silicon (150) ease this
tradeoff compared to things like sapphire (30), philosopher’s wool
(21), quartz (10?), forsterite (7?), quicklime (6?), mullite (4?), thoria
(4?), or zirconia (2?). Unless you want to tangle with glucina,
carborundum would seem to be the obvious choice (though sapphire
is the traditional one); its specific heat is 0.67 J/g/K (3.2 g/cc), while
sapphire’s is 0.88 (4.0 g/cc) and glucina’s is about 1.05 (2.9 g/cc). If
we pretend that these numbers don’t vary with temperature, 100 g of
carborundum with ΔT = 1000° could hold 88 kJ, so mere heat
capacity will not require us to use a large regenerator; each
regenerator chamber might contain 10 g of balls.

 Periodically you switch the exhaust to the next cold regenerator
chamber; then you flush the remaining exhaust from the hot
chamber with air, which is also oxidizing, and then switch the
direction of airflow and its source destination: now you are flowing
air backwards through the regenerator chamber, from its cold side to
its hot side, from which you direct it into the kiln chamber to heat it
up. The source of the air can be either the kiln itself or the outside
air; in the latter case, hot air is displaced from the kiln and thus must
be exhausted; this is probably the best source for air for the fire, since
it is already preheated, unless it has unwanted contaminants from the
things in the kiln.

 The duration of heating any one regenerator chamber needs to be
short compared to its heat capacity, and the balls need to be small
enough that the biggest temperature gradient in the chamber is from
one end to the other and not from the surface to the center of each
ball.

 There are many refractory metals with higher thermal conductivity
and high density, including some cheap ones, but I think you would
have to prevent them from ever contacting hot oxidizing
atmospheres. Though it would be straightforward to ensure that the
exhaust gases were always reducing, the job of the regenerator is to
heat up clean air, so parts of it will inevitably be exposed to hot air.
So I think it is best to simply lean out the mix in the afterburner so
that the regenerator balls are not subjected to alternating oxidation
and reduction.

 If a higher temperature is desired, despite the higher nitrogen oxide
emissions that will result, some of the heated clean air from the
regenerator can be used as the afterburner air.

Exhaust remediation

 The exhaust and purge air that come out of the regenerator are
cool, but they still contain a lot of carbon dioxide, and probably
nitrogen oxides as well. Sometimes you can just send it up a chimney
or out a vent, as people do with hot-water heaters and stove hoods.
In cases where this is problematic, a carbon dioxide scrubber can be
used, though it may need to be rather large: running at 5000 W =
557 mg/s CO₂ for 12 hours produces 24 kg of CO₂, which would
need to be stored in the scrubber. A simple soda-lime scrubber
contains 56 g/mol of CaO and can fix 44 g/mol of CO₂, so you’d
need 31 kg of soda-lime, which you would then have to discard.
Other kinds of scrubbers might be smaller, since they can recycle the

absorbent, but they still need somewhere to store the CO₂.
 On the plus side, I think soda lime will also slurp up nitrogen
oxides and sulfur dioxide. With other kinds of scrubbers,
diesel-engine-style selective catalytic reduction can remove nitrogen
oxides.

Regenerator cleaning

 If the fuel is coal or charcoal, periodically the regenerators will get
clogged with ash, so they need to be cooled and washed periodically
with acid; vinegar should be perfectly adequate. If you used
quicklime for the regenerator balls, you’d have to just empty and refill
the regenerator, since quicklime is a significant component of ash, and
anything that would remove it chemically would also remove the
balls.

 Alternatively, the kiln could be operated on a liquid fuel such as
gasoline, diesel fuel, or vegetable oil, or on combustible gas, which
would not produce any significant amount of ash. Then, the only
possible regenerator contamination would be partially burned fuel,
which would burn off fairly quickly, though possibly damaging
protective oxide layers in the regenerator in the process.

Afterburner or no? Run the main
combustion chamber lean?

 If the kiln thus runs on liquid fuels, you probably don’t want all the
fuel to be in the main combustion chamber — first, because having
several kilograms of hydrocarbons above their flashpoint in your
kitchen is a terrible idea; second, because it would make the kiln take
quite a while to start, because you must heat them above their
flashpoint first; and, third, because this allows you to run its
combustion chamber lean (with excess air) and thus dispense with the
separate afterburner. This approach may be worthwhile even with
solid fuel, for example passing ground charcoal through a paddle
wheel that prevents reflux of combustion into the fuel supply; this
would also enable the main combustion chamber to be smaller,
speeding up startup and shutdown.

 One possible benefit of a separate afterburner is that it, like a
steam-engine injector, it can provide suction. Its output is hotter and
more voluminous than its input, so if the output channel is wider than
the input channel it might be able to fluidically drive the other fluid
flows in the kiln with suction, permitting the control system to work
merely by constricting valves. Injecting water into the main
combustion chamber would produce shift gas, shifting a potentially
large amount of the combustion into the afterburner, which may be
useful for this purpose.

Materials

 The main combustion chamber and the afterburner are potentially
exposed to temperatures of 2000° or more, and at least the
temperature of the interior of the kiln (normally 1000°–1500°);
moreover, they are exposed to both oxidizing and reducing
conditions. These are the most challenging conditions, and in the best

of conditions, they probably require regular replacement of the
refractory surfaces in question.

 Forsterite sand (melting point 1890°) is commonly used in foundry
practice as a refractory, and even cristobalite (quartz’s ghost) doesn’t
melt until 1713°. Mullite remains solid up to 1840°, sapphire to
2072°, larnite (the calcium analogue of forsterite) to 2130°, quicklime
to 2613°. Sands of these minerals (all dirt cheap except for maybe
mullite) would work as replaceable refractory floors for these
chambers, maybe introducing clean air through them. This will
protect the floor from ground-up or lump coal, but for the ceiling
and walls you still need something more solid.

 The cheapest solution would be wall and ceiling tiles of quicklime,
or if the chamber is small enough, just a single block of quicklime. It
might be harmless for the quicklime to be produced in situ from
calcium carbonate, but in that case it probably needs some kind of
refractory fiber running through it to keep it from crumbling as it
calcines. Larnite (dicalcium silicate, Mohs 6, 2130°) would probably
work well for this. I think it can be conveniently prepared in a beaker
from calcium chloride and sodium silicate, but I don’t know how
you'd bond the resulting grains together afterwards.

 Except in case of malfunction, the rest of the kiln is only exposed
to temperatures a little higher than the maximum payload
temperature, and exclusively oxidizing atmospheres, so it can be made
from almost any oxygen-resistant refractory material, including those
mentioned earlier for the regenerator balls.

 (The high-temperature zone is another argument in favor of
running the main combustion chamber lean and dispensing with the
afterburner: run it lean enough and you only need to deal with those
same lower temperatures.)

 Even this zone of moderate heat is too aggressive for organics or
most metals, since it needs to operate at 1000° in oxidizing
atmospheres, and the regenerators are exposed to constant thermal
cycling. Some sort of ceramic is unavoidable; insulating firebrick
might be the easiest choice, and probably one of the least damaged by
thermal cycling.

 The only necessarily hot mechanical parts are the valves on the hot
side of the regenerator chambers, which probably operate pretty
often. But they probably don’t need to be super great valves; a little
leakage would be tolerable. Incoming air can be driven with muffin
fans, maintaining the whole apparatus at a slight positive gauge
pressure to prevent any need to ever run hot air through any sort of
blower or pump.

Control system

 You need a microcontroller to control everything, which needs,
minimally, an oxygen sensor on the output of the afterburner, a
temperature sensor inside the kiln (perhaps just a quartz-halogen bulb
used as a resistance temperature detector, or a hardware-store
thermocouple of the type used to shut off pilot lights), control of at
least three on-off valves per regenerator chamber or one three-way
mux valve (hot side can connect to burner, purge air, payload, or
nothing; cold side can connect to incoming air or to exhaust output,

https://en.wikipedia.org/wiki/Calcium_silicate

but that could be just two check valves), proportional control over the
incoming air fan, and, if you want to run the main combustion
chamber lean, bang-bang control over the fuel injection. If you don’t,
you also need some kind of proportional control over the extra air
injected into the afterburner chamber. So that’s an oxygen sensor, a
temperature sensor, nine relays or similar for the valves, and two fan
speed control lines. Probably it would also be a bad idea to omit
thermal overload switches like those in microwave ovens on the cold
side of the regenerators.

 You also need an igniter to start up the main combustion chamber,
which can be done in lots of ways. If your fuel is gasoline or gas,
maybe you could just use a sparkplug, but in a lot of other cases you
probably want something more like a butane torch.

 But that’s just enough to barely work, maybe. I’d want
temperature sensors for the input air, the output of the main
combustion chamber, the output of the afterburner (if
separate — another incentive to delete it), and the input and output of
each regenerator chamber, and a backup temperature sensor inside the
kiln chamber to do an emergency shutdown in case of sensor failure:
ten more temperature channels for a total of 11. Thermocouples
would probably respond faster than RTDs improvised from
quartz-halogen bulbs, despite lower precision, and apparently
commercial RTDs only go up to 500°, which is freezing cold.

 With this collection of temperature sensors the microcontroller can
slightly randomly vary the afterburner injection, the fuel flow, and
the airflow, and infer immediately the derivatives of the resulting
temperatures, and indeed the local linearization of the entire output
transfer function — a trick that is useful for all kinds of control
systems, not just this one. If there are important hidden variables, like
the temperature of the sand, the humidity of the air, or the amount of
payload in the kiln, you ought to be able to infer their existence and
rough dimensionality from a principal components analysis or
something, and then correct for them.

Topics

• Contrivances (p. 1143) (45 notes)
• Energy (p. 1170) (12 notes)
• Clay (p. 1179) (10 notes)
• Ceramic (p. 1193) (8 notes)
• Thermodynamics (p. 1219) (5 notes)
• Heating (p. 1253) (4 notes)
• Insulation (p. 1290) (3 notes)
• Regenerators (p. 1334) (2 notes)

Is liberal democracy’s stability
conditioned on historical
conditions that no longer obtain?
Kragen Javier Sitaker, 02021-12-22 (updated 02021-12-30)
(16 minutes)

 As R.J. Rummel has exhaustively documented (blog), liberal
democracy has substantially reduced the frequency of warfare, the
fatality of wars that do occur, and the frequency and fatality of
domestic mass killings such as genocides, which he terms
“democides”. And it seems to do this without damaging other
desirable goals, such as healthcare access, technological progress, social
justice, and material prosperity, at least compared to the other forms
of government we’ve been able to observe in practice so far. Indeed,
there are plausible arguments that liberal democracy is the best
existing system at providing these other goods, though of course
many socialists disagree, and there are clear failures, like the material
prosperity of India and healthcare access in the US.

 (Unlike Rummel, I think the US genocide of its Native American
population, the US's current system of mass incarceration, and the
mass murder in the French Congo demonstrate that democracy, even
liberal democracy, is not a complete solution to the mass murder
problem, just a palliative, solving most of it.)

When liberal democracy is unstable

 So, if or when we can’t abolish government entirely, liberal
democracy is vastly preferable to the other forms of government we
have so far been subjected to. But human affairs are not inevitably
guided toward what is most preferable, and the relative stability of
liberal democracy is contingent on two historical facts which may not
obtain.

 First, it can only survive where liberalism is popular. Where
liberalism is unpopular, you can have liberal undemocratic rule (as in
Singapore) or authoritarian democracy (as in Indira Gandhi’s India),
but the advent of democracy will extinguish whatever liberalism
exists, and quite possibly democracy as well. Morsi’s Egypt and
post-Revolutionary Iran are examples of this: given the opportunity
to vote, the people voted in authoritarian leaders on the strength of
promises to crush freedoms; the soundbite version of the history is,
“One person, one vote, one time.” In the US, the same thing could
plausibly happen with Donald Trump, Mike Pence, Kamala Harris,
or Alexandra Ocasio-Cortez, none of whom favor liberalism.

 Second, liberal or not, democracy is unstable where small elite
armies can defeat large popular armies. States are institutionalized
violence, so a more effective manifestation of institutionalized
violence can overthrow any particular state. This can manifest
externally, as conquest through invasion, or internally, as a military
coup. Historically we can see that, in times and places when victory

https://www.hawaii.edu/powerkills/welcome.html
https://thehilairebellocblog.blogspot.com/2015/07/an-invitation-to-modern-traveller-1898.html
https://www.gutenberg.org/files/61521/61521-h/61521-h.htm
https://www.gutenberg.org/files/61521/61521-h/61521-h.htm

in warfare was mostly determined by numbers of soldiers, some form
of republicanism puts the population under arms, and democracy is
stable if it is popular — Classical Greece with its spears and the 20th
century with its assault rifles, for example. But, in times and places
where a military elite of well-equipped warriors can defeat a much
larger group of volunteers, frequently aristocracy or colonialism is
established, and the worst abuses follow — for example, late
19th-century and early 20th-century colonialism, the
post-Columbian Spanish conquests, and medieval European
feudalism.

 We can explain this by putting ourselves in the position of a
proponent of a late-20th-century warrior faction which has just lost a
democratic election, involving (as they always do) values you consider
to be sacred, which are now destined to be trampled under the feet of
the new government. Overturning the results of the election by
violence in order to uphold those sacred values involves great personal
risk (you will likely die) and, because the voters for the other side are
more numerous, it probably will not succeed; they will probably beat
you on the battlefield just as they did at the polls. In most cases your
best option is to suffer the indignities of enemy rule and hope for a
better showing in the next election.

A brief history of politics and warfare
outside Asia

 By contrast, consider the position of a member of the British
colonial administration in the 01890s, faced with the knowledge that
your policies are unpopular (“with the natives”, they might say.) As
Hilaire Belloc wrote satirically in 01898 in The Modern Traveller, p. 41:

I never shall forget the way
 That [Captain] Blood upon this awful day
 Preserved us all from death.
 He stood upon a little mound,
 Cast his lethargic eyes around,
 And said beneath his breath:
 “Whatever happens we have got
 The Maxim Gun, and they have not.”
 He marked them in their rude advance,
 He hushed their rebel cheers;
 With one extremely vulgar glance
 He broke the Mutineers.
 (I have a picture in my book
 Of how he quelled them with a look.)
 We shot and hanged a few, and then
 The rest became devoted men.

 Belloc is writing about a caravan, but the same principle applies to
the violent subjugation of whole countries. (The book’s illustration of
the “look” shows an angry white man with his arms crossed standing
next to a wheeled machine-gun; Belloc’s satire extended to
skewering the viciousness of his countrymen, but he only barely
ridicules the racism which made it so fatal, a racism he seems to have
wholeheartedly embraced.)

 If you have the Maxim Gun and your political opponents are Zulus
armed with spears (or, as in Belloc’s scathingly cynical verse, natives
of Liberia, perhaps Mande or Kru), what incentive do you have to

https://thehilairebellocblog.blogspot.com/2015/07/an-invitation-to-modern-traveller-1898.html
https://thehilairebellocblog.blogspot.com/2015/07/an-invitation-to-modern-traveller-1898.html
https://thehilairebellocblog.blogspot.com/2015/07/an-invitation-to-modern-traveller-1898.html
https://www.gutenberg.org/files/61521/61521-h/61521-h.htm

permit them a vote, knowing that they may vote to confiscate your
property, disestablish Anglicanism, persecute Christians and the
Khoi-San (perhaps merely by refusing recognition to their marriages,
or perhaps in more severe ways), lay heavy tariffs on your exports,
slash the military budget that pays your salary, and purge the
universities of professors who oppose their cause? They may not do
all of these things, of course, if they are committed to liberalism; but
any political faction that accedes to democracy is implicitly acceding
to the possibility of being governed by their enemies, who may treat
them very badly indeed.

 Of course, what the British colonial powers did with this unlimited
power throughout Africa was to abuse it thoroughly, even if to a
smaller extreme than the Congolese colonies; the African-American
colonists of Liberia did the same to the Liberian natives, for that
matter. Power corrupts, and absolute power corrupts absolutely, so
no government is free of corruption, and unassailable governments are
enormously corrupt.

 Quoting Belloc is of course epistemological malpractice: we
cannot deduce anything about what really happened from his
intentional fiction. But as Wikipedia says:
The Maxim gun was first used extensively in an African conflict during the First
Matabele War in Rhodesia. During the Battle of the Shangani, 700 soldiers fought
off 5,000 Matabele warriors with just five Maxim guns. It played an important role
in the "Scramble for Africa" in the late 19th century. The extreme lethality was
employed to devastating effect against obsolete charging tactics, when African
opponents could be lured into pitched battles in open terrain.

 Similarly, the open-field battles we know about in the Bronze Age
were carried out between chariot-mounted archers, whose horses
could easily outrun unarmored massed infantry, dodging their arrows,
while the archer picked off the immobile soldiers one by one.
Building chariots and maintaining teams of horses involved major
expenses beyond what average citizens could muster; consequently
they belonged to palaces whose rulers could tax many subjects, and
there were no citizens. Iron Age warfare, by contrast, was dominated
by mass formations like the phalanx, and maneuvers of infantry like
the Greek hoplites, following the “hoplite revolution” around 00700
BCE. This is the era during which (illiberal) democracy flourished in
Athens and many other Greek city-states, despite frequent
interruptions and setbacks, and (illiberal) republicanism would rule
Rome for centuries before the Empire; Livy and Plutarch trace this
development to Greek influence. Rousseau argued that it was the
“professionalization” of the Roman legions (previously a conscript
force) that ended the Republic; he may have been right.

 The European Middle Ages were dominated by a knightly class
whose power over the serfs was nearly absolute; various “communes”
governed by the common people arose from time to time but, except
for Switzerland and some Italian republics, were overthrown within a
century or three by ambitious kings and knights, notably the
Habsburgs. This was possible because the technological basis of
warfare at the time enabled a few well-trained warriors with horses
and armor to defeat a much larger number of peasants, so democracy,
liberal or not, could not withstand contact with warriors — whether
external or internal.

https://en.wikipedia.org/wiki/Maxim_gun#Use_in_colonial_warfare_(1886�1914)
https://en.wikipedia.org/wiki/History_of_Czech_civilian_firearms_possession
https://en.wikipedia.org/wiki/Dithmarschen#Post-Medieval_History

 Guns, especially smoothbore guns like the arquebus and musket,
require much less training to use effectively, enabling large groups of
peasants to defeat capital-intensive, highly-trained knights, for
example in the Hussite revolt in 01419. In the Early Modern Period,
gunpowder thus gave the military advantage to whichever faction was
more popular, and Renaissance republicanism took form, with
Machiavelli strongly advocating universal conscription. The French
National Assembly put Machiavelli’s advice into practice with the
levée en masse, allowing Napoleon to defeat the better-trained Prussian
army (accustomed to the cabinet wars that started in 01648) by
outnumbering them ten to one — and of course the result of this new
form of power was bloodthirsty conquest.

 This military dynamic was disrupted by the late-19th-century
emergence of the crew-served machine-gun, exemplified by the
Maxim type mentioned above, then to some extent restored by the
emergence of Kalashnikov’s AK-47. Peasant forces armed with
AK-47s and similar weapons were able to resist invasions by vastly
better equipped armies in some cases in the 20th and early 21st
century, notably the US’s defeat in Vietnam, the USSR’s defeat in
Afghanistan, and the US’s defeat in Afghanistan in 02021 after 20
years of fighting.

Where do we stand today, and where are
we going?

 Still, it’s hard to credit that a military élite would be unable to
defeat a much larger untrained force in a world full of nuclear
weapons, aircraft carriers, near-universal gun control laws (extending
even to knives in a few cases, such as the UK since 01953), fighter jets,
and pervasive surveillance. Nowadays surveillance enlists cellphone
networks, social networking sites, license-plate cameras, RFID
toll-road payment schemes, DNA databases, credit cards, and
sometimes more extreme measures; to assassinate Osama bin Laden,
the US subverted a vaccination program to scan DNA, and in putting
down the rebellion in occupied Iraq in 02007, the US used
high-resolution telescopes like ARGUS-IS to record all public
movement in an area, so as to be able to trace back roadside bombs to
the houses of rebels after they exploded.

 The US’s moderately successful invasion of Iraq in 01991
demonstrated the effectiveness of precision-guided munitions, which
have been pivotal weapons in every war since then; in 02014, Putin
gave a speech at Sochi (new location), saying they were as important
as nuclear weapons:
Many states do not see any other ways of ensuring their sovereignty but to obtain
their own bombs. This is extremely dangerous. We insist on continuing talks; we
are not only in favor of talks, but insist on continuing talks to reduce nuclear
arsenals. The less nuclear weapons we have in the world, the better. And we are
ready for the most serious, concrete discussions on nuclear disarmament – but only
serious discussions without any double standards.
 What do I mean? Today, many types of high-precision weaponry are already
close to mass-destruction weapons in terms of their capabilities, and in the event of
full renunciation of nuclear weapons or radical reduction of nuclear potential,
nations that are leaders in creating and producing high-precision systems will have
a clear military advantage. Strategic parity will be disrupted, and this is likely to
bring destabilization. The use of a so-called first global pre-emptive strike may

https://en.wikipedia.org/wiki/History_of_Czech_civilian_firearms_possession
https://en.wikipedia.org/wiki/Early_modern_warfare
https://en.wikipedia.org/wiki/Republicanism#Renaissance_republicanism
https://en.wikipedia.org/wiki/Lev�e_en_masse
https://en.wikipedia.org/wiki/Lev�e_en_masse
https://en.wikipedia.org/wiki/Cabinet_wars
https://en.wikipedia.org/wiki/ARGUS-IS
https://cluborlov.blogspot.com/2014/10/putin-to-western-elites-play-time-is.html
https://cluborlov.blogspot.com/2014/10/putin-to-western-elites-play-time-is.html
https://cluborlov.wordpress.com/2014/10/29/putin-to-western-elites-play-time-is-over/

become tempting. In short, the risks do not decrease, but intensify.

 Precision-guided munitions can be immensely more efficient than
conventional munitions; bombing Dresden into a firestorm took 7100
tonnes of bombs, and the atomic bomb that devastated Hiroshima
weighed 4.4 tonnes, but it only takes 100 milligrams of explosives, 200
nanograms of botox, 50 nanograms of polonium, or 100 millimeters of
knife blade to kill a general or president on the opposing side,
or — perhaps more effectively — his son or daughter, if he doesn’t
cooperate. There are two tricky parts to this sort of assassination:
knowing where the target is, and delivering the weapon to the target.
A precision-guided munition solves the second part of the problem,
but presently the first part remains the province of centralized spy
agencies like the КГБ where Putin grew up.

 The wide availability of PGMs, then, which Raskin argued in
02001 was inevitable, would seem to deliver a strong military
advantage to whichever group is best at spying on the weak points of
its rivals — and concealing their own. The organizations that will be
best at this will probably be criminal gangs like Mexico’s Zetas.

 There is of course no guarantee that such conditions will permit the
continuance of civilization, much less democracy; civilization has
collapsed on many occasions in the past (around the Mediterranean in
the Bronze Age Collapse, in the Maya collapse, in Egypt under the
Christian onslaught in the 5th century, in the collapse of the Anasazi,
to a lesser extent the post-USSR age, and so on) and it may do so
again. Technological conditions that permit small military élites to
militarily defeat much larger popular movements may doom
democracy, since it deprives those élites of reasons to accede to
electoral defeat; conditions that make attacking easy and defending
impossible would seem to doom civilization entirely.

 In March we saw ransomware shut down the main oil pipeline on
the East Coast of the US, and on December 7 there were major
outages of much of the World-Wide Web when the biggest data
center of Amazon Web Services went down; many customers were
revealed to have no disaster plan. There is no evidence that this
incident was due to any kind of hostile action, just that AWS is a
central point of vulnerability a malicious actor could attack, possibly
commanding a high ransom.

Topics

• History (p. 1153) (24 notes)
• Politics (p. 1279) (3 notes)

https://web.archive.org/web/20060111213058/http://jef.raskincenter.org/unpublished/next_time_can_be_worse.html
https://web.archive.org/web/20060111213058/http://jef.raskincenter.org/unpublished/next_time_can_be_worse.html
https://en.wikipedia.org/wiki/Colonial_Pipeline_ransomware_attack
https://en.wikipedia.org/wiki/Colonial_Pipeline_ransomware_attack
https://en.wikipedia.org/wiki/Amazon_Web_Services#Significant_service_outages

 Xerogel compacting
 Kragen Javier Sitaker, 02021-12-22 (updated 02021-12-30)
(12 minutes)

 As explained in Material observations (p. 633), Elmer’s Glitter
Glue changes in an interesting way when it dries: as deposited, the
glitter flakes are dispersed almost isotropically, without any preferred
orientation, but drying makes the glitter flakes mostly parallel to the
surface.

 Basic high-laminar-filler composites
 This suggests that by this means we can fabricate composite
materials with high loadings of fibrous or especially laminar
reinforcing filler (e.g., talc, clays, carbon fibers, carborundum
whiskers, graphene, MXenes; see Electrolytic 2-D cutting and related
electrolytic digital fabrication processes (p. 1085) for some fuller lists)
without having to assemble them layer by layer. Specifically, you
bulk up the polymer with a lot of solvent, mix in your functional
filler, deposit it in an X–Y sheet of uniform thickness on some
substrate, evaporate off the solvent resulting in a great loss of volume,
and then break the sheet free from the substrate.

 Adherence to the substrate prevents the sheet from shrinking in the
X–Y plane as it dries, forcing all of the volume loss to be in the Z
direction; this reorients the filler particles nearly parallel to the X–Y
plane, allowing them to pack much more tightly than laminar
reinforcing particles normally could, potentially resulting in a final
product that consists almost entirely of the filler, bound together with
a small amount of matrix. If the solution is sufficiently viscous or
dense, or if surface charges maintain the filler particles deflocculated,
the filler will not settle out or float out before being held in place
during the drying process. Thus the filler will be evenly dispersed
through the resulting matrix.

 Laminar reinforcing fillers are extremely desirable as reinforcement
because, while each particle of a fibrous filler adds strength in one
dimension, laminar fillers can add the same strength in two
dimensions. So, in theory, where most of the composite’s strength
comes from the filler and not the matrix, laminar reinforcement
should be able to make materials that are twice as strong. Normally,
though, they can only be added as very low percentages, because they
either run into one another at weird angles so that more filler can’t
enter, or they clump up in stacks, so their large surface area doesn’t
touch the surrounding matrix, so their strength doesn’t get
transferred.

 Sheets, whiskers, and other fibers below a critical dimension are
“flaw-insensitive”: they’re small enough that most of their length or
width lacks crystalline defects, so there is no flaw at which to
concentrate stress. This commonly increases their strength by an
order of magnitude or more. This effect does not come into play with
craft glitter.

 Waterglass-matrix composites

 Waterglass is another interesting possible candidate here, since it
forms a soluble mostly-silica xerogel when it dries, although it may be
brittle enough at room temperature that it won’t achieve super
strength. Mixing waterglass with clay to repair things has a long
tradition in pottery, and it deflocculates the clay due to its
alkali-metal ions.

 (It is possible to further harden waterglass after it dries by
exchanging its alkali ions with polyvalent cations, as is done in KEIM
paint.)

 Non-evaporated composites
 Alternatively, rather than evaporating the solvent, you could try
removing it by some other means. For example, you could press the
mass against a semiporous membrane so as to reverse-osmotically
force the solvent through the membrane, but not the dissolved matrix
or the filler, similar to using frit compression to produce buckypaper
(which typically has no binding matrix) or slipcasting pottery. I’m
pretty sure this will work in a closely analogous way; the situation is
very closely analogous to the solvent case.

 Maybe it would even work to squeeze a molten matrix material
through a porous material (such as a sintered frit, unglazed fired clay,
or dirt) in this way, leaving only the oriented filler and a small
remnant of binder, which would remain when the material was
cooled; in some cases, as with slipcasting, the capillary action in the
porous material would itself be enough to suck away the excess
binder.

 The things I’m not sure about is ① whether the currents of molten
binder will tumble the filler particles as they pass (I think not; I think
they’ll just press the filler particles up against the porous wall, and at
any rate you can do the squeezing more slowly to get slower currents)
and ② whether you can separate the composite from the frit
afterwards (but in the worst case you can cut it off parallel to the frit
surface while it’s still almost molten).

 Metal evaporation
 As I understand it, the drying process normally works by first
gelling the viscous solution into a hydrogel, then contracting it into a
xerogel under the influence of surface tension in the nanopores of the
gel. Thus, carrying out the above process with metals using mercury
as a solvent may or may not work, because solid amalgams are not
gels, and the shrinking process may be different from xerogel collapse.
It may work anyway, though; mercury can dissolve all of zinc,
copper, tin, lead, silver, and gold to an appreciable extent, and at least
in the case of gold it is commonplace to recover fully dense solid gold
by heating, which is how mercury gilding works.

 The IUPAC solubility series volume 25 (Metals in Mercury) has the
following solubilities for some selected metals in mercury at a couple
of temperatures:
 Metal Room temperature 300°
 Magnesium 2.52% 26%
 Aluminum 0.014% 5.6%
 Tin 1.05% >84% (tin melts at 231°; miscible?)

https://digitalfire.com/material/sodium+silicate
https://digitalfire.com/material/sodium+silicate

 Lead 1.47% 93% (lead melts at 327°)
 Titanium 0.000017% 0.0035%
 Chromium ???? too low to measure
 Iron ???? <0.00004%
 Cobalt ???? <0.00007%
 Nickel ???? 0.007%
 Copper 0.0092% 0.6%
 Silver 0.065% 5.1%
 Gold 0.13% 14%
 Zinc 6.32% 70%

 Magnesium is the most tempting entry here, but I’m guessing that
if you were going to dissolve magnesium in mercury and then
evaporate off the mercury, you’d have to do it in a way well
protected from oxygen. Aluminum amalgams aggressively extrude
fibers of aluminum oxide over the course of hours when in contact
with air.

 Aluminum, zinc, and tin are also soluble to a useful extent; you
could dissolve a significant amount of zamak 3 (96% zinc, 4%
aluminum) in hot mercury.

 Rather than using unfashionable and costly mercury, it might be
better to try to dissolve other metals in affordable and nontoxic
magnesium or zinc, and then use an elevated temperature to vaporize
the magnesium (boiling point: 1091°) or zinc (boiling point: 907°)
from the alloy.

 Water’s vapor pressure at 25° is about 3.2 kPa, 24 mmHg, at which
rate it evaporates fast enough to be useful. Zinc melts at 419.5°, and
its vapor pressure is well approximated by log₁₀Pₘₘ = -7198/T
+9.664 (McKinley & Vance 01954), where T is in K, so it reaches that
pressure at 869 K = 596°. As metal-fabrication processes go, that’s a
pretty moderate temperature, which is why zinc fumes pose such a
risk of metal fume fever. You might want to evaporate off the zinc in
vacuum or under argon or nitrogen. (At 600° you have to use
ammonia to get zinc nitride, so just nitrogen is adequately inert for
this.)

 Unfortunately, there’s no IUPAC solubility series volume on the
solubility of various metals in molten zinc, but there are lots of phase
diagrams for zinc alloys. In particular, molten zinc can dissolve about
10% Cu at 596°, and eutectics and near-eutectics used in soldering
include Sn₉₁Zn₉ (KappAloy9) 199°, Zn₉₅Al₅ 382°, and Cd₈₂.₅Zn₁₇.₅
265°, so molten zinc is evidently capable of dissolving substantial
amounts of aluminum even at much lower temperatures. Below 596°
no other structurally useful metals melt, but metals that melt at lower
temperatures than copper include gold, silver, and of course lead, tin,
and magnesium. So we might reasonably guess that, like copper,
substantial amounts of those metals can dissolve in molten zinc at
596°; a paper suggests it can handle 20 mol% of silver. And in
particular you ought to be able to dissolve bronze in zinc at that
temperature, then evaporate off the zinc, or most of it.

 More excitingly, a calculated phase diagram suggests that zinc
should be able to dissolve about 3 mol% nickel at 600° and about 25
mol% at 873°, and another suggests 2 mol% iron at 600°.

https://en.wikipedia.org/wiki/Zinc_nitride
https://en.wikipedia.org/wiki/Zinc_nitride
https://en.wikipedia.org/wiki/Zinc_nitride
https://www.tf.uni-kiel.de/matwis/amat/iss/kap_6/illustr/i6_2_1.html
https://www.tf.uni-kiel.de/matwis/amat/iss/kap_6/illustr/i6_2_1.html
https://en.wikipedia.org/wiki/Solder_alloys
https://en.wikipedia.org/wiki/Solder_alloys
https://chemistry.fandom.com/wiki/List_of_elements_by_melting_point
https://chemistry.fandom.com/wiki/List_of_elements_by_melting_point
https://www.researchgate.net/figure/Fe-Zn-phase-diagram-for-stable-equilibrium-18-some-parameters-used-in-the-current_fig4_284812804
https://www.researchgate.net/figure/Calculated-Ni-Zn-binary-phase-diagram-using-thermodynamic-parameters-from-Vassilev-et-al_fig2_248129880
https://www.researchgate.net/figure/Fe-Zn-phase-diagram-for-stable-equilibrium-18-some-parameters-used-in-the-current_fig4_284812804

 Nanolaminating to get flaw-insensitive
laminar fillers
 Typically the critical dimension for flaw-insensitivity is a few tens
of nanometers, which is an entirely practical thickness at which to
electroplate. It occurs to me that if you want a lot of
high-aspect-ratio sheets, you could make them out of a metal in the
following way. You start by plating a nanolaminate consisting of
alternating layers of your desired metal and some other metal or
material that is easily etched later, using an etchant that will spare
your desired metal; you might deposit, for example, 20 nm of each
metal. Then you pulverize the nanolaminate (perhaps easiest if you
initially plated it onto a metal where it had terrible adhesion, or onto a
layer of graphite), for example by ball milling, into particles of, say,
1 μm. Then you etch these particles with the etchant and separate the
resulting metal sheets, which are 1 μm × 1 μm × 20 nm in the
example I’ve given.

 If the adhesion between the layers of the nanolaminate were
sufficiently poor, maybe you wouldn’t even need the etching step.

 These high-aspect-ratio flaw-insensitive metal particles are
suitable for use as a functional filler to make an ultrastrong composite
material, whether the binder is an organic polymer, a geopolymer,
waterglass, another metal, or something else.

 Some pairs of metals cannot be plated from the same bath; in that
case you have to move the forming nanolaminate back and forth
between two baths, rinsing it in between. In other cases, you can
make a bath which will plate only one metal at one voltage and a
mixture of two metals at a different voltage. In other cases
(chromium and titanium being notable here) you can grow an anodic
oxide layer by reversing the voltage; this may be sufficiently thick to
etch later but sufficiently thin to permit plating metal on top of it.

 An alternative to moving back and forth between baths is to
consume all the platable metal in one bath, leaving only, say, alkali
metals; then you can inject the new metal directly into the bath.
Indeed, you may be able to “inject” the new metal simply by turning
off the inert cathode and switching to a cathode that will dissolve, or
increasing the voltage on the cathode. By using a thin electrolyte (say,
1 mm) and cathodes even more closely intercalated (say, 0.1 mm,
perhaps foils of two metals stacked alternatingly with dielectric sheets
between them, like a multilayer capacitor) you may be able to switch
back and forth more rapidly between metals than with a rinse tank.

 Another possible alternative separator is to deposit not an anodic
oxide film but the insoluble hydroxide of a metal in solution, such as
magnesium, which will deposit on the cathode, just as metals do (see
Fast electrolytic mineral accretion (seacrete) for digital fabrication? (p.
779)). Magnesium hydroxide in particular is easy to remove with
many acids.

 Topics

• Materials (p. 1138) (59 notes)

• Filled systems (p. 1161) (16 notes)
• Strength of materials (p. 1164) (13 notes)
• Waterglass (p. 1189) (8 notes)
• Anisotropic fillers (p. 1218) (6 notes)
• Solubility (p. 1273) (3 notes)

Photoemissive power
Kragen Javier Sitaker, 02021-12-23 (updated 02021-12-28)
(15 minutes)

 On Earth we make our photovoltaic panels out of semiconductors,
separating the positive and negative charge collection nets with the
depletion region of a reverse-biased pn semiconductor junction, but in
space we could use photoemission across a vacuum gap; this will
probably give less power per unit area but more power per unit mass
than silicon solar cells, but will be thoroughly dominated by thin-film
cells.

 I got this idea from a discussion with Luke Parrish, who suggested
that for space-based PV panels you could just use vacuum, and
contributed several other key ideas to what follows.

Basic design

 We were discussing aerographite, which has recently been mooted
as a possible solar sail material with 1 kPa UTS and 180 g/m³. As it
happens, aerographite is fairly conductive (0.2 S/m at that density).

 You could make a large photoemissive solar panel, like old
vacuum-tube electric eyes but backward-biased. WP claims that
cesium on a silver oxide support gives photoemissivity down into the
infrared, so you could plate such a mixture on the sunward side of the
aerographite support to make a photoemissive cathode, potentially a
gigantic one; photon energy beyond what is needed to overcome the
work function becomes electron kinetic energy, which can push the
electron uphill against a potential difference to an electron collector
grid anode, which needs to be porous, to let light through, and spaced
far enough away from the cathode with insulating supports to prevent
field emission from stealing the electrons back to the cathode. The
spacing can be any distance that is small relative to the mean free path
in the vacuum medium.

The anode grid

 The spaces in the electron collector grid through which light comes
will also permit the loss of some photoelectrons, perhaps the majority.
Assuming no charge transfer to the solar wind, the lost electrons will
eventually fall back to the positively-charged PV panel, some striking
the cathode and others the anode. If it’s desired to maximize
efficiency per area rather than efficiency per mass, you can extend the
grid sunward into a honeycomb which lets almost all of the light
through, while capturing all of the electrons, except for those emitted
at a very small angle to the incoming light. However, extending the
grid “vertically” in this way runs into diminishing returns very
quickly; to maximize the electrons captured per unit mass of panel,
the thickness should be only a little thicker than the width of the
“wires” in the grid in the “horizontal” direction.

 This means that the mesh of the grid should be as fine as possible,
but its holes still need to be large relative to the wavelength of light
and relative to the thickness of its “wires”. I suspect that hole

https://en.wikipedia.org/wiki/Aerographite
https://en.wikipedia.org/wiki/Photoelectric_effect
https://en.wikipedia.org/wiki/Work_function#Work_function_of_cold_electron_collector
https://en.wikipedia.org/wiki/Phototube
https://en.wikipedia.org/wiki/Photon_energy

diameter on the order of 1–10 μm will be optimal, with “wires” on
the order of 0.1–1 μm “horizontally” and 0.1–3 μm “vertically”. An
omnitriangulated mesh would be optimal for rigidity; a hexagonal
mesh would be optimal for compliance and wire-to-hole ratio; a
square mesh is in between these extremes.

 This works out to be on the order of 1 g/m² for the mesh if it is
made of something like aluminum (2 · 0.3 μm · 1 μm · 3 μm / (3 μm)²
· (3 g/cc) = 0.6 g/m²), corresponding to the areal density of a uniform
sheet of about 100 nm. These dimensions are too small to make use of
the lower density of aerographite itself, because those result from
heterogeneity at larger scales than that.

The cathode structure

 If the cathode has 50 nm of low-work-function photoemissive
material plated onto the front of it, which I think is realistic, backed
by the low-density aerographite mentioned above with an areal
density of ½ g/m², it would be about 2.8 mm in average thickness.
You would of course want to give both this cathode and the anode
thicker and thinner parts, like the veins of a dicotyledon leaf or the
threads of ripstop nylon, to reduce their electrical resistance and
mechanical compliance.

 It may be important to keep the electrodes cool to avoid loss of the
electrodes from the anode mesh. Using a high-work-function surface
for the anode and the non-sunward side of the cathode may be
helpful to reduce such losses. Also, if you’re using volatile metals like
cesium, you need to keep the electrode cool or it will evaporate off
into space.

Areal density: 2 g/m²

 This adds up to an areal density for our orbiting solar panels on the
order of 2 g/m² or 2 tonnes per km², roughly a hundred times lighter
than conventional silicon solar panels at 100 μm thickness; typically in
space multijunction cells with efficiency around 30% are used.

Calculating efficiency

 A km² of sunlight is about 1400 megawatts at Earth’s orbital
distance, or much more if you’re closer to the sun, but how much of
that can we really gather?

 This depends on the quantum efficiency of photoemission from the
cathode (what fraction of photons eject an electron) and the reverse
bias voltage we demand the electrons fight against. Photons whose
energy is precisely the work function plus the bias voltage are
converted with 100% efficiency; photons at any lower energy are
entirely wasted; any excess photon energy over that minimum is
wasted. (We could imagine multiple cleverly shaped anodes whose
electric fields guide most electrons to the highest-energy anode they’d
be able to reach, but let’s assume we don’t do that.)

Bias voltage limits spectral efficiency to 33%

 So, too high a bias voltage will produce zero current, but lowering
the bias voltage will eventually produce insufficient additional current
to make up for the energy loss per electron; there’s some voltage at

https://commons.wikimedia.org/wiki/File:CellPVeff(rev210104).png
https://en.wikipedia.org/wiki/Photocathode#Quantum_Efficiency_(QE)

which we see the maximum power. (This closely corresponds to
spectrum losses in conventional PV panels.) This MPPT bias voltage
will be a little lower than the energy of the average photon, which is
probably about 700 nm; h c/700 nm = 1.2398 eV/0.7 ≈ 1.8 eV, so
probably the right bias voltage is on the order of 1.8 V, which is a
conveniently tractable voltage; the Shockley-Queisser limit is an
efficiency of 33% at a semiconductor bandgap of 1.34 eV, which I
think corresponds to a bias voltage of 1.34 V in this photoemissive
panel.

 (Note: the above is incorrect, and energy efficiency calculations
hereafter erroneously assume that the bias voltage between the
electrodes is 1.8 V, which is wrong. 1.34 V or 1.8 V is the amount of
energy per electron lost in overcoming the work function of the
photocathode material; the energy remaining to be harvested at the
anode is whatever the photon energy is, minus that work function. So
the right bias voltage might be 0.5 V or 1 V or something. I should
fix this but I don’t have time this year. It means that the main
efficiency conclusions below are too high by some unknown factor
probably between 1 and 4.)

 I think the recombination losses found in semiconductor PV cells
do not have much of an analogue in this device; the space charge is
entirely negative, and the only way electrons can “recombine” after
leaving the cathode is to fall back onto it, either because they lacked
the energy to reach the anode or because they went through holes in
the anode twice. Presumably there is at least some probability that
they will be “emitted” into the cathode material, though, where they
will immediately “recombine”.

Quantum efficiency can be around 15%

 So, what about the quantum efficiency? Evidently in silicon PV
it’s around 0.8, but these photoemissive panels might be much worse.
If their quantum efficiency were, say, 10⁻⁶, they would produce less
electrical energy per mass than conventional silicon cells, rendering
them useless. Wikipedia says that phototubes typically produce
microamperes, and they typically have a cathode area around 10 cm²
and are typically illuminated by an infrared beam that can’t be much
more than 10 W/m² (or we’d feel it on our skin and possibly damage
our eyes), which puts a lower bound on their QE of about 10 cm² ·
10 W/m² / 1.7 eV / (μA/e) ≈ 1/6000. At this QE we would expect
33% · 1400 W/m² / 6000 ≈ 77 mW/m², which is high enough to be
useful but not high enough to compete with conventional solar cells;
dividing by the estimate above of 2 g/m², we get 39 mW/g, which is
much lower than the areal efficiency of conventional multijunction
silicon solar cells, 30% · 1400 W / m² / (230 g/m²) ≈ 1800 mW/g, 46
times higher.

 So this approach can be mass-competitive with multijunction
silicon solar cells if the photoemissive cathode quantum efficiency is
more than about 1/130, i.e., 0.8%.

 In fact the cesium-antimony photocathodes used in the first
commercially successful photomultiplier tubes have a quantum
efficiency of 12% at 400 nm, though the quantum efficiency of earlier
silver-oxide-cesium photocathodes peaked at 0.4% at 800 nm. This
information seems to come from p. 4 of the Photomultiplier

https://en.wikipedia.org/wiki/Sunlight#Spectral_composition_of_sunlight_at_Earth's_surface
https://en.wikipedia.org/wiki/Sunlight#Spectral_composition_of_sunlight_at_Earth's_surface
https://en.wikipedia.org/wiki/Shockley�Queisser_limit
https://en.wikipedia.org/wiki/Photomultiplier_tube#Improved_photocathodes

Handbook; on p. 11 it says, “on the best sensitized commercial
photosurfaces, the maximum yield reported is as high as one electron
for three light quanta,” which would work out to 33% QE. This
would give an overall solar cell efficiency of 33% · 33% = 11%, but
that’s probably for a single wavelength; a few of the QEs of different
materials plotted on p. 15 are above 10% at 555 nm, and some, like
Na₂KSb, are above 20% at 450 nm, so maybe 33% · 15% ≈ 5% is more
realistic. In Table I on p. 16, Na₂KSb’s responsivity to tungsten light
at 2856 K is given as 43 μA/lumen, while K₂CsSb (nominally 33%
QE) is given as 90 μA/lumen. Nominally lower QE materials with
longer-wavelength peaks are even higher: GaAs:Cs-O is said to have
720 μA/lumen despite only a 12% QE due to an 800-nm response
peak, and semitransparent Na₂KSb:Cs on a reflecting substrate is
300 μA/lumen with 16% QE with a 530-nm response peak, which
matches sunlight better than it does a tungsten lightbulb. Presumably
these are all in a forward-biased condition, as they are used in PMTs,
not back-biased, but hopefully the correction is small.

 Rechecking the calculation from a different angle, 1000 W/m² is
about 128000 lux, so the above-the-atmosphere 1400 W/m² should
be about 180 klux = 180 klm/m², which at 300 μA/lm would be
54 A/m²; at 1.8 V that would be 97 W/m², which is 6.9% efficiency,
close to the 6% I estimated above.

 So it seems likely that, using new ultralight electrode materials like
aerographite, coated with modern (semiconducting?) multialkali
photocathode materials, this photoemissive generator can probably
beat silicon PV in power per unit mass by a factor of, say, 20 or so
(50 W/g instead of 1.8 W/g), but it will be five times worse in power
per unit area (6% efficiency rather than 30%).

 Thin-film semiconductor PV cells like CIGS can probably beat it
in power per unit mass, too.

 Moreover, the Photomultiplier Handbook says, “Semiconductors,
therefore, are superior to metals in all three steps of the photoemissive
process: they absorb a much higher fraction of the incident light,
photoelectrons can escape from a greater distance from the vacuum
interface, and the threshold wavelengths can be made longer than
those of a metal. Thus, it is not surprising that all photoemitters of
practical importance are semiconducting materials.” So in a sense this
gadget is a semiconductor thin film solar cell.

 10.1088/1361-648X/aa79bd “Super low work function of
alkali-metal-adsorbed transition metal dichalcogenides” claims work
functions as low as 0.7 V with a potassium film on a strained tungsten
telluride backing.

 Interestingly, the “semitransparent” photocathode materials are
“deposited on a transparent medium,” with typical film thicknesses
around 30 nm, so as to emit electrons in the opposite direction from
the incident light. That suggests the possibility of reversing the
positions of the cathode and anode and making the anode opaque, so
there is no question of electrons escaping through holes in it.
Conceivably supporting the photocathode thin film in a vacuum on a
sparse grid like the anode grid described earlier, covering what would
be holes in the grid, would get photoelectrons coming out both sides,
so that by placing anodes on both sides you could increase the

https://psec.uchicago.edu/links/Photomultiplier_Handbook.pdf
https://psec.uchicago.edu/links/Photomultiplier_Handbook.pdf

quantum efficiency, perhaps doubling it. That might boost you to
14% efficiency or so, but still not enough to compete with existing
CIGS and similar solid-state thin-film PV cells.

Cathode meshes

 Most of the mass of the cathode in the above setup comes from the
thin-film cathode (and then I just calculated on the assumption that
the anode mesh would have comparable mass). An interesting way to
reduce the mass further is to use a photocathode mesh or foam rather
than a solid layer. A mesh with holes significantly smaller than the
wavelength of light can be essentially opaque to the light if it’s
sufficiently conductive, so you could use a photocathode mesh with
100-nm-wide pores separated by 1-nm-wide “wires”, thus reducing
the necessary areal density of the cathode by 98%.

Existing systems

 Parrish commented that existing systems are about an order of
magnitude heavier than the number I was using above as a
silicon-solar-cell comparison:
The ISS uses 8 solar array wings massing about 1 ton each that get 84–120kW
average or up to 240 in direct sunlight. So about 30W/kg in direct sunlight.
We’re talking 3 orders of magnitude improvement.

 Apparently photoelectric solar power is a thing, and I should read
about how well it works, but I don’t have time this year.

Topics

• Physics (p. 1157) (18 notes)
• Energy (p. 1170) (12 notes)
• Solar (p. 1203) (6 notes)
• The future (p. 1220) (5 notes)
• Space (p. 1323) (2 notes)
• Photoemission (p. 1341) (2 notes)

https://en.wikipedia.org/wiki/Electrical_system_of_the_International_Space_Station
https://www.sciencedirect.com/science/article/pii/S2542435117301782

Toggling eccentrics for removing
preload from spring clamps
Kragen Javier Sitaker, 02021-12-28 (updated 02021-12-31)
(22 minutes)

 Watched an Abom79 video I’d seen before tonight which featured
a parting blade with replaceable inserts. A parting blade doesn’t have
a lot of space for holding down an insert; you can’t put a big screw in
there, for example. So the insert was wedged into a sort of two-tine
fork, which flexes elastically to admit it.

The parting-blade setup

 This means the force clamping the insert into the blade,
perpendicular to the friction surface, is the same force you need to
apply to force the tines apart to insert or remove the insert. To supply
this force, there are round holes in the two tines, and an opening tool
is supplied, consisting of a spacer between two parallel dowel pins that
fit into the holes. One of the dowel pins is machined on an eccentric
with a handle to rotate it relative to the spacer, moving it nearer to
and farther from the other dowel pin, thus forcing the tines open. It’s
sort of similar to circlip pliers in how it engages with the fork, and in
the fact that it consists of three revolute joints on parallel axes (one
between the two links of the tool, the other two connecting the tool
to the workpiece), but it has much greater mechanical advantage.

Why this is awesome

 This is a really appealing concept for a couple of reasons.

 First, if we disregard friction and the compliance of the tool, the
mechanical advantage is unlimited; the ratio between the length of
the handle and the center-to-center distance of the eccentric provides
the mechanical advantage, and the center-to-center distance
(eccentric axis offset distance) can be any value down to zero. With
an ordinary lever, to get a very short lever arm, you also have to make
the lever arm thin, which limits the load it can take; no such limit
exists with this eccentric lever, because the eccentric pin can be as
large as it needs to be to resist the shear load (and, in the case where
the hole is deep, bending loads).

 Friction is still an issue: the surface of the dowel pin rotating half a
turn in the hole creates a frictional moment opposing the action of the
tool, whose lever arm is the radius of the pin, which must grow
according to the square root of the fork-opening force in order for the
pin not to shear off. So you have an opposing moment of F3/2, which
in the usual case will be about as big as the work you’re actually
doing, since the radius of the pin is typically a bit larger than the
eccentric axis offset distance, and the coefficient of friction is typically
a few times smaller than 1. Friction inside the tool may or may not be
reduced with ball bearings or similar, but if not, it’s an additional
comparable loss. Such losses may be desirable in this context to
prevent back-drivability, but they limit its applicability.

https://youtu.be/PbFLW0_HIAU

 Second, when the fork opens and closes, assuming parallel planar
clamping surfaces, it doesn’t have any tendency to screw with the
position of the insert it’s clamping down on, except in the direction of
clamping and the two directions of rotation whose axes aren’t parallel
to the direction of clamping. So it restrains the insert in six degrees of
freedom, but purely with friction in three of those degrees, permitting
any position in those three degrees. This is a nice improvement over
things like jam nuts, which have a tendency to put slightly askew the
position you were intending to hold steady.

 Third, the mechanical advantage becomes infinite as the eccentric
rotates to the position where the dowel pins are farthest apart, in the
usual toggle-mechanism way, because the lever arm becomes zero.

 We can ask, what is the maximum clamping force we can apply
with this mechanism? There’s no inherent limit coming from the
applied force (we can make the lever you rotate arbitrarily long, so
given a fixed point, you can move the Earth with an arbitrarily small
force) but there might be a limit coming from the energy, once
friction is taken into account.

 Also, the compliance of the thing you are clamping may itself
provide a minimal energy cost: if under 10kN it elastically compresses
0.1 mm, you need to open the jaws by more than 0.1 mm in order to
insert it in its uncompressed state, applying something more than
10kN in the process, probably only a little bit more if the spring clamp
(which you are expanding) is more compliant than the thing being
clamped. So that would require about a joule, plus frictional losses.

 (Many cheap digital fabrication processes have imprecision on the
order of 0.1 mm: laser-cutting MDF, laser-cutting acrylic,
laser-cutting steel, CNC plasma tables, CNC oxy cutting tables,
RepRap FDM, etc. You need to be able to flex the spring by more
than the fabrication error or in some cases you’ll get no clamping and
in other cases you won’t be able to insert the thing to be clamped.)

 The compliance of the elastic part of the setup (the workpiece, in
this case the clamp) can be reduced almost arbitrarily, as long as the
compliance of the tool is smaller or at least not too much greater.
Given a nominal Young’s modulus of 200 GPa for steel, and
considering a 10 mm distance between the points where force is being
applied, we can get a compliance of 5 microns per newton stretching a
100-micron-square steel wire, or 50 nm/N stretching (or
compressing) a 1-mm-square steel rod, or 500 pm/N stretching (or
compressing) something that averages out to a 10 mm block of steel.
At this last compliance, 10kN would result in a 5 micron elongation,
which is still plenty to switch between contact and non-contact
regimes for things like electrical conductivity and so might be enough
to clamp and unclamp something. As with brakes and clutches, the
smaller the compliance, the smaller the energy that is needed to reach
a given clamping force and thus a given stiction force. In this
example, reaching 10kN of clamping force would only require 50 mJ
plus frictional losses.

 (Of course in the geometry described earlier the tension path
between the prongs was not straight, increasing compliance, but there
are rivet-like clamping geometries where the tension path is straight.)

 Larger compliance may be desirable for resistance to shock loads: if

the energy barrier to unclamping is 100 joules, shocks are much less
likely to result in slippage than if it is 0.05 joules.

 In cases where the elastic piece doesn’t have to be planar, the tool
can be simplified to a single rigid body consisting of a handle
perpendicular to a shaft consisting of two cylindrical sections with
parallel axes. The shaft is inserted through a slot in the elastic piece
into a round hole in another part of the elastic piece, and rotating the
shaft with the handle then moves the round hole perpendicular to the
length of the slot and to the shaft’s axis of rotation. This could
reasonably be used for things like fasteners, though in the case of one
tool to operate many fasteners, it might be cheaper to make the
fasteners as simple as possible (like circlips) and put any extra
complexity in the tool.

 To reduce frictional losses, the actual holes can be mounted in
rotating flexures, or the eccentric pin in the tool can be held in a pair
of bearings to reduce friction. These bearings are mounted
eccentrically inside a larger shaft mounted on its own bearings which
is rotated by the handle. It’s possible but maybe not practical to avoid
the use of large bearings in this case: the larger shaft can neck down
to fit into two small bearings at the non-workpiece end, which are
spaced far enough apart to handle the resulting moment.

 Another way to reduce frictional losses is to provide some leverage
within the flexing workpiece itself. In the case of a fork, you might
clamp the workpiece half as far from the bifurcation as the distance
from the bifurcation to the holes for the tool. Then the tool only has
to apply half as much force as is applied to the thing being clamped,
and the tool rotation experiences about half as much friction.

How big are those frictional losses?

 Suppose that we are applying, again, 10kN of force with the tool,
over a whole half turn, using a handle which cannot be more than 1 m
long (the example in the video was about 150 mm long) and to which
we can only apply 200 N of force. Perhaps the eccentric pin is made
of a bearing bronze such as SAE 660 tin bronze. Its yield tensile
strength is given as 125 MPa; its shear strength might be 0.6 of that,
75 MPa. To fail under 10kN of load, then, it needs to be 13 mm in
diameter, giving a cross-sectional area of 132 mm2; 20 mm diameter
would give a good safety factor. The eccentric axis distance could be
as large as 20 mm, or actually even greater since when the lever arm is
at its largest, the clip isn’t fully extended yet, so the force is not at its
largest. If it’s 20 mm, we can use it to deform the clip by 40 mm, for
a total useful work of 200 J.

 That bronze is rated as having a frictional coefficient of 0.10,
presumably on steel (though in 02001 Purcek et al. measured 0.68
when dry, so maybe 0.10 is with an oil film), so the pin rotating in the
workpiece hole ramps up to 1 kN of friction. Half a turn is 62 mm, so
we have 31 J of frictional losses rotating in the workpiece, and
probably another 31 J of frictional losses where the shaft rotates inside
the tool, for a total of 62 J losses, 76% efficiency. Ball bearings or
similar could reduce these losses by about an order of magnitude, so
they are more like 2% instead of 24%.

 Note that this means you have to apply more force to the handle

http://www.matweb.com/search/datasheet.aspx?matguid=b673f55f412f40ae9ee03e9986747016
https://www.researchgate.net/publication/222064578_Dry_sliding_friction_and_wear_properties_of_zinc-based_alloys
https://www.researchgate.net/publication/222064578_Dry_sliding_friction_and_wear_properties_of_zinc-based_alloys

than the 200 N I was calculating with. More like 262 N. Except that
the force is going up as the lever arm goes down; at 45 degrees you
have 70.7% of the force, 7 kN, and also 70.7% of the lever arm, 14
mm, so only half that 200 N, 100 N, plus 70.7% of the frictional force,
another 44 N at the handle, for a total of 144 N. A little lower, at 30
degrees, you have half the force, 5 kN, and 87% of the lever arm, so
43% of the 200 N plus 50% of the frictional force. I should plot this I
guess.

 This bronze is also rated as having 315 MPa compressive strength,
so the hole in which that pin is turning would need to be at least 1.6
mm deep to avoid damaging the surface, maybe more like 3 mm deep.

 This is a fairly terrifying tool configuration, though, sort of like
garage-door-spring winding but at lower energy and much higher
force. If you lose your grip on the handle, it is going to acquire 138 J
of kinetic energy.

 Suppose we are stretching a less compliant workpiece, so we only
need to deform it 4 mm. If we use the same tool, we get about the
same efficiency (a little better, actually, since much of the frictional
loss is in parts of the circle that do very little real work) but we could
alternatively redesign the tool to have an eccentric axis offset of only,
say, 2 mm. This would reduce the moment from the workpiece from
200 N m to only 20 N m, but we still have 20 N m of frictional loads
because the pin is still 20 mm in diameter. This enables us to reduce
the handle length to 200 mm, to which we apply the same 200 N, but
now at only 50% efficiency. This tool is no longer backdrivable by the
workpiece’s elasticity, since the moment from the workpiece is equal
to the moment from friction. (Even the larger configuration wasn’t
backdrivable when fully toggled, because the frictional forces are at
maximum and the lever arm is zero.)

 We could maybe reduce the frictional losses further by using a
mostly hardened steel pin with just a surface of bronze on it, enabling
us to reduce the pin diameter by a factor of 2 or more without losing
shear strength. Tool steels normally have (tensile yield) strengths of 1
GPa or higher.

 In the case where we start almost “toggled” — in the sense that the
eccentric pin is nearly at its furthest distance from the other pin when
you insert the tool into the holes — the mechanical advantage is very
much greater, being limited only by the compliance of the tool.

Variations

 A couple of slight variations on the tool configuration are worth
mentioning. Shear and flexural loading on the pins can be eliminated
if they are only half cylinders, with the pivoting bushing inside of the
eccentric pin, which can be longer than the workpiece; this makes the
loading on the pins entirely compressive, but requires the “holes” in
the workpiece to be two circular notches facing each other, between
which the tool is inserted. This permits a much smaller hole radius
and thus dramatically reduces frictional moments and thus losses. In
this configuration it is advisable for the handle to be roughly
perpendicular to the line between the two notches in the workpiece,
and to collide with the other pin when rotated just past the toggled

position in order to lock the pins ε less than their furthest distance
apart.

 Such a tool can be cut out of a thick sheet in a single piece with
2-D cutting processes; it consists of two quasi-rigid parts (the handle
and eccentric pin being one part, the other being either the
Minkowski sum of a circle and a line, or a rhombus with rounded
corners) which meet in a cylindrical sliding contact, held in roughly
the right position during insertion by a compliant spring that runs
along the handle, but which exerts forces that are insignificant
compared to the forces encountered during use.

 The sheet needs to be thick to prevent it from twisting out of plane.

 This pivoting bushing can be split in two to allow the workpiece
(or what it is clamping) to protrude past the notches, reintroducing
half the shear loading but not the flexural load.

 If such a tool is used to push apart jaws on one side of a flexural
pivot, those jaws can pivot to come closer together on the other side,
with potentially some additional mechanical advantage; when the
tool is removed, they will spring back apart, at which point they can
bear on the inside of one or more holes, forming a fastener.
(However, you need some way to hold the fastener in place as you’re
applying the tool, or it will just rotate along with the tool instead of
flexing; see below.) Such a fastener can also be fabricated by 2-D
cutting, in which case the hole or holes can be just a slot. If the hole is
tapered to widen away from the surface, withdrawing the fastener
from the hole will require adding energy to the flexural pivot, so
vibration will tend to seat the fastener deeper in the hole, similar to
flexural clips and very much contrary to the situation with screw
fasteners.

 A fastener containing a double flexural pivot can be used in the
same way to convert the opening of jaws, on the side where the tool is
inserted, into compression in the middle of the piece, into the opening
of another set of jaws on the opposite side, with potentially another
layer of mechanical advantage, permitting clamping with truly
enormous forces.

 (And, of course, the full range of clip-connector techniques is
available for these jaws: they can be smooth, serrated, or hooked,
potentially mating with matching features on the part they grasp.)

 These pivoting-flexure connectors allow the same tool to be used
for a variety of sizes of fastener, because the jaw spacing on the tool
side of the fastener need not be the same as the jaw spacing on the
clamping or expanding side.

 In cases where both locating and friction are desired, because the
fastener does not have to rotate, it can have a second tab that slips into
a second hole or slot in the workpieces to locate them relative to one
another, thus unifying in a single part functions similar to those of a
screw and a dowel pin. If this second tab is longer than the flexural
parts, it can be inserted before applying force to the tool, thus holding
the fastener in place while force is being applied.

 If the eccentric pin on the tool is replaced by a concave partial
cylindrical bearing surface, in which a convex cylindrical part of the

flexible workpiece can slide to form a revolute joint (or, really, a
cylindrical joint) then the tool can be used to compress the workpiece
rather than to expand it. The effective lever arm is still the distance
between the center of this cylindrical surface and that of the
cylindrical bearing surface on which the other part of the tool pivots.

 If the fastener includes a parallel-movement flexure, a single tool
action can engage many hooks, inserted into many slots, in a single
motion. This is probably not useful for clamping as such (the
clamping load would be distributed among the slots, and in an
unpredictable way unless the fabrication tolerances are much smaller
than the parts’ compliance), but with hook fasteners it allows you to
“stitch” two or more parts together along a whole line in a single
action. Such a long fastener allows you the leverage to prevent the
fastener from rotating along with the tool just by holding it in your
other hand.

Contrast with bolts

 You need to rotate the bolt through the nut through some 6 turns
against the thread friction, which ought to be negligible but usually is
on the order of a tenth of the tightening load. Then you crank down
on the bolt to preload it in tension; for a 10-mm-head bolt that
torque might be 25 foot-pounds or 30 newton meters, applied over
maybe a third of a turn, or about 30 J (would be 60 J but the torque
goes up almost linearly as you snug it up). Maybe ⅓ of that energy
goes into the elastic clamping energy, 10 J; the other ⅔ is lost in
friction, 20 J, on top of the ≈3 N m times six turns you lost in just
getting the bolt into the nut, which is another 110 J. So you had to
spend 140 J and six turns of the wrench to get 10 J of elastic clamping
energy, which might be the same 10 kN we were calculating with
above. Six turns of the wrench is a real PITA in a confined space,
because you have to slip the wrench on and off of the head between
12 times and 72 times.

 And then only stiction stabilizes the connection; enough vibration
will loosen it unless you apply loctite or lockwire or something. And
manufacturing the threads requires a lathe, taps and dies, or a
thread-rolling machine, rather than a simple digital 2-D cutting setup.

Topics

• Contrivances (p. 1143) (45 notes)
• Digital fabrication (p. 1149) (31 notes)
• Physics (p. 1157) (18 notes)
• Mechanical (p. 1159) (17 notes)
• Hand tools (p. 1197) (7 notes)
• 2-D cutting (p. 1201) (7 notes)
• Flexures (p. 1232) (5 notes)
• Spreadtools (p. 1321) (2 notes)

Safe decentralized cloud storage
Kragen Javier Sitaker, 02021-12-30 (10 minutes)

 How could you safely store files “in the cloud”? How can a “cloud
storage” system work? The idea is that you (“the speaker”) have a
large file and you would like storage servers (“providers”) to be
incentivized to store it for you so you can retrieve it in the future.
Assume for the time being that the file is private, not public.

 (This is basically the problem that MojoNation, MNet, Filecoin,
etc., attempt to solve, and it’s possible that their solutions are better
than what I propose here. IIRC Tahoe didn’t try to solve the
incentive problem, punting it to social “friendnet” considerations,
which ultimately failed in almost all cases.)

 Of course, you could just send a hosting service some Mastercard
payments or bitcoin every month, as long as the file remains
accessible. This has a few limitations:

• A malicious hosting service can see the contents of your private file.
• Or change them, which might be worse.
• Or just delete the file, which might even happen by accident.
• Setting it up is hard to automate.
• It stops working when you die.

 You can solve problem #1 by encrypting the file and storing the
keys locally, and problem #2 by computing a secure hash of the file
which you store locally. If you want to be able to retrieve small
pieces of the file, instead of just storing a single secure hash, you need
to store the hash of a Merkle tree of the file, as some modern hashes
like BLAKE3 do implicitly.

 A particularly simple way to build such a Merkle tree is by dividing
the file into pieces of, say, 64KiB, and concatenating the hashes of the
pieces to form a piece table file. Files up to 64KiB will have a
single-entry table (32 bytes with SHA-256), which can be stored
directly; larger files would require a piece table to be stored
somewhere, such as in the cloud storage system itself. With the given
example parameters, a single-piece piece table would handle files up
to 128 MiB, while you’d also need to store a piece table for your piece
table for files up to 256 GiB, while three levels are needed for files up
to 512 TiB, etc.

 Solving problem #3 is a little more difficult; it requires
redundancy among different hosting providers who don’t know about
each other, which is potentially expensive because you need to store
M copies of the file, which costs M times as much. N-of-M Shamir
secret sharing gives you a less expensive way to do this and also solves
problem #1, again, as long as there’s no way for an attacker to find
out which hosting providers they are. Then you need to store a
Merkle tree of each of the M shares so they can be verified
independently. And you need to periodically test some randomly
chosen pieces of each share to ensure it hasn’t been lost (“auditing”).

 So far, as I understand it, this is more or less how modern cloud
backup systems like Borg, Restic, kup, rdedup, and perkeep work.

 If a malicious provider wants to get paid but not perform the
service, they can cheat by the following approach: when asked for
piece #42 of a file, retrieve piece #42 from N other providers,
compute piece #42 of the original file, and then recompute piece #42
of the share they were asked to store. This is not a problem if they
have no way to find out about the other providers, but that would
impede extending the scheme to public files, because if a file is public
then anyone can find out what its pieces are and retrieve them. A
different defense against this attack is to encrypt each share before
sending it to the provider; then they cannot recompute their piece
without the encryption key. By using public-key cryptography, even
clients who can decrypt the piece using the public key will be unable
to recompute it, which would require the private key.

 Extending the system to public files, however, makes it easier to
censor: a would-be censor can repeatedly retrieve a public file while
observing the network in various ways to find out who the providers
of the file are, then attack those providers, perhaps presenting them
with ultimatums to delete the file to end the attack. In a simple
example where the providers are directly contacted over IP, they can
observe which IP addresses they are talking to and traceroute those
addresses, an attack which can be stymied by putting the providers on
Tor onion services. But even passive traffic analysis (in the time
domain, the frequency domain, a wavelet domain, etc.) is probably
sufficient to unmask Tor onion services, particularly in the presence
of observable network outages, which will tend to increase the latency
of particular providers or even knock them offline. Active traffic
analysis, in which streams of artificial traffic are used to artificially
alter network latency and loss, is even more powerful. High-latency
networks like uucp, Fidonet, and the old cypherpunks remailers,
particularly with randomized rendezvous times, are one defense that
reduces the information leakage to traffic-analysis attackers;
constant-bandwidth mixnets like the old ISDN mix proposal are
another.

 Sybil problems are also important for #3: if all your providers are
in Amazon’s us-east-1 data center, that’s really only a single provider
with uncountable faces, because when that data center goes offline, all
the providers disappear at once. I don’t know how to really solve that
problem; the best attack on it so far seems to be Satoshi’s proof of
work, and that’s turned out not to be as watertight as Satoshi had
hoped. (Centralized identity systems like government IDs are often
suggested to solve Sybil problems, but those don’t help with the
problem of many distinct real persons hosting their storage server in
us-east-1.) Spreading across many providers will tend to diminish it,
which requires automation, bringing us to problem #4.

 Problem #4 is partly a political problem rather than a technical
one: censorship policies, especially policies for liability for
distributing forbidden information, tend to disincentivize automated
data preservation systems. Similarly, repudiable payment systems like
Paypal and Mastercard impose counterparty risk on hosting providers:
a customer can revoke payment for service they’ve already received, a
problem solved by Bitcoin and similar cryptocurrencies.

 Problem #5 is the trickiest: it’s an incentive-design problem. You
need to delegate the auditing function to some sort of third party that

will probably survive your death. Such systems are rife with
principal–agent problems:

• If the auditor simply has custody of money they disburse, they have
an incentive to just take the money and run, particularly if they
suspect the principal has died and so no further money will be
forthcoming.
• If the auditor can only disburse money to predetermined providers,
they have an incentive to collude with one of the providers to falsely
report that that provider is okay, but all the others are returning no
data or wrong data. Then the auditor and the fraudulent provider can
split their winnings.
• If the auditor gets paid for producing auditing reports, they have an
incentive to produce auditing reports without doing any auditing,
since doing the auditing is, if not very expensive, at least not cost-free.

• If the auditor is itself being cross-checked against other auditors, the
various auditors have an incentive to become non-anonymous to each
other and collude to behave as a single auditor.
• If the providers can somehow predict or influence the auditor’s
choice of pieces to audit, perhaps without the auditor’s knowledge,
they can retain only the pieces that will be audited.

 If the auditor can be trusted by the provider as well as the speaker,
a system becomes possible where the provider posts bonds that are
forfeit if it fails auditing. This way, speakers can choose to use
providers who stand to lose more if they fail an audit, perhaps long
after the speaker’s death.

 Two ways of cross-checking auditors are to have multiple auditors
performing the same audit, who ought to get the same result, or to
include “dummy providers” who will intentionally return no data or
bad data for certain nonexistent files. If the auditor cannot determine
whether a provider is a real provider or a dummy provider, false
auditing results can be detected.

 Who audits the auditors? Szabo’s “property club” approach
suggests using a quorum of auditors who can vote dishonest auditors
off the island. Alternatively, for public databases (which are the case
we most care about after the speaker’s death), micropayments can
flow from readers of a database to the auditors and the providers; if a
database stops working reliably, the auditors can anticipate that
readers will stop paying.

Topics

• Programming (p. 1141) (49 notes)
• Systems architecture (p. 1205) (6 notes)
• Protocols (p. 1206) (6 notes)
• Security (p. 1224) (5 notes)
• Incentives (p. 1230) (5 notes)
• Politics (p. 1279) (3 notes)
• Decentralization (p. 1374) (2 notes)
• Censorship

Notes concerning “Materials”

• Duplicating Durham’s Rock-Hard Putty (p. 79) 02021-01-22
(updated 02021-01-27) (1 minute)
• The use of silver in solar cells (p. 112) 02021-02-02 (updated
02021-09-11) (8 minutes)
• A boiler for submillisecond steam pulses (p. 361) 02021-04-28
(updated 02021-12-30) (10 minutes)
• Thixotropic electrodeposition (p. 372) 02021-05-04 (updated
02021-12-31) (2 minutes)
• Precisely measuring out particulates with a trickler (p. 384)
02021-05-09 (updated 02021-12-30) (17 minutes)
• 3-D printing in carbohydrates (p. 393) 02021-05-16 (updated
02021-12-30) (10 minutes)
• Clay-filled PLA filament for firing to ceramic (p. 396) 02021-05-17
(updated 02021-12-30) (1 minute)
• Multicolor filament (p. 397) 02021-05-17 (updated 02021-12-30)
(5 minutes)
• Acicular low binder pastes (p. 399) 02021-05-19 (updated
02021-12-30) (1 minute)
• Selectively curing one-component silicone by injecting water (p.
408) 02021-05-19 (updated 02021-12-30) (2 minutes)
• Metal welding fuel (p. 411) 02021-05-23 (updated 02021-12-30)
(6 minutes)
• Ghetto electrical discharge machining (EDM) (p. 423) 02021-05-31
(updated 02021-12-30) (5 minutes)
• Verstickulite (p. 457) 02021-06-23 (updated 02021-07-27)
(3 minutes)
• More cements (p. 466) 02021-06-26 (updated 02021-08-15)
(5 minutes)
• Can you use stabilized cubic zirconia as an ECM cathode in molten
salt? (p. 475) 02021-06-27 (updated 02021-12-30) (3 minutes)
• Electrolytic glass machining (p. 477) 02021-06-28 (updated
02021-12-30) (6 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Glass powder-bed 3-D printing (p. 490) 02021-06-29 (updated
02021-12-30) (20 minutes)
• Sulfur jet metal cutting (p. 504) 02021-06-30 (updated
02021-12-30) (6 minutes)
• Stochastically generated self-amalgamating tape variations for
composite fabrication (p. 510) 02021-07-02 (updated 02021-12-30)
(26 minutes)
• Spin-coating clay-filled plastics to make composites with high
anisotropic filler loadings (p. 521) 02021-07-02 (updated
02021-12-30) (4 minutes)
• ECM for machining nonmetals? (p. 523) 02021-07-05 (updated
02021-07-27) (11 minutes)
• Notes on Richards et al.’s nascent catalytic ROS water treatment
process (p. 534) 02021-07-07 (updated 02021-07-27) (14 minutes)
• Electrolytic berlinite (p. 561) 02021-07-12 (updated 02021-12-30)

(7 minutes)
• Making mirabilite and calcite from drywall (p. 564) 02021-07-12
(updated 02021-12-30) (4 minutes)
• Potential local sources and prices of refractory materials (p. 566)
02021-07-14 (updated 02021-09-11) (9 minutes)
• Firing talc (p. 576) 02021-07-14 (updated 02021-12-30)
(17 minutes)
• Fiberglass CMCs? (p. 588) 02021-07-15 (updated 02021-07-27)
(8 minutes)
• Can you 3-D print Sorel cement by inhibiting setting with X-rays?
(p. 592) 02021-07-16 (updated 02021-07-27) (1 minute)
• Tetrahedral expanded metal (p. 593) 02021-07-16 (updated
02021-07-27) (3 minutes)
• Glass foam (p. 595) 02021-07-16 (updated 02021-08-15)
(17 minutes)
• Aluminum fuel (p. 603) 02021-07-17 (updated 02021-12-30)
(2 minutes)
• Boosters for self-propagating high-temperature synthesis (SHS) (p.
604) 02021-07-17 (updated 02021-12-30) (4 minutes)
• SHS of magnesium phosphate (p. 608) 02021-07-22 (updated
02021-07-27) (3 minutes)
• Back-drivable differential windlass (p. 610) 02021-07-23 (updated
02021-07-27) (15 minutes)
• Synthesizing reactive magnesia? (p. 615) 02021-07-25 (updated
02021-08-15) (4 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• Dipropylene glycol (p. 687) 02021-08-01 (updated 02021-08-15)
(2 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Cola flavor (p. 707) 02021-08-10 (updated 02021-08-15)
(2 minutes)
• Methane bag (p. 710) 02021-08-10 (updated 02021-08-15)
(8 minutes)
• Iodine patterning (p. 713) 02021-08-11 (updated 02021-08-15)
(1 minute)
• Heating a shower tank with portable TCES? (p. 714) 02021-08-11
(updated 02021-08-15) (6 minutes)
• Maximizing phosphate density from aqueous reaction (p. 757)
02021-08-21 (updated 02021-12-30) (8 minutes)
• A construction set using SHS (p. 765) 02021-08-24 (updated
02021-09-11) (5 minutes)
• Fast electrolytic mineral accretion (seacrete) for digital fabrication?
(p. 779) 02021-09-01 (updated 02021-12-30) (52 minutes)
• Patterning metal surfaces by coating decomposition with lasers or
plasma? (p. 795) 02021-09-03 (updated 02021-12-30) (7 minutes)
• Blowing agents (p. 847) 02021-09-29 (updated 02021-12-30)
(4 minutes)
• Liquid dielectrics for hand-rolled self-healing capacitors (p. 853)
02021-09-30 (updated 02021-12-30) (3 minutes)
• The sol-gel transition and selective gelling for 3-D printing (p. 858)
02021-10-03 (updated 02021-12-30) (6 minutes)

• An aluminum pencil for marking iron? (p. 1001) 02021-11-06
(updated 02021-12-30) (2 minutes)
• At small scales, electrowinning may be cheaper than smelting (p.
1029) 02021-11-21 (updated 02021-12-30) (25 minutes)
• Some notes on Bhattacharyya’s ECM book (p. 1043) 02021-11-25
(updated 02021-12-30) (11 minutes)
• Exotic steel analogues in other metals (p. 1050) 02021-12-01
(updated 02021-12-30) (8 minutes)
• Solid rock on a gossamer skeleton through exponential deposition
(p. 1076) 02021-12-15 (updated 02021-12-30) (11 minutes)
• 3-D printing in poly(vinyl alcohol) (p. 1080) 02021-12-15 (updated
02021-12-30) (2 minutes)
• Ghetto electrochromic displays for ultra-low-power computing? (p.
1082) 02021-12-16 (updated 02021-12-30) (9 minutes)
• Aluminum refining (p. 1106) 02021-12-20 (updated 02021-12-30)
(3 minutes)
• Xerogel compacting (p. 1119) 02021-12-22 (updated 02021-12-30)
(12 minutes)

Notes concerning “Programming”

• Principled APL redux (p. 22) 02021-01-03 (updated 02021-12-31)
(12 minutes)
• First class locations (p. 27) 02021-01-04 (3 minutes)
• Layout typescript (p. 29) 02021-01-04 (5 minutes)
• Relayout with heaps (p. 32) 02021-01-10 (updated 02021-01-15)
(6 minutes)
• Transactional editor (p. 35) 02021-01-14 (updated 02021-01-15)
(73 minutes)
• Trie PEGs (p. 53) 02021-01-15 (4 minutes)
• Chat over a content-centric network (p. 55) 02021-01-15 (updated
02021-01-16) (3 minutes)
• Can transactions solve the N+1 performance problem on web pages?
(p. 67) 02021-01-16 (8 minutes)
• Compiling machine-code loops to pipelined dataflow graphs (p. 81)
02021-01-23 (updated 02021-01-27) (2 minutes)
• Trying and failing to design an efficient index for folksonomy data
based on BDDs (p. 108) 02021-01-26 (updated 02021-01-27)
(7 minutes)
• ASCII art, but in Unicode, with Braille and other alternatives (p.
128) 02021-02-10 (updated 02021-02-24) (9 minutes)
• How do you fit a high-level language into a microcontroller? Let’s
look at BBN Lisp (p. 160) 02021-02-23 (updated 02021-08-18)
(76 minutes)
• Some notes on IPL-VI, Lisp’s 01958 precursor (p. 196) 02021-03-02
(4 minutes)
• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Vaughan Pratt and Henry Baker’s COMFY control-flow
combinators (p. 234) 02021-03-04 (updated 02021-03-20)
(8 minutes)
• Generating novel unique pronounceable identifiers with letter
frequency data (p. 239) 02021-03-10 (updated 02021-03-22)
(11 minutes)
• Garbage-collected allocation performance on current computers (p.
245) 02021-03-13 (updated 02021-04-08) (4 minutes)
• Brute force speech (p. 262) 02021-03-21 (updated 02021-03-22)
(7 minutes)
• Minor improvements to pattern matching (p. 306) 02021-03-24
(updated 02021-04-08) (10 minutes)
• Safe FORTH with the FORTRAN memory model? (p. 351)
02021-04-21 (updated 02021-06-12) (2 minutes)
• Diskstrings: Bernstein’s netstrings for single-pass streaming output
(p. 356) 02021-04-21 (updated 02021-07-27) (4 minutes)
• Greek operating systems (p. 430) 02021-06-04 (updated
02021-06-12) (4 minutes)
• The algebra of N-ary relations (p. 432) 02021-06-14 (updated
02021-07-27) (4 minutes)
• PEG-like flexibility for parsing right-to-left? (p. 437) 02021-06-16
(updated 02021-07-27) (2 minutes)

• How little code can a filesystem be? (p. 438) 02021-06-16 (updated
02021-07-27) (1 minute)
• Notes on what would be needed to drive a PS/2 keyboard from an
Arduino (p. 447) 02021-06-20 (updated 02021-12-30) (12 minutes)
• Self hosting kernel (p. 452) 02021-06-21 (updated 02021-12-30)
(1 minute)
• Stack syntax (p. 453) 02021-06-22 (updated 02021-07-27)
(4 minutes)
• Bead hypertext (p. 455) 02021-06-22 (updated 02021-12-30)
(1 minute)
• Simple linear-time linear-space nested delimiter parsing (p. 459)
02021-06-24 (updated 02021-12-30) (1 minute)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)
• Ropes with constant-time concatenation and equality comparisons
with monoidal hash consing (p. 619) 02021-07-27 (15 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)
• Lazy heapsort (p. 761) 02021-08-22 (updated 02021-09-11)
(6 minutes)
• Deriving binary search (p. 855) 02021-10-01 (updated 02021-12-30)
(5 minutes)
• Some notes on perusing the Udanax Green codebase (p. 860)
02021-10-05 (updated 02021-10-08) (12 minutes)
• Fung’s “I can’t believe it can sort” algorithm and others (p. 864)
02021-10-05 (updated 02021-12-30) (5 minutes)
• Some notes on learning Rust (p. 874) 02021-10-06 (updated
02021-10-10) (39 minutes)
• PBKDF content addressing with keyphrase hashcash: a
non-blockchain attack on Zooko’s Triangle (p. 896) 02021-10-08
(24 minutes)
• Wordlists for maximum drama (p. 904) 02021-10-08 (updated
02021-12-30) (16 minutes)
• Pipelined piece chain painting (p. 926) 02021-10-10 (updated
02021-12-30) (23 minutes)
• An algebra of partial functions for interactively composing programs
(p. 933) 02021-10-10 (updated 02021-12-30) (3 minutes)
• Balanced ropes (p. 948) 02021-10-16 (updated 02021-12-30)
(7 minutes)
• The astounding UI responsivity of PDP-10 DDT on ITS (p. 972)
02021-10-22 (updated 02021-10-23) (28 minutes)
• Example based regexp (p. 984) 02021-10-24 (updated 02021-12-30)
(5 minutes)
• Adversarial control (p. 987) 02021-10-25 (updated 02021-12-30)
(13 minutes)
• Constant weight dithering (p. 991) 02021-10-28 (updated
02021-12-30) (5 minutes)
• Safe decentralized cloud storage (p. 1135) 02021-12-30 (10 minutes)

Notes concerning “Contrivances”

• Fan noise would be less annoying if intermittent (p. 21) 02021-01-03
(updated 02021-01-04) (1 minute)
• iPhone replacement cameras as 6-μs streak cameras (p. 80)
02021-01-22 (updated 02021-12-30) (2 minutes)
• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• Panelization in PCB manufacturing (p. 193) 02021-02-25 (updated
02021-02-26) (7 minutes)
• Refreshing Flash memory periodically for archival (p. 198)
02021-03-02 (1 minute)
• Geneva wheel stopwork (p. 321) 02021-04-07 (updated
02021-04-08) (6 minutes)
• A bargain-basement Holter monitor with a BOM under US$2.50
(p. 323) 02021-04-07 (updated 02021-07-27) (33 minutes)
• Locking telescope (p. 333) 02021-04-07 (updated 02021-12-30)
(2 minutes)
• Logarithmic low-power SERDES (p. 334) 02021-04-08 (4 minutes)

• Forming steel with copper instead of vice versa (p. 344)
02021-04-16 (updated 02021-06-12) (2 minutes)
• Phased-array imaging sonar from a mesh network of self-localizing
sensor nodes (p. 358) 02021-04-27 (updated 02021-12-30) (8 minutes)

• A boiler for submillisecond steam pulses (p. 361) 02021-04-28
(updated 02021-12-30) (10 minutes)
• Planetary roller screw worm drive (p. 375) 02021-05-07 (updated
02021-12-30) (4 minutes)
• Weighing an eyelash on an improvised Kibble balance (p. 382)
02021-05-08 (updated 02021-12-30) (3 minutes)
• A four-dimensional keyboard matrix made of linear voltage
differential transformers (LVDTs) to get 30 or 180 keys on five pins
(p. 390) 02021-05-12 (updated 02021-12-30) (4 minutes)
• Planetary screw potentiometer (p. 392) 02021-05-12 (updated
02021-12-30) (1 minute)
• Omnidirectional wheels (p. 422) 02021-05-30 (updated
02021-12-30) (1 minute)
• Broken hard disks are the cheapest source of ultraprecision
components (p. 425) 02021-06-02 (updated 02021-06-12) (3 minutes)

• Micro impact driver (p. 427) 02021-06-02 (updated 02021-06-12)
(2 minutes)
• Flux-gate downconversion in a loopstick antenna? (p. 436)
02021-06-15 (updated 02021-07-27) (2 minutes)
• Base 3 gage blocks (p. 468) 02021-06-27 (updated 02021-12-30)
(5 minutes)
• Multiple counter-rotating milling cutters to eliminate side loading
(p. 470) 02021-06-27 (updated 02021-12-30) (7 minutes)
• Sonic screwdriver resonance (p. 527) 02021-07-06 (updated
02021-12-30) (11 minutes)

• Subnanosecond thermochromic light modulation for real-time
holography and displays (p. 531) 02021-07-06 (updated 02021-12-30)
(8 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Arc maker (p. 695) 02021-08-07 (updated 02021-12-30)
(11 minutes)
• Pocket kiln (p. 704) 02021-08-09 (updated 02021-08-15)
(7 minutes)
• Recursive bearings (p. 764) 02021-08-23 (updated 02021-12-30)
(1 minute)
• Sorption vacuum pumps really can’t operate continuously (p. 767)
02021-08-24 (updated 02021-09-11) (5 minutes)
• Better screw head designs? (p. 770) 02021-08-25 (updated
02021-09-11) (4 minutes)
• Weighing balance design (p. 799) 02021-09-06 (updated
02021-12-30) (9 minutes)
• Fast-slicing ECM (p. 802) 02021-09-08 (updated 02021-12-30)
(3 minutes)
• Compliance spectroscopy (p. 849) 02021-09-29 (updated
02021-12-30) (4 minutes)
• Liquid dielectrics for hand-rolled self-healing capacitors (p. 853)
02021-09-30 (updated 02021-12-30) (3 minutes)
• Triggering a spark gap with low jitter using ultraviolet LEDs? (p.
954) 02021-10-20 (updated 02021-10-23) (8 minutes)
• Thread rolling roller screw (p. 999) 02021-11-04 (updated
02021-12-30) (1 minute)
• An aluminum pencil for marking iron? (p. 1001) 02021-11-06
(updated 02021-12-30) (2 minutes)
• Wire brush microscope (p. 1006) 02021-11-06 (updated
02021-12-30) (1 minute)
• Ivan Miranda’s snap-pin fasteners and similar snaps (p. 1009)
02021-11-11 (updated 02021-12-30) (3 minutes)
• Aqueous scanning probe microscopy (p. 1013) 02021-11-12 (updated
02021-12-30) (7 minutes)
• Some notes on reading parts of Reuleaux’s engineering handbook (p.
1019) 02021-11-17 (updated 02021-12-30) (7 minutes)
• Vernier indicator (p. 1040) 02021-11-22 (updated 02021-12-30)
(6 minutes)
• Regenerative muffle kiln (p. 1108) 02021-12-21 (updated
02021-12-30) (19 minutes)
• Toggling eccentrics for removing preload from spring clamps (p.
1129) 02021-12-28 (updated 02021-12-31) (22 minutes)

Notes concerning “Electronics”

• Notes on simulating a ZVS converter (Baxandall converter) (p. 70)
02021-01-16 (6 minutes)
• A ghetto linear voltage regulator from discrete components (p. 73)
02021-01-21 (updated 02021-01-27) (10 minutes)
• Trying to design a simple switchmode power supply using
Schmitt-trigger relaxation oscillators (p. 92) 02021-01-26 (updated
02021-01-27) (32 minutes)
• Snap logic, revisited, and four-phase logic (p. 115) 02021-02-08
(9 minutes)
• Can you do direct digital synthesis (DDS) at over a gigahertz? (p.
119) 02021-02-08 (updated 02021-02-24) (30 minutes)
• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• Panelization in PCB manufacturing (p. 193) 02021-02-25 (updated
02021-02-26) (7 minutes)
• Refreshing Flash memory periodically for archival (p. 198)
02021-03-02 (1 minute)
• Bench supply (p. 250) 02021-03-19 (updated 02021-12-30)
(25 minutes)
• Failing to stabilize the amplitude of an opamp phase-delay oscillator
(p. 298) 02021-03-23 (updated 02021-03-24) (10 minutes)
• A bargain-basement Holter monitor with a BOM under US$2.50
(p. 323) 02021-04-07 (updated 02021-07-27) (33 minutes)
• Logarithmic low-power SERDES (p. 334) 02021-04-08 (4 minutes)

• Notes on pricing of locally available oscilloscopes (p. 346)
02021-04-16 (updated 02021-07-27) (2 minutes)
• Can you get JLCPCB to fabricate a CPU for you affordably from
“basic” parts? (p. 347) 02021-04-17 (updated 02021-12-30)
(9 minutes)
• A boiler for submillisecond steam pulses (p. 361) 02021-04-28
(updated 02021-12-30) (10 minutes)
• Three phase logic (p. 364) 02021-04-30 (updated 02021-07-27)
(9 minutes)
• A four-dimensional keyboard matrix made of linear voltage
differential transformers (LVDTs) to get 30 or 180 keys on five pins
(p. 390) 02021-05-12 (updated 02021-12-30) (4 minutes)
• Planetary screw potentiometer (p. 392) 02021-05-12 (updated
02021-12-30) (1 minute)
• Broken hard disks are the cheapest source of ultraprecision
components (p. 425) 02021-06-02 (updated 02021-06-12) (3 minutes)

• Micro impact driver (p. 427) 02021-06-02 (updated 02021-06-12)
(2 minutes)
• Flux-gate downconversion in a loopstick antenna? (p. 436)
02021-06-15 (updated 02021-07-27) (2 minutes)
• Notes on what would be needed to drive a PS/2 keyboard from an
Arduino (p. 447) 02021-06-20 (updated 02021-12-30) (12 minutes)
• Arc maker (p. 695) 02021-08-07 (updated 02021-12-30)

(11 minutes)
• Power transistors (p. 700) 02021-08-07 (updated 02021-12-30)
(12 minutes)
• Constant current buck (p. 708) 02021-08-10 (updated 02021-08-15)
(4 minutes)
• Weighing balance design (p. 799) 02021-09-06 (updated
02021-12-30) (9 minutes)
• Switching kiloamps in microseconds (p. 804) 02021-09-09 (updated
02021-12-30) (1 minute)
• Three phase differential data (p. 843) 02021-09-22 (updated
02021-12-30) (4 minutes)
• Liquid dielectrics for hand-rolled self-healing capacitors (p. 853)
02021-09-30 (updated 02021-12-30) (3 minutes)
• Ranking MOSFETs for, say, rapid localized electrolysis to make
optics (p. 938) 02021-10-11 (updated 02021-12-30) (8 minutes)
• An even simpler offline power supply than a capacitive dropper,
with a 7¢ BOM (p. 943) 02021-10-14 (updated 02021-12-30)
(7 minutes)
• Triggering a spark gap with an exploding wire (p. 953) 02021-10-19
(updated 02021-12-30) (1 minute)
• Triggering a spark gap with low jitter using ultraviolet LEDs? (p.
954) 02021-10-20 (updated 02021-10-23) (8 minutes)
• Implementation and applications of low-voltage Marx generators
with solid-state avalanche breakdown? (p. 960) 02021-10-20
(updated 02021-12-31) (39 minutes)
• Viscoelastic probing (p. 1000) 02021-11-04 (updated 02021-12-30)
(2 minutes)
• A simple 2-D programmable graphics pipeline to unify tiles and
palettes (p. 1022) 02021-11-18 (updated 02021-12-30) (6 minutes)
• Simplest blinker (p. 1053) 02021-12-01 (updated 02021-12-30)
(9 minutes)
• Capacitive linear encoder sensors (p. 1056) 02021-12-11 (updated
02021-12-30) (7 minutes)
• MOSFET body diodes as Geiger counter avalanche detectors? (p.
1103) 02021-12-17 (updated 02021-12-30) (1 minute)

Notes concerning “Pricing”

• Duplicating Durham’s Rock-Hard Putty (p. 79) 02021-01-22
(updated 02021-01-27) (1 minute)
• The use of silver in solar cells (p. 112) 02021-02-02 (updated
02021-09-11) (8 minutes)
• Can you do direct digital synthesis (DDS) at over a gigahertz? (p.
119) 02021-02-08 (updated 02021-02-24) (30 minutes)
• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• Panelization in PCB manufacturing (p. 193) 02021-02-25 (updated
02021-02-26) (7 minutes)
• A bargain-basement Holter monitor with a BOM under US$2.50
(p. 323) 02021-04-07 (updated 02021-07-27) (33 minutes)
• Notes on pricing of locally available oscilloscopes (p. 346)
02021-04-16 (updated 02021-07-27) (2 minutes)
• Can you get JLCPCB to fabricate a CPU for you affordably from
“basic” parts? (p. 347) 02021-04-17 (updated 02021-12-30)
(9 minutes)
• Three phase logic (p. 364) 02021-04-30 (updated 02021-07-27)
(9 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• Ghetto electrical discharge machining (EDM) (p. 423) 02021-05-31
(updated 02021-12-30) (5 minutes)
• Broken hard disks are the cheapest source of ultraprecision
components (p. 425) 02021-06-02 (updated 02021-06-12) (3 minutes)

• Notes on Richards et al.’s nascent catalytic ROS water treatment
process (p. 534) 02021-07-07 (updated 02021-07-27) (14 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Potential local sources and prices of refractory materials (p. 566)
02021-07-14 (updated 02021-09-11) (9 minutes)
• Fiberglass CMCs? (p. 588) 02021-07-15 (updated 02021-07-27)
(8 minutes)
• Leaf vein roof (p. 600) 02021-07-16 (updated 02021-09-11)
(9 minutes)
• SHS of magnesium phosphate (p. 608) 02021-07-22 (updated
02021-07-27) (3 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• Dipropylene glycol (p. 687) 02021-08-01 (updated 02021-08-15)
(2 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Arc maker (p. 695) 02021-08-07 (updated 02021-12-30)
(11 minutes)
• Argentine pricing of PEX pipe and alternatives for phase-change
fluids (p. 699) 02021-08-07 (updated 02021-12-30) (2 minutes)

• Power transistors (p. 700) 02021-08-07 (updated 02021-12-30)
(12 minutes)
• Methane bag (p. 710) 02021-08-10 (updated 02021-08-15)
(8 minutes)
• Recursive bearings (p. 764) 02021-08-23 (updated 02021-12-30)
(1 minute)
• Dense fillers (p. 772) 02021-08-25 (updated 02021-12-30)
(7 minutes)
• Switching kiloamps in microseconds (p. 804) 02021-09-09 (updated
02021-12-30) (1 minute)
• Spot welding (p. 805) 02021-09-09 (updated 02021-12-30)
(8 minutes)
• PBKDF content addressing with keyphrase hashcash: a
non-blockchain attack on Zooko’s Triangle (p. 896) 02021-10-08
(24 minutes)
• Beyond overstrike (p. 922) 02021-10-10 (updated 02021-12-30)
(13 minutes)
• Ranking MOSFETs for, say, rapid localized electrolysis to make
optics (p. 938) 02021-10-11 (updated 02021-12-30) (8 minutes)
• An even simpler offline power supply than a capacitive dropper,
with a 7¢ BOM (p. 943) 02021-10-14 (updated 02021-12-30)
(7 minutes)
• Triggering a spark gap with low jitter using ultraviolet LEDs? (p.
954) 02021-10-20 (updated 02021-10-23) (8 minutes)
• Implementation and applications of low-voltage Marx generators
with solid-state avalanche breakdown? (p. 960) 02021-10-20
(updated 02021-12-31) (39 minutes)

Notes concerning “Digital
fabrication”

• Can you get JLCPCB to fabricate a CPU for you affordably from
“basic” parts? (p. 347) 02021-04-17 (updated 02021-12-30)
(9 minutes)
• How fast do von Neumann probes need to reproduce to colonize
space in our lifetimes? (p. 368) 02021-05-04 (updated 02021-06-12)
(5 minutes)
• Thixotropic electrodeposition (p. 372) 02021-05-04 (updated
02021-12-31) (2 minutes)
• Cheap cutting jig (p. 373) 02021-05-06 (updated 02021-12-30)
(1 minute)
• Fresnel mirror electropolishing (p. 377) 02021-05-08 (updated
02021-12-30) (6 minutes)
• Precisely measuring out particulates with a trickler (p. 384)
02021-05-09 (updated 02021-12-30) (17 minutes)
• 3-D printing in carbohydrates (p. 393) 02021-05-16 (updated
02021-12-30) (10 minutes)
• Clay-filled PLA filament for firing to ceramic (p. 396) 02021-05-17
(updated 02021-12-30) (1 minute)
• Multicolor filament (p. 397) 02021-05-17 (updated 02021-12-30)
(5 minutes)
• Acicular low binder pastes (p. 399) 02021-05-19 (updated
02021-12-30) (1 minute)
• Cutting clay (p. 400) 02021-05-19 (updated 02021-12-30)
(10 minutes)
• Selectively curing one-component silicone by injecting water (p.
408) 02021-05-19 (updated 02021-12-30) (2 minutes)
• Clay wire cutter (p. 409) 02021-05-21 (updated 02021-12-30)
(2 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• Glass powder-bed 3-D printing (p. 490) 02021-06-29 (updated
02021-12-30) (20 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Electrolytic berlinite (p. 561) 02021-07-12 (updated 02021-12-30)
(7 minutes)
• Can you 3-D print Sorel cement by inhibiting setting with X-rays?
(p. 592) 02021-07-16 (updated 02021-07-27) (1 minute)
• Iodine patterning (p. 713) 02021-08-11 (updated 02021-08-15)
(1 minute)
• A construction set using SHS (p. 765) 02021-08-24 (updated
02021-09-11) (5 minutes)
• Negative feedback control to prevent runaway positive feedback in
3-D MIG welding printing (p. 777) 02021-08-30 (updated
02021-12-30) (3 minutes)
• Patterning metal surfaces by coating decomposition with lasers or
plasma? (p. 795) 02021-09-03 (updated 02021-12-30) (7 minutes)

• The sol-gel transition and selective gelling for 3-D printing (p. 858)
02021-10-03 (updated 02021-12-30) (6 minutes)
• Ranking MOSFETs for, say, rapid localized electrolysis to make
optics (p. 938) 02021-10-11 (updated 02021-12-30) (8 minutes)
• Trying to quantify relative speeds of different digital fabrication
processes with “matter bandwidth” (p. 946) 02021-10-15 (updated
02021-12-30) (5 minutes)
• Adversarial control (p. 987) 02021-10-25 (updated 02021-12-30)
(13 minutes)
• Solid rock on a gossamer skeleton through exponential deposition
(p. 1076) 02021-12-15 (updated 02021-12-30) (11 minutes)
• 3-D printing in poly(vinyl alcohol) (p. 1080) 02021-12-15 (updated
02021-12-30) (2 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)
• Layers plus electroforming (p. 1100) 02021-12-16 (updated
02021-12-30) (7 minutes)
• Toggling eccentrics for removing preload from spring clamps (p.
1129) 02021-12-28 (updated 02021-12-31) (22 minutes)

Notes concerning
“Manufacturing”

• The use of silver in solar cells (p. 112) 02021-02-02 (updated
02021-09-11) (8 minutes)
• Panelization in PCB manufacturing (p. 193) 02021-02-25 (updated
02021-02-26) (7 minutes)
• A bargain-basement Holter monitor with a BOM under US$2.50
(p. 323) 02021-04-07 (updated 02021-07-27) (33 minutes)
• Forming steel with copper instead of vice versa (p. 344)
02021-04-16 (updated 02021-06-12) (2 minutes)
• Can you get JLCPCB to fabricate a CPU for you affordably from
“basic” parts? (p. 347) 02021-04-17 (updated 02021-12-30)
(9 minutes)
• Three phase logic (p. 364) 02021-04-30 (updated 02021-07-27)
(9 minutes)
• Electroforming rivets (p. 410) 02021-05-22 (updated 02021-12-30)
(2 minutes)
• Metal welding fuel (p. 411) 02021-05-23 (updated 02021-12-30)
(6 minutes)
• Ghetto electrical discharge machining (EDM) (p. 423) 02021-05-31
(updated 02021-12-30) (5 minutes)
• Base 3 gage blocks (p. 468) 02021-06-27 (updated 02021-12-30)
(5 minutes)
• Multiple counter-rotating milling cutters to eliminate side loading
(p. 470) 02021-06-27 (updated 02021-12-30) (7 minutes)
• Layered ECM (p. 473) 02021-06-27 (updated 02021-12-30)
(2 minutes)
• Can you use stabilized cubic zirconia as an ECM cathode in molten
salt? (p. 475) 02021-06-27 (updated 02021-12-30) (3 minutes)
• Electrolytic glass machining (p. 477) 02021-06-28 (updated
02021-12-30) (6 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Sulfur jet metal cutting (p. 504) 02021-06-30 (updated
02021-12-30) (6 minutes)
• Stochastically generated self-amalgamating tape variations for
composite fabrication (p. 510) 02021-07-02 (updated 02021-12-30)
(26 minutes)
• Spin-coating clay-filled plastics to make composites with high
anisotropic filler loadings (p. 521) 02021-07-02 (updated
02021-12-30) (4 minutes)
• ECM for machining nonmetals? (p. 523) 02021-07-05 (updated
02021-07-27) (11 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Tetrahedral expanded metal (p. 593) 02021-07-16 (updated
02021-07-27) (3 minutes)
• Glass foam (p. 595) 02021-07-16 (updated 02021-08-15)
(17 minutes)

• Electrodeposition welding (p. 769) 02021-08-25 (updated
02021-09-11) (2 minutes)
• Dense fillers (p. 772) 02021-08-25 (updated 02021-12-30)
(7 minutes)
• Fast-slicing ECM (p. 802) 02021-09-08 (updated 02021-12-30)
(3 minutes)
• Spot welding (p. 805) 02021-09-09 (updated 02021-12-30)
(8 minutes)
• Waterglass “Loctite”? (p. 845) 02021-09-22 (updated 02021-12-30)
(1 minute)
• Blowing agents (p. 847) 02021-09-29 (updated 02021-12-30)
(4 minutes)
• Adversarial control (p. 987) 02021-10-25 (updated 02021-12-30)
(13 minutes)

Notes concerning “History”

• Layout typescript (p. 29) 02021-01-04 (5 minutes)
• Skew tilesets (p. 135) 02021-02-14 (updated 02021-02-24)
(7 minutes)
• Threechet (p. 140) 02021-02-16 (updated 02021-02-24) (4 minutes)

• How do you fit a high-level language into a microcontroller? Let’s
look at BBN Lisp (p. 160) 02021-02-23 (updated 02021-08-18)
(76 minutes)
• Some notes on IPL-VI, Lisp’s 01958 precursor (p. 196) 02021-03-02
(4 minutes)
• Vaughan Pratt and Henry Baker’s COMFY control-flow
combinators (p. 234) 02021-03-04 (updated 02021-03-20)
(8 minutes)
• Veskeno is a “fantasy platform” like TIC-80 (p. 267) 02021-03-21
(updated 02021-03-22) (3 minutes)
• Why Bitcoin is puzzling to people in rich countries (p. 312)
02021-03-31 (updated 02021-07-27) (10 minutes)
• Manually writing code in static single assignment (SSA) form,
inspired by Kemeny’s DOPE, isn’t worth it (p. 353) 02021-04-21
(updated 02021-06-12) (3 minutes)
• Scaling laws (p. 404) 02021-05-19 (updated 02021-12-30)
(8 minutes)
• The nature of mathematical discourse (p. 418) 02021-05-27
(updated 02021-12-30) (5 minutes)
• Economic history (p. 460) 02021-06-25 (updated 02021-07-27)
(17 minutes)
• Can you use stabilized cubic zirconia as an ECM cathode in molten
salt? (p. 475) 02021-06-27 (updated 02021-12-30) (3 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)
• A short list of the most useful Unix CLI tools (p. 841) 02021-09-15
(updated 02021-09-16) (2 minutes)
• Some notes on perusing the Udanax Green codebase (p. 860)
02021-10-05 (updated 02021-10-08) (12 minutes)
• Beyond overstrike (p. 922) 02021-10-10 (updated 02021-12-30)
(13 minutes)
• Pipelined piece chain painting (p. 926) 02021-10-10 (updated
02021-12-30) (23 minutes)
• The astounding UI responsivity of PDP-10 DDT on ITS (p. 972)
02021-10-22 (updated 02021-10-23) (28 minutes)
• My Heathkit H8 (p. 996) 02021-11-03 (updated 02021-12-30)
(2 minutes)
• Some notes on reading parts of Reuleaux’s engineering handbook (p.
1019) 02021-11-17 (updated 02021-12-30) (7 minutes)
• Interesting works that entered the public domain in 02021, in the
US and elsewhere (p. 1024) 02021-11-20 (updated 02021-12-30)

(15 minutes)
• Is liberal democracy’s stability conditioned on historical conditions
that no longer obtain? (p. 1114) 02021-12-22 (updated 02021-12-30)
(16 minutes)

Notes concerning “Performance”

• Principled APL redux (p. 22) 02021-01-03 (updated 02021-12-31)
(12 minutes)
• Relayout with heaps (p. 32) 02021-01-10 (updated 02021-01-15)
(6 minutes)
• Trie PEGs (p. 53) 02021-01-15 (4 minutes)
• Can transactions solve the N+1 performance problem on web pages?
(p. 67) 02021-01-16 (8 minutes)
• Compiling machine-code loops to pipelined dataflow graphs (p. 81)
02021-01-23 (updated 02021-01-27) (2 minutes)
• Trying and failing to design an efficient index for folksonomy data
based on BDDs (p. 108) 02021-01-26 (updated 02021-01-27)
(7 minutes)
• How do you fit a high-level language into a microcontroller? Let’s
look at BBN Lisp (p. 160) 02021-02-23 (updated 02021-08-18)
(76 minutes)
• Variable length unaligned bytecode (p. 199) 02021-03-02 (updated
02021-03-03) (4 minutes)
• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Garbage-collected allocation performance on current computers (p.
245) 02021-03-13 (updated 02021-04-08) (4 minutes)
• Some notes on reading Chris Seaton’s TruffleRuby dissertation (p.
269) 02021-03-21 (updated 02021-03-22) (16 minutes)
• Open coded primitives (p. 283) 02021-03-22 (26 minutes)
• Minor improvements to pattern matching (p. 306) 02021-03-24
(updated 02021-04-08) (10 minutes)
• Faygoo: a yantra-smashing ersatz version of Piumarta and Warth’s
COLA (p. 570) 02021-07-14 (updated 02021-12-30) (17 minutes)
• Ropes with constant-time concatenation and equality comparisons
with monoidal hash consing (p. 619) 02021-07-27 (15 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)
• Lazy heapsort (p. 761) 02021-08-22 (updated 02021-09-11)
(6 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)
• Fung’s “I can’t believe it can sort” algorithm and others (p. 864)
02021-10-05 (updated 02021-12-30) (5 minutes)
• Pipelined piece chain painting (p. 926) 02021-10-10 (updated
02021-12-30) (23 minutes)
• Hashing text with recursive shingling to find duplication efficiently
(p. 993) 02021-10-30 (updated 02021-12-30) (6 minutes)

Notes concerning
“Human-computer interaction”

• First class locations (p. 27) 02021-01-04 (3 minutes)
• Layout typescript (p. 29) 02021-01-04 (5 minutes)
• Relayout with heaps (p. 32) 02021-01-10 (updated 02021-01-15)
(6 minutes)
• Transactional editor (p. 35) 02021-01-14 (updated 02021-01-15)
(73 minutes)
• Running scripts once per frame for guaranteed GUI responsivity (p.
303) 02021-03-23 (updated 02021-10-12) (7 minutes)
• List of random GUI ideas (p. 370) 02021-05-04 (updated
02021-07-27) (6 minutes)
• Leaf hypertext (p. 380) 02021-05-08 (updated 02021-12-30)
(3 minutes)
• A four-dimensional keyboard matrix made of linear voltage
differential transformers (LVDTs) to get 30 or 180 keys on five pins
(p. 390) 02021-05-12 (updated 02021-12-30) (4 minutes)
• Bead hypertext (p. 455) 02021-06-22 (updated 02021-12-30)
(1 minute)
• A kernel you can type commands to (p. 474) 02021-06-27 (updated
02021-12-30) (1 minute)
• Rator-port GUIs (p. 496) 02021-06-29 (updated 02021-12-30)
(26 minutes)
• Memory view (p. 539) 02021-07-09 (updated 02021-12-30)
(6 minutes)
• Wiki models (p. 751) 02021-08-19 (updated 02021-12-30)
(1 minute)
• Beyond overstrike (p. 922) 02021-10-10 (updated 02021-12-30)
(13 minutes)
• Inverse perspective (p. 937) 02021-10-11 (updated 02021-12-30)
(1 minute)
• The astounding UI responsivity of PDP-10 DDT on ITS (p. 972)
02021-10-22 (updated 02021-10-23) (28 minutes)
• Example based regexp (p. 984) 02021-10-24 (updated 02021-12-30)
(5 minutes)
• Embedding runnable code in text paragraphs for numerical
modeling (p. 1002) 02021-11-06 (updated 02021-12-30) (6 minutes)
• DSLs for calculations on dates (p. 1018) 02021-11-14 (updated
02021-12-30) (1 minute)
• Chording commands (p. 1047) 02021-11-26 (updated 02021-12-30)
(7 minutes)
• Two finger multitouch (p. 1059) 02021-12-11 (updated
02021-12-30) (3 minutes)
• The user interface potentialities of a barcoded paper notebook (p.
1104) 02021-12-18 (updated 02021-12-30) (6 minutes)

Notes concerning “Physics”

• When is it better to compute by moving atoms rather than
electrons? (p. 265) 02021-03-21 (updated 02021-03-22) (5 minutes)
• Forming steel with copper instead of vice versa (p. 344)
02021-04-16 (updated 02021-06-12) (2 minutes)
• Phased-array imaging sonar from a mesh network of self-localizing
sensor nodes (p. 358) 02021-04-27 (updated 02021-12-30) (8 minutes)

• A boiler for submillisecond steam pulses (p. 361) 02021-04-28
(updated 02021-12-30) (10 minutes)
• Scaling laws (p. 404) 02021-05-19 (updated 02021-12-30)
(8 minutes)
• Metal welding fuel (p. 411) 02021-05-23 (updated 02021-12-30)
(6 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Back-drivable differential windlass (p. 610) 02021-07-23 (updated
02021-07-27) (15 minutes)
• Methane bag (p. 710) 02021-08-10 (updated 02021-08-15)
(8 minutes)
• Sorption vacuum pumps really can’t operate continuously (p. 767)
02021-08-24 (updated 02021-09-11) (5 minutes)
• Selective laser sintering of copper (p. 775) 02021-08-30 (updated
02021-12-30) (6 minutes)
• Spot welding (p. 805) 02021-09-09 (updated 02021-12-30)
(8 minutes)
• Liquid dielectrics for hand-rolled self-healing capacitors (p. 853)
02021-09-30 (updated 02021-12-30) (3 minutes)
• Aqueous scanning probe microscopy (p. 1013) 02021-11-12 (updated
02021-12-30) (7 minutes)
• Micro ramjet (p. 1038) 02021-11-22 (updated 02021-12-30)
(3 minutes)
• MOSFET body diodes as Geiger counter avalanche detectors? (p.
1103) 02021-12-17 (updated 02021-12-30) (1 minute)
• Photoemissive power (p. 1124) 02021-12-23 (updated 02021-12-28)
(15 minutes)
• Toggling eccentrics for removing preload from spring clamps (p.
1129) 02021-12-28 (updated 02021-12-31) (22 minutes)

Notes concerning “Electrolysis”

• Fresnel mirror electropolishing (p. 377) 02021-05-08 (updated
02021-12-30) (6 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• Layered ECM (p. 473) 02021-06-27 (updated 02021-12-30)
(2 minutes)
• Can you use stabilized cubic zirconia as an ECM cathode in molten
salt? (p. 475) 02021-06-27 (updated 02021-12-30) (3 minutes)
• Electrolytic glass machining (p. 477) 02021-06-28 (updated
02021-12-30) (6 minutes)
• ECM for machining nonmetals? (p. 523) 02021-07-05 (updated
02021-07-27) (11 minutes)
• Electrolytic berlinite (p. 561) 02021-07-12 (updated 02021-12-30)
(7 minutes)
• Electrodeposition welding (p. 769) 02021-08-25 (updated
02021-09-11) (2 minutes)
• Fast electrolytic mineral accretion (seacrete) for digital fabrication?
(p. 779) 02021-09-01 (updated 02021-12-30) (52 minutes)
• Fast-slicing ECM (p. 802) 02021-09-08 (updated 02021-12-30)
(3 minutes)
• The sol-gel transition and selective gelling for 3-D printing (p. 858)
02021-10-03 (updated 02021-12-30) (6 minutes)
• Ranking MOSFETs for, say, rapid localized electrolysis to make
optics (p. 938) 02021-10-11 (updated 02021-12-30) (8 minutes)
• At small scales, electrowinning may be cheaper than smelting (p.
1029) 02021-11-21 (updated 02021-12-30) (25 minutes)
• Some notes on Bhattacharyya’s ECM book (p. 1043) 02021-11-25
(updated 02021-12-30) (11 minutes)
• Ghetto electrochromic displays for ultra-low-power computing? (p.
1082) 02021-12-16 (updated 02021-12-30) (9 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)
• Layers plus electroforming (p. 1100) 02021-12-16 (updated
02021-12-30) (7 minutes)
• Aluminum refining (p. 1106) 02021-12-20 (updated 02021-12-30)
(3 minutes)

Notes concerning “Mechanical”

• When is it better to compute by moving atoms rather than
electrons? (p. 265) 02021-03-21 (updated 02021-03-22) (5 minutes)
• Geneva wheel stopwork (p. 321) 02021-04-07 (updated
02021-04-08) (6 minutes)
• Locking telescope (p. 333) 02021-04-07 (updated 02021-12-30)
(2 minutes)
• A boiler for submillisecond steam pulses (p. 361) 02021-04-28
(updated 02021-12-30) (10 minutes)
• Planetary roller screw worm drive (p. 375) 02021-05-07 (updated
02021-12-30) (4 minutes)
• Planetary screw potentiometer (p. 392) 02021-05-12 (updated
02021-12-30) (1 minute)
• Omnidirectional wheels (p. 422) 02021-05-30 (updated
02021-12-30) (1 minute)
• Micro impact driver (p. 427) 02021-06-02 (updated 02021-06-12)
(2 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Back-drivable differential windlass (p. 610) 02021-07-23 (updated
02021-07-27) (15 minutes)
• Recursive bearings (p. 764) 02021-08-23 (updated 02021-12-30)
(1 minute)
• Better screw head designs? (p. 770) 02021-08-25 (updated
02021-09-11) (4 minutes)
• Weighing balance design (p. 799) 02021-09-06 (updated
02021-12-30) (9 minutes)
• Flexural mounts for self-aligning bushings (p. 952) 02021-10-18
(updated 02021-12-30) (3 minutes)
• Thread rolling roller screw (p. 999) 02021-11-04 (updated
02021-12-30) (1 minute)
• Some notes on reading parts of Reuleaux’s engineering handbook (p.
1019) 02021-11-17 (updated 02021-12-30) (7 minutes)
• Toggling eccentrics for removing preload from spring clamps (p.
1129) 02021-12-28 (updated 02021-12-31) (22 minutes)

Notes concerning “3-D printing”

• Precisely measuring out particulates with a trickler (p. 384)
02021-05-09 (updated 02021-12-30) (17 minutes)
• 3-D printing in carbohydrates (p. 393) 02021-05-16 (updated
02021-12-30) (10 minutes)
• Clay-filled PLA filament for firing to ceramic (p. 396) 02021-05-17
(updated 02021-12-30) (1 minute)
• Multicolor filament (p. 397) 02021-05-17 (updated 02021-12-30)
(5 minutes)
• Acicular low binder pastes (p. 399) 02021-05-19 (updated
02021-12-30) (1 minute)
• Selectively curing one-component silicone by injecting water (p.
408) 02021-05-19 (updated 02021-12-30) (2 minutes)
• Glass powder-bed 3-D printing (p. 490) 02021-06-29 (updated
02021-12-30) (20 minutes)
• Powder-bed 3-D printing with a sacrificial binder (p. 506)
02021-06-30 (updated 02021-12-30) (12 minutes)
• Electrolytic berlinite (p. 561) 02021-07-12 (updated 02021-12-30)
(7 minutes)
• Can you 3-D print Sorel cement by inhibiting setting with X-rays?
(p. 592) 02021-07-16 (updated 02021-07-27) (1 minute)
• A construction set using SHS (p. 765) 02021-08-24 (updated
02021-09-11) (5 minutes)
• Selective laser sintering of copper (p. 775) 02021-08-30 (updated
02021-12-30) (6 minutes)
• Negative feedback control to prevent runaway positive feedback in
3-D MIG welding printing (p. 777) 02021-08-30 (updated
02021-12-30) (3 minutes)
• Fast electrolytic mineral accretion (seacrete) for digital fabrication?
(p. 779) 02021-09-01 (updated 02021-12-30) (52 minutes)
• The sol-gel transition and selective gelling for 3-D printing (p. 858)
02021-10-03 (updated 02021-12-30) (6 minutes)
• Flexural mounts for self-aligning bushings (p. 952) 02021-10-18
(updated 02021-12-30) (3 minutes)
• 3-D printing in poly(vinyl alcohol) (p. 1080) 02021-12-15 (updated
02021-12-30) (2 minutes)

Notes concerning “Filled systems”

• Clay-filled PLA filament for firing to ceramic (p. 396) 02021-05-17
(updated 02021-12-30) (1 minute)
• Multicolor filament (p. 397) 02021-05-17 (updated 02021-12-30)
(5 minutes)
• Acicular low binder pastes (p. 399) 02021-05-19 (updated
02021-12-30) (1 minute)
• Cutting clay (p. 400) 02021-05-19 (updated 02021-12-30)
(10 minutes)
• Stochastically generated self-amalgamating tape variations for
composite fabrication (p. 510) 02021-07-02 (updated 02021-12-30)
(26 minutes)
• Spin-coating clay-filled plastics to make composites with high
anisotropic filler loadings (p. 521) 02021-07-02 (updated
02021-12-30) (4 minutes)
• Electrolytic berlinite (p. 561) 02021-07-12 (updated 02021-12-30)
(7 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Sandwich panel optimization (p. 754) 02021-08-21 (updated
02021-09-11) (3 minutes)
• Glass wood (p. 755) 02021-08-21 (updated 02021-12-30)
(4 minutes)
• Maximizing phosphate density from aqueous reaction (p. 757)
02021-08-21 (updated 02021-12-30) (8 minutes)
• Dense fillers (p. 772) 02021-08-25 (updated 02021-12-30)
(7 minutes)
• Fast electrolytic mineral accretion (seacrete) for digital fabrication?
(p. 779) 02021-09-01 (updated 02021-12-30) (52 minutes)
• Rock-wool-filled composites (p. 798) 02021-09-03 (updated
02021-12-30) (2 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)
• Xerogel compacting (p. 1119) 02021-12-22 (updated 02021-12-30)
(12 minutes)

Notes concerning “Experiment
report”

• Transactional editor (p. 35) 02021-01-14 (updated 02021-01-15)
(73 minutes)
• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Generating novel unique pronounceable identifiers with letter
frequency data (p. 239) 02021-03-10 (updated 02021-03-22)
(11 minutes)
• Brute force speech (p. 262) 02021-03-21 (updated 02021-03-22)
(7 minutes)
• Open coded primitives (p. 283) 02021-03-22 (26 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• Notes on what would be needed to drive a PS/2 keyboard from an
Arduino (p. 447) 02021-06-20 (updated 02021-12-30) (12 minutes)
• Glass powder-bed 3-D printing (p. 490) 02021-06-29 (updated
02021-12-30) (20 minutes)
• Firing talc (p. 576) 02021-07-14 (updated 02021-12-30)
(17 minutes)
• Glass foam (p. 595) 02021-07-16 (updated 02021-08-15)
(17 minutes)
• Synthesizing amorphous magnesium silicate (p. 617) 02021-07-25
(updated 02021-08-15) (6 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• Methane bag (p. 710) 02021-08-10 (updated 02021-08-15)
(8 minutes)
• Spanish phonology (p. 867) 02021-10-05 (updated 02021-12-31)
(15 minutes)

Notes concerning “Algorithms”

• Relayout with heaps (p. 32) 02021-01-10 (updated 02021-01-15)
(6 minutes)
• Trie PEGs (p. 53) 02021-01-15 (4 minutes)
• Trying and failing to design an efficient index for folksonomy data
based on BDDs (p. 108) 02021-01-26 (updated 02021-01-27)
(7 minutes)
• Recursive residue number systems? (p. 259) 02021-03-20 (updated
02021-03-22) (8 minutes)
• Differential filming (p. 374) 02021-05-07 (updated 02021-12-30)
(1 minute)
• PEG-like flexibility for parsing right-to-left? (p. 437) 02021-06-16
(updated 02021-07-27) (2 minutes)
• Simple linear-time linear-space nested delimiter parsing (p. 459)
02021-06-24 (updated 02021-12-30) (1 minute)
• Ropes with constant-time concatenation and equality comparisons
with monoidal hash consing (p. 619) 02021-07-27 (15 minutes)
• Residual stream windowing (p. 752) 02021-08-21 (updated
02021-09-11) (5 minutes)
• Lazy heapsort (p. 761) 02021-08-22 (updated 02021-09-11)
(6 minutes)
• Deriving binary search (p. 855) 02021-10-01 (updated 02021-12-30)
(5 minutes)
• Fung’s “I can’t believe it can sort” algorithm and others (p. 864)
02021-10-05 (updated 02021-12-30) (5 minutes)
• Balanced ropes (p. 948) 02021-10-16 (updated 02021-12-30)
(7 minutes)
• Hashing text with recursive shingling to find duplication efficiently
(p. 993) 02021-10-30 (updated 02021-12-30) (6 minutes)

Notes concerning “Strength of
materials”

• Forming steel with copper instead of vice versa (p. 344)
02021-04-16 (updated 02021-06-12) (2 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Fiberglass CMCs? (p. 588) 02021-07-15 (updated 02021-07-27)
(8 minutes)
• Glass foam (p. 595) 02021-07-16 (updated 02021-08-15)
(17 minutes)
• Leaf vein roof (p. 600) 02021-07-16 (updated 02021-09-11)
(9 minutes)
• Back-drivable differential windlass (p. 610) 02021-07-23 (updated
02021-07-27) (15 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Sandwich panel optimization (p. 754) 02021-08-21 (updated
02021-09-11) (3 minutes)
• Glass wood (p. 755) 02021-08-21 (updated 02021-12-30)
(4 minutes)
• Rock-wool-filled composites (p. 798) 02021-09-03 (updated
02021-12-30) (2 minutes)
• Exotic steel analogues in other metals (p. 1050) 02021-12-01
(updated 02021-12-30) (8 minutes)
• Xerogel compacting (p. 1119) 02021-12-22 (updated 02021-12-30)
(12 minutes)

Notes concerning “Machining”

• Forming steel with copper instead of vice versa (p. 344)
02021-04-16 (updated 02021-06-12) (2 minutes)
• Fresnel mirror electropolishing (p. 377) 02021-05-08 (updated
02021-12-30) (6 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• Base 3 gage blocks (p. 468) 02021-06-27 (updated 02021-12-30)
(5 minutes)
• Multiple counter-rotating milling cutters to eliminate side loading
(p. 470) 02021-06-27 (updated 02021-12-30) (7 minutes)
• Layered ECM (p. 473) 02021-06-27 (updated 02021-12-30)
(2 minutes)
• Can you use stabilized cubic zirconia as an ECM cathode in molten
salt? (p. 475) 02021-06-27 (updated 02021-12-30) (3 minutes)
• Electrolytic glass machining (p. 477) 02021-06-28 (updated
02021-12-30) (6 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Sulfur jet metal cutting (p. 504) 02021-06-30 (updated
02021-12-30) (6 minutes)
• ECM for machining nonmetals? (p. 523) 02021-07-05 (updated
02021-07-27) (11 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Fast-slicing ECM (p. 802) 02021-09-08 (updated 02021-12-30)
(3 minutes)

Notes concerning “Python”

• Relayout with heaps (p. 32) 02021-01-10 (updated 02021-01-15)
(6 minutes)
• ASCII art, but in Unicode, with Braille and other alternatives (p.
128) 02021-02-10 (updated 02021-02-24) (9 minutes)
• Skew tilesets (p. 135) 02021-02-14 (updated 02021-02-24)
(7 minutes)
• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Generating novel unique pronounceable identifiers with letter
frequency data (p. 239) 02021-03-10 (updated 02021-03-22)
(11 minutes)
• Statistics on the present and future of energy in the People’s
Republic of China (p. 316) 02021-04-01 (updated 02021-04-08)
(10 minutes)
• Stochastically generated self-amalgamating tape variations for
composite fabrication (p. 510) 02021-07-02 (updated 02021-12-30)
(26 minutes)
• Memory view (p. 539) 02021-07-09 (updated 02021-12-30)
(6 minutes)
• Sorption vacuum pumps really can’t operate continuously (p. 767)
02021-08-24 (updated 02021-09-11) (5 minutes)
• Deriving binary search (p. 855) 02021-10-01 (updated 02021-12-30)
(5 minutes)
• Spanish phonology (p. 867) 02021-10-05 (updated 02021-12-31)
(15 minutes)
• Balanced ropes (p. 948) 02021-10-16 (updated 02021-12-30)
(7 minutes)

Notes concerning “Pulsed
machinery”

• Forming steel with copper instead of vice versa (p. 344)
02021-04-16 (updated 02021-06-12) (2 minutes)
• A boiler for submillisecond steam pulses (p. 361) 02021-04-28
(updated 02021-12-30) (10 minutes)
• Micro impact driver (p. 427) 02021-06-02 (updated 02021-06-12)
(2 minutes)
• Sonic screwdriver resonance (p. 527) 02021-07-06 (updated
02021-12-30) (11 minutes)
• Switching kiloamps in microseconds (p. 804) 02021-09-09 (updated
02021-12-30) (1 minute)
• Spot welding (p. 805) 02021-09-09 (updated 02021-12-30)
(8 minutes)
• The spark-pen pointing device (p. 921) 02021-10-10 (updated
02021-10-12) (1 minute)
• Ranking MOSFETs for, say, rapid localized electrolysis to make
optics (p. 938) 02021-10-11 (updated 02021-12-30) (8 minutes)
• Triggering a spark gap with an exploding wire (p. 953) 02021-10-19
(updated 02021-12-30) (1 minute)
• Triggering a spark gap with low jitter using ultraviolet LEDs? (p.
954) 02021-10-20 (updated 02021-10-23) (8 minutes)
• Implementation and applications of low-voltage Marx generators
with solid-state avalanche breakdown? (p. 960) 02021-10-20
(updated 02021-12-31) (39 minutes)
• Simplest blinker (p. 1053) 02021-12-01 (updated 02021-12-30)
(9 minutes)

Notes concerning “Frrickin’
lasers!”

• Broken hard disks are the cheapest source of ultraprecision
components (p. 425) 02021-06-02 (updated 02021-06-12) (3 minutes)

• Micro impact driver (p. 427) 02021-06-02 (updated 02021-06-12)
(2 minutes)
• Subnanosecond thermochromic light modulation for real-time
holography and displays (p. 531) 02021-07-06 (updated 02021-12-30)
(8 minutes)
• Constant current buck (p. 708) 02021-08-10 (updated 02021-08-15)
(4 minutes)
• Iodine patterning (p. 713) 02021-08-11 (updated 02021-08-15)
(1 minute)
• Selective laser sintering of copper (p. 775) 02021-08-30 (updated
02021-12-30) (6 minutes)
• Patterning metal surfaces by coating decomposition with lasers or
plasma? (p. 795) 02021-09-03 (updated 02021-12-30) (7 minutes)
• The sol-gel transition and selective gelling for 3-D printing (p. 858)
02021-10-03 (updated 02021-12-30) (6 minutes)
• Trying to quantify relative speeds of different digital fabrication
processes with “matter bandwidth” (p. 946) 02021-10-15 (updated
02021-12-30) (5 minutes)
• Adversarial control (p. 987) 02021-10-25 (updated 02021-12-30)
(13 minutes)
• At small scales, electrowinning may be cheaper than smelting (p.
1029) 02021-11-21 (updated 02021-12-30) (25 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)

Notes concerning “Ghettobotics”

• Notes on simulating a ZVS converter (Baxandall converter) (p. 70)
02021-01-16 (6 minutes)
• A ghetto linear voltage regulator from discrete components (p. 73)
02021-01-21 (updated 02021-01-27) (10 minutes)
• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• Bench supply (p. 250) 02021-03-19 (updated 02021-12-30)
(25 minutes)
• Cheap cutting jig (p. 373) 02021-05-06 (updated 02021-12-30)
(1 minute)
• Weighing an eyelash on an improvised Kibble balance (p. 382)
02021-05-08 (updated 02021-12-30) (3 minutes)
• Ghetto electrical discharge machining (EDM) (p. 423) 02021-05-31
(updated 02021-12-30) (5 minutes)
• Broken hard disks are the cheapest source of ultraprecision
components (p. 425) 02021-06-02 (updated 02021-06-12) (3 minutes)

• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Weighing balance design (p. 799) 02021-09-06 (updated
02021-12-30) (9 minutes)
• Capacitive linear encoder sensors (p. 1056) 02021-12-11 (updated
02021-12-30) (7 minutes)
• Ghetto electrochromic displays for ultra-low-power computing? (p.
1082) 02021-12-16 (updated 02021-12-30) (9 minutes)

Notes concerning “Energy”

• The use of silver in solar cells (p. 112) 02021-02-02 (updated
02021-09-11) (8 minutes)
• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• Statistics on the present and future of energy in the People’s
Republic of China (p. 316) 02021-04-01 (updated 02021-04-08)
(10 minutes)
• A bargain-basement Holter monitor with a BOM under US$2.50
(p. 323) 02021-04-07 (updated 02021-07-27) (33 minutes)
• Logarithmic low-power SERDES (p. 334) 02021-04-08 (4 minutes)

• Nuclear energy is the Amiga of energy sources (p. 434) 02021-06-14
(updated 02021-07-27) (3 minutes)
• Aluminum fuel (p. 603) 02021-07-17 (updated 02021-12-30)
(2 minutes)
• Heating a shower tank with portable TCES? (p. 714) 02021-08-11
(updated 02021-08-15) (6 minutes)
• The relation between solar-panel efficiency for air conditioning and
insulation thickness (p. 941) 02021-10-11 (updated 02021-12-30)
(3 minutes)
• New nuclear power in the People’s Republic of China (p. 1007)
02021-11-09 (updated 02021-12-30) (2 minutes)
• Regenerative muffle kiln (p. 1108) 02021-12-21 (updated
02021-12-30) (19 minutes)
• Photoemissive power (p. 1124) 02021-12-23 (updated 02021-12-28)
(15 minutes)

Notes concerning “Bootstrapping”

• Can you get JLCPCB to fabricate a CPU for you affordably from
“basic” parts? (p. 347) 02021-04-17 (updated 02021-12-30)
(9 minutes)
• Weighing an eyelash on an improvised Kibble balance (p. 382)
02021-05-08 (updated 02021-12-30) (3 minutes)
• How little code can a filesystem be? (p. 438) 02021-06-16 (updated
02021-07-27) (1 minute)
• Self hosting kernel (p. 452) 02021-06-21 (updated 02021-12-30)
(1 minute)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• Subset of C for the simplest self-compiling compiler (p. 717)
02021-08-12 (updated 02021-12-30) (6 minutes)
• Weighing balance design (p. 799) 02021-09-06 (updated
02021-12-30) (9 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)
• Triggering a spark gap with an exploding wire (p. 953) 02021-10-19
(updated 02021-12-30) (1 minute)
• Capacitive linear encoder sensors (p. 1056) 02021-12-11 (updated
02021-12-30) (7 minutes)
• Ghetto electrochromic displays for ultra-low-power computing? (p.
1082) 02021-12-16 (updated 02021-12-30) (9 minutes)

Notes concerning “Safe
programming languages”

• Principled APL redux (p. 22) 02021-01-03 (updated 02021-12-31)
(12 minutes)
• First class locations (p. 27) 02021-01-04 (3 minutes)
• Transactional editor (p. 35) 02021-01-14 (updated 02021-01-15)
(73 minutes)
• How do you fit a high-level language into a microcontroller? Let’s
look at BBN Lisp (p. 160) 02021-02-23 (updated 02021-08-18)
(76 minutes)
• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Veskeno is a “fantasy platform” like TIC-80 (p. 267) 02021-03-21
(updated 02021-03-22) (3 minutes)
• Some notes on reading Chris Seaton’s TruffleRuby dissertation (p.
269) 02021-03-21 (updated 02021-03-22) (16 minutes)
• Running scripts once per frame for guaranteed GUI responsivity (p.
303) 02021-03-23 (updated 02021-10-12) (7 minutes)
• Safe FORTH with the FORTRAN memory model? (p. 351)
02021-04-21 (updated 02021-06-12) (2 minutes)
• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)

Notes concerning “Math”

• Fibonacci scan (p. 31) 02021-01-10 (updated 02021-01-15)
(1 minute)
• Some notes on compiling and notations for grammars, starting from
the inspiring RPN example in Parson (p. 57) 02021-01-15 (updated
02021-12-31) (15 minutes)
• Threechet (p. 140) 02021-02-16 (updated 02021-02-24) (4 minutes)

• Recursive residue number systems? (p. 259) 02021-03-20 (updated
02021-03-22) (8 minutes)
• The nature of mathematical discourse (p. 418) 02021-05-27
(updated 02021-12-30) (5 minutes)
• Minkowski deconvolution (p. 428) 02021-06-02 (updated
02021-12-30) (6 minutes)
• The algebra of N-ary relations (p. 432) 02021-06-14 (updated
02021-07-27) (4 minutes)
• Base 3 gage blocks (p. 468) 02021-06-27 (updated 02021-12-30)
(5 minutes)
• Binomial coefficients and the dimensionality of spaces of
polynomials (p. 957) 02021-10-20 (updated 02021-12-30) (4 minutes)

• Finite element analysis with sparse approximations (p. 959)
02021-10-20 (updated 02021-12-30) (2 minutes)
• Orthogonal rational vectors (p. 997) 02021-11-04 (updated
02021-12-30) (4 minutes)

Notes concerning “Lisp”

• Layout typescript (p. 29) 02021-01-04 (5 minutes)
• Transactional editor (p. 35) 02021-01-14 (updated 02021-01-15)
(73 minutes)
• How do you fit a high-level language into a microcontroller? Let’s
look at BBN Lisp (p. 160) 02021-02-23 (updated 02021-08-18)
(76 minutes)
• Some notes on IPL-VI, Lisp’s 01958 precursor (p. 196) 02021-03-02
(4 minutes)
• Vaughan Pratt and Henry Baker’s COMFY control-flow
combinators (p. 234) 02021-03-04 (updated 02021-03-20)
(8 minutes)
• Garbage-collected allocation performance on current computers (p.
245) 02021-03-13 (updated 02021-04-08) (4 minutes)
• Open coded primitives (p. 283) 02021-03-22 (26 minutes)
• Minor improvements to pattern matching (p. 306) 02021-03-24
(updated 02021-04-08) (10 minutes)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)

Notes concerning
“Assembly-language
programming”

• Compiling machine-code loops to pipelined dataflow graphs (p. 81)
02021-01-23 (updated 02021-01-27) (2 minutes)
• Some preliminary notes on the amazing RISC-V architecture (p.
82) 02021-01-24 (updated 02021-07-27) (29 minutes)
• Variable length unaligned bytecode (p. 199) 02021-03-02 (updated
02021-03-03) (4 minutes)
• Open coded primitives (p. 283) 02021-03-22 (26 minutes)
• Manually writing code in static single assignment (SSA) form,
inspired by Kemeny’s DOPE, isn’t worth it (p. 353) 02021-04-21
(updated 02021-06-12) (3 minutes)
• Faygoo: a yantra-smashing ersatz version of Piumarta and Warth’s
COLA (p. 570) 02021-07-14 (updated 02021-12-30) (17 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)
• Fung’s “I can’t believe it can sort” algorithm and others (p. 864)
02021-10-05 (updated 02021-12-30) (5 minutes)
• The astounding UI responsivity of PDP-10 DDT on ITS (p. 972)
02021-10-22 (updated 02021-10-23) (28 minutes)

Notes concerning “Power
supplies”

• Notes on simulating a ZVS converter (Baxandall converter) (p. 70)
02021-01-16 (6 minutes)
• A ghetto linear voltage regulator from discrete components (p. 73)
02021-01-21 (updated 02021-01-27) (10 minutes)
• Trying to design a simple switchmode power supply using
Schmitt-trigger relaxation oscillators (p. 92) 02021-01-26 (updated
02021-01-27) (32 minutes)
• Bench supply (p. 250) 02021-03-19 (updated 02021-12-30)
(25 minutes)
• Arc maker (p. 695) 02021-08-07 (updated 02021-12-30)
(11 minutes)
• Power transistors (p. 700) 02021-08-07 (updated 02021-12-30)
(12 minutes)
• Constant current buck (p. 708) 02021-08-10 (updated 02021-08-15)
(4 minutes)
• Switching kiloamps in microseconds (p. 804) 02021-09-09 (updated
02021-12-30) (1 minute)
• Ranking MOSFETs for, say, rapid localized electrolysis to make
optics (p. 938) 02021-10-11 (updated 02021-12-30) (8 minutes)
• An even simpler offline power supply than a capacitive dropper,
with a 7¢ BOM (p. 943) 02021-10-14 (updated 02021-12-30)
(7 minutes)

Notes concerning “Graphics”

• ASCII art, but in Unicode, with Braille and other alternatives (p.
128) 02021-02-10 (updated 02021-02-24) (9 minutes)
• Skew tilesets (p. 135) 02021-02-14 (updated 02021-02-24)
(7 minutes)
• Threechet (p. 140) 02021-02-16 (updated 02021-02-24) (4 minutes)

• Thumbnail views in a Unicode character-cell terminal with Braille
(p. 142) 02021-02-17 (updated 02021-02-24) (1 minute)
• Beyond overstrike (p. 922) 02021-10-10 (updated 02021-12-30)
(13 minutes)
• Pipelined piece chain painting (p. 926) 02021-10-10 (updated
02021-12-30) (23 minutes)
• Constant weight dithering (p. 991) 02021-10-28 (updated
02021-12-30) (5 minutes)
• Paeth prediction and vector quantization (p. 1005) 02021-11-06
(updated 02021-12-30) (1 minute)
• Rendering 3-D graphics with PINNs and GANs? (p. 1010)
02021-11-11 (updated 02021-12-30) (10 minutes)
• A simple 2-D programmable graphics pipeline to unify tiles and
palettes (p. 1022) 02021-11-18 (updated 02021-12-30) (6 minutes)

Notes concerning “Compilers”

• Principled APL redux (p. 22) 02021-01-03 (updated 02021-12-31)
(12 minutes)
• Trie PEGs (p. 53) 02021-01-15 (4 minutes)
• Some notes on compiling and notations for grammars, starting from
the inspiring RPN example in Parson (p. 57) 02021-01-15 (updated
02021-12-31) (15 minutes)
• Vaughan Pratt and Henry Baker’s COMFY control-flow
combinators (p. 234) 02021-03-04 (updated 02021-03-20)
(8 minutes)
• Some notes on reading Chris Seaton’s TruffleRuby dissertation (p.
269) 02021-03-21 (updated 02021-03-22) (16 minutes)
• Open coded primitives (p. 283) 02021-03-22 (26 minutes)
• Faygoo: a yantra-smashing ersatz version of Piumarta and Warth’s
COLA (p. 570) 02021-07-14 (updated 02021-12-30) (17 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)
• Subset of C for the simplest self-compiling compiler (p. 717)
02021-08-12 (updated 02021-12-30) (6 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)

Notes concerning “Clay”

• Thixotropic electrodeposition (p. 372) 02021-05-04 (updated
02021-12-31) (2 minutes)
• Cheap cutting jig (p. 373) 02021-05-06 (updated 02021-12-30)
(1 minute)
• Clay-filled PLA filament for firing to ceramic (p. 396) 02021-05-17
(updated 02021-12-30) (1 minute)
• Cutting clay (p. 400) 02021-05-19 (updated 02021-12-30)
(10 minutes)
• Clay wire cutter (p. 409) 02021-05-21 (updated 02021-12-30)
(2 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Spin-coating clay-filled plastics to make composites with high
anisotropic filler loadings (p. 521) 02021-07-02 (updated
02021-12-30) (4 minutes)
• Leaf vein roof (p. 600) 02021-07-16 (updated 02021-09-11)
(9 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Regenerative muffle kiln (p. 1108) 02021-12-21 (updated
02021-12-30) (19 minutes)

Notes concerning “Aluminum”

• Fresnel mirror electropolishing (p. 377) 02021-05-08 (updated
02021-12-30) (6 minutes)
• Metal welding fuel (p. 411) 02021-05-23 (updated 02021-12-30)
(6 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• Aluminum fuel (p. 603) 02021-07-17 (updated 02021-12-30)
(2 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• Maximizing phosphate density from aqueous reaction (p. 757)
02021-08-21 (updated 02021-12-30) (8 minutes)
• An aluminum pencil for marking iron? (p. 1001) 02021-11-06
(updated 02021-12-30) (2 minutes)
• At small scales, electrowinning may be cheaper than smelting (p.
1029) 02021-11-21 (updated 02021-12-30) (25 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)
• Aluminum refining (p. 1106) 02021-12-20 (updated 02021-12-30)
(3 minutes)

Notes concerning “Welding”

• Electroforming rivets (p. 410) 02021-05-22 (updated 02021-12-30)
(2 minutes)
• Metal welding fuel (p. 411) 02021-05-23 (updated 02021-12-30)
(6 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Tetrahedral expanded metal (p. 593) 02021-07-16 (updated
02021-07-27) (3 minutes)
• Arc maker (p. 695) 02021-08-07 (updated 02021-12-30)
(11 minutes)
• Electrodeposition welding (p. 769) 02021-08-25 (updated
02021-09-11) (2 minutes)
• Negative feedback control to prevent runaway positive feedback in
3-D MIG welding printing (p. 777) 02021-08-30 (updated
02021-12-30) (3 minutes)
• Spot welding (p. 805) 02021-09-09 (updated 02021-12-30)
(8 minutes)
• Layers plus electroforming (p. 1100) 02021-12-16 (updated
02021-12-30) (7 minutes)

Notes concerning “Virtual
machines”

• How do you fit a high-level language into a microcontroller? Let’s
look at BBN Lisp (p. 160) 02021-02-23 (updated 02021-08-18)
(76 minutes)
• Variable length unaligned bytecode (p. 199) 02021-03-02 (updated
02021-03-03) (4 minutes)
• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Veskeno is a “fantasy platform” like TIC-80 (p. 267) 02021-03-21
(updated 02021-03-22) (3 minutes)
• Some notes on reading Chris Seaton’s TruffleRuby dissertation (p.
269) 02021-03-21 (updated 02021-03-22) (16 minutes)
• .xosm: experimental obvious stack machine (p. 274) 02021-03-21
(updated 02021-03-24) (20 minutes)
• Leaf hypertext (p. 380) 02021-05-08 (updated 02021-12-30)
(3 minutes)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)

Notes concerning “Precision”

• Weighing an eyelash on an improvised Kibble balance (p. 382)
02021-05-08 (updated 02021-12-30) (3 minutes)
• Broken hard disks are the cheapest source of ultraprecision
components (p. 425) 02021-06-02 (updated 02021-06-12) (3 minutes)

• Minkowski deconvolution (p. 428) 02021-06-02 (updated
02021-12-30) (6 minutes)
• Electrolytic glass machining (p. 477) 02021-06-28 (updated
02021-12-30) (6 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Weighing balance design (p. 799) 02021-09-06 (updated
02021-12-30) (9 minutes)
• Wire brush microscope (p. 1006) 02021-11-06 (updated
02021-12-30) (1 minute)
• Vernier indicator (p. 1040) 02021-11-22 (updated 02021-12-30)
(6 minutes)
• Capacitive linear encoder sensors (p. 1056) 02021-12-11 (updated
02021-12-30) (7 minutes)

Notes concerning “Phosphates”

• More cements (p. 466) 02021-06-26 (updated 02021-08-15)
(5 minutes)
• Electrolytic berlinite (p. 561) 02021-07-12 (updated 02021-12-30)
(7 minutes)
• SHS of magnesium phosphate (p. 608) 02021-07-22 (updated
02021-07-27) (3 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Cola flavor (p. 707) 02021-08-10 (updated 02021-08-15)
(2 minutes)
• Maximizing phosphate density from aqueous reaction (p. 757)
02021-08-21 (updated 02021-12-30) (8 minutes)
• Fast electrolytic mineral accretion (seacrete) for digital fabrication?
(p. 779) 02021-09-01 (updated 02021-12-30) (52 minutes)
• Solid rock on a gossamer skeleton through exponential deposition
(p. 1076) 02021-12-15 (updated 02021-12-30) (11 minutes)

Notes concerning “Foam”

• Clay wire cutter (p. 409) 02021-05-21 (updated 02021-12-30)
(2 minutes)
• More cements (p. 466) 02021-06-26 (updated 02021-08-15)
(5 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Glass foam (p. 595) 02021-07-16 (updated 02021-08-15)
(17 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• Sandwich panel optimization (p. 754) 02021-08-21 (updated
02021-09-11) (3 minutes)
• Glass wood (p. 755) 02021-08-21 (updated 02021-12-30)
(4 minutes)
• Blowing agents (p. 847) 02021-09-29 (updated 02021-12-30)
(4 minutes)
• Solid rock on a gossamer skeleton through exponential deposition
(p. 1076) 02021-12-15 (updated 02021-12-30) (11 minutes)

Notes concerning “ECM”

• Fresnel mirror electropolishing (p. 377) 02021-05-08 (updated
02021-12-30) (6 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• Layered ECM (p. 473) 02021-06-27 (updated 02021-12-30)
(2 minutes)
• Can you use stabilized cubic zirconia as an ECM cathode in molten
salt? (p. 475) 02021-06-27 (updated 02021-12-30) (3 minutes)
• Electrolytic glass machining (p. 477) 02021-06-28 (updated
02021-12-30) (6 minutes)
• ECM for machining nonmetals? (p. 523) 02021-07-05 (updated
02021-07-27) (11 minutes)
• Fast-slicing ECM (p. 802) 02021-09-08 (updated 02021-12-30)
(3 minutes)
• Some notes on Bhattacharyya’s ECM book (p. 1043) 02021-11-25
(updated 02021-12-30) (11 minutes)
• Layers plus electroforming (p. 1100) 02021-12-16 (updated
02021-12-30) (7 minutes)

Notes concerning “Composites”

• Stochastically generated self-amalgamating tape variations for
composite fabrication (p. 510) 02021-07-02 (updated 02021-12-30)
(26 minutes)
• Fiberglass CMCs? (p. 588) 02021-07-15 (updated 02021-07-27)
(8 minutes)
• Leaf vein roof (p. 600) 02021-07-16 (updated 02021-09-11)
(9 minutes)
• Sandwich panel optimization (p. 754) 02021-08-21 (updated
02021-09-11) (3 minutes)
• Glass wood (p. 755) 02021-08-21 (updated 02021-12-30)
(4 minutes)
• Maximizing phosphate density from aqueous reaction (p. 757)
02021-08-21 (updated 02021-12-30) (8 minutes)
• Fast electrolytic mineral accretion (seacrete) for digital fabrication?
(p. 779) 02021-09-01 (updated 02021-12-30) (52 minutes)
• Rock-wool-filled composites (p. 798) 02021-09-03 (updated
02021-12-30) (2 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)

Notes concerning
“Composability”

• Skew tilesets (p. 135) 02021-02-14 (updated 02021-02-24)
(7 minutes)
• Threechet (p. 140) 02021-02-16 (updated 02021-02-24) (4 minutes)

• Panelization in PCB manufacturing (p. 193) 02021-02-25 (updated
02021-02-26) (7 minutes)
• Base 3 gage blocks (p. 468) 02021-06-27 (updated 02021-12-30)
(5 minutes)
• Rator-port GUIs (p. 496) 02021-06-29 (updated 02021-12-30)
(26 minutes)
• A construction set using SHS (p. 765) 02021-08-24 (updated
02021-09-11) (5 minutes)
• An algebra of partial functions for interactively composing programs
(p. 933) 02021-10-10 (updated 02021-12-30) (3 minutes)
• Two finger multitouch (p. 1059) 02021-12-11 (updated
02021-12-30) (3 minutes)
• The Habitaculum: a modular dwelling machine (p. 1061)
02021-12-13 (updated 02021-12-31) (16 minutes)

Notes concerning “Waterglass”

• Verstickulite (p. 457) 02021-06-23 (updated 02021-07-27)
(3 minutes)
• Powder-bed 3-D printing with a sacrificial binder (p. 506)
02021-06-30 (updated 02021-12-30) (12 minutes)
• Potential local sources and prices of refractory materials (p. 566)
02021-07-14 (updated 02021-09-11) (9 minutes)
• Glass foam (p. 595) 02021-07-16 (updated 02021-08-15)
(17 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• Waterglass “Loctite”? (p. 845) 02021-09-22 (updated 02021-12-30)
(1 minute)
• Solid rock on a gossamer skeleton through exponential deposition
(p. 1076) 02021-12-15 (updated 02021-12-30) (11 minutes)
• Xerogel compacting (p. 1119) 02021-12-22 (updated 02021-12-30)
(12 minutes)

Notes concerning “Small is
beautiful”

• Chat over a content-centric network (p. 55) 02021-01-15 (updated
02021-01-16) (3 minutes)
• How little code can a filesystem be? (p. 438) 02021-06-16 (updated
02021-07-27) (1 minute)
• Self hosting kernel (p. 452) 02021-06-21 (updated 02021-12-30)
(1 minute)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• Faygoo: a yantra-smashing ersatz version of Piumarta and Warth’s
COLA (p. 570) 02021-07-14 (updated 02021-12-30) (17 minutes)
• Subset of C for the simplest self-compiling compiler (p. 717)
02021-08-12 (updated 02021-12-30) (6 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)
• Fung’s “I can’t believe it can sort” algorithm and others (p. 864)
02021-10-05 (updated 02021-12-30) (5 minutes)

Notes concerning “Sensors”

• Phased-array imaging sonar from a mesh network of self-localizing
sensor nodes (p. 358) 02021-04-27 (updated 02021-12-30) (8 minutes)

• Differential filming (p. 374) 02021-05-07 (updated 02021-12-30)
(1 minute)
• Minkowski deconvolution (p. 428) 02021-06-02 (updated
02021-12-30) (6 minutes)
• Compliance spectroscopy (p. 849) 02021-09-29 (updated
02021-12-30) (4 minutes)
• Viscoelastic probing (p. 1000) 02021-11-04 (updated 02021-12-30)
(2 minutes)
• Wire brush microscope (p. 1006) 02021-11-06 (updated
02021-12-30) (1 minute)
• Aqueous scanning probe microscopy (p. 1013) 02021-11-12 (updated
02021-12-30) (7 minutes)
• MOSFET body diodes as Geiger counter avalanche detectors? (p.
1103) 02021-12-17 (updated 02021-12-30) (1 minute)

Notes concerning “Programming
languages”

• Principled APL redux (p. 22) 02021-01-03 (updated 02021-12-31)
(12 minutes)
• First class locations (p. 27) 02021-01-04 (3 minutes)
• Minor improvements to pattern matching (p. 306) 02021-03-24
(updated 02021-04-08) (10 minutes)
• :fq0zl, a normal-order text macro language (p. 336) 02021-04-09
(updated 02021-07-27) (14 minutes)
• Safe FORTH with the FORTRAN memory model? (p. 351)
02021-04-21 (updated 02021-06-12) (2 minutes)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)
• An algebra of partial functions for interactively composing programs
(p. 933) 02021-10-10 (updated 02021-12-30) (3 minutes)

Notes concerning “Ceramic”

• Thixotropic electrodeposition (p. 372) 02021-05-04 (updated
02021-12-31) (2 minutes)
• Cheap cutting jig (p. 373) 02021-05-06 (updated 02021-12-30)
(1 minute)
• Clay-filled PLA filament for firing to ceramic (p. 396) 02021-05-17
(updated 02021-12-30) (1 minute)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Firing talc (p. 576) 02021-07-14 (updated 02021-12-30)
(17 minutes)
• Leaf vein roof (p. 600) 02021-07-16 (updated 02021-09-11)
(9 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Regenerative muffle kiln (p. 1108) 02021-12-21 (updated
02021-12-30) (19 minutes)

Notes concerning “C”

• First class locations (p. 27) 02021-01-04 (3 minutes)
• Chat over a content-centric network (p. 55) 02021-01-15 (updated
02021-01-16) (3 minutes)
• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)
• Subset of C for the simplest self-compiling compiler (p. 717)
02021-08-12 (updated 02021-12-30) (6 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)
• Some notes on perusing the Udanax Green codebase (p. 860)
02021-10-05 (updated 02021-10-08) (12 minutes)
• Fung’s “I can’t believe it can sort” algorithm and others (p. 864)
02021-10-05 (updated 02021-12-30) (5 minutes)

Notes concerning “Real time”

• Relayout with heaps (p. 32) 02021-01-10 (updated 02021-01-15)
(6 minutes)
• Garbage-collected allocation performance on current computers (p.
245) 02021-03-13 (updated 02021-04-08) (4 minutes)
• Running scripts once per frame for guaranteed GUI responsivity (p.
303) 02021-03-23 (updated 02021-10-12) (7 minutes)
• Notes on what would be needed to drive a PS/2 keyboard from an
Arduino (p. 447) 02021-06-20 (updated 02021-12-30) (12 minutes)
• Rator-port GUIs (p. 496) 02021-06-29 (updated 02021-12-30)
(26 minutes)
• Ropes with constant-time concatenation and equality comparisons
with monoidal hash consing (p. 619) 02021-07-27 (15 minutes)
• Lazy heapsort (p. 761) 02021-08-22 (updated 02021-09-11)
(6 minutes)

Notes concerning “Higher order
programming”

• Leaf hypertext (p. 380) 02021-05-08 (updated 02021-12-30)
(3 minutes)
• Rator-port GUIs (p. 496) 02021-06-29 (updated 02021-12-30)
(26 minutes)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• Faygoo: a yantra-smashing ersatz version of Piumarta and Warth’s
COLA (p. 570) 02021-07-14 (updated 02021-12-30) (17 minutes)
• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)

Notes concerning “Hand tools”

• Micro impact driver (p. 427) 02021-06-02 (updated 02021-06-12)
(2 minutes)
• Sonic screwdriver resonance (p. 527) 02021-07-06 (updated
02021-12-30) (11 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Thread rolling roller screw (p. 999) 02021-11-04 (updated
02021-12-30) (1 minute)
• An aluminum pencil for marking iron? (p. 1001) 02021-11-06
(updated 02021-12-30) (2 minutes)
• Vernier indicator (p. 1040) 02021-11-22 (updated 02021-12-30)
(6 minutes)
• Toggling eccentrics for removing preload from spring clamps (p.
1129) 02021-12-28 (updated 02021-12-31) (22 minutes)

Notes concerning “Falstad’s circuit
simulator”

• Notes on simulating a ZVS converter (Baxandall converter) (p. 70)
02021-01-16 (6 minutes)
• A ghetto linear voltage regulator from discrete components (p. 73)
02021-01-21 (updated 02021-01-27) (10 minutes)
• Trying to design a simple switchmode power supply using
Schmitt-trigger relaxation oscillators (p. 92) 02021-01-26 (updated
02021-01-27) (32 minutes)
• Snap logic, revisited, and four-phase logic (p. 115) 02021-02-08
(9 minutes)
• Bench supply (p. 250) 02021-03-19 (updated 02021-12-30)
(25 minutes)
• Failing to stabilize the amplitude of an opamp phase-delay oscillator
(p. 298) 02021-03-23 (updated 02021-03-24) (10 minutes)
• Three phase logic (p. 364) 02021-04-30 (updated 02021-07-27)
(9 minutes)

Notes concerning “Facepalm”

• Trying and failing to design an efficient index for folksonomy data
based on BDDs (p. 108) 02021-01-26 (updated 02021-01-27)
(7 minutes)
• Garbage-collected allocation performance on current computers (p.
245) 02021-03-13 (updated 02021-04-08) (4 minutes)
• Recursive residue number systems? (p. 259) 02021-03-20 (updated
02021-03-22) (8 minutes)
• Failing to stabilize the amplitude of an opamp phase-delay oscillator
(p. 298) 02021-03-23 (updated 02021-03-24) (10 minutes)
• Manually writing code in static single assignment (SSA) form,
inspired by Kemeny’s DOPE, isn’t worth it (p. 353) 02021-04-21
(updated 02021-06-12) (3 minutes)
• Simple linear-time linear-space nested delimiter parsing (p. 459)
02021-06-24 (updated 02021-12-30) (1 minute)
• Micro ramjet (p. 1038) 02021-11-22 (updated 02021-12-30)
(3 minutes)

Notes concerning “Argentina”

• Why Bitcoin is puzzling to people in rich countries (p. 312)
02021-03-31 (updated 02021-07-27) (10 minutes)
• Notes on pricing of locally available oscilloscopes (p. 346)
02021-04-16 (updated 02021-07-27) (2 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Potential local sources and prices of refractory materials (p. 566)
02021-07-14 (updated 02021-09-11) (9 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• Argentine pricing of PEX pipe and alternatives for phase-change
fluids (p. 699) 02021-08-07 (updated 02021-12-30) (2 minutes)
• Dense fillers (p. 772) 02021-08-25 (updated 02021-12-30)
(7 minutes)

Notes concerning “2-D cutting”

• Cheap cutting jig (p. 373) 02021-05-06 (updated 02021-12-30)
(1 minute)
• Cutting clay (p. 400) 02021-05-19 (updated 02021-12-30)
(10 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Trying to quantify relative speeds of different digital fabrication
processes with “matter bandwidth” (p. 946) 02021-10-15 (updated
02021-12-30) (5 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)
• Layers plus electroforming (p. 1100) 02021-12-16 (updated
02021-12-30) (7 minutes)
• Toggling eccentrics for removing preload from spring clamps (p.
1129) 02021-12-28 (updated 02021-12-31) (22 minutes)

Notes concerning “Terminals”

• First class locations (p. 27) 02021-01-04 (3 minutes)
• Layout typescript (p. 29) 02021-01-04 (5 minutes)
• ASCII art, but in Unicode, with Braille and other alternatives (p.
128) 02021-02-10 (updated 02021-02-24) (9 minutes)
• Beyond overstrike (p. 922) 02021-10-10 (updated 02021-12-30)
(13 minutes)
• Pipelined piece chain painting (p. 926) 02021-10-10 (updated
02021-12-30) (23 minutes)
• Beyond op streams (p. 935) 02021-10-11 (updated 02021-12-30)
(3 minutes)

Notes concerning “Solar”

• The use of silver in solar cells (p. 112) 02021-02-02 (updated
02021-09-11) (8 minutes)
• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• Statistics on the present and future of energy in the People’s
Republic of China (p. 316) 02021-04-01 (updated 02021-04-08)
(10 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• The relation between solar-panel efficiency for air conditioning and
insulation thickness (p. 941) 02021-10-11 (updated 02021-12-30)
(3 minutes)
• Photoemissive power (p. 1124) 02021-12-23 (updated 02021-12-28)
(15 minutes)

Notes concerning “Self
replication”

• Forming steel with copper instead of vice versa (p. 344)
02021-04-16 (updated 02021-06-12) (2 minutes)
• How fast do von Neumann probes need to reproduce to colonize
space in our lifetimes? (p. 368) 02021-05-04 (updated 02021-06-12)
(5 minutes)
• Cutting clay (p. 400) 02021-05-19 (updated 02021-12-30)
(10 minutes)
• Firing talc (p. 576) 02021-07-14 (updated 02021-12-30)
(17 minutes)
• Trying to quantify relative speeds of different digital fabrication
processes with “matter bandwidth” (p. 946) 02021-10-15 (updated
02021-12-30) (5 minutes)
• Redundancy in self-replicating systems such as hundred-eyed
chickens (p. 1016) 02021-11-12 (updated 02021-12-30) (4 minutes)

Notes concerning “Systems
architecture”

• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• A kernel you can type commands to (p. 474) 02021-06-27 (updated
02021-12-30) (1 minute)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• Faygoo: a yantra-smashing ersatz version of Piumarta and Warth’s
COLA (p. 570) 02021-07-14 (updated 02021-12-30) (17 minutes)
• A simple 2-D programmable graphics pipeline to unify tiles and
palettes (p. 1022) 02021-11-18 (updated 02021-12-30) (6 minutes)
• Safe decentralized cloud storage (p. 1135) 02021-12-30 (10 minutes)

Notes concerning “Protocols”

• Notes on what would be needed to drive a PS/2 keyboard from an
Arduino (p. 447) 02021-06-20 (updated 02021-12-30) (12 minutes)
• Does USB bitstuffing create a timing-channel vulnerability? (p.
456) 02021-06-22 (updated 02021-12-31) (1 minute)
• Residual stream windowing (p. 752) 02021-08-21 (updated
02021-09-11) (5 minutes)
• Three phase differential data (p. 843) 02021-09-22 (updated
02021-12-30) (4 minutes)
• Pipelined piece chain painting (p. 926) 02021-10-10 (updated
02021-12-30) (23 minutes)
• Safe decentralized cloud storage (p. 1135) 02021-12-30 (10 minutes)

Notes concerning “Post-teletype
terminal design”

• First class locations (p. 27) 02021-01-04 (3 minutes)
• Layout typescript (p. 29) 02021-01-04 (5 minutes)
• A kernel you can type commands to (p. 474) 02021-06-27 (updated
02021-12-30) (1 minute)
• Beyond overstrike (p. 922) 02021-10-10 (updated 02021-12-30)
(13 minutes)
• Pipelined piece chain painting (p. 926) 02021-10-10 (updated
02021-12-30) (23 minutes)
• Beyond op streams (p. 935) 02021-10-11 (updated 02021-12-30)
(3 minutes)

Notes concerning “Physical
computation”

• Snap logic, revisited, and four-phase logic (p. 115) 02021-02-08
(9 minutes)
• When is it better to compute by moving atoms rather than
electrons? (p. 265) 02021-03-21 (updated 02021-03-22) (5 minutes)
• Geneva wheel stopwork (p. 321) 02021-04-07 (updated
02021-04-08) (6 minutes)
• Three phase logic (p. 364) 02021-04-30 (updated 02021-07-27)
(9 minutes)
• Three phase differential data (p. 843) 02021-09-22 (updated
02021-12-30) (4 minutes)
• Simplest blinker (p. 1053) 02021-12-01 (updated 02021-12-30)
(9 minutes)

Notes concerning “Optics”

• Fresnel mirror electropolishing (p. 377) 02021-05-08 (updated
02021-12-30) (6 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• Subnanosecond thermochromic light modulation for real-time
holography and displays (p. 531) 02021-07-06 (updated 02021-12-30)
(8 minutes)
• Ranking MOSFETs for, say, rapid localized electrolysis to make
optics (p. 938) 02021-10-11 (updated 02021-12-30) (8 minutes)
• Rendering 3-D graphics with PINNs and GANs? (p. 1010)
02021-11-11 (updated 02021-12-30) (10 minutes)
• Ghetto electrochromic displays for ultra-low-power computing? (p.
1082) 02021-12-16 (updated 02021-12-30) (9 minutes)

Notes concerning “Minerals”

• The use of silver in solar cells (p. 112) 02021-02-02 (updated
02021-09-11) (8 minutes)
• Electrolytic berlinite (p. 561) 02021-07-12 (updated 02021-12-30)
(7 minutes)
• Making mirabilite and calcite from drywall (p. 564) 02021-07-12
(updated 02021-12-30) (4 minutes)
• Firing talc (p. 576) 02021-07-14 (updated 02021-12-30)
(17 minutes)
• Synthesizing amorphous magnesium silicate (p. 617) 02021-07-25
(updated 02021-08-15) (6 minutes)
• At small scales, electrowinning may be cheaper than smelting (p.
1029) 02021-11-21 (updated 02021-12-30) (25 minutes)

Notes concerning
“Microcontrollers”

• Can you do direct digital synthesis (DDS) at over a gigahertz? (p.
119) 02021-02-08 (updated 02021-02-24) (30 minutes)
• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• How do you fit a high-level language into a microcontroller? Let’s
look at BBN Lisp (p. 160) 02021-02-23 (updated 02021-08-18)
(76 minutes)
• A bargain-basement Holter monitor with a BOM under US$2.50
(p. 323) 02021-04-07 (updated 02021-07-27) (33 minutes)
• Arc maker (p. 695) 02021-08-07 (updated 02021-12-30)
(11 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)

Notes concerning “Metrology”

• iPhone replacement cameras as 6-μs streak cameras (p. 80)
02021-01-22 (updated 02021-12-30) (2 minutes)
• Phased-array imaging sonar from a mesh network of self-localizing
sensor nodes (p. 358) 02021-04-27 (updated 02021-12-30) (8 minutes)

• Weighing an eyelash on an improvised Kibble balance (p. 382)
02021-05-08 (updated 02021-12-30) (3 minutes)
• Base 3 gage blocks (p. 468) 02021-06-27 (updated 02021-12-30)
(5 minutes)
• Weighing balance design (p. 799) 02021-09-06 (updated
02021-12-30) (9 minutes)
• Vernier indicator (p. 1040) 02021-11-22 (updated 02021-12-30)
(6 minutes)

Notes concerning “Magnesium”

• Metal welding fuel (p. 411) 02021-05-23 (updated 02021-12-30)
(6 minutes)
• SHS of magnesium phosphate (p. 608) 02021-07-22 (updated
02021-07-27) (3 minutes)
• Synthesizing reactive magnesia? (p. 615) 02021-07-25 (updated
02021-08-15) (4 minutes)
• Synthesizing amorphous magnesium silicate (p. 617) 02021-07-25
(updated 02021-08-15) (6 minutes)
• Fast electrolytic mineral accretion (seacrete) for digital fabrication?
(p. 779) 02021-09-01 (updated 02021-12-30) (52 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)

Notes concerning “Instruction
sets”

• Some preliminary notes on the amazing RISC-V architecture (p.
82) 02021-01-24 (updated 02021-07-27) (29 minutes)
• Variable length unaligned bytecode (p. 199) 02021-03-02 (updated
02021-03-03) (4 minutes)
• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Veskeno is a “fantasy platform” like TIC-80 (p. 267) 02021-03-21
(updated 02021-03-22) (3 minutes)
• .xosm: experimental obvious stack machine (p. 274) 02021-03-21
(updated 02021-03-24) (20 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)

Notes concerning “Independence”

• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• Can you get JLCPCB to fabricate a CPU for you affordably from
“basic” parts? (p. 347) 02021-04-17 (updated 02021-12-30)
(9 minutes)
• How little code can a filesystem be? (p. 438) 02021-06-16 (updated
02021-07-27) (1 minute)
• Self hosting kernel (p. 452) 02021-06-21 (updated 02021-12-30)
(1 minute)
• Aluminum fuel (p. 603) 02021-07-17 (updated 02021-12-30)
(2 minutes)
• Trying to quantify relative speeds of different digital fabrication
processes with “matter bandwidth” (p. 946) 02021-10-15 (updated
02021-12-30) (5 minutes)

Notes concerning “GUIs”

• Running scripts once per frame for guaranteed GUI responsivity (p.
303) 02021-03-23 (updated 02021-10-12) (7 minutes)
• List of random GUI ideas (p. 370) 02021-05-04 (updated
02021-07-27) (6 minutes)
• Leaf hypertext (p. 380) 02021-05-08 (updated 02021-12-30)
(3 minutes)
• Bead hypertext (p. 455) 02021-06-22 (updated 02021-12-30)
(1 minute)
• Rator-port GUIs (p. 496) 02021-06-29 (updated 02021-12-30)
(26 minutes)
• Two finger multitouch (p. 1059) 02021-12-11 (updated
02021-12-30) (3 minutes)

Notes concerning “End user
programming”

• First class locations (p. 27) 02021-01-04 (3 minutes)
• :fq0zl, a normal-order text macro language (p. 336) 02021-04-09
(updated 02021-07-27) (14 minutes)
• Leaf hypertext (p. 380) 02021-05-08 (updated 02021-12-30)
(3 minutes)
• Wiki models (p. 751) 02021-08-19 (updated 02021-12-30)
(1 minute)
• The astounding UI responsivity of PDP-10 DDT on ITS (p. 972)
02021-10-22 (updated 02021-10-23) (28 minutes)
• Embedding runnable code in text paragraphs for numerical
modeling (p. 1002) 02021-11-06 (updated 02021-12-30) (6 minutes)

Notes concerning “Anisotropic
fillers”

• Acicular low binder pastes (p. 399) 02021-05-19 (updated
02021-12-30) (1 minute)
• Stochastically generated self-amalgamating tape variations for
composite fabrication (p. 510) 02021-07-02 (updated 02021-12-30)
(26 minutes)
• Spin-coating clay-filled plastics to make composites with high
anisotropic filler loadings (p. 521) 02021-07-02 (updated
02021-12-30) (4 minutes)
• Glass wood (p. 755) 02021-08-21 (updated 02021-12-30)
(4 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)
• Xerogel compacting (p. 1119) 02021-12-22 (updated 02021-12-30)
(12 minutes)

Notes concerning
“Thermodynamics”

• A boiler for submillisecond steam pulses (p. 361) 02021-04-28
(updated 02021-12-30) (10 minutes)
• Pocket kiln (p. 704) 02021-08-09 (updated 02021-08-15)
(7 minutes)
• Heating a shower tank with portable TCES? (p. 714) 02021-08-11
(updated 02021-08-15) (6 minutes)
• Spot welding (p. 805) 02021-09-09 (updated 02021-12-30)
(8 minutes)
• Regenerative muffle kiln (p. 1108) 02021-12-21 (updated
02021-12-30) (19 minutes)

Notes concerning “The future”

• The use of silver in solar cells (p. 112) 02021-02-02 (updated
02021-09-11) (8 minutes)
• Statistics on the present and future of energy in the People’s
Republic of China (p. 316) 02021-04-01 (updated 02021-04-08)
(10 minutes)
• How fast do von Neumann probes need to reproduce to colonize
space in our lifetimes? (p. 368) 02021-05-04 (updated 02021-06-12)
(5 minutes)
• New nuclear power in the People’s Republic of China (p. 1007)
02021-11-09 (updated 02021-12-30) (2 minutes)
• Photoemissive power (p. 1124) 02021-12-23 (updated 02021-12-28)
(15 minutes)

Notes concerning “Syntax”

• Some notes on compiling and notations for grammars, starting from
the inspiring RPN example in Parson (p. 57) 02021-01-15 (updated
02021-12-31) (15 minutes)
• Minor improvements to pattern matching (p. 306) 02021-03-24
(updated 02021-04-08) (10 minutes)
• Stack syntax (p. 453) 02021-06-22 (updated 02021-07-27)
(4 minutes)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)

Notes concerning “Steel”

• Forming steel with copper instead of vice versa (p. 344)
02021-04-16 (updated 02021-06-12) (2 minutes)
• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• An aluminum pencil for marking iron? (p. 1001) 02021-11-06
(updated 02021-12-30) (2 minutes)
• At small scales, electrowinning may be cheaper than smelting (p.
1029) 02021-11-21 (updated 02021-12-30) (25 minutes)
• Exotic steel analogues in other metals (p. 1050) 02021-12-01
(updated 02021-12-30) (8 minutes)

Notes concerning “Small things”

• Fresnel mirror electropolishing (p. 377) 02021-05-08 (updated
02021-12-30) (6 minutes)
• Weighing an eyelash on an improvised Kibble balance (p. 382)
02021-05-08 (updated 02021-12-30) (3 minutes)
• Scaling laws (p. 404) 02021-05-19 (updated 02021-12-30)
(8 minutes)
• At small scales, electrowinning may be cheaper than smelting (p.
1029) 02021-11-21 (updated 02021-12-30) (25 minutes)
• Micro ramjet (p. 1038) 02021-11-22 (updated 02021-12-30)
(3 minutes)

Notes concerning “Security”

• Does USB bitstuffing create a timing-channel vulnerability? (p.
456) 02021-06-22 (updated 02021-12-31) (1 minute)
• PBKDF content addressing with keyphrase hashcash: a
non-blockchain attack on Zooko’s Triangle (p. 896) 02021-10-08
(24 minutes)
• Wordlists for maximum drama (p. 904) 02021-10-08 (updated
02021-12-30) (16 minutes)
• Constant weight dithering (p. 991) 02021-10-28 (updated
02021-12-30) (5 minutes)
• Safe decentralized cloud storage (p. 1135) 02021-12-30 (10 minutes)

Notes concerning “Refractory”

• Verstickulite (p. 457) 02021-06-23 (updated 02021-07-27)
(3 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Pocket kiln (p. 704) 02021-08-09 (updated 02021-08-15)
(7 minutes)

Notes concerning “Powder-bed
3-D printing processes”

• Precisely measuring out particulates with a trickler (p. 384)
02021-05-09 (updated 02021-12-30) (17 minutes)
• Acicular low binder pastes (p. 399) 02021-05-19 (updated
02021-12-30) (1 minute)
• Glass powder-bed 3-D printing (p. 490) 02021-06-29 (updated
02021-12-30) (20 minutes)
• Powder-bed 3-D printing with a sacrificial binder (p. 506)
02021-06-30 (updated 02021-12-30) (12 minutes)
• Selective laser sintering of copper (p. 775) 02021-08-30 (updated
02021-12-30) (6 minutes)

Notes concerning “The Portable
Document Format (PDF)”

• PEG-like flexibility for parsing right-to-left? (p. 437) 02021-06-16
(updated 02021-07-27) (2 minutes)
• Notes on the PDF file format (p. 439) 02021-06-16 (updated
02021-07-27) (15 minutes)
• Bead hypertext (p. 455) 02021-06-22 (updated 02021-12-30)
(1 minute)
• Memory view (p. 539) 02021-07-09 (updated 02021-12-30)
(6 minutes)
• Compressed appendable file (p. 606) 02021-07-19 (updated
02021-07-27) (5 minutes)

Notes concerning “Parsing”

• Trie PEGs (p. 53) 02021-01-15 (4 minutes)
• Some notes on compiling and notations for grammars, starting from
the inspiring RPN example in Parson (p. 57) 02021-01-15 (updated
02021-12-31) (15 minutes)
• PEG-like flexibility for parsing right-to-left? (p. 437) 02021-06-16
(updated 02021-07-27) (2 minutes)
• Simple linear-time linear-space nested delimiter parsing (p. 459)
02021-06-24 (updated 02021-12-30) (1 minute)
• Memory view (p. 539) 02021-07-09 (updated 02021-12-30)
(6 minutes)

Notes concerning “Numerical
modeling”

• Wiki models (p. 751) 02021-08-19 (updated 02021-12-30)
(1 minute)
• Finite element analysis with sparse approximations (p. 959)
02021-10-20 (updated 02021-12-30) (2 minutes)
• Implementation and applications of low-voltage Marx generators
with solid-state avalanche breakdown? (p. 960) 02021-10-20
(updated 02021-12-31) (39 minutes)
• Embedding runnable code in text paragraphs for numerical
modeling (p. 1002) 02021-11-06 (updated 02021-12-30) (6 minutes)
• Rendering 3-D graphics with PINNs and GANs? (p. 1010)
02021-11-11 (updated 02021-12-30) (10 minutes)

Notes concerning “Incentives”

• Intel engineering positions considered as a dollar auction (p. 78)
02021-01-21 (updated 02021-01-27) (1 minute)
• Why Bitcoin is puzzling to people in rich countries (p. 312)
02021-03-31 (updated 02021-07-27) (10 minutes)
• Economic history (p. 460) 02021-06-25 (updated 02021-07-27)
(17 minutes)
• Planning Apples to Apples, instead of Planning Poker (p. 851)
02021-09-29 (updated 02021-12-30) (6 minutes)
• Safe decentralized cloud storage (p. 1135) 02021-12-30 (10 minutes)

Notes concerning “FORTH”

• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Safe FORTH with the FORTRAN memory model? (p. 351)
02021-04-21 (updated 02021-06-12) (2 minutes)
• Manually writing code in static single assignment (SSA) form,
inspired by Kemeny’s DOPE, isn’t worth it (p. 353) 02021-04-21
(updated 02021-06-12) (3 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)

Notes concerning “Flexures”

• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Flexural mounts for self-aligning bushings (p. 952) 02021-10-18
(updated 02021-12-30) (3 minutes)
• Ivan Miranda’s snap-pin fasteners and similar snaps (p. 1009)
02021-11-11 (updated 02021-12-30) (3 minutes)
• Vernier indicator (p. 1040) 02021-11-22 (updated 02021-12-30)
(6 minutes)
• Toggling eccentrics for removing preload from spring clamps (p.
1129) 02021-12-28 (updated 02021-12-31) (22 minutes)

Notes concerning “File formats”

• Veskeno is a “fantasy platform” like TIC-80 (p. 267) 02021-03-21
(updated 02021-03-22) (3 minutes)
• Diskstrings: Bernstein’s netstrings for single-pass streaming output
(p. 356) 02021-04-21 (updated 02021-07-27) (4 minutes)
• Notes on the PDF file format (p. 439) 02021-06-16 (updated
02021-07-27) (15 minutes)
• Stack syntax (p. 453) 02021-06-22 (updated 02021-07-27)
(4 minutes)
• Compressed appendable file (p. 606) 02021-07-19 (updated
02021-07-27) (5 minutes)

Notes concerning “Copper”

• Forming steel with copper instead of vice versa (p. 344)
02021-04-16 (updated 02021-06-12) (2 minutes)
• Dense fillers (p. 772) 02021-08-25 (updated 02021-12-30)
(7 minutes)
• Selective laser sintering of copper (p. 775) 02021-08-30 (updated
02021-12-30) (6 minutes)
• At small scales, electrowinning may be cheaper than smelting (p.
1029) 02021-11-21 (updated 02021-12-30) (25 minutes)
• Ghetto electrochromic displays for ultra-low-power computing? (p.
1082) 02021-12-16 (updated 02021-12-30) (9 minutes)

Notes concerning “Cements”

• Verstickulite (p. 457) 02021-06-23 (updated 02021-07-27)
(3 minutes)
• More cements (p. 466) 02021-06-26 (updated 02021-08-15)
(5 minutes)
• Powder-bed 3-D printing with a sacrificial binder (p. 506)
02021-06-30 (updated 02021-12-30) (12 minutes)
• Electrolytic berlinite (p. 561) 02021-07-12 (updated 02021-12-30)
(7 minutes)
• SHS of magnesium phosphate (p. 608) 02021-07-22 (updated
02021-07-27) (3 minutes)

Notes concerning “Bytecode”

• How do you fit a high-level language into a microcontroller? Let’s
look at BBN Lisp (p. 160) 02021-02-23 (updated 02021-08-18)
(76 minutes)
• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)

Notes concerning “Aluminum
foil”

• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• Fast electrolytic mineral accretion (seacrete) for digital fabrication?
(p. 779) 02021-09-01 (updated 02021-12-30) (52 minutes)
• Solid rock on a gossamer skeleton through exponential deposition
(p. 1076) 02021-12-15 (updated 02021-12-30) (11 minutes)

Notes concerning “Vermiculite”

• Verstickulite (p. 457) 02021-06-23 (updated 02021-07-27)
(3 minutes)
• Leaf vein roof (p. 600) 02021-07-16 (updated 02021-09-11)
(9 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• Maximizing phosphate density from aqueous reaction (p. 757)
02021-08-21 (updated 02021-12-30) (8 minutes)

Notes concerning “Transactions”

• Principled APL redux (p. 22) 02021-01-03 (updated 02021-12-31)
(12 minutes)
• Transactional editor (p. 35) 02021-01-14 (updated 02021-01-15)
(73 minutes)
• Can transactions solve the N+1 performance problem on web pages?
(p. 67) 02021-01-16 (8 minutes)
• Running scripts once per frame for guaranteed GUI responsivity (p.
303) 02021-03-23 (updated 02021-10-12) (7 minutes)

Notes concerning “Sparks”

• The spark-pen pointing device (p. 921) 02021-10-10 (updated
02021-10-12) (1 minute)
• Triggering a spark gap with an exploding wire (p. 953) 02021-10-19
(updated 02021-12-30) (1 minute)
• Triggering a spark gap with low jitter using ultraviolet LEDs? (p.
954) 02021-10-20 (updated 02021-10-23) (8 minutes)
• Implementation and applications of low-voltage Marx generators
with solid-state avalanche breakdown? (p. 960) 02021-10-20
(updated 02021-12-31) (39 minutes)

Notes concerning
“Self-propagating
high-temperature synthesis
(SHS)”

• Boosters for self-propagating high-temperature synthesis (SHS) (p.
604) 02021-07-17 (updated 02021-12-30) (4 minutes)
• SHS of magnesium phosphate (p. 608) 02021-07-22 (updated
02021-07-27) (3 minutes)
• Glass wood (p. 755) 02021-08-21 (updated 02021-12-30)
(4 minutes)
• A construction set using SHS (p. 765) 02021-08-24 (updated
02021-09-11) (5 minutes)

Notes concerning “Scanning probe
microscopy”

• Minkowski deconvolution (p. 428) 02021-06-02 (updated
02021-12-30) (6 minutes)
• Compliance spectroscopy (p. 849) 02021-09-29 (updated
02021-12-30) (4 minutes)
• Wire brush microscope (p. 1006) 02021-11-06 (updated
02021-12-30) (1 minute)
• Aqueous scanning probe microscopy (p. 1013) 02021-11-12 (updated
02021-12-30) (7 minutes)

Notes concerning “Reverse Polish
notation (RPN)”

• Some notes on compiling and notations for grammars, starting from
the inspiring RPN example in Parson (p. 57) 02021-01-15 (updated
02021-12-31) (15 minutes)
• How do you fit a high-level language into a microcontroller? Let’s
look at BBN Lisp (p. 160) 02021-02-23 (updated 02021-08-18)
(76 minutes)
• Rator-port GUIs (p. 496) 02021-06-29 (updated 02021-12-30)
(26 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)

Notes concerning “Reading”

• Some notes on perusing the Udanax Green codebase (p. 860)
02021-10-05 (updated 02021-10-08) (12 minutes)
• Some notes on reading parts of Reuleaux’s engineering handbook (p.
1019) 02021-11-17 (updated 02021-12-30) (7 minutes)
• Interesting works that entered the public domain in 02021, in the
US and elsewhere (p. 1024) 02021-11-20 (updated 02021-12-30)
(15 minutes)
• Some notes on Bhattacharyya’s ECM book (p. 1043) 02021-11-25
(updated 02021-12-30) (11 minutes)

Notes concerning “Poly(vinyl
alcohol) (PVA)”

• Multicolor filament (p. 397) 02021-05-17 (updated 02021-12-30)
(5 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• 3-D printing in poly(vinyl alcohol) (p. 1080) 02021-12-15 (updated
02021-12-30) (2 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)

Notes concerning “Program
calculator”

• Vaughan Pratt and Henry Baker’s COMFY control-flow
combinators (p. 234) 02021-03-04 (updated 02021-03-20)
(8 minutes)
• The algebra of N-ary relations (p. 432) 02021-06-14 (updated
02021-07-27) (4 minutes)
• An algebra of partial functions for interactively composing programs
(p. 933) 02021-10-10 (updated 02021-12-30) (3 minutes)
• Example based regexp (p. 984) 02021-10-24 (updated 02021-12-30)
(5 minutes)

Notes concerning “Pascal”

• First class locations (p. 27) 02021-01-04 (3 minutes)
• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)

Notes concerning “Operating
systems”

• Layout typescript (p. 29) 02021-01-04 (5 minutes)
• How little code can a filesystem be? (p. 438) 02021-06-16 (updated
02021-07-27) (1 minute)
• Self hosting kernel (p. 452) 02021-06-21 (updated 02021-12-30)
(1 minute)
• A kernel you can type commands to (p. 474) 02021-06-27 (updated
02021-12-30) (1 minute)

Notes concerning “OCaml”

• Garbage-collected allocation performance on current computers (p.
245) 02021-03-13 (updated 02021-04-08) (4 minutes)
• Open coded primitives (p. 283) 02021-03-22 (26 minutes)
• Minor improvements to pattern matching (p. 306) 02021-03-24
(updated 02021-04-08) (10 minutes)
• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)

Notes concerning “Memory
hardware”

• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• Refreshing Flash memory periodically for archival (p. 198)
02021-03-02 (1 minute)
• A bargain-basement Holter monitor with a BOM under US$2.50
(p. 323) 02021-04-07 (updated 02021-07-27) (33 minutes)
• Beyond overstrike (p. 922) 02021-10-10 (updated 02021-12-30)
(13 minutes)

Notes concerning “Life support”

• Notes on Richards et al.’s nascent catalytic ROS water treatment
process (p. 534) 02021-07-07 (updated 02021-07-27) (14 minutes)
• Leaf vein roof (p. 600) 02021-07-16 (updated 02021-09-11)
(9 minutes)
• The relation between solar-panel efficiency for air conditioning and
insulation thickness (p. 941) 02021-10-11 (updated 02021-12-30)
(3 minutes)
• The Habitaculum: a modular dwelling machine (p. 1061)
02021-12-13 (updated 02021-12-31) (16 minutes)

Notes concerning “Input devices”

• A four-dimensional keyboard matrix made of linear voltage
differential transformers (LVDTs) to get 30 or 180 keys on five pins
(p. 390) 02021-05-12 (updated 02021-12-30) (4 minutes)
• Planetary screw potentiometer (p. 392) 02021-05-12 (updated
02021-12-30) (1 minute)
• Notes on what would be needed to drive a PS/2 keyboard from an
Arduino (p. 447) 02021-06-20 (updated 02021-12-30) (12 minutes)
• The spark-pen pointing device (p. 921) 02021-10-10 (updated
02021-10-12) (1 minute)

Notes concerning “Heating”

• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• Pocket kiln (p. 704) 02021-08-09 (updated 02021-08-15)
(7 minutes)
• Heating a shower tank with portable TCES? (p. 714) 02021-08-11
(updated 02021-08-15) (6 minutes)
• Regenerative muffle kiln (p. 1108) 02021-12-21 (updated
02021-12-30) (19 minutes)

Notes concerning “Glass”

• Electrolytic glass machining (p. 477) 02021-06-28 (updated
02021-12-30) (6 minutes)
• Glass powder-bed 3-D printing (p. 490) 02021-06-29 (updated
02021-12-30) (20 minutes)
• Glass foam (p. 595) 02021-07-16 (updated 02021-08-15)
(17 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)

Notes concerning “Garbage
collection”

• Garbage-collected allocation performance on current computers (p.
245) 02021-03-13 (updated 02021-04-08) (4 minutes)
• Some notes on reading Chris Seaton’s TruffleRuby dissertation (p.
269) 02021-03-21 (updated 02021-03-22) (16 minutes)
• Open coded primitives (p. 283) 02021-03-22 (26 minutes)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)

Notes concerning “Encoding”

• Notes on what would be needed to drive a PS/2 keyboard from an
Arduino (p. 447) 02021-06-20 (updated 02021-12-30) (12 minutes)
• Does USB bitstuffing create a timing-channel vulnerability? (p.
456) 02021-06-22 (updated 02021-12-31) (1 minute)
• Three phase differential data (p. 843) 02021-09-22 (updated
02021-12-30) (4 minutes)
• Constant weight dithering (p. 991) 02021-10-28 (updated
02021-12-30) (5 minutes)

Notes concerning “Editors”

• Transactional editor (p. 35) 02021-01-14 (updated 02021-01-15)
(73 minutes)
• Wiki models (p. 751) 02021-08-19 (updated 02021-12-30)
(1 minute)
• Embedding runnable code in text paragraphs for numerical
modeling (p. 1002) 02021-11-06 (updated 02021-12-30) (6 minutes)
• Chording commands (p. 1047) 02021-11-26 (updated 02021-12-30)
(7 minutes)

Notes concerning “Economics”

• Intel engineering positions considered as a dollar auction (p. 78)
02021-01-21 (updated 02021-01-27) (1 minute)
• The use of silver in solar cells (p. 112) 02021-02-02 (updated
02021-09-11) (8 minutes)
• Why Bitcoin is puzzling to people in rich countries (p. 312)
02021-03-31 (updated 02021-07-27) (10 minutes)
• Economic history (p. 460) 02021-06-25 (updated 02021-07-27)
(17 minutes)

Notes concerning “Dynamic
dispatch”

• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• Faygoo: a yantra-smashing ersatz version of Piumarta and Warth’s
COLA (p. 570) 02021-07-14 (updated 02021-12-30) (17 minutes)
• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)

Notes concerning
“Domain-specific languages
(DSLs)”

• Some notes on compiling and notations for grammars, starting from
the inspiring RPN example in Parson (p. 57) 02021-01-15 (updated
02021-12-31) (15 minutes)
• Memory view (p. 539) 02021-07-09 (updated 02021-12-30)
(6 minutes)
• Example based regexp (p. 984) 02021-10-24 (updated 02021-12-30)
(5 minutes)
• DSLs for calculations on dates (p. 1018) 02021-11-14 (updated
02021-12-30) (1 minute)

Notes concerning “Displays”

• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• Subnanosecond thermochromic light modulation for real-time
holography and displays (p. 531) 02021-07-06 (updated 02021-12-30)
(8 minutes)
• A simple 2-D programmable graphics pipeline to unify tiles and
palettes (p. 1022) 02021-11-18 (updated 02021-12-30) (6 minutes)
• Ghetto electrochromic displays for ultra-low-power computing? (p.
1082) 02021-12-16 (updated 02021-12-30) (9 minutes)

Notes concerning “Control
(cybernetics)”

• Clay wire cutter (p. 409) 02021-05-21 (updated 02021-12-30)
(2 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Negative feedback control to prevent runaway positive feedback in
3-D MIG welding printing (p. 777) 02021-08-30 (updated
02021-12-30) (3 minutes)
• Adversarial control (p. 987) 02021-10-25 (updated 02021-12-30)
(13 minutes)

Notes concerning “Compression”

• Compressed appendable file (p. 606) 02021-07-19 (updated
02021-07-27) (5 minutes)
• Residual stream windowing (p. 752) 02021-08-21 (updated
02021-09-11) (5 minutes)
• Spanish phonology (p. 867) 02021-10-05 (updated 02021-12-31)
(15 minutes)
• Paeth prediction and vector quantization (p. 1005) 02021-11-06
(updated 02021-12-30) (1 minute)

Notes concerning
“Communication”

• Can you do direct digital synthesis (DDS) at over a gigahertz? (p.
119) 02021-02-08 (updated 02021-02-24) (30 minutes)
• A bargain-basement Holter monitor with a BOM under US$2.50
(p. 323) 02021-04-07 (updated 02021-07-27) (33 minutes)
• Subnanosecond thermochromic light modulation for real-time
holography and displays (p. 531) 02021-07-06 (updated 02021-12-30)
(8 minutes)
• Constant weight dithering (p. 991) 02021-10-28 (updated
02021-12-30) (5 minutes)

Notes concerning
“Ceramic-matrix composites
(CMCs)”

• Electrolytic berlinite (p. 561) 02021-07-12 (updated 02021-12-30)
(7 minutes)
• Fiberglass CMCs? (p. 588) 02021-07-15 (updated 02021-07-27)
(8 minutes)
• Glass wood (p. 755) 02021-08-21 (updated 02021-12-30)
(4 minutes)
• Exotic steel analogues in other metals (p. 1050) 02021-12-01
(updated 02021-12-30) (8 minutes)

Notes concerning “Caching”

• Principled APL redux (p. 22) 02021-01-03 (updated 02021-12-31)
(12 minutes)
• Relayout with heaps (p. 32) 02021-01-10 (updated 02021-01-15)
(6 minutes)
• Trie PEGs (p. 53) 02021-01-15 (4 minutes)
• Leaf hypertext (p. 380) 02021-05-08 (updated 02021-12-30)
(3 minutes)

Notes concerning “Weighing”

• Weighing an eyelash on an improvised Kibble balance (p. 382)
02021-05-08 (updated 02021-12-30) (3 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Weighing balance design (p. 799) 02021-09-06 (updated
02021-12-30) (9 minutes)

Notes concerning “Unix”

• How little code can a filesystem be? (p. 438) 02021-06-16 (updated
02021-07-27) (1 minute)
• Self hosting kernel (p. 452) 02021-06-21 (updated 02021-12-30)
(1 minute)
• A short list of the most useful Unix CLI tools (p. 841) 02021-09-15
(updated 02021-09-16) (2 minutes)

Notes concerning “Tiled graphics”

• Skew tilesets (p. 135) 02021-02-14 (updated 02021-02-24)
(7 minutes)
• Pipelined piece chain painting (p. 926) 02021-10-10 (updated
02021-12-30) (23 minutes)
• A simple 2-D programmable graphics pipeline to unify tiles and
palettes (p. 1022) 02021-11-18 (updated 02021-12-30) (6 minutes)

Notes concerning “Term
rewriting”

• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)
• Qfitzah internals (p. 846) 02021-09-24 (updated 02021-12-30)
(2 minutes)
• Deriving binary search (p. 855) 02021-10-01 (updated 02021-12-30)
(5 minutes)

Notes concerning “Sugar”

• 3-D printing in carbohydrates (p. 393) 02021-05-16 (updated
02021-12-30) (10 minutes)
• Cutting clay (p. 400) 02021-05-19 (updated 02021-12-30)
(10 minutes)
• Verstickulite (p. 457) 02021-06-23 (updated 02021-07-27)
(3 minutes)

Notes concerning “Sorting”

• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)
• Lazy heapsort (p. 761) 02021-08-22 (updated 02021-09-11)
(6 minutes)
• Fung’s “I can’t believe it can sort” algorithm and others (p. 864)
02021-10-05 (updated 02021-12-30) (5 minutes)

Notes concerning “Solubility”

• ECM for machining nonmetals? (p. 523) 02021-07-05 (updated
02021-07-27) (11 minutes)
• Fast electrolytic mineral accretion (seacrete) for digital fabrication?
(p. 779) 02021-09-01 (updated 02021-12-30) (52 minutes)
• Xerogel compacting (p. 1119) 02021-12-22 (updated 02021-12-30)
(12 minutes)

Notes concerning “Scheme”

• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Minor improvements to pattern matching (p. 306) 02021-03-24
(updated 02021-04-08) (10 minutes)
• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)

Notes concerning “Roller screws”

• Planetary roller screw worm drive (p. 375) 02021-05-07 (updated
02021-12-30) (4 minutes)
• Planetary screw potentiometer (p. 392) 02021-05-12 (updated
02021-12-30) (1 minute)
• Thread rolling roller screw (p. 999) 02021-11-04 (updated
02021-12-30) (1 minute)

Notes concerning “RISC-V”

• Some preliminary notes on the amazing RISC-V architecture (p.
82) 02021-01-24 (updated 02021-07-27) (29 minutes)
• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)

Notes concerning
“Reproducibility”

• Veskeno is a “fantasy platform” like TIC-80 (p. 267) 02021-03-21
(updated 02021-03-22) (3 minutes)
• Leaf hypertext (p. 380) 02021-05-08 (updated 02021-12-30)
(3 minutes)
• The nature of mathematical discourse (p. 418) 02021-05-27
(updated 02021-12-30) (5 minutes)

Notes concerning “Radio”

• Can you do direct digital synthesis (DDS) at over a gigahertz? (p.
119) 02021-02-08 (updated 02021-02-24) (30 minutes)
• A bargain-basement Holter monitor with a BOM under US$2.50
(p. 323) 02021-04-07 (updated 02021-07-27) (33 minutes)
• Flux-gate downconversion in a loopstick antenna? (p. 436)
02021-06-15 (updated 02021-07-27) (2 minutes)

Notes concerning “Politics”

• Why Bitcoin is puzzling to people in rich countries (p. 312)
02021-03-31 (updated 02021-07-27) (10 minutes)
• Is liberal democracy’s stability conditioned on historical conditions
that no longer obtain? (p. 1114) 02021-12-22 (updated 02021-12-30)
(16 minutes)
• Safe decentralized cloud storage (p. 1135) 02021-12-30 (10 minutes)

Notes concerning “Illinois
PLATO”

• Skew tilesets (p. 135) 02021-02-14 (updated 02021-02-24)
(7 minutes)
• Beyond overstrike (p. 922) 02021-10-10 (updated 02021-12-30)
(13 minutes)
• Pipelined piece chain painting (p. 926) 02021-10-10 (updated
02021-12-30) (23 minutes)

Notes concerning “Poly(lactic
acid) (PLA)”

• Clay-filled PLA filament for firing to ceramic (p. 396) 02021-05-17
(updated 02021-12-30) (1 minute)
• Multicolor filament (p. 397) 02021-05-17 (updated 02021-12-30)
(5 minutes)
• Rock-wool-filled composites (p. 798) 02021-09-03 (updated
02021-12-30) (2 minutes)

Notes concerning “Patterning”

• Iodine patterning (p. 713) 02021-08-11 (updated 02021-08-15)
(1 minute)
• Patterning metal surfaces by coating decomposition with lasers or
plasma? (p. 795) 02021-09-03 (updated 02021-12-30) (7 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)

Notes concerning “Oscillators”

• Trying to design a simple switchmode power supply using
Schmitt-trigger relaxation oscillators (p. 92) 02021-01-26 (updated
02021-01-27) (32 minutes)
• Failing to stabilize the amplitude of an opamp phase-delay oscillator
(p. 298) 02021-03-23 (updated 02021-03-24) (10 minutes)
• Three phase logic (p. 364) 02021-04-30 (updated 02021-07-27)
(9 minutes)

Notes concerning
“Natural-language processing”

• Generating novel unique pronounceable identifiers with letter
frequency data (p. 239) 02021-03-10 (updated 02021-03-22)
(11 minutes)
• Spanish phonology (p. 867) 02021-10-05 (updated 02021-12-31)
(15 minutes)
• Wordlists for maximum drama (p. 904) 02021-10-08 (updated
02021-12-30) (16 minutes)

Notes concerning “Memory
models”

• How do you fit a high-level language into a microcontroller? Let’s
look at BBN Lisp (p. 160) 02021-02-23 (updated 02021-08-18)
(76 minutes)
• Safe FORTH with the FORTRAN memory model? (p. 351)
02021-04-21 (updated 02021-06-12) (2 minutes)
• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)

Notes concerning “LEDs”

• Triggering a spark gap with low jitter using ultraviolet LEDs? (p.
954) 02021-10-20 (updated 02021-10-23) (8 minutes)
• Implementation and applications of low-voltage Marx generators
with solid-state avalanche breakdown? (p. 960) 02021-10-20
(updated 02021-12-31) (39 minutes)
• Simplest blinker (p. 1053) 02021-12-01 (updated 02021-12-30)
(9 minutes)

Notes concerning “Kleene
algebras”

• Some notes on compiling and notations for grammars, starting from
the inspiring RPN example in Parson (p. 57) 02021-01-15 (updated
02021-12-31) (15 minutes)
• The algebra of N-ary relations (p. 432) 02021-06-14 (updated
02021-07-27) (4 minutes)
• Example based regexp (p. 984) 02021-10-24 (updated 02021-12-30)
(5 minutes)

Notes concerning “Kingery, the
father of modern ceramics”

• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)
• The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable
refractories (p. 688) 02021-08-05 (updated 02021-08-15) (22 minutes)

• Maximizing phosphate density from aqueous reaction (p. 757)
02021-08-21 (updated 02021-12-30) (8 minutes)

Notes concerning “Keyboards”

• A four-dimensional keyboard matrix made of linear voltage
differential transformers (LVDTs) to get 30 or 180 keys on five pins
(p. 390) 02021-05-12 (updated 02021-12-30) (4 minutes)
• Notes on what would be needed to drive a PS/2 keyboard from an
Arduino (p. 447) 02021-06-20 (updated 02021-12-30) (12 minutes)
• Chording commands (p. 1047) 02021-11-26 (updated 02021-12-30)
(7 minutes)

Notes concerning “Insulation”

• Leaf vein roof (p. 600) 02021-07-16 (updated 02021-09-11)
(9 minutes)
• Pocket kiln (p. 704) 02021-08-09 (updated 02021-08-15)
(7 minutes)
• Regenerative muffle kiln (p. 1108) 02021-12-21 (updated
02021-12-30) (19 minutes)

Notes concerning “Hypertext”

• Leaf hypertext (p. 380) 02021-05-08 (updated 02021-12-30)
(3 minutes)
• Bead hypertext (p. 455) 02021-06-22 (updated 02021-12-30)
(1 minute)
• Some notes on perusing the Udanax Green codebase (p. 860)
02021-10-05 (updated 02021-10-08) (12 minutes)

Notes concerning “Humor”

• Greek operating systems (p. 430) 02021-06-04 (updated
02021-06-12) (4 minutes)
• Nuclear energy is the Amiga of energy sources (p. 434) 02021-06-14
(updated 02021-07-27) (3 minutes)
• Stochastically generated self-amalgamating tape variations for
composite fabrication (p. 510) 02021-07-02 (updated 02021-12-30)
(26 minutes)

Notes concerning “Hashing”

• Ropes with constant-time concatenation and equality comparisons
with monoidal hash consing (p. 619) 02021-07-27 (15 minutes)
• PBKDF content addressing with keyphrase hashcash: a
non-blockchain attack on Zooko’s Triangle (p. 896) 02021-10-08
(24 minutes)
• Hashing text with recursive shingling to find duplication efficiently
(p. 993) 02021-10-30 (updated 02021-12-30) (6 minutes)

Notes concerning
“Glutaraldehyde”

• 3-D printing in carbohydrates (p. 393) 02021-05-16 (updated
02021-12-30) (10 minutes)
• 3-D printing in poly(vinyl alcohol) (p. 1080) 02021-12-15 (updated
02021-12-30) (2 minutes)
• Electrolytic 2-D cutting and related electrolytic digital fabrication
processes (p. 1085) 02021-12-16 (updated 02021-12-30) (48 minutes)

Notes concerning “Forming”

• Forming steel with copper instead of vice versa (p. 344)
02021-04-16 (updated 02021-06-12) (2 minutes)
• Cutting clay (p. 400) 02021-05-19 (updated 02021-12-30)
(10 minutes)
• Electroforming rivets (p. 410) 02021-05-22 (updated 02021-12-30)
(2 minutes)

Notes concerning “Flying”

• Methane bag (p. 710) 02021-08-10 (updated 02021-08-15)
(8 minutes)
• Micro ramjet (p. 1038) 02021-11-22 (updated 02021-12-30)
(3 minutes)
• Against subjectivism (p. 1066) 02021-12-15 (updated 02021-12-30)
(36 minutes)

Notes concerning “Fasteners”

• A construction set using SHS (p. 765) 02021-08-24 (updated
02021-09-11) (5 minutes)
• Better screw head designs? (p. 770) 02021-08-25 (updated
02021-09-11) (4 minutes)
• Ivan Miranda’s snap-pin fasteners and similar snaps (p. 1009)
02021-11-11 (updated 02021-12-30) (3 minutes)

Notes concerning “Emacs”

• Layout typescript (p. 29) 02021-01-04 (5 minutes)
• Transactional editor (p. 35) 02021-01-14 (updated 02021-01-15)
(73 minutes)
• Chording commands (p. 1047) 02021-11-26 (updated 02021-12-30)
(7 minutes)

Notes concerning “Control flow”

• Vaughan Pratt and Henry Baker’s COMFY control-flow
combinators (p. 234) 02021-03-04 (updated 02021-03-20)
(8 minutes)
• Subset of C for the simplest self-compiling compiler (p. 717)
02021-08-12 (updated 02021-12-30) (6 minutes)
• Example based regexp (p. 984) 02021-10-24 (updated 02021-12-30)
(5 minutes)

Notes concerning “COMFY-*”

• Vaughan Pratt and Henry Baker’s COMFY control-flow
combinators (p. 234) 02021-03-04 (updated 02021-03-20)
(8 minutes)
• Open coded primitives (p. 283) 02021-03-22 (26 minutes)
• Example based regexp (p. 984) 02021-10-24 (updated 02021-12-30)
(5 minutes)

Notes concerning “Cameras”

• iPhone replacement cameras as 6-μs streak cameras (p. 80)
02021-01-22 (updated 02021-12-30) (2 minutes)
• Phased-array imaging sonar from a mesh network of self-localizing
sensor nodes (p. 358) 02021-04-27 (updated 02021-12-30) (8 minutes)

• Differential filming (p. 374) 02021-05-07 (updated 02021-12-30)
(1 minute)

Notes concerning “Batteries”

• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• Aluminum fuel (p. 603) 02021-07-17 (updated 02021-12-30)
(2 minutes)
• Methane bag (p. 710) 02021-08-10 (updated 02021-08-15)
(8 minutes)

Notes concerning “BASIC”

• Skew tilesets (p. 135) 02021-02-14 (updated 02021-02-24)
(7 minutes)
• Manually writing code in static single assignment (SSA) form,
inspired by Kemeny’s DOPE, isn’t worth it (p. 353) 02021-04-21
(updated 02021-06-12) (3 minutes)
• My Heathkit H8 (p. 996) 02021-11-03 (updated 02021-12-30)
(2 minutes)

Notes concerning “Audio”

• Brute force speech (p. 262) 02021-03-21 (updated 02021-03-22)
(7 minutes)
• Phased-array imaging sonar from a mesh network of self-localizing
sensor nodes (p. 358) 02021-04-27 (updated 02021-12-30) (8 minutes)

• The spark-pen pointing device (p. 921) 02021-10-10 (updated
02021-10-12) (1 minute)

Notes concerning “ASCII art”

• ASCII art, but in Unicode, with Braille and other alternatives (p.
128) 02021-02-10 (updated 02021-02-24) (9 minutes)
• Skew tilesets (p. 135) 02021-02-14 (updated 02021-02-24)
(7 minutes)
• Thumbnail views in a Unicode character-cell terminal with Braille
(p. 142) 02021-02-17 (updated 02021-02-24) (1 minute)

Notes concerning “Art”

• ASCII art, but in Unicode, with Braille and other alternatives (p.
128) 02021-02-10 (updated 02021-02-24) (9 minutes)
• Threechet (p. 140) 02021-02-16 (updated 02021-02-24) (4 minutes)

• How Lao Yuxi painted a cock (p. 247) 02021-03-19 (updated
02021-04-14) (7 minutes)

Notes concerning “Artificial
neural networks”

• Designing curiosity and dreaming into optimizing systems (p. 420)
02021-05-30 (updated 02021-12-30) (6 minutes)
• Adversarial control (p. 987) 02021-10-25 (updated 02021-12-30)
(13 minutes)
• Rendering 3-D graphics with PINNs and GANs? (p. 1010)
02021-11-11 (updated 02021-12-30) (10 minutes)

Notes concerning “Allocation
performance”

• Garbage-collected allocation performance on current computers (p.
245) 02021-03-13 (updated 02021-04-08) (4 minutes)
• Open coded primitives (p. 283) 02021-03-22 (26 minutes)
• Running scripts once per frame for guaranteed GUI responsivity (p.
303) 02021-03-23 (updated 02021-10-12) (7 minutes)

Notes concerning “Alabaster”

• Duplicating Durham’s Rock-Hard Putty (p. 79) 02021-01-22
(updated 02021-01-27) (1 minute)
• Leaf vein roof (p. 600) 02021-07-16 (updated 02021-09-11)
(9 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)

Notes concerning “X rays”

• Can you 3-D print Sorel cement by inhibiting setting with X-rays?
(p. 592) 02021-07-16 (updated 02021-07-27) (1 minute)
• MOSFET body diodes as Geiger counter avalanche detectors? (p.
1103) 02021-12-17 (updated 02021-12-30) (1 minute)

Notes concerning “Wiki”

• Leaf hypertext (p. 380) 02021-05-08 (updated 02021-12-30)
(3 minutes)
• Wiki models (p. 751) 02021-08-19 (updated 02021-12-30)
(1 minute)

Notes concerning “Video”

• Layout typescript (p. 29) 02021-01-04 (5 minutes)
• Residual stream windowing (p. 752) 02021-08-21 (updated
02021-09-11) (5 minutes)

Notes concerning “The Veskeno
virtual machine”

• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Veskeno is a “fantasy platform” like TIC-80 (p. 267) 02021-03-21
(updated 02021-03-22) (3 minutes)

Notes concerning “The United
States of America (USA)”

• Economic history (p. 460) 02021-06-25 (updated 02021-07-27)
(17 minutes)
• Interesting works that entered the public domain in 02021, in the
US and elsewhere (p. 1024) 02021-11-20 (updated 02021-12-30)
(15 minutes)

Notes concerning “Unicode”

• ASCII art, but in Unicode, with Braille and other alternatives (p.
128) 02021-02-10 (updated 02021-02-24) (9 minutes)
• Thumbnail views in a Unicode character-cell terminal with Braille
(p. 142) 02021-02-17 (updated 02021-02-24) (1 minute)

Notes concerning “Toxicology”

• Dipropylene glycol (p. 687) 02021-08-01 (updated 02021-08-15)
(2 minutes)
• Patterning metal surfaces by coating decomposition with lasers or
plasma? (p. 795) 02021-09-03 (updated 02021-12-30) (7 minutes)

Notes concerning “Thixotropy”

• Duplicating Durham’s Rock-Hard Putty (p. 79) 02021-01-22
(updated 02021-01-27) (1 minute)
• Thixotropic electrodeposition (p. 372) 02021-05-04 (updated
02021-12-31) (2 minutes)

Notes concerning “Tcl”

• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)

Notes concerning “Talc”

• Duplicating Durham’s Rock-Hard Putty (p. 79) 02021-01-22
(updated 02021-01-27) (1 minute)
• Firing talc (p. 576) 02021-07-14 (updated 02021-12-30)
(17 minutes)

Notes concerning “Stack
machines”

• .xosm: experimental obvious stack machine (p. 274) 02021-03-21
(updated 02021-03-24) (20 minutes)
• Stack syntax (p. 453) 02021-06-22 (updated 02021-07-27)
(4 minutes)

Notes concerning “Spreadtools”

• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Toggling eccentrics for removing preload from spring clamps (p.
1129) 02021-12-28 (updated 02021-12-31) (22 minutes)

Notes concerning “Speech
synthesis”

• Brute force speech (p. 262) 02021-03-21 (updated 02021-03-22)
(7 minutes)
• Spanish phonology (p. 867) 02021-10-05 (updated 02021-12-31)
(15 minutes)

Notes concerning “Space”

• How fast do von Neumann probes need to reproduce to colonize
space in our lifetimes? (p. 368) 02021-05-04 (updated 02021-06-12)
(5 minutes)
• Photoemissive power (p. 1124) 02021-12-23 (updated 02021-12-28)
(15 minutes)

Notes concerning “Sonic
screwdrivers”

• Micro impact driver (p. 427) 02021-06-02 (updated 02021-06-12)
(2 minutes)
• Sonic screwdriver resonance (p. 527) 02021-07-06 (updated
02021-12-30) (11 minutes)

Notes concerning “Snaps”

• Spreadtool (p. 543) 02021-07-10 (updated 02021-12-30)
(30 minutes)
• Ivan Miranda’s snap-pin fasteners and similar snaps (p. 1009)
02021-11-11 (updated 02021-12-30) (3 minutes)

Notes concerning “Smalltalk”

• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)

Notes concerning “Spatial light
modulators (SLMs)”

• Subnanosecond thermochromic light modulation for real-time
holography and displays (p. 531) 02021-07-06 (updated 02021-12-30)
(8 minutes)
• Ghetto electrochromic displays for ultra-low-power computing? (p.
1082) 02021-12-16 (updated 02021-12-30) (9 minutes)

Notes concerning “Silver”

• The use of silver in solar cells (p. 112) 02021-02-02 (updated
02021-09-11) (8 minutes)
• Ghetto electrochromic displays for ultra-low-power computing? (p.
1082) 02021-12-16 (updated 02021-12-30) (9 minutes)

Notes concerning “Silicone”

• Selectively curing one-component silicone by injecting water (p.
408) 02021-05-19 (updated 02021-12-30) (2 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)

Notes concerning “Steel Bank
Common Lisp”

• Garbage-collected allocation performance on current computers (p.
245) 02021-03-13 (updated 02021-04-08) (4 minutes)
• Open coded primitives (p. 283) 02021-03-22 (26 minutes)

Notes concerning “Sapphire”

• More cements (p. 466) 02021-06-26 (updated 02021-08-15)
(5 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)

Notes concerning “Sandblasting”

• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• ECM for machining nonmetals? (p. 523) 02021-07-05 (updated
02021-07-27) (11 minutes)

Notes concerning “Ropes”

• Ropes with constant-time concatenation and equality comparisons
with monoidal hash consing (p. 619) 02021-07-27 (15 minutes)
• Balanced ropes (p. 948) 02021-10-16 (updated 02021-12-30)
(7 minutes)

Notes concerning “Regenerators”

• A boiler for submillisecond steam pulses (p. 361) 02021-04-28
(updated 02021-12-30) (10 minutes)
• Regenerative muffle kiln (p. 1108) 02021-12-21 (updated
02021-12-30) (19 minutes)

Notes concerning “Refining”

• At small scales, electrowinning may be cheaper than smelting (p.
1029) 02021-11-21 (updated 02021-12-30) (25 minutes)
• Aluminum refining (p. 1106) 02021-12-20 (updated 02021-12-30)
(3 minutes)

Notes concerning “Randomness”

• Generating novel unique pronounceable identifiers with letter
frequency data (p. 239) 02021-03-10 (updated 02021-03-22)
(11 minutes)
• Wordlists for maximum drama (p. 904) 02021-10-08 (updated
02021-12-30) (16 minutes)

Notes concerning “Qfitzah”

• Qfitzah: a minimal term-rewriting language (p. 809) 02021-09-10
(updated 02021-12-31) (62 minutes)
• Qfitzah internals (p. 846) 02021-09-24 (updated 02021-12-30)
(2 minutes)

Notes concerning “Prefix sums”

• Fibonacci scan (p. 31) 02021-01-10 (updated 02021-01-15)
(1 minute)
• Relayout with heaps (p. 32) 02021-01-10 (updated 02021-01-15)
(6 minutes)

Notes concerning “Plasma”

• Patterning metal surfaces by coating decomposition with lasers or
plasma? (p. 795) 02021-09-03 (updated 02021-12-30) (7 minutes)
• The sol-gel transition and selective gelling for 3-D printing (p. 858)
02021-10-03 (updated 02021-12-30) (6 minutes)

Notes concerning “Piezoelectrics”

• Ranking MOSFETs for, say, rapid localized electrolysis to make
optics (p. 938) 02021-10-11 (updated 02021-12-30) (8 minutes)
• Viscoelastic probing (p. 1000) 02021-11-04 (updated 02021-12-30)
(2 minutes)

Notes concerning
“Photoemission”

• Triggering a spark gap with low jitter using ultraviolet LEDs? (p.
954) 02021-10-20 (updated 02021-10-23) (8 minutes)
• Photoemissive power (p. 1124) 02021-12-23 (updated 02021-12-28)
(15 minutes)

Notes concerning “Perl”

• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Generating novel unique pronounceable identifiers with letter
frequency data (p. 239) 02021-03-10 (updated 02021-03-22)
(11 minutes)

Notes concerning “Parsing
expression grammars (PEGs)”

• Trie PEGs (p. 53) 02021-01-15 (4 minutes)
• PEG-like flexibility for parsing right-to-left? (p. 437) 02021-06-16
(updated 02021-07-27) (2 minutes)

Notes concerning “Passwords”

• PBKDF content addressing with keyphrase hashcash: a
non-blockchain attack on Zooko’s Triangle (p. 896) 02021-10-08
(24 minutes)
• Wordlists for maximum drama (p. 904) 02021-10-08 (updated
02021-12-30) (16 minutes)

Notes concerning “The Paeth
predictor”

• Residual stream windowing (p. 752) 02021-08-21 (updated
02021-09-11) (5 minutes)
• Paeth prediction and vector quantization (p. 1005) 02021-11-06
(updated 02021-12-30) (1 minute)

Notes concerning “Memory
ownership”

• First class locations (p. 27) 02021-01-04 (3 minutes)
• Some notes on IPL-VI, Lisp’s 01958 precursor (p. 196) 02021-03-02
(4 minutes)

Notes concerning “Overstrike”

• Skew tilesets (p. 135) 02021-02-14 (updated 02021-02-24)
(7 minutes)
• Beyond overstrike (p. 922) 02021-10-10 (updated 02021-12-30)
(13 minutes)

Notes concerning “Mathematical
optimization”

• Designing curiosity and dreaming into optimizing systems (p. 420)
02021-05-30 (updated 02021-12-30) (6 minutes)
• Adversarial control (p. 987) 02021-10-25 (updated 02021-12-30)
(13 minutes)

Notes concerning “Oogoo”

• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)
• Material observations (p. 633) 02021-07-29 (updated 02021-12-30)
(194 minutes)

Notes concerning “Ontology”

• The nature of mathematical discourse (p. 418) 02021-05-27
(updated 02021-12-30) (5 minutes)
• Against subjectivism (p. 1066) 02021-12-15 (updated 02021-12-30)
(36 minutes)

Notes concerning “Namespaces”

• Some notes on perusing the Udanax Green codebase (p. 860)
02021-10-05 (updated 02021-10-08) (12 minutes)
• PBKDF content addressing with keyphrase hashcash: a
non-blockchain attack on Zooko’s Triangle (p. 896) 02021-10-08
(24 minutes)

Notes concerning “m4”

• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• :fq0zl, a normal-order text macro language (p. 336) 02021-04-09
(updated 02021-07-27) (14 minutes)

Notes concerning “LuaJIT”

• Garbage-collected allocation performance on current computers (p.
245) 02021-03-13 (updated 02021-04-08) (4 minutes)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)

Notes concerning “Lua”

• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)

Notes concerning “LiDAR”

• Subnanosecond thermochromic light modulation for real-time
holography and displays (p. 531) 02021-07-06 (updated 02021-12-30)
(8 minutes)
• Implementation and applications of low-voltage Marx generators
with solid-state avalanche breakdown? (p. 960) 02021-10-20
(updated 02021-12-31) (39 minutes)

Notes concerning “Length”

• Base 3 gage blocks (p. 468) 02021-06-27 (updated 02021-12-30)
(5 minutes)
• Vernier indicator (p. 1040) 02021-11-22 (updated 02021-12-30)
(6 minutes)

Notes concerning “Layout”

• Layout typescript (p. 29) 02021-01-04 (5 minutes)
• Relayout with heaps (p. 32) 02021-01-10 (updated 02021-01-15)
(6 minutes)

Notes concerning “Latency”

• Running scripts once per frame for guaranteed GUI responsivity (p.
303) 02021-03-23 (updated 02021-10-12) (7 minutes)
• Lazy heapsort (p. 761) 02021-08-22 (updated 02021-09-11)
(6 minutes)

Notes concerning “The JS
programming language”

• A survey of imperative programming operations’ prevalence (p.
201) 02021-03-02 (updated 02021-09-11) (61 minutes)
• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)

Notes concerning “JLCPCB
(JiaLiChuang)”

• Can you get JLCPCB to fabricate a CPU for you affordably from
“basic” parts? (p. 347) 02021-04-17 (updated 02021-12-30)
(9 minutes)
• Three phase logic (p. 364) 02021-04-30 (updated 02021-07-27)
(9 minutes)

Notes concerning “Interrupts”

• Running scripts once per frame for guaranteed GUI responsivity (p.
303) 02021-03-23 (updated 02021-10-12) (7 minutes)
• Notes on what would be needed to drive a PS/2 keyboard from an
Arduino (p. 447) 02021-06-20 (updated 02021-12-30) (12 minutes)

Notes concerning “Incremental
search”

• Transactional editor (p. 35) 02021-01-14 (updated 02021-01-15)
(73 minutes)
• Example based regexp (p. 984) 02021-10-24 (updated 02021-12-30)
(5 minutes)

Notes concerning “Household”

• Fan noise would be less annoying if intermittent (p. 21) 02021-01-03
(updated 02021-01-04) (1 minute)
• The Habitaculum: a modular dwelling machine (p. 1061)
02021-12-13 (updated 02021-12-31) (16 minutes)

Notes concerning “Gradient
descent”

• Designing curiosity and dreaming into optimizing systems (p. 420)
02021-05-30 (updated 02021-12-30) (6 minutes)
• Adversarial control (p. 987) 02021-10-25 (updated 02021-12-30)
(13 minutes)

Notes concerning “Gears”

• Geneva wheel stopwork (p. 321) 02021-04-07 (updated
02021-04-08) (6 minutes)
• Planetary roller screw worm drive (p. 375) 02021-05-07 (updated
02021-12-30) (4 minutes)

Notes concerning “Generative
adversarial networks (GANs)”

• Adversarial control (p. 987) 02021-10-25 (updated 02021-12-30)
(13 minutes)
• Rendering 3-D graphics with PINNs and GANs? (p. 1010)
02021-11-11 (updated 02021-12-30) (10 minutes)

Notes concerning “Galileo”

• Scaling laws (p. 404) 02021-05-19 (updated 02021-12-30)
(8 minutes)
• Against subjectivism (p. 1066) 02021-12-15 (updated 02021-12-30)
(36 minutes)

Notes concerning “Fiction”

• How Lao Yuxi painted a cock (p. 247) 02021-03-19 (updated
02021-04-14) (7 minutes)
• My ideal workshop (unfinished) (p. 591) 02021-07-16 (updated
02021-07-27) (2 minutes)

Notes concerning “Enthalpy”

• Boosters for self-propagating high-temperature synthesis (SHS) (p.
604) 02021-07-17 (updated 02021-12-30) (4 minutes)
• Heating a shower tank with portable TCES? (p. 714) 02021-08-11
(updated 02021-08-15) (6 minutes)

Notes concerning “Employment”

• Intel engineering positions considered as a dollar auction (p. 78)
02021-01-21 (updated 02021-01-27) (1 minute)
• Planning Apples to Apples, instead of Planning Poker (p. 851)
02021-09-29 (updated 02021-12-30) (6 minutes)

Notes concerning
“Electropolishing”

• Fresnel mirror electropolishing (p. 377) 02021-05-08 (updated
02021-12-30) (6 minutes)
• Aluminum foil (p. 413) 02021-05-24 (updated 02021-09-11)
(14 minutes)

Notes concerning
“Electroforming”

• Electroforming rivets (p. 410) 02021-05-22 (updated 02021-12-30)
(2 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)

Notes concerning “Dreaming”

• Designing curiosity and dreaming into optimizing systems (p. 420)
02021-05-30 (updated 02021-12-30) (6 minutes)
• Adversarial control (p. 987) 02021-10-25 (updated 02021-12-30)
(13 minutes)

Notes concerning
“Decentralization”

• PBKDF content addressing with keyphrase hashcash: a
non-blockchain attack on Zooko’s Triangle (p. 896) 02021-10-08
(24 minutes)
• Safe decentralized cloud storage (p. 1135) 02021-12-30 (10 minutes)

Notes concerning “Debugging”

• Smolsay: the Ur-Lisp, but with dicts instead of conses (p. 552)
02021-07-12 (updated 02021-07-27) (22 minutes)
• The astounding UI responsivity of PDP-10 DDT on ITS (p. 972)
02021-10-22 (updated 02021-10-23) (28 minutes)

Notes concerning “Databases”

• Trying and failing to design an efficient index for folksonomy data
based on BDDs (p. 108) 02021-01-26 (updated 02021-01-27)
(7 minutes)
• The algebra of N-ary relations (p. 432) 02021-06-14 (updated
02021-07-27) (4 minutes)

Notes concerning “Cross linking”

• 3-D printing in carbohydrates (p. 393) 02021-05-16 (updated
02021-12-30) (10 minutes)
• 3-D printing in poly(vinyl alcohol) (p. 1080) 02021-12-15 (updated
02021-12-30) (2 minutes)

Notes concerning
“Command-line interfaces (CLI)”

• A short list of the most useful Unix CLI tools (p. 841) 02021-09-15
(updated 02021-09-16) (2 minutes)
• DSLs for calculations on dates (p. 1018) 02021-11-14 (updated
02021-12-30) (1 minute)

Notes concerning “China”

• Statistics on the present and future of energy in the People’s
Republic of China (p. 316) 02021-04-01 (updated 02021-04-08)
(10 minutes)
• New nuclear power in the People’s Republic of China (p. 1007)
02021-11-09 (updated 02021-12-30) (2 minutes)

Notes concerning “Ccn”

• Chat over a content-centric network (p. 55) 02021-01-15 (updated
02021-01-16) (3 minutes)
• PBKDF content addressing with keyphrase hashcash: a
non-blockchain attack on Zooko’s Triangle (p. 896) 02021-10-08
(24 minutes)

Notes concerning
“Carborundum”

• Can you use stabilized cubic zirconia as an ECM cathode in molten
salt? (p. 475) 02021-06-27 (updated 02021-12-30) (3 minutes)
• Super ghetto digital fabrication (p. 479) 02021-06-28 (updated
02021-12-30) (33 minutes)

Notes concerning “Call by name”

• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)

Notes concerning “Block
arguments”

• Improvements on C for low-level programming such as block
arguments (p. 584) 02021-07-14 (updated 02021-12-30) (8 minutes)
• Compilation of block arguments to high-performance code (p. 624)
02021-07-29 (updated 02021-12-30) (19 minutes)

Notes concerning “Bicicleta”

• Principled APL redux (p. 22) 02021-01-03 (updated 02021-12-31)
(12 minutes)
• Embedding runnable code in text paragraphs for numerical
modeling (p. 1002) 02021-11-06 (updated 02021-12-30) (6 minutes)

Notes concerning “Barcodes”

• Constant weight dithering (p. 991) 02021-10-28 (updated
02021-12-30) (5 minutes)
• The user interface potentialities of a barcoded paper notebook (p.
1104) 02021-12-18 (updated 02021-12-30) (6 minutes)

Notes concerning “Azane”

• Methane bag (p. 710) 02021-08-10 (updated 02021-08-15)
(8 minutes)
• Blowing agents (p. 847) 02021-09-29 (updated 02021-12-30)
(4 minutes)

Notes concerning “AVR8
microcontrollers”

• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)
• Pipelined piece chain painting (p. 926) 02021-10-10 (updated
02021-12-30) (23 minutes)

Notes concerning “Arduino”

• Notes on what would be needed to drive a PS/2 keyboard from an
Arduino (p. 447) 02021-06-20 (updated 02021-12-30) (12 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)

Notes concerning “Archival”

• Refreshing Flash memory periodically for archival (p. 198)
02021-03-02 (1 minute)
• Leaf hypertext (p. 380) 02021-05-08 (updated 02021-12-30)
(3 minutes)

Notes concerning “Apl”

• Principled APL redux (p. 22) 02021-01-03 (updated 02021-12-31)
(12 minutes)
• An algebra of partial functions for interactively composing programs
(p. 933) 02021-10-10 (updated 02021-12-30) (3 minutes)

Notes concerning “Ambiq”

• Energy autonomous computing (p. 143) 02021-02-18 (updated
02021-12-30) (58 minutes)
• A compact bytecode sketch that should average about 3 bytes per
line of C (p. 720) 02021-08-17 (updated 02021-09-13) (66 minutes)

	Dernocua version 020211231
	liabilities/LICENSE.ETBook
	liabilities/dejavu-copyright
	Fan noise would be less annoying if intermittent ⁑
	Principled APL redux ⁑
	First class locations ⁑
	Layout typescript ⁑
	Fibonacci scan ⁑
	Relayout with heaps ⁑
	Transactional editor ⁑
	Trie PEGs ⁑
	Chat over a content-centric network ⁑
	Some notes on compiling and notations for grammars, starting from the inspiring RPN example in Parson ⁑
	Can transactions solve the N+1 performance problem on web pages? ⁑
	Notes on simulating a ZVS converter (Baxandall converter) ⁑
	A ghetto linear voltage regulator from discrete components ⁑
	Intel engineering positions considered as a dollar auction ⁑
	Duplicating Durham’s Rock-Hard Putty ⁑
	iPhone replacement cameras as 6-μs streak cameras ⁑
	Compiling machine-code loops to pipelined dataflow graphs ⁑
	Some preliminary notes on the amazing RISC-V architecture ⁑
	Trying to design a simple switchmode power supply using Schmitt-trigger relaxation oscillators ⁑
	Trying and failing to design an efficient index for folksonomy data based on BDDs ⁑
	The use of silver in solar cells ⁑
	Snap logic, revisited, and four-phase logic ⁑
	Can you do direct digital synthesis (DDS) at over a gigahertz? ⁑
	ASCII art, but in Unicode, with Braille and other alternatives ⁑
	Skew tilesets ⁑
	Threechet ⁑
	Thumbnail views in a Unicode character-cell terminal with Braille ⁑
	Energy autonomous computing ⁑
	How do you fit a high-level language into a microcontroller? Let’s look at BBN Lisp ⁑
	Panelization in PCB manufacturing ⁑
	Some notes on IPL-VI, Lisp’s 01958 precursor ⁑
	Refreshing Flash memory periodically for archival ⁑
	Variable length unaligned bytecode ⁑
	A survey of imperative programming operations’ prevalence ⁑
	Vaughan Pratt and Henry Baker’s COMFY control-flow combinators ⁑
	Generating novel unique pronounceable identifiers with letter frequency data ⁑
	Garbage-collected allocation performance on current computers ⁑
	How Lao Yuxi painted a cock ⁑
	Bench supply ⁑
	Recursive residue number systems? ⁑
	Brute force speech ⁑
	When is it better to compute by moving atoms rather than electrons? ⁑
	Veskeno is a “fantasy platform” like TIC-80 ⁑
	Some notes on reading Chris Seaton’s TruffleRuby dissertation ⁑
	.xosm: experimental obvious stack machine ⁑
	Open coded primitives ⁑
	Failing to stabilize the amplitude of an opamp phase-delay oscillator ⁑
	Running scripts once per frame for guaranteed GUI responsivity ⁑
	Minor improvements to pattern matching ⁑
	Why Bitcoin is puzzling to people in rich countries ⁑
	Statistics on the present and future of energy in the People’s Republic of China ⁑
	Geneva wheel stopwork ⁑
	A bargain-basement Holter monitor with a BOM under US$2.50 ⁑
	Locking telescope ⁑
	Logarithmic low-power SERDES ⁑
	:fq0zl, a normal-order text macro language ⁑
	Forming steel with copper instead of vice versa ⁑
	Notes on pricing of locally available oscilloscopes ⁑
	Can you get JLCPCB to fabricate a CPU for you affordably from “basic” parts? ⁑
	Safe FORTH with the FORTRAN memory model? ⁑
	Manually writing code in static single assignment (SSA) form, inspired by Kemeny’s DOPE, isn’t worth it ⁑
	Diskstrings: Bernstein’s netstrings for single-pass streaming output ⁑
	Phased-array imaging sonar from a mesh network of self-localizing sensor nodes ⁑
	A boiler for submillisecond steam pulses ⁑
	Three phase logic ⁑
	How fast do von Neumann probes need to reproduce to colonize space in our lifetimes? ⁑
	List of random GUI ideas ⁑
	Thixotropic electrodeposition ⁑
	Cheap cutting jig ⁑
	Differential filming ⁑
	Planetary roller screw worm drive ⁑
	Fresnel mirror electropolishing ⁑
	Leaf hypertext ⁑
	Weighing an eyelash on an improvised Kibble balance ⁑
	Precisely measuring out particulates with a trickler ⁑
	A four-dimensional keyboard matrix made of linear voltage differential transformers (LVDTs) to get 30 or 180 keys on five pins ⁑
	Planetary screw potentiometer ⁑
	3-D printing in carbohydrates ⁑
	Clay-filled PLA filament for firing to ceramic ⁑
	Multicolor filament ⁑
	Acicular low binder pastes ⁑
	Cutting clay ⁑
	Scaling laws ⁑
	Selectively curing one-component silicone by injecting water ⁑
	Clay wire cutter ⁑
	Electroforming rivets ⁑
	Metal welding fuel ⁑
	Aluminum foil ⁑
	The nature of mathematical discourse ⁑
	Designing curiosity and dreaming into optimizing systems ⁑
	Omnidirectional wheels ⁑
	Ghetto electrical discharge machining (EDM) ⁑
	Broken hard disks are the cheapest source of ultraprecision components ⁑
	Micro impact driver ⁑
	Minkowski deconvolution ⁑
	Greek operating systems ⁑
	The algebra of N-ary relations ⁑
	Nuclear energy is the Amiga of energy sources ⁑
	Flux-gate downconversion in a loopstick antenna? ⁑
	PEG-like flexibility for parsing right-to-left? ⁑
	How little code can a filesystem be? ⁑
	Notes on the PDF file format ⁑
	Notes on what would be needed to drive a PS/2 keyboard from an Arduino ⁑
	Self hosting kernel ⁑
	Stack syntax ⁑
	Bead hypertext ⁑
	Does USB bitstuffing create a timing-channel vulnerability? ⁑
	Verstickulite ⁑
	Simple linear-time linear-space nested delimiter parsing ⁑
	Economic history ⁑
	More cements ⁑
	Base 3 gage blocks ⁑
	Multiple counter-rotating milling cutters to eliminate side loading ⁑
	Layered ECM ⁑
	A kernel you can type commands to ⁑
	Can you use stabilized cubic zirconia as an ECM cathode in molten salt? ⁑
	Electrolytic glass machining ⁑
	Super ghetto digital fabrication ⁑
	Glass powder-bed 3-D printing ⁑
	Rator-port GUIs ⁑
	Sulfur jet metal cutting ⁑
	Powder-bed 3-D printing with a sacrificial binder ⁑
	Stochastically generated self-amalgamating tape variations for composite fabrication ⁑
	Spin-coating clay-filled plastics to make composites with high anisotropic filler loadings ⁑
	ECM for machining nonmetals? ⁑
	Sonic screwdriver resonance ⁑
	Subnanosecond thermochromic light modulation for real-time holography and displays ⁑
	Notes on Richards et al.’s nascent catalytic ROS water treatment process ⁑
	Memory view ⁑
	Spreadtool ⁑
	Smolsay: the Ur-Lisp, but with dicts instead of conses ⁑
	Electrolytic berlinite ⁑
	Making mirabilite and calcite from drywall ⁑
	Potential local sources and prices of refractory materials ⁑
	Faygoo: a yantra-smashing ersatz version of Piumarta and Warth’s COLA ⁑
	Firing talc ⁑
	Improvements on C for low-level programming such as block arguments ⁑
	Fiberglass CMCs? ⁑
	My ideal workshop (unfinished) ⁑
	Can you 3-D print Sorel cement by inhibiting setting with X-rays? ⁑
	Tetrahedral expanded metal ⁑
	Glass foam ⁑
	Leaf vein roof ⁑
	Aluminum fuel ⁑
	Boosters for self-propagating high-temperature synthesis (SHS) ⁑
	Compressed appendable file ⁑
	SHS of magnesium phosphate ⁑
	Back-drivable differential windlass ⁑
	Synthesizing reactive magnesia? ⁑
	Synthesizing amorphous magnesium silicate ⁑
	Ropes with constant-time concatenation and equality comparisons with monoidal hash consing ⁑
	Compilation of block arguments to high-performance code ⁑
	Material observations ⁑
	Dipropylene glycol ⁑
	The ayurvedic “fire mud” of Bhudeb Mookerji and modern castable refractories ⁑
	Arc maker ⁑
	Argentine pricing of PEX pipe and alternatives for phase-change fluids ⁑
	Power transistors ⁑
	Pocket kiln ⁑
	Cola flavor ⁑
	Constant current buck ⁑
	Methane bag ⁑
	Iodine patterning ⁑
	Heating a shower tank with portable TCES? ⁑
	Subset of C for the simplest self-compiling compiler ⁑
	A compact bytecode sketch that should average about 3 bytes per line of C ⁑
	Wiki models ⁑
	Residual stream windowing ⁑
	Sandwich panel optimization ⁑
	Glass wood ⁑
	Maximizing phosphate density from aqueous reaction ⁑
	Lazy heapsort ⁑
	Recursive bearings ⁑
	A construction set using SHS ⁑
	Sorption vacuum pumps really can’t operate continuously ⁑
	Electrodeposition welding ⁑
	Better screw head designs? ⁑
	Dense fillers ⁑
	Selective laser sintering of copper ⁑
	Negative feedback control to prevent runaway positive feedback in 3-D MIG welding printing ⁑
	Fast electrolytic mineral accretion (seacrete) for digital fabrication? ⁑
	Patterning metal surfaces by coating decomposition with lasers or plasma? ⁑
	Rock-wool-filled composites ⁑
	Weighing balance design ⁑
	Fast-slicing ECM ⁑
	Switching kiloamps in microseconds ⁑
	Spot welding ⁑
	Qfitzah: a minimal term-rewriting language ⁑
	A short list of the most useful Unix CLI tools ⁑
	Three phase differential data ⁑
	Waterglass “Loctite”? ⁑
	Qfitzah internals ⁑
	Blowing agents ⁑
	Compliance spectroscopy ⁑
	Planning Apples to Apples, instead of Planning Poker ⁑
	Liquid dielectrics for hand-rolled self-healing capacitors ⁑
	Deriving binary search ⁑
	The sol-gel transition and selective gelling for 3-D printing ⁑
	Some notes on perusing the Udanax Green codebase ⁑
	Fung’s “I can’t believe it can sort” algorithm and others ⁑
	Spanish phonology ⁑
	Some notes on learning Rust ⁑
	PBKDF content addressing with keyphrase hashcash: a non-blockchain attack on Zooko’s Triangle ⁑
	Wordlists for maximum drama ⁑
	The spark-pen pointing device ⁑
	Beyond overstrike ⁑
	Pipelined piece chain painting ⁑
	An algebra of partial functions for interactively composing programs ⁑
	Beyond op streams ⁑
	Inverse perspective ⁑
	Ranking MOSFETs for, say, rapid localized electrolysis to make optics ⁑
	The relation between solar-panel efficiency for air conditioning and insulation thickness ⁑
	An even simpler offline power supply than a capacitive dropper, with a 7¢ BOM ⁑
	Trying to quantify relative speeds of different digital fabrication processes with “matter bandwidth” ⁑
	Balanced ropes ⁑
	Flexural mounts for self-aligning bushings ⁑
	Triggering a spark gap with an exploding wire ⁑
	Triggering a spark gap with low jitter using ultraviolet LEDs? ⁑
	Binomial coefficients and the dimensionality of spaces of polynomials ⁑
	Finite element analysis with sparse approximations ⁑
	Implementation and applications of low-voltage Marx generators with solid-state avalanche breakdown? ⁑
	The astounding UI responsivity of PDP-10 DDT on ITS ⁑
	Example based regexp ⁑
	Adversarial control ⁑
	Constant weight dithering ⁑
	Hashing text with recursive shingling to find duplication efficiently ⁑
	My Heathkit H8 ⁑
	Orthogonal rational vectors ⁑
	Thread rolling roller screw ⁑
	Viscoelastic probing ⁑
	An aluminum pencil for marking iron? ⁑
	Embedding runnable code in text paragraphs for numerical modeling ⁑
	Paeth prediction and vector quantization ⁑
	Wire brush microscope ⁑
	New nuclear power in the People’s Republic of China ⁑
	Ivan Miranda’s snap-pin fasteners and similar snaps ⁑
	Rendering 3-D graphics with PINNs and GANs? ⁑
	Aqueous scanning probe microscopy ⁑
	Redundancy in self-replicating systems such as hundred-eyed chickens ⁑
	DSLs for calculations on dates ⁑
	Some notes on reading parts of Reuleaux’s engineering handbook ⁑
	A simple 2-D programmable graphics pipeline to unify tiles and palettes ⁑
	Interesting works that entered the public domain in 02021, in the US and elsewhere ⁑
	At small scales, electrowinning may be cheaper than smelting ⁑
	Micro ramjet ⁑
	Vernier indicator ⁑
	Some notes on Bhattacharyya’s ECM book ⁑
	Chording commands ⁑
	Exotic steel analogues in other metals ⁑
	Simplest blinker ⁑
	Capacitive linear encoder sensors ⁑
	Two finger multitouch ⁑
	The Habitaculum: a modular dwelling machine ⁑
	Against subjectivism ⁑
	Solid rock on a gossamer skeleton through exponential deposition ⁑
	3-D printing in poly(vinyl alcohol) ⁑
	Ghetto electrochromic displays for ultra-low-power computing? ⁑
	Electrolytic 2-D cutting and related electrolytic digital fabrication processes ⁑
	Layers plus electroforming ⁑
	MOSFET body diodes as Geiger counter avalanche detectors? ⁑
	The user interface potentialities of a barcoded paper notebook ⁑
	Aluminum refining ⁑
	Regenerative muffle kiln ⁑
	Is liberal democracy’s stability conditioned on historical conditions that no longer obtain? ⁑
	Xerogel compacting ⁑
	Photoemissive power ⁑
	Toggling eccentrics for removing preload from spring clamps ⁑
	Safe decentralized cloud storage ⁑
	Materials ⁂
	Programming ⁂
	Contrivances ⁂
	Electronics ⁂
	Pricing ⁂
	Digital fabrication ⁂
	Manufacturing ⁂
	History ⁂
	Performance ⁂
	Human-computer interaction ⁂
	Physics ⁂
	Electrolysis ⁂
	Mechanical ⁂
	3-D printing ⁂
	Filled systems ⁂
	Experiment report ⁂
	Algorithms ⁂
	Strength of materials ⁂
	Machining ⁂
	Python ⁂
	Pulsed machinery ⁂
	Frrickin’ lasers! ⁂
	Ghettobotics ⁂
	Energy ⁂
	Bootstrapping ⁂
	Safe programming languages ⁂
	Math ⁂
	Lisp ⁂
	Assembly-language programming ⁂
	Power supplies ⁂
	Graphics ⁂
	Compilers ⁂
	Clay ⁂
	Aluminum ⁂
	Welding ⁂
	Virtual machines ⁂
	Precision ⁂
	Phosphates ⁂
	Foam ⁂
	ECM ⁂
	Composites ⁂
	Composability ⁂
	Waterglass ⁂
	Small is beautiful ⁂
	Sensors ⁂
	Programming languages ⁂
	Ceramic ⁂
	C ⁂
	Real time ⁂
	Higher order programming ⁂
	Hand tools ⁂
	Falstad’s circuit simulator ⁂
	Facepalm ⁂
	Argentina ⁂
	2-D cutting ⁂
	Terminals ⁂
	Solar ⁂
	Self replication ⁂
	Systems architecture ⁂
	Protocols ⁂
	Post-teletype terminal design ⁂
	Physical computation ⁂
	Optics ⁂
	Minerals ⁂
	Microcontrollers ⁂
	Metrology ⁂
	Magnesium ⁂
	Instruction sets ⁂
	Independence ⁂
	GUIs ⁂
	End user programming ⁂
	Anisotropic fillers ⁂
	Thermodynamics ⁂
	The future ⁂
	Syntax ⁂
	Steel ⁂
	Small things ⁂
	Security ⁂
	Refractory ⁂
	Powder-bed 3-D printing processes ⁂
	The Portable Document Format (PDF) ⁂
	Parsing ⁂
	Numerical modeling ⁂
	Incentives ⁂
	FORTH ⁂
	Flexures ⁂
	File formats ⁂
	Copper ⁂
	Cements ⁂
	Bytecode ⁂
	Aluminum foil ⁂
	Vermiculite ⁂
	Transactions ⁂
	Sparks ⁂
	Self-propagating high-temperature synthesis (SHS) ⁂
	Scanning probe microscopy ⁂
	Reverse Polish notation (RPN) ⁂
	Reading ⁂
	Poly(vinyl alcohol) (PVA) ⁂
	Program calculator ⁂
	Pascal ⁂
	Operating systems ⁂
	OCaml ⁂
	Memory hardware ⁂
	Life support ⁂
	Input devices ⁂
	Heating ⁂
	Glass ⁂
	Garbage collection ⁂
	Encoding ⁂
	Editors ⁂
	Economics ⁂
	Dynamic dispatch ⁂
	Domain-specific languages (DSLs) ⁂
	Displays ⁂
	Control (cybernetics) ⁂
	Compression ⁂
	Communication ⁂
	Ceramic-matrix composites (CMCs) ⁂
	Caching ⁂
	Weighing ⁂
	Unix ⁂
	Tiled graphics ⁂
	Term rewriting ⁂
	Sugar ⁂
	Sorting ⁂
	Solubility ⁂
	Scheme ⁂
	Roller screws ⁂
	RISC-V ⁂
	Reproducibility ⁂
	Radio ⁂
	Politics ⁂
	Illinois PLATO ⁂
	Poly(lactic acid) (PLA) ⁂
	Patterning ⁂
	Oscillators ⁂
	Natural-language processing ⁂
	Memory models ⁂
	LEDs ⁂
	Kleene algebras ⁂
	Kingery, the father of modern ceramics ⁂
	Keyboards ⁂
	Insulation ⁂
	Hypertext ⁂
	Humor ⁂
	Hashing ⁂
	Glutaraldehyde ⁂
	Forming ⁂
	Flying ⁂
	Fasteners ⁂
	Emacs ⁂
	Control flow ⁂
	COMFY-* ⁂
	Cameras ⁂
	Batteries ⁂
	BASIC ⁂
	Audio ⁂
	ASCII art ⁂
	Art ⁂
	Artificial neural networks ⁂
	Allocation performance ⁂
	Alabaster ⁂
	X rays ⁂
	Wiki ⁂
	Video ⁂
	The Veskeno virtual machine ⁂
	The United States of America (USA) ⁂
	Unicode ⁂
	Toxicology ⁂
	Thixotropy ⁂
	Tcl ⁂
	Talc ⁂
	Stack machines ⁂
	Spreadtools ⁂
	Speech synthesis ⁂
	Space ⁂
	Sonic screwdrivers ⁂
	Snaps ⁂
	Smalltalk ⁂
	Spatial light modulators (SLMs) ⁂
	Silver ⁂
	Silicone ⁂
	Steel Bank Common Lisp ⁂
	Sapphire ⁂
	Sandblasting ⁂
	Ropes ⁂
	Regenerators ⁂
	Refining ⁂
	Randomness ⁂
	Qfitzah ⁂
	Prefix sums ⁂
	Plasma ⁂
	Piezoelectrics ⁂
	Photoemission ⁂
	Perl ⁂
	Parsing expression grammars (PEGs) ⁂
	Passwords ⁂
	The Paeth predictor ⁂
	Memory ownership ⁂
	Overstrike ⁂
	Mathematical optimization ⁂
	Oogoo ⁂
	Ontology ⁂
	Namespaces ⁂
	m4 ⁂
	LuaJIT ⁂
	Lua ⁂
	LiDAR ⁂
	Length ⁂
	Layout ⁂
	Latency ⁂
	The JS programming language ⁂
	JLCPCB (JiaLiChuang) ⁂
	Interrupts ⁂
	Incremental search ⁂
	Household ⁂
	Gradient descent ⁂
	Gears ⁂
	Generative adversarial networks (GANs) ⁂
	Galileo ⁂
	Fiction ⁂
	Enthalpy ⁂
	Employment ⁂
	Electropolishing ⁂
	Electroforming ⁂
	Dreaming ⁂
	Decentralization ⁂
	Debugging ⁂
	Databases ⁂
	Cross linking ⁂
	Command-line interfaces (CLI) ⁂
	China ⁂
	Ccn ⁂
	Carborundum ⁂
	Call by name ⁂
	Block arguments ⁂
	Bicicleta ⁂
	Barcodes ⁂
	Azane ⁂
	AVR8 microcontrollers ⁂
	Arduino ⁂
	Archival ⁂
	Apl ⁂
	Ambiq ⁂

