
Derctuo
    Derctuo is a book of notes on various topics, mostly science and 
engineering with some math, from the first year of the COVID-19 
pandemic, 02020 CE.  Its primary published form is a gzipped tarball 
of 9MB of HTML files and sources, although there’s also an inferior 
PDF version of about 1000 pages for reading on hand computers. 

    My original plan was to write a reproducible computation system 
so that the book would be entirely reproducible from a minimal 
computational core, allowing all of its calculations to be not only 
verified but also extended, reused, and studied.  Instead it’s mostly 
just about a quarter million words of dead text, with some inline 
images, plus a bundled library of source material, which is not 
included in the PDF version. 

    It contains some novel discoveries, but some of it is just my notes 
from exploring the enormous feast of knowledge now available on 
the internet to anyone who takes the time to taste of it, and some 
other parts are explorations that didn’t pan out — left here only as a 
cautionary tale to the next explorer. 

    There are lots of notes in here that aren’t “finished” in the usual 
sense;  they end in the middle of a sentence, or say “XXX”, or have a 
note in them that the foregoing is wrong in such-and-such a way.  
But I am publishing the final version of Derctuo today.  I might make 
future versions of some of these notes, but not of Derctuo itself. 

    Derctuo is the sequel to Dercuano, a larger collection of my notes 
which I published in 02019.

Notes

02020-04

• Difficulty estimation of programming tasks (p.  12) 02020-04-20 
(2 minutes) 
• Pure functional UI (p.  13) 02020-04-21 (4 minutes) 
• Pure functional VM (p.  15) 02020-04-21 (1 minute) 
• A reproducible vector-instruction VM? (p.  16) 02020-04-21 
(updated 02020-06-17) (30 minutes) 
• Ballpoint SPIF (p.  32) 02020-04-25 (7 minutes) 
• Bitwise reproducibility (p.  35) 02020-04-25 (1 minute) 

02020-05

• Reversible parsing (p.  36) 02020-05-11 (6 minutes) 
• Bloomtags:  a Bloom-filter tree for efficient and flexible database 
queries (p.  40) 02020-05-13 (21 minutes) 
• Static hypertext on CCN (p.  47) 02020-05-16 (2 minutes) 
• Feeds or streams on CCNs (p.  48) 02020-05-16 (15 minutes) 
• Commit log transfer (p.  53) 02020-05-16 (1 minute) 
• One pass sort (p.  54) 02020-05-16 (15 minutes) 
• Optimized finger joints (p.  59) 02020-05-16 (4 minutes) 
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• Solar furnace CPC (p.  61) 02020-05-16 (12 minutes) 
• Pandemic collapse (p.  65) 02020-05-17 (updated 02020-12-16) 
(22 minutes) 
• Font rendering with all-pass filters (p.  72) 02020-05-18 (7 minutes) 
• Single output build (p.  75) 02020-05-19 (4 minutes) 
• Electronics kit (p.  77) 02020-05-23 (updated 02020-12-20) 
(14 minutes) 

02020-06

• Sodium silicate (p.  82) 02020-06-04 (32 minutes) 
• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• Writing a shopping list in TeX (p.  106) 02020-06-05 (4 minutes) 
• A 6-bit “variac casero” (p.  108) 02020-06-06 (22 minutes) 
• Tentative outline of a body of knowledge (p.  116) 02020-06-06 
(updated 02020-10-28) (10 minutes) 
• Ghettobotics soldering iron (p.  120) 02020-06-17 (4 minutes) 
• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Convincingness (p.  160) 02020-06-20 (1 minute) 
• Lantern gears (p.  161) 02020-06-20 (updated 02020-06-28) 
(1 minute) 
• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Slide rule addition (p.  179) 02020-06-22 (3 minutes) 
• Hacker calendar (p.  181) 02020-06-28 (updated 02020-12-03) 
(15 minutes) 
• Trying to drive a speaker with a buck converter (p.  187) 
02020-06-29 (4 minutes) 
• Using Numpy for non-numerical computation:  what would a good 
example be? (p.  189) 02020-06-29 (updated 02020-06-30) 
(3 minutes) 

02020-07

• Modelica notes (p.  192) 02020-07-06 (updated 02020-07-07) 
(9 minutes) 
• Ultra machining (p.  196) 02020-07-06 (updated 02020-07-18) 
(5 minutes) 
• Importing the WHO’s COVID-19 data into SQLite (p.  198) 
02020-07-10 (2 minutes) 
• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 
• Virtual machine setup (p.  205) 02020-07-10 (updated 02020-07-14) 
(17 minutes) 
• Long distance radio (p.  212) 02020-07-17 (19 minutes) 
• A generic universal entity-component simulatorium (p.  219) 
02020-07-18 (1 minute) 
• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 
• Retro teletext (p.  225) 02020-07-18 (updated 02020-07-23) 
(18 minutes) 



• The orbital drive and stepped planetary drive (p.  231) 02020-07-28 
(updated 02020-08-02) (10 minutes) 

02020-08

• Fossil geothermal (p.  234) 02020-08-02 (updated 02020-11-13) 
(12 minutes) 
• Pyrolysis 3-D printing (p.  238) 02020-08-02 (updated 02020-11-24) 
(20 minutes) 
• Machine teeth (p.  247) 02020-08-02 (updated 02020-12-31) 
(8 minutes) 
• 3-D printing iron by electrodeposition? (p.  251) 02020-08-15 
(11 minutes) 
• Peroxide and bleach (p.  255) 02020-08-15 (2 minutes) 
• Cyclic fabrication systems (p.  256) 02020-08-17 (updated 
02020-09-10) (56 minutes) 
• Foil-marking glass (p.  273) 02020-08-18 (4 minutes) 

02020-09

• Inductively-coupled plasma torches (p.  275) 02020-09-10 
(5 minutes) 
• Oxygen generator rocket (p.  277) 02020-09-10 (1 minute) 
• Penalized bits (p.  278) 02020-09-10 (3 minutes) 
• Phosphate precipitation (p.  280) 02020-09-10 (12 minutes) 
• Notable quotes from Steinmetz’s 1892 hysteresis paper (p.  284) 
02020-09-10 (2 minutes) 
• The programmable world (p.  285) 02020-09-10 (0 minutes) 
• Smart plumbing (p.  286) 02020-09-10 (updated 02020-09-12) 
(11 minutes) 
• Inorganic burnout (p.  290) 02020-09-11 (updated 02020-09-12) 
(18 minutes) 
• Micro material sorting (p.  296) 02020-09-12 (2 minutes) 
• Sparse sinc (p.  297) 02020-09-17 (12 minutes) 
• An index of the 1880 edition of Cooley’s Cyclopædia (p.  301) 
02020-09-17 (updated 02020-10-23) (9 minutes) 
• Spark gap logic (p.  305) 02020-09-20 (updated 02020-12-16) 
(25 minutes) 
• Copper salts (p.  313) 02020-09-21 (updated 02020-09-23) 
(8 minutes) 
• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 
• Aluminum-air batteries (p.  322) 02020-09-23 (4 minutes) 
• A digital Dagarti might save your life (p.  324) 02020-09-23 
(3 minutes) 
• Solar netting (p.  326) 02020-09-23 (9 minutes) 
• Mild bases (p.  329) 02020-09-23 (updated 02020-10-01) (3 minutes) 

• Magnesium fuel (p.  331) 02020-09-23 (updated 02020-10-09) 
(13 minutes) 
• Ancient batteries (p.  336) 02020-09-23 (updated 02020-12-31) 
(4 minutes) 
• Modern material processing (p.  338) 02020-09-24 (updated 
02020-09-26) (8 minutes) 



• Materials shopping list (p.  341) 02020-09-25 (updated 02020-12-20) 
(1 minute) 
• Toolpath optimization (p.  343) 02020-09-27 (updated 
02020-09-30) (19 minutes) 
• Reducing sucrose (p.  350) 02020-09-30 (7 minutes) 
• Wang tile chemicals (p.  353) 02020-09-30 (2 minutes) 

02020-10

• Scraping Sciencemadness (p.  354) 02020-10-01 (updated 
02020-10-05) (4 minutes) 
• Secure Scuttlebutt is a cool idea whose realization has fatal flaws (p.  
357) 02020-10-02 (updated 02020-11-06) (17 minutes) 
• Prate thoughts (p.  363) 02020-10-02 (updated 02020-12-30) 
(12 minutes) 
• Lithium fuel (p.  367) 02020-10-04 (7 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• DNS Cache Rendezvous:  a permissionless signaling channel for 
bootstrapping end-to-end connections (p.  383) 02020-10-07 
(13 minutes) 
• Nodebook:  autotagging quantities for ad-hoc calculation and 
example-based end-user programming (p.  388) 02020-10-07 
(7 minutes) 
• Single-bridge Tor deanonymization? (p.  392) 02020-10-07 
(4 minutes) 
• LOGSL:  Lisp object-graph serialization language (p.  394) 
02020-10-07 (updated 02020-10-09) (8 minutes) 
• Ancient machinists (p.  399) 02020-10-08 (26 minutes) 
• Level shifter (p.  407) 02020-10-08 (updated 02020-10-10) 
(9 minutes) 
• Merkle ropes (p.  411) 02020-10-09 (15 minutes) 
• A seamless CMG-driven walker (p.  416) 02020-10-11 (updated 
02020-10-12) (6 minutes) 
• Rigid glider (p.  418) 02020-10-12 (1 minute) 
• Skip list variants (p.  419) 02020-10-12 (4 minutes) 
• VGA oscilloscope? (p.  421) 02020-10-13 (5 minutes) 
• Wire machines (p.  423) 02020-10-13 (updated 02020-12-31) 
(12 minutes) 
• Thermistors, resistance temperature detectors, and other thermal 
sensors (p.  427) 02020-10-14 (updated 02020-11-06) (12 minutes) 
• Atkinson differential blower (p.  431) 02020-10-14 (updated 
02020-12-31) (10 minutes) 
• Inspiration (p.  435) 02020-10-15 (3 minutes) 
• Oscillating flexion (p.  436) 02020-10-15 (updated 02020-10-16) 
(11 minutes) 
• Reuleaux (p.  440) 02020-10-15 (updated 02020-10-18) (19 minutes) 

• Intervals and gradients (p.  447) 02020-10-16 (4 minutes) 
• Plaster foam (p.  449) 02020-10-16 (updated 02020-11-08) 
(8 minutes) 
• Fluidic household pumping (p.  452) 02020-10-18 (updated 
02020-10-19) (7 minutes) 
• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 



(11 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 
• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Abbe-limited DRO (p.  472) 02020-10-24 (updated 02020-12-31) 
(11 minutes) 
• LED computation? (p.  476) 02020-10-25 (5 minutes) 
• Sequestered CO₂ would fill many oil fields (p.  478) 02020-10-25 
(2 minutes) 
• Residue number systems (p.  479) 02020-10-26 (2 minutes) 
• COVID-19 risk and vitamin D (p.  480) 02020-10-27 (updated 
02020-10-28) (12 minutes) 
• Some of the cheapest memory ICs (p.  484) 02020-10-27 (updated 
02020-10-30) (1 minute) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• Bluepill aspirations (p.  495) 02020-10-30 (updated 02020-11-01) 
(9 minutes) 

02020-11

• Multimeter metrology (p.  498) 02020-11-01 (updated 02020-11-27) 
(23 minutes) 
• Guide to finding datasheets and avoiding malicious datasheet SEO 
sites (p.  505) 02020-11-02 (updated 02020-12-22) (7 minutes) 
• Audio vector image (p.  509) 02020-11-04 (2 minutes) 
• Dead bugging (p.  510) 02020-11-04 (3 minutes) 
• Ghettobotics nonshopping list (p.  512) 02020-11-04 (updated 
02020-12-21) (22 minutes) 
• Foaming infiltration (p.  520) 02020-11-06 (1 minute) 
• Hard sticky balls (p.  521) 02020-11-06 (1 minute) 
• OCR with linear optimization (p.  522) 02020-11-06 (1 minute) 
• Pit firing (p.  523) 02020-11-06 (3 minutes) 
• Machine-readable PNG circuit diagram watermarks (p.  525) 
02020-11-06 (1 minute) 
• Arduino support for STM32 (p.  526) 02020-11-06 (10 minutes) 
• Swashplate screwdriver (p.  532) 02020-11-06 (1 minute) 
• Thermal expansion speaker (p.  533) 02020-11-06 (1 minute) 
• Copper segelín (p.  534) 02020-11-06 (updated 02020-11-08) 
(19 minutes) 
• Alien screws (p.  540) 02020-11-06 (updated 02020-11-11) 
(4 minutes) 
• The Spungot sentential database for end-user logic programming (p.  
542) 02020-11-06 (updated 02020-12-31) (27 minutes) 
• Rosining chips (p.  555) 02020-11-08 (2 minutes) 
• Cold plasma (p.  556) 02020-11-08 (updated 02020-11-24) 
(14 minutes) 
• Cutting steel with steam (p.  561) 02020-11-11 (1 minute) 
• Improvised humidity sensors with PET dielectric spectroscopy (p.  
562) 02020-11-11 (3 minutes) 
• Printf tracebacks (p.  564) 02020-11-11 (2 minutes) 
• Random synchronous motor (p.  565) 02020-11-11 (2 minutes) 
• Specular photogrammetry (p.  566) 02020-11-11 (3 minutes) 



• A compact textual format for interchange of electronic circuit 
designs (p.  568) 02020-11-11 (updated 02020-11-26) (1 minute) 
• Dictionary data structures for tiny memories (p.  569) 02020-11-12 
(3 minutes) 
• Adiabatic separation (p.  571) 02020-11-12 (updated 02020-11-14) 
(14 minutes) 
• The rep-2 cuboid (p.  576) 02020-11-13 (5 minutes) 
• Mica composites (p.  578) 02020-11-14 (3 minutes) 
• Improvised display options for embedded hardware development (p.  
580) 02020-11-16 (updated 02020-11-17) (16 minutes) 
• Capacitor meter (p.  585) 02020-11-16 (updated 02020-12-03) 
(26 minutes) 
• Rebraining (p.  593) 02020-11-16 (updated 02020-12-06) 
(12 minutes) 
• Oscilloscope superresolution via compressed sensing? (p.  607) 
02020-11-17 (1 minute) 
• A solar panel from an LED garden light (p.  608) 02020-11-17 
(updated 02020-12-01) (5 minutes) 
• Representing E12 electronic component values musically (p.  610) 
02020-11-17 (updated 02020-12-26) (16 minutes) 
• Microcontroller inventory (p.  616) 02020-11-18 (updated 
02020-11-28) (4 minutes) 
• Keyboard object environment (p.  620) 02020-11-19 (13 minutes) 
• Relay buzzer (p.  625) 02020-11-23 (2 minutes) 
• Geomagnetic energy harvesting is barely feasible at near-kilometer 
scales (p.  627) 02020-11-24 (3 minutes) 
• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 
• Lenticular air bearing (p.  632) 02020-11-24 (2 minutes) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• Muldiv (p.  637) 02020-11-26 (1 minute) 
• AVR OSCCAL probably won’t give you an FM radio (p.  638) 
02020-11-26 (2 minutes) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 
• Hardware queuing (p.  644) 02020-11-26 (updated 02020-12-16) 
(11 minutes) 
• Foam electro-etching and related techniques (p.  648) 02020-11-26 
(updated 02020-12-31) (10 minutes) 
• Using C99 compound literals unjustifiably (p.  652) 02020-11-27 
(6 minutes) 
• A reverse-biased diode thermometer (p.  656) 02020-11-27 
(9 minutes) 
• My very first opamp (p.  661) 02020-11-27 (4 minutes) 
• Taking screenshots (p.  663) 02020-11-27 (updated 02020-12-20) 
(14 minutes) 
• Punk zine look (p.  671) 02020-11-28 (6 minutes) 

02020-12

• Caching layout (p.  674) 02020-12-03 (8 minutes) 
• Compressed imaging (p.  677) 02020-12-06 (3 minutes) 
• A letter-by-letter Hamming code for manual ECC computation (p.  
679) 02020-12-06 (updated 02020-12-16) (5 minutes) 



• Majority logic with DRAM sense amps (p.  683) 02020-12-09 
(30 minutes) 
• Truth table search (p.  692) 02020-12-09 (11 minutes) 
• Yablochkov arc cutter (p.  696) 02020-12-09 (1 minute) 
• The Language of Choice, and other languages (p.  697) 02020-12-09 
(updated 02020-12-31) (10 minutes) 
• Scribal Basic:  a 1960s language for the 02020s (p.  701) 02020-12-12 
(updated 02020-12-15) (32 minutes) 
• Hierarchical state space learning (p.  714) 02020-12-14 (8 minutes) 
• Programming in the debugger (p.  717) 02020-12-15 (2 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 
• Materials YouTube (p.  740) 02020-12-16 (updated 02020-12-17) 
(1 minute) 
• Electronics next project (p.  741) 02020-12-21 (updated 
02020-12-22) (7 minutes) 
• Electroforming networks (p.  744) 02020-12-22 (3 minutes) 
• Time-scale material processing (p.  746) 02020-12-22 (3 minutes) 
• Circle-portal GUI Ⅱ (p.  748) 02020-12-22 (updated 02020-12-23) 
(4 minutes) 
• Methods for two-dimensional rotation with two or three real 
multiplies (p.  750) 02020-12-23 (updated 02020-12-26) (14 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 
• The sparsity of PEG memoization utility (p.  765) 02020-12-24 
(updated 02020-12-28) (1 minute) 
• Cheating étendue? (p.  766) 02020-12-26 (4 minutes) 
• Stochastic fractional delay lines (p.  768) 02020-12-26 (9 minutes) 
• Successive-approximation UI design (p.  771) 02020-12-28 
(1 minute) 
• Differential dividing plate (p.  772) 02020-12-31 (14 minutes) 
• ECM engraving (p.  776) 02020-12-31 (5 minutes) 
• Electro-etching graded-index optics in porous silicon (p.  778) 
02020-12-31 (2 minutes) 
• Electrodeposition welding (p.  779) 02020-12-31 (2 minutes) 
• Jigsaw blades (p.  780) 02020-12-31 (5 minutes) 
• Table text (p.  782) 02020-12-31 (4 minutes) 

Topics

• Materials (p.  784) (51 notes) 
• Contrivances (p.  786) (44 notes) 
• Electronics (p.  788) (42 notes) 
• Performance (p.  790) (24 notes) 
• Mechanical things (p.  791) (19 notes) 
• Physics (p.  792) (18 notes) 
• Ghettobotics (p.  793) (18 notes) 
• Metrology (p.  794) (17 notes) 
• Manufacturing (p.  795) (17 notes) 
• History (p.  796) (17 notes) 
• HCI (p.  797) (17 notes) 
• Digital fabrication (p.  798) (17 notes) 



• Algorithms (p.  799) (16 notes) 
• Pricing (p.  800) (14 notes) 
• Microcontrollers (p.  801) (14 notes) 
• Thermodynamics (p.  802) (13 notes) 
• Programming (p.  803) (13 notes) 
• Math (p.  804) (13 notes) 
• Systems architecture (p.  805) (12 notes) 
• Practical (p.  806) (12 notes) 
• Security (p.  807) (11 notes) 
• Energy (p.  808) (11 notes) 
• Protocols (p.  809) (10 notes) 
• Graphics (p.  810) (10 notes) 
• Experiment report (p.  811) (10 notes) 
• Mathematical optimization (p.  812) (9 notes) 
• Independence (p.  813) (9 notes) 
• Embedded programming (p.  814) (9 notes) 
• Derctuo (p.  815) (9 notes) 
• Strength of materials (p.  816) (8 notes) 
• Refractory (p.  817) (8 notes) 
• Foaming (p.  818) (8 notes) 
• Facepalm (p.  819) (8 notes) 
• The future (p.  820) (7 notes) 
• The STM32 microcontroller family (p.  821) (7 notes) 
• Physical computation (p.  822) (7 notes) 
• File formats (p.  823) (7 notes) 
• Electrolysis (p.  824) (7 notes) 
• Communication (p.  825) (7 notes) 
• Caching (p.  826) (7 notes) 
• Self replication (p.  827) (6 notes) 
• Radio (p.  828) (6 notes) 
• Nostalgia (p.  829) (6 notes) 
• Minerals (p.  830) (6 notes) 
• LEDs (p.  831) (6 notes) 
• Latency (p.  832) (6 notes) 
• Falstad’s circuit simulator (p.  833) (6 notes) 
• Calculation (p.  834) (6 notes) 
• The AVR microcontroller (p.  835) (6 notes) 
• Waterglass (p.  836) (5 notes) 
• Solar (p.  837) (5 notes) 
• Reproducibility (p.  838) (5 notes) 
• Optics (p.  839) (5 notes) 
• Instruction sets (p.  840) (5 notes) 
• Incremental computation (p.  841) (5 notes) 
• Household (p.  842) (5 notes) 
• Heating (p.  843) (5 notes) 
• End-user programming (p.  844) (5 notes) 
• Digital signal processing (p.  845) (5 notes) 
• Debugging (p.  846) (5 notes) 
• Control (p.  847) (5 notes) 
• Archival (p.  848) (5 notes) 
• Analog (p.  849) (5 notes) 
• Zirconia (p.  850) (4 notes) 
• Ultrasound (p.  851) (4 notes) 
• Text editors (p.  852) (4 notes) 



• Steel (p.  853) (4 notes) 
• Sensors (p.  854) (4 notes) 
• Python (p.  855) (4 notes) 
• Plumbing (p.  856) (4 notes) 
• Photovoltaic (p.  857) (4 notes) 
• Parsing (p.  858) (4 notes) 
• Music (p.  859) (4 notes) 
• Layout (p.  860) (4 notes) 
• GUIs (p.  861) (4 notes) 
• Energy harvesting (p.  862) (4 notes) 
• Cooling (p.  863) (4 notes) 
• Composite materials (p.  864) (4 notes) 
• Coding (p.  865) (4 notes) 
• C (p.  866) (4 notes) 
• Book notes (p.  867) (4 notes) 
• Alabaster (p.  868) (4 notes) 
• Virtual machines (p.  869) (3 notes) 
• Urbit (p.  870) (3 notes) 
• Thermal storage (p.  871) (3 notes) 
• SKETCHPAD (p.  872) (3 notes) 
• Physical system simulation (p.  873) (3 notes) 
• Ropes (the data structure) (p.  874) (3 notes) 
• R (p.  875) (3 notes) 
• Purification (p.  876) (3 notes) 
• Prolog (p.  877) (3 notes) 
• Programming by example (p.  878) (3 notes) 
• Plasma (p.  879) (3 notes) 
• Parsing expression grammars (p.  880) (3 notes) 
• Merkle graphs (p.  881) (3 notes) 
• Hypertext (p.  882) (3 notes) 
• Gradient descent (p.  883) (3 notes) 
• Gearing (p.  884) (3 notes) 
• Publish/subscribe feeds (p.  885) (3 notes) 
• Emacs (p.  886) (3 notes) 
• Espacio de César (p.  887) (3 notes) 
• Electrochemical machining (p.  888) (3 notes) 
• Distributed systems (p.  889) (3 notes) 
• Digital logic (p.  890) (3 notes) 
• Desiccants (p.  891) (3 notes) 
• Databases (p.  892) (3 notes) 
• Crackpots (p.  893) (3 notes) 
• Covid (p.  894) (3 notes) 
• Constraint satisfaction (p.  895) (3 notes) 
• Concurrency (p.  896) (3 notes) 
• Concrete (p.  897) (3 notes) 
• Ceramic (p.  898) (3 notes) 
• Build systems (p.  899) (3 notes) 
• Automatic differentiation (p.  900) (3 notes) 
• Audio (p.  901) (3 notes) 
• Art (p.  902) (3 notes) 
• Arrays (p.  903) (3 notes) 
• Arduino (p.  904) (3 notes) 
• Archaeology (p.  905) (3 notes) 
• Yttria (p.  906) (2 notes) 



• Web scraping (p.  907) (2 notes) 
• Veskeno (p.  908) (2 notes) 
• Utopias (p.  909) (2 notes) 
• Transactions (p.  910) (2 notes) 
• Toxicology (p.  911) (2 notes) 
• TeX (p.  912) (2 notes) 
• Ternary (p.  913) (2 notes) 
• Sparkle (p.  914) (2 notes) 
• Sorting (p.  915) (2 notes) 
• Small is beautiful (p.  916) (2 notes) 
• Scanning probe microscopes (p.  917) (2 notes) 
• Sapphire (p.  918) (2 notes) 
• Rutile (p.  919) (2 notes) 
• Regrettable (p.  920) (2 notes) 
• Quotes (p.  921) (2 notes) 
• QEMU (p.  922) (2 notes) 
• Projectors (p.  923) (2 notes) 
• Programming languages (p.  924) (2 notes) 
• Prefix sums (p.  925) (2 notes) 
• Politics (p.  926) (2 notes) 
• Pocket furnaces (p.  927) (2 notes) 
• Pidgeon process (p.  928) (2 notes) 
• Phosphates (p.  929) (2 notes) 
• Paeth rotation (p.  930) (2 notes) 
• Padauk (p.  931) (2 notes) 
• Oscilloscopes (p.  932) (2 notes) 
• Octave (p.  933) (2 notes) 
• Numpy (p.  934) (2 notes) 
• Muriate of lime (p.  935) (2 notes) 
• Monoids (p.  936) (2 notes) 
• Mole people (p.  937) (2 notes) 
• Minsky algorithm (p.  938) (2 notes) 
• Metamaterials (p.  939) (2 notes) 
• Merging (p.  940) (2 notes) 
• Magnesium (p.  941) (2 notes) 
• LSM-trees (log-structured merge trees) (p.  942) (2 notes) 
• The Long Now Foundation (p.  943) (2 notes) 
• Logic (p.  944) (2 notes) 
• Linux (p.  945) (2 notes) 
• Kafka (p.  946) (2 notes) 
• The JS language (p.  947) (2 notes) 
• Interrupts (p.  948) (2 notes) 
• Immediate-mode GUIs (p.  949) (2 notes) 
• FPGAs (p.  950) (2 notes) 
• FP-persistent data structures (p.  951) (2 notes) 
• Flying machines (p.  952) (2 notes) 
• Flexures (p.  953) (2 notes) 
• Étendue (p.  954) (2 notes) 
• Errors (p.  955) (2 notes) 
• Epistemology (p.  956) (2 notes) 
• Energy efficiency (p.  957) (2 notes) 
• Earthships (p.  958) (2 notes) 
• Drying (p.  959) (2 notes) 
• Docker (p.  960) (2 notes) 



• Corewar (p.  961) (2 notes) 
• Copy on write (p.  962) (2 notes) 
• Compilers (p.  963) (2 notes) 
• Collapse (p.  964) (2 notes) 
• Clusters (p.  965) (2 notes) 
• Chifir (p.  966) (2 notes) 
• Chat (p.  967) (2 notes) 
• Content-centric networking/named-data networking (p.  968) (2 
notes) 
• Casting (p.  969) (2 notes) 
• Carborundum (p.  970) (2 notes) 
• Cameras (p.  971) (2 notes) 
• Bootstrapping (p.  972) (2 notes) 
• Bearings (p.  973) (2 notes) 
• Batteries (p.  974) (2 notes) 
• Basic (p.  975) (2 notes) 
• B-trees (p.  976) (2 notes) 
• Automata theory (p.  977) (2 notes) 
• Assembly language (p.  978) (2 notes) 



Difficulty estimation of 
programming tasks
Kragen Javier Sitaker, 02020-04-20 (2 minutes)

    As I was writing file TODO.md I was trying to figure out how fast or 
slow I actually am at programming and how predictable this is. 

    Ur-Scheme was 1553 lines of Scheme and mostly took me four 
weeks and three days, from February 3 to March 4 of 02008, exactly a 
person-month.  David A.  Wheeler's "SLOCCount" says it should 
have taken 3.8 person-months using the basic COCOMO formula 2.4 
* (KSLOC**1.05), so let's suppose that instead of being the famous "10x 
programmer" I am a 3.8x programmer, not compared to normal 
modern programmers but to whatever losers the COCOMO model 
was calibrated on. 

    As another more recent data point, Dercuano's genpdf.py took me 5 
days (0.25 person-months), and it's 550 lines of code, suggesting 1.28 
person-months --- a productivity factor of about 5x for me.  5 is 
pretty close to 3.8. 

    I'd like to evaluate StoneKnifeForth's development speed in this 
way, but I don't have any reasonable way to do so, since I don't know 
how to evaluate either how many lines of code it is or how long it 
took me to write. 

    SLOCCount says that the part of BubbleOS I have written so far 
should have taken 17 person-months since it contains 6473 lines of 
code, although about 800 of those are the actuarial tables in the death 
clock Toki.  In fact, I wrote most of it from October 12, 02018, to 
February 22, 02019, which is almost four months;  this is also lower 
than SLOCCount's estimate by only a factor of about 3-5. 

    I wrote Dumpulse mostly October 15-17, 02017, about 0.14 
person-months.  Checking out the commit 
52f10e5a5d22c9ef8f78992cdc95cbdb8ed4ee79 I get 646 lines of code, 
nominally 1.52 person-months.  In this case the multiplier is closer to 
10x.  I think this is partly because I'd already been thinking and 
talking about how to do it and partly because I was able to stay pretty 
focused for three days --- although the git commits cluster into only 
four or five hours on each of those days. 

    I might be able to speed things up by taking advantage of new 
programming technology like generative testing, or by choosing 
especially conservative and well-understood designs.

Topics

• Programming (p.  803) (13 notes) 
• Derctuo (p.  815) (9 notes) 
• Psychology
• Dercuano
• BubbleOS



Pure functional UI
Kragen Javier Sitaker, 02020-04-21 (4 minutes)

    How about a pure functional approach?  An image is, perhaps, a 
function from (x, y) to (r, g, b), perhaps augmented with an aspect 
ratio (max x?);  an animation is a function from time to images;  a 
function is some code and some closed-over data;  a graphical user 
interface state is an image or, perhaps, an animation, and a function 
from input events (such as mouse and keyboard events, but perhaps 
also idle time and timer expiry) to new states.  Such definitions permit 
caching, checkpointing, undo, rendering frames in parallel, 
interrupting computations, and resampling, but no real composition 
--- no way to provide a GUI state as a parameter to another GUI 
state. 

    The function to render a character-cell display is pretty simple: 

def pixat(x, y):
    row, xoff = divmod(x * cols, 1)
    col, yoff = divmod(y * rows, 1)
    glyph = font[text[row][col]]
    return glyph[round(xoff * font.height)][round(yoff * font.width)]
 

    This is closed over variables cols, rows, font, and text. 

    If we've resigned ourselves to the cost of starting up and shutting 
down a new "process" for each keystroke, mouse movement, and 
frame to paint, a reasonable assembly-level interface for a 
machine-code computation to access its input data is to map all the 
input and state data "files" into a newly invoked process's memory 
space, one memory segment per file.  Rather than identifying these 
segments by ordinal number, I think it's better to identify them by 
textual name, and expect the process to invoke a library function to 
look up the segment descriptor --- like Unix environment variables, 
but each name is associated with a whole memory segment rather 
than just a NUL-terminated string. 

    For composition of computations with arbitrary machine code, we 
need ways for a computation to produce more output than just an 
image and take more diverse input than just keyboard and mouse 
events.  A capability to spawn child computations --- write output 
files, in effect --- would go some distance, but that only supports 
fanout, not the much more ubiquitous fanin.  You need some kind of 
way to provide an existing computation as an argument to another 
computation, and the user interface affordances for this need to work 
in a more efficient way than simply iterating over all computations 
that exist, querying each one in turn. 

    A simple approach would be Golang-interface-like duck typing, 
where to request an object as input you specify a list of method names 
(or method type signatures) you want the object to support, and only 
objects supporting all of these methods are offered to the user as 
options.  In some cases these may just be things like "asString" or 
"asImage".  To support backward compatibility, you might be able to 
accept N different interfaces instead of just one. 



    A different way to do composition is using event channels:  when 
an event is posted to an event bus, all the subscribers on that event bus 
are awoken with a copy of that event.  Usually this approach implies 
some degree of nondeterminism;  the Urbit approach is to wait on 
(possibly remote) futures instead of on pub-sub event channels.  There 
is still potentially some nondeterminism in the Urbit approach, since 
in Urbit it is possible for a particular future to be satisfied by more 
than one different process, and generally whichever one arrives first is 
the one that wins. 

    A potentially more satisfying approach would be to make data files, 
rather than stateful computations, the fundamental objects of the 
world, but prescribe a FlatBuffers-like layout.

Topics

• HCI (p.  797) (17 notes) 
• Caching (p.  826) (7 notes) 
• GUIs (p.  861) (4 notes) 



Pure functional VM
Kragen Javier Sitaker, 02020-04-21 (1 minute)

    I'm trying to figure out how to specify reproducible computations 
for Derctuo in a way that won't cost me months of work before I can 
start using it. 

    Urbit approaches the problem of doing reproducible computations 
with a pure functional virtual machine rather than an imperative one.  
This rules some things out of scope:  issues of efficiency, memory 
usage, and latency, for example.  But it certainly simplifies the kind of 
computation whose purpose is to compute an unknown result, rather 
than to react to events in the world.  And it might be possible to make 
it fast enough on modern machines, at least under most circumstances. 

    There's lots of information out there about how to do reasonably 
efficient evaluation of λ-calculus expressions, and I've done a few 
compilers along those lines myself.  My Bicicleta work instead uses 
Abadí and Cardelli's ς-calculus as the basis, which is slightly more 
verbose than the λ-calculus but, I think, considerably more 
convenient for programming.  Using name-value pairs rather than 
positional arguments to pass data around permits decentralized 
extensibility. 

    The Bicicleta interpreter that I wrote, however, is extremely slow, 
close to the speed of bash script.  I'm sure I can do better than that, 
using approaches like those I used in Ur-Scheme.

Topics

• Systems architecture (p.  805) (12 notes) 
• Derctuo (p.  815) (9 notes) 
• Reproducibility (p.  838) (5 notes) 
• Instruction sets (p.  840) (5 notes) 
• Urbit (p.  870) (3 notes) 
• Bicicleta



A reproducible vector-instruction 
VM?
Kragen Javier Sitaker, 02020-04-21 (updated 02020-06-17) 
(30 minutes)

    A big part of the mission for Derctuo is to make computational 
experiments reproducible, both by removing nondeterministic choices 
from the implementation and by minimizing environmental 
dependencies.  Can we reconcile this with efficiency by implementing 
a vector virtual machine? 

    This note describes an approach to Veskeno's design (p.  122) that I 
am not currently pursuing. 

The background of the problem 

    Computational experiments are more compelling when they can 
use a larger fraction of the power of your computer, and typical 
interpreted languages waste on the order of 97% of your computer's 
computational power.  Now that everybody's computer is massively 
parallel with 4-wide SIMD operations and 4-32 cores, even 
single-threaded nonvectorized C wastes on the order of 97% of your 
computer's computational power;  typical interpreted languages like 
Python or PHP thus waste 99.9% of its power.  (And that's assuming 
you don't have a GPU, which can easily push that to 99.99%.) In 
effect, using languages implemented in this way costs you three orders 
of magnitude of performance, pushing you 15 years into the past, to 
02005 or so --- a performance price that implies a progressively 
longer timespan as we get further and further out of the shadow of 
Moore's Law. 

    Simple untyped virtual machines like Chifir, Dontmove, Wirth's 
RISC, or the Cult of the Bound Variable's Universal Machine suffer 
a similar performance hit:  not only are they single-threaded, but also, 
like Forth, they typically spend about 5× as much work on 
instruction dispatch as they do on useful computation.  This is less 
than all the suffering induced by all of Python's type-checking and 
bounds-checking, but it's still painful.  This offers implementors an 
unappealing tradeoff:  either they can accept painfully limited 
performance, or they can add a lot of complexity to their 
implementation in the form of clever optimizations to try to reduce 
the performance price, at the potential cost of breaking correctness. 

    One of the great historical advantages of languages like Octave, R, 
Numpy, Yann LeCun's Lush, and APL is that even a fairly 
straightforward interpreter is capable of achieving reasonable speeds, 
because the inner loops are not interpreted --- they happen within 
primitives of the language like a+b, +/a, or *\a.  This is somewhat 
less true nowadays that our cache hierarchies are so deep and data 
locality is so important;  while straightforward Python code usually 
runs around 3% of the speed of C, locality effects usually limit 
straightforward Numpy code to around 20% of the speed of C 
(comparable to interpreted Forth or something like Chifir), and 



optimized Numpy code usually runs around 33% of the speed of C. 

    Nowadays, a potential additional interesting advantage is that 
programs in such languages expose data parallelism in a way that a 
relatively straightforward interpreter could potentially exploit, if the 
overhead for moving data between threads or processes in the host 
system is not too great.  Maybe you could use 20% of your whole 
machine instead of 20% of one core. 

    You could easily imagine splitting a computation like this one 
across cores by either row or column, although perhaps not until it's 
much larger: 

>>> np.arange(12).reshape((3, 4)) * (np.arange(3) + 4).reshape((3, 1))
array([[ 0,  4,  8, 12],
       [20, 25, 30, 35],
       [48, 54, 60, 66]])
 

Implementation limits 

    As I've said elsewhere, Lorie's UVC falls down on compatibility 
grounds when it refuses to apply limits to things like register bit sizes.  
Not putting a limit in the specification doesn't mean that 
implementations won't have limits;  it just means that every 
independent implementation will have different limits, so the 
specification is insufficient for compatibility. 

    In particular, in this case, I think there should be maximum sizes on 
all arrays and indices, probably 2**32. 

Determinism via non-mutation 

    Still, it seems likely that implementors still face an unappealing 
performance-correctness tradeoff, in a different way:  they will want 
to perform loop fusion to avoid useless traffic to main memory, but 
for some virtual-machine designs, it would be easy for such loop 
fusion to produce different results in some circumstances, specifically 
when the output aliases one or more of the inputs.  Numpy 
sometimes does produce unexpected results when the output of an 
operation aliases its input --- by itself, that doesn't necessarily violate 
the desideratum of reproducibility, but you would have to nail down 
precisely what results are required, and it would be easy for 
loop-fusion optimizations, among others, to accidentally break those 
results. 

    Still, these problems only arise if data is mutable.  Numpy data is 
mutable, but, for example, APL data is purely immutable, at a logical 
level.  You can say R[3] <- 4 in APL, and after that R[3] is indeed 4, 
but any aliases to R are not affected, though I think typically 
implementations avoid making a physical copy when possible.  If this 
immutability were an inherent part of the virtual machine, the 
opportunities for such nondeterminism would be vastly rarer.  There's 
still the possibility for an implementor to use reference counts to 
conditionally do in-place updates in order to reduce memory traffic 
(or memory usage) and botch it. 

    So, if the virtual machine definition treats arbitrary-sized arrays (up 
to the maximum) as if they were immutable atomic numbers, it 



should mostly steer clear of this kind of nondeterminism.  This also 
suggests treating the machine's memory as a storage not for bytes but 
for arrays, like a Python module is a storage for Python objects. 

Toward an instruction set design? 

    Simple scalar virtual machines like those mentioned above 
commonly have 16 or so instruction opcodes:  four or five arithmetic 
operations, one to four bitwise operations, some comparisons and 
conditional jumps, procedure call and return, and maybe load, store, 
load literal, and maybe some kind of I/O operations (both Chifir and 
the CBV UM have "read keyboard" instructions).  By contrast, 
len(dir(numpy)) is 587, and that doesn't even include the 163 methods 
on Numpy arrays, though some are duplicates.  Even old APLs 
normally have on the order of 60 built-in functions, without counting 
the results of operators like ×.+ or +/.  Can this be reduced down to 
something reasonable?  Maybe 32 opcodes or 64, not 700. 

    (Of course, many of these items in Numpy are non-fundamental 
operations like average, bartlett, and fft.) 

    Lush is unusual among array languages in that it exposes some inner 
machinery that is usually kept hidden;  a Lush "matrix" or "tensor" 
consists of a "storage" and an "index".  The storage is a 
one-dimensional array of some homogeneous atomic element type, 
and the storage is realized as a base pointer, a length, an element type, 
and flags indicating writability and memory-mappedness;  the index 
contains a pointer to a storage, a start offset into that storage, a 
number of dimensions, and an upper bound and an address increment 
(possibly zero!) for each dimension.  Exposing something like this in 
the instruction set might save the virtual machine a large number of 
index-manipulation operations:  reshape, matrix transposition, matrix 
diagonal extraction, ravel, sliding windows (by having two 
dimensions with the same stride), shape extraction, take, drop, 
generating arrays filled with a constant, and so on. 

    One way to supply this facility would be to have the following: 

• a shape(array) operation to extract a possibly-empty vector of 
dimension bounds; 
• a reshape(array, shape, strides) operation which creates a new array 
of the given shape from the raveled elements of array, using the stride 
vector strides; 
• and a drop(N, array) operation which drops the first N items of 
array.  

    If the array being reshaped or dropped is already irregular, we 
might have to copy it, and it isn't clear what drop() should do on 
non-one-dimensional arrays. 

    Could we get by with just one-dimensional vectors and slicing 
operations?  The Python expression s[3:10:2] gives us a list of items 3, 
5, 7, and 9;  a similar instruction could take a vector, a start, a count 
rather than an end, and a stride, which could be zero.  Even this could 
be decomposed into an index-generation instruction that produces the 
vector [3 5 7 9] (just as the Octave expression 3:2:10 does) and an 
indexing instruction.  Is that kind of thing adequate to express my 
example Numpy expression from earlier looplessly in terms of 



one-dimensional arrays? 

>>> np.arange(12).reshape((3, 4)) * (np.arange(3) + 4).reshape((3, 1))
array([[ 0,  4,  8, 12],
       [20, 25, 30, 35],
       [48, 54, 60, 66]])
 

    I don't think so.  The column vector on the right [[4] [5] [6]] is in 
effect being transformed into [[4 4 4 4] [5 5 5 5] [6 6 6 6]], which you 
could get by indexing it with [[0 0 0 0] [1 1 1 1] [2 2 2 2]] in a 
gathering operation.  (You can literally do this in Numpy:  (
np.arange(3) + 4)[[[[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]]]].) 

    Another tricky problem is how to compile something like lambda x:  
np.arange(12).reshape((3, 4)) * x.  You could apply this to an x like the 
3-column above, in which case you need to broadcast each of its 
elements across a row;  but you could also apply it to an x such as 
np.arange(4), in which case you need to broadcast each of its elements 
across a column, or to a scalar, or to a 3×4 matrix, or for that matter 
to a 2×3×4 array like np.arange(24).reshape((2, 3, 4)).  If you're going to 
insert a sequence of virtual machine instructions to distinguish among 
cases like these before every multiplication operation, you are going 
to incur enough interpretation overhead that actual vector 
programming languages will not run well on your vector virtual 
machine;  if you want to have this broadcasting logic at all, it is 
probably better to push it down into the definition of the 
virtual-machine operation;  and of course that would require the VM 
to see the values as N-dimensional arrays, not just vectors. 

    Operations on boolean arrays in APL are traditionally unified with, 
I think, gcd and lcm, but it seems to me more reasonable to unify 
them with pairwise max and min.  In some sense, an N-bit integer in 
a computer is an N-item boolean vector, and this is an efficient way 
to represent boolean arrays;  since we probably need pairwise max and 
min in any case, it might be best to specify two operations to translate 
back and forth between boolean arrays and arrays of N-bit integers, 
rather than specifying bitwise AND, OR, and NOT operations.  An 
efficient implementation can do this without copying. 

    There's an indexing operation.  Indexing a vector by an array index 
performs a gather, producing a result with the same shape as the 
index.  It isn't clear what should happen when you index a 
multidimensional array by anything other than some scalars;  see the 
section below, "Numpy indexing and broadcasting". 

    There's an index update operation.  It produces a new array that is 
mostly the same as an old array, but has some indices replaced.  For 
things like painting pixels in a framebuffer, it seems like it might be 
important to support things like pix[xs, ys] = red, although I guess you 
could reshape the framebuffer into a vector first and index it with xs + 
ys * width. 

    (The reshaping operation mentioned earlier could be seen as 
indexing an array with one or more indices with special 
characteristics, like "slice objects" or "range objects";  would it make 
sense to just provide an index generation operation and leave the 
reshaping to the indexing operation?  A simple implementation could 



omit optimizing the special case, and the extra orthogonality would 
allow it to be used with index update as well, maybe.  But in some 
cases not optimizing that special case results in quadratic or worse 
memory blowup.) 

    What about reductions and scans?  Like indexing of 
multidimensional arrays, these need some axis to run along, but they 
also need a binary operator.  You could use the reshape operation to 
reorganize the axes so that the desired axis comes first, or maybe last. 

Numpy indexing and broadcasting 

    There are several possible ways to index multidimensional arrays in 
Numpy: 

>>> y                  # shape (2, 3)
array([['h', 'o', 'w'],
       ['d', 'l', 'y']], 
      dtype='|S1')
>>> y[[0, 1, 0]]       # Indexing by default is on the first dimension
array([['h', 'o', 'w'],
       ['d', 'l', 'y'],
       ['h', 'o', 'w']], 
      dtype='|S1')
>>> y[[0, 1, 0], ...]  # equivalent
array([['h', 'o', 'w'],
       ['d', 'l', 'y'],
       ['h', 'o', 'w']], 
      dtype='|S1')
 

    Indexing by a complicated thing replaces the indexed dimension 
with its shape: 

>>> y[[[[[[0, 1, 0]]]]]]
array([[[[['h', 'o', 'w'],
          ['d', 'l', 'y'],
          ['h', 'o', 'w']]]]], 
      dtype='|S1')
>>> y[[[[[[0, 1, 0]]]]]].shape
(1, 1, 1, 3, 3)
>>> y[..., [2, 2, 1, 2]]      # Here we index on the other dimension
array([['w', 'w', 'o', 'w'],
       ['y', 'y', 'l', 'y']], 
      dtype='|S1')
 

    If you're indexing along multiple dimensions at once, the indices 
must be conformable, as if you were adding or multiplying them 
together, which in a sense you are (see above about xs + width * ys): 

>>> y[[0, 1, 0], [2, 2, 1, 2]]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>

IndexError: shape mismatch: indexing arrays could not be broadcast together with 
shapes (3,) (4,) 
>>> y[[0, 1, 0, 0], [2, 2, 1, 2]]



array(['w', 'y', 'o', 'w'], 
      dtype='|S1')
 

    This can lead to some ambiguity about where the dimensions taken 
from the index should be merged into the dimensions of the thing 
being indexed;  Numpy seems to prefer the earliest candidate 
position: 

>>> a
array([[[0, 1, 2, 3],
        [4, 5, 6, 0],
        [1, 2, 3, 4]],

       [[5, 6, 0, 1],
        [2, 3, 4, 5],
        [6, 0, 1, 2]]])
>>> a.shape
(2, 3, 4)
>>> a[[[1]], ..., [[1]]]
array([[[6, 3, 0]]])
>>> _.shape
(1, 1, 3)
 

    This can be quite surprising in the presence of broadcasting: 

>>> a[[[1], [1], [1], [1], [1]], ..., [[1, 1, 1, 1, 1, 1]]].shape
(5, 6, 3)
>>> a[[[1], [1], [1], [1], [1]], ..., [1, 1, 1, 1, 1, 1]].shape
(5, 6, 3)
>>> a[...,                       ..., [[1, 1, 1, 1, 1, 1]]].shape
(2, 3, 1, 6)
 

    I think the Numpy behavior of an insufficient number of indices is 
disharmonious with Numpy broadcasting behavior in the following 
sense.  If you write a function like lambda x:  x * [3, 1, 5], you are in 
some sense expecting that the last dimension of x will be 3 (or possibly 
1).  And if you say x * [[2, 3, 1], [4, 1, 5]], you are expecting that its 
last dimensions will be (2, 3) (or broadcastable to (2, 3);  for example, 
(1, 1), (1, 3), or (2, 1).) As a general principle, this means that you can 
write a function that works on, for example, an RGB triplet, and then 
apply it to some large collection of RGB triplets (perhaps an array of 
shape (320, 240, 3)), and hope that it will serendipitously generalize to 
application elementwise.  And as long as broadcasting is the only thing 
being applied, this works: 

>>> p = np.array([127, 63, 127])
>>> (p * [3, 1, 5]).clip(0, 255)
array([255,  63, 255])
>>> p = np.array([[127, 63, 127], [121, 23, 21]])
>>> (p * [3, 1, 5]).clip(0, 255)
array([[255,  63, 255],
       [255,  23, 105]])
 

    But this fails once indexing comes into play.  For example, we 



could extract the green channel of p with p[1] or possibly p[[1]].  But 
this only works in the first case above;  in the second case, instead of 
extracting the red channel of each pixel, it extracts all three channels 
of just the first pixel. 

    Many other Numpy operations have the same problem.  If we want 
the sum of the three components of the pixel, for example, p.sum() 
gives them to us;  but .sum() applies implicitly over all axes by default: 

>>> p = np.array([[127, 63, 127], [121, 23, 21]])
>>> p.sum()
482
 

    And even if we specify a particular axis, the axes are counted from 
the left, not the right: 

>>> p.sum(axis=1)
array([317, 165])
 

    To get behavior harmonious with the broadcasting behavior, we 
must specify a negative axis number: 

>>> np.array([[[127, 63, 127], [121, 23, 21]]]).sum(axis=-1)
array([[317, 165]])
 

    Other operations have even stranger behaviors, like implicitly 
flattening the array if no axis is specified: 

>>> np.array([[[127, 63, 127], [121, 23, 21]]]).cumsum()
array([127, 190, 317, 438, 461, 482])
 

    If we want to form a sum table of the color channel of each pixel, 
we can specify axis=-2: 

>>> np.array([[[127, 63, 127], [121, 23, 21]]]).cumsum(axis=-2)
array([[[127,  63, 127],
        [248,  86, 148]]])
 

    For better or worse, this fails on a single pixel: 

>>> np.array([127, 63, 127]).cumsum(axis=-2)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: axis(=-2) out of bounds
 

    This desideratum of supporting serendipitous vectorization by 
implicit rank polymorphism probably requires redesigning the 
"reshape" operator mentioned earlier so that it won't accidentally 
break this vectorization. 

Octave indexing and broadcasting 

    Octave has totally different behavior, implicitly flattening for 
indexing with a single index: 

octave:24> y = ['how'; 'dly'];



octave:9> y([1 2 1])
ans = hdh
 

    You do, however, get Numpy-like behavior when you supply both 
indices: 

octave:13> y(:, [1 2 1])
ans =

hoh
dld

octave:14> y([1 2 1], :)
ans =

how
dly
how

octave:32> y(:, [3 3 2 3])
ans =

wwow
yyly
 

    Moreover, for Octave, "all objects have a minimum of two 
dimensions", so indexing once into a vector is really indexing into the 
second dimension of a matrix: 

octave:15> z = 'waltz'
z = waltz
octave:17> z([1 2 1])
ans = waw
octave:18> z([1 2 1], :)
error: A(I,J): row index out of bounds; value 2 out of bound 1
octave:18> z(:, [1 2 1])
ans = waw
octave:19> z([1 1 1], [1 2 1])
ans =

waw
waw
waw
 

    Note that this last result shows that Octave is not broadcasting the 
indexes together the way Numpy does. 

    You can extend the matrix to an arbitrary number of dimensions, 
treating this 1×5 matrix as a 1×5×1 array, or 1×5×1×1×...: 

octave:34> size(z([1 1], [1 2 1], [1 1 1], [1 1], [1 1]))
ans =

   2   3   3   2   2



octave:22> z([1 1], [1 2 1], [1 1 1])
ans =

ans(:,:,1) =

waw
waw

ans(:,:,2) =

waw
waw

ans(:,:,3) =

waw
waw
 

    Note that the output here shows that Octave's index order is closer 
to Fortran order than to C order:  the rightmost indices vary most 
slowly, not most quickly.  This is consistent if you read down the 
columns of each displayed matrix, but if you insist on reading each 
row from left to right before proceeding to the next one, as if you 
were reading English rather than Chinese, then the first two 
dimensions are an exception.  This is even clearer looking at the 
behavior of reshape: 

octave:54> w = reshape(1:24, [2 3 4])
w =

ans(:,:,1) =

   1   3   5
   2   4   6

ans(:,:,2) =

    7    9   11
    8   10   12

ans(:,:,3) =

   13   15   17
   14   16   18

ans(:,:,4) =

   19   21   23
   20   22   24
 

    As with Numpy, you can get an output with a more complicated 
shape by indexing once with a more complicated shape: 

octave:27> z([1 2 4; 4 1 2])



ans =

wat
twa
 

    However, this doesn't work if you're indexing multiple dimensions, 
in which case instead of implicitly flattening the thing you're indexing 
into, as above, you implicitly flatten each index, in Fortran order, 
giving an INTERCAL-like flavor in this case: 

octave:41> z([1 1], [3 1 4; 1 5 1])
ans =

lwwztw
lwwztw

octave:36> size(z([1 1], [1 2 1], [1 1 1; 1 1 1]))
ans =

   2   3   6
 

    I thought that maybe Octave's (or rather MATLAB's) implicit 
flattening is where Numpy gets its implicit flattening, but in fact 
Octave doesn't implicitly flatten in sum, prod, max, and cumsum, which 
implicitly apply along the fastest-varying axis, which happens to be 
the leftmost: 

octave:48> sum([3 1 4; 1 5 9])
ans =

    4    6   13

octave:49> max([3 1 4; 1 5 9])
ans =

   3   5   9

octave:50> prod([3 1 4; 1 5 9])
ans =

    3    5   36

octave:51> cumsum([3 1 4; 1 5 9])
ans =

    3    1    4
    4    6   13
 

    However, these don't decrease the dimensionality of the result;  
they just shrink one of its dimensions to size 1: 

octave:58> size(w)
ans =



   2   3   4

octave:59> size(sum(w))
ans =

   1   3   4
 

    You can specify a different axis for the aggregation, as in Numpy: 

octave:73> size(sum(w, 2))
ans =

   2   1   4
 

    What about broadcasting?  Unlike in Numpy, it's consistent with 
sum and indexing, in that it left-aligns the dimensions rather than 
right-aligning them, although this is somewhat confusing if you 
forget that it considers an ordinary row vector to be 1×N: 

octave:60> w + [100 1000]
error: operator +: nonconformant arguments (op1 is 2x3x4, op2 is 1x2)
octave:60> w + [100 1000 10000]
warning: operator +: automatic broadcasting operation applied
ans =

ans(:,:,1) =

     101    1003   10005
     102    1004   10006
...
 

    Still, though, there is no possibility of getting serendipitous 
multiplicity generalization in Octave on a function that uses indexing;  
indexing with too few indices will flatten the omitted trailing 
dimensions down into the last dimension.  This is a generalization of 
what happens when you index with just a single dimension: 

octave:69> w(:, 10)
ans =

   19
   20

octave:70> w(:, 10, :)
error: A(I,J,...): index to dimension 2 out of bounds; value 10 out of bound 3
octave:72> w(:, 1, 4)
ans =

   19
   20
 

R indexing and broadcasting 

    R almost completely lacks the kind of rank-polymorphism I'm 



looking for. 

    R, like Octave, uses Fortran order (and 1-based indexing), and 
implicitly flattens when you index a matrix with just one index: 

> y <- c('h', 'd', 'o', 'l', 'w', 'y')
> dim(y) <- c(2,3)
> y
     [,1] [,2] [,3]
[1,] "h"  "o"  "w" 
[2,] "d"  "l"  "y" 
> y[1]
[1] "h"
> y[1,]
[1] "h" "o" "w"
> y[,1]
[1] "h" "d"
> y[c(1,2,1),]
     [,1] [,2] [,3]
[1,] "h"  "o"  "w" 
[2,] "d"  "l"  "y" 
[3,] "h"  "o"  "w"
 

    Unlike in Octave, this really is a special case for a single index;  you 
can index a 2×2×2 array with one index or three, but not two: 

> j <- c(1, 2, 2, 1, 1, 2, 2, 1)
> dim(j) <- c(2, 2, 2)
> j
, , 1

     [,1] [,2]
[1,]    1    2
[2,]    2    1

, , 2

     [,1] [,2]
[1,]    1    2
[2,]    2    1
> j[4]
[1] 1
> j[2, ]
Error in j[2, ] : incorrect number of dimensions
> j[2, 1]
Error in j[2, 1] : incorrect number of dimensions
> j[2, 1, 2]
[1] 2
 

    This thing where the structure of a complicated index is replicated 
in the output doesn't seem to be present;  indexing by j above just 
flattens j into a vector of indices: 

> y[j]
[1] "h" "d" "d" "h" "h" "d" "d" "h"



> y[j,]
     [,1] [,2] [,3]
[1,] "h"  "o"  "w" 
[2,] "d"  "l"  "y" 
[3,] "d"  "l"  "y" 
[4,] "h"  "o"  "w" 
[5,] "h"  "o"  "w" 
[6,] "d"  "l"  "y" 
[7,] "d"  "l"  "y" 
[8,] "h"  "o"  "w"
 

    Multiple indices are not broadcast together, as in Numpy, but 
instead give a Cartesian product, as in Octave: 

> y[j,j]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] "h"  "o"  "o"  "h"  "h"  "o"  "o"  "h" 
[2,] "d"  "l"  "l"  "d"  "d"  "l"  "l"  "d" 
[3,] "d"  "l"  "l"  "d"  "d"  "l"  "l"  "d" 
[4,] "h"  "o"  "o"  "h"  "h"  "o"  "o"  "h" 
[5,] "h"  "o"  "o"  "h"  "h"  "o"  "o"  "h" 
[6,] "d"  "l"  "l"  "d"  "d"  "l"  "l"  "d" 
[7,] "d"  "l"  "l"  "d"  "d"  "l"  "l"  "d" 
[8,] "h"  "o"  "o"  "h"  "h"  "o"  "o"  "h"
 

    sum and cumsum flatten by default, as in Numpy: 

> sum(p)
[1] 482
> cumsum(p)
[1] 127 190 317 438 461 482
 

    There is no optional "axis" argument, as in Numpy and Octave;  
instead there are some special-case functions: 

> colSums(p)
[1] 317 165
> rowSums(p)
[1] 248  86 148
 

    Broadcasting left-aligns dimensions, as in Octave, but seems to be 
limited to scalars and vectors, and has truly bizarre behavior: 

> p <- c(127, 63, 127, 121, 23, 21)
> dim(p) <- c(3, 2)
> p
     [,1] [,2]
[1,]  127  121
[2,]   63   23
[3,]  127   21
> p * c(3, 1, 5)
     [,1] [,2]
[1,]  381  363
[2,]   63   23



[3,]  635  105
 

    So far, so reasonable.  But look at this: 

> p + c(1, 2, 3, 4, 5, 6)
     [,1] [,2]
[1,]  128  125
[2,]   65   28
[3,]  130   27
 

    The vector got implicitly reshaped!  Weirder still, given a 2-vector, 
it gets broadcast down columns instead of across rows --- or does it? 

> p + c(1, 2)
     [,1] [,2]
[1,]  128  123
[2,]   65   24
[3,]  128   23
 

    If the matrix is square so that the vector could be broadcast either 
horizontally or vertically, it gets broadcast horizontally: 

> p[,c(1, 2, 1)] + c(1000, 10000, 100000)
       [,1]   [,2]   [,3]
[1,]   1127   1121   1127
[2,]  10063  10023  10063
[3,] 100127 100021 100127
> p + c(100, 1000, 10000, 5)
      [,1] [,2]
[1,]   227  126
[2,]  1063  123
[3,] 10127 1021
Warning message:
In p + c(100, 1000, 10000, 5) :
  longer object length is not a multiple of shorter object length
 

    The horrifying truth is that it's just replicating the vector down the 
columns to "broadcast" it --- it wasn't applying it to columns after all!  
p[,1] + 1 is c(128, 64, 128), not c(128, 65, 128) as given above.  But even 
when it doesn't fit, you only get a warning. 

    At the other extreme, suppose you want to add a 2×2 matrix to our 
2×2×2 j above.  Nothing doing! 

> i <- c(10, 100, 1000, 10000)
> dim(i) <- c(2, 2)
> i + j
Error in i + j : non-conformable arrays
 

    Given the above, you'd think we could do that if i is just a vector, 
but no, apparently that implicit flattened replication is just for 
matrices: 

> dim(i) <- 4
> i + j



Error in i + j : non-conformable arrays
> dim(j)
[1] 2 2 2
> dim(i)
[1] 4
 

    We can still add a 2-vector to j, and it broadcasts horizontally and 
depthwise as expected. 

> j + c(100, 1000)
, , 1

     [,1] [,2]
[1,]  101  102
[2,] 1002 1001

, , 2

     [,1] [,2]
[1,]  101  102
[2,] 1002 1001
 

    And a 4-vector broadcasts depthwise: 

> j + c(10, 100, 1000, 10000)
, , 1

     [,1]  [,2]
[1,]   11  1002
[2,]  102 10001

, , 2

     [,1]  [,2]
[1,]   11  1002
[2,]  102 10001
 

    But we cannot add a 2×2-element array, or a 2-element array, to j, 
because in R, vectors and arrays are different classes of things that just 
happen to look exactly the same most of the time: 

> k <- c(10, 100)
> dim(k) <- 2
> j + k
Error in j + k : non-conformable arrays
> k
[1]  10 100
> c(10, 100)
[1]  10 100
> class(c(10, 100))
[1] "numeric"
> class(k)
[1] "array"
> dim(c(10, 100))



NULL
> dim(k)
[1] 2
 

    As far as I can tell, for arrays to be conformable, they must have 
exactly the same shape, with no broadcasting. 

Program serialization as strings of bytes:  
let's use text! 

    The usual way to represent programs for a virtual machine is as 
some kind of binary bytecode.  This is relatively fast to load, but it 
requires at least some kind of assembler to construct it from a 
human-readable format (if not a compiler from a higher-level 
language) and probably some kind of disassembler as well to help with 
debugging.  (If the virtual machine is producing the wrong results on 
some program, you need some way to puzzle out what the program is 
telling it to do, in order to figure out whether the bug is in the 
program or the VM.) 

    I think that for this purpose it might be a reasonable alternative for 
the virtual machine itself to parse a simple textual syntax that is 
sufficiently friendly to write directly by hand and read with a text file 
viewer, even if it lacks some of the amenities one might want in a 
programming language.  For example, you might use a syntax similar 
to PostScript, or FORTH, or Lisp.
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Ballpoint SPIF
Kragen Javier Sitaker, 02020-04-25 (7 minutes)

    At the Ohio State University, as in many other places, there is a 
giant solid ball of granite floating in a pool of water.  This is a 
surprising sight, since granite is not known for its buoyancy, but it's 
real;  you can spin this three-meter-diameter sphere around with your 
hand and feel its massive weight slowly easing into motion in 
precisely the way a giant granite boulder sitting on the ground does 
not do. 

    This remarkable phenomenon is the manifestation of a fluid 
bearing, like the air bearings commonly used in 
semiconductor-handling equipment or an air-hockey table, but in this 
case the joint is a ball-and-socket type.  Water is pumped up 
underneath the boulder, lifting it just enough to allow the water to 
escape around its edge, where without water it would rest on a 
circular stone "valve seat" whose diameter is almost as large as that of 
the boulder --- exactly like a ball-bearing-type check valve, with 
gravity instead of the spring.  Only enough water pressure is needed 
to support the average vertical thickness of the boulder, (2/3) τr³ / 
½τr² = r/3, about half a meter;  at 2.4 g/cc and 9.8 m/s/s, that works 
out to about 12 kPa.  In theory the water flow rate at this pressure can 
be arbitrarily low;  and lower water flow rates give higher positioning 
precision, but also reduce the "side loading" force needed to crash the 
boulder into the valve seat, incurring static friction and potentially 
scratching it.  In practice the boulder is thus suspended using several 
liters per second of water, which means that only on the order of 100 
watts is required to sustain this numinous apparition. 

    A really delightful attribute of fluid bearings of any kind is that 
they have no static friction:  as the velocity approaches zero, so do the 
viscous losses in the fluid and thus the friction;  thus the boulder is 
always rotating.  So one of their key applications is for low-velocity 
kinematic pairs. 

    This brings us to single-point incremental forming, in which you 
shape a metal sheet by pushing a metal finger into it and moving it 
around.  SPIF, like 3-D printing, is capable of producing a wide 
variety of different shapes with no per-shape tooling, but it can 
produce fully-dense forged sheet-metal pieces with no material waste 
and no postprocessing required, just like the more usual kinds of 
sheet-metal presswork, sometimes approaching the capabilities of 
deep drawing.  The toolpath planning process is somewhat more 
involved than for 3-D printing because you need to do a FEM 
analysis of candidate toolpaths to anticipate when they would cause 
the metal to overheat, wrinkle, tear, or get too thin. 

    In particular, friction with the forming tool is a major obstacle, and 
can be unpredictable.  Typically the tool is a round shank of tungsten 
carbide with a hemispherical end that is polished smooth, and to 
reduce friction this tool is both lubricated with oil and rotated as it 
moves around the work. 

    It occurs to me that the floating-boulder trick offers a far more 



expedient alternative, if you shrink it down and crank up the pressure.  
Instead of the round end of a carbide shank, you use a floating ball 
bearing --- ideally ceramic, but maybe just metal --- and support it in 
a liquid bearing that presses it against the workpiece.  This allows you 
to roll it around the workpiece like the ball of a ballpoint pen rolls 
around on paper, entirely eliminating static friction and greatly 
reducing dynamic friction.  (Ballpoint pen balls do have static friction 
because the ink isn't pressurized, so the analogy isn't perfect.) 

    The lubricant pressure needs to slightly exceed the average pressure 
across the contact area between the tool and the workpiece, which 
probably comes within about an order of magnitude of the yield stress 
of the workpiece metal, perhaps tens of MPa (ASTM A36 structural 
steel is supposed to have a yield stress of 250 MPa). 

    Lacking any experience with SPIF, my reasoning is as follows.  If 
your tool diameter is small compared to the metal sheet's thickness, 
then it won't be able to form the whole sheet;  it will just make an 
indentation into one side, which is not what we want.  Also, if the 
tooltip is made of a similarly hard material, it will be deformed just as 
much as the workpiece, which is very much not what we want.  If the 
tooltip diameter is a few times larger than the workpiece's thickness, 
then the pressure applied across the whole tooltip face sums up to a 
tensile force that is resisted by a ring of workpiece material around the 
outside of the tooltip, and perhaps only on some sides of it, and this 
allows you to do SPIF as desired.  But if the tooltip diameter is many 
times larger, you will be needlessly giving up surface precision, and 
additionally you will have a greater tendency to just move the 
workpiece around and rip it rather than forming it as intended. 

    So I tentatively conclude that you probably want the tooltip 
diameter to be a few times larger than the workpiece thickness, but 
not two or more orders of magnitude larger.  So, for example, if you 
are indenting an 0.2-mm-thick sheet with a 3-mm ball, you might 
need to, very roughly, overcome the yield strength in an 0.2-m 
annulus around the 3-mm ball using the pressure across the 3-mm 
circle;  this requires about 1/14 of the yield stress to be present across 
the surface of the ball, about 18 MPa (2600 psi in archaic units) in the 
case of 250-MPa steel.  This is a feasible but challenging and 
somewhat hazardous pressure for hydraulic fluids --- particularly 
when the lube is going to be squirting every which way --- so where 
feasible it would be nice to use a tooltip that is larger in comparison to 
the gauge of the stock. 

    (Of course, in reality the pressure distribution is not uniform across 
the face of the tooltip, nor is the tension distribution uniform around 
the outside.)
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Bitwise reproducibility
Kragen Javier Sitaker, 02020-04-25 (1 minute)

    The idea of reproducibility I want to base Derctuo on requires 
some explanation, since there isn't anything else out there that aims at 
this, as far as I can tell. 

    The objective of Derctuo's virtual-machine design is that running 
the same program with the same inputs always reproduces 
bitwise-identical outputs, unless it fails;  that this should be the case 
even when executed on independent cleanroom reimplementations 
from the specification, whether this year or in 300 years, on the same 
hardware or different hardware;  that implementing the virtual 
machine from the spec should require only a few hours of work;  and 
that this virtual machine should be sufficient to reproduce all the 
computations I think are interesting.
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Reversible parsing
Kragen Javier Sitaker, 02020-05-11 (6 minutes)

    In Prolog you can write definite clause grammars, which make it 
very straightforward to write grammars, which can then be used both 
for text generation and for parsing: 

: user@debian:~/devel/dev3; swipl
% library(swi_hooks) compiled into pce_swi_hooks 0.00 sec, 3,856 bytes
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.10.4)
Copyright (c) 1990-2011 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- [user].
det --> [the] | [a] | [that].
|: noun --> [buffalo] | [capacitor] | [philosophy].
|: vi --> [sucks] | [is, walking] | [glows].
|: vt --> [supersedes] | [clobbers] | [loves].
|: sentence --> det, noun, vi |
|:  det, noun, vt, det, noun.
|: 
% user://1 compiled 0.00 sec, 4,816 bytes
true.

?- phrase(sentence, S), append(Y, Z, S), append(X, [buffalo], Y).
S = [the, buffalo, sucks],
Y = [the, buffalo],
Z = [sucks],
X = [the] ;
S = [the, buffalo, is, walking],
Y = [the, buffalo],
Z = [is, walking],
X = [the] ;
S = [the, buffalo, glows],
Y = [the, buffalo],
Z = [glows],
X = [the] ;
S = [a, buffalo, sucks],
Y = [a, buffalo],
Z = [sucks],
X = [a] ;
S = [a, buffalo, is, walking],
Y = [a, buffalo],
Z = [is, walking],
X = [a] ;
...
S = [the, buffalo, loves, that, capacitor],
Y = [the, buffalo],
Z = [loves, that, capacitor],



X = [the] ;
S = [the, buffalo, loves, that, philosophy],
Y = [the, buffalo],
Z = [loves, that, philosophy],
X = [the] ;
S = Y, Y = [the, capacitor, supersedes, the, buffalo],
Z = [],
X = [the, capacitor, supersedes, the] ;
S = Y, Y = [the, capacitor, supersedes, a, buffalo],
Z = [],
X = [the, capacitor, supersedes, a] .

?-
 

    A disadvantage of DCGs is that, in standard Prolog, they don’t 
terminate on left recursion and can take exponential time, although 
cuts can tame the exponential and I think tabled resolution can 
conquer both in some cases (“DCGs + Memoing = Packrat Parsing, 
But is it worth it?” by Ralph Becket and Zoltan Somogyi.) 

    Hmm, clearly I have a lot to learn about Prolog DCGs...  Markus 
Triska’s tutorial, Anne Ogborn’s tutorial, the SWI-Prolog manual, 
and so on. 

    Anyway, what I was thinking was that for very straightforward 
kinds of “grammars”, even a perfectly ordinary imperative language 
suffices: 

void employee_card(card *s, employee *e)
{
  int_columns(s, 0, 6, &e->empno);
  columns(s, 6, 16, e->firstname, sizeof e->firstname);
  columns(s, 16, 26, e->lastname, sizeof e->lastname);
  blank_columns(s, 26, 80);
}
 

    This plain C function could be invoked either for input or for 
output, if card contains a flag that indicates the direction and the 
int_columns and columns functions consult that flag.  And similar 
bidirectional serialization/deserialization functions can be built for a 
wider class of grammars.  Field widths need not be fixed, and field 
concatenation can be implicit: 

void employee_csv(stream *s, employee *e)
{
  int_field(s, &e->empno);
  text(s, ",");
  delim_s_field(s, e->firstname, sizeof e->firstname, ',');
  delim_s_field(s, e->lastname, sizeof e->lastname, '\n');
}
 

    Again, this function can be used either for input or for output, and 
multiple such functions can be composed together.  If we add a little 
bit of backtracking, we can get polymorphic records: 

void foo(stream *s, thing *t)

https://mercurylang.org/documentation/papers/packrat.pdf
https://mercurylang.org/documentation/papers/packrat.pdf
https://www.metalevel.at/prolog/dcg
https://www.metalevel.at/prolog/dcg
http://www.pathwayslms.com/swipltuts/dcg/
https://www.swi-prolog.org/pldoc/man?section=DCG


{
  begin(s);
  {
    equal_int(s, &t->type, TYPE_BAR);
    byte(s, 'B');
    nbytes(s, &t->bar.contents, sizeof t->bar.contents);
  }
  or(s);
  {
    equal_int(s, &t->type, TYPE_QUUX);
    byte(s, 'Q');
    s16_le(s, &t->quux.len);
    nbytes(s, &t->quux.contents, t->quux.len);
  }
  end(s);
}
 

    On input, the calls to equal_int function as assignments to an integer 
field, while the calls to byte function as assertions about which byte 
comes next in the input;  if one of these assertions fails, its effect on 
the input stream is backtracked, so that a subsequent call to byte can 
test the same input bytes.  The backtracking state is set up by begin, 
restored by or in case of failure, and torn down by end. 

    On output, the situation is precisely the other way around:  the 
calls to equal_int function as assertions about what should be found in 
t->type for that branch to proceed successfully, while the calls to byte 
emit literal bytes on the output — bytes which are buffered so they 
can be retracted if the case must be backtracked due to a subsequent 
failed assertion. 

    But this is still a very simple case;  in particular it does not handle 
allocation, which in a C-like language probably must be part of the 
state restored in case of backtracking. 

    You could consider something like 

child_node(s, &t->child, sizeof struct fulano);
struct fulano *f = (struct fulano *)t->child;
equal_int(s, &f->type, TYPE_FULANO);
byte(s, 'f');
decimal_int(s, &f->x);
byte(s, ' ');
decimal_int(s, &f->y);
 

    where child_node creates a new allocation on input (deallocated in 
case of backtracking) and does nothing on output.  But consider the 
infix expression 

3 + 1000/2/2/2/2/2
 

    which in prefix notation is 

(+ 3 (/ (/ (/ (/ (/ 1000 2) 2) 2) 2) 2))
 

    so unfortunately we have to read the rest of the input before we 



know how deep down the tree 1000 goes.  I’m not even sure Prolog 
DCGs handle this case in this form.  I wrote a toy calculator program 
tonight to explore some of the above ideas, and I refactored the 
grammar to eliminate left recursion;  here’s a simplified form of how 
it parses terms like 1000/2/2: 

int term()
{
  int x = unary();

  begin();
  while (ok()) {
    /* save() ensures that our progress so far will not be backtracked */
    save();      /* zero or more multipliers, divisors, and modulos */
    begin();
    {
      op("*");
      int y = unary();
      if (ok()) x *= y;
    }
    or();
    {
      op("/");
      int y = unary();
      if (ok()) x /= y;
    }
    end();
  }
  end();

  return x;
}
 

    x /= y in an AST would be something like x = new_division_node(x, y).  
But it’s deeply unclear to me how to make that work bidirectionally:  
the sequence of the input text is bottom-up, while normally the 
structure of an AST is top-down. 

    A somewhat related thing is operator precedence and associativity.  
If we take + to be associative, it might be reasonable to serialize both (+ 
1 (+ 2 3)) and (+ (+ 1 2) 3) in infix as 1 + 2 + 3, but clearly (- 1 (- 2 3)) is 
1 - (2 - 3) while (- (- 1 2) 3) is conventionally 1 - 2 - 3.  Similarly, 
precedence dictates that (+ 3 (* 4 5)) can be 3 + 4 * 5, but (* (+ 3 4) 5) 
requires extra parentheses:  (3 + 4) * 5.

Topics

• Algorithms (p.  799) (16 notes) 
• Parsing (p.  858) (4 notes) 
• C (p.  866) (4 notes) 
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• Parsing expression grammars (p.  880) (3 notes) 



Bloomtags:  a Bloom-filter tree for 
efficient and flexible database 
queries
Kragen Javier Sitaker, 02020-05-13 (21 minutes) 

    Suppose you have a large file of lines tagged with hashtags and you 
want to efficiently iterate over the lines satisfying a given hashtag 
intersection.  What kind of index structure supports this? 

    You could use a tree of Bloom filters with a relatively high 
false-positive factor and add additional “synthetic tags” to improve 
precision for certain pathological queries.  This seems like it will 
probably give reasonable efficiency, and it has some significant 
efficiency advantages over existing database indexing approaches for 
evaluating some kinds of queries. 

The example problem:  8.5 billion lines of 
data with 8 hashtags each 

    For concreteness, let’s suppose you have a tebibyte of 128-byte 
lines, each of which is tagged with 8 hashtags, which follow a perfect 
Zipf distribution, with the most common hashtag occurring in 25% of 
all lines, so the next most common ones are in 12.5%, 8.3̄%, 6.25%, 5%, 
4%, etc., of all lines.  So in total there are 8 gibilines.  Let’s suppose 
that the distribution of hashtags is otherwise uniform and 
uncorrelated, for example with 3⅛% of the lines being tagged with 
both of the two most common tags. 

    There are perhaps 4 gibihashtags, although the majority are one of 
the most common hashtags.  So you can store a hashtag in 32 bits, but 
you might be able to get away with a lot less in the average case, so 
the 8 hashtags per line take up 32 bytes per line. 

    If the file is divided into 4-kibibyte blocks, there are 256 
mebiblocks in the file.  Reading any one of these blocks from a 
modern SSD costs about 50 μs (270 μs on the machine I’m using, 
with 120 megabytes per second throughput giving about a 32-kibibyte 
bandwidth-delay product, but it’s second-rate, and most SSDs have 
both more bandwidth and many more iops, bringing theirs closer to 
4K — which is the smallest request size they support anyway), and 
iterating through the 32 lines in it to determine whether they contain 
the hashtag;  this is less than 100 instructions, so it’ll be bottlenecked 
on main-memory bandwidth, which in turn is probably bottlenecked 
on SSD bandwidth. 

    I’m informed that NVMe devices get close to 1 GiB per second 
with 4k reads, and PCIe Optane devices can get 2.5 GiB per second 
(the PCI controller limit) with 4k reads, implying upwards of 600k 
iops.  So, doing the query by sequential scan on an Optane drive 
would take 400ms per gibibyte and thus 410 seconds. 

    Well, a thing we can already do to improve the situation is to 
segregate a hashtags column or index elsewhere;  it’s only a fourth of 



the total file size, so we can fit the hashtags of 128 lines into each 
4-kibibyte block.  This would get our query time down to 102 
seconds. 

    Most hashtags are extremely specific, occurring in only a single line.  
If we have a query for such a hashtag, it would be nice to be able to 
follow a tree of Bloom filters down to the single hashtag-column 
block that contains the single line with that hashtag. 

Bloom filter background 

    A Bloom filter is a bit vector.  An m-bit Bloom filter for n keys e₀, 
… eₙ₋₁ with k independent hash functions h₀, … hₖ₋₁ such that ∀i, j:  
hᵢ(eⱼ) ∈ [0, m) is a vector of m bits bₚ which are 1 precisely when ∃i, j:  
hᵢ(eⱼ) = p, but 0 otherwise.  That’s all!  You can see that if the hᵢ are 
random enough and m is large enough, then for some key d not in the 
set, you can usually find some bit in the filter that is 0, but would 
have been 1 if d were in the set;  but some false-positive probability 
always exists, depending on k and the load factor f (the fraction of 1 
bits), specifically fk.  Typical values of the bits-per-element parameter 
c = m/n range from 2 to 16, and typical values of k are also about 2 to 
16. 

bh = lambda i, e: hash((i+1)*hash(e))  # circumvent Python's weak hash()
bloom = lambda m, k, e: ([1 if any(bh(i, ej) % m == p
                                   for i in range(k) for ej in e) else
                          0 for p in range(m)], k)
in_bloom = lambda (bits, k), e: all(bh(i, e)) % len(bits) == 1
                                    for i in range(k))
 

    As Norm Hardy explains, there are a lot of nice tricks you can do 
with Bloom filters.  Two of the relevant ones are unioning and 
folding. 

def bloom_union((bits_a, k_a), (bits_b, k_b)):
    assert k_a == k_b
    return [ai | bi for ai, bi in zip(bits_a, bits_b)], k_a
 

    You can OR several Bloom filters together, with or without a bit 
shift or bit rotation;  the result is a Bloom filter with a higher load 
factor and consequently a higher false-positive rate that can be 
efficiently queried to determine if any of the child filters might be 
capable of containing the query key.  With the shift or rotation, you 
can also determine which. 

    You can also fold a Bloom filter:  take it and OR its two halves 
together to get a smaller Bloom filter with one less bit of address, and 
also a higher load factor and false-positive rate.  For example, if you 
initially compute 64 Bloom filters with a load factor of 1.08%, you can 
OR them together to get a single Bloom filter of the same size with a 
50% load factor, or you can fold one of them six times to get a 
64×-smaller Bloom filter with the same set of keys as the initial filter 
but the same 50% load factor. 

The Bloom-filter tree index structure 

http://www.cap-lore.com/code/BloomTheory.html


    So suppose we take our 256 mebiblocks, each containing 32 lines 
with 8 hashtags each, and compute a gigantic Bloom filter for each 
one.  We divide these into 64 groups of 4 mebiblocks, OR together 
the filters, and then rotate-and-OR together all these filters to 
produce a single master filter for the whole file with a 50% load 
factor, which when queried will tell us which of these 64 groups 
might contain the key.  If we are satisfied with a 1/128 false-positive 
rate, we can use seven bits per key (i.e., seven hash functions).  All 
together, this gives us 7 × 256Mi × 32 × 8 bits to set in this master 
filter to reach the 50% load factor, which works out to about 4.81 × 
10¹¹, so we need about 690 gigabits, 87 gigabytes, in this master filter 
and in each of the 64 group filters.  You can verify that 
math.exp(math.log(1 - 1/690e9)*(7 * 256 * 2**20 * 32 * 8)) is about 0.5 in 
Python.  It is probably most practical to compute these large filters in 
a blocked fashion, redundantly rehashing the whole file each time and 
discarding the hash values that fall outside of the current block. 

    Now by probing our 87-gigabyte master filter seven times with 
seven random reads, we can almost determine which of the 64 
4-mebiblock groups contain a rare hashtag:  we’ll have on average 1.5 
hits, one real one and 0.5 false positives on average.  Each of these 
groups has a 1.4-gigabyte filter as well — but these aren’t simply 
folded versions of the original 64 filters, but rather versions built from 
64 smaller subfilters which are rotated before being added together. 

    So in this way, with 87 gigabytes per level of the tree, we have a 
five-level tree of Bloom filters which allow us to rapidly follow the 
trail down to an individual 4-kilobyte block of 32 lines;  individual 
filters at each level cover respectively 256Mi, 4Mi, 64Ki, 1Ki, and 16 
blocks, with sizes of respectively 87GB, 1.4GB, 21MB, 330KB, and 
5KB per filter.  If we must do on average 11 probes per intermediate 
level (7 in the correct block and 4 or so in the false positive, which 
half the time will contain no false positive) then our tree traversal 
requires respectively 7, 11, 11, 11, and about 2 block reads, for a total of 
42 block reads, about a third of a second on classic spinning rust, 12 
milliseconds on the SSD I have here, or 70 μs on a PCI Optane 
device.  This is between 200 and a million times faster than the same 
query without the index. 

    XXX you don’t have to keep probing once you’ve found a cleared 
bit;  you’ll only on average probe a node that was a false positive in its 
parent less than twice, in the case of 7 hashes 1 + ½ + ¼ + ⅛ + 1/16 + 
1/32 + 1/64 = 1+63/64.  Not 3.  This means it’s 39, not 42. 

    The total index tree is only 440 gigabytes, sizable but less than half 
as big as the original file. 

    For lower-selectivity hashtags, a filter probing sequence of the same 
length will yield not the sole matching line but the first of many 
matching lines. 

    An interesting thing to note is that queries for arbitrary monotonic† 
Boolean combinations of hashtags still require visiting only the same 
number of nodes to reach the first record of results, but probing more 
hash buckets in each node, in proportion to the number of hashtags 
that need to be inspected.  This makes ordering by selectivity much 
less important than with traditional database index 
structures — although it still helps to check the most selective hashtags 



first, the speedup for a query testing N hashtags is at most only a 
factor of N. 

    Like ordinary Bloom filters, this filter tree can be readily updated 
for insertions but not for deletions or updates. 

    † “Monotonic” here is equivalent to “can be expressed with only 
AND and OR”, excluding connectives like negation, abjunction (set 
subtraction), and material implication. 

Synthetic tags 

    A difficulty with the naïve approach is that intersections of 
common tags will be extremely common at the higher levels of the 
tree, but can still be rare in the leaves.  The #250-most-popular tag, 
for example, will be present in 0.1% of lines, as is the #251 most 
popular, but (given our hypothesis that tags are uncorrelated) the 
combination is present in only one line in a million, some 268 lines in 
all.  Yet the vast majority of tree nodes will have at least one 
descendant line containing each of these tags;  even at the last level, 
almost half of them will.  The solution is to generate another few 
million “synthetic tags” consisting of such combinations:  all the pairs 
of the most popular few hundred tags, triplets in cases where the pairs 
are insufficiently rare, a few quadruplets, perhaps a quintuplet or two. 

Considering different branching factors 

    What if we change the branching factor?  We will start to run into 
efficiency problems once we are beyond a few machine-word-sizes of 
branching:  1024-way branching might be feasible, but 4096-way 
branching requires operations on vectors of 4096 bits and, thus, 
suffering.  Let’s consider branching factors of 256, 16, 8, and 512. 

    With a branching factor of 256, we need 4 levels of tree instead of 
5, but 9 hashes instead of 7 (for a 1/512 false-positive rate), so each 
level takes 9/7 as much space for the same load factor, and we must 
probe each node in 9 places instead of 7.  This works out to be very 
nearly equal to the 64-way branching case:  a factor of 36/35 on size 
and slowness. 

    With a branching factor of 16, we need 7 levels of tree instead of 5, 
but only 5 hashes instead of 7 (for a 1/32 false-positive rate), so each 
level is only about 5/7 the size, and we only have to probe each node 
in 5 places instead of 7, so returning the first record from a query still 
requires about 44 block reads.  This is exactly equal to the 64-way 
branching case. 

    With a branching factor of 8, we need 10 levels of tree instead of 5, 
but 4 hashes instead of 7, so each level is 4/7 the size and requires 4/7 
the probing.  This is slightly worse:  40/35 on both size and slowness. 

    With a branching factor of 512, we still need 4 levels of tree, except 
that the first level only has a branching factor of 2, which is silly;  and 
we need 10 hashes instead of 7, so each level is 10/7 the size and 
requires 10/7 the probing, for a total factor of 40/35 on both size and 
slowness.  This is a little worse than the factor-256 case, but only 
because it’s 4 levels instead of 3.  If the file were half as big, it would 
be 30/35, which is still almost equal. 



    This null result for varying branching factor by a factor of 64 is not 
what I expected!  What if we consider far more extreme cases? 

    How about using a single Bloom filter with a branching factor of 
268'435'456?  Well, we probably need to crank up its precision a bit 
(from the 2⁻²⁹ the above would suggest, using 29 hashes), or it will 
return us half the blocks in the file as false positives.  (Above I was 
assuming that 50% false positives would be fine.) And each probe will 
be reading a vector of 256 mebibits (32 mebibytes) out of the filter, to 
be rotated and ANDed with the other probe results.  So we need to 
do, say, 58 probes with 58 hash functions, doing 58 random reads of 32 
mebibytes each, a total of 1.8 gibibytes, sucking up a few seconds of 
memory bandwidth.  But then we have a giant bitvector that tells us 
exactly which couple of lines we need to look at to find the one we’re 
interested in. 

    (XXX how much space does this use?  Maybe it's less?) 

    This is worse than the more reasonable cases, but only because of 
the lower false-positive rate demanded and the larger bitvectors being 
transferred — the raw number of probes is still almost the same!  It’s 
within a factor of 2. 

    How about the other extreme — a branching factor of 2, 
false-positive probability of 1/4, thus probing each filter twice?  Here 
each level of the filter needs to be about 200 gigabits or 25 gigabytes, 
about 2/7 of the size previously needed, but we need 28 levels instead 
of 7, so 56 probes.  This is also slightly worse than the 
middle-of-the-road sizes mentioned above, but, again, by less than a 
factor of 2.  This extreme, unlike the other one, is actually practical, 
just slightly suboptimal. 

Blocked Bloom filters 

    “Cache-, Hash-, and Space-Efficient Bloom Filters” proposes 
“blocked Bloom filters”, a slight variation on a normal Bloom filter 
that improves locality of reference.  (This is also the paper that 
proposed Golomb-coded sets.) The idea is that, instead of scattering 
the bits for the k different hash functions for a single key all over a 
huge Bloom filter, you use the first few bits of hash output to pick a 
block of, say, 64 bytes, and then use the k different hash functions to 
index bits within that block.  In theory, as long as k is small compared 
to the number of bits in the block, the performance difference is tiny 
between an ordinary Bloom filter and this variant. 

    This analysis mostly survives the adaptations to the Bloom-filter 
algorithm described above, and it has even greater advantages in the 
SSD or spinning-rust milieu.  It has no trouble with folding large 
sparse filters into small dense filters.  However, it does suffer 
somewhat from rotating and combining multiple filters.  In all but the 
bottommost tree nodes, all the bits related to a high-frequency 
hashtag will be set, forming a (say) 64-bit word of all ones.  If you 
have, say, 7 such words within a single 512-bit block, they will by 
themselves push that block’s load factor above 60%, before any other 
keys are inserted.  So it is not k that must be small compared to the 
block size, but 64_k_, or whatever the branching factor is. 

    The obvious thing to try is to use blocks of 4096 bytes, the disk’s 
transfer size, rather than 64 bytes. 

http://algo2.iti.kit.edu/documents/cacheefficientbloomfilters-jea.pdf


    Using blocked Bloom filters means that probing for a single key in 
a single tree node requires only a single disk access, no matter how 
large k or the branching factor are, so, for example, our 5-level tree 
from before can be traversed in 5 random accesses rather than 39.  
This might ease the pressure towards smaller branching factors, 
perhaps favoring 512-way branching — wider branching factors don’t 
save you any space but they do reduce access time! 

Multiattribute queries and range queries 

    The above is all formulated in terms of “hashtags”:  each “line” has 
some set of hashtags.  But what happens if we’re considering records 
in a more traditional database?  You might have a record like { "lat":  
-34.5384, "lon":  -58.4636, "name":  "Escuela Superior de Mecánica 
de la Armada", "neighborhood":  "Nuñez", "city":  "Buenos Aires", 
"country":  "Argentina", "category":  ["Internment camp", 
"Museum"] }, and you might want to query, for example, a list of 
museums in Argentina. 

    It's straightforward to transform each name-value pair into a 
“hashtag” such as “#country:Argentina” and “#category:Museum”, 
generating multiple hashtags for multivalued attributes like 
“category” (which would be represented as a join table in an 
RDBMS).  This combination of hashtags could then be used to walk 
the index tree to find the records;  I think this is likely to be a little 
faster than doing the equivalent with ordinary database indices, 
because parts of the tree that have museums but nothing in Argentina, 
or things in Argentina but no museums, can be skipped over 
completely, while traditional database query plans can only skip over 
one or the other, (unless a multicolumn index happens to exist 
beginning with that pair of columns), and must heuristically guess 
which index will be more selective.  But, for reasonably common 
hashtags, you’ll still have to visit most of the nodes in the tree, unless 
the file happens to be sorted in a way that brings them close together. 

    The latitude and longitude fields, though, pose more of a problem, 
because it’s unlikely that someone would query for “#lat:-34.5384” 
exactly.  A much more likely scenario is retrieving latitudes in the 
range of -34.52 to -34.55 and some similar range of longitudes — the 
neighborhood including ESMA, Ciudad Universitaria, and the River 
Plate stadium. 

    One way to deal with this problem is to shatter the tag into 
“#lat:-0xx”, “#lat:-3x”, “#lat:-34.x”, “#lat:-34.5x”, “#lat:-34.53x”, 
“#lat:-34.538x”, “#lat:-34.5384x”, and “#lat:-34.5384”.  This 
converts a single attribute value into 8 separate hashtags, a number 
which grows logarithmically with the number of distinct values in the 
file.  Then, any contiguous range query on that field can be expanded 
into a query of one to eight of these tags with, at most, only about a 
20% loss of precision.
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Static hypertext on CCN
Kragen Javier Sitaker, 02020-05-16 (2 minutes)

    Implementing a static hypertext system on top of a service like the 
retrieve-by-hash service described in Feeds or streams on CCNs (p.  
48) is straightforward. 

Static hypertext 

    Each hypertext page is a file stored in the system, consisting of a 
short metadata header followed by the page itself in a format such as 
HTML or PDF, and it is identified by its hash.  Links to another page 
include the hash H of the file it’s stored in.  In this way, you can be 
certain that the linked page is precisely the version of the page that 
the author intended;  no attacker can redirect you to a different page, 
not even the author herself at a later date, perhaps while being 
tortured by Mossad agents. 

    Of course, if the attacker can trick you into looking at a page of 
theirs instead, they can make a copy of an authentic page with all the 
links redirected to more pages they wrote.  So all the security comes 
from the security of the initial link. 

    This secure linking mechanism is also applicable to things like 
stylesheets, image liabilities, software libraries, software configuration 
files, and text transclusions.  In combination with a deterministic 
archival virtual machine with immutable semantics, this guarantees 
the interpretability of XXX 

    A single file can easily contain multiple different “pages”, as 
TiddlyWiki does;  the fragment-identifier mechanism of the XXX 

    A manifest mechanism XXX 

    Cache timing side channels XXX 

    Threat model
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Feeds or streams on CCNs
Kragen Javier Sitaker, 02020-05-16 (15 minutes)

    Suppose we take a Kafka approach with Merkle trees to publishing 
activity streams.  If we presuppose an existing decentralized reliable 
retrieve-by-hash service that returns stored files when presented with 
a hash of their contents, we nearly have a workable decentralized 
publishing system.  All that’s needed is an unreliable publish-subscribe 
system to provide updates, and coupled with an aggregation system, it 
can work even at very low bandwidth. 

The retrieve-by-hash service 

    The retrieve-by-hash service provides a single function, get;  given 
some hash H, get(H) returns a blob (a file, a byte string) of some 
arbitrary size that hashes to H using some secure hash function.  To be 
concrete, let’s say it uses SHA-256 with the high bit set to 0, so the 
hash is fixed at 32 bytes.† 

    The interpretation of application blobs is outside the scope of this 
note, except to note that they can contain the hashes of other blobs 
and may also contain things of interest such as text, computer 
software, historical stock prices, or pleas for help;  and they can be 
encrypted.  In Static hypertext on CCN (p.  47) are some thoughts on 
building a hypermedia and software archival layer on top of this 
simple service.  The implementation of the service is also outside the 
scope of this note. 

    However, since the hash is computed over the contents of the blob, 
it is (conjectured) infeasible to compute the hash for a blob whose 
contents are to be chosen in the future.  So no blob can contain the 
hash of a blob that was created later;  hash references can refer only to 
past information, not future information.  So this service does not 
provide any way to find out whether something has happened, such as 
whether the Bitcoin price has exceeded US$10000 again yet, or to 
send or receive messages, or to update any information. 

    But a small notification message delivered over a publish-subscribe 
channel — the size of a single hash, or even a bit less — is sufficient to 
link to an arbitrarily large quantity of data stored in the service up to 
the time when the message was sent.  The notification need not itself 
contain a signature, since it can link to a signature stored in the blob 
store, but it may be convenient to include a signature so that 
subscribers need not sort through spam or malicious notifications.  

    † The high bit is set to 0 to preserve the option of upgrading to 
other algorithms in a possible future where SHA-256 is broken;  new 
kinds of hashes can be added in a backward-compatible fashion by 
setting their high bits to 1, and a successful attack on SHA-256 then 
cannot replicate those hashes.  Security against Kardashev Type 3 
adversaries probably requires a longer hash, but 255 bits should be 
enough for a Kardashev Type 2 adversary with quantum computers. 

The Kafka architecture 

    Kafka pretends to be a publish-subscribe system, but it’s really an 

https://kafka.apache.org/documentation.html#design


append-only fileserver.  In a publish-subscribe system, subscribers 
(“clients” or more specifically “consumers” in Kafka lingo) subscribe 
to channels (“topics”) and are notified immediately of new events 
published (“produced”) on those channels.  The way this works in 
Kafka is that a consumer makes a TCP connection to the server 
(“broker”) that is the “leader” for a channel† and “fetches” new 
events on that channel, which is described as an “ordered ‘commit 
log[]’”.  Each message added to this log is assigned a sequence number 
called an “offset”;  the message’s payload is an opaque byte array with 
a small amount of header metadata. 

    There are some 46 request types in the Kafka protocol, but we are 
only concerned with the requests Fetch and ListOffset.  
Fetch(replica_id=-1, max_wait_time, min_bytes, topic_name, partition, 
fetch_offset, max_bytes) returns all the messages on (topic_name, partition) 
starting from fetch_offset, waiting up to max_wait_time to finish 
responding if min_bytes bytes are not initially available, with a response 
size limit of max_bytes.  ListOffset(replica_id=-1, topic_name, partition, 
time=-1) fetches the “log end offset” that will be assigned to the next 
message posted to the channel (topic_name, partition), or optionally 
returns the offset of the oldest retained message (time=-2) or the oldest 
message before a given timestamp (given as the value of time.) 

    So, when you first connect to a Kafka broker, you can ask it what 
messages are retained on a channel with ListOffset, and then you can 
fetch some or all of those messages with Fetch, and you can send a 
Fetch request to get any future messages.  It’s up to you to remember 
what offset you have gotten messages up to;  the broker doesn’t know 
and doesn’t care.  If you lose a connection and reconnect, you can 
send another Fetch with the offset of the next message you haven’t 
gotten yet, and it may return immediately, or it may block for up to 
max_wait_time — and its unblocking is the form of asynchronous 
notification provided by Kafka. 

    A benefit of not storing your session state on the server is that 
server failures can’t lose it, and server security problems can’t corrupt 
it;  when the new server comes up, you can just continue reading 
messages where you left off.  As long as the assignment of offsets to 
messages remains consistent, there is no risk that a message will be 
duplicated. 

    By waiting for consumers to fetch messages in this way, Kafka has 
less overload conditions — consumers that begin falling behind do not 
consume excessive network buffers or other memory on the server, 
nor do their TCP connections time out. 

    Kafka unfortunately does have problems in which messages can be 
duplicated because of flaky connections between brokers and 
publishers (“producers”).  The problem is that the offset is assigned by 
the broker, not the publisher, because multiple publishers can publish 
to the same channel.  Jay Kreps felt that this was a reasonable tradeoff 
given that the alternative would be potentially the assignment of 
conflicting offsets every time any of thousands of disks across 
LinkedIn’s server farm failed.  But recent versions of Kafka have 
added an additional set of producer IDs and sequence numbers to 
support message deduplication in this case. 

    A big issue in some environments would be that, since the Kafka 
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broker doesn’t know what consumers might exist, it can’t safely 
delete messages once they’ve been delivered.  Kafka mostly tries to 
solve this problem by encouraging you to store your messages on 
cheap multi-terabyte spinning rust, and reducing the cost of that as 
much as possible, so you can delete your messages a week or two out 
instead of after a few hundred milliseconds. 

    Due largely to this design, Kafka has been historically the fastest 
message queue system out there.  RabbitMQ can handle 100,000 
messages per second on a normal PC, ØMQ can handle about 2.5 
million (without persisting them to disk), and Kafka is just as fast 
while persisting to disk and replicating, and can scale up from there, 
for example to 7 million messages per second across a cluster at Criteo
.  Apache Pulsar is a new alternative designed to be faster. 

    And, fundamentally, all Kafka is doing is allowing producers to 
append batches of messages to a logfile, and allowing all the 
consumers to read that logfile and get notified when it gets extended.  
Is there a way we can provide that service with a decentralized 
system?  

    † The broker is actually the leader for, in Kafka terminology, a 
“partition” of a “topic”, in order to support load balancing of a single 
topic both among brokers and among subscribers, but this is a useless 
epicycle;  since it’s transparent neither to publishers nor subscribers, 
it’s equivalent to just using multiple topics.  As for leaders, partitions 
have leaders because Kafka is a clustered system that automatically 
replicates data across a cluster of Kafka servers, but it is essential to 
avoid the assignment of the same offset in the same channel to two 
different messages. 

Reading a logfile with a Merkle tree 

    A Merkle tree node is either an “internal” blob containing just the 
word “tree” followed by zero or more hashes, or a “leaf” blob 
containing just the word “leaf” followed by some data.  The value of 
the second one is the data after the word “leaf”;  the value of the first 
one is the concatenation of the values of the blobs to which the hashes 
refer.  Given a long string, we can compute a Merkle tree for that 
string made of blobs of about 4 kibibytes by first dividing it into 
4-kibibyte chunks, prepending “leaf” to each of them, then creating a 
first level of internal blobs representing concatenations of up to 128 of 
these leaf blobs (up to 512 kibibytes per first-tier internal blob), and if 
there’s more than one of those, then creating a second tier of internal 
blobs of up to 128 of the first-tier internal blobs (up to 64 mebibytes 
per second-tier internal blob), and so on until you have a tier that 
consists of just one root node. 

    Suppose you have the hash of a Merkle tree node that you 
somehow know that is the root node of some version of Barbara’s 
event log.  So you get the corresponding blob from the 
retrieve-by-hash service and look at it.  If it’s a leaf node, you already 
have the whole event log, but if it’s an internal node, you have to get 
the blobs it refer to from the retrieve-by-hash service if you want to 
read the log contents. 

    Suppose Barbara wants to publish another event.  She appends the 
event to the end of her event log, perhaps just appended onto the last 
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leafblob or perhaps broken into many leafblobs, and then makes a new 
version of its parent internal node, and if any, its parent, and so on.  
Then somehow she publishes the hash of this new node. 

    Now, suppose you get another hash that you somehow know 
represents the root of this new version of Barbara’s event log.  You 
get it;  both this one and the other one are internal blobs.  You can 
look at the hashes to see which ones are new, and fetch just those.  As 
long as Barbara has published less than 64 mebibytes so far, you only 
need to fetch two levels of internal blobs (an overhead of 8 KiB, plus 
1/128 of the weight of Barbara’s new data), plus Barbara’s new data. 

    We can augment the Merkle tree internal blobs with size 
information for each subtree so that it becomes easy to navigate to a 
particular offset.  We can augment the root blob with a cryptographic 
signature so that, if you somehow get hold of the root blob hash, you 
can verify that Barbara did indeed publish that version of her event 
log, with no further information.  We can make a long string of such 
signed root blob hashes for different people, each labeled with that 
person’s public key hash, and make a Merkle tree of that, and publish 
its root blob hash.  But how do we get that root blob hash out to the 
masses?  The retrieve-by-hash service can’t do it. 

The paging channel 

    Traditional phone networks work by setting up a “call”, a reserved 
fixed-bandwidth channel between a pair of conversants, who can then 
exchange data over it.  Different phone systems have different kinds 
of channels to allocate to a call:  a copper pair, a frequency on an 
FDM coax cable, a SONET timeslot, an ISDN channel, or an AMPS 
FM channel pair, for example.  Once the call is set up, it is free from 
interference;  except in the case of equipment failure, it offers 
guaranteed bandwidth and reliability, and there is no need to resend 
data due to collisions with other senders as there is with Ethernet. 

    However, before the call is set up, some sort of communication 
channel needs to exist to bootstrap it.  This is the so-called “control” 
or “signaling” or “paging” channel, and typically it provides a 
best-effort kind of service, with no guarantees of bandwidth or 
reliability, because the channel is shared among many uncoordinated 
users.  (USB demonstrates that this is not the only possibility.) 

    Even a low-bandwidth paging channel can distribute the hashes of 
new root blob hashes pretty easily;  you only need to transmit 256 
bits, and if you only need to be secure against current attacks, you 
only need to transmit about 80 bits.  There are several ways to 
implement such a channel:  burning Bitcoin, shortwave radio, 
classified ads in the New York Times, gossip among locally connected 
nodes, IRC channels, comment threads on long-ignored news articles, 
timing channels in DNS TTL countdowns from shared caching DNS 
servers, shining lights on tall buildings at night, and so on. 

    If you are somehow in a position to broadcast such a hash, how do 
you choose which one to broadcast?  Maybe you’d broadcast the hash 
of the index that was most up-to-date and had the largest number of 
publishers, perhaps creating your own by piecing together other 
indices you had access to.  Or maybe you’d create your own by 
removing all the publishers you suspect of anti-Islamic views or 



publishing misinformation about the covid pandemic.  Maybe you’d 
include thousands of “publishers” selling penis pills, or maybe you’d 
copy someone else’s index and remove the penis-pill sellers.  It all 
depends on your desires. 

    But what about the people who retrieve that hash?  What do they 
want to do?  What kinds of paging channels will be responsive to 
their needs instead of the needs of whoever has the most money or the 
brightest arc lights?
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Commit log transfer
Kragen Javier Sitaker, 02020-05-16 (1 minute)

    In a Kafka-like system running on a kernel where memory is 
transferred rather than shared, the “commit log” for a channel could 
physically consist of the uncopied message buffers the producers had 
transferred to the broker.  With copy-on-write functionality, these 
message buffers could be directly exposed to subscribers without ever 
copying them, although at the risk of exposing subscribers to 
information about the message bundle boundaries they are not 
supposed to depend on (this risk is already present in Kafka).  With 
FlatBuffers and similar techniques, publish-and-subscribe within a 
single CPU could proceed at tens of gigabytes per second — billions of 
messages, hundreds of times faster than ØMQ or Kafka, which are 
about equally fast. 

    Although, in such a high-bandwidth system, how do you limit 
retention?
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One pass sort
Kragen Javier Sitaker, 02020-05-16 (15 minutes)

    External sorting on modern general-purpose computers is almost 
invariably two-pass.  What if we could make it one-pass?  We kind of 
can, if we cheat.  Especially with an SSD. 

    You might have up to 50 terabytes or so of disk attached to a 
modern computer;  typical performance characteristics of each disk 
might be 10 milliseconds random access time and 200 megabytes per 
second of transfer bandwidth, and you might have a dozen or so such 
disks on your machine.  Tapes have been relegated to niche 
applications.  So you might reasonably want to sort up to about 20 
terabytes.  But you surely won’t have less than 4 gibibytes of RAM, 
probably more like 64 gibibytes. 

    Generally the disk bandwidth is an unavoidable bottleneck, but the 
random access time of the disk (seek plus rotational latency) can 
dominate it if you’re not careful.  To keep the disk bandwidth lost to 
random access time below 10%, you need to transfer a sequential 
stream of 9 or more bandwidth-delay products every time you access 
the disk.  With the figures given above, the bandwidth-delay product 
of each disk is about 20 megabytes, so you need to read a chunk of 180 
megabytes after each random seek.  If you read in chunks of only 40 
megabytes, you’ll be at only ⅔ of what the disk bandwidth could 
hypothetically handle;  you don’t start to see big performance losses 
until you’re well below that.  But if the chunks are only 2 megabytes, 
you’re only able to use 9% of the disk’s potential bandwidth, and your 
sorting will take 11 times longer than it should. 

    The standard mergesort approach is to fill RAM with input data, 
sort it, and write it back out to a temporary file.  Ideally, you continue 
to read in data to add to the in-memory sorted data, replacing the 
data you’ve already written out, which in the worst case of the data 
being backwards gains you nothing, gains you a factor of 2 in the 
average case of the data being unsorted, and converts the procedure 
into a single pass in the best case of the data being presorted.  Let’s 
take the worst case, though:  20 terabytes of data in 16-gibibyte 
chunks gives us 1165 chunks. 

    So now we have 1165 individually-sorted temporary files of mostly 
16 gibibytes each, and we want to merge them into a single output 
file.  So if we divide our 16 gibibytes of RAM into 1166 buffers — one 
for output, the others for input — we have 14 mebibytes of buffer per 
file on average.  If we wait to refill or flush each buffer until less than 
a mebibyte of slack is left in it, then we can read 26 mebibytes into 
the buffer, growing it from 1 mebibyte to 27 mebibytes.  This gives us 
57% I/O bandwidth usage, which is not great but possibly acceptable.  
If instead we have the expected 582 temporary files, we can read 
55 mebibytes on each such occasion, which is 73% I/O bandwidth 
usage. 

    If we only have 4 gibibytes, though, our capability for efficient 
two-pass sorting is limited to just a terabyte or two.  Two terabytes 
gets divided into 466 temporary files, and so we can only allocate 9 



megabytes of buffer to each file, only getting 16 megabytes per 
transfer, slightly worse than the scenario above but still the right order 
of magnitude.  Sorting files any larger will start to require three-pass 
sorting. 

    What’s going on with this 20-terabyte output file, though?  We 
can distribute our temporary files freely across half a dozen disks, so 
our aggregate input bandwidth from those disks may exceed a 
gigabyte per second, which we can then merge and write back out.  
But we can’t write a gigabyte per second to any of our disks!  We can 
only write at speeds like those if we’re writing across all the disks at 
once.  We have to use RAID or some kind of clever virtual filesystem 
that stores a virtual file in segments on many different filesystems.  
And then we may have lost, because if those segments are large and 
sequential, we may only be able to write or read them at 200 
megabytes per second! 

Cheat 1:  merge on read 

    So suddenly we are faced with weird existential questions like, 
what is a file, anyway?  It’s not really a physical thing, but some set of 
operations and behaviors that work to store our data.  What kinds of 
operations does it need to support, and what kind of behaviors does it 
have?  Once the sorting process’s output “file” has been created and 
closed, it probably doesn’t need to support further writes;  it just needs 
to support reading.  What kind of reading?  Is it enough to be able to 
open the “file” and get records from it one at a time in sorted order?  
Or do we also need to be able to tell where we are in it, and seek to 
previously told positions in it?  Do we need to be able to find the size 
of the file and seek to arbitrary byte offsets? 

    If it is adequate to read sequentially, telling where we are, and seek 
to previously-told offsets, then we can skip the whole stage of 
merging the temporary files into an output file.  Instead we can 
merely decree that this collection of hundreds or thousands of 
“temporary files” now constitutes the output file, which is now 
divided into these parallel “chunks”.  When you go to open the 
results for reading, we open all of the chunks, and when you read 
records, we do the merge right then, on demand, in RAM. 

    This has some advantages!  After a single pass over the input, you 
can start processing the output, doing whatever it is you want to do 
with it.  And you can save bookmarks in that output and seek to them 
again.  But it has some disadvantages, too.  A bookmark is the current 
read position in all the chunks at once!  So representing it might take 
8 kilobytes. 

    As an alternative to seeking to a byte offset, you could seek to a key, 
which would require adding extra crap to disambiguate any possible 
duplicate keys.  Note that you can’t detect duplicate keys during 
sorted dataset creation, only during reading, so you may need the key 
to include a chunk identifier that tells which of the thousands of 
chunks your desired record is in, along with a consistent ordering 
across the chunks. 

    Seeking to a key in this way would require doing a binary search in 
each chunk;  if your records average 128 bytes, each 
expectedly-32-GiB chunk contains 128 mebirecords, so you need to 



examine 27 keys in each of (expected) 582 chunks, about 16000 
operations;  of these, only the first ten in each chunk would involve 
random seeks, but we’re still talking about potentially tens of seconds 
of waiting on spinning rust. 

    However, you can add a Lucene-like skip file to the dataset, 
containing 512 KiB of keys sampled from each chunk and their 
associated byte offsets in the chunks;  if the keys are 16 bytes, you can 
fit 32768 keys per chunk into the skip file, so the skip file gets you 
within 1 MiB of the right place in the chunk.  The whole skip file is 
only 32 MiB.  This cuts the number of seeks needed by an order of 
magnitude, to only one per chunk. 

    Given a consistent ordering across chunks as mentioned above, it’s 
possible to get all the way back to raw unidimensional byte offsets.  
Say your positions in the various chunks are {3532, 832, 483, …}.  So 
your byte offset in the entire dataset is the sum 3532 + 832 + 483 + 
….  But seeking to such a byte offset is nontrivial:  you need to guess 
the right byte offset in each chunk, find the nearest record start, read 
the key, take the median key, find the nearest corresponding keys in 
all the other chunks (jumping some of them backwards and others 
forwards), and then iterate forward or backward as necessary — or 
possibly binary-search for the correct key, adding another factor of 4 
or 5 to the seek-to-a-key procedures in the previous paragraphs. 

    This approach is pretty similar to LSM-trees. 

    A problem bigger than the seeking problem:  opening the file 
requires 16 gibibytes of RAM for input buffer space!  That doesn’t 
leave a lot for your application. 

Cheat 2:  partition on read 

    So I was thinking there might be a better idea, but this turns out to 
not work very well. 

    Let’s consider the case of sorting a 2-terabyte file in 16 gibibytes of 
RAM.  First, we take a random sample of 32768 records from the 
input file to find out what the distribution of its keys is, and we pick 
1023 key values that partition the inferred distribution more or less 
evenly, into 1024 partitions.  We preallocate a temporary file for each 
of these partitions, a little bit bigger than we expect to need, say 3 
gigabytes, we open them all at once, and we initialize a RAM write 
buffer for each temporary file. 

    Now, we start reading in the input file;  as we read each input 
record, we determine which partition it goes into, and we append it 
to that partition’s buffer.  Whenever we run out of memory, we flush 
to disk whichever output buffer is fullest, which has an expected size 
of 32 megabytes. 

    When we are done with this partitioning process, we have 1024 
“temporary files” of 2 gigabytes each.  Each of them is unsorted 
internally, but has a known size, and each of them covers a disjoint 
part of the keyspace, and, importantly, is contiguous on disk — we 
aren’t relying on the filesystem to magically defragment a bunch of 
badly fragmented writes. 

    So now, to open this “output file” and start reading it sequentially 
by key, our user program opens up the first partition file, reads 2 



gigabytes into RAM, sorts them, closes the file, and begins iterating.  
When it gets to the end of the first partition, it opens the second 
partition and repeats the process. 

    This permits seeking to an arbitrary byte offset in the combined 
output file:  you subtract the sizes of partitions until subtracting the 
next one would go negative, and that tells you which partition file 
you need to open.  But it still takes a few seconds per seek. 

    So, when it works, this is an improvement over the previous 
technique:  you only need 2 gibibytes of input buffer memory to 
“read” the output “file” instead of 16 gibibytes, and you can seek and 
tell with regular byte offsets.  But seeking is still ridiculously 
expensive. 

    This approach also still requires some kind of RAID under the 
covers to stripe each file across disks. 

Cheat 3:  square-root hybrid 

    What if we combine both of these approaches?  When “sorting” 
the data, partition it into 64 equal-weight keyspace partitions, as in 
cheat 2.  When RAM is full, take the in-memory partition with the 
largest amount of data in it — in 16 gibibytes, the average in-memory 
partition will be 256 mebibytes, while the most bloated one should 
usually be around 512 mebibytes — and sort it, as in cheat 1, before 
writing it out to a “temporary file”, let’s call it a “chunk”.  If the total 
dataset is 2 tebibytes, similar to the cheat-2 example, then in the end 
there will be around 4096 such chunks, 64 per partition. 

    Now, to start reading the data “sequentially”, you open the 64 files 
from the first partition and start merging them.  Doing this efficiently 
requires enough buffer space for 64 files — say, 1.28 gigabytes on 
average to do 40-megabyte reads, but 2.56 gigabytes at startup. 

    But wait!  Have we won anything?  If we didn’t partition the 2 
tebibytes, we’d be writing out (in the expected case) 32-gibibyte 
sorted chunks rather than ½-gibibyte chunks.  There would still only 
be 64 of them if we only had 2 tebibyte of data.  So this partitioning 
doesn’t buy the reader anything! 

    A bookmark to seek to might be represented as a partition number 
plus 64 32-bit file offsets.  Or, as said previously, a key plus a chunk 
number. 

    So I think this doesn’t really help.  In fact, it hurts a little. 

SSDs 

    Modern SSDs, as I understand it, can deliver 2.5 gigabytes per 
second of 4-kilobyte reads, but are limited to sequential writes due to 
the necessity of block erase.  This suggests that a different organization 
of data in storage could work better — you can read 4-kilobyte blocks 
in whatever order you want, you just want to make sure that each 
such block is relatively coherent.  Between blocks, they could form a 
linked list, no problem.  But of course you still have the problem that 
it’s going to be pretty difficult to form a block with all the record 
with keys in a given range of the keyspace before you’ve seen all the 
input — the last record in the input might be in that range. 

    On the machine I have here, it’s more like 32 kilobytes per 



transaction and only 120 megabytes per second. 

    So what happens if, instead of 32 megabytes per input stream, we 
only need 32 kilobytes?  Generating output doesn’t get any 
easier — and the trick in Cheat 2 of generating lots of output files in 
parallel gets a lot harder — but reading from 1000 files to merge them, 
as in Cheat 1, stops being a problem.  Suddenly you only need 16 
megabytes of RAM for your input buffers, 32 to start, rather than 
multiple gigabytes.
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Optimized finger joints
Kragen Javier Sitaker, 02020-05-16 (4 minutes)

    Laser-cut finger joints are a popular way of joining MDF into 
boxes.  The fingers on each side of the joint are cut slightly wider than 
the spaces on the other side, because otherwise there would be slop 
around them twice the width of the kerf, which is on the order of 
100 μm, and the joints would not join without glue. 

    This means that you cannot cut both sides of the shape from the 
same piece of fiberboard with a single zig-zag-zug sort of cut;  you’d 
have that slop.  So you apparently need to cut the two sides of the 
joint separately, doubling the cut time and the cost. 

    But do you?  Suppose each finger and each space along the joint is 
250 μm narrower than the preceding finger or space on that side, and 
you use a single zig-zag-zug.  Then the pieces won’t join together at 
the position they were cut out — but if you shift them by a single 
finger–space cycle, they will join firmly, with 25 μm of interference 
on each side.  So if you shift the two pieces by a short distance relative 
to each other in the to-be-cut layout, and shift them back to assemble 
them, they will fit together snugly. 

    So, for example, you might have a 150-mm-long finger joint made 
of ten 15-mm-wide fingers, and you can overlap 90 mm of it in this 
way:  30 mm at the bottom (two fingers, one on each side) is just the 
left piece, 90 mm (six fingers) in the middle is overlapped, and 30 mm 
at the top is just the right piece.  The finger widths vary from 31.25 
mm at the bottom to 28.75 mm at the top.  This results in 180 mm of 
cutting, plus 11x, where x is the thickness of the material — 33 mm if 
it’s 3-mm MDF. 

    This offset or stagger might make efficient nesting more difficult, 
and thus increase material costs, or it might not.  But, with MDF, 
cutting costs greatly exceed material costs. 

    An alternative to edge finger joints is mortise-and-tenon joints.  
These can be tight, like finger joints, but they can also be loose, with 
an extra 100 μm or so of slop deliberately left to ensure that pieces can 
slot together easily.  A series of such mortise-and-tenon joints 
substitutes for a dado or groove joint, which cannot be themselves 
made by sheet-cutting technologies like laser-cutting.  Using a 
sequence of such loose mortise-and-tenon joints rather than a finger 
joint both eases assembly and also reduces the chance that an 
out-of-tolerance cut will convert a tight fit into an impossible fit.  A 
few SIGGRAPH papers have shown ways of designing arbitrary 
assemblies so that all the pieces slide into place with such joints, 
locking previous pieces into place;  a final piece with an interference 
fit is adequate to hold the whole assembly together. 

    A different way to get finger joints to have interference fits, 
without staggering them, is to angle the edges of the fingers rather 
than using right angles, so the finger tips are narrower than the finger 
bases, and the spaces between the fingers are narrowest at their base.  
A difference of 120 μm over a 3 mm finger length works out to about 
a 92.3° angle rather than the 90° usually used.  I haven’t tried this, but 



I suspect that the resulting joints will not be as strong as regular finger 
joints, because only about one fourth as much area is in contact, but 
they should be easier to assemble and fairly robust to process variation.
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Solar furnace CPC
Kragen Javier Sitaker, 02020-05-16 (12 minutes)

    I was thinking about how to reach high temperatures inexpensively 
and safely during this quarantine.  Not, like, really high temperatures, 
but hotter than the oven. 

    Carbon foam made by carbonizing bread is probably the easiest and 
most accessible insulating refractory material for this kind of thing;  it 
doesn’t tolerate oxidizing conditions (it slowly burns above 700°), but 
in reducing conditions it gradually converts to graphite, which 
sublimes at 3642°. 

Stefan–Boltzmann temperatures 

    “One sun”, the solar constant, is standardly approximated as 
1000 W/m², which is the Stefan–Boltzmann emissivity of a black 
body at 91.3°.  So a perfectly insulated object in full sunlight will 
eventually heat up to 91.3°.  Because at that temperature all the 
thermal radiation it emits is in the infrared, you can get it to heat up 
to higher temperatures by painting it with paint that is highly 
reflective in the infrared, or by putting infrared-reflecting glass in 
front of it, but for simplicity I’m going to be considering the 
blackbody case for now. 

    The 1368 W/m² on orbit corresponds to 121°.  “Two suns”, 
2000 W/m², only corresponds to 160°, which is enough to cook, 
barely;  you can reach this level of illuminance with a single flat 
mirror.  Reaching 260° like this gas oven requires 4600 W/m², 4.6 
suns, which is enough for soldering electronics.  600°, enough to fire 
some red clays and almost cast aluminum, emits 33 kW/m², 33 suns.  
1000° is 150 suns, 1100° is 202 suns, 1600° (to melt quartz or pure 
iron) is 698 suns, and 2072° (to melt sapphire) is 1715 suns.  Subliming 
graphite (3642°) would probably be impractical at 13300 suns.  
Quartic growth is a bitch.  5500° (63000 suns) is the absolute limit. 

Cavity absorbers 

    A small hole leading into a large cavity, sometimes called a cavity 
absorber, behaves as a very good approximation of a blackbody, one 
you can’t paint.  At low temperatures, convection of air is a significant 
way to lose heat, but at the higher temperatures I’m interested in, 
almost all the heat loss is through radiation. 

    Probably the smallest hole it’s practical to make in carbon foam and 
concentrate sunlight through is about 10 microns in diameter.  
Reaching 256 suns (1184°) then requires concentrating the sunlight 
from a 256-times greater area on this hole:  a circle of 0.16 mm in 
diameter, for example, gathering about 20 microwatts. 

    The material inside the cavity mostly “sees” other material inside 
the cavity;  nothing short of a cat’s eye will send a significant fraction 
of the light coming in the hole the hole directly back out the hole.  
Almost all light that gets in needs to bounce around many times, 
losing energy each time, before it can get back out.  So even the hole 
in the top of an opened empty beer can looks black, even though the 

https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Stefan�Boltzmann_law


beer can is 95%-reflective aluminum on the inside. 

    Unless the cavity is meter-scale or larger, parts of the cavity that 
aren’t the hole need to be well insulated to prevent the loss of more 
heat through conduction through the walls than from radiation 
through the hole. 

Optics of concentration 

    So if you can concentrate 256 suns on a 10-micron hole into a 
sufficiently-well-insulated cavity, you should in theory be able to 
heat it up to 1184° with those 20 microwatts.  This suggests that solar 
furnaces can perhaps be made fairly small, though see below about 
insulation thickness scaling. 

    It isn’t sufficient to focus the sunlight from an 0.16-mm-diameter 
lens of any focal length whatsoever, though.  If the focal length of the 
lens is too long, then the focused image of the sun will be too large 
and therefore diffuse.  From the point of view of an ant passing 
through the projected image, the whole lens is as bright as the sun, 
but the lens is only a few times bigger than the sun from her point of 
view, so the power density is not that high.  The f-stop of the lens 
needs to be wide enough to get to 256 suns — specifically the lens 
needs to look 16 times as wide as the sun, which is 0.53° (about 32’), 
so the lens needs to subtend 8.53°, which means any lens with 256 
suns needs to have an aperture of f/6.72.  So if its focal length is 10 
mm, the lens needs to be at least 1.49 mm in diameter, at which point 
it (like any other lens with a 10-mm focal length) will project an 
image of the sun some 93 microns in diameter.  You can only get 256 
suns with an 0.16 mm diameter lens if its focal length is about 1.1 mm. 

    If you use a lens that’s bigger and further away — for example, the 
10-mm-focal-length, 1.5-mm lens suggested above — then most of 
the energy gathered by the lens will not enter the cavity.  A 
93-micron-diameter sun image with a 10-micron hole in the middle 
of it will gather about 100× as much energy as is actually put into the 
cavity.  You might think that, in exchange, you don’t have to 
constantly track the sun.  No such luck!  The Earth turns 360° per 24 
hours, which is 0.25° per clock minute, so your sun image gets 
displaced by a sun diameter every 2.1 minutes, whether that’s 10 
microns or 90 microns.  (It’s slightly less when the sun is further from 
the equator, but what’s important here is that it’s 2 minutes, not 20 
minutes or 2 hours.) 

    For lower concentrations, you can use a one-dimensional 
concentrator like a solar trough (or a glass rod), running parallel to the 
sun’s path in the sky, but reaching hundreds of suns that way is not 
practical, though in theory it’s possible. 

    Non-imaging optics such as a compound parabolic concentrator are 
said to improve the situation dramatically, permitting much wider 
input angles.  You can use two developable compound parabolic 
concentrators made of aluminum foil (reflectivity 95%) on cardboard, 
at right angles to each other, to funnel light into the hole over a wider 
range of sun angles;  the disadvantage over using a CPC that is a solid 
of revolution is that most of the light will be reflected from the 
aluminum twice instead of once before going in the hole, thus 
reducing efficiency. 



    The overall principle limiting the performance of NIO is 
conservation of étendue:  the intensity of illuminance times the angle 
it’s coming from.  The thermodynamic limit is that you can’t use the 
sunlight to heat things hotter than the sun’s surface (5500°);  you 
would reach that limit by arranging optics so that the poor ant sees 
solar surface in every direction, 4π steradians of nuclear flaming 
death, 63000 suns†.  Conservation of étendue says that the reflection 
the ant sees is only as bright as the sun, and you can only do that if all 
those optics would direct any light the ant emits into some part of the 
sun’s disc, which means that such optics necessarily have a very 
narrow angle of acceptance:  2.1 minutes later, the ant’s remains will 
see only cool blue sky. 

    So it seems like you ought to be able to shape the optics such that 
you get 256 suns for 1/256 of the day before you have to reorient 
them;  any light emitted from the hole would be redirected onto the 
sun’s daytime path.  Unfortunately, 1/256 of the day is only 5.625 
minutes.  So this doesn’t help as much as you’d hope for these 
ceramic-firing applications;  you need to use feedback control. 

    5 suns, 271°, enough for soldering or baking, can be achieved by 
optically coupling the hole to 4.8 hours of the sun’s path.  A 
one-dimensional trough CPC focused on a slit might be adequate;  
four flat mirrors spaced at angles around a hole might also work. 

    I’m not sure if I’m thinking this through correctly.  Sunlight on the 
ground gives varying amounts of illuminance depending on the sun’s 
angle;  it’s only a whole sun at noon (and only twice a year at that, 
and only if you’re in the tropics).  Sunlight reflected in a mirror surely 
does look just as bright as the regular sun when you’re looking at the 
mirror (from an angle where you can see the sun in the mirror, 
anyway), but the mirror can be angled to spread it across a lot of 
ground. 

    † this 63000 ought to be 4π steradians divided by however many 
steradians the sun subtends, but I haven’t calculated that. 

Insulation thickness scaling 

    Above I said that you can get your cavity to 1000° with 20 
microwatts of sunlight focused through a 10-micron hole if the cavity 
is well enough insulated and you have good feedback control 
orienting the reflector.  But it turns out to be impractical to insulate 
the cavity well enough. 

    If your insulation material conducts heat at 0.3 W/m/K (typical 
for refractory bricks), your cavity’s surface area is 6 cm², and you have 
a 1000 K temperature difference, then at 1 mm of insulation thickness 
you would lose 180 watts.  Not microwatts or milliwatts, but entire 
watts.  So you’re seven orders of magnitude away from being able to 
reach 1000° with a millimeter of insulation.  Exotic vacuum panels 
might be able to gain you some of those orders of magnitude back, 
but charred bread won’t. 

    You can get maybe two or three of them back by making the 
cavity smaller and the insulation thicker, but I think that at some 
point it’s sort of a lost cause because once the heat diffuses a few 
millimeters through the insulation it’s diffusing through a much 
larger surface area again.  So microwatt-scale kilns would need 
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building-sized insulation. 

    A more practical approach is to scale up to, say, 100 watts, which is 
about 320 mm × 320 mm of sunlight.  If you concentrate that down 
to 20 mm × 20 mm (or a 23-mm-diameter hole), you have your 256 
suns.  The hole can be at the end of a bit of a bottleneck leading into a 
chamber of, say, 50 mm diameter, which is 65 mℓ and has a surface 
area of 7900 mm², 0.0079 m².  This would require 24 mm of 
insulation thickness to lose the 100 W through conduction, so 
100 mm or so should be adequate to get it most of the way up to that 
temperature.  This ends up being 250 mm in total diameter, which is 
probably about as big as I can bake a loaf of bread. 

    So a solar furnace of subcentimeter total size probably isn’t practical 
without vacuum multilayer insulation, but submeter is totally feasible. 

    Insulation stops being a difficult problem with large cavities.  
Consider scaling up by a factor of 200:  a 10-meter-diameter cavity.  
Let’s scale the hole up only by a factor of 50:  it’s a 
1.15-meter-diameter circle, swallowing 256 kilowatts fed to it by 
hundreds of square meters of mirrors.  It holds 524'000 liters, and its 
surface area is 314.15927 m².  To keep its conduction losses down to 
256 kilowatts, it only needs 400 mm of insulation!  Now the chamber 
dwarfs the insulation;  if you can dig it into the ground, you don’t 
need any further insulation, although you might need to line it with a 
sturdy refractory in case it turns the ground into lava.
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Pandemic collapse
Kragen Javier Sitaker, 02020-05-17 (updated 02020-12-16) 
(22 minutes)

    I was looking at a thread on the orange website and I was surprised 
by people’s shortsightedness.  They’re talking about how the stock 
market remains high despite the pandemic’s damage to the economy, 
but their spectrum of possible outcomes seems to stop at the Great 
Depression. 

    I see a lot of people in the US trying to understand the current 
disaster through the lens of the last big disasters that happened in the 
US:  the US involvement in the Vietnam War, the US involvement 
in WWII, the Great Depression, the 1918 flu.  Of course I don’t 
know what is going to happen — and if I did, I wouldn’t want to 
attract the resulting attention — but I think you should take a wider 
perspective.  This might be an OCP, more like when Sherman 
marched to the sea or Cortés rode into Tenochtitlán.  It might be 
more like Cambodia’s experience of the Vietnam War than the US’s.  
Things may change more than you expect.  The US may not survive. 

    As Annalee Newitz writes in the New York Times of the Bronze 
Age Collapse: 
When their cities were swallowed by fire, the Bronze Age ruling classes lost 
everything, including the subjects they once controlled.  Greece’s population 
dropped by roughly 50 percent during this time, probably because of a combination 
of war, drought and migration, according to Sarah Murray, a classics professor at 
the University of Toronto and author of “The Collapse of the Mycenaean 
Economy.” Mr. Cline believes that plagues may have driven people into the 
hinterlands, too.  

    It’s hard to estimate the probability of such a country-destroying 
disaster, so it’s tempting to just dismiss the possibility out of hand as 
outlandish — nothing like that could possibly happen, since the US 
has remained stable and indeed grown in power in our lifetimes, in 
our parents’ lifetimes, in our grandparents’ lifetimes, even in our 
great-grandparents’ lifetimes.  It’s tempting to assume that an edifice 
that has thus stood the test of time will endure forever.  Moreover, 
since the United Nations won World War II, the world has 
experienced a historically unusual period of relative peace, the Pax 
Americana, sometimes called the American Century. 

Country collapse base rate estimation:  on 
the order of 1% per year 

    But periods of peace and countries do not endure forever;  they are 
wracked by invasions, revolutions, military coups, and simple collapse.  
What’s the base rate of such events? 

    Let’s consider specifically the kind of events that upend the 
established order in a country and consign the rich and powerful to 
poverty and death.  Again, it’s hard to measure precisely, but we can 
get within an order of magnitude.  In recent centuries, most countries 
experience such a major upheaval about once every century or two.  
Once a decade is clearly too often, and once a millennium is too rare. 
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A cross-section across countries in the last few years 

    Let’s consider recent events worldwide. 

    At the beginning of 2020, most countries still had the same way of 
life they had in 2010 and indeed in 2000, and investments made in 
2000 were still secure in 2020.  We can enumerate the exceptions:  
Egypt, Tunis, Iraq, Congo, Liberia, Syria, Afghanistan, Sudan (if you 
live in Darfur), the Rohingya regions of Myanmar and India, parts of 
the Niger delta, Yemen, the Crimea, Venezuela, Libya, and arguably 
Hungary, Mexico, Bolivia, Ukraine, Mali, Honduras, Kyrgyzstan, 
Ecuador, and Turkey.  That’s somewhere around 10 to 30 countries, 
although at the border, it’s pretty fuzzy. 

    That’s out of about 200 countries (again, pretty fuzzy), so we’re 
looking at a rate of around 0.5% to 1% per year. 

    But is that really fair?  Afghanistan has been a mess for generations, 
and the Crimea for centuries.  Perhaps some polities, like Switzerland 
and the Roman Republic and Empire, are very stable, while others, 
like Afghanistan, are very unstable.  (Note, though, that Rome 
suffered its share of disastrous revolutions and sackings before it 
finally fell.) 

    That’s as may be, but for now we’re just trying to establish the base 
rate.  Later we can work out how large and frequent to expect local 
deviations to be, and in which direction. 

A longitudinal survey of the recent histories of some 
random countries 

    Let’s take a longitudinal survey looking at the histories of particular 
countries.  If you look back in the history of any given country, you 
mostly only have to look back a few decades to the last such event, 
maybe a century or two.  Let’s look at every 17th country from 
Wikipedia’s list of countries by water use. 

• India?  Partition, in 1947.  
• Italy?† Following the Holocaust (killing some 15% of its Jewish 
population), in 1943 they were defeated in World War II, their prime 
minister hung upside down from a gas station, their king forced to 
abdicate, and much of their territory given to Yugoslavia and the 
United Nations;  over the next 40 years they had successive economic 
crises and terrorist massacres.  
• Syria?  Currently on fire.  
• Kyrgyzstan?  The Soviet Union collapsed there in 1991, ushering in 
decades of poverty (22% of the population is still below the poverty 
line), the capital was looted during a popular uprising in 2005, the 
mafia keeps assassinating parliamentarians, the president fled in 2010, 
and the interim president requested an invasion from Russia to put 
down an incipient civil war.  
• Cambodia?  The Khmer Rouge killed all the intellectuals and a 
quarter of the population in 1975–8.  
• The United Arab Emirates?  The current state there was established 
when the British blew up Ras al-Khaimah in 1819, conquering the 
country.  
• Oman?  In the 18th century it was the preeminent power in the 
Indian ocean.  After centuries of decline, Britain bombed the shit out 

https://en.wikipedia.org/wiki/List_of_countries_by_freshwater_withdrawal
https://en.wikipedia.org/wiki/List_of_countries_by_freshwater_withdrawal
https://en.wikipedia.org/wiki/India
https://en.wikipedia.org/wiki/Italy
https://en.wikipedia.org/wiki/Syria
https://en.wikipedia.org/wiki/Kyrgyzstan
https://en.wikipedia.org/wiki/Cambodia
https://en.wikipedia.org/wiki/Khmer_Rouge
https://en.wikipedia.org/wiki/United_Arab_Emirates
https://en.wikipedia.org/wiki/Oman


of it from 1957 to 1959 in order to bring the Imamate of Oman 
(incidentally, one of those thousand-plus-year-long states like Rome) 
under the power of its ally the Sultanate of Oman.  
• Suriname?‡ It had a civil war in 1986–9 in the wake of the bloody 
1980 coup (whose winner is the current president, though recently 
sentenced to 20 years in prison), and although the genocide of the 
Americans during the colonial era was far less complete there than 
elsewhere in America, only 4% of Suriname’s people today speak an 
American language and less than 2% practice an American religion.  
• Qatar?  Doha and al-Wakra were sacked and looted by forces from 
Bahrain and Abu Dhabi in 1867, following which point Qatari 
sovereignty was established.  
• Papua New Guinea?  They were a major battleground of World 
War II in 1942–5.   

    So in sorted order the last time there was a country-destroying 
catastrophe in these countries were 1819, 1867, 1943, 1945, 1947, 1959, 
1978, 1989, 2010, and 2020, with a mean date of 1947.  We can see 
some clustering there:  two of the countries were destroyed in World 
War II, and India’s destruction (and subsequent glorious rebirth) as 
part of the collapse of the British Empire was surely related to World 
War II as well.  Whatever the distribution and clustering of these 
catastrophes within any given country, we should expect that the 
distribution of intervals since the most recent catastrophe is the same 
as the distribution of intervals until the next one. 

    In particular, this controls for the problem of instability clumpiness:  
like unstable servers, unstable countries tend to remain unstable for 
decades, with one crisis or collapse rapidly following another, so if we 
just count the collapse events in the world over some period of time, 
we will get an unrealistically high number.  Today, for example, 
Oman has been stable since 1959, but its previous century was riven 
with intrigues, secessions, civil wars, truces, invasions, and gradual 
subjugation by colonialist British boots. 

    This suggests an average time-since-violent-collapse (and thus also 
time-until-violent-collapse) of some 73 years, with a fairly smooth 
distribution containing a significant number of countries going out to 
200 years of stability or so. 

    What about the USA?  Does it not have 240 years of stability?  
Only from the point of view of the Northerners;  the catastrophic 
depredations of the Civil War in 1861–5 reduced the Southern states, 
which previously included the richest part of the country, to a 
poverty from which they have not recovered 155 years later, although 
of course the poorest people in the South were thus immeasurably 
enriched.  (Please note, I am not arguing that the Civil War should 
not have happened;  I am merely saying that if you were a wealthy 
investor in the Confederacy, you would likely be ruined by the war.) 
It was no picnic for the North, who suffered some 800'000 casualties, 
some 10% of its fighting-age men. 

    Even so, 155 years of stability puts the US in the tail of our 
empirical distribution, bested only by the UAE in my sample above.  
Still, it should give us some pause that the US spent four of its 240 
years at war with itself.  Stability is not to be taken for granted. 

    † Oops, now I realize Italy is one country early.  I guess I’ll go with 
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it. 

    ‡ Oops, now I realize Suriname is one country early. 

What direction should we correct these 
order-of-magnitude estimates? 

    These figures give especial weight to the 20th and early 21st 
centuries.  To some extent, this is justifiable:  there are secular trends 
that change what is possible and what is probable, so events in the 
16th century perhaps have less bearing on what could happen in the 
21st century than events in the 20th do.  On the other hand, we 
should be alert to the possibility that a short recent period, like 2000 
to present, 1980 to present, or 1940 to present, is really representative 
of what is to come — it might happen to be anomalously stable or 
anomalously unstable, in a way that might not continue to hold true 
in the next decades. 

    Do we have strong reasons for believing this to be the case? 

    I don’t think we do.  On one hand the Pax Americana reduced the 
number of large wars, but the Cold War also destabilized 
countries — this was a factor in the Suriname coup mentioned above 
and the destruction of the Imamate of Oman, for example, and 
Cambodia was of course only able to get away with its abuses because 
so many saw them as needed measures that only affected those with 
privilege, anyway.  Kyrgyzstan’s collapse was a result of the Cold 
War’s end, although it’s done worse than many former Soviet 
republics — would it have been stabler and safer without the Pax 
Americana and consequent Cold War?  Perhaps.  Or perhaps it would 
have been more unstable and more dangerous. 

    A different objection, which I hadn’t thought of until berndj raised 
it, is that the weightings above are biased toward small countries.  Any 
particular country on the sampled list had an 0.5% chance of being 
Cambodia and an 0.5% chance of being the UAE, but their 
populations are only 15 million and 10 million, respectively, so a 
randomly chosen living person only has a chance of 0.2% or 0.1% 
chance, respectively, of happening to live there.  But failure rate 
probably is not independent of country size!  It could easily be that 
large countries tend to collapse much more often than small countries, 
or much less often.  If you carried out my survey on a planet 
consisting of 199 tiny countries that each collapse every year on 
average, and one giant country containing 99% of the world’s 
population that only collapses every ten thousand years, you’d 
incorrectly conclude that people’s mean time to living through a 
collapse was a year.  So we should take another look at large countries, 
even though we can’t take a large sample of them. 

    The fact that India, the largest country on the list, with 18% of the 
world population, happens to have most recently collapsed (with 
genocidal massacres with and masses of refugees) precisely at the mean 
date of the survey, 1947, might be a coincidence. 

    The other largest countries are China, with 1.4 billion humans (also 
18% of the world population);  USA, with 331 million (4.2%);  
Indonesia, with 270 million (3.4%);  Pakistan, with 221 million (2.8%);  
Brazil, with 212 million (2.7%);  and Nigeria, which at 206 million 
(2.6%) pushes us over the 50% mark.  I think these countries’ most 
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recent country-destroying disasters, where times were harder than the 
US’s Great Depression, the ruling classes lost everything, the rich and 
powerful were reduced to poverty, there was widespread violence, 
and mass emigration ensued, were, respectively:  1949, or 1958, if you 
count the Great Leap Forward;  1865;  1975–1999, if you count the 
invasion of East Timor, or 1965–6 otherwise;  1947 again, same 
disaster as India;  arguably the military dictatorship and guerilla 
warfare following the coup against Goulart in 1964, though the 
resulting countrywide impoverishment was slow and prolonged, but 
otherwise the tumultuous 1889–1930 First Brazilian Republic, or the 
1864–1870 War of the Triple Alliance, or the 18th-century invasion 
by Portugal;  and one of the 1993–8 Abacha dictatorship, the 1976 
coup, or the 1967–70 civil war. 

    So, based on tentative dates of 1865, 1930, 1947, 1947, 1949, 
1965–6, and 1976 for the most recent country-destroying collapses in 
the seven largest countries that house the majority of Earth's human 
population, there doesn't seems to be strong evidence that large 
countries are either especially stable or especially unstable.  Of course, 
after a collapse a country might break into smaller pieces, as the 
USSR did, so perhaps we care more about countries that used to be 
part of big countries — but we've already covered those by sampling 
small countries.  The USA's recent stability just looks like an outlier. 

    How about USAmerican exceptionalism?  Do we have strong 
reasons for thinking that the US is far more stable than other 
countries?  I don’t know that we have strong evidence either way.  
The US is still the world hegemon, and hegemons tend not to be 
invaded by the countries they dominate.  But their economy 
frequently depends on their hegemonic status, which is fairly fragile, 
and its loss can precipitate major upheaval — even when internal 
power struggles don’t. 

    So I don’t think there’s a strong justification for thinking that the 
US’s risk of collapse in average years is significantly different from the 
1% or so from the above. 

But this is not an average year;  we have 
covid — thus a 20% chance of collapse 

    This is an unusual time.  An economist at the Federal Reserve has 
projected 34% unemployment in the second quarter of 2020, which is 
higher than the peak of the Great Depression — and that’s six months 
into the covid pandemic, not three years in.  Unemployment 
insurance claims are orders of magnitude above past records.  Last 
month New York City started digging mass graves for the overload 
of coffins as its covid infection rate peaked.  Also, the US elected a 
reality TV host as President, and he fired its pandemic preparedness 
team before the pandemic.  Last month, the Yugoslavian he appointed 
chairwoman of the FDIC he appointed published a video begging the 
public to “please, keep your money in a…bank.” The Michigan 
legislature just shut down this week to avoid getting shot by 
protestors armed with military rifles, encouraged by the President. 

    Some wag quipped that it’s like having the 1918 flu, the 1929 stock 
market crash, and Warren G.  Harding’s presidential incompetence all 
at once. 



    This is not normal. 

    It’s hard to predict what will happen.  Right now, the chance of 
any kind of rare event is significantly increased because of the covid 
pandemic, even — perhaps especially — in the US.  Moreover, events 
involving chaos and discord are especially favored. 

    So the chance of a US collapse is higher this year than its average 
1%.  Let’s say it’s 20%. 

    I don’t venture to guess what a US collapse looks like.  Typically 
things like famines and plagues don’t directly topple governments or 
end cultures;  they undermine their economic strength and political 
legitimacy, making it easier for other forces to assert themselves. 

Forces?  What other forces might assert 
themselves? 

    But what groups might be players?  Recent new mass movements 
within the US include the Tea Party and Occupy, but the military 
(3.2 million employees of the US DoD) is in a better position to take 
over if the civil state fails.  (The US police force is deliberately 
fragmented to reduce the chance of this;  so is the military, but much 
less so.) Both the Tea Party and Occupy support positions with 
broad-based popular support. 

    The Mormons number some 6.6 million in the US, far more than 
the military, and have always planned to take over government in the 
US if given the opportunity, in order to build a utopian society they 
call “Zion”.  Economically and organizationally, they are 
well-prepared for hard times, and if there is a famine, the Mormons 
may be especially well prepared, because each family is required to 
store a three months’ supply of food, water, and other essentials, a 
practice known as Family Home Storage.  Mormon communities in 
Mexico have resisted the incursions of drug gangs with some success.  
I think it’s unlikely that the Mormons’ dormant plans to assume 
temporal power will be put into motion unless society is in frank 
collapse, because I don’t think they have either the firepower or the 
moral force to effectively maintain control. 

    Drug gangs in the US already have functional apparatus for 
projection of force and have geographically widespread networks and 
functional countermeasures against the police, and over the border in 
Mexico have achieved substantial, though incomplete, independence 
from the Mexican state.  However, drug gangs generally lack 
broad-based support in the population in the US, unlike in Mexico, 
and suffer from serious prejudice, much of which is racist in nature 
and thus not easily overcome by a change of circumstances. 

    Many large companies in the US have substantial material 
resources, well-exercised command hierarchies, committed 
workforces, and in many cases continuity-of-business plans for 
disasters.  A few even have existing security forces.  It’s plausible to 
think that Walmart (2.2 million employees), Amazon (647k 
employees), CVS (295k employees), AT&T (254k employees), Ford 
(199k employees), or Alphabet (99k employees) might be able to take 
on the burden of protecting their assets and employees without a 
functioning government.  Walmart might have a hard time due to its 
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low profit margins (US$3k/employee), but Amazon (US$15k), 
AT&T (US$76k), or Ford (US$18k) might be able to take the hit 
without collapsing;  Alphabet (US$311k profit per employee) easily 
could, and indeed Alphabet has often come under fire for providing 
public services like food, laundry, and transportation to its employees.  
(CVS is currently losing money.) 

    Alphabet is in a unique position to defend itself from security 
threats, since no potential foe can operate without its services at 
present, leaving them exposed to intelligence gathering. 

    There are another several dozen companies in the US with over 
100k employees:  Accenture (515k), Kroger (453k), Home Depot 
(413k), Berkshire (though that’s a conglomerate) (389k), IBM (381k), 
UPS (365k), FedEx (359k), the USPS (500+k), and so on.  Large 
defense contractors include GE (283k), Boeing (153k), Honeywell 
(115k), Lockheed (102k), General Dynamics (101k), and Northrop 
(83k).  Other telecoms include Comcast (184k), Verizon (145k), and 
Charter (99k);  I mention these because availability of 
telecommunication is crucial to viability of any geographically 
distributed organization. 

    It’s easy to imagine a consortium of these big companies entering 
into a security cooperation arrangement with one another in order to 
be able to continue operating, and big defense contractors can 
probably count on support from any such consortium.

Topics

• History (p.  796) (17 notes) 
• Facepalm (p.  819) (8 notes) 
• The future (p.  820) (7 notes) 
• Covid (p.  894) (3 notes) 
• Politics (p.  926) (2 notes) 
• Collapse (p.  964) (2 notes) 

https://en.wikipedia.org/wiki/List_of_largest_companies_by_revenue
https://en.wikipedia.org/wiki/List_of_largest_companies_by_revenue


Font rendering with all-pass filters
Kragen Javier Sitaker, 02020-05-18 (7 minutes)

    You can use all-pass FIR filters to efficiently do subpixel letterform 
positioning of pixel fonts as well as obviate hinting.  Pre-emphasis 
filtering can mitigate the readability loss from nonzero-size pixels and 
eye defocus.  This can improve text rasterization.  As far as I know, 
nobody is doing this, so I don’t know it will work. 

Fractional-delay all-pass FIR filters for 
spatial translation 

    There are a variety of fractional-delay filters commonly used in 
music for, e.g., Karplus–Strong delay lines.  The optimal filter is a 
sampled sinc;  with a delay of 0 or some integer number of samples, 
this has an impulse response of 1 in sample 0 or some other sample and 
0 on all other samples, but when its delay is some noninteger number, 
all the samples are nonzero.  Sinc itself dies off annoyingly slowly, but 
you can window the sinc to get a faster die-off (Lánczos resampling 
being one implementation of this), and uniform basis splines are 
another less explicit way to get an approximately windowed sinc with 
a limited basis.  As de Boor’s “B(asic)-Spline Basics” explains, these 
splines form a partition of unity, unlike the Lánczos kernel. 

    The same approach can be used to translate a sampled pixel image 
by some fractional number of pixels.  If the source and target have the 
same resolution, this is just a convolution, with a kernel depending on 
the fractional part of the shift;  if the original image is bilevel (black 
and white, so every pixel is either 1 or 0) doing this convolution in the 
spatial domain amounts to selectively adding up some of the weights 
in the convolution kernel to generate each output pixel, those that 
happen to land on white pixels.  This therefore requires no 
multiplications. 

    If the source image has resolution higher than the target by some 
integer factor n, such as 2, 3, or 4, then I think this approach is still 
mostly valid, but now instead of a single convolution kernel you have 
n² of them, such as 4, 9, or 16 kernels, each a sampled sinc whose 
frequency is at the destination resolution.  In particular, you can use 
an outline letterform rasterized to a high-resolution bilevel image to 
compute a grayscale image rasterized with perfect resampling (limited 
only by rounding), or very good resampling (limited by rounding and 
windowing).  And the high-resolution bilevel image can be quite 
compact. 

    In particular, I think this gets rid of hinting.  Hinting is a set of 
hacks which, among other things, deforms letterforms so that their 
stems and curves align more often with pixel centers and their borders 
run, as much as possible, halfway between pixel centers;  this is 
important because, without that alignment, you lose spatial 
information about where they are to the sampling operation.  This 
works very poorly with animation and with subpixel glyph 
positioning.  But sinc filtering spreads that lost spatial information out 
to the surrounding pixels in the form of ringing, and as it happens, 
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your eyes can pick up on that.  So you shouldn’t need hinting. 

    Of course, on an LCD, you should sample at the LCD subpixels, 
usually R, G, and B from left to right, not to the square pixels 
containing them. 

Efficient low-precision implementation 
with a multiplier 

    This operation of convolving a bilevel image with a convolution 
kernel has something of the flavor of binary long multiplication by an 
element of the kernel;  each bit determines whether or not to add that 
weight at a particular spatial position in the output.  And indeed you 
can carry it out with a multiplier under appropriate circumstances.  
Take the row of pixels 0011100111100001.  Suppose 4 bits of grayscale 
in the output is enough;  let’s space out that number into a 64-bit 
word by inserting zero bits, so it becomes 0x0011100111100001.  If we 
multiply this by a 4-bit weight such as 3, it becomes 
0x0033300333300003.  Suppose the next weight to the right is 4, and 
the next pixel to the right is 1, so we shift in that 1 on the right and 
get 0x0111001111000011, then multiply by 4 and get 
0x0444004444000044, which we can add to the previous result to get 
0x477304777300047, as well as the results from doing the same thing 
with the corresponding weights in the next row of the convolution 
kernel and the corresponding input pixels in the next (previous) row.  
Proceeding in this way I think we can get perhaps an 8× to 16× 
speedup over the straightforward convolution algorithm, at the 
expense of really miserable overflow behavior.  The speedup is 
probably only 2× or 4× against a straightforward SIMD algorithm if 
you have SIMD instructions. 

    Because of the overflow behavior, you can’t use 2’s-complement 
for negative weights, which of course are everywhere in sampled sinc 
kernels.  Two possibilities occur to me:  represent the weights in 
sign-magnitude form, using the sign bit to determine whether to 
subtract or add the product from the running sum, or use an excess-N 
representation for the weights and the running sum, subtracting N 
from each pixel after each multiply-add. 

Low-rank approximations 

    Low-rank approximations of the relevant sinc kernels may be 
useful in reducing the windowing error at a given computational 
load, and the SVD provides an easy way to find them;  see 
notes/svd-convolution.html in Dercuano for details. 

Nonzero-area pixels and pre-emphasis 

    Above I said that sinc resampling can produce a perfectly resampled 
image, but there are a couple of complications.  First, conceptually the 
sampling comb is made of Dirac deltas, which concentrate a nonzero 
amount of energy into a point in space.  But we live in a universe 
where doing that would require creating a black hole, which is both 
practically difficult and highly radioactive, so instead we approximate 
it by illuminating or darkening pixels of finite, nonzero size. 

    This amounts to convolving this ideal sampled signal with the 



shape of a pixel, which acts as a zero-phase low-pass box filter with a 
sinc frequency response.  The blurring of pixels by CRT beam 
dispersion or old-person eye defocus adds an additional low-pass 
characteristic, but one that’s harder to measure.  Since the pixel shape 
is smaller than the pixel spacing, its first null is well above the Nyquist 
frequency, so this low-pass characteristic can be corrected by 
“pre-emphasis”:  zero-phase linear time-invariant filtering of the 
original signal to attenuate the strongest frequencies and amplify the 
weaker ones, giving a perfectly flat frequency response.  You may be 
able to fold this into the resampling filter described earlier, or you 
may want to do four high-pass IIR-filter passes in the four cardinal 
directions. 

One-dimensional translation 

    An important special case of subpixel text spatial translation is 
horizontal translation.  I think it’s possible to use just a fractional delay 
filter in the X-axis in this case, dramatically reducing the 
computational cost.
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Single output build
Kragen Javier Sitaker, 02020-05-19 (4 minutes)

    Some build systems and dependency systems support build steps 
that produce multiple outputs.  Make, on the other hand, identifies 
each build step with a single build artifact produced by that build step.  
This is a better approach. 

    An apparent benefit of multiple-output build steps is efficiency:  
perhaps the same compilation that produces an object file also 
produces, for example, a listing file, and producing them separately 
requires essentially running the compilation twice, with the same 
optimization settings (and all potential sources of nondeterminism 
removed.) The solution for this problem is to make an output directory 
be the resulting build artifact, containing both files. 

    The dependencies (inputs) of a build step can be determined by 
interposition, for example watching the system calls performed in 
order to find out what files are being opened.  If the build step 
succeeds or fails at some point, then as long as it is deterministic, we 
can be sure that it will succeed or fail again with precisely the same 
results as long as none of the environment it observed while running 
has changed.  In particular, this means that it is okay if it would have 
read some other potential input file if it had not encountered an 
earlier error — changes in that other potential input file will not 
change the error.  And it is perfectly okay to read references from one 
input file, such as foo.c, to another, such as foo.h;  as long as foo.c does 
not change, the resulting dependency set remains static. 

    Multiple outputs of a build step are, by contrast, messier.  What 
happens if two separate possible build steps can create the same file?  
What happens if a build step creates a file on one occasion, but due to 
a change in its inputs, not on another?  It’s better to steer clear of such 
messy issues. 

    Although it may be most convenient to support a traditional 
filesystem API for producing build artifacts, it isn’t necessary.  
Suppose we are constrained to produce one file per rule, as the 
standard output of a build script, but the build step runs inside an 
isolated filesystem bubble whose contents are discarded once it 
finishes.  Then we can handle the above listing+object case as follows, 
using Make syntax but for convenience with inputs inferred as 
described above: 

foo.tar:
    gcc -g -Wa,-adhlns=foo.lst -c foo.c
    tar cf - foo.lst foo.o

foo.lst:
    tar xf foo.tar foo.lst
    cat foo.lst

foo.o:
    tar xf foo.tar foo.o
    cat foo.o



 

    You can do the same thing within a single process, but it generally 
takes more than two short lines of code to express it.  And you could 
imagine a memory-centric version of this where the “foo.tar” output 
was in the format of a segment of (sharable, read-only) memory, and 
foo.lst and foo.o were “subsegments” of it.  So this approach doesn’t 
depend on the use of the filesystem. 

    Why might you want to split out a build artifact into multiple 
pieces this way?  After all, any computation you can do on the basis of 
foo.o above can also be done on the basis of foo.tar.  I think there are 
two reasons:  decoupling and caching. 

    The linker should not be coupled to the fact that the compiler is 
generating a listing file.  Rather, it should be insulated from that 
information.  It should not have to fish the object code it’s interested 
in out of a larger file containing mostly things it’s not interested in.  
That’s decoupling. 

    Moreover, if you make a change to the source code or the build 
script that doesn’t change the object file, only the listing file, it would 
be nice to avoid rerunning the linker.  If the linker doesn’t even open 
the listing, we know it can’t depend on its contents.  So we can use 
the linker’s cached output.
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Electronics kit
Kragen Javier Sitaker, 02020-05-23 (updated 02020-12-20) 
(14 minutes)

    When I was a kid I had a Radio Shack “Science Fair 200-in-1 
electronic project kit”, similar to the 150-in-1 kit Fran Blanche 
recently talked about on her show.  It was designed in 1981.  I don’t 
know if I built 10 circuits with it or 100, but probably somewhere in 
that range. 

    According to the manual, it contained: 

• a bunch of wires, about 80 in all; 
• 20 resistors (one 100Ω, two 330Ω, three 470Ω, four 1kΩ, one 2.2kΩ, 
two 4.7kΩ, and one each 10kΩ, 22kΩ, 33kΩ, 47kΩ, 100kΩ, 220kΩ, 
and 470kΩ); 
• 3 diodes (one germanium 1N60, the others 1N4143); 
• 4 transistors (two 2SC945 NPN, two 2SA733 PNP, all Si); 
• 10 capacitors (one each 100pF, 0.001μF, 0.005μF, 0.01μF, 0.05μF, 
0.1μF, 3.3μF, 10μF, and two of 100μF;  mostly ceramic but with the 
four largest electrolytic); 
• a 9V 500Ω relay; 
• a 265pF variable capacitor for radio tuning; 
• a 250μA 650Ω galvanometer; 
• a “control and power switch” (a 50kΩ pot with a switch at one end); 

• six standalone LEDs; 
• a 3-volt incandescent lamp; 
• a single-digit 7-segment LED display with cathode resistors already 
connected; 
• a 350 μH ferrite loopstick antenna with two coils on it, one 
center-tapped; 
• an SPDT switch; 
• an 8Ω dynamic speaker; 
• 2 small transformers, one suitable for driving the speaker from a 
signal in the neighborhood of 5V (“900CT:  8 ohm”), the other 
“input” (“4K CT:  2K”), both with a center-tap on the high-voltage 
side; 
• a piezo earphone; 
• a 7400 quad-NAND chip; 
• a 7476 dual J-K flip-flop; 
• a KC-4SA cadmium-sulfide light-dependent resistor; 
• an enclosure for six AA batteries (and no plug-in power supply); 
• a momentary-contact button “key”; 
• two screw post terminals;  and, perhaps most importantly, 
• the instruction manual, including instructions for 200 circuits you 
could build.  

    Not counting the wires, that’s 62 components, most of which cost a 
cent or so nowadays, although I think at the time the kit was more 
like US$100.  The components were mounted on brightly printed 
cardboard with some extension springs mounted around them;  these 
served to grab the stranded copper wire when you fingered them 



sideways.  I don’t know what the advantage of this method was over 
jumper wires in a standard breadboard, except that I guess each 
component terminal has a unique identifying number, so the wiring 
instructions in the manual could say things like “1-81-84, 
2-41-49-55-176, 26-44-46,...”, and you could be reasonably sure 
you’d hooked it up correctly. 

    The designs of the circuits are pretty interesting in that they are 
adapted to the very minimal resources and poor tolerances available in 
the kit;  they include a few different single-transistor oscillators, for 
example.  (I think they’re Hartley oscillators, often using the center 
tap on the audio output transformer for their tapped coil, but I’m not 
sure I understand them.) 

    The circuits include various kinds of AM radio transmitters and 
receivers, various kinds of audio oscillators, games that control audio 
oscillators etc. with light, a “strobe light” with an LED, push-pull 
amplifiers, RTL and DTL logic gates, a “door alarm”, random 
number generators, a divide-by-4 counter with decoded output, a 
VCO, a voltmeter, an ohmmeter, and so on.  Many of the circuits use 
the speaker or piezo earphone as microphones. 

    It’s been 39 years since it was designed, and a few of the 
components are obsolete (TTL logic, germanium diodes, and variable 
capacitors) while others are harder to find (CdS cells, piezo earphones, 
galvos, relays, incandescent bulbs).  And nowadays, if you were 
designing something similar to build out of new parts, you might take 
advantage of some of the parts that are cheaper and more robust than 
they were then:  power MOSFETs, op-amps (maybe LM324s, 
TLC272s, and as Viper-7 suggests (see file notes/jellybeans.html in 
Dercuano), TL084s for JFET input), Schottky diodes, Darlington 
arrays like the ULN2003, zeners, colored LEDs, some 555s, 
phototransistors, but especially and above all else, microcontrollers.  If 
you’re going to have discrete logic circuits, make them CMOS. 

Toward a ghettobotics version 

    If we’re limited to parts we can salvage from discarded equipment, 
what could we patch together? 

    The easiest way to get wire is from discarded wire, especially power 
cords, but sometimes also things like telephone line and coax. 

    Batteries are right out, but there are lots of perfectly capable AC 
power supplies out there.  Surprisingly, the power supply often is not 
the first thing that breaks;  sometimes it’s the supply chain. 

    LEDs, silicon signal diodes, resistors, capacitors, buttons, and 
switches are abundant, and optointerruptors are found at times;  most 
power supplies also contain transformers, inductors, silicon PN power 
diodes, and Schottky diodes.  Speakers are reasonably common.  
Crystal resonators are also quite common (this VCR has nine of 
them), potentially permitting very high precision timing 
measurements.  Potentiometers with knobs attached do occur 
occasionally, but trimpots are enormously more common. 

    Even this 12-watt LED lightbulb that burned out the other day in 
the bathroom has a little power-supply board in it containing two 
resistors, an MLCC capacitor, a diode, two electrolytic capacitors, 



and a transformer (a center-tapped coil, really), plus a couple of chips 
(one of which may be a bridge rectifier), plus 14 bright LEDs in series, 
two of which are burned out.  Perhaps the power supply works fine 
and it was just the LEDs that overheated, in which case I have a 
non-isolated power supply the size of my fingertip designed to supply 
some 56 volts, 300 mA, from 240VAC.  Or perhaps it would be more 
useful in pieces. 

    Transistors are a little messier.  The VCR, from 1996, has 
apparently several hundred of them, but apart from half a dozen 
power transistors in its power supply, they’re mostly tiny 
surface-mount components.  I more often find BJTs than MOSFETs, 
but in this case I haven’t looked them up yet. 

    Inductors are a sufficiently expensive component that the 200-in-1 
kit didn’t have any except as part of its transformers and antenna.  But 
they are straightforward to make by hand from wire, especially for 
low inductances, or to salvage from discarded equipment. 

    Connectors are another tricky question.  The 200-in-1 kit had only 
62 electronic components — including post lugs to attach wires 
to — but some 80 wires and 176 springs.  The dude from Espacio de 
César demonstrated rigging up a solderless breadboard out of DIP 
sockets from old circuit boards — snip the two sides off and you have 
two rows of 2.54-mm-spaced socket holes you can plug pins into.  
Other connectors, such as DIMM slots or CPU sockets, may also 
work for this.  Through-hole components are easy to slot into those, 
as long as the leads aren’t too short, but surface-mount components 
need to have pins added to them. 

    Consumer electronics are by and large full of single-sided PCBs, 
which are full of jumper wires, which can be pressed into service as 
pins in a pinch, but a better alternative when possible is to rip apart 
male Molex-style connectos. 

    Connectors are also very valuable for a different reason:  they 
permit modularity, and if you’re generating, say, an audio or video 
signal, you can use them to connect it to something external. 

    7-segment LED displays can still be found in things like discarded 
clock radios or microwaves, but a better option may be to build them 
out of now-abundant LEDs and commonplace non-electronic 
materials like paper and aluminum foil.
  

    CdS cells are virtually unheard of in the last decades, but 
phototransistors are ubiquitous, though most often infrared, often 
with shielding.  LEDs can sometimes serve as photodiodes, too, 
although they are poorly characterized for this use. 

    A soldering iron and soldering flux may be difficult to improvise. 

    The circuit cookbook probably can’t be as cut-and-dried as the 
Radio Shack cookbook was, because the available components will be 
more variable. 

Bootstrapping sequence 

    You need to start from basic tools.  First you need a power supply 
with voltage in a reasonable range.  But you need to be able to detect 
that its voltage is in a reasonable range.  How do you do that without 



a multimeter? 

    See also the note on multimeter metrology (p.  498). 

A voltage detector from four LEDs and two resistors 
    A white illumination LED from a lightbulb can probably dissipate a 
whole watt, no problem, which is 300 mA or so, and it will probably 
light up visibly with any current above 0.1 mA.  You probably want a 
couple of separate measuring instruments here, made of two such 
LEDs in antiparallel in series with a resistor:  one to ensure that the 
voltage is not outrageously high, one to verify that there is some 
useful voltage. 

    The not-outrageously-high detector uses a resistor in the 
100kΩ–1MΩ range, which should illuminate the LED and heat up 
the resistor noticeably, but probably not burn up, if placed across a 
circuit carrying hundreds of volts.  Still, you want to make sure 
you’re using a through-hole kind of resistor for this to handle the 
heat, not a surface-mount.  At 100V and 1MΩ you get 100μA, which 
should be visible on the LED, if barely.  If both LEDs light up, you 
know it’s AC. 

    The some-useful-voltage detector is used after you’ve established 
that the circuit doesn’t have 100V or more on it, so it uses a resistor in 
the 330Ω–3.3kΩ range.  So those same 100μA will appear, and the 
LED will start to light up, at 0.033–0.33 volts above the LED’s 
forward voltage drop (typically 3V).  At 100V the LED will have 
30–300mA running through it and will illuminate brightly.  XXX the 
resistor will explode 

    XXX Hmm, I need to rethink this a bit.  Even at 3.3kΩ the resistor 
dissipates 3 W at 100V. 

    The resistors can be pulled from broken or surplus power supplies, 
which commonly have large resistors in them, and identified using the 
resistor color code, without a need for a multimeter.  It will need to 
be verified that they do conduct electricity. 

    By attaching the some-useful-voltage detector to one side of the 
output of a known-good power supply, you also get a diode and 
continuity tester. 

A variable-voltage linear power supply from a power transistor 
and a potentiometer 

    Once you know a given regulated DC power supply works, you 
need to be able to derive other DC voltages from it.  Suppose it’s 12V, 
the highest-voltage rail on an ATX power supply (and typically 
provided with a lot of current).  You can rig a 10kΩ potentiometer 
across it to get a variable voltage reference, then feed that into the 
emitter (or gate) of a power transistor whose collector (or drain) is 
connected to the appropriate power-supply rail, thus giving you an 
emitter (or source) follower. 

    This allows you to get whatever regulated output voltage you 
want, up to a diode drop below the input voltage.  But how do you 
know what voltage you’re getting if you don’t have a multimeter? 

A string of LEDs with parallel resistors to measure power 
supply output voltage 



    Three or four LEDs in series to ground, ideally a 1.5-volt indicator 
type rather than a 3V illumination type, can provide some kind of 
indication of how high the input voltage is.  At below 1.5 V, no LEDs 
will light.  At 1.5 V, the bottom one will light, fed by a string of 
resistors to it from the voltage input.  Successive resistors in parallel 
with the other LEDs will develop enough voltage to light those LEDs 
as the current rises;  this requires them to have lower and lower 
resistances. 

A Wheatstone bridge to measure unknown resistances and 
compare voltages 
    On one side of the bridge we use a potentiometer (presumed linear) 
with a knob glued to it;  the other side pits the unknown resistance 
against a known resistance.  Rather than Wheatstone’s galvanometer 
across the middle, we use a pair of antiparallel LEDs in series with a 
small protective resistance.  This may require that the input voltage be 
rather high, tens of volts, to get good precision. 

    With an AC source, I think this setup also works to measure ratios 
of capacitances or inductances. 

    Then, it should be possible to replace the crude LED pair with a 
delicate differential pair of NPN transistors. 

    These detectors of voltage differences can also be used to directly 
compare voltages, for example to calibrate positions on the 
potentiometer knob on the linear power supply against known 
regulated voltages, either from a multi-voltage power supply or from 
a 7805 or something. 

A VCO to measure voltages and resistances more quickly and 
precisely 

    There are lots of circuits for this but I don’t know which ones are 
simple, free of soakage, thermal coefficients, and whatnot.  But if you 
build one you can hook it up to a speaker to listen to your signals;  
one of the 200-in-1 projects does this.
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Sodium silicate
Kragen Javier Sitaker, 02020-06-04 (32 minutes)

    Some notes on sodium silicate. 

    Nowadays sodium silicate, or waterglass, is principally employed in 
foundries as a glue for sand-casting of metals, as a concrete sealant 
against water, and as a grouting agent to solidify soft soils prior to 
construction projects.  Such composites can, at best, be several times 
stronger than ordinary concrete made with portland cement, and they 
don’t suffer from the grey discoloration of portland cement or, 
possibly, its carbon dioxide emissions.  I’m interested in its possible 
uses for digital fabrication. 

    On Mercado Libre nowadays, companies like Geese Química are 
selling it for AR$140 per kg of “Silige” solution, which is US$1.13 at 
the current AR$124/US$1 price, and is probably about 400 g of 
sodium silicate, thus working out to about US$2.80/kg.  This 
compares to AR$630 for 50 kg of portland cement, US$5.10, or 
10.2¢/kg.  Pure white portland goes for about 50% more, and 
hydraulic slaked lime is AR$220 for 20 kg, 3.5¢/kg.  Portland cement 
is about 20% of the weight of the final concrete, and lime cement is 
about 25% of the weight of the final mortar, while for a similar 
strength sodium silicate can be 5% or less of the weight of the final 
solid;  these numbers work out to 0.88¢/kg for lime concrete, 
2.04¢/kg for portland concrete, and 14¢/kg for 
sodium-silicate-bonded concrete.  The price of the aggregate closes 
the gap a little bit:  construction sand costs about 5¢/kg and gravel 
costs about 3¢/kg, though both are usually sold by volume rather than 
weight.  So the total materials cost might be 5¢/kg for lime concrete, 
6¢/kg for portland concrete, or 20¢/kg for sodium-silicate concrete. 

    So, sodium-silicate-bonded concrete is about three or four times 
pricier than portland-cement-bonded concrete when they are the 
same strength.  This probably explains why portland is widely used as 
a binder and waterglass is not.  But I think waterglass may have some 
interesting advantages that can come into play with digital fabrication. 

    If simply allowed to dry, sodium silicate takes a substantial amount 
of time, and so it’s common to cure it with curing agents — in 
foundry practice typically CO₂ gas, which can harden it within a few 
seconds, but in other cases by mixing it with a curing agent, such as 
calcium chloride or calcium hydroxide. 

    A lot of the existing literature on using waterglass as a binder 
focuses on how to slow down the curing to minutes or hours, in order 
to give it a long “pot life”.  But for digital fabrication, I think it might 
be more interesting to explore how to speed up the curing, ideally into 
the milliseconds to hundreds-of-milliseconds range.  Then you could 
use it to “print” structures rapidly and with great freedom, without 
having to wait hours for each part of the structure to solidify before 
putting the next part in place.  But is this feasible?  How do we know 
the structures would be strong?  Would it be resistant to weathering?  
What would it look like — would it suffer from the brutal, grim, gray 
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appearance of typical portland concrete?  Can you stick it to regular 
glass? 

    It turns out that they probably would be strong and resistant to 
weathering, and they can have a wide variety of appearances, from 
glass to sandstone and a variety of matte or glossy colors.  The 
waterglass itself is transparent, although commonly a bit greenish due 
to iron contamination.  And the possibility of structuring it at the 
millimeter scale under digital control should make it possible to 
achieve both stiffness and resilience dramatically better than that of 
traditional concrete. 

Other interesting attributes of waterglass 

    High-water-content waterglass is used as an intumescent 
firestop — when heated above about 450°, the glass softens and its 
water expands to steam, converting the solid, transparent, glassy 
waterglass into a solid glassy opaque white foam. 

    Waterglass is commonly used in pottery as a deflocculant, reducing 
the viscosity of clay slips. 

    The tensile strength of waterglass-cemented composites can 
significantly exceed that of ordinary portland concrete, and it has been 
used as a binder for demanding applications like grinding wheels. 

    Chemical gardens grow in a waterglass medium;  this suggests the 
speed with which waterglass can be solidified if exposed to the right 
reagents. 

KEIM and mineral paints 

    One crucial question here for construction purposes is whether 
waterglass can survive weathering — it’s no  

    The Keim company in Germany, founded by Adolf Wilhelm 
Keim, has sold a line of silicate-based “mineral paints” for over a 
century, and the Bleeck company in the UK has recently begun 
selling a similar line in the UK.  Keim has expanded to the UK and 
USA.  These paints are principally based on potassium silicate as a 
binder, which is very similar to sodium silicate, the principal 
difference being that solid potassium silicate can be conveniently 
redissolved in water at room temperature, while sodium silicate 
requires strong heating.  (Some Keim paints instead use sodium 
aluminum silicate.) These paints are notable for their durability — 15 
years is a common lifespan, but Keim claims that they have lasted 
over 130 years on the Stein Am Rhein building, and that, although 
“they will normally give 20–30 years satisfactory performance before 
redecoration is required,” it is also the case that “There are many 
examples of Keim Mineral Paints performing satisfactorily on lime 
render substrates for periods in excess of 100 years.”.  I’m not sure 
whether these examples are interior or exterior. 

    Their Soldalit brochure claims, “Color shades will not change for 
decades,” and even recommends painting on top of acrylic or latex 
paint to protect it from weathering “for decades”;  Soldalit, unlike 
their other paints, incorporates silica nanoparticles. 

    Wikipedia says, “The city hall in Schwyz and “Gasthaus Weißer 
Adler” in Stein am Rhein (both in Switzerland) received their coats of 
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mineral paint in 1891, and facades in Oslo from 1895 or in Traunstein, 
Germany from 1891.” 

    Although sodium silicate itself is water-soluble and will thus 
redissolve in water, these paints “silicify” in contact with concrete or 
masonry, forming covalently-bonded water-insoluble hydrophobic 
products. 

    So all of this suggests that, in contact with calcite and quartz, these 
soluble silicates form insoluble materials that will weather at the rate 
of about the thickness of a coat of paint every 20 to 130 years.  This 
compares favorably to portland cement. 

Curing by displacement 

    Some sources talk about how calcium (hydr)oxide reacts slowly 
with waterglass because of its low solubility in water (1.7 g/ℓ), and 
magnesia (6.4 mg/ℓ), litharge (17 mg/ℓ), and minium (undetectably 
low) do not excel it in this, though Vail (see below) reports that they 
all cause “immediate precipitation”.  If we want to speed it further, 
since the cations are apparently the active element here, more highly 
soluble salts might be preferred — calcium chloride (750 g/ℓ) is 
evidently standard, but other possibilities include magnesium chloride 
(540 g/ℓ);  Epsom salts, magnesium sulfate (270 g/ℓ);  Norwegian 
saltpeter, calcium nitrate (1200 g/ℓ);  magnesium nitrate (710 g/ℓ);  
aluminum hydroxide (100 mg/ℓ);  aluminum acetate (soluble);  alums 
such as potassium aluminum sulfate (140 g/ℓ) or sodium aluminum 
sulfate (210 g/ℓ);  and neat aluminum sulfate (360 g/ℓ).  I’d rather not 
deal with salts of lead, barium, strontium, cobalt, and so on, although 
iron might be okay. 

    I guess these polyvalent cations displace the sodium cations, 
increasing the degree of connectedness of the waterglass and thus 
rapidly precipitating it.  It took me an embarrassingly long time to 
figure this out.  (I’m preeetty sure aluminum will work for this too.) 

    What would be super awesome for this would be getting boron to 
form soluble divalent or trivalent cations, but borate is of course an 
anion;  boron really likes to make covalent bonds, and most of the 
compounds you’d hope would be soluble salts are instead found in 
List of highly toxic gases. 

    The various mineral species that ought to be formed include the 
following.  The Mohs hardness of the minerals can be taken as some 
kind of indication of the strength of bonding in the material, but since 
the materials being formed here are actually amorphous, it is 
technically incorrect to refer to them as being these minerals;  the 
amorphous glass will have different characteristics, including 
hardness, density, thermal behavior, and perhaps even color. 

• Calcium silicates:  in the 2:1 Ca:Si ratio, this is the “belite” giving 
Portland cement its late strength, or “larnite” (Mohs hardness 6) in 
the wild.  This is also called “lime olivine”, although properly 
speaking olivine varies from forsterite (Mg₂SiO₄, Mohs 7, including 
peridot, a refractory melting around 1900°) to fayalite (Fe₂SiO₄, 
Mohs 6.5–7).  Halfway-lime olivine is the rare monticellite 
(CaMgSiO₄, Mohs 5.5).  [Tricalcium silicate], with a 3:1 Ca:Si ratio, is 
alite, which I think is weaker and tends to revert to belite and lime;  
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in the 1:1 Ca:Si ratio we have wollastonite (CaSiO₃, Mohs 4.5–5, 
melting at 1540°), noted for its whiteness and used as a filler in 
plastics, paint, and ceramics;  it tends to form long acicular crystals 
when allowed to crystallize.  
• Magnesium silicate:  as mentioned above, in the 2:1 Mg:Si ratio, this 
is forsterite olivine. 

    I worry somewhat about olivines’ vulnerability to weathering, since 
in an amorphous gel they will be even more exposed to reactions.  But 
the way olivines weather is by incorporating water, as with iddingsite 
(Mohs 3).  If hydroxyls are just incorporated into the olivine 
structure, you may get humite (Mohs 6–6.5), norbergite (Mohs 
6–6.5), chondrodite (Mohs 6–6.5), and clinohumite (Mohs 6).  
• Manganese silicate:  this is the heavy mineral tephroite, Mohs 
hardness 6, which exists in a continuum with forsterite and fayalite.  
• Aluminum silicate:  this occurs naturally as topaz, Mohs hardness 8, 
although I’m not sure whether you can make topaz without fluorine, 
but also as several other minerals. 

    Topaz (Al₂SiO₄(OH,F)₂)has a 2:1 Al:Si ratio;  other aluminum 
silicate minerals with the same ratio include andalusite, kyanite, and 
sillimanite, which are polymorphs of Al₂SiO₅.  Kyanite, commonly 
used as a refractory, is the thermodynamically favored form at STP, 
and it's highly anisotropic, with Mohs hardness of 4.5–5 along one 
crystal axis and 6.5–7 perpendicular to it;  it can be cooked into 
mullite and vitreous silica at 1100°.  Sillimanite is Mohs 7 and 
andalusite, also commonly used as a refractory, is 6.5–7.5. 

    Kaolinite (Al₂Si₂O₅(OH)₄) has a 1:1 Al:Si ratio;  it is a phyllosilicate 
clay, with almost negligible strength.  Heating it above 550° converts 
it to metakaolin, a tranformation that is complete at 900°:  Al₂Si₂O₇;  
this is used as an excellent pozzolan for pozzolanic cement, but it is 
still fragile.  Further heating converts it into Si₃Al₄O₁₂ + SiO₂, quartz 
and a sort of spinel, above 950°;  to platelet mullite 2(3 Al₂O₃ + 2 
SiO₂) and cristobalite;  at to acicular mullite (contaminated with the 
cristobalite) above 1400°, which remains solid up to 1840°. 

    Mullite itself — the key to the alchemists' famous Hessian 
crucibles — can also form at 3:2 or 2:1 ratios, but I suspect that isn’t 
what you’ll get by treating sodium silicate with aluminum salts.   

Notes on existing research 

    Sodium silicate is a bit of a tricky beast to find good engineering 
data about, because it exists as a continuous spectrum between pure 
lye and pure fused silica, with a highly variable amount of water, and 
additionally can react with gases from the air as it hardens. 

Gonzalez 2007 

    “Behavior of a sodium silicate grouted sand” by Gonzalez and 
Vipulanandan, 2007.  Mixed “N-Sodium Silicate” 
(“Na₂SiO”(!!)·3H₂O) with “dimethyl ester” (which ester?  
“C₁₀H₁₀O₄” — clearly these are not organic chemists — “a byproduct 
of the nylon industry” — oh, apparently it’s a random mixture of 
succinate, “gluterate” (glutarate?), and adipate?) and injected it into 
“medium dense sand” to grout it in a mold.  Compressive strength of 
the sand was 300–1900 kPa, Young’s modulus 200–500 MPa, but it 
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had creep.  No explanation is given as to why they thought adding 
dimethyl esters would be interesting, but apparently they sped up the 
gelling, maybe as a source of CO₂, but weakened the final product.  
Strain at failure was 0.4%–2%.  No samples without DME were 
included.  No tensile or flexural strengths were recorded, I guess 
because they were interested in grouting sands for civil engineering 
purposes. 

    I have zero faith in Gonzalez and Vipulanandan;  the formula they 
give for “sodium silicate” would actually be a metallic silicon-sodium 
alloy which would be at the very least violently reactive with water 
and possibly pyrophoric.  The absence of a DME-free control is 
particularly glaring (for my purposes) and they don’t talk at all about 
their CO₂-control measures. 

Zhao 2011 

    “Nanoindentation and Brillouin light scattering studies of elastic 
moduli of sodium silicate glasses” by Zhao et al., 2011.  Talks about a 
“large discrepancy” in Young’s modulus measured by different 
methods (and offers an explanation).  They prepared their sodium 
silicate with varying amounts of sodium (8, 20, 30, and 40 mol%) 
from Na₂CO₃ and SiO₂ (presumably crystalline) mixed in an agate 
pestle and then melted at 1500° or, for the 8mol%-Na glass, 1700°, 
and compared to fused silica.  The idea is, I guess, that the sodium 
carbonate converts to Na₂O when you heat it up. 

    A thing I’m not clear about with these mole percentages is whether 
the metals are 8 mol% Na — thus, two sodium atoms per 23 silicon 
atoms — or whether the oxides are 8 mol% Na₂O — thus, two Na₂O 
units per 23 SiO₂ units, and therefore four sodium atoms per 23 silicon 
atoms.  I’m pretty sure it isn’t two sodium atoms per 23 silicon or 
oxygen atoms. 

    Astonishingly, they got plastic deformation out of the glasses by 
indenting it with a diamond-tipped “Hysitron TI 900 
TriboIndenter”, which they then measured with an AFM.  The 
whole methods section of the paper is equipment porno. 

    They got a 72 GPa Young’s modulus for fused quartz with all four 
measurement methods, down to 67 GPa at 8%, 61 GPa at 20%, 61 
GPa at 30%, and about 59 GPa at 40%.  There’s a bunch of stuff in 
there about correcting the figures because at the higher sodium 
contents they give significantly different results, up to 64 GPa for 
nanoindentation for the 40%. 

    They also give a “hardness” value in GPa, ranging from 8 GPa for 
fused quartz down to 4–4.5 GPa for the 40% sodium glass.  I’m 
guessing that this is the compressive yield stress, although I am 
surprised to learn that these glasses have a yield stress;  I thought they 
would just deform elastically until they broke.  But I guess in a small 
enough area you wouldn’t have enough energy to propagate a crack, 
and so even if the glass there powdered, you’d squish it back into the 
glass surface (“indentation-induced densification”, although it’s not 
clear that there was any powdering going on).  I don’t know.  The 
AFM images make it look pretty fucking rough, and in the glasses 
with larger amounts of sodium, there’s a “pile-up” of plastically 
deformed material around the outside of the four-micron-wide 



triangular craters.  But in the lower-sodium glasses, the surface is 
totally flat outside the craters. 

    No tensile strength figures are given. 

Redwine 1967 

    “The Effect of Microstructure on the Physical Properties of Glasses 
in the Sodium Silicate System”, by Redwine and Field 1967.  It’s not 
a survey paper — it focuses on changes in physical properties that can 
be obtained by heat-treating glasses within a metastably-miscible 
concentration range — but it still gives a broader overview of the field.  
It gives values of Young’s modulus E from 8.38–9.36 million psi 
(57.8–64.5 GPa in non-medieval units) depending on temperature, 
composition, and heat treatment, as well as measured values of shear 
modulus G (25–27 GPa), bulk modulus B (33–36 GPa), and Poisson’s 
ratio μ (0.18–0.20).  Linear TCE ranged from 4.64 ppm/° to 10.15 
ppm/°.  No strength of any kind is measured.  Most of the paper is 
concerned with how these vary by temperature. 

    They don’t seem to say how they made the glasses. 

    It suggests that at low temperatures Na₂O and SiO₂ are miscible at 
below about 77 mol% Si₂O and above about 97 mol% SiO₂, but 
between these limits there is a regime where the two materials 
spontaneously separate into different phases, presumably a 
sodium-rich phase and a silicon-rich phase.  This immiscibility persists 
up to about 825°, above which they are miscible in all proportions.  
(The plot only goes down to 500°, though, perhaps because below 
that temperature the separation processes are too slow to observe.) 

    Mostly they focus on glasses of 7.2 mol% to 18.4 mol% Na₂O, 
which is to say, between 92.8 mol% SiO₂ and 81.6 mol% Si₂O, thus 
covering much of the range where this immiscibility occurs.  Within 
the “unstable” region, they report that heat treatment resulted in 
phase separation into “two independently interconnected phases”, 
while in the “metastable” region it resulted in “classical nucleation 
and growth of particles”. 

    (Interestingly, the miscibility limit in this paper seems close to the 
“pile-up” limit displayed in Zhao 2011 above.  This might be a 
coincidence.) 

    It might be interesting to see if laser heat treatment could induce 
this “heat treatment” effect in very small areas very quickly, as a way 
of writing data;  for compositions right in the middle of the 
“unstable” region, say around 11 mol% Na₂O, the separation might be 
fastest.  However, in the paper, they heat-treated for 1½ hours at 770° 
to get phase separation at 12.6 mol% Na₂O, so that might be very 
challenging.  However, they noted that they were not able to obtain 
homogeneous glasses for some compositions, presumably because they 
could not cool them fast enough. 

    They measured the “dilatometric softening point” of the glasses 
from 500° for the highest-sodium variants (18.4 mol%) up to 735° for 
a heat-treated high-silica glass (7.2 mol% Na);  this is the temperature 
at which heating the glasses does not dilate your dilatometer any 
further because the viscosity is low enough that it flows instead, 
which is of course dependent on how much force the dilatometer is 
clamping with. 



    The linear coefficients of thermal expansion (αRT-350)ranged from 
4.64 ppm/° for heat-treated 7.2-mol% Na glass up to 10.15 ppm/° for 
18.4-mol% Na without heat treatment, varying linearly.  These 
numbers barely changed with heat treatment. 

Ito 1982 

    “Dynamic Fatigue of Sodium-Silicate Glasses With High Water 
Content”, by Ito and Tomozawa, 1982.  These guys were also at RPI.  
They measured 40–70 GPa Young’s modulus for dry sodium silicate 
and 3–50 GPa for glasses including a lot of water.  They also 
measured its tensile strength but I can’t understand their results. 

    They slowly (over several days) dried out some commercial sodium 
silicate solution (8.9 wt% Na₂O, 28.7 wt% SiO₂, Na₂O·3.3SiO₂, 
which I guess is 23.2 mol% Na₂O) to various water contents around 
25%, at which point it was solid;  they sliced it into 1.7-mm-thick slips 
and and used four-point bending to measure its flexural strength, 
finding a strong dependence on speed of loading especially for 
higher-water-content glasses, which also had the highest Young’s 
modulus, which was, insanely, viscoelastic. 

    Unfortunately the Y-axis labels on the fracture strength plots are 
very difficult to understand:  it says “Log Fracture Strength 
(kg/mm²)”, which is already ambiguous (is that a base-10 log or base-
e?) but to worsen the situation, a legend helpfully explains:  “log σ = 
(1/(n+1)) log σ̇ + log C”, only without the parentheses.  Is that an 
empirical approximation formula or does it explain how the plotted 
numbers were derived?  The numbers plotted, at any rate, range from 
about -0.1 to about 1.2, with the strongest glass typically being the one 
with 15.9% water, which is slightly stronger than the dry glass.  If we 
suppose that this is a base-10 logarithm of the flexural strength, then 
we have a tensile strength of about 0.8–16 kg/mm², or 8–160 MPa in 
modern units.  But I am not confident in that interpretation. 

    The Young’s-modulus plot in Fig.  4 is, by contrast, decently 
labeled — it uses a logarithmic Y-axis but with ticks labeled in real 
units.  It gives 4–7 thousand kg/mm² (40–70 GPa) for the dry glass, 
with numbers ranging from 0.3–5 (3–50 GPa) for the wet glasses. 

    Their figure 5 also plots Young’s modulus, a theoretical Young’s 
modulus limit at infinite stress rate, which is some three orders of 
magnitude lower, ranging from 1 kg/mm² to 5.5 kg/mm².  I suspect 
they have mislabeled their plot. 

    They also plotted the Knoop hardness of the samples, in the range 
50–400 kg/mm² (500–4000 MPa), decreasing with higher water 
content. 

    They cite “McMillan (1982)” as giving flexural strengths for 
soda-lime silica glass, which looks like a paper in “Non-Crystalline 
Solids” by McMillan and Chelebik, 1980, I think volume 38/39, p. 
509.  I think that’s actually Chlebik, and the paper is perhaps “The 
effect of hydroxyl ion content on the mechanical and other properties 
of soda-lime-silica glass”.  But it seems like probably that paper 
doesn’t cover soda-silica glass.  (And they didn’t say it did, after all.) 

Medina 2009 

    This article has the deeply misleading title, “Water Glass as 



Hydrophobic and Flame Retardant Additive for Natural Fibre 
Reinforced Composites,” by Medina and Schledjewski, 2009.  I say 
“deeply misleading” because waterglass is preeettty faaar from being 
hydrophobic!  As noted above, drying the stuff out is really tough. 

    The article has a lot of problems like that.  It describes a Si(OH)₄ 
moiety as “silane”, talks about "natural fibers" as if they're all 
equivalent of (I was assuming cellulose because the descriptions they 
give don’t fit chitin, keratin, asbestos, etc., but even if it’s cellulose not 
all cellulose is the same — finally on page 3 we find out that the fiber 
they tested is 70% kenaf, 30% hemp, with no source given), never 
describes which acrylic resin it’s using (I think, although sometimes it 
mentions “polyester”, so maybe it’s a polyester acrylic — although on 
page 8 they finally slip up and admit that it’s one of the Acrodurs, 
whose composition is apparently secret), never describes how much 
sodium is in the waterglass it’s using, uses a very crude flammability 
test, etc., etc. 

    But it’s pretty interesting.  Apparently they glued together some 
cellulose fiber mats with various mixtures of sodium-silicate 
waterglass and the unspecified acrylic resin, and got some decent 
boards out of it, and of course the waterglass made them flame 
retardant. 

    Because of the amount of crucial data omitted, apparently 
intentionally (“a new water glass type specially developed as 
hydrophobic additive for acrylic systems”), the paper falls far short of 
basic reproducibility criteria. 

Fused quartz properties 

    The low-sodium endmember of the sodium silicate continuum is 
fused quartz, and that’s the most highly polymerized part, so we 
would expect all sodium silicates to have tensile strength and hardness 
at most that of fused quartz. 

    http://www.quartz.com/gedata.html agrees with 
https://technicalglass.com/technical_properties/ on the curiously 
precise tensile-strength number of 48 MPa.  Marijuana paraphernalia 
merchant 
https://highlyeducatedti.com/blogs/information/thermal-shock-vs-t
ensile-strength gives 67 MPa for flexural strength and 50 MPa for 
ultimate tensile strength, apparently quoting makeitfrom.  It also 
gives 0.5 ppm/° linear TCE. 

Stachowicz 2010 

    “Studies on the Possibility of More Effective Use of Water Glass 
Thanks to Application of Selected Methods of Hardening”, by 
Stachowicz, Granat, and Nowak, 2010.  They say that 
waterglass-bound foundry casting sand commonly has tensile 
strengths (RₘU) in the 0.3–0.5 MPa range;  with 5% waterglass in 
their sand they got tensile strengths as high as 3.6 MPa, with 
higher-sodium waterglasses generally giving stronger bonds. 

    They’re concerned with binding foundry sand with small amounts 
(1.5–5.0%) of waterglass, and in particular with whether microwave 
heating can make it stronger and maybe allow you to use less than the 
usual minimum of 2.5%, which it apparently does.  Also they were 
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able to microwave their samples for four minutes instead of 
oven-drying them for two hours. 

    It has a helpful table of waterglass grades used in foundries, with 
molar ratios of SiO₂ to Na₂O anging from 3.2:3.4 (grade 137) to 1.9:2.1 
(grade 150). 

    I’m not sure whether their 1.5% and 5% etc. refer to the weight of 
the dried waterglass or to its wet weight.  (Grade 137 is 35% solids, 
with the rest being water, while the very viscous grade 140 is 42.5% 
solids.) Anyway, the strength continues to increase quite linearly up to 
the 5% they tested, which makes me optimistic that strengths several 
times higher are feasible with higher binder content. 

    The linear extrapolation of the 1.5%–5% suggests a tensile strength 
of something like 50–70 MPa for solid 100% waterglass, which is 
consonant with my tentative 8–160 MPa interpretation of Ito 1982 
and the 50–70 MPa numbers given above for fused quartz. 

    Carbon dioxide is not mentioned. 

    All nine entries in their bibliography are Polish. 

MacKenzie 1991 

    “Silicate Bonding of Inorganic Materials, Part I”, by MacKenzie et 
al., 1991. 

    XXX 

Vail 1952 

    “Soluble Silicates:  Their Properties and Uses”, Vail, 1952.  This is a 
thousand-page two-volume set full of valuable information. 

    It mentions that a major use of waterglass in the mid-1800s was 
“the hardening of stone to increase its weather resistance”, further 
allaying my concerns about weathering, and it has a whole section on 
using it to bond grinding wheels.  It mentions that Feuchtwanger 
claims to have introduced the use of waterglass in the US, using it to 
prevent rusting of naval weaponry. 

    It seems that when Vail wrote his book, sodium silicate was 
considerably more widely used than it is today:  “There are few 
manufacturing plants which do not make some use of [soluble 
silicates].” Today I think it’s kind of a niche product, despite the 
growing importance of avoiding phosphate runoff (silicates can 
substitute for phosphates as detergents).  This consideration does not 
appear in the introductory section, although it does talk about how 
conservation may stimulate the use of silicates in the future. 

    With respect to the prospect of precipitating or “curing” 
waterglass, Chapter 2 (“Present Practices”) begins wih the promising 
note:  “Most of the impurities likely to be found in sand form 
insoluble silicates, and even small quantities, less than one per cent, 
can create serious difficulties.” It has the appealing note that the old 
way of making it was “dissolving diatomaceous earth in caustic 
liquors”, which does sound much easier than the standard approach of 
heating sulfate or carbonate of soda to some 700° to 800° in contact 
with sand.  On the other hand, the standard approach is considerably 
more legal in Argentina. 

    It explains that the “so-called neutral glass”, usually “pale bluish or 



greenish”, is 1:3.3 Na₂O:SiO₂, although IIRC the pH of the solution 
is still above 11, while the “alkaline” is 1:2.1.  This probably explains 
why the pale greenish bottle I have doesn't burn my skin and was sold 
as “neutral”. 

    Astoundingly, at this time it was still not known that solid 
waterglass, or indeed any solid, was amorphous!  Vail says the 
question “might be of more academic than practical value”, though 
he also said, “A sodium silicate is as nearly devoid of ordered structure 
as any known material.” 

    It explains that finely divided dry waterglass sometimes does get 
dissolved in water at atmospheric pressure 100°, but to dissolve lumps 
of glass, 90–100 “pounds gage” steam pressure is used (psig I guess, so 
700–800 kPa absolute). 

    It explains that the reason sodium silicate has eclipsed potassium 
silicate is just that sodium is cheaper than potassium. 

    I find this unjustifiably amusing:  “Immediately after use, 
hydrometers should be washed thoroughly with warm water until 
alkali cannot be tasted on the glass...” — clearly a pre-OSHA book. 

    He points out that you can blow waterglasses just like you can blow 
other glasses, but that it can contain varying amounts of water 
“without substantially altering their appearance”.  This makes me 
wonder if they might be a particularly suitable material to attempt to 
3-D print graded-index optics in. 

    It explains that alcohol precipitates waterglass just by removing 
water, which I had suspected but was not sure of.  Also, he mentions 
doing the same with alkali metal salts or ammonia. 

    It includes the oldest citation I've seen:  “A sodium silicate glaze is 
described in cuneiform records of the reign of Ashurbanipal, 668–626 
B.C.:  10 mana of sand, 10 mana of alkali ash, and 1.67 mana of styrax 
gum were heated to white heat, cooled, crushed, and placed in a clean 
melting pot in a cold furnace.” 

    A surprising thing mentioned a couple of times in the book is that 
potassium silicate does not effloresce, while sodium silicate does, a fact 
particularly relevant for production of fake stone;  this afflicted 
Ransome’s fake stone in 1861. 

    A technique frequently mentioned both in this book and in Keim's 
paint brochures is the inclusion of amorphous silica particles in the 
liquid — a sol of precipitated silica gel particles, for example, although 
diatomaceous earth should also work.  This reduces the amount of the 
waterglass that must be gelled to form a solid gel, since the particles 
form part of the gel network.  Other effects include thickening the 
liquid and making it colloidal and possibly thixotropic. 

    In Chapter 5, Vail refers to “immediate precipitation which occurs 
when calcium, magnesium, or lead oxides are mixed with 
concentrated silicate solutions”, although it's not clear what timescale 
he’s talking about.

Topics
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One big text file
Kragen Javier Sitaker, 02020-06-04 (updated 02020-06-06) 
(20 minutes)

    Here’s an interesting idea for how to do Derctuo:  a giant 
WYSIWYG document whose source format is a plain text file 
including data, code, text, and formatting in a single document, 
potentially of 128 mebibytes or more;  but with computational output 
rigidly segregated to a cache management system. 

Precedents 

Danny O’Brien’s Life Hacks 

    The immediate inspiration for this is Danny O’Brien’s “Life 
Hacks” ethnographic research finding the widespread use of One 
Huge Text File.  He found that many of his interviewees maintained 
all their notes in a single humongous text file, which they navigated 
by text search.  On a modern computer, Emacs incremental-search is 
capable of searching through hundreds of megabytes per second, so 
it’s rare to even need any indexing. 

Volks-Hypertext 

    Eric Raymond’s “Volks-Hypertext” browser for the Jargon File 
demonstrated how to improvise a fairly instantaneous hypertext 
system atop a large text file:  the text file was rendered in more or less 
the usual way, but keywords in curly braces like “{grok}” were 
treated as links to a line beginning with “:grok:”, and the file was 
preprocessed to generate an index of all such lines after the fashion of 
ctags, with byte offsets stored.  Searching the index file and jumping 
to a given byte offset was reliably fast, even in MS-DOS on a 386. 

askSam 

    The cult semistructured database askSam has barely more structure:  
an askSam file is a collection of records, which are just free text strings 
up to a few kilobytes in size, with fields defined by searching for the 
field name followed by square brackets — everything on top of that is 
added by the askSam query language.  A full-text index makes 
relatively powerful queries acceptably fast. 

Alph and Halp 

    Darius Bacon’s Alph (A literate programming hack) and Halp 
systems automatically re-evaluate all the specially-marked code in a 
document upon demand, placing the resuls of each snippet after the 
snippet itself. 

Org-mode 

    Org-mode adds a little bit of lubrication to text-file viewing:  the 
Emacs outline-mode ability to collapse and expand sections of the 
file, but with more pleasant keybindings.  And it also has magic syntax 
for inserting hyperlinks:  [[http://example.com/][example URL]] 
displays just as an underlined “example URL”, but links to the given 



URL, and it also supports links to places within the file.  Org-mode’s 
“src blocks” offer the possibility to display textual or graphical output 
inline in the editing buffer. 

Cassowary and TeX 

    Cassowary is a constraint-based layout system that offers perhaps a 
bit less power than CSS, but has extremely efficient algorithms to 
execute it.  (I haven’t actually tried it.) TeX, too, has extremely 
efficient layout algorithms which also produce somewhat nicer results 
than CSS. 

WordPerfect Reveal Codes 

    Before Microsoft Windows, WordPerfect was the most popular 
word processing software, and its users’ favorite feature was a thing 
called “Reveal Codes”, which split the screen into one half with the 
WYSIWYGish text you were editing at the top and a complete 
representation of the word processor’s underlying representation at 
the bottom, with formatting markup displayed in between bits of 
text.  This made it easy to see why your document was formatting 
incorrectly and fix it. 

Lotus 1-2-3 

    Lotus 1-2-3 displays the tabular output of a program written by the 
user by defining formulas in cells.  It analyzes the dependencies 
between the cells to discover as safe dependency order to recalculate 
them in when there is a change, and it only displays the source code of 
the cell you are editing at a given moment.  It imitated VisiCalc, the 
“killer app”, but its dependency-order recalculation was new. 

Jupyter notebooks 

    Jupyter’s “notebook interface” is an enhanced REPL which permits 
the inline display of graphics, text formatted with LaTeX or HTML, 
etc., as results of the REPL commands (“cells”).  It is accessible via 
HTTP or HTTPS, allowing people to share code easily.  Also, it 
stores the output in the same text file as the code in the cells, even 
when it is graphical or irreproducible. 

    Jupyter has become the standard interface to programming for an 
enormous number of people nowadays.  But it has some serious 
drawbacks:  the output displayed may not be up to date with the code 
in the file, re-evaluating the whole file may not be safe (it’s common 
for people to put utility scripts in notebooks that do things like wipe a 
database), the output being interpolated into the source code makes 
the notebook files bulky and difficult to version-control with systems 
like Git, it’s awkward to reuse code, and normally you have to start 
out the notebook with a bunch of preliminary noise like module 
imports. 

Explorable explanations 

    “Explorable explanations” are, mostly, web pages containing 
interactive visualizations of algorithms;  the best ones I’ve seen are 
Amit Patel’s, for example his visualization of A* pathfinding or of 
generating terrain with Perlin noise.  Mike Bostock, the author of 
d3.js, has written many excellent explorable explanations as well.  The 
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objective is to explain how a given algorithm works by means of 
exhibiting its internal functioning on example data.  Bret Victor has 
explored much of this territory as well, for example with his 
visualization of Nile, and articulated guiding principles for the field:  
that people engaging in creativity should be able to get instant 
feedback on the implications and results of their ideas. 

ObservableHQ 

    ObservableHQ is Mike Bostock’s exploration of how the notebook 
interface could be improved.  It uses a slight extension of JS as its 
language, its cells each define a single value, and like Lotus 1-2-3, they 
are evaluated in dependency order. 

R-Markdown and R Notebooks 

    Yihui Xie’s R-Markdown is a system (included in the 
free-software R Studio, but also invocable from the command line) 
which extends Markdown with embedded chunks of code in the R 
statistical programming language and textual and graphical output 
produced by that code;  the code is optionally not visible in the output 
(echo=FALSE).  By default, this “knitting” of the source 
R-Markdown document into a PDF or HTML output with the 
graphics is a batch process, but for some time R Studio has also had 
the option to evaluate these embedded code blocks interactively with 
control-shift-enter, sending its output to the R Studio console pane.  
Because the chunks are normally run in order, it is up to the author to 
track the dependencies between them and topologically sort them in 
the file and to re-execute dependent chunks when changing a thing 
they depend on. 

    However, recent version of R Studio have added an “R Notebook” 
mode which displays the outputs of code blocks inline in an 
R-Markdown document (whether textual or graphical), instead of in 
a separate pane.  Rerunning the code and thus updating these outputs 
after changing the code continues to require an explicit 
run-current-chunk command, so the author is still responsible for 
keeping track of the dependencies. 

    Unlike Jupyter, R Studio stores the output from the embedded 
code in a separate file:  an “R notebook” named foo.Rmd will have an 
accompanying foo.nb.html which includes the text and graphics 
generated from it, while foo.Rmd itself contains only the 
human-authored source code.  Xie’s explicit ambition is to improve 
the reproducibility of computational research. 

make and other build systems 

    Stu Feldman’s make program, included with the UNIX operating 
system for the PDP-11, is directed at accelerating the feedback 
programmers need to improve their programs:  by caching the results 
of compiling parts of the program, automatically determining which 
parts of the program have been edited since they were last compiled, 
make can greatly accelerate the process of rebuilding the program after 
a small change.  It does this in an almost wholly compiler-agnostic 
fashion:  like ObservableHQ, it only knows how to produce each of 
the intermediate results in the build process by invoking some opaque 
code, and what the inputs to that code are.  make does this at the 



granularity of files and batch program invocations, while 
ObservableHQ does it at the granularity of variables and snippets of 
code, but modern software like Lucet can reduce the overhead of 
starting and stopping a program to under 100μs, while modern 
software like FlatBuffers or HDF can reduce the overhead of a 
program consulting serialized input data structures to a minimum. 

    A limitation of make is that its knowledge of dependencies is not 
reliable --- it relies on the programmer to describe the dependencies 
in a “Makefile”, but usually the Makefile fails to capture the full 
dependency graph.  For example, it is common for make to be unaware 
that an object-code file depends on header files within a project 
describing the ABI of other object-code files, a case for which various 
“makedepend” systems have been devised;  also, though, the 
object-code files depend on system header files external to the project 
and on the version of the compiler used, in the sense that different 
object code would be emitted if the compiler or system header files 
had been a different version.  The fallback response to all of these 
problems is make clean, a conventional phony build target whose “build 
rule” deletes all the files created by the whole build process so that a 
subsequent execution of make will regenerate everything from the 
virgin source code. 

    Other build systems, such as Apollo DSEE, its imitation Vesta, 
their imitation ClearCase, Nix/Guix, Gitlab-CI, Urbit, and the 
popular Docker, instead run the build steps in an environment more 
or less isolated from anything that isn’t explicitly provided to that 
build step as an input.  Because of the limitations of determinism in 
conventional computing systems, these systems do still sometimes fail 
to deliver full bitwise reproducibility, but they do aspire to it, except 
possibly for Gitlab-CI. 

SPARK 

    Apache SPARK XXX 

ActivePapers 

    Konrad Hinsen’s ActivePapers research effort XXX 

The Java Virtual Machine 

    The JVM’s WORA aspirations XXX 

Geometer’s Sketchpad, KSEG, and GeoGebra 

Falstad’s Circuit.js 

Design 

    So suppose we have a thing that is “really” just a huge text file, but 
formatted in a WYSIWYG format like a book, and structured 
hierarchically into sections and subsections in an org-mode-like way.  
It uses a layout algorithm with good efficiency and adequate power.  
You can include snippets of code into the file, easily toggling whether 
the WYSIWYG view displays the code, its output, or both;  output 
can even be easily interpolated into the middle of a paragraph, with a 
construct something like ${foo}.  The code can easily run various 
kinds of ad-hoc queries on the file’s own contents.  Bits of code 



defined in one section of the file can be invoked from other sections, 
although a hierarchical namespacing mechanism limits visibility and 
makes it easy to track dependencies.  It’s easy to define data tables and 
add computed columns to them, and use the data in those columns in 
other computations.  The file can define user interfaces for things like 
drawing geometrical compass-and-straightedge constructions, RPN 
calculations, or schematic capture, and the data thus created becomes 
part of the text file — and then it can be used as input to other code. 

    The output of code is strictly segregated from the “source” text 
file, which contains only things the author explicitly chose to put into 
it, but the code is deterministic and the outputs are cached in a file off 
to the side so that they can be redisplayed without recalculating them. 

    You can toggle between a “source” view, which shows the full 
contents of the file, and the WYSIWYG view, or have both 
displayed at once. 

    The idea is that it should scale to 8 mebibytes or more of text 
written by a single author and perhaps 128 mebibytes of other data 
imported into the file from elsewhere:  a personal memex, but taking 
advantage of the computer’s power to augment human intellect 
through more than just copying and retrieval of information.  A 
smooth path allows ideas to gradually be solidified and explored:  
from back-of-the-envelope calculations through sketches and simple 
simulations through to refactoring into reusable parameterized 
models. 

    A crucial question for navigation is how interactive searching of 
outputs works.  If you stick to searching only the source-code form of 
the file, searching can be very fast, but in many cases you will be 
missing the most interesting data.  On the other hand, that data can be 
immense and full of things that are essentially random noise. 

Interactivity and persistence 

    Above I said that computational output is rigidly segregated to a 
cache management system — the code within the document cannot 
mutate the document.  Only the user can do that.  How can this be 
reconciled with the need to add sketches, photographs, geometrical 
constructions, circuits, DAGs, cellular automaton configurations, and 
the like?  Surely the user cannot always be expected to type in text 
from which they can be computed! 

    Ephemeral explorable explanations like Amit Patel’s A* examples 
mentioned earlier pose no problem for this model at all.  A code 
chunk can evaluate to a function from (x, y) pairs to (r, g, b) colors, 
for example, to produce an infinitely zoomable, pannable image;  that 
function (call it a “paint method”) can run in an environment where 
it has no authority to access any state other than (x, y) coordinates of 
requested pixels or to mutate anything outside of its own local state.  
Mouse coordinates and time can be provided to a paint method in a 
similarly stateless fashion, as they are on Shadertoy. 

Fragments 

    The movable blob position requires at least some state to persist 
from one call to the next;  this can be handled by an object consisting 
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of a pair of pure functions:  one that maps a (current state, user input 
event) pair to a new state (call this the “react method”), and another 
that maps the current state to an image or animation (the paint 
method from before). 

    This kind of state turns out to be sufficient to implement things 
like Falstad’s Circuit.js!  (However, such simulations additionally 
benefit from some kind of way to maintain their simulation state from 
frame to frame, even when there is no user interaction to react to;  for 
the time being I will ignore this.) 

    Suppose we call this new persistent state, which can change in 
response to things like clicks and keystrokes, the “fragment”;  it’s 
analogous to the #fragment in an URL on the WWW.  Accordingly, 
it provides the surrounding framework with the freedom to measure 
its persistent memory consumption, pause it, save a fragment, go back 
in time by reverting changes to the fragment (undo), explore 
alternatives from an earlier fragment (nonlinear undo), and copy and 
paste the fragment to somewhere else in the document.  This is 
sufficient for things like sketching illustrations, self-contained circuit 
modeling, or doing geometrical constructions.  Indeed, given camera 
access, it could even be sufficient for taking photos.  (There’s no 
reason the fragment needs to be limited in size like URL fragments 
traditionally are.) 

    The fragment itself is part of the source format document, just a 
part that can be edited by the widget’s embedded code, subject to the 
restrictions above about undo and the like. 

    Methods other than “paint” and “react” could provide requested 
layout sizes or render the “widget” as a series of boxes rather than a 
single window onto a canvas. 

    However, so far all of this focuses on applet-like content:  a 
calculator, compass-and-straightedge interaction, or circuit simulator, 
displayed in a window with text flowed around it, or perhaps 
overlapping part of it.  It doesn’t cover the kind of interaction you’d 
want for data visualization, much less a general computing platform:  
you want that calculated result to be accessible for further calculations 
elsewhere in the document!  And you want to be able to feed the 
circuit you’ve modeled to other analysis functions that you write on 
the fly.  You want the data to be open and accessible, not sealed inside 
an opaque Actor. 

    Darius Bacon points out that if the “fragment” state is some more 
structured thing, such as a state of, say, a relational database, it might 
be easier to deal with the opacity problem.  Maybe it would be easy 
enough to say something like drawing2.points[3].x elsewhere in the 
document.  (Formats other than relational data might be usable too, 
such as JSON structures, but they tend to vary more over time as 
navigational data is included.) 

Blossoming forms 

    XXX rewrite 

    Interactive blocks, HTML forms, BASIC with line numbers, and 
HP 3000 terminals suggest a somewhat unrelated approach.  I tried to 
write a FORTRAN program on the HP 3000 that the local computer 
museum got up and running.  An interesting thing about the HP 3000 



terminals is that they can do local editing, and apparently text files in 
their system have line numbers, like in old BASICs.  So, the editor on 
the host is a pretty dopey line-mode thing similar to ed, but it 
includes the line numbers before the lines it prints out.  So, locally to 
the terminal you can go up with the arrow keys into the scrollback 
buffer and edit one of those lines, interactively, inserting and deleting 
in a WYSIWYG way, and hit enter to send it back to the host.  
When you send it back to the host it has the line number still 
attached, and the editor interprets that as a command to replace the 
contents of that line number. 

    GW-BASIC did this too.  Maybe Applesoft BASIC too? 

    HTML forms are kind of the same thing except that the line 
numbers are words and they're hidden.  You could imagine an 
interactive block that's sort of similar to an HTML form but maybe 
without the submission delay to run code to see results, and you could 
imagine it having buttons in it that, when clicked, blossom out into 
new nested formlets there in place.  As long as all the code can do is 
display its results, or blossom out into more little bomblets, the degree 
of danger is pretty limited. 

    However, can this approach really handle things like sketching with 
the mouse or a stylus, or schematic capture? 

Naked objects 

    XXX 

Thanks 

    To Darius Bacon for discussion of these ideas.
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Monoid prefix sum
Kragen Javier Sitaker, 02020-06-05 (13 minutes)

    The parallel prefix-sum or scan algorithm makes it possible to 
calculate a prefix sum on N elements in O(log N) time on an 
unbounded number of processors.  As Stepanov may have been the 
first to point out, this algorithm is applicable to general monoids, 
although its performance only remains O(log N) if the monoid 
operation can be computed in constant time. 

    Like unto many other parallel algorithms, parallel prefix sum can 
be easily converted into an incremental algorithm through a tricky 
time-space switcheroo:  we can cache all the values computed during 
the algorithm, and upon a small change to the input, we can treat the 
values computed from unchanged parts of the input as if they were 
values computed on other processors, receiving them from the cache 
as if they were received over the network.  This gives us a 
logarithmic-time way to incrementally update the reduction of an 
arbitrary (constant-time) monoid over an input sequence, since that is 
the final element of the scan — for example, the sum is the final 
element of the prefix sum.  (Integer sum in particular admits more 
efficient implementations, because it is not just a monoid but an 
abelian group — in constant time, you can simply add the inverse of 
an element that is being removed.  But, for example, semilattice 
operations are not so forgiving.) 

    In a sense any algorithm that produces a result from input data is a 
reduction followed by some kind of final postprocessing;  the input 
data comes in some sequence, and in the degenerate case, the 
reduction is just in the free monad, concatenation — the reduction is 
just the concatenation, and then the final postprocessing is the 
algorithm itself.  But of course that doesn’t give us any parallelism or 
incrementality advantages. 

Testing associativity in O(N³) time 

    Suppose we do have some kind of interesting iterative processing 
going on over the input data, though, formulated in a monoidal way:  
we have a lifting operation that maps an input element into a “lifted 
element”, a composition operation that maps a sequence of two lifted 
elements into a single equivalent lifted element, and perhaps a 
postprocessing operation that maps a lifted element representing the 
whole sequence into the result we wanted.  But to be able to use it 
correctly with the prefix-sum algorithm, we need to be sure the 
composition operation is really monoidal, which is to say, associative.  
How can we verify this? 

    It may not be possible to verify rigorously in all possible cases, but it 
is at least reasonably efficient to verify that it is associative over a 
given input string of N elements, requiring O(N³) time, using a 
dynamic-programming-like algorithm.  The input string contains 
N(N+1)/2 nonempty substrings, each of which can be divided into 
two nonempty substrings in less than N ways.  So we create an array 
of lifted elements for these N(N+1)/2 nonempty substrings, and we 



calculate the reduction value for each of these substrings in all possible 
ways.  For substrings of a single element, we simply use the lifting 
operation.  For each substring of M > 1 elements, we test all of the 
possible M - 1 divisions into nonempty substrings by applying the 
composition operation M - 1 times;  they should all produce the same 
value, which we then store into the array. 

    For “reasonable” composition operations, it should be possible to 
do this test for sequences up to lengths of a few hundred in under a 
second, perhaps a few thousand.  This does not of course amount to a 
proof that the operation is monoidal, but it may be a fairly convincing 
test. 

A trivial example:  canonicalization of a binary 
carry-save sum 

    So, for example, the string ABCD, of length 4, has the 10 
nonempty substrings A B C D AB BC CD ABC BCD ABCD.  
Suppose that, for some inexplicable reason, we want to reduce this 
string with the function λs c .  s × 2 + ord(c), which takes the 
previous state, multiplies it by two, and adds the ASCII value of the 
input letter to it, starting with an initial state of 0.  Our “lifted 
elements” are an ordered pair of integers (n, k), representing the 
function λs.s × n + k.  The lifting function maps a letter c to the pair 
(2, ord(c)).  The composition function maps two pairs (n1, k1), (n2, 
k2) to the equivalent function (n1 × n2, k1 × n2 + k2).  So A 
becomes (2, 65), B becomes (2, 66), etc.;  AB becomes (4, 196), BC 
becomes (4, 199), CD becomes (4, 202);  ABC can be computed 
either as A + BC = (2 × 4, 65 × 4 + 199) or as AB + C = (4 × 2, 196 
× 2 + 67), giving in either case (8, 459);  and ABCD can be computed 
either as A + BCD, AB + CD, or ABC + D, giving the same result 
(16, 986) in all three cases. 

    (In this case, the postprocessing operation amounts to simply taking 
the second item of the tuple.) 

Ropes 

    Thus if we annotate rope nodes with lifted elements, we can 
incrementally update the monoidal reduction of the whole rope even 
after insertion and deletion operations;  it isn’t necessary for the lifted 
elements to correspond to elements whose counts are powers of two.  
I think Raph Levien has done this for his Xi editor. 

CRDTs 

    By applying this incremental monoidal reduction approach to logs 
of historical events with a well-defined total sorting order, we can 
derive a wide variety of efficient CRDTs.  We use the standard union 
CRDT on a set of historical events, merging newly-received events 
into a rope of already-received events and recomputing the lifted 
elements on the updated nodes.  This allows us to efficiently 
recompute the monoidal reduction over the updated dataset. 

    In particular, we can derive common CRDTs in this way, such as a 
dictionary updated by upserting and deleting key-value pairs;  
Okasaki’s FP-persistent data structures are likely useful here.  (I 
suspect this is actually how Datomic works.) 



Further efficiency issues 

    Of course, if the lifted elements contain some arbitrarily large data 
structure, or if the composition operation or postprocessing is 
arbitrarily expensive, then you can lose the efficiencies.  Running the 
above example composition function over the input string 
“ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrst
uvwxyz” gives the lifted value (4503599627370496, 
297237575809105796), each value growing by one bit per additional 
input character. 

    If memory is sufficiently expensive, or recomputation from scratch 
is sufficiently cheap, it may not be worthwhile to cache these lifted 
values for every element of the input sequence;  it might be sufficient 
to cache one out of every 32–2048 values, thus saving 97–99.95% of 
the cache space while still limiting the work to recompute a value at a 
given location to the redundant reprocessing of 31–2047 input 
elements. 

    I think some of these ideas originated in discussions with Darius 
Bacon, but I can’t remember. 

Two text-editor-oriented examples 

Columns 

    Text editors commonly want to know what column of the screen 
to display a character in, which depends on how many characters 
precede it on the same line.  (And, possibly, how wide the screen 
currently is, and how wide those preceding characters are.) In the 
simple case we can compute this from the beginning of the editor 
buffer with a simple loop: 

size_t col = 0;
for (int i = 0; i < point; i++) {
    col++;
    if (buf[i] == '\n' || col == screen_width) col = 0;
}
 

    The state of col after an iteration of the loop depends on its state 
before that iteration and on buf[i];  it is either 1 + old col or 0.  
Arbitrary compositions of such iterations give us either (n + old col) % 
screen_width or n % screen_width, so those are our monoidal “lifted 
values”.  It’s reasonable to store only one out of every 1024 or so such 
values, and we could probably use the sign bit to distinguish between 
them (at the expense of not being able to handle a single buffer 
occupying more than half of your address space), so we can probably 
use a single pointer-sized word for a lifted value. 

    In C we probably have to manually compile that into fiddly integer 
manipulation, so here is the composition function in OCaml, for 
clarity: 

type lifted = Absolute of int | Relative of int
let compose left right = match (left, right) with
| _,          Absolute n -> Absolute n
| Absolute m, Relative n -> Absolute (m + n)
| Relative m, Relative n -> Relative (m + n)



# compose (Absolute 8) (Absolute 5) ;;
- : lifted = Absolute 5
# compose (Absolute 8) (Relative 5) ;;
- : lifted = Absolute 13
# compose (Relative 8) (Relative 5) ;;
- : lifted = Relative 13
# compose (Relative 8) (Absolute 5) ;;
- : lifted = Absolute 5
 

    You can fire off a background thread upon opening a file to 
precalculate these values for the whole file, and then incrementally 
maintain them thereafter in the face of insertions and deletions.  
Moreover, since one of the cases of the composition function doesn’t 
even depend on the left side, you can calculate it lazily backwards from 
a given position in the file — you need only search backwards until 
you find the beginning of a line. 

Syntax highlighting 

    Text editors commonly do syntax highlighting based on data like 
which identifiers are in scope at a given point, and what their types 
are, and at least a tokenization of the source code, though sometimes 
not a full parse (since, after all, we don’t want our syntax highlighting 
to entirely disappear if the input has a parsing error somewhere off the 
screen).  Lexical scanning of the input is usually done with a DFA, or 
a slight extension of a DFA, for example to accommodate shell-script 
here-documents (the input for <<wibble ends at the first line that says 
wibble) or Lua fat parentheses (a string starting with [=======[ continues 
to the next ]=======], where 7 has any value). 

    Considering purely the DFA case, we can consider the “lifted 
value” of a string to be the mapping from the state the DFA is in at 
the beginning of the string to the state that it’s in at the end of the 
string.  If the DFA has 16 states or less, we can represent such a 
mapping in a 64-bit register, since it contains 16 nybbles. 

    In this case the mapping tends to pretty quickly converge on a 
function that ignores its input, although there are exceptions.  C 
doesn’t have nested comments or multiline strings, so as soon as you 
see a newline you know you’re not in a string, and as soon as you see a 
*/ outside of a string you know you’re not in a comment, so in C 
typically you can calculate the precise DFA state before going back 
too far.  OCaml, by contrast, does have nested comments, so, in 
theory, to highlight any position in the file, you have to go back to 
the beginning of the file to ensure you’re not inside of one.  You can’t 
tokenize it with a strict DFA. 

    The identifiers that are in scope at a given point can similarly be 
adduced, typically, by calculating a “lifted value” that is either a stack 
of identifiers that are in scope at various levels of scope stacked on top 
of whatever was in scope at the beginning of the substring, or a count 
of scopes to pop.  So, for example, in a C-like language, this string 

{
    int x = 3;
    {



        int y = 4;
        int z = 5;
 

    might lift to the stack effect [{}, {x:  var}, {y:  var, z:  var}], 
augmented with a bit of scanner information;  meanwhile the string 

            }
        }
    }
 

    might lift to an instruction to pop three stack levels of declarations. 

    Languages like JS that have entities without forward declarations 
cannot be handled in this fashion;  they need a preliminary pass over 
the whole file first to index the declarations.
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Writing a shopping list in TeX
Kragen Javier Sitaker, 02020-06-05 (4 minutes)

    I was watching Luke Smith on YouTube touting R-Markdown as 
a better alternative to LaTeX, and I was struck by his declaration, 
Now, the thing about LaTeX, and it's always the elephant in the room when 
you're talking about LaTeX, is that a lot of the basics, it, well, let's put it this way, 
LaTeX is great for making research papers and term papers and doin' advanced 
projects 'n' stuff like that, but LaTeX syntax is very cumbersome.  So if I just wanna 
make a shopping list in LaTeX or something, I mean, I wouldn't make a shop, I 
make shopping lists on this [holding up a pad of paper], but, if I wanted to make a 
really simple document to give to my students or uh, you know, to give, you 
know, just a memorandum or something like that, uh, LaTeX is a pain because you 
can't just open it up and start writing, you have to \documentclass{article} 
\begin{document} \end{document}, all this kind of stuff, uh, to do thangs like bold, italics, 
you have to literally go in and write /textbf{bla bla bla}, and you know the backslash, 
it's like the most annoying key on the computer to actually, like, hit.  

    I thought I'd check to see if he was right, so I ran emacs 
shoppinglist.tex and typed 

C-c C-e <return> <return> <return> C-c C-e <return>
c a r n e C-c C-j h u e v o s C-c C-j p o l l o C-c
C-b <return> <return> C-c C-b <return> C-c C-b <return>
<return>
 

    which produced this shopping list, rendered and on the screen in an 
xdvi window: 

\documentclass{article}

\begin{document}
\begin{itemize}
\item carne
\item huevos
\item pollo

\end{itemize}
\end{document}
 

    It took about 30 seconds, but 10 of those were starting up a new 
Emacs so that I could time the process more easily. 

    The initial ^C^E prompted me for the environment name (default 
document) and documentclass (default article) and options (default 
none).  The second ^C^E prompted me for another environment 
name;  as it happened the default was itemize because the last thing I'd 
done in LaTeX was also to make a list, so I just hit <return> again.  The 
^C^J is the sequence to separate list items.  Then the ^C^B sequences 
run latex and xdvi to see the rendered document. 

    Unsurprisingly he's also wrong about "things like bold, italics";  
although you can \textbf if you want, it's probably easier to say 

PUAs are {\bf losers}.
 



    Which renders as, "PUAs are losers." It's two characters longer 
than the Markdown version, admittedly, and I do like Markdown a 
lot, but I think LaTeX is getting a bad rap here.  You can totally write 
your shopping lists in LaTeX --- it's not quite as easy as writing them 
in Markdown but the difference is very small.  Maybe 10 seconds of 
overhead. 

    Where LaTeX becomes difficult is when you're trying to do more 
complex things in it.  Markdown saves you time there because you 
know you can't do complex things at all in Markdown, so you don't 
try. 

    The major advantage of R-Markdown from my point of view is 
that you can embed your R code in it.
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A 6-bit “variac casero”
Kragen Javier Sitaker, 02020-06-06 (22 minutes)

    Watching the YouTube channel of Espacio de César, I was amused 
to see him describe a “homemade 8-bit variac” (“variac casero de 8 
bits”).  He suggests winding 8 secondaries of different sizes on a single 
transformer whose primary is connected to 240 VAC:  one that 
produces 1 VAC, one that produces 2 VAC, and so on up to 128 
VAC.  (He’s using a microwave-oven transformer, but recommends 
using a smaller one instead.) By connecting these to 8 pairs of 
banana-plug terminals in a metal box, you get a sort of variac;  for 
example, if you want 42 volts, you can put in series the 2-VAC, the 
8-VAC, and the 32-VAC winding with two jumper wires. 

    But there are other ways you can get 42 volts;  for example, you 
can use the 32-VAC winding in series with the 16-VAC winding, 
then wire up the 4-VAC and 2-VAC windings backwards in series 
with that. 

Balanced ternary gets you to 364 VAC in 
1-volt increments in only 6 secondary 
windings 

    This suggests instead using balanced ternary.  With a 1 VAC 
winding and a 3 VAC winding, you can get 1 VAC, 2 VAC (by 
wiring the two windings in series in opposition), 3 VAC, or 4 VAC 
(by wiring them in series).  By adding 9 VAC, 27 VAC, 81 VAC, and 
243 VAC windings, you can reach any voltage up to 364 VAC in 
1-VAC steps, and this is the minimal number of windings you need to 
reach it. 

Multitap secondary windings can deliver 
even more voltages with less terminals 

    That requires 12 banana-plug terminals, though.  If you want to 
minimize the number of terminals rather than the number of 
windings, you might be able to do better with center-tapped 
windings. 

    For example, if you have one winding with three terminals whose 
two segments are 1 V and 2 V, you get 1, 2, and 3 VAC with three 
terminals;  a second winding with three terminals whose two 
segments are 7 and 14 volts gives you all voltages from 1 to 24 volts 
AC;  a third winding of 49 and 98 volts gives you all voltages from 1 
to 171 VAC.  That’s 9 terminals;  a fourth center-tapped winding, 
with 343 and 686 volts in its segments, bringing us to 12 terminals as 
before, might then bring us from 1 to 1200 volts AC in one-volt steps.  
Or we could use a fourth 343-volt winding with no center-tap and 
get up to 514 volts with only 11 terminals rather than the 12 required 
by the balanced-ternary scheme to reach 364. 

    But what if we have four terminals on a winding?  You could have, 
for example, a winding with a 1-VAC segment, a 3-VAC segment, 



and a 2-VAC segment, in that order;  this gives you 1, 2, 3, 4, 5, and 6 
volts between its six different pairs of terminals.  A second 
four-terminal winding with 13, 39, and 26 volts on its segments gets 
us 1-84 volts.  A third winding with 169, 507, and 338 volts on its 
segments gets us 1-1098 volts, with the same 12 terminals that would 
give us 1-64 volts with César’s binary scheme, 1-364 volts with the 
balanced-ternary scheme, or 1-1200 volts with the 
single-center-tapped scheme. 

    So it seems like the single-center-tapped scheme is optimal, at least 
to minimize the number of voltages you can get for a given number 
of terminals.  The double-center-tapped scheme is very nearly as 
good, though, and it uses less jumper wires:  you can reach any 
voltage up to 1098 volts with only two jumpers instead of the three 
you might need with the single center-tap. 

    One-volt precision is maybe more important when you’re at 2 or 3 
volts than when you’re at 950 volts, so it would be nice if we could 
separate the voltage levels a bit more at higher voltages;  
unfortunately, the voltages on the various secondary windings do sum 
linearly, so you can’t avoid this completely.  But if you have one 
winding with segments of 1, 3, and 2 V and a second one with 
segments of 15 and 30 V, then you can do any one-volt voltage from 
1-6 volts, 9-21 volts, 24-36 volts, and 39-51 volts, with just seven 
terminals and a single jumper. 

subs = lambda items: set(sum(items[i:j])
                         for j in range(len(items)+1)
                         for i in range(j))
combos = lambda subses: {0} if not subses else set(a+b
    for c in subses[0] for a in [c, 0, -c] for b in combos(subses[1:]))
combos([subs([1]), subs([3]), subs([9]), subs([27]), subs([81]), subs([243])]
    ) == set(range(-364, 365))
combos([subs([1, 2]), subs([7, 14]), subs([49, 98]), subs([343, 686])]
    ) == set(range(-1200, 1201))
combos([subs([1, 3, 2]), subs([13, 39, 26]), subs([169, 507, 338])]
    ) == set(range(-1098, 1099))
 

    I don’t think we can do better by connecting triples of windings 
together in a Y configuration, like some BLDC motors, because the 
1-3-2 setup already gives us six distinct voltages for the six distinct 
pairs of terminals, and they cover a contiguous range of integers. 

A practical configuration 

    I think that, if you were going to do this in real life, the most 
practical configuration would use a single high-voltage winding with 
two terminals and two low-voltage windings with four terminals 
each, with a first winding of segments of ½, 1½, and 1 volt and a 
second winding of segments of 8, 24, and 16 volts.  This gives you 
0.5-volt resolution for 0-3 volts, 5-11 volts, and 13-19 volts, and 
2-volt-or-better resolution up to 51 volts, all configured with a single 
jumper.  This is not enough to kill you unless you are astonishingly 
fortunate. 

    The high-voltage winding might be 120 volts, which in 
combination with the low-voltage windings gives you voltages up to 



171 volts, with an 18-volt gap between 51 and 69 volts;  all of this for 
ten terminals and three secondary windings (plus the primary). 

Ganging up two transformers 

    Now, if transistor cores are abundant and you just want to keep 
windings to a minimum, you could get a more favorable spread of high 
and low voltages by putting two separate transformers in the box, one 
fed from the power line with two to four terminals on its secondary 
brought out to the front panel, and a second transformer connected 
only to front-panel terminals, perhaps with two windings with three 
or four terminals each, either of which can be connected as a 
“primary” to the secondary of the first transformer.  One reasonable 
winding configuration for the second transformer might be turns 
numbers of 1n-3n-2n on one winding and 10n-18n on the other.  This 
affords 18 different stepups as low as 3:5 and as high as 1:28, including 
2, 2½, 3, 5, 6, 7, 9, 10, 14, 18, and 28;  and of course their reciprocals as 
stepdowns. 

import fractions
' '.join(str(x) for x in sorted(f for n in subs([1, 3, 2])
                                  for d in subs([10, 18])
                                  for f in [fractions.Fraction(n, d),
                                            fractions.Fraction(d, n)]))
 

    So if you had a center-tapped winding on the primary transformer 
with a 14-volt segment and a 134-volt segment, you could get 111 
different voltages out of the combination of the two transformers, 
ranging from ½ VAC up to 4144 VAC.  The full list is: 

1/2 7/9 1 7/5 3/2 14/9 2 7/3 5/2 14/5 3 28/9 35/9 21/5 14/3 67/14
37/7 28/5 7 67/9 74/9 42/5 67/7 74/7 67/5 14 201/14 74/5 134/9 111/7
148/9 134/7 148/7 67/3 70/3 335/14 74/3 185/7 134/5 28 201/7 148/5
268/9 222/7 296/9 35 335/9 201/5 370/9 42 222/5 134/3 140/3 148/3
252/5 268/5 296/5 63 196/3 67 70 74 392/5 402/5 84 444/5 98 126 392/3
134 140 148 196 670/3 740/3 252 268 296 335 370 392 402 444 1340/3
2412/5 1480/3 2664/5 603 1876/3 666 670 2072/3 740 3752/5 804 4144/5
888 938 1036 1206 3752/3 1332 1340 4144/3 1480 1876 2072 2412 2664
3752 4144

' '.join(str(x) for x in sorted(set(f*v for n in subs([1, 3, 2])
                                        for d in subs([10, 18])
                                        for v in subs([14, 134])
                                        for f in [fractions.Fraction(n, d),
                                                  fractions.Fraction(d, n),
                                                  1])))
 

    Or, as decimal approximations: 

0.50 0.78 1.00 1.40 1.50 1.56 2.00 2.33 2.50 2.80 3.00 3.11 3.89
4.20 4.67 4.79 5.29 5.60 7.00 7.44 8.22 8.40 9.57 10.57 13.40
14.00 14.36 14.80 14.89 15.86 16.44 19.14 21.14 22.33 23.33 23.93
24.67 26.43 26.80 28.00 28.71 29.60 29.78 31.71 32.89 35.00 37.22
40.20 41.11 42.00 44.40 44.67 46.67 49.33 50.40 53.60 59.20 63.00
65.33 67.00 70.00 74.00 78.40 80.40 84.00 88.80 98.00 126.00



130.67 134.00 140.00 148.00 196.00 223.33 246.67 252.00 268.00
296.00 335.00 370.00 392.00 402.00 444.00 446.67 482.40 493.33
532.80 603.00 625.33 666.00 670.00 690.67 740.00 750.40 804.00
828.80 888.00 938.00 1036.00 1206.00 1250.67 1332.00 1340.00
1381.33 1480.00 1876.00 2072.00 2412.00 2664.00 3752.00 4144.00

' '.join('%.2f' % float(x)
         for x in sorted(set(f*v for n in subs([1, 3, 2])
                                 for d in subs([10, 18])
                                 for v in subs([14, 134])
                                 for f in [fractions.Fraction(n, d),
                                           fractions.Fraction(d, n),
                                           1])))
 

    Note that this still requires only 10 terminals:  three on the main 
transformer’s secondary winding, four on the auxiliary transformer’s 
low-turns winding, and three on the auxiliary transformer’s 
high-turns winding.  Like the single-transformer “practical” 
configuration described above, it also requires four windings and at 
most two jumpers;  it can produce fewer distinct voltages (only 111 
instead of 153) but they are spaced out in a much more useful fashion:  
no more than 0.5 volts apart up to 3.1 volts, no more than 1 V apart up 
to 5.6 volts, no more than 2 V apart up to 10.6 volts, no more than 4 
volts apart up to 46 volts, and so on. 

    It should be straightforward to come up with a better set of 
numbers for the windings, too, that give even more evenly spaced 
voltages, and perhaps at rounder numbers, although that aim seems to 
be in conflict with the aim of increasing the number of distinct 
voltages. 

    The above ignores the possibility of using the windings on the 
second transformer in autotransformer mode, so a larger number of 
configurations is actually possible;  for example, you could hook up 14 
volts to the 10n-turn winding segment and get 25.2 volts off the 
18n-turn winding segment, a number which isn’t in the above list.  
This relies on the primary transformer to provide galvanic isolation, 
which ought to be fine. 

    It’s somewhat dubious whether you’d really want to use the higher 
voltages on such a gadget;  they might need to be insulated to a degree 
that would make them impractical for the high currents encountered 
at low voltages. 

Lightswitch reconfiguration 

    A lower-hassle way to get such flexibility, with only a single 
transformer, would be to mechanically switch the mains power 
between different primary windings.  Two everyday single-pole 
double-throw lightswitches of the type commonly used to wire up 
hallway lights --- so that you can turn them on or off from either end 
of the hallway --- suffice to select among four of the six possibilities 
offered by a primary winding with two center taps, without any 
possibility of a short circuit.  If the segments have a winding 
configuration 1n-1n-2n, then the four possibilities are 1n, 2n, 3n, and 
4n;  if instead they are 7n-1n-56n, then the four possibilities are 1n, 
8n, 57n, and 64n. 



    This possibility of 1n, 8n, 57n, and 64n turns on the primary could 
be seen as a selectable multiplier of the secondary voltage:  
respectively 64, 8, 64/57 (about 1.12), and 1.  Suppose that when the 
primary side is set to 8x, the medium voltage, the secondary side is 
like the low-voltage setup described above under “A practical 
configuration”:  a first winding of segments of ½, 1½, and 1 volts and 
a second winding of segments of 8, 24, and 16 volts.  This gives you 
½-volt resolution for 0-3 volts, 5-11 volts, and 13-19 volts, and 
2-volt-or-better resolution up to 51 volts, all configured with a single 
jumper.  Setting the primary side to 64/57 gets you roughly the same 
set of low voltages boosted by about 10%.  But setting the primary 
side to 1x, the same secondary-side configurations give you 
62.5-millivolt resolution from 0-375 mV, 625 mV-1.375 V, and 
1.625-2.375 V, and ¼-volt-or-better resolution up to 6.375 volts. 

    Or, if you set the primary side to 64x — connecting only the 
middle segment of the primary winding — you get 4-volt resolution 
for 0-24 volts, 40-88 volts, and 104-152 volts, and 16-volt-or-better 
resolution up to 408 VAC.  Ideally this 64x setting would be 
protected somehow so you didn’t do it by accident.  There’s probably 
a reason they don’t make power variacs with two sliders... 

    Since 63 millivolts to 408 volts is an unreasonably large range for a 
single apparatus — 100 watts at 408 volts is only 250 mA, while at 63 
millivolts it would be sixteen hundred amps — maybe a better choice 
is to use a single four-terminal winding on the secondary side.  It 
could be wired, say, 2-5-4, which can produce multipliers [2, 4, 5, 7, 
9, 11], and windings on the primary side could be configured, say, 
5n-2n-11n, providing divisors of 2n, 7n, 13n, and 18n, since 11n and 5n 
are inaccessible with the two-lightswitch configuration.  This design 
is amusingly analogous to a trucker’s 4×6 gearshift, except that 
truckers’ gear ratios are a lot closer together. 

    If we set the lowest available voltage here to 1 VAC (2 on the 
secondary, 18n on the primary), then our 23 available voltages are 1.0, 
1.38, 2.0, 2.5, 2.57, 2.77, 3.46, 3.5, 4.5, 4.85, 5.14, 5.5, 6.23, 6.43, 7.62, 
9.0 (two ways), 11.57, 14.14, 18.0, 22.5, 31.5, 40.5, 49.5. 

sorted([round(9*v/d, 2) for v in subs([2, 5, 4]) for d in [2, 7, 13, 18]])
 

    This is an entirely reasonable set of voltages for a ghettobotics lab 
benchtop power supply, except that they’re AC voltages.  If you 
rectify these voltages and charge capacitors with them, they get 
higher by a factor of 2½:  1.41, 1.96, 2.83, 3.54, 3.64, 3.92, 4.9, 4.95, 
6.36, 6.85, 7.27, 7.78, 8.81, 9.09, 10.77, 12.73, 12.73, 16.36, 20.0, 25.46, 
31.82, 44.55, 57.28, 70.0. 

    This approach is also a lot more windings-efficient than the 
approach of varying only the secondary windings:  it never uses less 
than 11% of the primary windings nor less than 18% of the secondary 
windings, so the transformer never needs to be more than about six 
times bigger than the minimal 50Hz transformer for whatever you’re 
doing at the moment.  By contrast, with windings of 1V, 3V, 9V, and 
27V, the balanced ternary approach is using 2.5% of its secondary 
windings when it’s outputting 1V.  Normally the primary and 
secondary windings need to be about the same size because their 
cross-sectional areas per turn vary in nearly exact proportion to their 



numbers of turns, so at 1 V it can only carry 1/40 of its maximum 
power. 

    What’s the actual turns ratio n?  If our input is 240VAC, it’s about 
26.67:  say, 133 turns, 53 turns, and 293 turns in the three segments of 
the primary, if the secondary is actually wired with 2 turns, 5 turns, 
and 4 turns.  If you’re winding the transformers by hand, using an 
additional stepdown transformer (or two!) would be a great idea, just 
so you don’t have to thread a wire through your transformer core 
over 900 times.  This, though, suggests a return to the approach of the 
previous section, wherein each winding gives you an opportunity to 
reconfigure. 

An 8-lightswitch reconfigurable design 
with two transformers but only two jacks 

    So, suppose we have a primary transformer with two center-taps 
on its primary hooked to the wall current through two SPDT 
switches, and the two center-taps on its secondary allow you to use 
two more SPDT switches to select one of four possible parts of the 
secondary, and those are connected to the primary of a second 
transformer via two more SPDT switches to select one of four possible 
parts of its primary, and on its output we have two more SPDT 
switches which hook up the output socket to it.  No jumper wires and 
no possibility of shorting a winding with them.  What does that look 
like?  What kind of turns ratios can it give us? 

    I’m tired of designing, so I generated the random configuration 
([25, 9, 32], [5, 2, 11], [25, 24, 28], [7, 2, 12]).  That is, the first 
transformer has a primary winding with a 25-turn segment, an 9-turn 
segment, and a 32-turn segment, and a secondary winding with a 
5-turn segment, a 2-turn segment, and an 11-turn segment;  the 
second transformer has a 25-24-28 primary and a 7-2-12 secondary.  
(Maybe all the turns numbers are multiplied by some constant such as 
1.5 or 2, since 2 turns might not be enough to couple well to the 
magnetic core.) What possibilities does this offer? 

import random

def config(m):
    x = range(2, m)
    random.shuffle(x)
    x = sorted(x[:3])
    x[0], x[1] = x[1], x[0]
    return x

config(20), config(10), config(20), config(10)
 

    I’m tired of calculating too, so I wrote code to calculate. 

spdt = lambda (a, b, c): sorted([b, a+b, b+c, a+b+c])

ratios = lambda p, s: sorted(set(fractions.Fraction(n, d)
                                 for d in p for n in s))
' '.join(str(f) for f in ratios(spdt([25, 9, 32]), spdt([5, 2, 11])))
' '.join(str(f) for f in ratios(spdt([25, 24, 28]), spdt([7, 2, 12])))



 

    This gives us the possible voltage ratios for the first transformer 
1/33 2/41 1/17 7/66 7/41 13/66 7/34 2/9 3/11 13/41 13/34 18/41 9/17 
7/9 13/9 2 and for the second transformer 2/77 1/26 2/49 1/12 9/77 
9/52 2/11 9/49 7/26 3/11 2/7 3/8 21/52 3/7 7/12 7/8.  These do 
indeed result in 256 different voltages, which range from about 0.2 
volts up to 420 volts: 

rs = sorted(set(240*t1*t2 for t1 in ratios(spdt([25, 9, 32]), 
                                           spdt([5, 2, 11]))
                          for t2 in ratios(spdt([25, 24, 28]),
                                           spdt([7, 2, 12]))))
min(rs), max(rs), len(rs)
 

    Specifically, the output voltages are 0.189 0.280 0.297 0.304 0.367 
0.450 0.478 0.543 0.576 0.606 0.661 0.850 0.976 0.979 1.039 1.064 1.176 
1.228 1.259 1.283 1.322 1.336 1.368 1.385 1.576 1.650 1.672 1.700 1.818 
1.900 1.929 1.958 1.977 1.983 2.017 2.026 2.051 2.078 2.121 2.129 2.150 
2.177 2.383 2.443 2.517 2.567 2.593 2.672 2.727 2.737 2.927 2.937 2.975 
3.106 3.117 3.152 3.193 3.300 3.345 3.415 3.529 3.745 3.801 3.850 3.939 
4.034 4.053 4.118 4.242 4.301 4.390 4.406 4.444 4.628 4.675 4.728 4.789 
4.848 4.887 5.017 5.186 5.294 5.455 5.525 5.701 5.775 6.050 6.234 6.341 
6.364 6.829 6.853 6.942 7.092 7.179 7.273 7.450 7.526 7.619 7.647 
7.651 8.182 8.235 8.552 8.595 8.683 8.780 8.895 8.984 9.004 9.076 9.231 
9.545 9.697 9.796 10.244 10.280 10.588 10.726 10.909 11.032 11.175 
11.329 11.707 11.901 12.022 12.315 12.353 12.468 12.727 12.893 13.171 
13.303 13.333 13.476 13.506 13.836 13.977 14.118 14.150 14.359 14.545 
14.848 14.851 15.238 15.366 15.556 15.882 16.548 16.684 16.855 17.561 
17.622 17.727 17.851 18.236 18.462 18.529 18.701 19.091 19.157 19.353 
19.592 19.955 20.000 20.260 20.488 20.754 21.176 21.538 21.742 21.818 
21.991 22.273 22.857 23.102 23.337 23.902 24.545 24.706 25.027 26.218 
26.434 27.576 28.052 28.368 28.537 28.736 28.824 28.889 30.105 30.732 
31.111 32.308 32.613 33.939 34.208 34.286 34.412 34.652 35.854 36.303 
37.059 38.182 39.328 39.512 40.000 40.519 41.364 42.552 43.235 44.390 
45.157 46.667 47.647 50.256 50.909 51.312 53.333 53.529 54.454 56.104 
57.273 60.000 61.463 63.030 63.673 66.585 70.000 74.118 75.385 80.000 
80.294 83.077 87.273 88.163 92.195 93.333 94.545 99.048 108.889 
111.176 129.231 130.000 130.909 137.143 140.000 148.571 163.333 
180.000 193.846 202.222 205.714 280.000 303.333 420.000. 

' '.join('%.3f' % float(f) for f in rs)
 

    This randomly generated configuration is maybe not a super great 
design but it’s in some sense reasonable.  Half the values are below 12 
volts, there are 256 distinct values, the values are mostly only a couple 
percent apart in the middle of the range, and the range covers over 
three orders of magnitude.  Over most of the range the design has 
considerably more precision in the turns ratio than the margin of error 
on the mains voltage. 

    This is kind of overkill, although the transformers are much more 
manageable.  Maybe a single SPDT per winding with a single center 
tap on each winding and two center taps on the final output would be 
adequate:  three lightswitches to “select a range” and then four output 



terminals to give you six voltages simultaneously, 48 settings in all.
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Tentative outline of a body of 
knowledge
Kragen Javier Sitaker, 02020-06-06 (updated 02020-10-28) 
(10 minutes)

    A possible ambition for Derctuo is to include all the background 
information needed to understand it, if I can find freely-licensed 
sources.  So, for example, Pandemic Collapse (p.  65) talks about 
geography (the US, Tenochtitlán, Cambodia), historical events (the 
Vietnam War, the 1918 flu, the Bronze Age Collapse), economic 
concepts (unemployment, insurance, banks), and other institutions 
(the US DoD, the Mormon church, major corporations).  Solar 
furnace CPC (p.  61) talks about physical properties of common 
materials, the Stefan–Boltzmann law, manufacturing processes of 
ceramics, thermodynamics, units of measurement, basic optics, and 
the structure of the solar system.  CCN Streams (p.  48) talks about 
networked systems architecture, hashing, SHA-256, TCP/IP, disks, 
telephone networks, and all kinds of programming stuff. 

    What is the body of knowledge that would be needed to make 
sense of all this stuff?  Consider the Stefan–Boltzmann law.  To make 
any sense of the statement j = σT⁴ you need to know algebraic 
notation and what energy and temperature are, including the concept 
of absolute temperature.  And you need to understand how solid 
objects have surface areas. 

    Geographic and historical knowledge in particular is sort of endless.  
Tenochtitlán is Mexico City today, with 8.8 million people, 0.11% of 
the world’s population;  Mexico City’s Wikipedia page is 213kB, 
33000 words;  the destruction of Tenochtitlán (what is referenced in 
Pandemic Collapse) is mentioned briefly after 9% of the page.  If you 
divided the world into, say, 2048 regions of equal population (4 
million or so), and included 4096 words or so on each of these 
regions, you’d probably cover most of the geographic facts of 
importance comparable to the ruin of Tenochtitlán, in about 8.3 
million words, about 30,000 pages;  you could read it all, once, in 
three to six months. 

Vital Articles 

    Wikipedia’s “Vital Articles” constitutes an attempt to codify such a 
general-purpose body of knowledge.  There are ten Level 1 Vital 
Articles, including “Human History” (21000 words, 137kB, mentions 
Mexico and the Aztecs, and has a couple of sentences on the 
European conquest of the Americas);  100 Level 2 Vital Articles, 
including 10 articles on history (the “early modern period” article has 
a couple of sentences on the European conquest out of 18000 words 
and 120kB and mentions the Aztecs, and so does “civilization”) and 11 
on geography (the “North America” article’s 18000 words in 123kB 
does explain, “The Mayan culture was still present in southern 
Mexico and Guatemala when the Spanish conquistadors arrived, but 
political dominance in the area had shifted to the Aztec Empire, 
whose capital city Tenochtitlan was located further north in the 

https://en.wikipedia.org/wiki/Early_modern_period
https://en.wikipedia.org/wiki/Civilization
https://en.wikipedia.org/wiki/North_America


Valley of Mexico.  The Aztecs were conquered in 1521 by Hernán 
Cortés.”);  and 999 Level 3 Vital Articles, including 80 on history and 
99 on geography. 

    How about the killing fields of Cambodia under the Khmer 
Rouge, also mentioned in the same note?  Among the Level 2 Vital 
Articles we find “Late Modern Period” (19000 words, 123kB) which 
mentions the Cambodian genocide, but no more;  and “Asia” (15000 
words, 104kB) which mentions “the Cambodian Killing Fields”, but 
no more.  We don’t find enough detail to understand the allusions in 
Pandemic collapse (p.  65) until Level 3, which sketches the history of 
the Khmer Rouge in Cambodia in its articles “Vietnam”, “Cold 
War” (36000 words, 233kB) including multiple paragraphs and a 
photo of a shelf full of skulls, “Mao Zedong”, “Theravada”, 
“Dictatorship”, and especially “Genocide” (17000 words, 109kB). 

    So we can infer that probably, at least when it comes to 
understanding my historical references, having read all of Wikipedia’s 
Level 3 Vital Articles are probably sufficient.  This is not true for 
scientific knowledge;  “Temperature”, “Fire”, “Electric light”, and 
“Electromagnetic radiation” mention black body radiation briefly but 
do not mention the Stefan–Boltzmann law. 

    Unfortunately the Level 3 Vital Articles are some 20 million words 
and would blow out the 20-megabyte download budget for Derctuo, 
even without any pictures.  The thought above of having about 4096 
words for every 4 million people would be more than adequate for 
Cambodia, though, since in the 16384 words on Cambodia, we could 
surely find space to mention the Khmer Rouge. 

    Reading Level 3 might take a year at a reasonable level of reading 
speed, a bit over 1000 hours if you read it like a novel. 

Possible plethoras of sources 

    Possible sources include MIT OpenCourseware, Wikipedia, 
Wikibooks, cnx.org (before it shuts down), OpenStreetMap, Project 
Gutenberg, the Internet Archive etexts collections, and for recent 
things, PLoS and arXiv.org.  Boundless used to have some 
open-content textbooks but they seem to have mostly been lost, 
though fragments like their definition of limits survive in part.  
OERCommons has a search engine over thousands of freely licensed 
educational resources, of which nearly a thousand few are textbooks, 
such as Jim Hefferon’s linear algebra book (CC-BY-SA, 7.5MB, 
507pp.).  (See also the section on “particular textbooks” below about 
Hefferon’s work.) They also link to OpenStax (which I’d forgotten 
about), Delft OCW, CMU OLI, and another dozen or so similar 
initiatives. 

    GWU has a guide to open textbooks which links to most of the 
above. 

    Wikipedia has a list of notable CC works, including Connexions 
(which I guess is cnx.org), Khan Academy (cc-by-nc-sa), OpenLearn, 
OCW, something called “The Saylor Foundation”, WikiEducator, 
375000 CC0 artworks from the Metropolitan Museum of Art, 
deviantART, Flickr, Open Game Art, Openclipart, etc. 

    Many public-domain books, including some nonfiction, are in 
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Project Gutenberg and Wikisource, as well as the Internet Archive’s 
books collection.  Everything up to 1924 is PD in the US now, 
including Rhapsody in Blue.  Parker Higgins collated many striking 
1923 works in a zine last year, though I think a more striking work 
still is Kahlil Gibran’s The Prophet.  Also, perhaps, the Russells’ The 
Prospects of Industrial Civilization.  The Hathi Trust catalogues 53940 
works published in 1923, of which 33105 are books. 

A dismal assessment of OERCommons 

    The OERCommons textbooks mentioned earlier include 17 history 
textbooks, but most are too specific to include either of the events I 
was using as test points above.  World Civilizations I (CC-BY) was 
the only one that seemed broad enough to mention Cambodia, but 
unfortunately has been lost.  Western Civilization:  A Concise 
History, Volume 3 (CC-BY-NC, 105k words, 10MB as .odt, 274 pp.) 
starts with Napoleon, too late to cover Cortés, but its volume 2 
(CC-BY-NC, 87k words, 229 pp.) does devote a few paragraphs to 
the events. 

Particular textbooks to check out 

    Jim Hefferon’s Linear Algebra, Theory of Computation, and 
Introduction to Proofs are cc-by-sa 3.0 disjunction GFDL, with LaTeX 
source.  He says the linear algebra text is “a popular text”.  I haven’t 
reviewed the books yet, but some people seem to like them, though 
others tar them as unrigorous.  And they come with exercise solutions 
and video lectures. 

    SICP is under cc-by-sa 4.0.  I think Structure and Interpretation of 
Classical Mechanics is under cc-nc-by-sa 4.0.  It’s using MathJax. 

    Mathematics for Computer Science is a cc-by-sa 987-page PDF 
covering things like graphs, satisfiability, and linear recurrences. 

    I am greatly enjoying Reuleaux (p.  440)’s presentation of 
kinematics, which is in the public domain due to its age.  However, 
the idea of reducing it to files of a manageable size seems daunting. 

    I really liked MacKay’s [Sustainable Energy Without the Hot Air].  
Disappointingly, his book on information theory is not available 
under a free license, and neither is Without the Hot Air/SEWTHA as it 
turns out. 

    PLOS ONE has a systematic reviews category, but most of the 
1507 reviews therein are pretty narrow:  “Healthcare-associated 
infection and its determinants in Ethiopia:  A systematic review and 
meta-analysis” and the like, although “Fecal microbiota 
transplantation in inflammatory bowel disease patients:  A systematic 
review and meta-analysis” sounds pretty interesting. 

    On the topic of formal logic, Sean Palmer recommends forall x, 
Tree Proof Generator (usable online at https://www.umsu.de/trees/
), and the whole Metamath website, which is in the public domain, 
including things like the proof that √2 is irrational. 

    Gwern licensed his entire site under CC0. It mostly discusses IQ, 
epistemology, pharmacology, IQ, deep learning, other aspects of AI, 
statistics, genetics, IQ, politics, psychology, biology, programming, 
economics, and IQ, but occasionally strays from that focus.  Uses 
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Mathjax.  He explains his motivation: 
The goal of these pages is not to be a model of concision, maximizing 
entertainment value per word, or to preach to a choir by elegantly repeating a 
conclusion.  Rather, I am attempting to explain things to my future self, who is 
intelligent and interested, but has forgotten.  What I am doing is explaining why I 
decided what I did to myself and noting down everything I found interesting about 
it for future reference.  I hope my other readers, whomever they may be, might 
find the topic as interesting as I found it, and the essay useful or at least 
entertaining–but the intended audience is my future self.  

    The source code of his pages (in a Pandoc-implemented language 
derived from Markdown) is accessible by appending .page to the 
URL.  He says the whole thing is kept in Git, but I don’t know 
where.
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Ghettobotics soldering iron
Kragen Javier Sitaker, 02020-06-17 (4 minutes)

    Espacio de César posted a video demonstrating how to make a 
usable 40-watt soldering gun out of a heavy mains transformer 
(rewound with a low-voltage secondary) and some heavy steel wire, 
saying he was looking for about ½ volt on the secondary.  This seems 
like a very reasonable strategy to me but I can’t salvage 
transformers — invariably they are already recycled before I encounter 
a discarded electronic item.  Probably even something like an ATX 
power supply would be easier to find. 

    ½V and 40W is about 80 amps, though, which is a bit more than 
ATX power supplies can usually provide. 

    That also implies about 0.006Ω.  Is that about the right resistance?  
Iron’s resistivity at room temperature is about 100 nΩm;  guessing 
that César’s heating element is about 100 mm long and 1 mm², we get 
0.01Ω, so yeah, that’s about right.  1010 carbon steel is about 143 nΩm, 
while stainless is several times higher at some 700 nΩm.  Nichrome 
would be much better, at 1100 nΩm, and I’ll probably find some 
sooner or later, since people constantly throw out broken hair dryers 
and space heaters. 

    We could get the same power out of a thinner wire at a higher 
voltage and lower current, but at more risk of burning the wire out.  
The wire fusing current estimates from Powerstream that I used in 
file balcony-battery in Dercuano suggest that 86 A is already enough to 
melt 11-gauge iron wire (2.3 mm), 43 A is enough to melt 15-gauge 
iron wire (1.5 mm), 21 A is enough to melt 19-gauge iron wire (0.9 
mm), and 10.7 A is enough to melt 23-gauge iron wire (0.57 mm).  So 
really César is already past the edge of safety and will melt his 
soldering tip if he holds the trigger down long enough. 

    Can you do it with simple electronics instead of a transformer? 

    You can’t just PWM the AC line current through a 6-milliohm 
heating element;  you’ll trip the house’s circuit breaker, and even if 
you don't, you're dropping the line voltage to zero temporarily, and 
other nearby appliances won't like that.  But you ought to be able to 
PWM it into a hefty inductor with a hefty freewheel diode or ten, at 
least if they have enough ballast to prevent thermal runaway.  Very 
crudely guessing, if you have a duty cycle of 0.01% or more and a 
PWM frequency of 10kHz, then your inductor just needs to prevent 
the current from rising to too much more than 80 amps in 10 ns, or 8 
billion amps per second, at less than 340 V (the peak voltage).  That 
only requires 43 nanohenries, which you might get without asking for 
it.  But it also requires subnanosecond switching times for that 
current.  Also, you need an input capacitor bank that can handle 80 
amps of ripple current, which is doable but nontrivial. 

    You probably could PWM the AC line current into a 
high-frequency stepdown transformer, which could handle the 40 
watts or whatever in a much smaller core.  This is basically a flyback 
supply I think, just with a stepdown instead of a stepup?  I don’t 
know, I have to think about this stuff later.
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An outline of the design process 
leading up to the Veskeno virtual 
machine
Kragen Javier Sitaker, 02020-06-17 (updated 02020-07-10) 
(88 minutes) 
¿Ves que no?  

    The primary goal of Derctuo is to present some calculations and 
computational simulations in a reproducible fashion, so that it is 
possible for other people to build on them.  Unfortunately, and quite 
surprisingly, no suitable medium for such things currently 
exists — except in the limited sense that bytes and computers are 
potentially such a medium.  But a raw sequence of bytes is 
meaningless without some kind of interpretation, a “file format”, and 
as far as I can tell, no suitable file format currently exists. 

    “Veskeno” is the name I have adopted for such a file format, which 
unfortunately requires the development of a new virtual machine for 
reproducible computations.  The reasons for this require some 
explanation. 

The determinism of mathematics 

    Consider the polynomial x⁴ - x³ - 5x² - x - 6.  We can reasonably 
make assertions about it;  for example: 

• “As you can see, this polynomial has two real and two imaginary 
roots.” 
• “At x = 0, this polynomial’s derivative is -1, and at x = 1, the 
derivative is -5.” 
• “For real x, this polynomial is bounded below by a constant, but not 
bounded above.”  

    Moreover, you can compute that, for example, one of the 
polynomial’s zeroes is at x = -3, while another is at x = 2. 

    Or are they?  Either way, you can calculate what the zeroes are, 
although it may not be easy — it’s a matter of objective truth or 
falsity.  If I’ve made an error, you can find it, and if I’m correct, you 
can verify that.  And you can be sure that anyone else who does the 
calculations will get the same answer — regardless of their cultural 
background, ethical beliefs, or latitude, regardless of whether they’re 
in 02020 CE, 02120 CE, or 12020 CE.  Indeed, any rational being in 
any possible universe would get the same results.  Unless they failed to 
understand or made a mistake.  (Did I make a mistake above?) 

    As David Hume says: 
Algebra and arithmetic [are] the only sciences in which we can carry on a chain of 
reasoning to any degree of intricacy, and yet preserve a perfect exactness and 
certainty.  We are possessed of a precise standard, by which we can judge of the 
equality and proportion of numbers;  and according as they correspond or not to 
that standard, we determine their relations, without any possibility of error.  When 
two numbers are so combined, as that the one has always a unit answering to every 
unit of the other, we pronounce them equal.  



    There are a variety of things for which we can make such objective 
assertions:  which side won a chess game, given all the moves, for 
example, or that the word “fire” occurs 559 times in the King James 
Version of the Bible, at least if we can agree on which version that is, 
and what counts as an occurrence of the word — I omitted 
occurrences of “fiery”, but counted words containing “fire”, such as 
“firepans” and “firebrands”. 

The objective of Veskeno:  make software, 
specifically Derctuo, run as reproducibly as 
other mathematics 
[C]omputer science is about formalizing imperative knowledge.  The essence of 
programming is about imperative knowledge.  It’s about how to do things.  … But 
it’s no different than what we say in the SICP lectures:  Mathematics is about how 
you think about what’s true, following from various axioms.  Computing is how 
you think about how to do things. 
    — Hal Abelson, 2011  

    Since at least Church, Turing, and Gödel, we have a rigorous 
mathematical formalization of the notion of an algorithm, which is 
how we have managed to build digital computers that can be 
programmed to execute any algorithm in the first place.  So we know 
that we can, in theory, come to the same kind of consensus about the 
behavior of an algorithm — in theory any algorithm whatever can be 
executed on any computer in the universe, on the same input data, 
and compute exactly the same results.  And, again in theory, it does 
not matter whether the computation happens in 02020 CE or 02184 
CE;  the results will be exactly the same, precisely the same sequence 
of bits.  In theory, programs are incapable of nondeterminism, unless 
the computer malfunctions.† 

    In practice, however, we have a very different situation, one prone 
to what Konrad Hinsen calls “software collapse”, colloquially known 
as “bitrot”:  software that works perfectly on one machine or at one 
time, but fails to run correctly or even to compile on another machine 
or at another time;  or it may run but be unusable in practice for one 
or another reason.  Occasionally this happens because of changes in 
the universe of inputs and outputs — many IBM PC games ran too 
fast to be playable on the IBM PC AT, for example, and a user 
interface designed for mice may require too much precision to be 
usable in practice on a multitouch hand computer — but much more 
often software collapse happens because software or hardware 
dependencies changed their behavior, so the same program computes 
different results from the same inputs.  Often a large body of tacit 
knowledge, concerning what changes have happened, must be drawn 
upon to repair software collapse;  if the maintainers of the codebase 
are dead or uninterested, repairing it may be infeasible. 

    Veskeno’s objective is to put the theory into practice, so that the 
algorithmic results in Derctuo are as reproducible as algebraic results.  
This way, it is hoped, the written record of algorithmic knowledge 
can engage the kind of ratchet of progress that has propelled 
mathematics and the natural sciences forward, so that each generation 
of researchers can build on the results of the previous generation, 
rather than — as normally happens with software — reinventing those 

http://www.gigamonkeys.com/code-quarterly/2011/hal-abelson/


results from scratch.  And it need not be dependent on the 
maintenance of a living tradition, since Veskeno can be 
reimplemented from its specification. 

    We want to have a high degree of assurance that, if a computation 
has occurred under Veskeno and the program and input data are 
available, we can reproduce the same computational results with a 
new implementation of Veskeno, although perhaps more slowly, or, 
with luck, more quickly;  we want to minimize the chance that a bug 
in either the new or especially the old implementation breaks this 
reproducibility. 

    We adopt the following priorities in order to achieve this: 

• The Veskeno specification should be sufficiently strict and detailed 
that, given any Veskeno program and its input data, any two correct 
implementations of Veskeno should produce bitwise identical results, 
unless one or both of them unpredictably fails.  (See below about 
predictable and unpredictable failure.)  
• The Veskeno specification should be sufficiently simple that a 
programmer should be able to implement it in an afternoon, given 
only the spec — without having access to running implementations to 
test against.  Moreover, the implementation should be more likely 
correct, as defined above, than incorrect, once it passes all the tests in 
the spec — even if implemented on hardware that would be extremely 
unusual in 02020 CE, such as a decimal or ternary computer.  
• A straightforward one-afternoon Veskeno implementation should 
be efficient and full-featured enough to run practical 
computations — for example, to run 1980s video-games at playable 
speeds, on mainstream 02020 CE personal computing hardware such 
as a Samsung Galaxy A10.  
• It should be practical to generate working code for Veskeno without 
unreasonable space overheads, compilation-time costs, or headaches.  
However, since the objective is to spend hundreds or thousands of 
hours writing Derctuo so that someone can write a Veskeno virtual 
machine on which to run it in six hours or so, it’s worth trading off 
100 hours of effort programming for Veskeno to save even a single 
hour of effort writing a Veskeno implementation.  
• The damned thing needs to get done in a month or two and have 
working software on it at that point.   

    A consequence of priorities #1 and #2 is that it should usually be 
impossible for a malicious attacker, upon examining two simple 
implementations of Veskeno that pass the tests in the spec, to 
construct a Veskeno program and input dataset that runs successfully 
on both implementations but produces different results. 

    This set of priorities leads to a very unusual set of design tradeoffs, 
one so alien to modern mainstream virtual machine design that the 
comment was heard, “I feel like this is designing a weapon or 
something.” 

    There are varying levels of abstraction at which we could such 
reproducibility could be guaranteed;  Veskeno takes the simplest 
approach, of prescribing reproducibility at the level of individual 
CPU instructions, which compose into reproducible macroscopic 
computations.  



    † Conventionally these results are stated for batch-mode algorithms 
which run for some finite period of time and then halt with a result, 
but it’s straightforward to extend them to interactive processes — the 
batch-mode algorithm takes as input a previous state and an input 
event (which may be simply that there is no input of interest to 
report) and eventually produces a new state and perhaps some output.  
(Extending this statement to multithreaded programs and 
interrupt-driven I/O is less straightforward but in principle possible 
by treating these new sources of nondeterminism as more kinds of 
input events.) 

A note about hardware performance 

    A Galaxy A10 (30 million sold in 02019) has 2 GiB of RAM and 
eight Cortex-A cores running at 1.35 to 1.6 GHz, capable in all of 
perhaps 20 billion 64-bit multiply-accumulate operations per second, 
plus a Mali-G71 MP2 GPU, which I think is about 50 gigaflops on 
two cores.  A 1980s video-game might have 1 MiB of RAM and 
execute a million 16-bit multiply-accumulates per second. 

    So the throughput performance overhead budget here is about a 
factor of 2048 in space and a factor of some 131072 in time, though of 
course greater speed and less overhead would be desirable, since it 
would make much more elaborate computations reproducible.  
Typical straightforward low-level virtual machines can achieve time 
overhead factors of 3–20 and space overhead of 1.1–4, but we don’t 
have to come close to that;  moreover Veskeno is serial, imposing 
another factor of 16–64 of overhead on the throughput (p.  16) unless 
some kind of parallelism is possible.  This leaves us some 128× of 
performance headroom. 

    A typical 1980s video-game might run on a 6502 like the 1.79MHz 
one in a Nintendo;  a multiply routine for the 6502 takes 130 CPU 
clock cycles to multiply 8 bits by 8 bits and get a 16-bit result, while a 
version using a table of squares takes 79–83 cycles.  At the 6502’s max 
of 3 MHz this might give us 38000 8-bit multiplies per second, or 
only about 22000 on the Nintendo, working out to about 5000 16-bit 
multiplies per second;  typically, though, 6502-based video-games 
paired the CPU with sprite hardware to do compositing of 
video-game characters onto a background, thus reducing the load on 
the CPU.  By the end of the 1980s, though, some video-games ran on 
CPUs that were some 256 times faster, obviating the need for sprite 
hardware. 

    On the other hand, for faithfully reproducing the “feel” of human 
interactions with existing computer systems, simulating the analog 
behavior of computer hardware often demands significant 
computational work.  XXX at masswerk.at has reproduced 
“Spacewar!”, perhaps the first video-game done on a computer;  he 
reports that the most difficult and time-consuming part was 
accurately reproducing the color change and exponential decay 
behavior of the PDP-1’s display.  Accurately simulating analog video 
artifacts like chroma subsampling, NTSC artifact colors, ghosting, 
blur, ringing, noise, and pincushioning, as the Apple2 XScreenSaver 
module does, can use an unboundedly large amount of digital 
computation. 

https://www.lysator.liu.se/~nisse/misc/6502-mul.html


Predictable and unpredictable failure 

    Above, I said, “any two correct implementations of Veskeno 
should produce bitwise identical results, unless one or both of them 
fails.” Why is failure an option, and what kinds of failure handling 
can we have? 

    The simplest and most unavoidable kind of unpredictable failure is 
that an implementation, although correct, runs too slowly to be worth 
waiting until it finishes.  Perhaps a given computation requires an 
hour of CPU time on an efficient implementation of Veskeno;  an 
inefficient implementation might be 1000 times slower and run on a 
CPU that is 8 times slower, thus requiring 8000 hours, about 11 
months.  Such a computation is almost certain to be aborted before 
completion unless its results are of great interest and using the 
computer for other tasks is of little interest. 

    Dynamic memory allocation failure is another kind of 
unpredictable failure which, although it is not unavoidable, may be 
preferable to the cost of avoiding it.  It is straightforward to write a 
program such that it can handle any amount of data that would fit 
into virtual memory — 4 gibibytes in the case of a 32-bit 
machine — while being able to handle smaller amounts of data, such 
as 100 kibibytes, in much smaller amounts of memory.  We could 
avoid the possibility of runtime dynamic memory allocation failure by 
preallocating 4 gibibytes, so that the program will entirely fail to run 
on machines with only, for example, a gibibyte of RAM, even if 
given only 100 kibibytes of input.  This would prevent it from 
running on, for example, the Samsung Galaxy A10 mentioned above, 
since it has only 2 gibibytes.  (Kernel memory overcommit would 
have to be turned off to achieve this under Linux, since otherwise the 
Veskeno virtual machine process can be OOM-killed at any time.) 

    In many environments, it is very difficult to ensure that dynamic 
memory allocation failures cannot happen during execution, because 
many basic operations of the language can invoke dynamic allocation.  
In CPython, for example, even integer arithmetic can invoke 
dynamic memory allocation, and it is common even for languages like 
C to dynamically allocate function activation records on a stack, 
although perhaps this can be avoided during execution of Veskeno.  
Attempting to outlaw Veskeno implementations in such 
environments would be futile and probably counterproductive.  Also, 
Veskeno itself is probably such an environment:  a Veskeno virtual 
machine interpreter written in Veskeno can be useful for many 
things, but unavoidably will have less memory space available for the 
program it interprets than it has itself. 

    However, for some applications of Veskeno — not those in 
Derctuo — it would be desirable to ensure that no such unpredictable 
failures will arise, so that a Veskeno-implemented algorithm can be 
used to, for example, safely control an antilock braking system, a jet 
engine, a milling machine, or a self-balancing scooter.  Typically in 
these cases a worst-case execution time is also demanded.  For these 
cases, we would need to preallocate all the needed resources. 

    A third kind of possible failure arises from correctness checks on 
operations such as arithmetic, memory access, and I/O.  
Conventionally, for example, dividing by zero or dereferencing a null 



pointer will raise an exception that can terminate a program or reset a 
computer.  On some systems, arithmetic overflows may also raise such 
exceptions, the Ariane 5 maiden flight being one notorious example.  
For debugging, these exceptions are highly desirable, since they often 
point quite directly to the problem in the program, while incorrect 
results might easily be overlooked.  They are different from the above 
kinds of failures, though, because they are not unpredictable:  running 
the same program on the same input data will always produce the 
same failure — although in many systems the exception happens some 
time after the actual failure. 

    What would happen if a Veskeno program had the option to 
handle unpredictable failures?  For example, if dynamic memory 
allocation sometimes reported failure to the program, or invoked an 
exception handler in the program.  Then some executions of the 
program on the same input data would see a reported failure, while 
others would get success, so their executions would 
diverge — Veskeno could no longer guarantee that the results were 
equivalent.  Even if the results were marked as “error output” rather 
than “algorithm results”, since a failure had happened during the run, 
people would start relying on that error output. 

    So, because unpredictable failure is not deterministic (in terms of 
the supposed inputs) recovery from unpredictable failure must be 
impossible.  This reasoning does not apply to predictable failures, and 
so it is reasonable to include predictable-failure cases in the Veskeno 
test suite. 

    However, even predictable failure cases pose some real difficulty in 
reproducibility, because they tend to be very poorly tested.  Ordinary 
computations, outside the test suite, will not normally depend on the 
behavior of failure cases, so it is easy for a case to slip through where 
the virtual machine is supposed to detect a certain failure, but it fails 
to do so — a failure to fail, you might say.  Then users will write 
programs that depend on the virtual machine’s failure in that case, 
probably without knowing it, and their behavior will not be 
reproducible on other implementation of Veskeno. 

A binary, rather than textual, file format 

    It’s reasonable to consider, for example, core Lisp as the canonical 
representation for algorithms, by which is meant the usual definitions 
of S-expressions, CAR, CDR, CONS, QUOTE, NULL, ATOM, 
EQUAL, LAMBDA, some kind of conditional such as COND or IF, 
and some kind of recursive construct such as LABELS, LETREC, or 
global DEFUN;  and, indeed, these constructs have a perfectly well 
defined deterministic semantics sufficient to express any computable 
function.  Moreover, in any modern high-level language with garbage 
collection, you can write an interpreter for it in 30 to 120 lines of 
code, including the reader and the printer. 

    However, when we turn to thinking of testing and failures, many 
subtle considerations appear.  LAMBDA and LABELS involve the 
introduction of symbols;  what is the maximum acceptable length of 
these symbols?  How many characters of them are significant — all of 
them?  Are characters counted as bytes (in UTF-8?), as Unicode code 
points, or as UTF-16 code units?  Which characters are allowed?  Is 



comparison case-insensitive, or, if case-sensitive, is it done in, for 
example, Normalization Form D?  Is there a maximum nesting depth 
to lists, and what is it?  How about a maximum length?  Is the symbol 
NIL, or some other symbol, EQUAL to an empty list, or treated as 
falsehood in conditionals?  Is the ASCII tab character treated as 
whitespace?  How about vertical tab (^K)?  How does EQUAL 
handle lists — does it treat them as always inequivalent, almost like 
EQ, or does it compare their contents, and if so does it have a 
recursion limit?  Must the input file end with a linefeed character?  
What will the parser do if an extra right parenthesis is added to the 
end of the file?  How about an extra left parenthesis?  If an unused 
argument is specified as a nonterminating computation, will the 
computation succeed or not — that is, is evaluation lazy or eager?  
Does the answer depend on circumstances? 

    If mutable state is added — as it was immediately to Lisp, 
historically speaking — additional questions become relevant.  What is 
the order of evaluation of arguments? 

    These problems are amplified by the fact that the answers may be 
dependent on the invocation context in a poorly specified way.  As an 
example, CPython’s default recursion limit is 1000 stack levels, which 
may give rise to a nesting limit of 333, 500, or 1000 for lists in a 
straightforwardly-written recursive-descent parser — but if that parser 
is invoked from a context already nested ten stack levels deep, these 
limits instead become 330, 495, or 990.  CPython is unusual in that it 
handles stack overflow explicitly by raising an exception;  most 
current and past language environments instead produce 
unpredictable incorrect results or crash at the operating-system level. 

    Since most of the Lisp primitives draw their arguments from 
potentially infinite domains, such as lists and symbols, which are at 
least exponentially large, running exhaustive tests for them is out of 
the question. 

    The depth and richness of these likely sources of implementation 
bugs would seem to make the following scenario almost inevitable:  
Alice implements Veskeno and builds and tests a program as a 
Veskeno virtual machine image in her implementation.  
Unbeknownst to Alice, her program depends on symbols with equal 
Normalization Form D being treated as EQUAL.  Bob, perhaps three 
centuries later, implements Veskeno and attempts to run Alice’s 
virtual machine image.  It produces different results than it did for 
Alice.  Bob concludes that Alice (RIP) was a superstitious fool whose 
reported results cannot be trusted, or perhaps a fraud. 

    This is precisely the scenario Veskeno is intended to prevent.  
Veskeno priority #2 says: 
...  the implementation should be more likely correct, as defined above, than 
incorrect, once it passes all the tests in the spec ...  

    Some of these problems are specific to Lisp and would not be 
present with, for example, a textual assembly-language format, but 
others are generic problems of most or all textual formats.  And the 
advantages of textual formats seem to primarily redound to the 
benefit of the person writing a file in them, not to the implementor of 
a complete, correct interpreter of the file format.  As the priorities say, 
“it’s worth trading off 100 hours of effort programming for Veskeno 



to save even a single hour of effort writing a Veskeno 
implementation.” Consequently, a binary file format seems far more 
likely to be able to achieve Veskeno’s aims. 

An untyped 32-bit register machine with 
mod-2³² wraparound 

    The Veskeno virtual machine has 16 CPU registers and a RAM 
array;  programs using a stack store the stack in the RAM.  To ease 
compiling existing C code for Veskeno, the registers are 32 bits, 
despite the hassles that entails in languages like Java or on 16-bit 
hardware;  it poses no difficulty for Veskeno implementations in 
languages like C. 

    The only arithmetic operations it offers are addition and 
subtraction, which behave mod 2³² as you would expect. 

    One great drawback of 32-bit arithmetic is that its input space is of 
size 264;  as a result, exhaustive testing of an arithmetic operation 
would take half a million CPU years at Veskeno’s 1-MIPS 
performance target.  Most programmers today cannot spend half a 
million CPU years on an afternoon project because they do not have 
hundreds of millions of CPUs available, nor even hundreds of CPUs;  
it is plausible that this parlous situation of poverty will continue for 
some time. 

The fibterp spike 

    As a simple experiment to get a handle on software complexity and 
interpretive slowdown, I hacked together the following minimal 
simulator for such a machine, together with a dumb Fibonacci 
program for it;  this took 96 minutes and 119 lines of C, 21 of which 
are the dumb Fibonacci program in a sort of assembly language.  This 
virtual machine has 11 instructions and word-addressed memory, but 
I think Veskeno itself will have more like 16 instructions and 
byte-addressed memory. 

/* XIS: simple little RISCy bytecode interpreter as a sort of quick spike
 * to see how fast or slow it goes.  Answer: about 20× slower than
 * GCC on the same machine.
 */

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

typedef uint32_t u32;

typedef struct {
  u32 reg[16];
  u32 *mem;
} machine;

enum opcode { insn_push = 0x21, insn_pop, insn_lit16, insn_low16, insn_add, insn_
sub,



       insn_jl, insn_halt, insn_call, insn_ret, insn_mov };

static inline int
src_reg(u32 insn)
{
  return (insn >> 20) & 0xf;
}

static inline int
dst_reg(u32 insn)
{
  return (insn >> 16) & 0xf;
}

#define IF break; case
#define ELSE break; default
#define rSP 15
#define SP reg[rSP]
#define rPC 14
#define PC reg[rPC]

int interpret(machine *m, int a, int b, int c, int d)
{
  m->reg[0] = a;
  m->reg[1] = b;
  m->reg[2] = c;
  m->reg[3] = d;
  for (;;) {
    u32 dest, insn = m->mem[m->PC++];
    enum opcode op = (insn & 0xff000000u) >> 24;
    switch(op) {
    IF insn_push:
      m->SP--;
      m->mem[m->SP] = m->reg[src_reg(insn)];
    IF insn_pop:
      m->reg[dst_reg(insn)] = m->mem[m->SP];
      m->SP++;
    IF insn_lit16:

      m->reg[dst_reg(insn)] = (insn & 0xffff) | (insn & 0x8000 ? 0xffff0000u : 0)
;
    IF insn_low16:
      m->reg[dst_reg(insn)] <<= 16;
      m->reg[dst_reg(insn)] |= insn & 0xffff;
      abort();  // untested code
    IF insn_add:
      m->reg[dst_reg(insn)] += m->reg[src_reg(insn)];
    IF insn_sub:
      m->reg[dst_reg(insn)] -= m->reg[src_reg(insn)];
    IF insn_jl:
      if (m->reg[src_reg(insn)] & (1 << 31)) {
        m->PC += (insn & 0xffff) | (insn & 0x8000 ? 0xffff0000u : 0);
      }
    IF insn_halt:
      return m->reg[0];



    IF insn_call:
      dest = m->PC + ((insn & 0xffff) | (insn & 0x8000 ? 0xffff0000 : 0));
      m->SP--;
      m->mem[m->SP] = m->PC;
      m->PC = dest;
    IF insn_ret:
      m->PC = m->mem[m->SP];
      m->SP++;
    IF insn_mov:
      m->reg[dst_reg(insn)] = m->reg[src_reg(insn)];
    ELSE:
      abort();                  /* invalid instruction */
    }
  }
}

/* assemble register-register instruction */
#define a_rr(n, s, d) ((insn_##n << 24) | ((s) << 20) | ((d) << 16))
/* assemble register-dest instruction */
#define a_rd(n, d) a_rr(n, 0, (d))
/* assemble register-source instruction */
#define a_rs(n, s) a_rr(n, (s), 0)

#define a_k16(n, r, k) ((insn_##n << 24) | ((r) << 16) | ((k) & 0xFfFf))
#define a_jl(s, off)  ((insn_jl << 24) | ((s) << 20) | ((off) & 0xFfFf))
#define a_call(off)   ((insn_call << 24) | ((off) & 0xFfFf))
#define a_ret         (insn_ret << 24)
#define a_halt        (insn_halt << 24)

/* dumb fibonacci: if r0 < 2 then 1 else fib(r0 - 1) + fib(r0 - 2) */
u32 program[] = {
  a_call(1),                 /* call fib */
  a_halt,
  a_rr(mov, 0, 1),           /* fib: r1 := r0 */
  a_k16(lit16, 2, 2),        /* r2 := 2 */
  a_rr(sub, 2, 1),           /* r1 -= r2 */
  a_jl(1, 13),               /* if r1 < 0, go forward 13 insns */
  a_rs(push, 0),             /* push r0 */
  a_k16(lit16, 3, 1),        /* r3 := 1 */
  a_rr(sub, 3, 0),           /* r0 -= r3 */
  a_call(-8),                /* call fib */
  a_rd(pop, 1),              /* pop input r0 into r1 */
  a_rs(push, 0),             /* save return value from recursive call */
  a_k16(lit16, 3, 2),        /* r3 := 2 */
  a_rr(mov, 1, 0),           /* r0 := r1 */
  a_rr(sub, 3, 0),           /* r0 -= r3 */
  a_call(-14),               /* call fib */
  a_rd(pop, 1),              /* pop saved return value into r1 */
  a_rr(add, 1, 0),           /* r0 += r1 */
  a_ret,
  a_k16(lit16, 0, 1),        /* r0 := 1 */
  a_ret,
};

int main(int argc, char **argv)



{
  int n = argc > 1 ? atoi(argv[1]) : 6;
  u32 mem[1024];
  for (int i = 0; i < 1024; i++) mem[i] = 0xdeafbeadu;
  memcpy(&mem[128], program, sizeof(program));
  machine m = { .mem = mem };
  for (int i = 0; i < 16; i++) m.reg[i] = 0xbadfadu;
  m.PC = 128;
  m.SP = 1024;
  int result = interpret(&m, n, 0xfeedbead, 0xfeedbead, 0xfeedbead);
  printf("%d\n", result);
  return 0;
}
 

    Disassembly shows that GCC compiles the switch with a jump 
table.  (I admit I spent another half hour after those 96 minutes 
looking to see why it was so slow...) 

    However, an important caveat here:  because this virtual machine 
implementation does not bounds-check memory accesses, it fails to be 
deterministic. 

    This program is about 20× slower than native code on my amd64 
OoO laptop and about 40× slower on my i386 Atom in-order 
netbook. 

    In theory, someone implementing Veskeno will not have to write 
and debug the Fibonacci program and other test programs as they are 
writing their virtual machine, much less revise the definitions of the 
instructions as they go;  instead they can, hopefully, assume that the 
instruction set is adequate, the test cases are correct, and any bugs are 
in their interpreter.  This should speed up their programming.  In the 
past when I’ve implemented simple virtual machines such as Chifir 
and Brainfuck, it’s taken me under an hour.  (But, well, my Chifir 
implementation had a bug I didn’t notice for months, and it might 
still have others.) 

Fixed- or variable-length instructions 

    Variable-length instructions are more space-efficient — the usual 
reason for them, irrelevant here — and make it easy to include 
immediate constants of the full width of a register, thus avoiding the 
lit16/low16 hack in XIS, the RISCy spike above. 

    Fixed-length instructions have other advantages.  They can make it 
impossible to represent invalid program-counter values, which would 
otherwise be a potential source of divergent behavior among 
implementations.  They facilitate conditional-skip instructions, which 
permit the decoupling of conditional types (equality versus ordering) 
from jump types (direct or indirect).  By making them extremely 
wide, as Chifir does, they too can contain register-sized immediate 
contents.  And they facilitate having an opcode field of less than a full 
byte, which reduces the number of tests needed for invalid opcodes. 

    As with variable-length instructions, the most important advantage 
of fixed-length instructions in hardware is irrelevant for Veskeno:  
that they enormously simplify pipelined instruction decoding. 



No floating point 

    The Veskeno virtual machine provides no floating-point 
operations, despite the importance of floating-point math for 
numerical algorithms and the importance of reproducibility for these 
algorithms.  Instead, floating-point operations are provided by 
libraries written in Veskeno’s instruction set, despite the heavy 
performance cost, so that they will have the same behavior on all 
Veskeno implementations.  Three reasons for this are Gen gradual 
underflow, -ffloat-store, and FMA. 

    IEEE 754 standardizes the behavior of the basic floating-point 
operations — addition, subtraction, multiplication, division, and 
square root — to provide bit-exact results.  Given this, it would be 
reasonable to expect that all modern machines would produce 
identical results when executing a floating-point algorithm consisting 
of only these operations.  However, although it would be reasonable, 
it would be wrong. 

    One aspect of IEEE 754 is the handling of underflow — when 
numbers become too small to represent in normalized form, it is 
specified that they start losing bits of precision, which continues down 
to the smallest nonzero float.  Currently, Intel’s “Gen” GPUs do not 
implement this, because it is slow.  Therefore it is not reasonable to 
assume that all future hardware will implement gradual underflow 
correctly. 

    GCC has a -ffloat-store flag for use with math coprocessor 
instructions for the 80387, 68881, and similar chips.  The 80387 and its 
compatible descendents, included in every 386-compatible processor 
since the Pentium, always internally use 80-bit extended precision.  
This means that the results of a sequence of floating-point operations 
depends on whether intermediate results are rounded to 32 or 64 bits 
to be stored in memory or remain entirely inside the 80-bit register 
set, which in turn depends on how effective the optimizer is at 
register allocation.  This can, for example, cause some successive 
approximation algorithms to loop infinitely.  -ffloat-store requires 
them to always be stored in memory, despite the ensuing dramatic loss 
of performance, in order to guarantee deterministic behavior. 

    Even with the above caveats, some might wonder if the problem is 
limited only to hardware that is sort of sketchy, like Gen, or obsolete, 
like 32-bit Intel processors.  But in fact a similar, though subtler, issue 
arose just in the last few years, with a new “fused multiply-add” or 
“FMA” instruction on 64-bit processors, which can often preserve an 
extra bit of precision.  This means that the results of an operation can 
differ in the least significant bit depending on whether the compiler’s 
optimizer was successful at employing FMA on a given program. 

    It must be anticipated that Veskeno virtual machine 
implementations will be compiled by such compilers.  For Veskeno, 
the above-described level of nondeterminism is absolutely intolerable, 
even merely FMA, so taking advantage of hardware floating point is 
not an option. 

Exhaustive testing is desirable but probably 
too slow in the target scenario 



    Single-operand arithmetic instructions are feasible to test 
exhaustively;  dual-operand instructions less so.  Consider this Python 
program: 

#!/usr/bin/python3
import hashlib

def add16(a, b):
    return (a + b) & 0xFfFf

def test_add16():
    h = hashlib.sha256()
    for a in range(1<<16):
        for b in range(1<<16):
            s = add16(a, b)
            h.update(bytes([s & 0xff, s >> 8]))
        if not ((a+1) & 0xf):
            print(a)

    return h.hexdigest()

if __name__ == '__main__':
    print(test_add16())
 

    This eventually produces the output: 

ca284820199ced0d15c967098f8ffc59e583a8b4120375b09ef1da4366786ca0
 

    This amounts to a compact summary of the overall behavior of the 
add16 function;  if a different function produced the same hash, we 
could be reasonably confident that its behavior on 16-bit unsigned 
numbers was the same as add16’s.  And by using Merkle trees we 
could detect deviations without finishing the whole test, and, more 
important, localize them in particular parts of the input.  (A 
cross-cutting Hamming-code-like hashing strategy would permit 
pinpoint localization:  with 33 hashes for different subsets of these 232 
test cases — one for odd-numbered test cases, one for test cases whose 
ordinal number is odd when divided by 2 rounding downward, and so 
on — we can easily determine which case is failing if only one is.) 

    But this test takes 13 hours and 49 minutes of CPU time to 
produce this output on this netbook, thus testing only some 86000 
addition operations per second.  CPython3 on this netbook is pretty 
close to Veskeno’s target performance of a million 
multiply-accumulates per second, although they are 32-bit rather 
than 16-bit. 

    It’s conceivable that this test could be optimized by up to about an 
order of magnitude, but not by two orders of magnitude;  and it’s 
more likely that a similar test in Veskeno would be much slower, 
because SHA-256 isn’t a basic operation like addition.  The 
corresponding exhaustive test for a two-operand 32-bit math 
operation would require ten orders of magnitude more computation;  
as mentioned before, 264 microseconds is some 585 millennia. 

    So exhaustive testing of, say, 32-bit addition, is probably not 



feasible at the target performance level within the target six-hour 
timeframe.  Even exhaustive testing of 32-bit negation would take 
hours.  Instead, randomized tests are probably a better fit. 

    This is not to say that exhaustive testing has no role, just that faster 
kinds of testing are needed. 

No vector-valued registers 

    Numpy can typically easily achieve about 20% of C performance 
on mainstream hardware today, despite the slowness of the CPython 
interpreter, because the inner loops are in C.  One design considered 
for Veskeno (p.  16) used vector-valued registers and RAM — each 
register or memory cell could hold a vector of very large size, and 
Veskeno would provide SIMD instructions like Numpy’s operations.  
Thus the interpretive overhead of a simple bytecode interpreter loop 
would be amortized over larger numbers of fundamental operations, 
increasing the speed of Veskeno programs. 

    The plan is currently not to take this direction, for three reasons: 

• This would create the possibility of thus allocating unpredictable 
amounts of memory in a way hidden from the Veskeno program 
itself, making it impossible to guarantee failure-free execution.  
• The number of distinct SIMD instructions required seems like it is 
probably too large to implement — and, especially, debug — in an 
afternoon.  
• Crude estimation suggests that a straightforward interpreter without 
any such tricks will be more than fast enough to satisfy the priorities 
as described above:  8–32× is a typical interpretive slowdown, and 
Veskeno is aimed at an interpretive slowdown of 131072× or less.   

    Not counted here is the serial-computation slowdown, which is 
estimated (p.  16) at 32×.  Above it is estimated that a Samsung 
Galaxy A10, for example, can do about 70 billion 
multiply-accumulate operations per second, but single-threaded 
unvectorized code on it won’t get more than about 1.6 billion, 44 
times slower;  out-of-order processors with more execution units 
close the gap a little.  It would not be surprising for a virtual machine 
that exploits such data parallelism to exceed the speed of optimized 
single-threaded unvectorized C. 

Possible coarse-grained parallelism 

    There is nothing in principle that prevents Veskeno from providing 
a “spawn” facility to run a “child” Veskeno computation, given a 
program and input data, and such a facility would be very useful for 
writing an automatic Veskeno test suite.  If several such concurrent 
computations can be run, this might make it possible to gain back a 
parallelism factor of some 8 or so on most current hardware, and 
probably much larger factors in the future.  Such a facility is 
potentially risky, though;  it would need to be subject to a number of 
restrictions: 

• Although it could report predictable failures in the child to the 
parent — out-of-bounds memory accesses, for example — it could not 
be allowed to report unpredictable failures such as running out of 



memory.  Unpredictable failures could be handled by automatically 
retrying or by propagating the failure to the parent, killing it as well. 
• It probably needs to be impossible to interact with an incomplete 
child computation in order to ensure determinism.  For example, the 
ability to inquire whether a child computation was still running, or 
had already completed, would probably violate determinism.  Any 
attempt to access the results of the child computation before the 
child’s completion must transparently block until the child is 
complete. 
• The interface must be simple enough to 
implement — correctly! — as part of the same afternoon as the rest of 
Veskeno.  

    More elaborate kinds of interaction could in principle be specified;  
for example, the parent computation could be provided with facilities 
to single-step the child, examine its memory space while 
single-stepping, and so on, as long as this did not provide it with any 
information about unpredictable failures, machine load, and so on.  
But such a facility would probably be more complex both to specify 
and to implement than all of the rest of Veskeno, and at any rate it 
can be provided less efficiently within Veskeno, without any special 
effort from the virtual machine implementor, by a metacircular 
Veskeno interpreter. 

Multiplication and division? 

    Perhaps Veskeno should have a multiplication instruction or 
instructions.  Most modern processors have a single-cycle multiplier, 
and replacing that with a subroutine call is a heavy performance 
penalty for programs that do a lot of multiplication, on the order of 
32× to 64×. 

    However, multiplication can and often does overflow (a whole 
word’s worth of bits rather than just one), requiring separate 
instructions for the low and high word of the results, and signed and 
unsigned multiplication are different;  so supporting multiplication is 
not as low-risk as supporting addition or subtraction. 

    Veskeno probably should not have a division instruction for several 
reasons:  signed and unsigned integer division are not the same, it’s 
ambiguous which way the correct result of negative signed division 
should round (quotient toward negative infinity or toward zero?), 
division by zero is potentially a predictable failure, and division is 
typically slow anyway, so the impact of not using the hardware 
integer division instruction is less severe — both because the gap in 
performance will be smaller than for multiplication and because 
programs are already written to avoid division in hot loops whenever 
possible. 

    I think probably the right choice is to omit multiplication from an 
initial Protoveskeno and see how far we get, then possibly add 
multiplication instructions if the lack is a sufficiently large 
performance loss. 

Instruction-set translation 

    Rather than writing a C compiler backend to target Veskeno, it 
seems that binary translation from an existing instruction set which 



already has good compiler support may be the best approach.  
Supporting 64–128 distinct instructions may be enough, perhaps even 
using very simple techniques that in effect simulate the registers and 
flags of the target processor. 

I/O operations and determinism 

    PGP and GnuPG have historically used I/O operations to generate 
cryptographically random key bits:  for example, by measuring the 
latency of electromechanical disk requests, which are influenced by 
turbulence inside the disk drive, they can produce a reliably different 
set of numbers on every execution;  another approach is by measuring 
the timing of the user’s keystrokes.  The objective is that, if you ask 
PGP to generate keypairs on two occasions and type the same input at 
it to the best of your human ability, you will still generate two 
different and unpredictable private keys.  (Modern operating systems 
provide this facility at a systemwide level using /dev/urandom, so 
that randomness gathered before GnuPG or OpenSSH starts can still 
provide them with unpredictable secret bits.) 

    So we can conclude that providing a program with the ability to 
read the current time, or to measure the time between inputs, can 
allow it to defeat any efforts at guaranteeing reproducible behavior.  
On the other hand, interactive applications like video-games 
generally must have time-dependent behavior:  the Space Invaders 
and their bombs must continue moving at a consistent speed even if 
the player is not providing any new input;  and when they do provide 
input, the results are in general dependent on when that input is 
provided.  Moving Pac-Man to the left for one second does not have 
the same results as moving Pac-Man to the left for two seconds, and 
so on. 

    How can these requirements be reconciled? 

    As explained above about how programs are incapable of 
nondeterminism in theory: 
Conventionally these results are stated for batch-mode algorithms which run for 
some finite period of time and then halt with a result, but it’s straightforward to 
extend them to interactive processes — the batch-mode algorithm takes as input a 
previous state and an input event (which may be simply that there is no input of 
interest to report) and eventually produces a new state and perhaps some output.  

    We could take this approach in Veskeno:  run a noninteractive 
computation in Veskeno, starting from a snapshot of some previous 
state, and ending with a new state snapshot, part of which might be, 
for example, a screen image and some samples of audio to output, and 
another part of which might specify handlers to run for future input 
events, maybe including timeout events.  To reproduce a 
deterministic sequence of such deterministic computations or explore 
alternative histories, it would be sufficient to record the initial state 
and the sequence of input events that were delivered, although it 
might be a useful accelerant to save snapshots of some intermediate 
checkpoint states. 

    User interaction isn’t the only kind of I/O, though.  It’s common 
for programs to read from and write to a filesystem, for a variety of 
reasons.  Doing this synchronously isn’t in itself a source of 
nondeterminism — given a frozen filesystem snapshot that is part of 



the initial state from which the Veskeno computation proceeds, 
presumably the program will always read the same data in response to 
the same seek() and read() calls, unless it alters it in between with a 
write().  But it is potentially a source of implementation complexity 
and bug-proneness. 

    Some filesystem access happens because programs are handling data 
that doesn’t fit in their virtual memory.  This might be reading a 
100-kilobyte file on a 16-bit machine or writing a 5-gigabyte file on a 
32-bit machine.  For Derctuo, I can avoid this problem by making 
Veskeno not 16 bits, and not managing multi-gigabyte datasets.  If 
Veskeno is at some point to be pressed into service wrangling 
multi-gigabyte datasets, it could be wedged into the model as if it 
were user input:  instead of terminating the computation with event 
handlers for keystrokes and timeouts, a computation could terminate 
with an event handler for a block of data becoming available.  (Or 
you could add I/O instructions for doing this to Veskeno;  this would 
make it no longer compatible with the Veskeno specification, but 
arguably so would adding these new kinds of event handlers.) 

    Input and output data that does fit into virtual memory can simply 
be put in virtual memory;  when a computation terminates, it can do 
so with an indication of where its results are to be found in memory.  
A straightforward Veskeno implementation can simply copy such 
data into a large byte array, while perhaps a trickier one can take 
advantage of mmap() and similar facilities. 

    Some filesystem access happens to decouple the environment in 
which a program runs from what the program does.  For example, I 
have the file /usr/lib/python3.4/encodings/mac_greek.py on this 
netbook.  If a program does not access this file, or enumerate the 
contents of the directory /usr/lib/python3.4/encodings, or look at 
how much space is left on the disk, its execution will not be affected 
by this file;  but if I run CPython 3.4 and type b'\xce'.decode('mac_greek')
, that file will be loaded and used to map that byte to U+0388.  It’s a 
resource available upon request, but otherwise unobtrusive. 

    Usually you can add new files to a Unix filesystem or new 
environment variables to a Unix environment without breaking any 
existing programs.  This contrasts to, for example, adding new 
positional arguments to a function call.  (Adding new fields to a C 
struct is a kind of middle ground:  it breaks existing compiled 
programs, but not existing source code, because it’s an incompatible 
change to the ABI but not the API.) This kind of decoupling via 
name-value pairs is a pervasive pattern for permitting the independent 
evolution of different software components. 

    To a great extent, such decoupling can be provided within a 
Veskeno image without any special support from the Veskeno virtual 
machine:  a “filesystem”, a tree of string-indexed blobs, can be built 
in memory and accessed via a filesystem-emulation library.  This 
collapses if multiple gigabytes of data are needed, but my intent with 
Derctuo is to keep the total size of all the data in the image to 
double-digit megabytes. 

    It’s common for physical computers to use “memory-mapped 
I/O”:  magical memory addresses which cause things to happen in the 
physical world when they are written or even read.  This is costly to 



provide in virtual machines in general, because nearly every time 
memory is read or written, a check must be made for these magical 
addresses.  For Veskeno, it seems like a particularly bad idea, since it 
would be easy to omit the necessary replay functionality.  If I/O 
operations are to be added to Veskeno computations, they should be 
added with explicit IN and OUT instructions. 

Instruction counting and metacircular 
instrumenting compilers 

    Derctuo talks fairly often about the efficiency of possible algorithms.  
Nowadays this is a difficult thing to nail down:  different algorithms 
may use different amounts of memory, different numbers of CPU 
instructions, differently-predictable memory access patterns, and 
afford different degrees of vectorization, out-of-order 
instruction-level parallelism, SIMT parallelism, and coarse-grained 
(multicore) parallelism, as well as having different patterns of 
communication between different cores.  As hardware heterogeneity 
increases further into the dark-silicon era we are entering, this already 
gnarly efficiency landscape is likely to become more complex rather 
than simplifying. 

    But a simple first-order approximation to computational cost is to 
count the number of CPU instructions executed by a single-threaded 
version of the algorithm.  Given a nailed-down instruction set like 
Veskeno’s, this number should be as perfectly reproducible as 
everything else about a Veskeno computation, and it would probably 
only increase Veskeno’s complexity by 2–5 lines of code, a simplicity 
loss of perhaps 1–5%.  This may be a worthwhile cost to pay. 

    However, as with single-stepping, this is a facility that can be 
provided by a metacircular Veskeno interpreter:  a Veskeno program 
that executes Veskeno programs.  Veskeno’s simple instruction set 
suggests that the binary-translation approach used by Valgrind would 
be an especially suitable approach. 

Memory maps and relocatability 

    As long as Veskeno programs can access the raw bits of Veskeno 
memory addresses, reproducibility requires that those bits not change 
between executions and implementations.  Environments like the 
JVM avoid this problem by not providing programs with access to 
those bits, relying on a relatively elaborate static type system that 
reliably distinguishes memory pointers from other data such as 
characters and integers.  A less elaborate hybrid system is possible, in 
which pointers are loaded into special registers for pointers (or 
“segments” or “descriptors”) and stored in special memory for 
pointers, like KeyKOS’s “nodes”;  but even such a scheme seems 
likely to be far more complex than Veskeno’s complexity budget 
permits.  (Still, see Segments and Blocks (p.  162).) 

    This means, in particular, that if there’s a way to change the 
Veskeno memory map after startup, for example by mapping in the 
contents of a file (or part thereof) or the results of a child 
computation, it must happen at a deterministically chosen, 
well-specified address.  It need not be insensitive to the previous 
execution of the computation — for example, it could happen at the 



end of the current data segment — but it cannot happen at an address 
not specified in the Veskeno specification. 

Self-modifying code 

    Veskeno does not need to permit self-modifying code;  it could use 
a Harvard architecture, for example, like an AVR, and use a 
child-spawning facility like that described earlier if it wants to 
generate Veskeno code dynamically.  But, if it does permit 
self-modifying code, it is essential for its effects to be deterministic, 
well-specified, and well-tested;  it would not be acceptable for 
different Veskeno implementations to handle the same 
self-modifications differently.  The simplest solution is to require that 
all modifications take effect immediately, even if to the immediately 
following instruction. 

Related work 

Preservation through emulation, e.g., SIMH 

van der Hoeven and Lorie’s UVM 

Chifir 

    In The Cuneiform Tablets of 2015, Long Tien Nguyen and Alan 
Kay described their design for a simple archival virtual machine called 
Chifir, for which they report having successfully preserved 
Smalltalk-72. 

    They describe their requirements as follows: 

• It can be described in a single Letter or A4-sized page using English and diagrams.  
A “one-pager” has a nice psychological quality of compactness and elegance to it;  
we were inspired by the half-page Lisp metacircular evaluator in the Lisp 1.5 
manual 27. 
• It can be implemented in a single afternoon by a reasonably competent 
programmer.   

    Implicitly, they also require that it be sufficiently powerful to run 
the system they want to preserve. 

    My implementation of Chifir took me an hour of programming 
and 111 lines of C, but because Nguyen and Kay have not published 
their Smalltalk-72 virtual machine image or any other test data for 
Chifir, my implementation may very well have bugs;  it might take 
another hour or more to find and fix all of its bugs. 

    Chifir is a word-oriented 32-bit three-operand 
memory-to-memory machine with very fluffy instruction encoding.  
Its 15 instructions are roughly JMP, JZ, save-return-address, MOV, 
LD, ST, +, -, *, /, %, <, NAND, refresh-screen, and read-keyboard;  
the half-duplex nature of the read-keyboard instruction makes it 
impossible to emulate full-duplex systems like video-games on Chifir.  
But Nguyen and Kay did not intend for Chifir to be universal in the 
same way that Veskeno is;  they say: 
We think that trying to design a “universal” virtual machine to serve as the simple 
virtual machine is a bad idea, because trying to ensure compatibility with the entire 
design space of computer architectures will make the resulting “universal virtual 
machine” very complicated.  In our opinion, this is the mistake of van der Hoeven 
et al.’s Universal Virtual Computer for software preservation [15].  They tried to 

http://www.vpri.org/pdf/tr2015004_cuneiform.pdf
http://web.cse.ohio-state.edu/~rountev.1/6341/pdf/Manual.pdf
https://gitlab.com/kragen/bubbleos/blob/master/yeso/chifir.c


make the most general virtual machine they could think of, one that could easily 
emulate all known real computer architectures easily.  The resulting design [25] has 
a segmented memory model, bit-addressable memory, and an unlimited number of 
registers of unlimited bit length.  This Universal Virtual Computer requires several 
dozen pages to be completely specified and explained, and requires far more than 
an afternoon (probably several weeks) to be completely implemented.  

Lisp 

    Lisp has a simple core — not quite as simple as SK-combinators or 
the λ-calculus, but still pretty simple.  The basic forms are COND, 
LABELS (now normally called letrec), LAMBDA, and QUOTE, 
which are “special forms”, and the regular functions CAR, CDR, 
CONS, ATOM, EQUAL, and NULL;  these suffice to write a 
metacircular interpreter for Lisp or, for example, a normal-order 
λ-calculus reducer. 

    Because both CONS and function application implicitly allocate 
memory, as does LAMBDA in modern interpretations (where it 
produces a closure), it’s difficult for Lisp programs to be 
failure-free — when run on a finite machine they can run out of 
memory and crash.  But, at least initially, eliminating unpredictable 
failures is beyond the scope of Veskeno. 

    A binary format like various Lisps’ FASL formats could both 
permit rapid startup and eliminate text-related parsing bugs. 

    However, the history of Lisp is littered with subtle bugs.  
McCarthy’s 1959 paper published a Lisp metacircular interpreter that 
inadvertently defined Lisp with dynamic scope — a bug that remained 
ossified in Lisp for nearly a quarter century, with workarounds like 
FUNARGS — and contained a few other subtle bugs;  an erratum is 
prepended to AIM-008 saying: 
The definition of eval given on page 15 has two errors, one of which is 
typographical and the other conceptual.  The typographical error is in the 
definition of evcon where “l→” and “T→” should be interchanged. 
    The second error is in evlen.  The program as it stands will not work if a quoted 
expression contains a symbol which also acts as a variable bound by the lambda.  
This can be corrected by using instead of subst in evlen a function subsq defined by 
...  

    Note that at this point McCarthy had been working on Lisp for a 
few years and had a more or less working implementation due to Slug 
Russell, and yet his QUOTE did not work properly inside a 
LAMBDA. 

    Writing the following one-pager in Python took an hour for a 
programmer who has implemented Lisps more than once before, 
running into several minor bugs on the way;  bugs may still remain. 

def Eval(sexp, env):
    return (env[sexp] if type(sexp) is str else
            specials[sexp[0]](sexp[1:], env) if type(sexp[0]) is str
                                            and sexp[0] in specials else
            Eval(sexp[0], env)([Eval(arg, env) for arg in sexp[1:]]))

def evcon(branches, env):
    for q, a in branches:
        if Eval(q, env): return Eval(a, env)

http://web.cse.ohio-state.edu/~rountev.1/6341/pdf/Manual.pdf


def evletrec(args, env):
    assignments, body = args[0], args[1]
    env = env.copy()
    for name, a, b in assignments: env[name] = closure(a, b, env)
    return Eval(body, env)

def closure(args, body, env):
    return lambda vals: Eval(body, augment(env, list(zip(args, vals))))

def augment(env, nvpairs):
    env = env.copy()
    for n, v in nvpairs: env[n] = v
    return env

specials = {
    'cond': evcon,
    'letrec': evletrec,
    'lambda': lambda args, env: closure(args[0], args[1], env),
    'quote': lambda args, env: args[0],
}

base_env = {
    'car': lambda args: args[0][0],
    'cdr': lambda args: args[0][1:],
    'cons': lambda args: [args[0]] + args[1],
    'atom': lambda args: type(args[0]) is str,
    'null': lambda args: not args[0],
    'equal': lambda args: args[0] == args[1],
    't': True,
}

# produces ['b']
example_prog = ['letrec', [['assoc', ['k', 'kvs'],
                            ['cond', [['equal', 'k', ['car', ['car', 'kvs']]],
                                      ['cdr', ['car', 'kvs']]],
                                     [['null', ['cdr', 'kvs']],
                                      ['quote', []]],
                                     ['t', ['assoc', 'k', ['cdr', 'kvs']]]]]],
                          ['assoc', ['quote', 'y'], ['quote',
                                                     [['x', 'a'],
                                                      ['y', 'b'],
                                                      ['z', 'c']]]]]

# produces [['X', 'a'], [['X', 'small'], ['X', 'dog']], ['X', 'sat']]
example2 = ['letrec',
             [['subst', ['f', 'd'],
               ['cond', [['atom', 'd'], ['f', 'd']],
                        [['null', 'd'], ['quote', []]],
                        ['t', ['cons', ['subst', 'f', ['car', 'd']],
                                       ['subst', 'f', ['cdr', 'd']]]]]],
              ['x', [], ['quote', 'X']]],
            ['subst', ['lambda', ['de'], ['cons', ['x'], ['cons', 'de',
                                                          ['quote', []]]]],
             ['quote', ['a', ['small', 'dog'], 'sat']]]]



if __name__ == '__main__':
    import cgitb
    cgitb.enable(format='text')
    print(Eval(example2, base_env))
 

    Running Lisp efficiently requires some kind of garbage collection;  
the above implementation inherits from Python not only GC but also 
its lists, recursive function calls, equality comparison, closures, I/O, 
error reporting, and truthiness, and it takes advantage of Python’s 
dictionaries.  Its behavior on argument-count mismatch is inherited 
from Python’s zip.  It constructs circular data structures, which old 
versions of Python would be unable to garbage-collect.  Probably an 
implementation in a lower-level language like C would be 
considerably more efficient, but would also require implementing 
from scratch these Python bequests.  In my experience this tends to 
take as long or longer than implementing the semantic core above 
expressed in Python. 

Abadi and Cardelli’s ς-calculus of objects 

The JVM 

ActivePapers 

Nix and Guix 

The Cult of the Bound Variable 

    32-bit unsigned 

    Darius suggests it’s worth looking at the Sandmark contestants’ 
bugs. 

Corewar Redcode 

    Corewar is a game in which a multithreaded processor “MARS” 
runs two programs that try to kill each other, alternating instructions.  
Like the Burroughs 5000, MARS tags memory words as instructions 
or data;  a program that attempts to execute a data word dies. 

    The textual Redcode assembly language is the standard format for 
specifying these programs;  there is no binary program format.  The 
determinism of MARS is intentionally limited:  programs are loaded 
at random starting addresses.  (Absent this measure, whichever 
program started running first could win by using its first instruction to 
store a data word in the other program’s first-executed location.) 

Wirth-the-RISC 

    In the 1990s, Wirth became interested in the potential of FPGAs 
for realizing processor designs, especially designs simplified so as to be 
easy to teach, without losing practicality.  He produced a series of 
progressively more complex designs in Verilog, unfortunately called 
RISC0, RISC1, RISC2, RISC3, RISC4, and RISC5, and ported the 
Oberon system to run on them.  Lacking a better name, I will just call 
them “Wirth-the-RISC”. 

    Wirth-the-RISC is admirably simple, with four condition-code 
flags for conditional jumps;  16 conditions for jumps (including 
“always”), which can optionally be indirect and/or save a return 



address;  16 register-to-register ALU instructions, some of which have 
two variants — signed versus unsigned MUL, for example, and ADD 
with or without carry;  load and store instructions with offsets;  and, 
for the RISC5 processor’s interrupts, an instruction to enable or 
disable interrupts, and an instruction to return from them.  Four of 
the ALU instructions are floating-point, though my impression is that 
the processor does not rise to the level of being practical for 
floating-point work — it has no double-precision and no square-root 
instruction. 

    The fact that Wirth-the-RISC successfully runs the Oberon GUI 
is a testament to the practicality of this design. 

SOD32 

Brainfuck 

    Brainfuck is a virtual machine of Urban Müller’s design;  it was not 
the first of the “esoteric programming languages” (that would be 
INTERCAL) — or even, I think, the second — but it was in a sense 
the one that established esoteric programming languages as a genre, 
inspiring the current profusion.  The Brainfuck virtual machine is, 
like INTERCAL, deliberately difficult to program in, but unlike 
INTERCAL, implementing it is extremely easy.  One day in 2014 I 
sat down to implement it from the spec, which I think took about an 
hour: 

/*
 * Brainfuck interpreter.
 */

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char **argv) {
  char program[10000];
  int fd = open(argv[1], O_RDONLY);
  if (fd < 0) {
    perror(argv[1]);
    return 1;
  }

  int progsize = read(fd, program, sizeof(program));
  close(fd);

  unsigned char memory[30001];
  int pc = 0, mp = 0;
  while (pc < progsize) {
    /* printf("[%d]", pc); */
    /* fflush(stdout); */
    switch (program[pc]) {
    case '>': mp++; pc++; break;
    case '<': mp--; pc++; break;



    case '+': memory[mp]++; pc++; break;
    case '-': memory[mp]--; pc++; break;
    case ',': read(0, &memory[mp], 1); pc++; break;
    case '.': write(1, &memory[mp], 1); pc++; break;
    case '[':
      if (memory[mp]) {
        pc++;
        break;
      }
      int bc = 0;
      do {
        if (program[pc] == '[') bc++;
        if (program[pc] == ']') bc--;
        pc++;
        if (pc >= progsize) {
          fprintf(stderr, "unmatched [\n");
          return 1;
        }
      } while (bc);
      break;
    case ']':
      if (!memory[mp]) {
        pc++;
        break;
      }
      int bbc = 0;
      do {
        if (program[pc] == ']') bbc++;
        if (program[pc] == '[') bbc--;
        pc--;
        if (pc < 0) {
          fprintf(stderr, "unmatched ]\n");
          return 1;
        }
      } while (bbc);
      pc++;
      pc++;
      break;
    default:                    /* comment! */
      pc++;
      break;
    }
  }
  return 0;
}
 

    After testing some simple examples, I downloaded Linus Åkesson’s 
implementation of Conway’s Game of Life (pbuh, QEPD): 

            Linus Akesson presents:
                   The Game Of Life implemented in Brainfuck

       +>>++++[<++++>-]<[<++++++>-]+[<[>>>>+<<<<-]>>>>[<<<<+>>>>>>+<<-]<+
   +++[>++++++++<-]>.[-]<+++[>+++<-]>+[>>.+<<-]>>[-]<<<++[<+++++>-]<.<<[>>>>+
 <<<<-]>>>>[<<<<+>>>>>>+<<-]<<[>>>>.+<<<++++++++++[<[>>+<<-]>>[<<+>>>>>++++++++



 +++<<<-]<[>+<-]>[<+>>>>+<<<-]>>>[>>>>>>>>>>>>+>+<<     <<<<<<<<<<<-]>>>>>>>>>>
>>[-[>>>>+<<<<-]>[>>>>+<<<<-]>>>]>      >>[<<<+>>  >-    ]<<<[>>+>+<<<-]>[->[<<<
<+>>>>-]<[<<<  <+>      >>>-]<<<< ]<     ++++++  ++       +[>+++++<-]>>[<<+>>-]<
<[>---<-]>.[- ]         <<<<<<<<< <      <<<<<< <         -]++++++++++.[-]<-]>>>
>[-]<[-]+++++           +++[>++++        ++++<     -     ]>--.[-]<,----------[<+
>-]>>>>>>+<<<<< <     <[>+>>>>>+>[      -]<<<      <<   <<-]>++++++++++>>>>>[[-]
<<,<<<<<<<->>>> >    >>[<<<<+>>>>-]<<<<[>>>>+      >+<<<<<-]>>>>>----------[<<<<
<<<<+<[>>>>+<<<      <-]>>>>[<<<<+>>>>>>+<<-      ]>[>-<-]>++++++++++[>+++++++++
++<-]<<<<<<[>>>      >+<<<<-]>>>>[<<<<+>>>>>      >+<<-]>>>>[<<->>-]<<++++++++++
[>+<-]>[>>>>>>>      >>>>>+>+<<<<      <<<<<      <<<<-]>>> >>     >>>>>>>[-[>>>
>+<<<<-]>[>>>>       +<<<<-]>> >       ]>> >           [<< <        +>>>-]+<<<[>
>>-<<<-]>[->[<      <<<+>>>>-]         <[ <            < <           <+>>>>-]<<<
<]<<<<<<<<<<<, [    -]]>]>[-+++        ++               +    +++     ++[>+++++++
++++>+++++++++ +    +<<-]>[-[>>>      +<<<-      ]>>>[ <    <<+      >>>>>>>+>+<
<<<<-]>>>>[-[> >    >>+<<<<-]>[>      >>>+< <    <<-]> >    >]>      >>[<<<+>>>-
]<<<[>>+>+<<< -     ]>[->[<<<<+>      >>>-] <    [<<< <    +>>       >>-]<<<<]<<
<<<<<<[>>>+<< <     -]>>>[<<<+>>      >>>>> +    >+<< <             <<-]<<[>>+<<
-]>>[<<+>>>>>      >+>+<<<<<-]>>      >>[-[ >    >>>+ <            <<<-]>[>>>>+<
<<<-]>[>>>>+<      <<<-]>>]>>>[ -    ]<[>+< -    ]<[ -           [<<<<+>>>>-]<<<
<]<<<<<<<<]<<      <<<<<<<<++++ +    +++++  [   >+++ +    ++++++[<[>>+<<-]>>[<<+
>>>>>++++++++ +    ++<<<     -] <    [>+<- ]    >[<+ >    >>>+<<<-]>>>[<<<+>>>-]
<<<[>>>+>>>>  >    +<<<<     <<      <<-]> >    >>>>       >>>[>>+<<-]>>[<<+<+>>
>-]<<<------ -    -----[     >>      >+<<< -    ]>>>       [<<<+> > >>>>>+>+<<<<
<-]>>>>[-[>> >    >+<<<<    -] >     [>>>> +    <<<<-       ]>>> ]  >>>[<<<+>>>-
]<<<[>>+>+<< <    -]>>>     >>           > >    [<<<+               >>>-]<<<[>>>
+<<<<<+>>-                  ]>           >     >>>>>[<             <<+>>>-]<<<[>
>>+<<<<<<<                  <<+         >      >>>>>-]<          <<<<<<[->[<<<<+
>>>>-]<[<<<<+>>>>-]<<<<]>[<<<<<<    <+>>>      >>>>-]<<<<     <<<<<+++++++++++[>
>>+<<<-]>>>[<<<+>>>>>>>+>+<<<<<-]>>>>[-[>     >>>+<<<<-]>[>>>>+<<<<-]>>>]>>>[<<<
+>>>-]<<<[>>+>+<<<-]>>>>>>>[<<<+>>>-]<<<[     >>>+<<<<<+>>-]>>>>>>>[<<<+>>>-]<<<
[>>>+<<<<<<<<<+>>>>>>-]<<<<<<<[->[< <  <     <+>>>>-]<[<<<<+>>>>-]<<<<]>[<<<<<<<
+>>>>>>>-]<<<<<<<<<+++++++++++[>>> >        >>>+>+<<<<<<<<-]>>>>>>>[-[>>>>+<<<<-
]>[>>>>+<<<<-]>>>]>>>[<<<+>>>-]<<< [       >>+>+<<<-]>>>>>>>[<<<+>>>-]<<<[>>>+<<
<<<+>>-]>>>>>>>[<<<+>>>-]<<<[>>>+<        <<<<<<<<+>>>>>>-]<<<<<<<[->[<<<<+>>>>-
 ]<[<<<<+>>>>-]<<<<]>[<<<<<<<+>>>>>      >>-]<<<<<<<----[>>>>>>>+<<<<<<<+[>>>>>
 >>-<<<<<<<[-]]<<<<<<<[>>>>>>>>>>>>+>+<<<<<<<<<<<<<-][   lft@df.lth.se   ]>>>>>
   >>>>>>>[-[>>>>+<<<<-]>[>>>>+<<<<-]>[>>>>+<<<<-]>>]>>>[-]<[>+<-]<[-[<<<<+>>
       >>-]<<<<]<<<<<<[-]]<<<<<<<[-]<<<<-]<-]>>>>>>>>>>>[-]<<]<<<<<<<<<<]

        Type for instance "fg" to toggle the cell at row f and column g
                   Hit enter to calculate the next generation
                                 Type q to quit
 

    As with INTERCAL, Brainfuck ignores anything it does not 
understand, so the textual comments do not interfere with the 
execution of the program. 

    This was a delightful experience, because by virtue of writing 68 
lines of C, I had implemented a virtual machine capable of running 
any Brainfuck program, and had transformed the ASCII-art textphile 
above into a running implementation of the Game of Life!  In 
principle, the C program above could compute any computable 
function, as long as it didn’t require more than 30001 bytes of 
memory. 

    Brainfuck itself, though, is a finger pointing at the moon;  it is not 



the moon.  It has no subroutine-call mechanism, it cannot run code 
generated at runtime, a straightforward implementation of it is 
absurdly inefficient, the encoding of its programs is also absurdly 
inefficient, and there have been several different incompatible 
semantics (for example, for the overflow of a memory location, and 
of course for the size of memory), so some Brainfuck programs are 
incompatible with some Brainfuck implementations. 

    Also, the issue of I/O is swept under the rug.  The above Life 
implementation is interactive on a terminal;  it draws the gameboard 
using ASCII art.  You can correct your input errors with backspace 
only thanks to the line-editing capabilities provided by default by the 
kernel or the C library;  by the same token, Brainfuck programs 
running in the above C implementation in the same way as Life 
cannot provide so much as tab-completion and overstrikes, much less 
mouse, key-release, and graphics handling.  To emulate video-games, 
even with a sufficiently powerful implementation, Brainfuck would 
need a mapping between streams of input and output bytes and the 
input and output events of interest;  this mapping, too, would need to 
be standardized for such an emulation to be portable among 
implementations. 

    Here’s a sample dialogue with the Life program, using this 
implementation of Brainfuck: 

 abcdefghij
a----------
b----------
c----------
d----------
e----------
f----------
g----------
h----------
i----------
j----------
>de
 abcdefghij
a----------
b----------
c----------
d----*-----
e----------
f----------
g----------
h----------
i----------
j----------
>df
 abcdefghij
a----------
b----------
c----------
d----**----
e----------
f----------



g----------
h----------
i----------
j----------
>fe
 abcdefghij
a----------
b----------
c----------
d----**----
e----------
f----*-----
g----------
h----------
i----------
j----------
>ee
 abcdefghij
a----------
b----------
c----------
d----**----
e----*-----
f----*-----
g----------
h----------
i----------
j----------
>ed
 abcdefghij
a----------
b----------
c----------
d----**----
e---**-----
f----*-----
g----------
h----------
i----------
j----------
>
 abcdefghij
a----------
b----------
c----------
d---***----
e---*------
f---**-----
g----------
h----------
i----------
j----------
>
 abcdefghij
a----------



b----------
c----*-----
d---**-----
e--*--*----
f---**-----
g----------
h----------
i----------
j----------
>
 abcdefghij
a----------
b----------
c---**-----
d---***----
e--*--*----
f---**-----
g----------
h----------
i----------
j----------
>
 abcdefghij
a----------
b----------
c---*-*----
d--*--*----
e--*--*----
f---**-----
g----------
h----------
i----------
j----------
>
 abcdefghij
a----------
b----------
c----*-----
d--**-**---
e--*--*----
f---**-----
g----------
h----------
i----------
j----------
>
 abcdefghij
a----------
b----------
c---***----
d--**-**---
e--*--**---
f---**-----
g----------
h----------



i----------
j----------
>
 abcdefghij
a----------
b----*-----
c--**-**---
d--*-------
e--*---*---
f---***----
g----------
h----------
i----------
j----------
>
 abcdefghij
a----------
b---***----
c--****----
d-**--**---
e--*-**----
f---***----
g----*-----
h----------
i----------
j----------
>q
 

    These 8 generations of 10×10 Life required 98 CPU seconds on this 
netbook (with the Brainfuck implementation compiled with cc -O5 
-fomit-frame-pointer -Wall -std=gnu99 using GCC 4.8.4), illustrating the 
efficiency problems of Brainfuck.  I took a couple of hours to write 
the following C version of Åkesson’s awesome program, which, 
compiled the same way, was able to do 80000 generations in 1.424 
CPU seconds, an efficiency difference of some 700k×, suggesting that 
the Brainfuck slowdown in this case is about 5 or 6 orders of 
magnitude. 

#include <stdio.h>

enum { ww = 10, hh = 10 };

int board[3][hh][ww];

/* From the cells in `from`, compute a parallel array with the sum of
   cells above and to the left of that cell, including that cell
   itself.  For example:

    >>> x
    array([[1, 0, 1],
           [0, 2, 1],
           [1, 1, 1]])
    >>> x.cumsum(axis=0).cumsum(axis=1)
    array([[1, 1, 2],
           [1, 3, 5],



           [2, 5, 8]])
 */
void sum(int from[hh][ww], int to[hh][ww])
{
    for (int x = 0; x < ww; x++) {
        to[0][x] = from[0][x];
        for (int y = 1; y < hh; y++) to[y][x] = to[y-1][x] + from[y][x];
    }
    for (int y = 0; y < hh; y++) {
        int total = to[y][0];
        for (int x = 1; x < ww; x++) to[y][x] = total += to[y][x];
    }
}

/* Return total neighbors in the neighborhood that includes (xmin+1,
   ymin+1), (xmin+2, ymin+1), ... (xmax, ymin+1), (xmin+1, ymin+2),
   ... (xmax, ymax).  xmin and/or ymin will be negative if the
   neighborhood is intended to encompass the leftmost and/or topmost
   cells; xmax may be >=ww-1 and/or ymax may be >=hh-1 if it is intended
   to encompass the rightmost and/or bottommost cells.
 */
static inline int rect(int sums[hh][ww], int xmin, int xmax, int ymin, int ymax)
{
    if (xmax > ww-1) xmax = ww-1;
    if (ymax > ww-1) ymax = hh-1;
    int ul = xmin < 0 ? 0 : ymin < 0 ? 0 : sums[ymin][xmin];
    int ur = ymin < 0 ? 0 : sums[ymin][xmax];
    int ll = xmin < 0 ? 0 : sums[ymax][xmin];
    int lr = sums[ymax][xmax];
    return lr - ur - ll + ul;
}

/* Return total cells in the 3×3 neighborhood centered on (x, y). */
static inline int neighborhood(int sums[hh][ww], int x, int y)
{
    return rect(sums, x-2, x+1, y-2, y+1);
}

static inline int should_live(int cells[hh][ww], int sums[hh][ww], int x, int y)
{
    int n = neighborhood(sums, x, y);
    return cells[y][x] ? 3 <= n && n <= 4 : n == 3;
}

void generation(int from[hh][ww], int to[hh][ww], int scratch[hh][ww])
{
    sum(from, scratch);
    for (int y = 0; y < hh; y++) {
        for (int x = 0; x < ww; x++) {
            to[y][x] = should_live(from, scratch, x, y);
        }
    }
}

void print_board(int cells[hh][ww])



{
    putchar(' ');
    for (int x = 0; x < ww; x++) putchar('a' + x);
    putchar('\n');

    for (int y = 0; y < hh; y++) {
        putchar('a' + y);
        for (int x = 0; x < ww; x++) putchar(cells[y][x] ? '*' : '-');
        putchar('\n');
    }
}

/* Returns 1 if we should do another generation, 0 to quit */
int prompt(int cells[hh][ww])
{
    for (;;) {
        print_board(cells);

        putchar('>');
        fflush(stdout);

        int c1 = getchar();
        if (c1 == 'q' || c1 == EOF) return 0;
        if (c1 == '\n') return 1;

        int c2 = getchar();
        int newline = getchar();
        if (c2 == EOF || newline == EOF) return 0;

        int *cell = &cells[c1-'a'][c2-'a'];
        *cell = !*cell;
    }
}

int main()
{
    int which = 0;
    for (;;) {
        if (!prompt(board[which])) return 0;
        generation(board[which], board[!which], board[2]);
        which = !which;
    }
}
 

Urbit’s Nock 

    Urbit is Mencius Moldbug’s effort to establish an internet with a 
feudal, authoritarian structure, which he believes to be the ideal 
structure for a society.  The basic foundation of Urbit is a 
deterministic, reproducible virtual machine called Nock, named after 
a political propagandist Moldbug admires despite Nock’s private 
contempt for Jewish people.  Nock implements a 
combinator-graph-reduction instruction set encoded as integers.  The 
rest of the Urbit distributed computation system is built atop Nock. 



    Nock’s basic instruction repertoire is too limited to be usably 
efficient for many of the tasks required for a distributed-computing 
system like Urbit;  this is partly compensated using a mechanism 
called “jets”.  The Nock implementation recognizes certain pieces of 
Nock code at runtime and, rather than evaluating them instruction by 
instruction, instead invokes a “jet” — a subroutine written in C that is 
hoped to produce an equivalent result.  Perhaps the most egregious 
example is an implementation of the Markdown document markup 
language, where a C implementation of Markdown is shamelessly 
substituted when a particular Nock implementation of Markdown is 
encountered. 

    Jets offer an apparent escape from the tradeoff between simplicity 
of specification and usable levels of efficiency.  And, in theory, they 
provide an unambiguous behavior specification for the native code to 
adhere to.  However, they aren’t a viable option for Veskeno, both 
because they means that a practically usable implementation requires 
an enormous amount of code whose contents must be guessed at by 
the implementor, and because in practice that code will be buggy in 
all modern implementations, since we don’t yet have sufficiently 
powerful formal methods for people to use them routinely, so if 
Veskeno used jets, no Veskeno results would be reproducible in 
practice. 

    Consequently Nock is less suitable than even Brainfuck as a basis 
for Veskeno. 

Simplicity 

    Simplicity is Russell O’Connor’s verifiable smart-contract 
language, designed for Ethereum.  It is a very interesting project, but 
like Nock, it relies on jets to reach usable efficiency.  It’s capable of 
expressing only finitary computations — those that could in principle 
be expressed by a finite table of input-to-output mappings, although 
Simplicity is designed to be able to practically express finitary 
computations whose tables, though finite, would be too large to 
construct explicitly.  Simplicity programs are guaranteed to terminate 
because, like Bitcoin Script, it lacks an iteration construct, relying on 
code repetition to achieve finite iteration. 

    For these reasons, Simplicity is even less suitable as a basis for 
Veskeno than Nock. 

Wasm 

Smalltalk-78 

The LuaJIT “bytecode” format 

    Lua’s register-based “bytecode” format — really a wordcode — is 
famous for its efficiency.  Considering this program in C: 

fib(n) { return n < 2 ? 1 : fib(n-1) + fib(n-2); }
main(int c, char **v) { printf("%d\n", fib(atoi(v[1]))); }
 

    And its Lua equivalent: 

function fib(n) if n < 2 then return 1 else return fib(n-1)+fib(n-2) end end
print(fib(tonumber(arg[1])))



 

    Compiling with gcc -O -fomit-frame-pointer fib.c -o fib with GCC 
4.8.4, on this Atom netbook, it takes 101-116 ms to compute 3524578 
with ./fib 32 and 399-406 ms to compute 14930352 with ./fib 35.  
Under PUC Lua 5.2.3, fib.lua 32 takes 2.809-2.839 s and fib.lua 35 
takes 11.856-12.211 s, both with the same results.  Under LuaJIT 2.0.2, 
fib.lua 32 takes 196-212 ms and fib.lua 35 takes 1.132-1.133 s. 

    So we can say that, on this crude microbenchmark, PUC Lua is 
29-31 times slower than C, while LuaJIT is 1.6-2.9 times slower than 
C.  Reputedly LuaJIT 2’s “bytecode” interpreter, which Mike Pall 
wrote in assembly, is faster than many high-level languages’ compiled 
code;  unfortunately there does not seem to be an option to disable the 
JIT compiler for easy microbenchmarking. 

    It’s somewhat to be expected that the extra type checks Lua must 
do will slow down the process, especially in software, especially on an 
in-order processor like this Atom.  Perhaps that accounts for the speed 
difference between XIS, the RISCy spike above (1/20 native), and 
PUC Lua (1/30). 

    CPython is the usual contrast here.  In CPython 2.7.6, this program 
takes 4.963-5.176 s to compute fib(32), 42-51 times slower than C: 

#!/usr/bin/python
import sys
fib = lambda n: 1 if n < 2 else fib(n-1) + fib(n-2)
print(fib(int(sys.argv[1])))
 

    LuaJIT uses its own slightly different “bytecode” format.  As 
explained in the LuaJIT Wiki, the LuaJIT bytecode, like the PUC 
Lua bytecode, has a fixed 32-bit-wide format with 8-bit fields.  The 
opcode is the least significant 8 bits;  the 2-operand instructions have a 
16-bit field as the second operand, which is usually an index into a 
constant table.  There are 16 comparison ops (which conditionally skip 
the following instruction, which is always a JMP), 4 unary ops, 17 
“binary” ops (one of which, string concatenation, is actually variadic), 
6 constant ops, 7 “upvalue” and function ops, 11 ops for manipulating 
Lua tables (like the GSET, GGET, and TGETB operations above), 8 
calling and iteration ops (like CALL and CALLM above), 4 return 
ops (like RET1 and RET0), 12 loop and branch ops, and 9 
function-header pseudo-ops, for a total of 94 ops. 

    luajit -bl fib.lua dumps the bytecode: 

-- BYTECODE -- fib.lua:2-2
0001    KSHORT   1   2
0002    ISGE     0   1
0003    JMP      1 => 0007
0004    KSHORT   1   1
0005    RET1     1   2
0006    JMP      1 => 0015
0007 => GGET     1   0      ; “fib”
0008    SUBVN    2   0   0  ; 1
0009    CALL     1   2   2
0010    GGET     2   0      ; “fib”
0011    SUBVN    3   0   1  ; 2

http://wiki.luajit.org/Bytecode-2.0
http://wiki.luajit.org/Bytecode-2.0


0012    CALL     2   2   2
0013    ADDVV    1   1   2
0014    RET1     1   2
0015 => RET0     0   1

-- BYTECODE -- fib.lua:0-4
0001    FNEW     0   0      ; fib.lua:2
0002    GSET     0   1      ; “fib”
0003    GGET     0   2      ; “print”
0004    GGET     1   1      ; “fib”
0005    GGET     2   3      ; “tonumber”
0006    GGET     3   4      ; “arg”
0007    TGETB    3   3   1
0008    CALL     2   0   2
0009    CALLM    1   0   0
0010    CALLM    0   1   0
0011    RET0     0   1
 

    Many of these ops are specialized versions of basic operations;  there 
are, for example, three SUB instructions, two of which are specialized 
to the case where one of the operands is a constant.  Some of the 
operations are duplicated to provide the JIT compiler a place to 
record its success or failure at JIT-compiling the loop body. 

    There is no specialized version of the “>=” operation for 
comparing against a constant, so the “< 2” test in fib is compiled to 
KSHORT (load immediate) followed by ISGE;  similarly, there is no 
specialized version of the return operation, so return 1 is compiled to 
KSHORT followed by RET1. 

    As on the SPARC or in Smalltalk-80, each function evidently has 
its own set of registers;  the main-program code at the bottom of the 
listing above begins by getting some variables fro the global 
namespace in registers 0, 1, 2, and 3, and then after calling tonumber (in 
register 2) and fib (in register 1) it expects to still find print in register 
0, even though within fib the argument n is evidently in register 0.  
Thus no bytecode need be emitted to save and restore context upon 
function call or return. 

    The three-operand nature of LuaJIT’s bytecode saves some 
operations, and thus some opcode dispatches, compared to the 
two-operand XIS code above, which has 19 instructions in the fib 
subroutine rather than 15.  Where XIS has 

  a_rr(mov, 0, 1),           /* fib: r1 := r0 */
  a_k16(lit16, 2, 2),        /* r2 := 2 */
  a_rr(sub, 2, 1),           /* r1 -= r2 */
  a_jl(1, 13),               /* if r1 < 0, go forward 13 insns */
 

    LuaJIT has 

0001    KSHORT   1   2
0002    ISGE     0   1
0003    JMP      1 => 0007
 

    although perhaps this has as much to do with LuaJIT discarding the 



subtraction result rather than storing it in a destination register.  A 
recursive call fib(n-2) in LuaJIT is three instructions, and would be 
two if not for the possibility of something having rebound the name 
fib: 

    0010    GGET     2   0      ; “fib”
    0011    SUBVN    3   0   1  ; 2
    0012    CALL     2   2   2
 

    while XIS requires six, due to explicit saving and restoring of 
argument registers: 

  a_rs(push, 0),             /* save return value from recursive call */
  a_k16(lit16, 3, 2),        /* r3 := 2 */
  a_rr(mov, 1, 0),           /* r0 := r1 */
  a_rr(sub, 3, 0),           /* r0 -= r3 */
  a_call(-14),               /* call fib */
  a_rd(pop, 1),              /* pop saved return value into r1 */
 

    I don’t know if there’s a way to get such implicit save/restore into 
a Veskeno-sized spec;  maybe make some of the “registers” index off 
a stack pointer in memory that increments or decrements by some 
constant after a call, like a lobotomized SPARC?  Where would you 
store the return address — would it eat a general-purpose register? 
If I remember correctly, the SPARC has 64 general-purpose registers:  8 for global 
variables, and 48 in a “register window”, of which 8 are shared with the caller, 8 
are local, and 8 are shared with callees — so the window shifts by 16 on every call 
and return.  The idea is that a simple, slow implementation can store all of these 
windows in RAM;  a slightly less simple one can use 48 registers and save 16 to 
RAM on every call and restore them on every return;  and a more sophisticated 
implementation can maintain a circular buffer that only “spills” to RAM when it 
gets full.  Thus the “S” for “Scalable” in “SPARC”.  

    Part of CPython’s slowness is because CPython’s bytecode is 
stack-based rather than register-based, commonly requiring about 
twice as many opcode dispatches as Lua.  The above function is 18 
CPython bytecode ops, rather than LuaJIT’s 15;  its leaf path is 7 ops 
rather than 5, and its non-leaf path is 16 ops rather than 11, so for this 
microbenchmark the dispatch penalty of stack-machine code is 
smaller than that typical factor of 2. 

  3           0 LOAD_FAST                0 (n)
              3 LOAD_CONST               1 (2)
              6 COMPARE_OP               0 (<)
              9 POP_JUMP_IF_FALSE       16
             12 LOAD_CONST               2 (1)
             15 RETURN_VALUE
        >>   16 LOAD_GLOBAL              0 (fib)
             19 LOAD_FAST                0 (n)
             22 LOAD_CONST               2 (1)
             25 BINARY_SUBTRACT
             26 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             29 LOAD_GLOBAL              0 (fib)
             32 LOAD_FAST                0 (n)
             35 LOAD_CONST               1 (2)
             38 BINARY_SUBTRACT



             39 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             42 BINARY_ADD
             43 RETURN_VALUE
 

    As one specific example, this three-op sequence corresponds to a 
single LuaJIT op: 

             19 LOAD_FAST                0 (n)
             22 LOAD_CONST               2 (1)
             25 BINARY_SUBTRACT

0008    SUBVN    2   0   0  ; 1
 

    Both LuaJIT and CPython separate the comparison and the jump 
into two separate instructions;  in LuaJIT the comparison is effectively 
a conditional-skip instruction as on HP calculators.  Conditional skip 
is very easy to implement in software for a fixed instruction length, 
but very easy to implement incorrectly otherwise. 

    To complete the comparisons, the i386 code emitted by GCC in 
the tests above was as follows: 

 804844d:       56                      push   %esi
 804844e:       53                      push   %ebx
 804844f:       83 ec 14                sub    $0x14,%esp    ; useless waste
 8048452:       8b 5c 24 20             mov    0x20(%esp),%ebx ; n
 8048456:       b8 01 00 00 00          mov    $0x1,%eax       ; return 1
 804845b:       83 fb 01                cmp    $0x1,%ebx       ; n <= 1?
 804845e:       7e 1a                   jle    804847a <fib+0x2d>
 8048460:       8d 43 ff                lea    -0x1(%ebx),%eax ; n-1
 8048463:       89 04 24                mov    %eax,(%esp)     ; pass arg
 8048466:       e8 e2 ff ff ff          call   804844d <fib>
 804846b:       89 c6                   mov    %eax,%esi       ; save result
 804846d:       83 eb 02                sub    $0x2,%ebx       ; n-2
 8048470:       89 1c 24                mov    %ebx,(%esp)     ; pass arg
 8048473:       e8 d5 ff ff ff          call   804844d <fib>
 8048478:       01 f0                   add    %esi,%eax       ; sum results
 804847a:       83 c4 14                add    $0x14,%esp
 804847d:       5b                      pop    %ebx
 804847e:       5e                      pop    %esi
 804847f:       c3                      ret
 

    This is 11 operations in the leaf-call base case and 19 operations in 
the non-leaf recursive case.  To avoid redundant saves and restores 
around the recursive calls, it keeps its local variables (n and the return 
value from the first recursive call) in callee-saved registers %esi and 
%ebx;  this reduces the code size but has no real effect on 
performance.  (If it had used caller-saved registers, as I did in the XIS 
code, the initial root call to fib would have avoided the cost to save 
and restore them, but that is not significant.) 

    It suffers from the shitty i386 C iBCS calling convention where 
everything goes on the stack.  Revising it to 

__attribute__((fastcall)) int fib(int n)
{



    return n < 2 ? 1 : fib(n-1) + fib(n-2);
}
 

    yields about 17% shorter runtimes with gcc -O -fomit-frame-pointer 
fib.c -o fib, of 334-336 ms with ./fib 35, and the following improved 
code, with only 17 instructions (12% less): 

 804844d:       56                      push   %esi
 804844e:       53                      push   %ebx
 804844f:       83 ec 04                sub    $0x4,%esp    ; still useless
 8048452:       89 cb                   mov    %ecx,%ebx       ; n
 8048454:       b8 01 00 00 00          mov    $0x1,%eax       ; return 1
 8048459:       83 f9 01                cmp    $0x1,%ecx       ; n < 1?
 804845c:       7e 14                   jle    8048472 <fib+0x25>
 804845e:       8d 49 ff                lea    -0x1(%ecx),%ecx ; n-1, arg
 8048461:       e8 e7 ff ff ff          call   804844d <fib>
 8048466:       89 c6                   mov    %eax,%esi       ; save result
 8048468:       8d 4b fe                lea    -0x2(%ebx),%ecx ; n-2, arg
 804846b:       e8 dd ff ff ff          call   804844d <fib>
 8048470:       01 f0                   add    %esi,%eax       ; sum results
 8048472:       83 c4 04                add    $0x4,%esp
 8048475:       5b                      pop    %ebx
 8048476:       5e                      pop    %esi
 8048477:       c3                      ret
 

    (Adding static inline induces GCC to inline it into itself five levels 
deep, resulting in 242 instructions that include 32 recursive calls, and 
more than doubling the execution speed, to 157 ms runtime for ./fib 
35.) 

    This is getting pretty deep into optimization hacks;  the justification 
is just that it illuminates some of the tradeoffs between different 
instruction-set choices. 

SWEET-16 

    As I wrote in “bytecode interpreters for tiny computers” in 2008: 
Steve Wozniak’s SWEET16 16-bit virtual machine, included as part of Integer 
BASIC, supposedly doubled the code density of the 6502.  The virtual machine 
itself was 300 bytes of 6502 assembly, implementing these instructions;  here “#” 
means “[0-F]”. 

0x1# SET: load immediate               0x2# LD: copy register to accumulator
0x3# ST: copy accumulator to register  0x4# LD: load byte indirect w/ increment
0x5# ST: store byte indirect w/incr    0x6# LDD: load two bytes ind w/incr
0x7# STD: store two bytes ind w/incr   0x8# POP: load byte indirect w/predecr
0x9# STP: store byte ind w/predecr     0xA# ADD: add register to accum
0xB# SUB: subtract register from acc   0xC# POPD: load 2 bytes ind w/predecr
0xD# CPR: compare register w/acc       0xE# INR: increment register
0xF# DCR: decrement register           0x00 RTN to 6502 mode
0x01 BR unconditional branch           0x02 BNC branch if no carry
0x03 BC branch if carry                0x04 BP branch if positive
0x05 BM branch if minus                0x06 BZ branch if zero
0x07 BNZ branch if nonzero             0x08 BM1 branch if -1
0x09 BNM1 branch if not -1             0x0A BK break (software interrupt)
0x0B RS return from sub (R12 is SP)    0x0C BS branch to sub (R12 is SP)



 
    0x01-0x09 and 0x0C have a second byte which is a signed 8-bit displacement.  If 
you want a 16-bit jump, you can push it on the stack and RS. 
    That’s it, 28 instructions, 300 bytes of machine code to implement them.  And I 
thought the 6502 was already reasonable on code density, so this was apparently 
quite a win.  

    It’s notable to me that his only ALU operations here are ADD, 
SUB, CPR, INR, and DCR;  there are no bitwise operations, not 
even a shift-right.  I’m guessing that SET was followed by a 16-bit 
immediate to load into R#, though that isn’t mentioned in my notes. 

    This is about the right level of complexity for Veskeno, although 
I’d go 32-bit and trade some of the condition codes and branching 
options for some bitwise operations. 

    Darius Bacon suggested that one of the reasons XIS was so slow 
was that it didn’t have a distinguished accumulator, so every binary 
operation had to index an array three times:  once to read each input 
and once to write the output.  (It also had to extract the relevant fields 
from the instruction word.) As with stack machines, a 
single-accumulator machine like the SWEET-16 reduces the number 
of operands that need to be decoded and indexed, at the expense of 
requiring a larger number of opcodes to be decoded for a given task. 

Chip-8 

Thanks 

    Discussions with Darius Bacon, John Cowan, and Sean B.  Palmer 
greatly contributed to the Veskeno design, although undoubtedly any 
of them would be horrified at its deficiencies.

Topics

• Performance (p.  790) (24 notes) 
• Systems architecture (p.  805) (12 notes) 
• Derctuo (p.  815) (9 notes) 
• File formats (p.  823) (7 notes) 
• Calculation (p.  834) (6 notes) 
• Reproducibility (p.  838) (5 notes) 
• Instruction sets (p.  840) (5 notes) 
• Archival (p.  848) (5 notes) 
• Urbit (p.  870) (3 notes) 
• Veskeno (p.  908) (2 notes) 
• FPGAs (p.  950) (2 notes) 
• Errors (p.  955) (2 notes) 
• Corewar (p.  961) (2 notes) 
• Compilers (p.  963) (2 notes) 
• Chifir (p.  966) (2 notes) 
• Assembly language (p.  978) (2 notes) 
• Testing
• Lua
• Lisp
• Brainfuck



Convincingness
Kragen Javier Sitaker, 02020-06-20 (1 minute)

    Dijkstra said that it was essential to get your knowledge out of your 
own head so that it wouldn’t die with you:  to transmit it to other 
people.  But I’m selfish enough to find that less compelling than 
several other reasons. 

    One is that, when your knowledge is only in your own head, it’s 
easy to fool yourself into thinking you know things that you don’t 
really know.  If you try to tell other people about it, sometimes they 
will be harder to convince.  They may need to see more convincing 
evidence than the evidence you had gathered previously.  By 
organizing the evidence and gathering more of it, you may discover 
that you were mistaken, in whole or in part;  objectively observable 
evidence is generally higher-quality evidence.  Sabine Hossenfelder 
wrote a very interesting article about her time listening to physics 
crackpots expound their theories, and in many cases they didn’t have 
a clear idea of what kind of thing would count as evidence, or even as 
a physical theory. 

    Another is that they may offer contributions:  they may suggest 
that the technique you have devised would be useful for something 
you hadn’t thought of, or point out a weakness you hadn’t seen, 
either because they know something you don’t or just because their 
perspective is different from yours.
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Lantern gears
Kragen Javier Sitaker, 02020-06-20 (updated 02020-06-28) 
(1 minute)

    “Lantern gears” is a term, apparently originating from Matthias 
Wandel, for a kind of gear that was ubiquitous in medieval clocks:  
two parallel discs joined by a circle of round bars around their 
perimeters.  It would be a lantern if you put a candle in the middle.  If 
it weren’t for the discovery of the Hellenistic-era 
triangular-tooth-profile Antikythera Mechanism, I would have 
thought they predated meshing spur gears. 

    While it’s tricky to get involute-profile gears to mesh without 
binding if they have fewer than seven teeth, lantern gears can work 
well with as few as three teeth, because the mating gear’s teeth can 
sweep around the interior of the lantern gear.  Medieval clocks, with 
their more primitive toothforms, did not come close to this level of 
optimization, but I think they did get substantially better gear ratios 
than they could have managed with triangular teeth.
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Segments and blocks
Kragen Javier Sitaker, 02020-06-20 (updated 02020-12-16) 
(51 minutes)

    Consider the problem of efficiently implementing some kind of 
virtual machine, like Veskeno (p.  122) or the JVM.  Often it’s 
desirable for the virtual machine to be able to provide bounds 
checking and garbage collection, thus preventing indexing, type, and 
memory-management errors from provoking entirely unpredictable 
behavior. 

    Run-time bounds checking is expensive, though, so it would be 
nice to avoid it most of the time.  The current standard approach to 
this is to hope your optimizing compiler will be able to hoist your 
bounds checks out of your inner loops.  But I think there is a simpler 
and more orthogonal approach. 

    Exploring this, I think I found a way to write a featureful and 
adequately fast multitasking system with memory protection on 
microcontrollers, perhaps similar to Liedtke’s pre-L4 designs, L3 and 
Eumel;  it ought to straightforwardly support paradigms like 
transactional shared memory, ACID transactions, and access to 
filesystem snapshots, and even helps to support clustering. 

Safe indexing without bounds checks 

    The 8086 and its descendants index the general-purpose register file 
in almost every instruction.  The general-purpose register file consists 
of 8 registers (16-bit registers in the 8086, 32-bit in the i386, 64-bit in 
amd64), but no bounds-checking is required, because the index field 
in the instruction is only 3 bits, so indexing errors are impossible.  
(Amd64 adds additional instruction formats that can index a larger 
16-register general-purpose register file, using 4-bit fields.) 

    Similarly, every memory reference on the i386 in protected mode 
indexes into some 4096-byte page with the last 12 bits of the effective 
address.  This indexing, too, avoids any bounds checking — although 
the more significant 20 bits of the memory address are looked up in 
the processor’s TLB, and if they are not found, a tree traversal is 
performed, with the possibility of a protection fault if no page is 
mapped. 

    So suppose our virtual machine provides access to pointer-free 
“string memory” in, say, 1024-byte blocks, and a virtual-machine 
instruction to index into the current block with an 10-bit index.  A 
bytecode loop running in the virtual machine can freely generate such 
indices and read and write the current block without incurring any 
expense of bounds-checking.  Of course, that the array or record 
being indexed by the virtual machine may be smaller than 1024 bytes, 
and wrapping around to the beginning may not be an acceptable 
handling of overflowing those bounds, so this may not provide 
bounds-checking from the point of view of the high-level language 
implemented — but it prevents the bytecode from corrupting the 
virtual machine’s data structures. 



Multiple block keys 

    Suppose we want to access more than 1024 bytes in our program?  
We can have multiple block pointers in “segment descriptor” or 
“block descriptor” or “block key” registers in the virtual machine.  4, 
8, or 16 might be a reasonable number.  How do we specify which 
segment to use?  There are many possibilities.  The 
read-string-memory and write-string-memory instructions could 
contain a segment field indicating which register to use;  the virtual 
machine could provide an instruction that sets the current segment to 
one of the segment registers;  different modes of accessing memory 
could use different current-segment registers (for example, 
instruction fetch, data read, and data write);  you could use the 8086 
“instruction prefix” mechanism where non-default segment registers 
are selected for a single instruction by a special instruction before it;  
or some combination. 

    Implicitly using a current-segment register avoids indexing into the 
array of registers in the virtual-machine implementation.  Using a 
separate current-write-segment register for write access potentially 
permits enforcing read-only access to data.  Even if no read-only 
restrictions are desired, in a virtual-memory system with no MMU, 
this would allow the block to be efficiently marked dirty so that it 
could be flushed back to stable storage;  perhaps transactional 
memory, copy-on-write sharing, and checkpoint and rollback could 
be supported in this way as well.  Similarly, explicitly selecting blocks 
for reading would efficiently give an LRU eviction system the data it 
needs to work, as well as permitting them to be faulted in from slower 
storage if needed. 

Nodes 

    But suppose we want to access more than 8192 bytes of data in our 
program?  We need some way to store the referents of block keys, but 
we cannot store them in blocks themselves — the program could 
overwrite them.  Instead let us store block keys in a different kind of 
structure, which following KeyKOS terminology we will call a 
“node”.  A node contains, say, 64 block key slots.  The virtual 
machine contains a “current node register” analogous to the “current 
block register”, and a set of 4–16 node registers analogous to the 4–16 
block or segment registers.  A “read block key” instruction takes a 
6-bit index and loads the corresponding block key into the current 
segment register;  the analogous “write block key” stores the block 
key from the current segment register into the specified block key slot 
of the current node. 

    All the block-key slots of a node and all the block-key registers of 
the virtual machine are guaranteed to contain valid block keys at all 
times, so these virtual-machine instructions need do no validation. 

    64 block keys in a node give us access to 65536 bytes of data, and 
we can keep keys to another, say, 7168 bytes in the, say, 7 non-current 
block-key registers. 

    But suppose we want access to more than 72704 bytes of data?  For 
that we use multiple nodes. 

Node keys 



    In addition to the 64 block keys, a node also contains (say) 64 node 
key slots, and there are analogous “read node key” and “write node 
key” instructions which permit traversing and mutating the graph of 
nodes.  Like the block-key instructions, these instructions require no 
validity checking;  there is no way to copy a block key into a 
node-key slot or vice versa, and there is no way to copy either kind of 
key into a block or to copy data from a block into a key slot. 

    The read-key and write-key instructions have indirect versions that 
take the indices of a slot within a node from a virtual-machine 
register rather than the instruction itself.  This permits programmatic 
indexing of the node graph without unwieldy 64-way conditionals or 
self-modifying or dynamically-generated code. 

    There is nothing to prevent the node graph from being arbitrarily 
cyclic or to prevent nodes from becoming unreferenced, but a garbage 
collector can safely traverse this node graph.  Because the nodes are so 
large, 256-1024 bytes, this should be a relatively short process — a 
machine with 16 gibibytes of RAM and 64-bit pointers cannot 
accommodate even 16'777'216 nodes, and if the nodes are being used 
to index a tree of blocks in RAM, there can’t be even 262'144 nodes.  
So a full garbage collection should normally be submillisecond.  The 
corollary, of course, is that these nodes are not going to be a 
reasonable way to implement small data structures like a Lisp “cons” 
or “pair”, costing at least some 64 times as much as a reasonable cons.  
Still, compared to CPython or Perl, that’s still not that much. 

The repertoire 

    So, the full inventory of operations is something like the following: 

• read-string-memory(bk, u10) → u8 or u32 or something via the 
given block key, which may be implicit for efficiency; 
• write-string-memory(bk, u10, u8 or u32 or something), 
analogously — these two operations might come in multiple widths; 
• allocate-block() → bk, allocates a fresh block (with the destination 
location perhaps implicit); 
• allocate-node(bk) → nk, allocates a fresh node all of whose block 
keys initially refer to the block given by bk; 
• read-block-key(nk, u6) → bk, reads a block key from the node 
given by nk in the slot given by u6; 
• write-block-key(nk, u6, bk), analogously; 
• read-node-key(nk, u6) → nk, analogously to read a node key; 
• write-node-key(nk, u6, nk), analogously.  

    Also, possibly one or more of the following: 

• select-write-block-key(u4), start using the block key in the 
identified block key register for write operations; 
• select-block-key(u4), analogously but either for data read operations 
or for all operations; 
• far-call(u4, offset), transfer control to the code at the given offset in 
the block whose key is in the identified block key register;  this is not 
applicable if the virtual machine’s code is not itself stored in blocks; 
• select-node-key(u4), start using the node key in the identified node 
key register; 



• block-key-prefix(u4), use the block key in the identified block key 
register for the next operation only.  

    To index a larger memory area than a single block, you could use 
an operation sequence something like the following: 

• r2 := r1;  supposing r1 has the index 
• r2 >>= constant 10 
• select-block-key(r2);  supposing the current node is an index of a 
64KiB memory area 
• read-string-memory(r1);  supposing read-string-memory only pays 
attention to the low 10 bits.  

    In the case of accessing a multi-word chunk of data from a block, 
the first three operations can be amortized over many accesses to the 
same block. 

Matrices 

    The once and future king of computer applications is numerical 
matrices, with applications such as matrix-vector multiply xGEMV, 
matrix-matrix multiply xGEMM, and eigenvalue computation 
xSYTRD/xGEBRD/xSTERF/xSTEDC accounting for a good deal 
of the usage of many computers — historically due to physics models, 
now due to artificial neural networks. 

    The obvious way to organize a matrix for access locality in a 
blocks-and-nodes system is to divide it into rectangular or square 
blocks;  if it’s 32-bit single-precision, an 8×8 block fits into a 256-byte 
storage block, and in 64-bit double-precision, two 4×4 blocks do.  In 
SGEMV matrix-vector multiply, multiplying an 8×8 matrix block 
by an 8-element vector segment yields an 8-element partial-sum 
vector segment in 64 multiply-accumulates;  in SGEMM 
matrix-matrix multiply, multiplying two 8×8 matrix blocks yields an 
8×8 partial-sum matrix block in 512 multiply-accumulates. 

    These seem likely to be sufficiently large amounts of computation 
that the cost of faulting in a block will not be overwhelming, 
particularly if any I/O latency can be hidden with multitasking. 

    The other king of computer applications is slinging around pixels to 
put on the screen, and a similar 8×8 block of 32-bit BGRA pixels 
seems like a good fundamental unit to use there. 

Related systems 

    As mentioned above, Jochen Liedtke wrote some systems 
somewhat similar to this design before writing L4, providing memory 
protection and process isolation on Z80-based systems with what I 
understand to be a trusted compiler. 

The Burroughs B5000 

    The Burroughs B5000 is probably where this kind of structure 
derives from originally, but I still need to read THE DESCRIPTOR 
to learn about it. 

    The B5000 tagged every 48-bit memory word with a code/data 
bit, thus providing “W^X” functionality at a memory-word level 
rather than a page level;  its descendants added two more tag bits, 



providing dynamic typing at the hardware level, so that for example 
only a single ADD instruction was needed, dynamically dispatching 
to single- or double-precision addition;  its “descriptors” indicated 
whether an array contained words or bytes (and, if bytes, bytes of 
which of the three supported sizes.) 

The relation to KeyKOS 

    As I mentioned above, this is in some sense copied from KeyKOS, 
although there are some differences.  KeyKOS didn’t statically 
segregate block keys (“page keys”) from other kinds of keys, and it 
didn’t have “block key registers” or “node key registers” or any key 
registers other than the ones in the nodes. 

    KeyKOS had various other abilities. 

    It used the IBM 370 virtual-memory mechanism, and later the 
SPARC virtual-memory mechanism, to let the “virtual machine 
bytecode” be the regular CPU instructions, mapping many-page 
segments with the MMU so that the four-instruction sequence above 
was just a regular memory access. 

    Space and time were divided up hierarchically with “space banks” 
and “clocks” — you needed access to a non-exhausted space bank to 
allocate space and a non-exhausted clock in order to consume CPU 
time.  The owner of a space bank could revoke all the storage 
allocated from it. 

    It had kinds of keys other than page keys and node keys — it had 
invocation keys and resumption keys supporting efficient remote 
procedure call between separate processes (“domains”), as well as keys 
granting access to other kinds of kernel objects such as space banks 
and clocks. 

    There was a “weaken” operation that could convert a normal node 
key or page key into a “sense key” which only permitted read 
operations — transitively, so that if a page key was fetched from a 
node via a sense key, that page key would also be returned as a 
read-only sense key. 

    There was a closely-held KEYBITS key to obtain the raw bits of a 
key, so that efficient lookups by key value were possible, though I 
think all processes were able to compare two keys for equality. 

    KeyKOS was transparently persistent:  periodically it would stream 
out to disk all the dirty pages and nodes, then commit a checkpoint. 

    But I think even the minimal nodes-and-blocks structure described 
above is enough to be useful. 

The relation to Forth 

    Forth systems traditionally used a very simple manual 
virtual-memory system instead of a filesystem.  2303 BLOCK would 
ensure that 1024-byte block number 2303 from the disk was loaded 
into a block buffer, and return the address of that buffer;  UPDATE would 
mark as dirty the last block thus referenced and ensure that it would 
be written to disk when necessary.  Block eviction was guaranteed 
LRU, there were always at least two block buffers (GForth uses 20), 
and multithreading was cooperative, so you could be sure that the 
addresses of the two most recently referenced blocks would remain 
valid until you referenced another block or yielded control. 



    Forth does not make any attempt to separate pointers from other 
data or to check bounds on array indexing. 

The relation to Smalltalk 

    A Smalltalk method normally runs with access to some local 
variables, including its arguments;  a vector of instance variables in its 
receiver;  and a pool of constants associated with, I think, the method.  
Different bytecodes are assigned to load and store from each of these 
“segments”, except that the constant pool is not writable.  There are 
no indirections there;  the offsets are all hardcoded into the 
instructions.  Arrays are instead treated as a separate class of object 
whose #at: and #at:put: methods are “primitives”, handled by native 
code linked into the virtual machine. 

    Smalltalk does not have a notion of “pointer-free data”;  its 
SmallIntegers, characters, booleans, and symbols (“selectors”) are 
treated as full-fledged objects and nominally accessed by sending 
them messages, although some of them normally are implemented by 
storing all their (immutable) data in a tagged pointer rather than 
boxed in memory like CPython.  Some selectors like #ifTrue:ifFalse: 
are special-cased by the virtual machine. 

    (Hmm, actually maybe Smalltalk does have such a notion:  “bits” 
fields.) 

    So in a sense this is a simplification of the Smalltalk model, with 
just one uniform kind of node for instance variables, local variables, 
etc., but with storage for pointer-free bytes slapped onto the side. 

    Kaehler & Krasner’s 1982 LOOM paper describes an approach that 
is very similar in many ways, although unfortunately they had not yet 
finished the system at the time they published their paper, saying, 
“Our LOOM virtual memory system is in its infancy.  We are only 
beginning to make measurements on its performance.” Other authors 
of the LOOM system included Althoff, Weyer, Deutsch, Ingalls, and 
Merry, with input from Bobrow and Tesler. 

    LOOM maintains an in-RAM cache of up to 215 “resident” objects 
linked together with 16-bit short Oops, out of a possible total of 231 
objects on disk (occupying a maximum of 233 bytes, since it was 1982), 
linked together with 32-bit long Oops.  Nonresident objects’ 
ambassadors in RAM are called “leaves”.  They mention that the 
average object in their system consumes 13 words in memory (26 
bytes), plus perhaps a couple more words in the Resident Object 
Table.  To save RAM, some short-Oop fields are just 0 (“lambda”) 
instead of pointing at leaf objects, requiring LOOM to refetch the 
on-disk object to find the long Oop they’re supposed to refer to. 

    LOOM de-lambda-izes the entire receiver, fleshing out lambdas 
into full leaves, before invoking a method.  Thus it avoids null checks 
on every field access.  This is reminiscent of the 
microcontroller-focused mechanism described above which brings 
blocks or nodes into memory when their keys are brought into a 
virtual-machine register. 

    Their short-Oop mechanism is table-based, unlike HotSpot’s 
compressed-Oop mechanism, which represents a 64-bit object pointer 
as a 36-bit (?) offset from a global heap base address, shifted right by 4 
(?) bits and thus stored in a 32-bit word.  Being table-based permits 



relocation of objects when their 4-word leaves are replaced by 
full-fledged resident objects after being brought in from disk.  They 
do suggest using precisely HotSpot’s compressed-Oop approach to 
support 236 bytes of on-disk objects, though, and their RAM is 
16-bit-word-oriented, so they can support 131072 bytes of objects in 
RAM, like the original Macintosh 128K, not merely 65536. 

    LOOM used reference counting for garbage collection, both on 
disk and in RAM. 

Running on microcontrollers 

    This block-and-node system solves a lot of the problems that make 
bunches of microcontrollers a pain to program with even the kind of 
general-purpose software we had on 1970s home computers, despite 
nominally having tens or hundreds of times as much computational 
power. 

Virtual memory with 256-byte blocks as pages 

    Using the loading of block key registers to drive a 
non-hardware-supported virtual-memory system should permit, for 
example, implementing a reasonably featureful and performant 
virtual-memory system on an AVR with an SPI Flash chip, perhaps 
with a somewhat smaller block size, like 256 bytes, and a somewhat 
smaller node size.  At 5 megabits per second, a reasonable SPI speed, 
256 bytes should take 409.6 microseconds to load or store, plus 
whatever overheads exist (I think about 25% on SPI itself?  Plus erase 
time for Flash?) 

    Nodes should probably have 32 node keys and 32 block keys.  
Block keys of 32 bits in stable storage could address up to a terabyte, 
which is not too limiting;  128 bytes of such block keys would be 32 
block keys, and it’s probably reasonable to use a similar number of 
node keys.  In RAM, such a node might shrink to 64 bytes;  it 
probably isn’t necessary to keep the 32-bit identifiers of nonresident 
nodes and blocks, because the extra latency to read 4 bytes from an 
arbitrary location in Flash is small, unlike spinning rust.  (This of 
course suggests that the whole program of using virtual memory for 
such a system may be bad...) 

No barrel shifters 

    Hardware without fast bit-shifting abilities, such as an AVR, might 
benefit in another way from 256-byte blocks:  they could eliminate 
the need for a shift operation to compute the block-slot index from a 
flat address into an 8192-byte tree. 

Multiprocessing and concurrency 

    A potentially interesting approach to the problem of personal 
computing on microcontrollers would be to share access to “disk” 
blocks using a MESI or similar cache-coherency protocol, with these 
“blocks” of 256–1024 bytes playing the role of cache lines.  Then 
runnable processes can be migrated to whatever processor is idle, like 
on SMP.  (You could presumably do the same thing on a Linux-like 
system with a SAN, running MESI at page granularity;  has anybody 
tried this?  Maybe Amoeba?) 

    Normally, in MESI, if a cache line is in Modified or Exclusive 



state, a request from another cache to read it immediately transitions 
it to Shared state, guaranteeing forward progress.  But there are 
possible alternatives;  for example, you could “lock” a block or node 
for writing, so that attempts by other processes (on the same processor 
or not) to access that block or node will have to wait until you unlock 
it.  Or, all blocks and nodes might be “copy-on-write” in the sense 
that each process writing to them has its own private copy, and all 
shared data might be immutable, with keys to new data transmitted 
explicitly via some kind of IPC mechanism, or some small safety 
valve for mutable data.  Or, writes might use compare-and-swap 
semantics:  multiple processes might be writing to the same page or 
node at the same time, but when the first of them commits its write, 
the others are aborted, either immediately or when they attempt to 
commit.  (Presumably they can then be automatically retried.) 

    It’s tempting to suggest that these mechanisms would make it easy 
to build highly concurrent shared mutable data structures, but history 
has not been kind to such optimistic statements. 

Memory buses and hardware 

    The AVR itself supports SPI with I think an 8 MHz clock, but 
slower signals are less demanding on PCB layout.  Also, some 
common SPI memories don’t support such high speeds;  according to 
file jellybeans-2016, the US$2.78 two-megabit STMicroelectronics 
M95M02-DRMN6TP EEPROM is only 5 MHz.  Others do;  the 
US$1.09 256-kilobit Microchip 23K256-I/SN SRAM claims 20MHz 
according to file low-power-micros, and the US$0.36 4-mebibit Winbond 
W25X40CLSNIG claims 104MHz.  Memories cheaper than that 
tend to be only 400kHz I²C.  I don’t know how fast SD cards’ SPI 
interfaces are, but they’re also required. 

    If the SPI interface or whatever supports DMA, it might be feasible 
to run a second process for a couple thousand cycles while the first 
one was blocked on loading a block from external storage. 

    I’m not sure what the connectivity between multiple processors 
and the “disk” should look like;  I²C tends to be only 400kbps, which 
would push block access times up to a spinning-rust-like millisecond 
level, and SPI is inherently single-master, so you couldn’t connect 
multiple microcontrollers directly to a single memory chip.  The 
CAN bus might work, but of course memory chips don’t support it 
directly. 

    Probably you’d end up either connecting the processors into a ring, 
each with locally attached SPI memory, or dedicating one or two 
“kernel” processors to I/O arbitration, with a direct link to the 
memory and another direct link to each application processor. 

Dynamically loading code blocks on a microcontroller 

    There are a few different ways a microcontroller like the AVR 
could handle dynamically loading code.  First, it could just not do it at 
all, just using all this segments and nodes stuff to make it reasonably 
easy to run a little code with a lot of data.  Second, it could 
dynamically load bytecode blocks into RAM and run them in an 
interpreter — the AVR is slow enough that this would be somewhat 
limiting, and it’s certainly power-hungry, but this would allow 
relatively quick task switching.  Third, it could dynamically load 



machine-code blocks (whether somewhat dynamically created from 
bytecode or compiled ahead of time) and burn them into a “transient 
program area” in its Flash so it could run them, although this will 
limit its lifespan.  Fourth, if it’s a microcontroller that can run from 
RAM, which the AVR can’t, it could just load blocks of machine 
code into RAM and run that. 

STM32 

    Nowadays, as described in file stm32, it probably doesn’t make sense 
to use an AVR;  you should use at least a Cortex-M processor like the 
STM32;  a 48MHz STM32F031x4 with 16 kibibytes of RAM costs 
US$1.30, and I think some STM32s are even cheaper than that.  As 
bonuses, you get much lower power consumption and the ability to 
run code in RAM. 

Copy-on-write 

    Copy-on-write is a little bit tricky, in that, if the same process or 
transaction refers to the same block via two different access 
paths — such as via block key register 3 and block slot 5 in some 
node — you probably want it to get the same version of the block.  So 
it isn’t sufficient to do the pure-functional-tree thing of “modifying” 
a pointer to the block by creating a new version of the node, and its 
parent node, and so on up to the root of the tree, because there is 
perhaps no tree.  Instead, every time you go to load a block register, 
you must do a table lookup to see if the current process/transaction 
has a modified copy of that block, and, if not, conditionally create 
one.  (And analogously for modifying nodes.) 

The J1A 

    A potentially more interesting kind of microcontroller to use for 
this is the J1A Forth-like processor.  It might be reasonable to extend 
it to do many of the block and node operations “in hardware”, run 
several processors concurrently inside a single FPGA, and perhaps 
reconfigure other parts of the FPGA dynamically to assist with other 
computations. 

Incremental, differentiable, and concurrent 
computation 

    (This is explored in more detail in the note on transaction-per-call 
systems (p.  718).) 

    Above I mentioned transactional memory for concurrency control 
as one possible application of this kind of virtual machine.  The idea is 
that, to access the memory, you run some code inside a transaction, 
giving it some inputs when you start it, and buffer all its memory 
writes in a copy-on-write fashion;  if the transaction runs to 
completion successfully, it tries to commit, at which point we check to 
see whether any block or node it read had been modified by some 
other transaction in the mean time.  If so, we abort the transaction, 
discarding all of the buffered written data, and transparently restart it 
from the beginning;  if not, it successfully commits, and its versions of 
that modified data become the active versions.  It’s a very simple idea, 
and it is commonly used to permit high levels of parallelism with very 



straightforward, non-bug-prone, semantics. 

    As one example, you might have a piece of code that scans for an 
occurrence of the word “fuck” in a file, and sends an alert email if it 
appears, and another piece of code that modifies the contents of the 
file.  If the scanning code happens to be reading through the file when 
the word “full” is overwritten with the word “sick”, it might 
incorrectly conclude that the word “fuck” occurred, and send a 
spurious email, possibly getting someone fired.  But if both pieces of 
code must run within transactions, which must commit for any 
externally-observable thing to happen, then any modification to the 
blocks read by the scanner will abort the scanner’s transaction — unless 
it doesn’t commit until after the scanner commits, in which case the 
scanner will see a consistent post-modification version of the file. 

    Thus this simple optimistic-synchronization rule makes the 
transactions perfectly serializable — the results are exactly the same as 
if all the transaction code had run in a single thread, in the order in 
which the transactions committed — and it guarantees forward 
progress.  There are various kinds of optimizations that can be made 
to improve such a system’s performance. 

Long transactions 

    Consider, though, the situation of this scanner running on a large 
disk partition on which files are frequently being created and 
destroyed.  Although the system never blocks, the scanner will never 
finish!  By the time it comes to the end of the disk, certainly some 
other program will have modified some blocks it had already scanned, 
thus invalidating its results, and so it will be automatically restarted. 

    There are many ways to handle this “long transaction” problem;  
among them, pessimistic synchronization, nested transaction 
memoization, relaxed consistency, clever reordering, and spheres of 
influence. 

Pessimistic synchronization 

    Pessimistic synchronization was historically the most common way 
to solve the problem.  Instead of allowing all transactions to proceed, 
the scanner acquires “read locks” on every block or node it reads;  if 
any other transaction attempts to write to such a block or node, it is 
paused until the scanner’s transaction completes and then acquires a 
write lock;  and if the scanner tries to acquire a read lock on a block 
that some other transaction already has a write lock on, the scanner 
blocks until the other transaction commits or aborts.  The great 
benefits of pessimistic synchronization are that no work is ever wasted 
(so worst-case execution times can be computed) and no block ever 
need be copied.  Its drawbacks include that it’s easy to deadlock;  it’s 
difficult to get good scalability, since things block all the time;  and, in 
real-time systems, it suffers from “priority inversion” where a 
low-priority task can hold a lock blocking a high-priority task, and a 
medium-priority task can then starve the low-priority and the 
high-priority task. 

Nested transaction memoization 

    Nested transaction memoization is probably not something I just 
made up, but it works as follows.  The scanner scans as follows, in a 



made-up programming language with block arguments: 

scan(word, file, start, end) = {
    return child_transaction {
        assert(word.len < blocksize)
        if (end - start < blocksize) {
            return contains(word, file, start, end)
        }

        mid = start + (end - start) // 2
        return (scan(word, file, start, mid + len(word) - 1) or
                scan(word, file, mid, end))
    }
}
 

    scan starts by spawning a nested child transaction which can commit 
or abort before its parent does — by default, its abort will just retry it 
without affecting its parent, but once it commits, the blocks and 
nodes it read and wrote are added to the read and write sets of its 
parent, so any later changes to the blocks it read will then abort the 
parent;  but there are some significant fillips we will see below. 

    If the area to scan is smaller than blocksize, then the scan is done 
directly, using a naïve string search or Boyer-Moore or whatever.  
We presume that this can be done quickly enough that, much of the 
time, we will finish before something else overwrites any of the data 
in that range, so our chance of being aborted is small. 

    Otherwise, scan proceeds by making two recursive calls to itself, 
which of course spawn their own nested transactions.  If, during a 
commit, some read block is found to have been overwritten by a 
concurrent transaction, that transaction is then retried;  but its earlier 
siblings remain committed. 

    So far, this seems to have ameliorated our problem only slightly:  if 
something writes to the third quarter of the file while the fourth 
quarter is being scanned, then the transaction scanning the second half 
of the file will be aborted and retried.  So our tiny chances of success, 
assuming a uniform distribution of write traffic, would seem to have 
improved only by a factor of 4, or less. 

    This is where memoization comes in and saves the day!  Suppose 
that, instead of only remembering a flat list of blocks and nodes read 
and written by each active transaction in the stack, we also remember 
those read and written by committed transactions that are children or 
descendants of some active transaction, as well as the code and 
environment state needed to re-execute those transactions.  Now, 
when we retry scanning the second half of the file, we can revalidate 
these read sets, and if they are still valid, we can “wink in” the write 
set without actually running any of the transaction code. 

    To be concrete, suppose the file consists of eight blocks (0, 1, 2, 3, 4, 
5, 6, and 7), and we are retrying scanning the last four blocks because 
block 5 has changed.  (I will disregard overlaps here.) The transaction 
to scan blocks 4, 5, 6, and 7 is invalid, so it begins re-executing, and 
the first thing it does is to spawn a child transaction to scan blocks 4 
and 5.  This child transaction is invalid, since block 5 has changed, so 
it spawns a child transaction to scan block 4.  So far, memoization has 



changed nothing. 

    But then a miracle occurs!  Block 4 hasn’t changed, so it doesn’t 
need to be scanned;  the False return value and (empty) write set of the 
block-4 transaction are instantly retrieved from the memo table.  We 
proceed to spawn a child transaction to scan block 5, which has 
changed, so we rescan it byte by byte.  It also returns False, and so the 
blocks-4-and-5 transaction returns False, and its parent transaction 
spawns a new transaction to scan blocks 6 and 7.  But that transaction 
is also found in the memo table!  So no code need execute;  its 
(empty) write set is committed to its parent, and its False return value 
is returned. 

    So now our scan is complete, having scanned only the single block 
that actually changed and done additional O(log N) transaction 
revalidation work, through the beautiful gift of memoized nested 
transactions! 

    Like I said, I probably didn’t just make this up.  I just can’t 
remember where I’ve seen it.  Maybe Umut Acar’s “self-adjusting 
computation”. 

    Transactions that return immutable data — inevitably, newly 
created — poses no problem for this approach, and neither does 
mutating existing data.  But allocating and returning new blocks and 
nodes does pose a difficulty for memoization, because memoization 
introduces aliasing!  Without memoization, running the same 
transaction twice with the same inputs (including the state of the 
store) will allocate and return two separate sets of objects, but a 
naïvely implemented memo system would return two aliases to the 
same mutable objects.  I think this can be solved by marking the 
blocks and nodes as copy-on-write, by having the memo system 
actually copy them before returning them, or by making them 
read-only. 

Relaxed consistency 

    A common solution to the long-transaction problem is to use more 
relaxed isolation levels, at the risk of incorrect results.  No more 
details will be given of this shameful practice. 

Clever reordering, or MVCC 

    A different approach to the problem is to hope that the scanner’s 
results can be retroactively inserted into the transaction history instead 
of being appended to it.  This works surprisingly often;  in the 
example code above, for instance, the scanner doesn’t write any 
blocks — its only effect is to return a Boolean value — so it can 
trivially be run on any previous snapshot, and it is guaranteed that 
none of the transactions that committed in the interim would have 
had different results had the scanner transaction committed long ago. 

    This approach requires examining the write-set of the long 
transaction when it goes to commit to ensure that it’s not overwriting 
any blocks or nodes that any transaction committed after its snapshot 
had read.  If so, such a cyclic dependency violates serializability and 
thus cannot be tolerated;  the long transaction must be retried anyway. 

    This poses the question of exactly where in history to 
(conceptually) insert the long transaction.  But unless we are making 



up a transaction log, there’s no need to actually compute the serializable 
order to respect transaction isolation;  it’s sufficient that one exists.  So 
it’s sufficient to ensure that committing the transaction would not 
create a cycle in the bipartite graph of transactions and block/node 
versions. 

Spheres of Influence 

    Retrying the long transaction, however, isn’t the only possible 
solution!  You could, instead, commit the long transaction and roll 
back and retry the already-committed later transactions, as long as no 
effects from them have escaped your rollback grasp.  This is the idea 
of the “spheres of influence” idea from the ancient transaction 
processing literature, which I found in Gray & Reuter, and it’s fairly 
similar to how the US banking system works:  all numbers are 
provisional, subject to revision, until a few months have passed. 

Incremental recomputation 

    Above, the use of memoized nested transactions was suggested to 
permit long transactions to complete successfully despite concurrent 
writes.  But it should be apparent that this is a form of incremental 
computation:  by memoizing results from previous partial 
computations, incremental changes can be accommodated efficiently, 
even when they’re happening too fast for a batch-mode computation 
to run to completion successfully. 

    If the memo table is retained rather than being discarded as soon as 
the root transaction commits, it can be used to incrementalize future 
computations of similar transactions as well.  In a database system, for 
example, this approach could largely transparently provide the 
performance functionality of standard indices, materialized views, and 
precomputed OLAP rollups, though perhaps not query optimization, 
since its very transparency complicates its use by a query optimizer. 

    What policy should be used to manage memo-table entries?  
Retaining too little will waste CPU cycles and perhaps miss real-time 
deadlines;  retaining too much will waste RAM and perhaps also slow 
the system down.  A unified memo-table-management system might 
be able to use robust heuristics to come to a reasonable global 
optimization solution, taking into account the observed 
computational cost of each transaction;  but, lacking that, you 
probably need some way to manually specify the policy. 

    This memo table will suffer “false misses” under some 
circumstances that a smarter incremental computation mechanism 
might be able to take advantage of:  computations that would be 
equivalent but end up reading the same data from different locations, 
for example, and in ABA cases where a location changes twice, 
ending with the same value it started with (a counter being 
incremented and then decremented, for instance). 

Parallel computation with nested transactions 

    In the example code above, the child transaction results were used 
immediately;  the parent transaction blocked until the child 
transaction was finished executing.  But in many cases, including the 
above, it would be semantically acceptable to spawn multiple 
potentially concurrent child transactions, returning only a future for 



the transaction’s output from the initial spawn call, which is later 
blocked on — perhaps after spawning additional child transactions. 

Differentiable computation with transactions 

    To compute a Jacobian of a computation with a small number of 
outputs and many inputs — the gradient, in the case that the number 
of outputs is one — reverse-mode automatic differentiation is much 
more efficient.  But reverse-mode automatic differentiation requires 
propagating the gradient backward through the dataflow.  For a short 
or highly regular computation, it’s reasonable to materialize the 
whole dataflow graph in RAM at once, but not for long, iterative, 
and irregular computations, since the dataflow graph can contain 
trillions of nodes — in the limit, a node for every machine instruction 
executed on thousands of machines over a period of hours to months. 

    So the usual way to do this — if I understand correctly, which I 
may not — is to run the computation forward from the beginning to 
the end, saving its entire state on a “tape” of periodic checkpoints.  If 
you have enough space, you can take the checkpoints close enough 
together that the full dataflow graph between any two adjacent 
checkpoints fits in RAM;  then you can iterate backward through the 
checkpoints, building that dataflow graph in memory so as to 
propagate the Jacobian backward to the previous checkpoint.  For the 
gradient case, this is theoretically about as fast as the original 
computation. 

    If that’s too much space — perhaps a terabyte for 10 minutes of 
computation — you can thin out the tape to a logarithmically-small 
number of checkpoints, in exchange for a logarithmically-small (or 
log-squared?) slowdown.  Perhaps instead of 1024 checkpoints, one 
per second, you might have 11 checkpoints:  one from 1 second ago, 
one from 2 seconds ago, one from 4 seconds ago, and so on up to 1024 
seconds ago.  When the time comes to propagate the Jacobian from 
the checkpoint from 4 seconds from the end to the checkpoint from 8 
seconds to the end, you first replay from the 8-seconds-from-the-end 
checkpoint to recreate the 6-seconds-from-the-end and 
5-seconds-from-the-end checkpoints. 

    It should be apparent that, with manual control over the memo 
table, the memoized-nested-transaction mechanism described earlier 
can provide an efficient, space-sharing way to periodically checkpoint 
a computation — once we roll back everything that happened later, 
the end of each memoized transaction is a point to which we can 
quickly “fast-forward” from its beginning.  Actually constructing the 
in-memory dataflow graphs and back-propagating the Jacobians, 
however, cannot be done by the mechanisms described earlier;  they 
require more profound interfacing.  XXX 

Streams and reactive UI updates 

    Some of the transactions described above write their output to the 
block and node store.  Others, though, are merely queries that return 
a value without mutating anything, at least not anything externally 
visible.  By recording which blocks and nodes are read by a query 
transaction, as the transaction system does, we can automatically 
determine when query results have become out of date;  the 
memoization mechanism described above provides a reasonably 



efficient way to support polling, for example for screen updates, but if 
writing to a block or node can trigger an asynchronous invalidation 
notification (which can be responded to by repeating the query if 
desired), that may have lower latency, have higher throughput, or use 
less energy under some circumstances. 

    Nothing in the system design limits these approaches to read-only 
queries;  they can apply equally well to “queries” that mutate the 
block and node store in a persistent way (as opposed to using nodes 
and blocks they allocate ephemerally as temporary storage, or allocate 
and then return).  Indeed, if those queries write to no nodes and 
blocks that they also read and did not allocate, they can be 
mechanically guaranteed to be idempotent.  (But see above about 
memoization introducing aliasing.) 

    Progress bars on such transactions probably cannot be provided 
through transactional mechanisms, since they have dataflow from 
uncommitted transactions.  So, as with differentiable programming, 
metatransactional mechanisms are needed. 

Modular blocking and composable memory 
transactions 

    The Composable Memory Transactions paper, which I need to reread, 
explains how to use an optimistic transactional memory with nested 
transactions, like the above, to support blocking patterns of 
communication by adding two more functions, retry and orElse. 

    retry conceptually simply aborts the current transaction, causing it 
to be automatically retried.  But if the system responds by beginning 
to run the same transaction code again with the same inputs and the 
same state of the store, it would simply deterministically reach retry a 
second time, and so on, busy-waiting.  So a more reasonable system, 
like the one they actually implemented, waits to retry the transaction 
until the store has changed — specifically, until some transactional 
variable that it had read before invoking retry has changed. 

    The orElse operator provides a way to recover from such failures, by 
composing two alternative child transactions into a larger child 
transaction.  If the child transaction that is its left argument fails 
because of invoking retry (though not because of a conflicting write 
by a concurrent transaction), then control flows to the alternative 
transaction that is its right argument.  If that transaction also fails, 
then the transaction resulting from orElse fails. 

    Thus retry provides a way to convert a polling interface, such as 
reading a transaction variable to see if something is ready, into a 
blocking interface, while orElse provides a way to either combine two 
sources of blocking into an alternative source that only blocks while 
both sources are blocking, like Unix select(2), or to convert a blocking 
interface into a polling interface (by providing a second alternative 
that does not block). 

    Precisely the same interface would work on top of nodes and 
blocks. 

    The requirements of transactional systems limit the applicability of 
familiar interprocess communication. 

    For example, you could try to implement a byte pipe between two 

https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/2005-ppopp-composable.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/2005-ppopp-composable.pdf


transactions by a memory block whose first two words contain 
beginning and end pointers into a ring buffer that is the rest of the 
block.  A transaction could attempt to add bytes to the ring buffer and 
return the number successfully written, blocking with retry if there is 
not room, or to remove bytes from it and return them, blocking with 
retry if there are no bytes to remove.  If a pipe-reader and a 
pipe-writer try to mutate the block at the same time, one will succeed 
and the other will fail at first, then retry and succeed.  So, at first, this 
sounds like a standard Unix pipe. 

    But, if the pipe-reader’s parent transaction is aborted, the 
pipe-reader’s modifications to the pipe block will be rolled back.  As 
long as the two share a parent transaction, then all the pipe-writer’s 
modifications will, too;  and, until they do share a parent transaction 
(that is, until any levels of transactions separating them from their 
lowest common ancestor transaction have committed), their 
communications won’t be visible to one another — the writer can’t 
unblock the reader or provide it bytes, and the reader can't unblock 
the writer. 

Snapshot debugging 
Debuggers don't.  

    What debuggers do is provide programmers visibility into a 
program's internal state in order to can formulate and test hypotheses 
until they diagnose a bug.  Traditionally debuggers do this by 
providing three fundamental services:  memory and register 
inspection --- letting programmers go inside the program "spatially";  
breakpoints and single-stepping --- letting them "go inside" the 
program temporally;  and mutation --- letting them change the 
program's state while it's stopped.  Essentially by scripting these, more 
sophisticated facilities are commonly built, like "stepping over" a 
subroutine call, disassembly, source-code display, displaying the call 
stack and local variables, injecting code into the program, and so on. 

    (Single-stepping can be implemented by scripting breakpoints, 
simply by repeatedly placing and removing breakpoints, and this is a 
common way to support single-stepping on platforms with no native 
single-stepping support.  Implementing breakpoints by scripting 
single-stepping is also possible but generally impractically inefficient.) 

    However, with imperative programming languages, these three 
basic facilities are frustratingly inadequate, because very commonly by 
the time the programmer sees that some memory location has a 
wrong value in it, the code that placed that value there is long gone.  
With sufficient patience and meticulosity, repeated re-executions of a 
program can eventually find how the location was changed by using 
inspection and breakpoints, but this is an extreme measure, and often 
it must be repeated more than once.  So there are a couple more basic 
facilities commonly provided by modern debuggers:  watchpoints and 
reverse execution. 

    Breakpoints stop the execution of the program when it executes a 
particular instruction;  watchpoints, by contrast, stop its execution 
when it modifies a particular memory location.  This can be provided 
inefficiently by scripting single-stepping and inspection --- after each 
single step of the program, the debugger's script inspects the memory 



location to see if its value has changed --- but on many platforms 
there are more efficient ways to solve that problem, either using 
virtual-memory hardware or using special CPU registers devoted to 
implementing watchpoints. 

    Watchpoints allow a single re-execution to find how a given 
memory location was changed, but reverse execution improves on 
this.  OCaml's debugger was the first debugger I know of to provide 
reverse debugging, which it did by exploiting Unix's fork(2) to make 
copy-on-write snapshots of the program state;  XXX
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Slide rule addition
Kragen Javier Sitaker, 02020-06-22 (3 minutes)

    Slide rules can’t add and subtract.  Could they? 

    If a ≠ 0, then a + b = (1 + b/a)a.  Suppose our slide rule reads with 
a precision of ±0.2%;  then if b/a < 0.002, we can just round this to a, 
and if b/a > 500, we can just round it to b.  But in between, when 
they’re of roughly similar magnitudes, we might want to use this to 
calculate a decent approximation of the sum. 

    In Logarithm Land, we have: 
log(a + b) = log(1 + 10log b - log a) + log(a), a ≠ 0  

    We can add the ability to evaluate this to a slide rule as follows.  
Define j(c) = log(1 + 10c).  Add three j scales to the body of the slide 
rule:  one with marks at log(1 + 10c) for 1 ≤ c ≤ 10, one with marks for 
10 ≤ c ≤ 100, and one with marks for 100 ≤ c ≤ 1000. 

    To add two numbers of the same sign, then, take the larger one as b
.  Use the C and D scales to compute log b - log a as a position on the 
D scale;  move the cursor to it.  Look on the appropriate j scale to read 
the numerical value of (1 + b/a).  Now use the C and D scales to 
multiply that numerical value by a, which perhaps you still have 
encoded in the position of the slide. 

    Working backwards from there, we want the slide to be in a 
position that encodes multiplying by a, which means that the D-scale 
index should be aligned with a on the C scale.  This means that b 
needed to be on C originally. 

    So the procedure is:  choose b to be the larger of the two 
summands, exchanging them if necessary.  Align the slide to a on the 
C scale.  Move the cursor to b on the C scale;  its position on the body 
is now log b - log a, so the cursor on the D scale now indicates b/a.  
Look up the numerical value of 1 - b/a on the appropriate j scale with 
the cursor.  Move the cursor to that numerical value on the D scale.  
Now read a + b on the C scale with the cursor. 

    I’m not sure if there’s a similarly convenient approach using the CI 
and DI scales, or if there’s a way to use that same j scale for 
subtraction, or if it works better to use b < a (could that give you 
fewer j scales?). 

    Peter Alfeld reports that Jeff Weiner reports that the Pickett 
Microline 115 and the Pickett 901 rules can add and subtract, but it 
turns out that those just have linearly-ruled X and Y scales;  they 
can’t add and subtract numbers found on the standard scales like C, 
D, A, and B, nor do their sums and differences appear there. 

    Now, of course this is not very useful if your precision is ±0.2%:  
you only have three sig figs, and adding two three-digit numbers in 
your head isn’t that hard.  You could imagine a higher-precision slide 
rule using verniers, finer details, and/or larger dimensions, perhaps 
folded helically.  This approach might then be more useful.

Topics

https://www.math.utah.edu/~alfeld/sliderules/


• Contrivances (p.  786) (44 notes) 
• Math (p.  804) (13 notes) 
• Nostalgia (p.  829) (6 notes) 
• Calculation (p.  834) (6 notes) 
• Slide rules



Hacker calendar
Kragen Javier Sitaker, 02020-06-28 (updated 02020-12-03) 
(15 minutes)

    The humans like to memorialize dates by holding annual 
celebrations.  What kinds of dates would a hacker culture 
memorialize? 

    I’m putting together a date table here in a sort of cuckoo-hash 
fashion:  most dates commemorate individual hackers, and for most of 
the hackers the relevant known dates are their birthdate and their 
death date.  When there is a collision, I can usually move the person 
in question to a different relevant date:  their death date if they’re 
listed at their birthdate, or vice versa. 

    So, for example, to insert Laplace, Hao Wang moved from May 20 
to May 13, allowing Jean Sammet to move from March 23 to May 20, 
freeing up March 23 for Laplace.  Laplace’s death date, March 5, was 
occupied by William Oughtred, who died June 30, which is already 
quite full with two difficult-to-move events:  the feast of Ramon 
Llull and the release of OpenGL. 

• January 1, 1992:  Grace Hopper died (born December 9, 1906) 
• January 4, 1643 (O.S.  December 25, 1642):  Newton born;  died 
March 31, 1727 (O.S.  March 20, 1726), published Principia July 5, 
1687? 
• January 8, 1642:  Galileo Galilei died after 8.5 years of house arrest 
(born February 15, 1564, sentenced by the Inquisition June 22, 1633(?)) 

• January 11, 2013:  Aaron Hillel Swartz committed suicide to escape 
government persecution (born November 8, 1986) 
• January 14, 1901:  Tarski born (died October 26, 1983) 
• January 15, 2001:  the founding of Wikipedia 
• January 19, 1912:  Leonid Vitaliyevich Kantorovich (Леони́д 
Вита́льевич Канторо́вич) born (died April 7, 1986).  Published 
“Математические методы организации и планирования 
производства” in 1939. 
• February 7, 1990:  Alan Perlis died (born April 1, 1922) 
• Feburary 8, 1920:  Bob Bemer born (died June 22, 2004) 
• February 11, 1897:  Emil Post born (died April 21, 1954) 
• February 13, 1258:  the destruction of the House of Wisdom (تيب 
 ) by Mongol soldiers in the Siege of Baghdad (though that wasةمكحلا
only the first day of a week of destruction) 
• February 17, 1600:  Giordano Bruno, who first proposed that the 
stars were distant suns, burned at the stake for, among other things, 
teaching reincarnation and possessing the writings of Erasmus. 
• February 23, 1855:  Gauss died (born April 30, 1777) 
• February 24, 1709:  Jacques de Vaucanson born (died November 2, 
1782) 
• March 1, 1990:  the Secret Service raided Steve Jackson Games for 
publishing GURPS Cyberpunk 
• March 1, 86 BCE:  Sulla sacked Athens, having burned Plato’s 
Academy.  (However, this needs to be corrected for calendar 

https://en.wikipedia.org/wiki/Siege_of_Athens_and_Piraeus_(87�86_BC)


alignment.) 
• March 4, 1959:  John McCarthy (born September 4, 1927;  died 
October 24, 2011) published Artificial Intelligence Project Memo 8, 
“Recursive functions of symbolic expressions and their computation 
by machine”, describing the LISP language he and Steve “Slug” 
Russell (born 1937, still alive) had developed on the 704. 
• March 5, 1574:  William Oughtred born (died June 30, 1660) 
• March 7, 1917:  Betty Holberton born (died December 8, 2001) 
• March 11, 1890:  Vannevar Bush born (died June 28, 1974) 
• March 18, 1905:  Einstein sends his paper on the photoelectric effect, 
for which he received the Nobel Prize, to Annalen der Physik, which 
published it on June 9.  Einstein was born on March 14, 1879, and 
died on April 18, 1955.  In his annus mirabilis 1905, he published 
relativity and some other stuff, including his thesis (April 30).  
Annalen der Physik received the relativity paper on June 30 and 
published it September 26. 
• March 20, 1956:  Kurt Gödel (born April 28, 1906, died January 14, 
1978) wrote to John von Neumann, posing essentially the P vs. NP 
problem 
• March 21, 1768:  Fourier born (or, alternatively, December 21, 1807, 
he presented his paper “on the propagation of heat in solid bodies”) 
• March 23, 1749:  Laplace born (died March 5, 1827);  published 
Bayesian probability theory in 1812 
• March 25, 1914:  Norman Borlaug born, who saved a billion lives 
with dwarf wheat (died September 12, 2009) 
• March 31, 1596:  Descartes’ birth (died February 11, 1650) 
• April 7, 1761:  Thomas Bayes died (birthdate unknown) 
• April 9, 1806:  Isambard Kingdom Brunel born (died September 15, 
1859) 
• April 14, 1935:  Emmy Noether died (born March 23, 1882) 
• April 15, 1707:  Euler born (died September 18, 1783) 
• April 25, 1903:  Kolmogorov born (died October 20, 1987) 
• April 26, 1920:  the death of Srinivasa Ramanujan (born December 
22, 1887) 
• April 29, 1911:  founding of Tsinghua University (then 清華學堂, 
now 清华大学) 
• April 30, 1995:  the NSFNet backbone shut down, ending the 
NSFNet Acceptable Use Policy which prohibited most for-profit 
activity on most of the internet. 
• April 30, 1916:  Claude Shannon born (died February 24, 2001) 
(Shannon Day was celebrated April 30, 2016) 
• May 2, 1519:  Leonardo da Vinci died (born April 14 or 15, 1452) 
• May 7, 1711 (O.S.  April 26):  David Hume born.  (Died August 25, 
1776) 
• May 10, 1933:  nationwide book burning by Nazis, following the 
German “Law for the Restoration of the Professional Civil Service”, 
which on April 7, 1933 eliminated all Jewish and Communist public 
employees, including professors, with some exceptions; 
• May 11, 1918:  Richard Feynman born (died February 15, 1988) 
• May 13, 1995:  Hao Wang (王浩) died (born May 20, 1921) 
• May 17, 1902:  the discovery that the Antikythera Mechanism had 
gears (probably brought up July 1901) 
• May 20, 2017:  Jean E.  Sammet died (born March 23, 1928) 
• May 31, 1832:  Évariste Galois killed in a duel (born October 25, 

https://en.wikipedia.org/wiki/Annus_Mirabilis_papers


1811) 
• June 7, 1954:  Alan Turing committed suicide (born June 23, 1912) 
• June 9, 597:  St. Columba died (born December 7, 521).  Legend has 
it he fought the battle of Cúl Dreimhne in 561 to defend his right to 
copy St. Finnian’s psalter. 
• June 16, 1915:  John Tukey born (died July 26, 2000) 
• June 22, 1910:  Konrad Zuse born (died December 18, 1995) 
• June 27, 1831:  Sophie Germain (Monsieur Antoine-Auguste 
Leblanc) died 
• June 28:  Tau Day 
• June 30, 1992:  OpenGL released 
• June 30, feast day of Ramon Llull, whose works were prohibited by 
the Spanish Inquisition (traditional death date June 29) 
• July 1, 1646:  Leibniz’s birth in Leipzig (O.S.  June 21) (died 
November 14, 1716) 
• July 10, 1856:  Nikola Tesla (Никола Тесла) born (died January 7, 
1943) 
• July 16, 1945:  the Trinity event 
• July 17, 1912:  Poincaré died (born April 29, 1854) 
• July 20, 1969:  Apollo 11 lands humans on the moon for the first 
time at 20:17 UTC 
• July 25, 1926:  Ray Solomonoff born (died December 7, 2009) 
• August 6, 2002:  Dijkstra died (born May 11, 1930) 
• August 8, 1900:  David Hilbert (born January 23, 1862;  died 
February 14, 1943) presents ten of his 23 famous problems at the 
International Congress of Mathematicians in Paris. 
• August 9, 1927:  Marvin Minsky born (died January 24, 2016) 
• August 12, 2013:  Warren Teitelman died (born 1941) 
• August 17, 2004:  Xiaoyun Wang (王小云), Dengguo Feng, Xuejia 
Lai, and Hongbo Yu of Shandong University published their break of 
MD5. 
• September 5, 1977:  launch of Voyager 1, omitting “Here Comes 
the Sun” for copyright reasons 
• September 9, 1941:  Dennis Ritchie born (died October 12, 2011) 
• September 17, 1826:  Riemann born 
• September 26, 1983:  Stanislav Yefgravovich Petrov (born 
September 7, 1939;  died May 19, 2017) refused to nuke the US when 
a radar system malfunctioned, thus saving human civilization 
• September 27, 1983:  The inauguration of the GNU Project 
• September 30, 1993:  WSMR-SIMTEL20, one of the greatest 
libraries of software in the world, was shut down at 1600 hours 
Mountain Daylight Time and its 165,000 files destroyed, following a 
copyright lawsuit from the Louis E.  Wheeler Co., as reported in 
Network World, January 16, 1995 (“Army gets caught in software 
piracy firestorm”). 
• October 4, 1957:  launch of Sputnik 1 
• October 18, 1931:  Thomas Edison died (born February 11, 1847) 
• October 29, 1998:  the sale of the Archimedes Palimpsest 
• the fourth month of the inundation season:  when Ahmose wrote 
the Rhind Papyrus 
• October 30, 1961:  Tsar Bomba test 
• October 31:  octal Newtonmas — oct 31 = dec 25 
• November 2, 1988:  the helminthiasis of the internet with the 
Morris worm 

https://groups.google.com/forum/#!original/alt.folklore.computers/OF5LQn2aZUU/zRu4O11K1okJa
https://groups.google.com/forum/#!original/alt.folklore.computers/OF5LQn2aZUU/zRu4O11K1okJa


• November 6, 1717:  J.  S.  Bach imprisoned (or March 31, 1685:  J.  S.  
Bach born, or July 28, 1750, Bach died (Episcopal feast day)) 
• November 8, 1848:  Gottlob Frege born (died July 26, 1925;  
published the Begriffsschrift in 1879) although he was an anti-Semite 
• November 11, 1918:  11:00:  Armistice Day 
• November 19, 2020:  USA's National Science Foundation decides to 
demolish the Arecibo Observatory, the largest single-reflector 
telescope until 2016, and crucial to predicting asteroid impacts;  it was 
irreparable and collapsing after being damaged in hurricanes over 
previous years, following decades of decay.  It was built 1960–63. 
• November 26, 1894:  Norbert Wiener born (died March 18, 1964) 
• November 30, 1858:  Jagadish Chandra Bose, who invented 
semiconductor diodes and submillimeter light, born (died November 
23, 1937) 
• December 1, 1975:  the publication of the first version of Scheme as 
the paper “Scheme:  an interpreter for Extended Lambda Calculus”, 
1975, AIM-349 
• December 7, 1873:  Cantor sends Dedekind his proof of the 
uncountability of the reals 
• December 8, 1864:  George Boole died (born November 2, 1815) 
• December 9, 1968:  Doug Engelbart’s Mother of All Demos (born 
January 30, 1925;  died July 2, 2013) 
• December 10, 1815:  Augusta Ada Byron (later Lovelace) born (died 
November 27, 1852).  In September 1843 her translation of Luigi 
Menabrea’s 1842 French notes on Babbage (born 1791)’s Analytical 
Engine were published in Scientific Memoirs, including the first 
computer program in Note G of its “notes by the translator”;  
translated into C by Sinclair Target in 2018 
• December 17, 1706:  Gabrielle Émilie Le Tonnelier de Breteuil, 
Marquise du Châtelet, who arguably discovered energy, was born 
(died September 10, 1749) 
• December 23, 1790:  Jean-François Champollion born (died March 
4, 1832), deciphered the Egyptian demotic script in 1806 and, while 
awaiting trial for treason, the hieroglyphs in 1822. 
• December 28, 1903:  John von Neumann born (died February 8, 
1957)  

    Things I don’t know dates of: 

• Lu Ban (魯班) (dates unknown) 
• Shandong University 山东大学 founded (dates unknown) 
• Zhang Heng (張衡) (dates unknown) 
• Su Song (蘇頌) (dates unknown) 
• Guo Shoujing (郭守敬) (dates unknown) 
• Sunshu Ao (孫叔敖) (dates unknown) 
• Shen Kuo (沈括) (dates unknown) 
• Yī Xíng (一行) (dates unknown) 
• Liu Hui (劉徽) (dates unknown) 
• Mozi (墨子) (dates unknown) 
• Zu Chongzhi (祖沖之) (dates unknown) 
• Heron of Alexandria (dates unknown) 
• Eudoxus of Cnidus (dates unknown) (when was his eclipse?) 
• Dakṣiputra Pāṇini (dates unknown) 
• Akṣapāda Gautama (dates unknown) 
• Ahmad, Muhammad and Hasan bin Musa ibn Shakir, the Banu 

https://dspace.mit.edu/handle/1721.1/5794
https://commons.wikimedia.org/wiki/File:Diagram_for_the_computation_of_Bernoulli_numbers.jpg
https://commons.wikimedia.org/wiki/File:Diagram_for_the_computation_of_Bernoulli_numbers.jpg
https://twobithistory.org/2018/08/18/ada-lovelace-note-g.html
https://twobithistory.org/2018/08/18/ada-lovelace-note-g.html


Musa who wrote the ليحلا باتك Kitab al-Hiyal (dates unknown) 
in the House of Wisdom 
• the first solar power plant entered production in Egypt (Frank 
Shuman’s “Solar Engine One” in Maadi, 1912-1913) 
• Chomsky hierarchy?  
https://doi.org/10.1016%2FS0019-9958%2859%2990362-6 1959 “On 
certain formal properties of grammars” (though Chomsky himself is 
still alive) 
• Aristotle (dates unknown) 
• Brahmagupta (dates unknown) 
• Something about Knuth?  The publication date of TAOCP volume 
1? 
• Stephen A.  Cook’s SAT paper establishing NP-completeness?  
http://www.cs.toronto.edu/~sacook/homepage/1971.pdf 
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.406.395 
• something to memorialize the Mohists and the other scholars who 
fell to Qin Shi Huang? 
• something to memorialize the Library of Alexandria? 
• something to celebrate Euclid 
• al-Khwarizmi’s book 
https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calcul
ation_by_Completion_and_Balancing? 
• something to celebrate Aryabhata and the Aryabhatiya? 
• publication of the break of Merkle’s knapsack algorithm (date 
unknown) 
• something about the Nine Chapters on the Mathematical Art 
• the release of the first version of Haskell (dates unknown) 
• July 1562:  the burning of the Maya codices by Bishop Diego de 
Landa (date unknown) 
• the publication of Alice in Wonderland 
• the founding of Sun 
• the going on sale of the Altair 8800 
• founding of the University of Leipzig 
• burning of the last copy of the Yongle Encyclopedia 
• Cornelis Drebben 
• Jaquet Droz? 
• Inauguration of the EDVAC? 
• Alexander Humboldt? 
• the defeat of Kasparov 
• something about Prometheus 
• the rescue of the library of Timbuktu 
• Mozart? 
• Haskell released 
• THERAC-25 
• Ariane 5 
• Chernobyl 
• Lavoisier’s execution 
• Linux announced 
• 4.4BSD-Lite released 
• Jean Bartik?  May have made ENIAC a stored-program computer. 
• Kalashnikov? 
• April 1962:  Spacewar! 
• James Watt? 
• the Cultural Revolution 

https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.1016/S0019-9958(59)90362-6
http://www.cs.toronto.edu/~sacook/homepage/1971.pdf
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https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.406.395
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https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing
https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing
https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing


• McCarthyism 
• Alonzo Church? 
• Ctesibius? 
• Genesis Block mined? 
• Morse’s first telegraph message sent? 
• Santos Dumont’s first flight? 
• Fred Fish?  

    Of secondary importance: 

• February 13, 1805:  Dirichlet born 
• October 30, 1632:  (O.S.  October 20) Christopher Wren born (died 
March 8, 1723 (O.S.  February 25)) 
• Rudolf Carnap 
• August 6, 1667 (O.S.  July 27):  Johann Bernoulli born (died January 
1, 1748)  

    Rejected: 

• Kathleen Booth?  no, she’s still alive 
• Michael Rabin (no, he’s still alive) 
• September 10, 1839:  Charles Sanders Peirce born (died April 19, 
1914) (but he supported racism-based slavery, and wasn’t as important 
as other significant hackers in the history of logic) 
• Ed Fredkin (no, he’s still alive) 
• Ivan Sutherland (no, he’s still alive) 

Topics

• History (p.  796) (17 notes) 
• Utopias (p.  909) (2 notes) 



Trying to drive a speaker with a 
buck converter
Kragen Javier Sitaker, 02020-06-29 (4 minutes)

    This circuit doesn’t work: 

    

 

$ 1 5e-9 5.692113234615338 60 5 43
R 416 432 352 432 0 4 80000 2.5 2.5 0 0.5
170 272 464 208 464 1 20 50000 2.5 0.01
v 272 464 320 464 0 0 40 2.5 0 0 0.5
a 416 448 544 448 9 5 0 1000000 0.6034186806095027 1.5999999949944597 100000
O 544 448 544 384 1
x 349 395 478 398 4 12 Input\sPWM\sgenerator
O 416 464 416 544 1
174 320 464 352 624 0 1000 0.8762000000000001 Input attenuator
g 320 624 320 656 0
w 352 544 352 464 0
w 352 464 416 464 0
t 608 448 640 448 0 1 -3.5804133275459917 0.692890403465214 100
w 640 464 640 624 0
g 640 624 640 656 0
l 640 432 640 256 0 0.000047 -0.04307177750648704
r 608 448 544 448 0 10000
R 640 256 640 208 0 0 40 5 0 0 0.5
c 784 432 784 624 0 0.000001 6.171399381253317
g 784 624 784 656 0
w 784 432 944 432 0
r 944 432 944 624 0 3200
g 944 624 944 656 0
d 640 432 784 432 2 1N5711
o 6 1024 0 4354 8.183476519740355 9.765625000000001e-155 0 1 input\sv
o 20 1024 0 4099 10 0.8 0 2 20 3
 

    The first problem is that this isn't a buck converter as intended;  it's 
a boost converter! 



    Here the 3200Ω resistor represents an 8Ω speaker seen through a 
20:1 audio output transformer.  You put an AC volt across it, you get 
310 μA, which on the output is supposed to be 50 millivolts and 6.2 
mA, which is 8Ω.  The quadratic way transformers transform 
impedances always confuses me! 

    The input comparator generates a PWM signal that shorts the 
coil-diode junction to ground periodically through an NPN 
transistor.  (Probably using a MOSFET would be a better idea.) The 
idea is that when the coil is shorted to ground, it builds up energy in 
the form of a magnetic field with a progressively growing current, 
and then when the transistor turns off, that energy is delivered to the 
load, with the current progressively dropping until the next cycle.  At 
the extreme where the transistor is always off, the 5V power supply is 
simply connected through to the output through a diode and an 
inductor.  At the extreme where the transistor is always on, the 
current through the coil and the transistor will progressively increase 
until the transistor burns out. 

    Near that extreme, there is a short time when the transistor turns 
off, and the enormous current through the coil must flow instead to 
the load, charging up the capacitor very rapidly.  This can produce, in 
theory, an arbitrarily high voltage. 

    Managing voltages on the order of 5 volts, cycle times on the order 
of 10 μs, and currents on the order of 1 mA, we probably want an 
inductance that produces about 5 volts with a slew rate of about 1 mA 
per 10 μs.  This would be about 50 mH, three orders of magnitude 
larger than the 47μH inductor I have here.  At these speeds and 
impedances, this inductor looks like a wire;  inductive reactance is just 
ωL, so a 50 mH inductor would be 25 kΩ, while this 47μH inductor 
is 24Ω, which is a wire in comparison to the 3200Ω load. 

    The output capacitor serves to keep the voltage from rippling too 
much.  Again, in the 5V 10μs 1mA regime, we want a capacitor that is 
large compared to one that would discharge completely in that time, 
which would be 2 nF.  The 1μF cap I have in there will take 500 
cycles to discharge, or charge.  So probably I want something on the 
order of 47 nF. 

    Changing the components to these values does indeed make the 
circuit sort of work, although it’s still a boost converter.

Topics

• Contrivances (p.  786) (44 notes) 
• Electronics (p.  788) (42 notes) 
• Facepalm (p.  819) (8 notes) 
• Analog (p.  849) (5 notes) 
• Audio (p.  901) (3 notes) 



Using Numpy for non-numerical 
computation:  what would a good 
example be?
Kragen Javier Sitaker, 02020-06-29 (updated 02020-06-30) 
(3 minutes)

    I saw someone saying they’d never needed to use Numpy, and so 
never learned it, because it was for a specific use case that wasn’t 
theirs.  This seemed to me like maybe they didn’t appreciate its 
versatility, so I thought I’d try out some non-numerical or 
semi-numerical computation with Numpy, and maybe Pandas. 

Counting words in a string 

    The usual approach for counting words in Python, of course, is 
len(s.split()).  But we can do things with Numpy too.  First, let’s get 
some text into a Numpy array: 

>>> import numpy as np

>>> text = "This isn't anything more than a text string, with some words.  Let's 
count them all"
>>> ta = np.array(list(' ' + text))
 

    Now let’s find the spaces and the non-space things following them: 

>>> sp = (ta == ' ')
>>> ta[1:][sp[:-1] & ~sp[1:]]
array(['T', 'i', 'a', 'm', 't', 'a', 't', 's', 'w', 's', 'w', 'L', 'c',
       't', 'a'], 
      dtype='|S1')
>>> ''.join(ta[1:][sp[:-1] & ~sp[1:]])
'TiamtatswswLcta'
 

    That seems to have worked;  we can count the words just by 
summing the boolean vector: 

>>> (sp[:-1] & ~sp[1:]).sum()
15
 

    Let’s use this approach to count the words in the King James Bible: 

>>> b = np.memmap('bible-pg10.txt', '|S1', 'r')
>>> sp = (b == ' ')
>>> (sp[:-1] & ~sp[1:]).sum()
749219
>>> len(open('bible-pg10.txt').read().split())
824146
 



    Hmm, what happened? 

$ wc bible-pg10.txt
 100222  824146 4452069 bible-pg10.txt
 

    So wc agrees with .split(). 

$ grep -P '^\S' bible-pg10.txt | wc
  74927  823934 4400033
 

    So it seems like there are 74927 lines beginning with a 
non-whitespace character, which precisely accounts for the difference.  
We want to treat newlines as whitespace as well, and also, if the file 
starts with a word (which it does), we want to count that word too. 

    Current Numpy contains an isin function to test set membership, 
but my old version doesn’t.  No matter!  We can use .any() as a 
substitute: 

>>> sp = (b == [[' '], ['\n'], ['\r']]).any(axis=0)
>>> b[sp[:100]]
memmap([' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\r', '\n', '\r', '\n', ' ',
       ' ', ' ', ' ', ' ', ' ', ' ', ' '], 
      dtype='|S1')
>>> ''.join(b[:100])

'\xef\xbb\xbfThe Project Gutenberg EBook of The King James Bible\r\n\r\nThis eBoo
k is for the use of anyone anywhe'
>>> ws = (sp[:-1] & ~sp[1:])
>>> ws[0] = True
>>> b[ws[:100]]
memmap(['\xef', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\n', ' ', ' ', ' ',
       ' ', ' ', ' ', ' ', ' '], 
      dtype='|S1')
>>> ''.join(b[1:][ws[:100]])
'\xbbPGEoTKJBTeiftuoaa'
 

    That seems pretty reasonable.  So how many words are there? 

>>> ws.sum()
824146
 

    Good!  That takes 307 ms on this laptop, says IPython: 

%%time
b = np.memmap('bible-pg10.txt', '|S1', 'r')
sp = (b == [[' '], ['\n'], ['\r']]).any(axis=0)
ws = (sp[:-1] & ~sp[1:])
ws[0] = True
print(ws.sum())
 

    How fast is the standard approach? 

%%time
len(open('bible-pg10.txt').read().split())



 

    147 ms, twice as fast!  So this is not a very compelling example!

Topics

• Programming (p.  803) (13 notes) 
• Python (p.  855) (4 notes) 
• Arrays (p.  903) (3 notes) 
• Numpy (p.  934) (2 notes) 



Modelica notes
Kragen Javier Sitaker, 02020-07-06 (updated 02020-07-07) 
(9 minutes)

    I haven’t found a good explanation of what Modelica is, so here’s 
my effort.  It’s a multi-domain textual language for numerical simulation 
of models of continuous-time systems hierarchically composed of lumped 
elements whose behavior is specified through acausal equations.  It is 
particularly suited for designed physical systems such as machines or 
chemical plants.  (Sometimes the term “cyber-physical systems” is 
used to emphasize the importance of control systems.) Also, it has 
aspects to facilitate graphical display of the models as block-and-line 
diagrams, and comes with a large library of standard components.  Its 
fundamental basis is ordinary differential algebraic equations of finite 
dimensionality, but it also supports hybrid simulation with discrete 
events. 

    Here’s my effort to explain my understanding of what this means, 
bearing in mind that I’ve never used Modelica, so some of this may be 
laughably wrong. 

Multi-domain 

    The aspects of interest of a machine such as a bicycle commonly 
span domains such as the mechanical, electrical, thermal, hydraulic, 
and even digital, with interactions between them.  A bicycle may have 
mechanical aspects such as the transmission of power from the pedals 
to the wheels through the sprockets, electrical aspects such as the 
generation of power for lights from wheel hub generators and its 
storage in batteries, thermal aspects such as the generation of heat in a 
braking disc, hydraulic aspects if the braking system is hydraulic, and 
digital aspects if there are sensors like a speedometer or actuators like a 
brushless hub motor. 

    Modelica can describe models that cross these different domains;  
however, typically each component only exists in one or two 
domains.  For example, a copper pipe might have mass, 
three-dimensional orientation, electrical resistance, thermal mass, and 
hydraulic roughness and diameter, thus crossing several domains;  but 
typically is only modeled in one or two of these domains.  I think this 
is because Modelica simulators typically refuse to simulate if there are 
some variables whose values they cannot determine, so using such a 
multi-domain component is a nuisance, since it obligates you to 
describe all the domains at once. 

    Consequently there is, for example, a Resistor component in the 
standard library, and also a cross-domain HeatingResistor component, 
which has a temperature and a thermal port.  I think that if you use 
the HeatingResistor component you end up having to connect the 
thermal port. 

    This also brings up a potentially larger issue, which is the 
closed-world assumption of Modelica models:  more or less inevitably 
they assume that you have included all the important aspects in your 
model. 



Numerical simulation 

    Given a model written in Modelica, implementations such as 
OpenModelica can run one or many simulations of the model over 
some time period from specified initial conditions.  These simulations 
can be quite precise;  for example, the standard Berkeley SPICE3 set 
of components, is included in the standard library, and its accuracy has 
been validated to some extent against SPICE3 itself. 

    However, there are a number of other things you might want to do 
with a model other than simulate it.  You might want to do “model 
identification” to estimate the model’s parameters from 
measurements of a real system;  you might want to validate some 
behavior of the model for all possible scenarios rather than just one 
(for example, showing that the model is unconditionally stable);  you 
might want to optimize the model to find out what parameter settings 
are in some sense “best”;  you might want to rigorously prove that 
two models are equivalent, or show how they differ;  and so on.  As 
far as I can tell, Modelica implementations do not typically support 
these other possible operations, or give them much lower priority.  
Even operations on the differential-equation system other than 
initial-value problems are generally unsupported. 

    The nature of the simulation is fundamentally numerical;  although 
discrete-time systems are supported, it’s not really the focus of 
Modelica, and I’m not clear that you’re going to be able to write a 
compiler or something in it.  I don’t think there’s any way to create 
new objects during the course of the simulation. 

Continuous-time 

    Fundamentally Modelica reduces your model, or at least the 
continuous-time part of it, to a set of differential algebraic equations 
which it can then numerically integrate with methods like 
Runge–Kutta.  So most of your model variables theoretically take on 
an infinite number of values during the simulation.  This separates 
your model from the solver, allowing you to apply different solvers to 
the same model. 

Hierarchical 

    A Modelica model can be used as an element in another, larger 
model;  many models consist only of interconnected smaller models, 
containing no explicit equations of their own.  So, for example, a 
hydroponic system might contain an irrigation system as an element, 
which contains pumps, pipes, and a feedback control subsystem;  the 
control subsystem might contain a power supply, sensors, a 
microcontroller, and actuators;  the power supply might contain 
diodes, inductors, optoisolators, transformers, resistors, and a buck 
controller;  the buck controller might contain transistors, diodes, and 
resistors.  Modelica can in theory model at all of these levels, reducing 
them all to a single system of differential algebraic equations for 
simulation. 

    I haven’t quite seen any Modelica models with that level of detail, 
but I’ve seen people describe a number that come close to it. 

Lumped 



    Although Modelica models are continuous in time, they are not 
continuous in space;  the elements of the system are idealized to 
points.  So Modelica cannot model a continuous heat distribution 
throughout a tank of water, a waveform moving through an electrical 
transmission line, or the stress distribution in a strut, although if you 
discretize these things yourself you can get it to simulate the 
discretized approximation. 

    In particular, I think there isn’t even a way in Modelica to model a 
delay of a continuous-time signal, such as you might get from an 
improperly terminated cable. 

    (However, I’ve seen people simulating, for example, the 
water-hammer effect in a pipe with the proprietary Modelica 
simulator SimulationX;  I assume they’re using a discretized 
approximation of the pressure waves.) 

Acausal equations 

    Modelica models are composed of (possibly differential) equations 
rather than causal relationships in which effects result from causes;  
the standard example of this is the equation V = IR for a resistor, 
from which you can calculate the current if you know the voltage, 
the voltage if you know the current;  if you know neither a priori, you 
may still be able to incorporate it into a system of equations that 
eventually allow you to determine both, the simplest example being 
two resistors in series with a battery. 

    This is pretty essential not only in circuit analysis but in a variety of 
different domains:  mechanical force and displacement are similarly 
interdependent in a steady-state spring, as is flow rate and pressure 
drop in a hydraulic system, for example. 

Etc. 
    Modelica supports compile-time units checking, but I’m not yet 
clear that its units support extends to full vector-space dimensional 
analysis. 

    Could you get faster simulation results with interval arithmetic, 
affine arithmetic, or especially reduced affine arithmetic? 

    I wish there was a way to describe an object like a hollow copper 
cylinder of such-and-such dimensions and have all of its properties 
potentially available — but only if you ask for them.  For example:  
electrical resistance, flow resistance, cost, mass, stiffness, tensile 
strength, effective RF resistance with skin effect, volume, 
temperature, thermal insulation, and so on.  I don’t think there’s a 
way to do this kind of thing in Modelica itself, but you could do it in 
a higher-level language that compiles to Modelica. 

    The other thing is that Modelica suffers a bit from the 
assembly-language disease where you have to invent a name for every 
intermediate value, worsened by the COBOL problem of DATA 
DIVISION.  PROCEDURE DIVISION.  A model or other class is 
divided into a section of variable declarations (which can instantiate 
other classes used as components — a circuit model, for example, 
might instantiate resistors and op-amps) and a section of equations, 
which can include connections between components.  (There are 



some other miscellaneous sections that are sometimes present as well.) 
So, for example, in a circuit model you must give a name to every 
circuit component, even if it’s something like “R37”.  The standard 
rebuttal to this complaint is that you should be using the graphical 
model editor anyway, which I do not find convincing.
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Ultra machining
Kragen Javier Sitaker, 02020-07-06 (updated 02020-07-18) 
(5 minutes)

    I’ve been watching a lot of videos of people explaining and 
demonstrating how they machine metal parts with modern CNC 
lathes and mills, as well as more exotic tooling like wire EDM and 
SLS machines.  It occurred to me that they’re still mostly not taking 
much advantage of the possibilities of what CNC machines could do. 

    First, a lot of vertical milling is done with cylindrical endmills.  
Cylindrical endmills have to be unreasonably long and slender in 
order to be able to reach a reasonable depth.  For a given end 
diameter, tapered endmills offer a much better tradeoff of reach 
versus rigidity than cylindrical endmills do.  But they have the 
disadvantage that, with three-axis milling, they don’t permit milling 
vertical walls.  But that’s obviously fixable with five-axis milling. 

    However, it’s even possible with four-axis milling, if your axes are 
Y, Z, A, and B.  The X-axis can be fixed at the center of rotation of 
the B-axis;  it need not move.  This also eliminates the heavy and 
finicky serial-kinematics prismatic joint upon prismatic joint of a 
standard gantry, which I think may be a leftover from manual 
machining. 

    We pay way too much for rigidity.  Machine tools are 
conventionally built out of iron and steel, which are pretty rigid, but 
also pretty expensive — even to buy, but especially to shape.  Other 
materials are nearly as rigid and a hell of a lot cheaper, so you can use 
far more of them.  Above I mentioned granite, but other candidates 
include concrete, brick, and even plaster.  Building machine tools out 
of concrete is a fascinating and underexplored area. 

    Aside from that, I think rigidity is perhaps overrated.  Hermle is 
building their best machines, not out of granite, but out of a 
granite-epoxy composite, as I understand it because it damps 
vibration better.  In manual machining, rigidity (and taking up the 
backlash) was the only way to get an accurate reading on where your 
cutting tool was relative to the workpiece, because you didn’t have 
any feedback --- the machinist might not be running open-loop but 
the machine tool was.  Nowadays we could use closed-loop feedback 
on relative tool-workpiece positioning, which would also stop a lot of 
crashes, but we don’t. 

    When you’re filing a part by hand, the file is held in your hand, 
which is about a hundred times more compliant than the floppiest 
machine tool frame.  But, if you hold the file firmly, it cuts cleanly 
and doesn’t chatter;  and you can file your parts down to 
single-micron tolerances if your micrometer is that good.  That’s 
because you’re damping chatter instead of just resisting it, and because 
you’re using closed-loop feedback on when you’re cutting, when 
you’re not, and how much you’ve cut. 

    The standard cure for chatter in a machine tool is to add rigidity:  
to your setup, to your tool, to the tool frame, whatever.  But 
increased rigidity doesn’t eliminate vibrational modes;  it increases 



their frequency, decreases their displacement, and increases their 
force.  What eliminates vibrational modes is nonlinearity, like the 
viscoelastic behavior of your hand meat on a file, 
or — ironically — metal parts banging together and moving energy 
from a lower-frequency vibration to a higher-frequency vibration.  
The more rigid and linear a system is, the higher its Q factor! 

    So I’d like to see more about other approaches to chatter that don’t 
depend on rigidity.  Damp vibrations with sand and gravel.  Actively 
cancel chatter with piezoelectric actuators instead of passively resisting 
it.  Cut with files with randomly-spaced teeth, perhaps made with 
carbide inserts.  I don’t know what will work. 

    As for closed-loop feedback, it’s possible for interferometric 
systems like ERIM’s HoloMapper from 1997 to get submicron 
measurements at millions of pixel locations across the surface of a part 
at once, without making contact.  (At the time the latency was four 
minutes, but there’s no reason it needs to take that long now.) Using 
this in real time as you’re machining would mean sacrificing flood 
coolant, but modern carbide tools can cut steel pretty well dry. 

    I’ve previously written about geometric-optics sparkle feedback, 
where a sparkle pattern from sparkle glued to a rigid body indicates 
simultaneously its position and attitude to a camera at a known 
location with a point-source light at a known location.  Combined 
with a reference mask that obscures some of the sparkles, this should 
be capable of giving relatively precise feedback,  

    sparkle feedback 

    kinematic mounts plus clutches
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Importing the WHO’s 
COVID-19 data into SQLite
Kragen Javier Sitaker, 02020-07-10 (2 minutes)

    I downloaded the WHO CSV of covid data and imported it into 
SQLite to query it as follows: 

$ sqlite3 covid-data.sqlite3
SQLite version 3.11.0 2016-02-15 17:29:24
Enter ".help" for usage hints.
sqlite> .mode csv who
sqlite> .import WHO-COVID-19-global-data.csv who
sqlite> .schema
CREATE TABLE who(
  "Date_reported" TEXT,
  " Country_code" TEXT,
  " Country" TEXT,
  " WHO_region" TEXT,
  " New_cases" TEXT,
  " Cumulative_cases" TEXT,
  " New_deaths" TEXT,
  " Cumulative_deaths" TEXT
);
sqlite> select sum(deaths) from (
   ...> select " Country", max(cast(" Cumulative_deaths" as decimal)) as deaths
   ...> from who
   ...> group by " Country"
   ...> );
508456
sqlite> select " Country", max(cast(" Cumulative_deaths" as decimal)) as deaths
   ...> from who
   ...> group by " Country"
   ...> order by deaths desc
   ...> limit 8;
"United States of America",126573
Brazil,58314
"The United Kingdom",43730
Italy,34767
France,29760
Spain,28752
Mexico,27121
India,17400
sqlite> select max(Date_reported) from who;
2020-07-01
 

    The cast is necessary because otherwise the sorting is performed 
ASCIIbetically, producing the wrong answer.  Here’s Argentina: 

sqlite> select Date_reported, " Cumulative_deaths", " Cumulative_cases" from who

   ...> where Date_reported in ('2020-05-01', '2020-05-15', '2020-06-01', '2020-0
6-15', '2020-07-01')

https://covid19.who.int/WHO-COVID-19-global-data.csv
https://stackoverflow.com/questions/1045910/how-to-import-load-a-sql-or-csv-file-into-sqlite
https://stackoverflow.com/questions/1045910/how-to-import-load-a-sql-or-csv-file-into-sqlite


   ...> and " Country" = 'Argentina';
2020-05-01,215,4304
2020-05-15,345,6973
2020-06-01,530,16214
2020-06-15,819,30295
2020-07-01,1283,62268
sqlite> select Date_reported, " Cumulative_deaths", " Cumulative_cases" from who
   ...> where (Date_reported like '%-01' or Date_reported like '%-15')
   ...> and " Country" = 'Argentina';
2020-03-15,2,45
2020-04-01,24,966
2020-04-15,101,2336
2020-05-01,215,4304
2020-05-15,345,6973
2020-06-01,530,16214
2020-06-15,819,30295
2020-07-01,1283,62268
 

    For Derctuo I want to be able to do queries like this interactively 
and easily (more easily than SQL) and plot the results.  The CSV in 
question is 1.07 megabytes, but gzips to 191kB, and I suspect would be 
under 100kB with a simple column-oriented database doing 
delta-compression.
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Migrating app snapshots
Kragen Javier Sitaker, 02020-07-10 (updated 02020-07-11) 
(14 minutes)

    Consider the problem of migrating a running program on demand 
to whatever computer you have handy.  Perhaps a “master” copy of 
the program’s running image lives on a “home server”, and when you 
want to use a device, you take out a “lease” on the application’s image 
and start downloading it to the device and using it. 

    As a sort of reference case, I have a newly installed Ubuntu virtual 
machine (p.  205) which consumes 11 gigabytes on disk and is 
configured with 2 gibibytes of RAM, and I’m using a 20Mbps 
Argentine internet connection at the moment.  Downloading these 13 
gigabytes of data to a local machine would take about an hour and a 
half. 

    However, you might be able to reduce this time in a number of 
ways: 

• You might be able to demand-page it to some extent, prioritizing 
the transfer of blocks of the memory or disk image that the 
application is blocking on to download first.  This way you might be 
able to use the virtual machine considerably earlier than an hour and a 
half.  (Of course, some kind of prefetch strategy could make 
demand-paging work a lot better.)  
• You might be able to cache it.  If the image is organized as a 
(materialized) Merkle tree, then you can download only the blocks 
that aren’t already present locally;  moreover, the rsync algorithm 
(ideally with a zsync-like precomputed index) may offer further 
benefits, allowing typical filesystem changes to be transferred very 
rapidly.  Merkle-tree storage implies indexing the blocks of the image 
by a secure hash, which will automatically deduplicate them.  After 
the base Ubuntu install, for example, I installed a bunch of 
development tools and some software projects in a derived image, 
which used only 2 gigabytes in the derived disk image, which would 
take only 13 minutes to transmit.  (Probably some things changed in 
RAM, too, but I don’t have a good way to measure them.)  
• You can compress the transferred data, using an algorithm like gzip 
(LZ77) or LZSS.  For example, the 11-gigabyte Ubuntu install 
mentioned above gzips to only 4.2 gigabytes, reducing the initial setup 
time to about 40 minutes (including RAM);  the 2-gigabyte derived 
image — the deltas to set up a development environment 
 — compresses to 1.03 gigabytes, about seven minutes.  
• You can run the app on the server while the transfer is happening, 
transmitting screen images and input events over the network in 
parallel with the streaming of the memory image.  This of course 
means that the image is being partly invalidated while it’s being 
transferred, but this measure may be enough to reduce the pause by 
orders of magnitude.  If the app’s rate of invalidating pages is lower 
than the available bandwidth, for a long enough period of time for the 
previously invalidated pages to be transferred, the pause will be 
reduced to zero.  



• You can get a faster internet connection.  For example, if you have a 
400Mbps connection instead of 20Mbps, the same transfer would take 
5 minutes instead of an hour and a half.  
• You can use less storage.  For example, the Emacs process I’m 
typing this note in has a virtual memory size of 308 megabytes, of 
which 16 megabytes is resident;  the 308 megabytes includes all of its 
shared libraries and Lisp code, though 250 megabytes of it is two 
mappings of the 125MB /usr/share/icons/hicolor/icon-theme.cache, 
which hasn’t changed in eight months and gzips to only 17 megabytes.  
So a full app snapshot of this Emacs process would take two minutes 
rather than an hour and a half, or 30 seconds with gzip, and if only the 
16 megabytes were needed, it would take only six seconds.  
• You can flush caches.  Most in-memory application state is not vital 
and can be regenerated from other, more compact state — a 
decompressed image in BGRA can be regenerated from its JPEG, for 
example.  If the application can be notified to flush caches in 
preparation for checkpointing, then everything gets easier.  It 
probably isn’t necessary to have a special case for the Linux disk 
cache, though, since indexing by hash takes care of that already.   

Leases, stealing, and committing 

    How would you get state back onto the home server?  Unless you 
want to require every app to be written in terms of CRDTs or event 
sourcing, you need some kind of concurrency control, specifically 
mutual exclusion. 

    The most reasonable solution is to acquire a lease, a time-limited 
lock, on the application state you’re “checking out”.  So when you 
start snarfing the dirty pages into your tablet, the tablet might acquire 
a three-hour lease it renews every hour.  As long as it holds that lease, 
any attempt to check out the application state on another machine 
will fail, telling you to close it on your tablet first.  When you close 
the application on the tablet, it releases its lease, so the lease terminates 
earlier than the three-hour deadline, which simply serves as a timeout 
to permit automatic recovery in case of device failure. 

    Periodically the tablet checkpoints the local state of the application 
locally, then (if still connected to the internet) begins streaming the 
dirty pages of that checkpoint back up to the server as a possible 
future commit.  Once that checkpoint finishes streaming, it optionally 
commits it on the server, then makes a new checkpoint and starts 
streaming that one to the server.  Since the checkpoint isn’t modified 
while it’s streaming, the streaming process is guaranteed to finish in 
finite time, however slow the connection, although it might take a 
long time on a slow connection.  The state that is committed is always 
a consistent checkpoint from a single point in time, but it may be 
somewhat out of date. 

    So if your local device fails, you only lose the last few minutes of 
work;  the rest, up to the last committed checkpoint, is saved on the 
server. 

    This approach permits internet-disconnected operation for a 
limited period of time as well, for which purpose you might want a 
longer lease, maybe a day or two up to a month or two.  This poses 
the problem of what happens if the device owning the checkout is 



lost, stolen, or broken;  in such a case you will want to steal the lease, 
so any state on the lost device becomes orphaned and cannot be 
committed to the original application image, though it can perhaps be 
committed as a new image that branched from the original. 

    “Read-only checkouts” are also useful:  checkouts of the 
application image that succeed even if a lease is outstanding, acquire 
no lease themselves, and cannot commit, used for consulting data in 
the app without making (persistent) modifications to it. 

    Committing from an expired or orphaned lease or a read-only 
checkout can be allowed if no other commits have happened since the 
checkout and there is no lease outstanding. 

Reasons for migrating 

    The main reasons for wanting to migrate a running app to the 
computer in your hand are (a) interaction latency, (b) disconnected 
operation, and (c) experimentation you might not want to deploy.  
The main reasons for wanting to migrate it to a server are (a) greater 
compute resources, (b) higher bandwidth and lower latency to the rest 
of the internet, (c) making it available to interact with other people, 
and (d) potential recovery from device failure. 

    So you could, for example, check out a website onto your netbook, 
modify some things about its setup while disconnected, test it locally 
to ensure it’s working as desired, then commit it to the server once 
you reconnect to the internet.  Or you could stream checkpoints of 
your digital audio workstation to your home server so that if it breaks 
or gets stolen you suffer minimal interruption to your work.  Or you 
could interactively edit a 3-D scene on your laptop in Blender, then 
migrate your Blender session to your rendering cluster to run faster 
overnight.  Or your could periodically checkpoint a long-running 
compute job on a cluster, on individual machines or cluster-wide, 
saving the snapshots to a different machine in order to recover from 
partial failures. 

    An interesting special case is where the device you’re running on 
doesn’t have enough space for a whole snapshot, so it needs to 
occasionally demand-page in bits of the image while it’s running.  
This could make it feasible to run memory-hungry applications like 
Slack on machines with relatively little RAM, although swapping 
over the network like that can be slow. 

    Another sort of special case is where the “home server” is just a 
local disk, and effectively you’re just implementing checkpointing 
and software suspend.  This should give you quicker boots (if you can 
circumvent slow BIOS/UEFI/Linux anyway) and, if you run out of 
battery, you’ll recover to the latest consistent checkpoint when you 
come back up. 

    More generally, you can have topologies other than a simple 
client-server topology;  you could write out checkpoints to a local 
disk, which is streaming them to another server elsewhere, or you 
could have a distributed net of servers for block storage, leases, and 
commits, with some kind of quorum system for things that require 
consensus.  Multiple clients on the same LAN can promiscuously 
share new blocks that might be useful for migration.  And so on. 



Security issues 

    Cloning a machine containing secrets, including entropy pool data, 
can lead to the inadvertent disclosure of secrets with many 
cryptosystems;  for example, it can lead to nonce reuse, or the 
computation of multiple RSA keys containing common factors.  It 
would be advisable to consider any such random numbers to be 
nonrandom after a checkpoint.  Moreover, host-based security 
measures like retry limits and sleeps between wrong-password retries 
are entirely circumvented if the attacker can snapshot and replicate 
the host, but of course in that case the attacker owns the hardware 
and the game is over anyway. 

    The migrated state is subject to corruption from whatever host it’s 
been migrated to, so in effect the running application is trusting every 
host that has ever committed to it in the past;  any of them can have 
inserted arbitrary malicious code into the imge.  In theory a defender 
might be able to detect this, but in practice probably would not. 

    In the form described above, the application state is also entirely 
vulnerable to the server;  a malicious server can steal information and 
make arbitrary modifications to it.  If you were willing to give up the 
possibility of executing applications on the server, you could reduce 
this vulnerability to some extent by signing and encrypting the 
application state on the clients, perhaps even limiting the server’s 
powers to mere denials of service;  you’d have to be careful about 
replay attacks, and it might not be possible to stop them entirely, and 
of course the amount and pattern of encrypted data blocks read and 
written might provide a malicious server with access to information 
we would prefer to conceal from it. 

Concrete implementation approaches 

    QEMU’s CLI has “stop”, “cont”, “savevm” and “loadvm” 
commands that might be a sufficient hook to implement such a 
system, reducing the problem to a problem of synchronizing qcow2 
images (or, possibly, snapshots thereof).  QEMU also has a live 
migration feature (I don’t know how this works) and the ability to 
create a “copy-on-read” image with a remote “backing file”, which is 
awfully similar to the features described above;  however, VM 
snapshotted states from the backing file are not available in the 
derived image. 

    QEMU now has a machine type called “microvm” intended for 
booting single-application virtual machines. 

    I wrote about a user-level virtual-memory system that would 
facilitate this kind of copy-on-write thing (p.  162). 

    WebAssembly is an obvious implementation technology to try, 
both in that the client apps could be web browsers and in that 
WebAssembly runtimes are likely to support the kinds of isolation 
and snapshotting that would be useful for this kind of thing, as well as 
often being more manageable than entire Linux installations. 

    Docker of course is commonly used for running single (server) 
applications in an isolated environment, and it extensively uses 
copy-on-write to keep its disk space usage somewhat manageable.  A 
typical Docker image using Alpine Linux might be 700 MB, five 



minutes.  (I thought it was a lot smaller, but the ones I have here are 
that big.) It would be interesting to try replicating Docker instances 
around.
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Virtual machine setup
Kragen Javier Sitaker, 02020-07-10 (updated 02020-07-14) 
(17 minutes)

    I set up a virtual machine this week using the virtual-machine 
emulator QEMU with KVM under Ubuntu 20.04. 

Objectives 

    I want to have a cloud development server.  A problem with this in 
the past has been upgrades:  if I don’t upgrade the machine’s software, 
it gets out of date and progressively more painful to do things on.  But 
when I do upgrade it, I’m at risk of the machine not booting any 
more, perhaps requiring a crash cart to visit it, or even plugging the 
disks into another machine (that still boots) to recover their data. 

    Amazon AWS allows you to snapshot an EC2 volume before 
trying an upgrade, so you can roll it back if things go badly.  Other 
virtualization and paravirtualization systems have similar capabilities.  
The simplest solution is just to use QEMU running under a popular 
system with good support;  Ubuntu 20.04 is supported until 2025, for 
example.  Then the “hypervisor” operating system installed on the 
physical hardware can remain relatively untouched by whatever 
development activities I’m doing, while the guests can evolve at will. 

    It would also be nice to be able to use a sandbox with some chance 
of containing potential attacks to a single more or less disposable 
virtual machine. 

    Also, there are some experiments I’ve been wanting to try for a 
while involving incremental snapshots of virtual machines (p.  200), 
and this might be a nice stepping stone. 

Initial setup procedure 

    In order to get KVM working, first we had to enable 
“Virtualization Technology” in the Dell PowerEdge R610 machine’s 
BIOS;  it was disabled by default, as indicated by the kvm-ok command, 
although enabled by default in Ubuntu 20.04’s kernel and present in 
the CPU, which /proc/cpuinfo says is an “Intel(R) Xeon(R) CPU 
E5649 @ 2.53GHz”. 

    I was having a hard time setting up Debian inside QEMU, so I 
snarfed the Ubuntu install ISO (SHA256 
e5b72e9cfe20988991c9cd87bde43c0b691e3b67b01f76d23f8150615883c
e11) instead.  This is a reconstruction of what would have had the 
right effect (I mistakenly used QED instead;  see “Escaping QED” 
below): 

qemu-img create -f qcow2 ubuntu-base.qcow2 32G
kvm -hda ubuntu-base.qcow2 -cdrom Downloads/ubuntu-20.04-desktop-amd64.iso -m 2G
 

    kvm is the command installed by the qemu-kvm package which is just 
equivalent to qemu-system-x86_64 -enable-kvm.  (Older versions of qemu-kvm 
were actually a separate branch of QEMU I think, but it’s still more 
convenient to invoke it this way.) 



    At first I made the mistake of making the disk too small;  Ubuntu 
20.04 claims to need at least 8.6 GB to install, and in fact used 8.8 GB.  
(The QCOW2 format is allocate-on-write, so even though the 
virtual disk is 32 GB, the ubuntu-base.qcow2 file it’s stored in is only 8.8 
GB, since it’s mostly unused.) Also, QEMU’s default memory size 
turns out to be 128MiB, which is too small, and Ubuntu’s installer 
“reported” this fact by displaying a blank text-mode screen with a 
blinking cursor and never doing anything else;  -m 2G or something is 
needed. 

    At first I was having trouble with keyboard focus in QEMU, 
which I think may be a matter of using the obsolete and buggy 
window manager wm2;  I worked around this by running QEMU with 
-vnc :2.  QEMU by default has no authentication on its VNC 
interface;  rather than fixing this (see below about the options to fix 
that) I just packet-filtered VNC on the machine hosting QEMU and, 
for good measure, X-Windows too: 

iptables -A INPUT -s 127.0.0.0/24 -p tcp --dport 5900:6100 -j ACCEPT
iptables -A INPUT -s 192.168.0.0/24 -p tcp --dport 5900:6100 -j ACCEPT
iptables -A INPUT -p tcp --dport 5900:6100 -j REJECT
 

    (A little additional work was needed to get this to take effect at 
every boot.) 

    This is a little dodgy given that network traffic from the virtual 
machine itself appears to come from localhost, since it’s using the user 
networking type (Slirp), so different virtual machines have free rein 
to connect to VNC and X servers. 

    To connect remotely to the server from outside its local network, 
I’m tunneling over ssh, which works pretty well: 

ssh -C -L 5902:localhost:5902 server
 

    That way I can run xvncviewer :2 on the machine I’m sshing from, 
and ssh encrypts and compresses the data over the network, as well as 
(implicitly) authenticating me by making the connection to the VNC 
server come from localhost. 

    Once I had Ubuntu installed, I could run the virtual machine 
without the CD-ROM: 

kvm -hda ubuntu-base.qcow2 -m 2G
 

    But rather than running directly from there, I used it as a base for 
cloning further copy-on-write disk images, which is a feature of the 
QCOW, QCOW2, and QED virtual disk formats: 

qemu-img create -b ubuntu-base.qcow2 -f qcow2 ubuntu-dev0.qcow2
qemu-img create -b ubuntu-base.qcow2 -f qcow2 ubuntu-dev1.qcow2
chmod 444 ubuntu-base.qcow2
 

    Now ubuntu-base.qcow2 is what Proxmox calls a “template”:  you 
can’t start it but you can create and start clones of it. 

    And I wrote a script to launch virtual machines with these cloned 



disk images: 

$ cat dev0
#!/bin/sh
kvm -hda ubuntu-dev0.qcow2 -smp 12 -m 2G "$@"
 

    This approach allows me to clone new virgin virtual disks at a cost 
of some 200 kB (plus whatever is used thereafter, typically tens of 
megabytes to gigabytes) and 250 milliseconds.  That way I won’t have 
to install Ubuntu again. 

Escaping QED 

    Initially I used the deprecated disk image format QED (-f qed) 
because I misunderstood the QEMU documentation to be saying that 
it had some extra features;  to fix it, I did this: 

qemu-img convert ubuntu-base.qed -O qcow2 ubuntu-base.qcow2
 

    This took 4-6 minutes and shrank the file to 8.8 GB.  Then I 
needed to recreate the dev child image and reinstall the things that I 
had installed in it previously. 

    Making a backed QCOW2 image is actually significantly slower 
than doing it with QED, but not enough to matter for my purposes;  
doing this with QED took 10–11 milliseconds: 

$ time qemu-img create -b ubuntu-base.qcow2 -f qcow2 ubuntu-dev0.qcow2

Formatting 'ubuntu-dev0.qcow2', fmt=qcow2 size=34359738368 backing_file=ubuntu-ba
se.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16

real    0m0.244s
 

    The resulting derived file is only 197kB;  after spending ten minutes 
installing stuff in it, it’s 1 GB. 

    Interestingly, both QCOW2 and QED can use a file in a different 
format or even accessed over HTTP as the backing file, so I could put 
that base image (or the QED one) up on a web site and remotely 
lazily clone it! 

Recovering disk space used by deleted VM 
snapshots 

    After I used savevm a couple of times, qemu-img reported, at one point: 

$ qemu-img info ubuntu-dev0.qcow2 
image: ubuntu-dev0.qcow2
file format: qcow2
virtual size: 32 GiB (34359738368 bytes)
disk size: 5.67 GiB
cluster_size: 65536
backing file: ubuntu-base.qcow2
Snapshot list:
ID        TAG                 VM SIZE                DATE       VM CLOCK



1         tetris1             1.5 GiB 2020-07-10 16:40:17   00:01:43.207
2         ready               1.5 GiB 2020-07-10 16:59:52   00:11:43.959
Format specific information:
    compat: 1.1
    lazy refcounts: false
    refcount bits: 16
    corrupt: false
 

    So it seems like the VM-state snapshots show up as disk-state 
snapshots.  I have deleted them: 

qemu-img snapshot ubuntu-dev0.qcow2 -d tetris1
qemu-img snapshot ubuntu-dev0.qcow2 -d ready
 

    But this does not reduce the size of the QCOW2 file all the way 
back down;  du -h and qemu-img info show that it's still occupying 3.9 GB 
of real space, and its file size in ls -lh is still 5.7 GB (so it’s somewhat 
sparse). 

    I thought maybe qemu-img convert might solve the problem, but it 
seems that qemu-img convert produces an image without a backing 
file — so it’s ten gigs.  It turns out that the way to avoid this is using 
qemu-img rebase, as explained in the qemu-img man page: 

qemu-img create -b ubuntu-dev0.qcow2 -f qcow2 ubuntu-dev0-copy.qcow2 # 92 ms
qemu-img rebase -b ubuntu-base.qcow2 ubuntu-dev0-copy.qcow2  # 76773 ms
 

    This produces a 2.4-gigabyte copy which qemu-img compare reports is 
identical to ubuntu-dev0.qcow2.  (I'm not sure but I think I have about 2.4 
GB of devtools stuff installed in this image, above and beyond what’s 
in the base image.) 

Results 

    So far everything seems reasonably okay except that screen redraws 
are painfully slow. 

    In single-CPU user-level compute performance, QEMU with 
KVM seems to only cost on the order of 5%, if anything:  ./fib 40 
inside QEMU takes 632–663 ms, while on the host machine it takes 
619–641 ms.  However, the host machine has 12 CPUs with 
hyperthreading, thus 24 “CPUs”, while the QEMU-emulated 
machine initially had only a single virtual CPU. 

    It turns out QEMU has an -smp flag that’s just off by default.  
Running ./dev0 -smp 12 (or later adding -smp 12 in the dev0 script) and 
building Yeso with make takes 9.3–10.2 seconds.  make -j 12, to run up to 
12 compilation processes in parallel when possible, takes 1.8–2.2 
seconds;  that’s more than a 5× speedup.  On the host machine, the 
corresponding numbers are 7.4–8.4 seconds and 1.41–1.45 seconds, 
suggesting that QEMU’s overhead for system things like file I/O and 
process management is more like 30%.  And on the host machine make 
-j 30 is even faster, at 1.35–1.40 seconds, but unsurprisingly provides 
no additional speedup on the 12-CPU virtual machine. 

    Over my high-latency internet connection to the server, graphical 
user interfaces are a bit slow, perhaps in part because of bandwidth 
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limits;  repainting a full 1024×768 virtual screen takes 5–15 seconds.  
However, browsers typically load pages a lot faster;  they’re just 
slower to scroll.  It might be worthwhile trying XPra or Spice to see if 
I can get faster screen updates, or just using ssh and/or Mosh when 
possible. 

    Running with -vnc :1 I can get a console in my terminal window 
with -monitor stdio.  This is apparently how to use the set_password 
command to require a password on the VNC server (required with 
-vnc :1,password supposedly).  (SASL is also an authentication option.) 
Also apparently -vnc localhost:1 would also only allow connections 
from localhost, though without any real authentication. 

    By using savevm tetris1 at the monitor prompt (qemu) I can save a 
virtual machine image that I can later revive with kvm ...  -loadvm 
tetris1, thus returning to a particular point in the Tetris game I was 
playing.  Doing this bloats the .qcow2 file from 1 GB to 2.6 GB, 
presumably with a RAM image, and takes about 15 seconds, during 
which time the VM is paused, which is pretty disruptive.  Reloading 
from this image is, I think, faster than saving (or booting), but it still 
takes 15 seconds to repaint my screen over this slow internet 
connection. 

    A lazy clone of a disk image (QCOW2 at least) doesn’t share the 
snapshots of its backing file.  Presumably I could clone an 
already-booted virtual machine (with the booted state in a VM 
snapshot) by cp foo.qcow2 bar.qcow2. 

XPra 

    I decided to try XPra to see if I could get a more usable remote 
display for graphical things than VNC, which was too slow.  On my 
outdated Linux Mint laptop, I installed XPra 0.15.8 (from 2015): 

sudo apt install xpra python-rencode python-gtkglext1
 

    I installed the last two packages listed because, without them, 
though XPra worked, it complained as follows about missing Python 
libraries: 

2020-07-14 21:28:33,437 rencode import error: No module named rencode
2020-07-14 21:28:33,987 Warning: 'rencode' packet encoder not found
2020-07-14 21:28:33,988  the other packet encoders are much slower
2020-07-14 21:28:33,988 xpra gtk2 client version 0.15.8 (r11211)
2020-07-14 21:28:34,044 OpenGL support could not be enabled:
2020-07-14 21:28:34,044  cannot import name gdkgl
 

    On the Ubuntu 20.04 server, I installed XPra 3.0.6: 

sudo apt install xpra
 

    Then I was able to launch a remote xterm displaying on my local 
display via 

xpra start ssh:serverhost --start=xterm --remote-xpra=xpra
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    and later reattach to the session containing the xterm with 

xpra attach ssh:serverhost --remote-xpra=xpra
 

    Within the xterm I could then run 

./dev0
 

    in order to launch the QEMU KVM virtual machine as described 
previously. 

    Without the --remote-xpra=xpra option, I was getting failures with this 
error: 

bash: /home/user/.xpra/run-xpra: No such file or directory
2020-07-14 21:31:30,499 failed to receive anything, not an xpra server?
2020-07-14 21:31:30,500   could also be the wrong username, password or port

2020-07-14 21:31:30,500   or maybe this server does not support 'unknown' compres
sion or 'bencode' packet encoding?
2020-07-14 21:31:30,500 Connection lost
 

    There’s still highly noticeable lag, but it seems dramatically more 
usable than VNC.  And VNC had more trouble with my 
keymapping.  XPra is reportedly using peaks of up to about 16 
megabits per second.  My initial impression of XPra:  this is fucking 
awesome. 

    It might be more reasonable to run XPra within the guest instead 
of on the host (that way copy and paste would work, for example, 
and I wouldn’t be limited to the screen space of the virtual machine’s 
emulated graphics card), but this was an easier way to get started, and 
it allows me to handle the guest bootup process as well. 

    With this combination of XPra versions, I do get this error 
message, but everything graphical except setting cursors seems to 
work: 

2020-07-14 21:27:06,962 error creating cursor: object of type 'int' has no len() 
(using default)
Traceback (most recent call last):

  File "/usr/lib/python2.7/dist-packages/xpra/client/gtk_base/gtk_client_base.py"
, line 329, in set_windows_cursor
    cursor = self.make_cursor(cursor_data)

  File "/usr/lib/python2.7/dist-packages/xpra/client/gtk_base/gtk_client_base.py"
, line 359, in make_cursor
    if len(pixels)<w*h*4:
TypeError: object of type 'int' has no len()
 

Unknowns to probe/things to try 

    What’s the most reasonable way to enable ssh into these virtual 
machines?  I’d need to disable password authentication and do some 



kind of port forwarding.  By default QEMU does its networking with 
Slirp, but it can alternatively use TUN/TAP or L2TPv3.  There used 
to be a -redir tcp:2222::22 option that looks like it will work, which I 
think is now spelled -net user,hostfwd=tcp::2222-:22. 

    How about Mosh? 

    Is there some way to save VM state snapshots in a copy-on-write 
way so that I can journal aggregated machine state changes out over a 
network for point-in-time recovery?  Even cooler would be if I could 
unfreeze from such a snapshot when an ssh connection came in. 

    Can I get Ubuntu or Debian to boot in QEMU with KVM with 
-nographic? 

    What’s the easiest way to do copy-paste in and out of QEMU, 
when not using ssh?  Am I better off using spice (see also) or curses?  
Apparently Spice makes it easier. 

    Is my window manager really what’s at fault in the keyboard focus 
problem? 

    How insecure is KVM? 

    How about accessing files on the guest’s filesystem?  There are 
-fsdev and -virtfs flags to QEMU, but I’m not sure what they do. 

    Is there an advantage to kvm -M pc-q35-focal?  The default is 
pc-i440fx-focal. 

    What do Bonnie++ and lmbench think?  Does using the virtio 
block controller instead of emulated IDE help?  The Proxmox dox 
say: 
It is highly recommended to use the virtio devices whenever you can, as they 
provide a big performance improvement.  Using the virtio generic disk controller 
versus an emulated IDE controller will double the sequential write throughput, as 
measured with bonnie++(8).  Using the virtio network interface can deliver up to 
three times the throughput of an emulated Intel E1000 network card, as measured 
with iperf(1).  [1]  

    Can I do KVM Inception, running QEMU with KVM inside of 
QEMU with KVM?  I think the answer is yes, Android Studio says 
the answer is yes, for testing Android apps inside the virtual machine 
it would be extremely convenient for the answer to be yes, but 
kvm-ok in the virtual machine says no.

Topics

• Performance (p.  790) (24 notes) 
• Programming (p.  803) (13 notes) 
• Practical (p.  806) (12 notes) 
• Latency (p.  832) (6 notes) 
• Virtual machines (p.  869) (3 notes) 
• QEMU (p.  922) (2 notes) 
• Linux (p.  945) (2 notes) 
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Long distance radio
Kragen Javier Sitaker, 02020-07-17 (19 minutes)

    I’ve previously written about ultraslow radio for decentralized 
global digital communication, but since then I’ve read a bit more 
about the topic, including a little bit of the ample literature on 
amateur radio DX, QRP, and contesting. 

    Due to skywave propagation, hams using MF and HF radio 
routinely communicate 1000 km or more with transmit powers on the 
order of one watt (there’s a “thousand-miles-per-watt” award);  
under exceptional conditions, transmissions of 1000 km on 1 mW of 
transmitted power have been reported.  Typical transmission modes 
include (very slow “QRSS”) CW and the WSJT modes, many of 
which are around one bit per second. 

    So now I see how to build infrastructure that permits global data 
communication at hundreds of kilobits per second when the 
ionosphere is favorable, without emitting a noticeable amount of 
radio interference, and without requiring more power than is easily 
available by energy harvesting.  A global network of low-power 
kilometer-scale phased arrays can speak ultrawideband MF and HF to 
each other, but ultrawideband at higher frequencies internally and to 
nearby mobile radios. 

Power levels 

    A Wi-Fi card might emit 200 milliwatts, although the little FM 
radio transmitters you might plug into your MP3 player, legal since 
2006 in the EU and longer in the US and Canada, are only about a 
microwatt, 10 nW in the US, 50 nW in the UK, 25 microwatts in 
Japan.  The US allows 100 mW unlicensed narrowband AM radio 
transmitters, so I think 10 milliwatts per transmitter site ought to be 
reasonable. 

    In a memory-holed YouTube video, Naomi Wu recently reviewed 
the Ulefone Armor 3WT FRS cellphone, which includes a 2W FRS 
walkie-talkie.  She reports that in Shenzhen she can get several blocks 
of range, which is to say, several hundred meters.  FRS and GMRS 
radios commonly transmit at such powers;  GMRS is permitted up to 
50 watts, though WP says 1-5 watts is more common in practice, and 
FRS in the US was limited to 500 mW until 2017;  FRS commonly 
gets a kilometer or so of range, though (again, WP says) tens of 
kilometers are possible “under exceptional conditions...such as hilltop 
to hilltop”.  3G mobile phones also transmit 2 W.  So if there’s no 
regulatory or interference problem, it’s reasonable for even a handheld 
device to transmit at 1-2 watts.  (Most cellphones are, I think, up to 1 
watt.) 

    Handheld ferrite loopstick antennas are capable of transmitting and 
receiving MF signals like those used for AM radio, but their antenna 
efficiency is fairly low.  A better approach for mobile stations is 
probably to use higher frequencies to connect handheld devices to 
large, fixed infrastructure like a long-distance phased array, which 
then handles the long-range communication.  Still, these short-range 
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links might be able to reach many kilometers.  (LoRa at 915 MHz can 
reach 10 km in rural areas, though fewer km in cities;  one-watt GSM 
cellphones can talk to a base station 35 km away, and a “timing 
advance limit” has been hacked into some GSM equipment to extend 
that range further.) 

    A handheld device is inevitably a point source of interference, with 
the unavoidable inverse-square interference pattern that implies.  A 
kilometer-scale phased array is, by contrast, a diffuse source, so it can 
emit at a much higher power before it starts to become a nuisance to 
neighbors. 

GPS 

    GPS receivers cost a few dollars and receive signals at -125 dBm or 
less;  some can lock in a signal at -142 dBm, which is quite impressive 
considering that the thermal noise on a 2-MHz-wide GPS channel is 
about -111 dBm.  They are made cheaper by the fact that they run at 
over 1 GHz, so they don’t need large antennas.  Acquiring these 
signals is feasible because they are perfectly uncorrelated over long 
periods of time, like an LFSR.  Ultrawideband techniques have the 
same virtue. 

Ultrawideband and frequency bands 

    Modern impulse radio (“ultrawideband”) should be able to 
essentially eliminate interference with the nearly orthogonal 
narrowband signals conventionally used.  A commercial AM radio 
station, for example, might transmit at 10 to 100 kW over a 
bandwidth of 20 kHz, on the order of 1 W/Hz.  A 10mW impulse 
radio whose pulses are evenly spread across the whole medium-wave 
AM broadcast band from 526.5 kHz to 1606.5 kHz would average 9 
nW/Hz, eight orders of magnitude quieter, easily below the noise 
floor, although it might become (faintly) audible if it were 30 dB 
higher in a particular compass direction because of (see below) 
phased-array directional transmission. 

    This 1080 kHz bandwidth gives a temporal precision of about a 
microsecond, suggesting a few hundred kilobits per second of possible 
transmission speed. 

    Transmitting over the shortwave band from 2.3 to 26.1 MHz would 
permit multi-megabit transmissions, though of course subject to 
ionospheric conditions;  there used to be 500-kW Voice of America 
broadcasting on this band, though I’m not sure there still is, but 
Wikipedia tells me there are 1200-kilowatt shortwave broadcasters, 
and I think their bandwidth may be 10 kHz. 

    (Commercial FM radio typically also transmits at a few tens of kW, 
but it’s in the 87-105 MHz range, where there’s no significant 
ionosphere propagation.) 

Chirping and wider bands 

    Chirping the transmitted pulses, like LoRa or chirped radar, would 
avoid the need for high peak-to-average power ratios that might 
otherwise pose a difficulty, and would also reduce the time-domain 
artifacts that would otherwise appear to unintentional wideband 
receivers.  Straightforward chirping wouldn’t help to avoid 
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narrowband receivers, though;  if you were to chirp from 526.5 kHz 
up to 1606.5 kHz in 1.08 milliseconds, you’re only chirping 1 kHz per 
microsecond, so you only spend 20 microseconds in each 
20-kHz-wide AM station.  This would only attenuate the part of the 
impulsive noise added to AM above 50 kHz, which the humans can’t 
hear anyway. 

    You could imagine doing several simultaneous chirps, though, 
which might help more;  one that sweeps from 526.5 kHz up to 548.1 
kHz over that millisecond, while another sweeps from 548.1 kHz up 
to 569.7 kHz, and so on.  Effectively each chirp would be a single AM 
station wide, and spread over the whole millisecond, thus strongly 
attenuating the parts of the impulse above about 1 kHz, making it 
considerably less audible.  Presumably this waveform still retains the 
time-domain precision deriving from its >1MHz bandwidth. 

    A more effective way to reduce interference might be simply 
spreading the signal over a wider bandwidth by using shorter pulses.  
If the pulses were 30 ns instead of 1000 ns, for example, going up to 33 
MHz instead of 1.5 MHz, you’d have 15 dB less power in any given 
station’s 20 kHz band, 0.3 nW/Hz, about 95 dB quieter than AM 
broadcasters --- 63 dB because of transmitting at 63 dB lower power, 
plus 32 dB because it’s spread across 17000 times as much bandwidth. 

Phased-array transceivers 

    Directional transmission at MF (300 kHz to 3 MHz) and HF (3 to 
30 MHz) would seem to require impractically large antennas:  even 30 
MHz is 10 meters, and 300 kHz is 1 km.  However, phased-array 
transmission and reception from an antenna array distributed over a 
significant geographical area should be possible, and with practical 
numbers of transceivers (10 to 1000 transceivers) significant degrees of 
directionality should be possible;  without understanding the math, 
I’m guessing it would be 10 to 30 dBi, with the additional advantage 
(for skywave propagation) that most of the energy would propagate 
horizontally.  (My intuitive reasoning is that in the direction of the 
wave, all 1000 transmitters are in phase, so the amplitude is 1000 times 
higher than the wave from a single transmitter, while in other 
directions, it’s only 32 times higher, so it’s 32 times higher in the 
direction of transmission, which means 1000 times higher power.) 

    How would you coordinate a phased array of radio transceivers to 
transmit data?  It’s a bit like the firing-squad problem in cellular 
automata;  they can use lower-power, higher-bandwidth, 
higher-frequency local radio among themselves to compute precise 
relative geolocations, synchronize their clocks, and buffer up bits to be 
sent in a phased-array fashion, or after being received in a 
phased-array fashion.  They could use, for example, the 1800 MHz 
GSM spectrum, or the 2.4 GHz unlicensed spectrum.  Time-domain 
signaling across a GHz of bandwidth should permit baseline 
measurements with a precision of a few centimeters. 

    Of course the same phased-array correlation approach can be used 
for reception.  Probably MIMO techniques to augment bandwidth 
are not directly applicable over such long distances due to diffraction. 

    However, such a phased array could easily transmit to several 
destinations at once, or receive from several senders at once.  If there 



are multiple relay stations available, it may be possible to augment the 
point-to-point bandwidth between two phased arrays by relaying the 
information in parallel over geographically diverse routes, like 
Ethernet channel bonding. 

Diffraction 

    For the diffraction limit to be better than 30 dBi, so the phased 
array is limited by the number of transmitters rather than the 
aperture, the diffraction beam divergence needs to be less than 4 
pi/1000 steradians, very crudely, which I think means less than about 
110 milliradians, 6 degrees.  Suppose we’re using 1.220λ/D, the Airy 
limit for a circular aperture, as an approximation, and we use 1 MHz 
for λ:  300 m.  So we want 1.220 300 m/D = 0.11, so D = 1.220 300 m 
/ 0.11 = 3.3 km, like, a transmitter every 100 m.  Or 10 km if we want 
to get all the way down to 300 kHz.  Normally we’d worry about 
sidelobes from spreading the transmitters too far apart, but I think 
that problem disappears with ultrawideband signals, since the 
sidebands for all the different frequencies are in different places. 

    However, if the transceivers are all on the ground, which is nearly 
planar, we’re still going to have massive diffraction in the vertical 
direction, as our energy is spread across 30 degrees or more, even after 
half of it is reflected from the ground. 

    If your energy is spread evenly over 6 degrees, then after traveling a 
quarter of the way around Earth, what is left of it will be spread over 
some 700 km of width;  this is perhaps 200 times the distance it was 
spread over originally, if the original phased array was 3.3 km, and of 
course it is also spread out vertically in a nonuniform way between 
the surface and the ionosphere.  200 times is a surprisingly modest -23 
dB, although of course that’s not the attenuation from the 
transmitter;  it’s the attenuation from the open spaces in the tens of 
meters between the transmitters to the place a quarter of the way 
around the world. 

    It might be necessary to confine the beam to a narrower horizontal 
angle than 6 degrees to compensate for the unavoidable vertical 
spread. 

Energy harvesting 

    Running transceivers on harvested RF energy may permit 
embedding them in concrete or underground, or hanging them from 
trees.  But it probably would not permit average transmitted power of 
10 milliwatts or more;  100 microwatts might be more reasonable. 

Passive reflection instead of transmission 

    Passive reflection by disconnecting an energy-harvesting antenna 
might be the most efficient way to produce pulses, and might also be 
more regulatorily acceptable.  In urban areas, energy-harvesting 
researchers have found 1 to 100 microwatts per square centimeter in 
each of several different bands, including AM radio, digital TV, and 
especially the GSM and 3G bands.  A simple calculation suggests that 
an MF AM radio loop antenna enclosing 10 m^2 at 2 km from a 50 
kW broadcasting station intercepts about 10 m^2 50 kW / 4 pi (2 
km)^2 = 10 mW, although probably in practice the number is 
somewhat larger.  Such an antenna might be illuminated by several 



such stations.  By selectively making the antenna open-circuit at 
certain moments, those 10 mW will be reflected instead of absorbed at 
those moments, across all the frequencies that efficiently couple to the 
antenna. 

    Such passive reflection avoids the necessity to convert RF energy to 
stored voltage and then back again, with its attendant losses of 
probably some 20 dB, and since it does not transmit any energy, it 
might avoid regulatory entanglements;  moreover it will not produce 
any energy on any frequencies that are not already in use.  However, 
it makes it impossible to harvest energy on one band (such as GSM) 
and transmit it on another, and it makes chirping impossible.  For 
communication on higher frequencies, antenna directivity might also 
be relevant;  your antenna system might reasonably be organized to 
reflect the incoming illumination toward the destination. 

Harvested solar energy 

    Worth noting is that 10 milliwatts of full sunlight is 0.1 cm2, or 
about 0.7 cm2 of a commonplace solar cell.  So even a few square 
centimeters of PV cells would provide much more power on average 
than all this RF energy-harvesting stuff, even in areas brightly 
illuminated by cellphone towers.  They might be able to produce 
alternating magnetic fields that transfer power wirelessly to a larger, 
less visible transceiver, perhaps embedded in a wall. 

Low-duty-cycle communication 

    Lower-duty-cycle communication might reduce the degree of 
interference with other systems, and would surely reduce the energy 
transmitted per bit.  As I understand it, there’s no floor on energy 
transmitted per bit with a given noise floor, if you transmit slowly 
enough.  If you’re doing pulse-position modulation with 
100-nanosecond timeslots, then you can transmit one bit in 2 
timeslots, two bits in 4 timeslots, three bits in 8 timeslots, etc.;  at 
some point your timing synchronization between the transmitter and 
receiver will start to suffer, but a regular quartz crystal has drift of 
about 10 ppm, while a temperature-compensated crystal oscillator 
(TCXO) is typically around 1 ppm.  So you could imagine, for 
example, transmitting one pulse every 65536 timeslots (6.55 ms) to 
represent a 16-bit symbol.  To get the same error probability per 
symbol, you’d need to send it at a higher amplitude than if you were 
sending one pulse every other timeslot, but I think only something 
like 6 times higher, assuming AWGN.  (XXX make this rigorous, or 
at least do some experiments) 

    If that’s correct, you get about 5x the energy efficiency per bit by 
using such a low-duty-cycle system, but you transmit 4096 times 
slower.  However, it might increase interference with existing 
licensed uses of the spectrum, for example introducing more audible 
impulsive noise into AM radio. 

    Low-duty-cycle communication has an interesting relationship 
with chirping, since the effect of chirping is precisely to extend the 
duty cycle.  On one hand, if the underlying signal you’re trying to 
transmit isn’t low-duty-cycle, chirping it won’t do any good --- your 
chirps will overlap, and so you won’t get the PAPR improvement you 
normally get from chirping.  On the other hand, that PAPR is 



precisely what allows you to leave your radio turned off most of the 
time and save power, so if you “improve” it too far, you will exceed 
your power budget. 

Encoding 

    Of course you want to use error-correction coding so that no one 
pulse is strong enough to be received clearly at the destination;  you 
want the pulses to be tens of dB below the noise floor so that 
substantial coding gain is needed to detect them, even near the source.  
The best way to ensure non-interference is non-detectability. 

Estimating potential results at 1-100 
megabaud 

    It’s already commonplace for QRP hams to reach 1 bit per second 
transmitting 1000 km on 1 watt.  Conservatively, phased-array 
transmission should buy you 20 dB, while phased-array reception 
should buy you another 20 dB.  Supposing that those hams are not in 
the bandwidth-limited regime of the Shannon limit, using 
ultrawideband may not buy you any extra bandwidth, just keep you 
from slamming into a narrowband bandwidth ceiling.  1000 
transmitters at 10 mW each works out to 10 watts rather than 1 watt, 
giving you another 10 dB, for a total of 50 dB, or 100 kilobaud, per 
phased-array-to-phased-array link.  If you can talk to ten phased 
arrays at once, that should give you a megabaud.  But if the phased 
arrays miraculously work out to buy you 30 dB instead of 20, you’d 
have 100 megabaud. 

Alternative communication media 

    Earth-moon-earth or “moonbounce” communication is already 
commonplace among hams and sometimes is high enough bandwidth 
to hold voice conversations over.  Doing the equivalent using passive 
MEO satellites would require more precise and dynamic tracking, to 
the point that it’s probably only practical at microwave frequencies, 
but would suffer the d4 loss of the moonbounce path over a much 
shorter distance, and still would cover most of a terrestrial 
hemisphere.  LEO satellites have an even shorter path loss and larger 
cross-section, but only cover a thousand km or so.  Meteor-trail 
communication is an existing well-known technique for 
high-bandwidth opportunistic communication at a similar range.  
And the ocean’s SOFAR channel, though it has only a few kHz of 
bandwidth, has better attenuation characteristics, more consistency, 
and lower noise than the ionosphere route.
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A generic universal 
entity-component simulatorium
Kragen Javier Sitaker, 02020-07-18 (1 minute) 

    What's the minimal core of something like a MOO, but using an 
entity-component system?  You need to handle incoming telnet 
connections, do some kind of parsing on those connections, have a 
player object, and have a room object.  You need some way to define 
new verbs, to identify objects in commands, to produce descriptions 
of rooms and their contents, and to create new rooms, doors, and 
other entities.  And you need some kind of scheduling system for 
future scheduled events.  You need to be able to checkpoint the world 
to disk and to load such a checkpoint at startup. 

    Components decompose attributes of entities along hypothetically 
orthogonal dimensions, like location, description, door connectivity, 
and so on. 

    It's not immediately apparent that there's a best way to resolve 
verbs with multiple possible definitions.  Maybe the best way is to 
associate methods with components, and when a verb is invoked on 
an object with multiple components, activate all the methods.  For 
example, rooms might belong to the description component, but also 
the room component, and when you describe a room, it should also 
list its contents' names.  But I guess that needs to come in a 
well-defined sequence. 

    But maybe I'm overcomplicating things at first, and I could just 
make objects be dicts or something.  Or an edge-labeled graph.
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Line-numbered ISAM buffers
Kragen Javier Sitaker, 02020-07-18 (updated 02020-07-23) 
(14 minutes)

    Darius and I have talked occasionally over the years about the 
problem of text editor buffers.  Editor buffers, like the ones in Emacs, 
need to support a few operations efficiently: 

• Traversing the text sequentially, for example to repaint the screen or 
search for a string or regular expression. 
• Adding markers to the text. 
• Determining what markers are present at a given location. 
• Jumping to a marker. 
• Inserting and deleting text anywhere in the buffer.  

    From the point of view of the beginning of the buffer, text moves 
when you insert and delete things before it.  The tricky part is that the 
markers need to move with the text;  it isn’t good enough to just store 
a byte offset for each marker. 

    Ideally we’d like all of these operations to be sublinear in the size of 
the buffer, and we’d like the buffer to be able to be at least nearly as 
big as RAM, if not the disk, and we might have many markers per 
line, for example to store syntax-highlighting properties of the text, 
so the number of markers also grows linearly as the text grows.  If any 
of these operations take linear time instead of, say, logarithmic or at 
least square-root time, then they will become unbearably slow when 
we open a gigabyte-sized file, much less a terabyte-sized one. 

    I think Raph Levien has come up with a design for this in Xi based 
on ropes, but I don’t know what it is. 

    I was lying in bed thinking about G-code and BASIC interpreters 
and the HP 3000, and I realized that you can more or less solve this 
with an ISAM approach, and this is probably what Darius and I had 
come up with before I forgot it until tonight.  You represent the 
buffer as an (in-RAM) ISAM file with synthetic, meaningless keys.  
ISAM supports the following operations efficiently: 

• Go to the first record whose key is equal to or following a given key. 

• Go to the next record by key (or report failure). 
• Go to the previous record by key (or report failure). 
• Read the key and value of the current record. 
• Delete the current record. 
• Insert a new key-value pair into the file.  

    All of these take at most logarithmic time;  2 and 3 are typically 
constant time.  (It’s common for ISAM systems to support an update 
operation as well, but in the absence of concurrency, this can be 
synthesized from read, delete, and insert.) There are a variety of ways 
to implement this, though B*-trees and LSM-trees are the most 
popular. 

    How does this give us buffers?  Well, when we read a file into a 
buffer, we break it into blocks of, say, 256 bytes, and assign each one a 



sequential string ID to serve as its key;  perhaps AAA, AAB, AAC, 
and so on, or if the file is a terabyte, AAAAAAA, AAAAAAB, 
AAAAAAC, and so on.  When you add a marker in a block, you 
update the block to include a pointer to the marker, and you store the 
block key and the byte offset in the marker. 

    When you change text within a block, you must keep the block 
from growing too large;  you may need to split the block, perhaps 
splitting block AAB into AAB and AABA.  This requires updating 
the key stored in each marker that has moved to the new block.  If 
you don’t split the block, you must update the byte offset stored in 
each marker that would have moved to the new block. 

    To ensure that traversal remains fast, you might also have to keep 
blocks from becoming pathologically small, perhaps merging what 
little remains of block AAD into the end of block AAC and removing 
AAD if both of them have shrunk a lot. 

    Because traversing the blocks sequentially is fast, traversing the 
buffer sequentially is fast.  Adding a marker is very fast, requiring only 
an update interaction.  Finding what markers are present at a given 
location is fast because it only involves inspecting the current block, 
which is never very large.  Jumping to a marker is fast because the 
marker contains the key to the block, which permits navigating to it 
via ISAM.  Inserting and deleting may involve ISAM operations. 

But why ISAM?  Undo and incremental 
monoids 

    Why ISAM rather than just a doubly-linked-list piece table?  You 
could include memory pointers to the pieces in the marker objects 
instead of ISAM keys.  Inserting and deleting into a doubly-linked list 
is easy;  you have to update all the markers concerned, but that is true 
with ISAM as well.  And ISAM adds a logarithmic slowdown to the 
jump-to-a-marker operation, which would instead be constant-time 
with pointers to pieces.  So is there any advantage of ISAM here? 

    Well, ISAM can provide FP-persistence.  Ropes are “persistent” in 
the FP sense:  a reference to a rope refers to a given state of that rope, 
so an undo history can be implemented simply as a list of pointers to 
ropes that share structure.  You can implement ISAM in an 
FP-persistent way, and if the references from the buffer blocks to the 
markers are indirected through an FP-persistent dictionary data 
structure (whether some variant of ISAM or just a hash table) then 
the whole buffer structure can be FP-persistent. 

    Ropes don’t have an obvious way to handle markers, though.  Rope 
nodes are immutable.  If you store markers in an immutable rope 
node, you can copy them to a new node if you make modified 
versions of it, easily supporting operation #3 --- but how do you 
support operation #4, jumping to a marker?  Storing a pointer to a 
rope node in a marker doesn’t help --- even if that rope node is in the 
version of the buffer of interest, you can’t traverse the graph to its 
parent, because it may have many parents, some of which are in the 
version of interest and some of which are not. 

    The ISAM approach provides FP-persistence, like ropes, without 
losing the ability to track down a marker;  its compensating drawback 



is that copying text from one buffer to another, or from one place to 
another in the same buffer, requires copying all the text’s characters.  (
Cut and paste can avoid this.) 

Monoidal computations 

    (See also Monoid prefix sum (p.  101).) 

    Aside from simple undo, there’s another set of operations 
commonly required in text editors which can be supported efficiently 
by ISAM or ropes, but not in any way I can see with a simple 
linked-list piece table:  things like syntax highlighting, line numbers, 
and display column, which are generically a monoidal computation 
on the sequence of characters from the beginning of the file to a given 
point. 

    Basically the problem is that whether, say, a given line in a buffer is 
line 123 or line 124 depends on all the bytes before that line;  inserting 
a single newline early in the buffer increments the line numbers of 
everything after it, but if this takes time proportional to the number 
of lines in the buffer, then it will be unusable on sufficiently large 
buffers.  On the other hand, if you don’t store any line-number 
information, then going to a given line number will be unusably slow 
on sufficiently large buffers.  (It’s okay for that to require a full buffer 
scan the first time, since there’s no way to avoid that, but not every 
time.) 

Parallel prefix sums 
    The parallel prefix-sum algorithm offers a solution to this problem 
for general monoids.  If your buffer is made up of some kind of tree 
with text in its leaves, and traversing the tree left to right gives you 
the order of the text in the buffer, you can cache the monoid value 
for just the text within the subtree rooted at each node.  Then, to 
calculate the monoid value for some prefix of the buffer, you use the 
monoid operation to combine the values in the tree nodes within that 
prefix, which is linear in the tree depth and thus logarithmic in the 
buffer size.  Updating a leaf similarly merely requires invalidating and 
potentially recalculating the cached monoid values in its logarithmic 
number of ancestors.  In the case of monotonic values like line 
numbers, you can also efficiently do a search for a given value using 
binary chop. 

A gibibyte-sized concrete example 

    As a concrete example, suppose we have a 1-gibibyte buffer stored 
in a 16-way B-tree whose leaves all happen to be 1024 bytes at the 
moment, and we want to calculate what the line number is at a 
typical position like byte 474,340,006.  Each lowest-level internal 
node embraces 16384 bytes;  each node at the next level is 256 
kibibytes;  each node at the next level is 4 mebibytes;  at the next 
level, 64 mebibytes;  and the single top-level node is the whole 
gibibyte. 

• The first 7 64-mebibyte children of the root node are entirely before 
that position, and we can use a cached number of newlines stored in 
the root node for each of those children to add up the number of lines 
in the first 469,762,048 bytes of the file, leaving 4,577,958 bytes. 
• Those bytes contain a single full 4-mebibyte block at the next level;  



we can add in its number of newlines, cached in its parent block, 
leaving 383,654 bytes over. 
• Those bytes contain a single full 256-kibibyte block at the next 
level;  we can add in its number of newlines, cached in its parent 
block, leaving 121,510 bytes over. 
• Those bytes contain 7 full 16-kibibyte blocks at the next level;  we 
can add in their numbers of newlines, cached in their common parent 
block, leaving 6822 bytes over. 
• Those bytes contain 6 full 1024-byte leafnodes;  we can add in their 
numbers of newlines, cached in their common parent block, leaving 
678 bytes over. 
• Finally, we can iterate over those 678 bytes to count the newlines in 
them, and we have our answer.  

    So, in total, we had to add up 22 numbers, found in five blocks, and 
examine 678 bytes of text, totaling about 1 us;  and the worst case is 
only about three times more operations, and the same number of 
random memory accesses, so about the same time.  This is about four 
or five orders of magnitude faster than just iterating over all the text. 

    If you insert or delete a newline in this buffer, you need to revise 
five of those numbers.  You can alter the tradeoff slightly — for 
example, within each node you can cache the prefix sums of its 
children rather than their raw values, resulting in faster queries and 
slower updates (worst case with tree height 5 and 16-way blocks, 5 
reads and 80 updates), or you can use a binary-tree structure within 
each block (worst case 20 reads and 20 updates).  But the number of 
random memory accesses stays the same. 

Monoidal incremental tokenization 

    It may not be obvious that syntax highlighting can be incrementally 
handled in the same efficient way.  Syntax highlighting is typically 
mostly a function of tokenization, which is typically regular except in 
exceptional cases, such as here-documents in shell or Perl.  Regular 
expressions can be handled by an NFA;  the elements of the monoid 
in question are mappings from sets of NFA states to sets of NFA 
states, and the monoidal operation is composition of such mappings.  
Typically any block of text of more than a few hundred bytes has 
only a few NFA states possible at its end, sometimes only one. 

Monoidal incremental layout 
    Typically the column at which you display a character depends on 
the font you’re using, your wrap width, the kind of wrapping you’re 
using (character, word, or hyphenated, say), and the characters before 
it on the (logical) line, which may be arbitrarily long.  As described in 
Monoid prefix sum (p.  101), you can efficiently compute this 
incrementally in the same way.  (Occasionally it also depends on the 
rest of the characters in the physical on-screen line, if you are 
justifying, or the layout choices of the rest of the paragraph, if you are 
doing some kind of TeX-like layout optimization.)
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Retro teletext
Kragen Javier Sitaker, 02020-07-18 (updated 02020-07-23) 
(18 minutes)

    Reading Sowing the Wasteland I thought the TICCET idea of 
using color TVs and, in the absence of a keyboard, touch-tone 
telephones as time-shared minicomputer terminals was pretty 
interesting.  But driving a TV isn’t trivial;  black-and-white is 3 MHz 
of bandwidth, and a DG Nova isn’t really up to synthesizing that in 
software like an AVR ATMega328 is, much less color.  (And this was 
before VHS and Betamax;  even Ampex videotape machines were 
huge, expensive things that couldn’t freeze-frame.) Similarly, 
recognizing DTMF tones isn’t that trivial to do in software either. 

    And it seems like the system didn’t really work out that well: 
But in the event, the Reston system failed to live up to expectations.  For all the 
rhetoric of bringing on-demand education and social services to the masses, the 
Reston TICCIT system offered nothing more than the ability to call up pre-set 
screens of information on the television (e.g., a bus schedule, or local sports scores) 
by dialing into the MITRE Data General computers.  It was a glorified 
time-and-temperature line.  By 1973, the Reston system went out of operation, and 
the Washington D.C.  cable system was never to be.  One major obstacle to 
expansion was the cost of the local memory needed to continually refresh the 
screen image with the data dispatched from the central computer.  

    But what could it have been?  Is there a plausible way that a 1972 
computer system could have provided computation on demand to 128 
TV-screen terminals? 

Sharing character generators among TVs 

    First, let’s reduce the problem a little bit by allowing party-line 
collaboration.  You’d have 128 terminals, but only 32 separate screen 
images, so when the system was fully used, most people would be 
sharing a screen with a group of others. 

    Now let’s suppose the screens are each displaying 12 lines of 
40-column ASCII text;  40 columns is about the limit of what you 
can fit into NTSC, and 12 lines (like the VT-50) is about the 
minimum window that’s useful for reading and writing text, 
although some machines like the original BlackBerry, the TRS-80 
Model 100, and Motorola two-way pagers have gotten away with less.  
If those 12 lines of text are 8 scan lines each, each screen needs 96 scan 
lines of text.  (The other scan lines could be colored with color bars or 
something.) 

    Now, NTSC has 483 visible scan lines (out of 525 total), so you 
have almost precisely one fifth of the vertical span of the screen with 
text drawn on it.  This means that you can reasonably timeshare a 
single font ROM between five screens, so you only need seven font 
ROMs to draw 32 screen images.  When the font ROM is being read 
by the character generator for one screen, the other four screens in its 
group are painting color bars.  (They can have staggered VBIs if it’s 
desirable to display the text in the same vertical position on every 
screen.) 

    This reduces our screen-painting memory requirements to: 
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• 7 single-ported font ROMs of 96 5x8-pixel character glyphs, for a 
total of 26880 bits of font ROM; 
• 32 40x12 buffers for the 7-bit characters on each screen, for a total of 
107520 bits of RAM; 
• some registers for which TV was viewing which of the 32 
“channels” and where the cursors are and so forth.  A hardware 
base-address register for the screen buffer might be useful for quick 
scrolling and quick page-flipping, at least if the page you want to flip 
to is already in video RAM.  

    The ROMs and RAMs need to be read very quickly while painting 
the screen.  An NTSC frame is 33.37 milliseconds, so each scan line is 
64 microseconds, so each of the 200 pixels across the screen is 318 ns.  
However, we can transfer five pixels at a time from the ROM, so we 
have 1.59 microseconds to do it, and we can pipeline that with the 
following read from the RAM. 

    40x12 is close to the 40x24 the failed 1979 Prestel system delivered 
in England, nearly a decade later, but with color, using a set-top box. 

    This works out to 210 bits of ROM and 840 bits of RAM for each 
of the 128 concurrent users, or 840 bits of ROM and 3360 bits of 
RAM for each of the 32 channels.  You also need shift registers for the 
bits of the codepoints on the current text line for each five-screen 
group, and logic for demuxing the pixels from the character generator 
to the right NTSC channel, and things like that, but basically the 
summary is that this is a design that would have been dramatically 
more economical than VT-52s and things like that. 

    Generating the rest of an NTSC signal --- the front porches, back 
porches, and timing --- is of similar complexity to a black-and-white 
TV set.  It’s something you can do with a couple dozen transistors, 
maybe less. 

    You do need a separate 3-MHz-bandwidth channel for each of the 
32 channels, but cable companies were already in the business of 
multiplexing 32 or 64 or 96 channels onto shitty coax, then filtering 
and demodulating them at individual TVs.  In fact, TVs at the time 
didn’t have the option to take “composite” baseband video input;  in 
the 1980s, my TI 99-4/A came with a cheap RF modulator to 
modulate its baseband video output onto either VHF channel 3 or 4, 
and we had to use it.  Modulating each of these channels onto a 
separate frequency wouldn’t have added much to the cost. 

    The 1969 Nova cost US$3995, but US$7995 once you added 8 
kilowords of RAM (131072 bits).  It had a 1200-nanosecond cycle 
time, though ROM took only 300 ns;  the 1970 SuperNova had not 
only a 16-bit parallel ALU (four 74181s) but also a 800-ns cycle time, 
and once it had semiconductor RAM (later in 1970) the RAM cycle 
time was also 300 ns.  This is plenty fast enough to meet the deadlines 
described above. 

    This gives us a reasonable guess as to what the required 107 kilobits 
of character code memory would have cost:  about US$3500, about 
US$110 per channel or US$27 per user.  This would have been about 
two orders of magnitude cheaper than a 1975 not-yet-available VT52, 
which sold for US$1350 even in 1980 (according to terminals-wiki, 
anyway). 



    But would it have been responsive and usable?  Touch-tone has a 
lot of latency, and the Nova wasn’t a super powerful machine 
anyway.  If we figure on five memory cycles for an average 
instruction (typical of microprocessors a few years later) 800 ns per 
cycle gives us 4 microseconds per instruction, 250,000 instructions per 
second, a little slower than an 8080.  (Wikipedia says the Nova 1200, 
the original Nova, executed loads and stores in 2.55 us, accumulator 
instructions like ADD in 1.55 us, DIV in 3.75 us (if present), so this is 
probably not too far wrong.) If we figure that handling a keyboard 
interrupt might take 100 instructions, it should still be able to do 2500 
interrupts a second, although that seems a bit high for a machine of 
that vintage.  So it might be rough to do, say, interactive word 
processing on it, but simple calculations and programming ought to 
be within grasp. 

    With 32 channels, each channel gets only about 8,000 instructions 
per second on average, which is not nearly enough;  even operations 
like scrolling the screen would take a noticeable part of a second if the 
machine were fully loaded.  But if most users are idle most of the 
time, it might be feasible. 

    8 kilowords of memory divided among 32 channels only gives you 
256 words of memory per channel, or maybe 128 words once system 
software takes up a bunch of space.  This is not very much;  for 
example, it’s less than the text on the screen.  In practice you probably 
need a full 32 kilowords of memory, a kiloword per user, if you’re 
going to have them pair-programming BASIC or making 
(not-yet-invented) spreadsheets or something.  And that’s probably a 
US$20k machine, plus the US$3500 terminal driver system:  
US$23500 to drive 32 channels to serve 128 users, US$700 per 
channel or US$180 per user.  With a little thought, the machine could 
easily have included a bulletin-board system and electronic mail, 
though entering text on a touch-tone phone is no picnic, especially 
since this was 27 years before Tegic T9. 

    I think this would have been a total steal, though I guess it’s 
possible inflation is tricking me. 

    Suppose you wanted to make it actually cool?  Square-wave music 
like the IBM PC wouldn’t have been hard to add, but recording and 
playing back PCM was probably not in the cards.  Broadcasting your 
phone voice to whoever else was in your group, though, would have 
been doable in the analog domain.  Per-character color would, I 
think, have been a poor tradeoff, but maybe per-line color would 
have been adequate. 

    A light pen would have needed only about microsecond resolution 
to identify a given letter on the display, but it isn’t entirely clear how 
it would go about transmitting this information over a regular phone 
line.  If there was a way to feed it the front and back porches from the 
NTSC signal, there might be some hope, but otherwise it seems like 
whatever internal timing reference it had would drift hopelessly.  
(This was before the quartz watch revolution.) Encoding its position 
in a pair of audible tones would not be unreasonable.  Nowadays, of 
course, the whole prospect of a light pen is hopeless with LCD panels.  
A tone-generating mouse, however, would be entirely usable, both 
then and now. 



Modern AVRs 

    You could probably build something like this today with an 
ATMega328 (about 20 times the speed of a Nova but with only 8 KiB 
of RAM) and the Arduino TVout library for a group of five displays.  
You could use an analog demultiplexer chip and some 10MHz 
op-amps (these exist now, though maybe not in 1972) as buffers to 
put each line onto the right output video signal, and probably bitbang 
the PS/2 protocol on five keyboards, although it might be hard to 
meet the PS/2 deadlines when you’re stuck in a timer interrupt 
handler for most of the 64 microseconds. 

Slower scanning 

    Suppose you could use a long-persistence phosphor like the ones 
conventionally used on analog oscilloscopes, and commonly used on 
computer terminals at the time (which is why the screens were green.) 
(This would also make light pens impossible.) Then you wouldn’t 
have to repaint the screen thirty times a second;  you could repaint it, 
say, every two seconds, even without exotic and finicky direct-view 
bistable storage tubes (DVBSTs) like the Tek 4014 used. 

    If you try to apply this in a simple way, by sharing the character 
generator circuitry and ROM between more screens, it doesn’t really 
help, because the main cost of the system described above is really the 
RAM.  But we can use it instead to reduce the amount of RAM 
needed and increase the system’s flexibility, because we don’t need 
special video RAM to feed the character generator at reliably high 
speeds;  we can generate scan lines, vector paths, or at least text lines 
on the fly from application data.  If the computer system runs at 
200,000 instructions per second and can devote half of this to 
generating video signals, and we need to repaint every two seconds, 
then we only have about 6,300 instructions available per screen 
repaint (if we are generating 32 channels). 

    At such a low speed, perhaps the best we could do would be to use 
a character generator that reads from a specified position in main 
memory.  If we shoot for 12 lines of 80 5x8 characters, like a VT50, 
per two-second screen, but continue with the 64 microsecond line 
scan time, then our single character generator can drive 325 slow 
screens, which greatly exceeds the memory capacity of the computer 
to do anything useful with. 

    Suppose instead we shoot for 1-second updates of 32 24-line 
screens.  That’s 6144 total scan lines, one every 0.163 ms;  once every 8 
scan lines (1.3 ms, 260 instructions) we need to update the character 
generator’s line-start pointer.  That’s still probably too much load on 
such a slow computer as the original Nova, but it’s within the bounds 
of plausibility.  It would be straightforwardly achievable on the 
300-ns-cycle 1970 SuperNova if using SRAM instead of core. 

    Memory access contention might be another issue:  if the character 
generator doesn’t have its own internal buffer for one line of bytes, it 
has to read a character from main memory every 5 pixels, generating 
8x as much memory traffic.  If it only reads 80 bytes every 1.3 ms, at 
300 ns per 16-bit word (which I said you probably need anyway) it 
would need to use memory for 12 microseconds out of the 1300 to 
read them, and even with 1200 ns core it would only need 48 



microseconds.  Without the internal buffer these numbers go up to 96 
microseconds and 384 microseconds respectively, the second one 
amounting to about a third of the total memory bandwidth and thus 
having a significant, highly undesirable impact on the CPU’s speed.  
Moreover, it would also need strong guarantees of timeliness — it 
wouldn’t be able to tolerate any extra memory latency, so it would 
need to have priority over the CPU.  The 80 bytes of memory would 
cost about US$39 if they cost the same as the core memory add-on 
for the Nova described earlier, but probably in practice you’d have to 
use semiconductor memory, which would cost a few times more.  
This would clearly be a good tradeoff for 7% of the whole computer’s 
performance. 

    It’s probably worthwhile actually to stick the whole array of 
line-start pointers in main memory instead of trying to update a 
character generator register from an interrupt handler thousands of 
times a second.  There are 768 of them, which would amount to 1536 
bytes if they were in an array, some 1% of all of RAM, which is 
reasonable.  (If all of the monitors had unique text on all of their lines, 
we could dispense with the pointers, but that would be 61 kilobytes, 
47% of RAM.  So it’s probably necessary to have some degree of 
sharing in order to free up space for application data;  the array of 
pointers is the easiest way to do this.  This could be as simple as some 
blank lines.) 

The modern inversion 

    So much for 1972.  Now it’s 2020, 48 years later, and TS-80P 
soldering irons routinely have STM32F microcontrollers in them:  
48–72 MHz, a 32-bit parallel ALU, RISC with nearly one instruction 
per clock, 32-128 KiB of Flash, maybe 20 KiB of RAM, hardware 
multiply, hardware floating point in some cases, 1500 pJ per 
instruction;  maybe US$2 in quantity 1.  That’s about the same 
amount of Flash as the Nova’s typical RAM, plus a somewhat smaller 
additional amount of RAM.  What can we do with that? 

    Well, there’s no need to use character generators, that’s for sure.  
You can bitbang NTSC no problem:  a 64-microsecond scan line is 
2000–5000 32-bit instructions instead of, like, 13 16-bit instructions.  
You can bitbang color NTSC, which is beyond the capacity of an 
AVR.  You can bitbang multiple NTSC composite signals in parallel. 

    If we crudely estimate that US$180 per user in 1972 is equivalent to 
about US$3600 today — reasonable based on gold and petroleum 
prices, though the CPI would suggest more like US$1800 — then we 
can afford some 1000–2000 microcontrollers per user, tens of 
megabytes of SRAM, tens of billions of operations per second.  You 
could reasonably dedicate a microcontroller per scan line on an NTSC 
or even megapixel screen, if that would be a helpful thing to do, 
which it probably isn’t. 

    Probably a more useful approach is, instead of only interfacing to 
humans through the physical objects that are easiest to interface 
through, such as televisions, to attempt to interface though objects 
that are more difficult, compensating for the difficulty to some extent 
through software.  This involves using control systems with the 
available actuators to structure the objects so they are usable as further 



transducers.  Digital fabrication, including both shaping processes 
(subtractive, additive, deformation) and assembly processes (welding, 
soldering, screwing), enables the creation of objects with enormously 
more transducers than the simple vacuum tube that is a 1972 
television. 

    Computation and control have become cheap;  we need to leverage 
that into cheap actuation and cheap sensing.
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The orbital drive and stepped 
planetary drive
Kragen Javier Sitaker, 02020-07-28 (updated 02020-08-02) 
(10 minutes)

    I recently saw an amusing YouTube video of something called an 
“orbital drive”, by “Skyentific”;  it’s a sort of differential planetary 
pulley without a ring gear, where a motor spins a planet cage around 
two sun gears of different sizes, which are connected to the planet 
idlers with belts.  The sun gears are planar, coaxial, and in parallel 
planes, while the planet gears span both planes.  One sun pulley is held 
fixed, while the other is free to rotate, one tooth per cage revolution 
if the two suns differ by one tooth (and the planets don’t change tooth 
count between sun planes).  It’s claimed to be backlash-free (because 
it uses pulleys, I suppose) and of course because it is differential it has 
a high reduction ratio, in the neighborhood of 100:1. 

    The Wikipedia article on epicyclic gearing points out that, if you 
use gears instead of pulleys, you can use two rings instead of two suns, 
both simplifying hooking up the assembly and reducing its size, 
though perhaps at the cost of requiring the planets to change size 
between the sun planes.  (“During World War II, a special variation 
of epicyclic gearing was developed for portable radar gear...”) 

    It occurred to me that if you use only a single planet, it can perhaps 
be quite large compared to the ring gears, and you can cut a third ring 
gear into the center of it which you drive with a small pinion, thus 
gaining a further reduction without increasing the size of the 
assembly.  Because this pinion and ring are subject to much smaller 
forces than the other gear teeth, they can be much thinner. 

    To be concrete, consider the case where the ring gears have 103 and 
106 teeth, the two steps on the planet have 69 and 71 teeth, the inner 
ring on the planet has 50 teeth, and the pinion that drives it has 7 
teeth.  (Using involute teeth the depthing cannot be correct for both 
the 69:103 mesh and the 71:106 mesh, but the difference is about 
0.014%, so it’s tolerable.  Hmm, can you even use involute teeth on a 
ring gear?) Let’s consider one revolution of the 106-tooth ring in the 
rotating frame of reference of the planet “cage”.  The 106-tooth ring 
and the 71-tooth planet each rotate 106 teeth.  The 69-tooth planet 
rotates 106*69/71 = 103.014 teeth. 

    Wow, I didn’t expect THAT.  Is that real?  Hmm, consider one 
rotation of the planet:  71 teeth on one step, 69 on the other, resulting 
in 71/106 rotation on the 106-tooth gear and 69/103 rotation on the 
103-tooth gear, about 0.009% of a rotation difference between them.  
Ratio this up via brute force:  106 rotations of the 71-tooth gear, for a 
total of 7526 teeth of rotation in that plane, rotates the 106-tooth ring 
71 times;  the same 106 rotations of the 69-tooth gear are 7314 teeth, 
which work out to 71.0097 rotations of the 103-tooth gear.  Let’s 
consider 103 times that:  10918 rotations of the 71-tooth gear are 
775178 teeth, 7313 rotations of the 106-tooth gear and 10918 rotations 
of the 71-tooth gear.  Those same 10918 rotations of the 69-tooth gear 
give us 753342 teeth of rotation in its plane, driving the 103-tooth 



gear through 7314 rotations.  Seems legit:  a 10918:1 reduction in the 
differential rotation!  So let’s continue. 

    But this seems impossible;  you would think that the planet would 
have to return to its initial position after 106 rotations.  Like, if you 
mark the most-meshing tooth on it at the beginning, and also mark 
the corresponding space between teeth on the 106-tooth ring, then 
after 106 rotations you would think it would have to come back to 
rest in exactly the same marked place on the ring, which means that 
the 69-tooth planet is also in exactly the same place relative to the 
106-tooth ring, since it’s rigidly fixed to the 71-tooth planet.  So how 
could the 103-tooth ring be displaced by a fractional tooth? 

    Now, each revolution of this planet is 50 teeth on its inner ring, 
which is 50/7 rotations of the pinion, coaxial to the outer rings, that 
drives it.  This provides a further reduction of 7:50, for a total of 
7:545900, or about 1:77985.7. 

    But that’s in the frame of reference of the planet cage.  Let’s switch 
to the frame of reference of the 106-tooth ring gear and let the planet 
cage spin.  Every time the planet rotates through 106 teeth (and 
106/71 rotations) in its own frame of reference, the planet carrier 
rotates by one revolution in this frame of reference.  Its inner ring 
rotates by 50*106/71 teeth in its own frame of reference;  from this 
we must subtract the single rotation of the frame of reference itself, so 
50*(-1 + 106/71) teeth, which works out to about 24.64789 teeth.  
This is about 3.52113 rotations of the pinion. 

    Remember that, if the dubious and probably wrong calculations 
above are correct, the reduction is only 7314:1 from the perspective of 
the 106-tooth ring — that is, every time the 106-tooth ring rotates 
7314 times in the frame of reference of the carrier, the 103-tooth gear 
rotates 7313 times.  So this is the appropriate multiplier for the pinion 
relative to the 106-tooth ring:  every time the pinion rotates 3.52113 
times, the planet cage rotates once, and the 103-tooth gear rotates 
1/7314 of a revolution, for a total reduction factor of only about 
1:25753.5. 

    Do the geometries work out?  Suppose we use a tooth module of 2 
mm for the outer rings and the planet teeth that engage them and 1.5 
mm for the inner ring and pinion.  Then our circumferences are 
respectively 212 mm and 206 mm for the outer rings and 142 mm and 
138 mm for the inner rings, so the diameters of the pitch circles are 
67.4817 mm, 65.5718 mm, 45.2000 mm, and 43.9268 mm, and their 
radii are 33.7408 mm, 32.7859 mm, 22.6000 mm, and 21.9634 mm.  
So the center of the 71-tooth planet would ideally be at 11.1408 mm 
from the center of the 106-tooth ring, and the center of the 69-tooth 
planet at 10.8225 mm from the center of the 103-tooth ring, a 
difference of 318.3 microns.  This is probably sufficient for reliable 
meshing, but will definitely introduce an undesirable amount of 
backlash, and only one tooth will be in contact at a time on the 69:103 
plane.  If this is unacceptable, it might be feasible to have the 
103-tooth ring revolve in a circle with that 318-micron radius, 
although that would be a lot more reasonable if the difference were in 
the opposite direction. 

    Then the inner ring’s pitch circle is 75 mm in circumference, and 
the inner pinion’s 10.5 mm, giving pitch circle radii of 11.9366 mm 



and 1.67113 mm respectively.  This means that the pinion center will 
be 10.2655 mm from the planet and inner ring center, which is almost 
a full millimeter off the desired outer ring center, which is 11.14 or 
10.82 mm from the planet center, as calculated above.  This can be 
fixed easily enough by using a slightly larger module (this gear with a 
ring gear cut into its inner surface will not be a standard part anyway) 
or slightly more teeth on the inner ring.  With lantern gears (p.  161), 
where the teeth of the inner ring are round dowels rather than normal 
teeth (feasible since they can be anchored laterally to the bottom of 
the 69-tooth planet layer) pinions with as few as three teeth are 
feasible. 

    To keep the edges of spur-gear teeth in different layers from 
rubbing on one another, it may be desirable to separate the two 
planes, either with a mere spacer or with a solid circle that extends 
out past the teeth of either planet.  If the circle is large enough, it 
could extend out past the teeth of the ring gear as well, preventing 
any edge-on-edge contact. 

    The same differential principle can be applied to get larger 
reductions from the original “orbital drive” without sacrificing the 
use of toothed pulleys:  by increasing and decreasing the planet sizes 
nearly in proportion with their respective suns, we can achieve very 
large reductions indeed, far less than the one or two teeth per 
revolution delivered by harmonic drive (strain-wave drive) or 
cycloidal reducers. 

    The large unbalanced mass of the single planet may be a problem, 
as it is in cycloidal drives, where it is conventionally balanced by a 
second cycloidal drive in half-phase with the first.  However, the 
initial 1:3.52 reduction from the pinion reduces this problem;  the 
angular velocity of the planet is 3.52 times lower than it would be for 
a cycloidal drive driven at the same speed, and its acceleration is thus 
some 12 times lower than it would be if you drove the planet cage 
directly.  However, the planet’s center of mass is considerably further 
from the center of the ring than the thing that moves around in a 
cycloidal-drive system, compensating somewhat for this advantage.
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Fossil geothermal
Kragen Javier Sitaker, 02020-08-02 (updated 02020-11-13) 
(12 minutes)

    In addition to the fossil fuels that powered Song China and the 
Industrial Revolution, Earth has stored an even larger amount of 
energy as "fossil heat":  heat that has been produced in the crust by 
crustal radioactivity over its 4.6-billion-year lifespan (so far) that has 
not yet had time to escape to the surface.  Additionally, an even larger 
amount of heat energy is stored in the mantle and core from Earth's 
initial formation, produced by the gravitational potential energy of 
the matter that formed it. 

    This fossil geothermal energy, if extracted at an unsustainable rate, 
could provide orders of magnitude more power than combustible 
fossil fuels ever have;  moreover, exploiting it would release no carbon 
dioxide, only heat. 

Economics and current outlook 

    Currently photovoltaic power is so inexpensive (€0.17 per peak 
watt, working out to about €0.85 per average watt at a typical 20% 
capacity factor) that it is uneconomic to build heat engines to produce 
power, whether to harness heat from fossil fuels, from nuclear energy, 
from solar concentrators, or from such geothermal sources.  If new 
manufacturing technology or new heat-engine designs can reduce the 
cost of heat engines to below the cost of PV cells, it could enable the 
exploitation of this fossil energy.  Otherwise, it is unlikely to happen 
before most of Earth's insolation is being converted to electricity. 

    There is probably no profit or economic incentive to go 
underground other than as a temporary measure.  However, it would 
provide a measure of security against potential global disasters such as 
comet strikes, Carrington-class events, global totalitarian 
dictatorships, global thermonuclear war, pandemics worse than covid, 
and the like;  whatever could survive independently underground 
would be relatively safe from such events. 

Ultimately available geothermal energy 

    Historically, geothermal energy has only been available in hotspots 
with existing water reservoirs.  So-called "hot dry rock" or "enhanced 
geothermal systems" geothermal involves hydrofracking of deep 
crustal rock and pumping water through it;  this can be done 
anywhere on Earth. 

    To give round numbers, the whole mantle is at 1000° or more, has 
a specific heat of about 0.7 J/g/K, and weighs about 4 × 10²⁴ kg;  this 
amounts to a thermal energy of some 2.8 × 10³⁰ J relative to the 
temperature at the surface, and so perhaps 1.1 × 10³⁰ J of energy 
practically extractable at 40% Carnot efficiency.  (In fact, the 
innermost part of the mantle is closer to 3700°, so this is a 
conservative estimate.) If extracted over 1000 years, this would 
amount to 35 exawatts.  By contrast, total terrestrial insolation at the 
usual standard "solar constant" of 1000 W/m² is only 0.13 exawatts, 



about 250 times smaller. 

    (The specific heat of the mantle is fairly uncertain.  The work I've 
been able to find suggests that the specific heat of CaTiO₃ perovskite 
is in the neighborhood of 0.5 to 1.0 J/g/K depending on temperature, 
while CaSiO₃ [calcium metasilicate] and MgSiO₃ perovskites, which 
compose much of the mantle, have a heat capacity in the range of 
75–125 J/mol/K.  I figure calcium is 40, magnesium is 24, silicon is 
28, and oxygen is 16, so those are 100–116 g/mol, which is in the 
range of 0.7 to 1.25 J/g/K.  Regardless, most things have a specific 
heat of around 1 J/g/K, water being a bit of an outlier at almost 4.2, 
and heavy monatomic gases like xenon being a bit of an outlier in the 
opposite direction at about 0.1.) 

    A heat engine requires a hot reservoir and a cold reservoir, but the 
cold reservoir need not be the surface of Earth;  a larger volume of 
rock at a shallower depth would also suffice. 

Enabling human survival underground 

    So a subterranean civilization, if it existed, could reach Kardashev 
Level 1 without going above the surface.  But could it exist? 

    The humans' survival has a number of prerequisites other than 
energy.  They need cool, oxygen, nutritional compounds, gravity, 
water, quiet, sleep, love, beauty, a sense of purpose, a relatively 
chemically inert environment (lacking, for example, hydrogen sulfide 
or chlorine), waste disposal, space, low pressure, and probably light. 

    XXX restructure this part 

    They can only directly harness energy provided chemically, the 
most practical form of which is to grow plants, which need most of 
the same things, also provide nutritional compounds, and definitely 
do need light. 

    Cool can be provided in an underground chamber by insulating and 
refrigerating it, pumping the heat into a cold reservoir elsewhere.  
Oxygen can be extracted electrolytically from oxygen-containing 
rocks, which is most of them.  Gravity is unavoidable on or in Earth.  
Water is abundant in the crust down to at least several kilometers;  
the Kola Superdeep Borehole found that in that location hydrogen 
was abundant even deeper than that, although perhaps that suggests 
that oxygen wasn't.  Quiet is the default state underground, though 
soundproofing might be needed in the vicinity of heavy machinery.  
Sleep, love, beauty, and a sense of purpose can be constructed by the 
humans themselves.  A chemically inert environment might use 
nitrogen, which is relatively scarce underground, or helium, which is 
abundant. 

    Space can be provided by producing oxygen from 
oxygen-containing rocks, as described earlier, and pumping it closer 
to the surface.  The oxygen will either oxidize other rocks, if there are 
any nearby that aren't already fully oxidized, or bubble to the surface 
harmlessly.  The reduced rocks will occupy less space than the original 
rocks.  Alternatively, if there is access to the surface, spoil can be 
pushed to the surface, and especially at shallow depths it may be 
possible to uplift an area of land to create space beneath it — the 
reverse of the subsidence often associated with, for example, 



brine-based salt mining. 

    (Neal Stephenson explored this theme fictionally in his novel 
Seveneves, in which he posited that space underground could not be 
expanded, so his hypothetical underground civilization had to make 
do with the space that had already been excavated before the disaster 
the novel is built around.) 

    Waste can be disposed of by recycling, which is mostly a matter of 
separating wastes of unknown composition into their ingredients, or 
by isolation, which is mostly a matter of keeping wastes of dangerous 
composition away from the humans and their equipment, consuming 
space.  Aboveground there is no shortage of space;  belowground, 
generally whatever material is used must first be mined.  If the waste 
can be melted into fully dense solids, it need occupy no more space 
than the original rocks from which it was mined, but that might turn 
out to be more difficult than just making more space to store looser 
waste in. 

    Low pressure is scarce underground, and the details depend on the 
circumstances, but it can generally be provided by supporting the rock 
above a cavern with materials of greater compressive strength than the 
other rocks.  If they have 10% more compressive strength, they enable 
you to fill 9% of the space with air;  if twice the compressive strength, 
half;  if ten times the compressive strength, 90%;  and so on.  Salt poses 
special problems, as it tends to flow horizontally back into open 
spaces, but this takes decades or centuries;  other rocks will behave 
similarly at sufficiently high temperatures. 

    Light, air purification, food cultivation, air conditioning, cooling, 
oxygen production, and rock electrolysis will all consume energy and 
require specialized equipment. 

Current tech limitations:  ≈2× the size of 
the current economy for a century 

    Much of the above calculation of geothermal energy abundance 
isn't concerned with current technological limitations, but with the 
ultimate limitations.  What's accessible within current limitations? 

    The amount of thermal energy in the crust is considerably smaller 
than the amount in Earth as a whole;  the temperature at the Moho 
crust–mantle boundary ranges from 200° to 400°, and the crust is 
only some 1% of Earth's mass, so we're talking about maybe 10²⁸ J in 
the crust.  So far, despite 63 years of effort, the humans have not been 
able to drill into the mantle;  the Kola Superdeep Borehole 
("Кольская сверхглубокая скважин") only reached 12.3 km of 
drilling depth before being doomed by the 180° temperature found 
there and the collapse of the USSR.  (The crust is typically 30–50 km 
thick on continents, 5–10 km thick in the ocean.) The KTB 
superdeep borehole persevered until reaching 260° at only 9.1 km of 
depth.  These temperatures are suboptimal for driving heat engines, 
since water's critical point is 374° and 22 MPa, but nevertheless 
clearly quite feasible. 

    Suppose we can routinely access the top 11 km of continental crust, 
and that it's routinely 210°, in between the Kola numbers (14 km, 
180°) and the KTB numbers (9 km, 260°), and that temperature 



increases linearly from here to there, which is conservative.  Ocean 
covers 71% of Earth, so the continents are about 148 million km², 1.48 
× 10¹⁴ m².  Rock is about 2.4 g/cc so these top 11 km are about 3.9 × 
10¹⁸ tonnes of rock.  If it were all 210° and 0.7 J/g/K, the thermal 
energy to drop it to 20° would be 5.2 × 10²⁶ J, so a linear increase 
gives you half that, 2.6 × 10²⁶ J.  Rather than actually calculating the 
Carnot efficiency, I'll just assume it's about 25%, giving 6.5 × 10²⁵ J 
electric.  If that were to be extracted over the next century, it would 
yield almost 21 petawatts, electric, or 620 000 "quadrillion BTU per 
year" (electric) or 180 million terawatt hours (electric) per year, in the 
medieval units used by the IEA. 

    XXX https://en.wikipedia.org/wiki/World_energy_consumption 
say 18 terawatts.  That means this is not "about twice world marketed 
energy consumption" but rather about 1200 times.  Also usually 
geothermal people only consider the top 6 km reasonably usable with 
modern technology.  FEEX 

    This is about twice current world marketed energy consumption, 
but that doesn't include sunlight on fields, which a purely 
subterranean civilization would need to include. 

    This should be sufficient to develop technology for deeper drilling 
and/or Dyson-sphere construction. 

    It's plausible that the amount of available energy with current 
technology is a few times larger than this, because the above does not 
take hotspots and tectonically active zones into account, nor the ocean 
floor. 

Earthquakes 

    Enhanced geothermal systems projects in Pohang and Basel have 
been canceled after causing earthquakes locally;  in Pohang no 
humans died but more than a hundred were injured, though in both 
places the earthquakes were fairly minor.  We can expect that 
widespread use of EGS would produce widespread minor 
earthquakes, even as it depletes the source of energy that drives 
volcanism and seismic activity. 

    Even if it does not pose a risk to surface civilization, for example 
because of being located far from surface cities, this induced seismicity 
would be clearly detectable from the surface, while the tunnels and 
increased oxygen emissions probably would not.  In places with little 
natural seismic activity, it would be more conspicuous than in places 
with a great deal.
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Pyrolysis 3-D printing
Kragen Javier Sitaker, 02020-08-02 (updated 02020-11-24) 
(20 minutes)

    I heated up the tip of my zirconia knife to orange heat yesterday.  
To my surprise, much of the blade turned black;  I guess the knife had 
some oil on it, though I thought it was clean.  In the hotter parts of 
the blade, this carbon deposit burned away, but in the cooler parts it 
remained.  Steel wool and brass wool proved ineffective at removing 
the deposits. 

    This led me, as most things do, to thinking about 3-D printing.  
Suppose instead of depositing a hot liquid onto a cool workpiece 
which then freezes the liquid in place, as FDM printers do, we deposit 
a cool liquid onto a hot workpiece, which pyrolyzes it into a solid?  
Sort of like chemical vapor deposition, but from a liquid so you can 
deposit it selectively? 

Charring organics into carbon 

    So, for example, you could deposit warm bitumen and pyrolyze it 
to carbon at around 350°. 

    Almost any organic substance would work;  so, for example, 
vegetable oil, sugar, starch, and dissolved gelatine would all work, but 
possibly other things would work better.  Small molecules tend to 
volatilize before carbonizing (though any cook can tell you that even 
light vegetable oils will carbonize before volatilizing completely, 
though perhaps not before migrating to cooler parts of a surface 
where you don’t want them), molecules with a lot of oxygen tend to 
produce more bubbles, and highly saturated molecules (like the ones 
in bitumen) and aromatic molecules are more resistant to pyrolysis, so 
perhaps the ideal substance would be a high-molecular weight, highly 
unsaturated aliphatic hydrocarbon.  (However, aromatic groups tend 
to promote cross-linking, which helps to prevent volatilization and 
melting before pyrolysis.) 

    Moreover, it would at least remain viscous at pyrolysis 
temperatures, like polycaprolactone (not to be confused with 
polycaprolact_am_, which is common nylon 6 and not viscous at all), 
though polycaprolactone itself is saturated and contains oxygen.  
Something that solidifies before reaching pyrolysis would be even 
better (see below about polymer-derived silicon-based ceramics.) 
Somewhat polymerized linseed oil is a good possibility.  Nylon 6,6 
and nylon 6 are not very viscous or unsaturated but are a good 
possibility;  their amide bonds could play the role of the unstable 
unsaturated bonds.  The urethane groups of polyurethanes contain 
both double bonds and amide bonds, making them especially 
promising, though the popular polyurethanes are highly aromatic.  
Polyisoprene, especially if vulcanized into a thermoset with sulfur, 
would work perfectly. 

    Decomposition can be accelerated with additives;  PET notoriously 
takes up water from humid air and then hydrolyzes rapidly at melt 
temperatures if not dried, so ordinary water may be a viable option, 



despite its tendency to produce large bubbles.  Acids and bases may 
also help to accelerate such decomposition — ideally for this process 
the additive would itself volatilize or decompose, leaving only carbon.  
Ammonia, sulfuric acid, nitric acid, acetic acid, formic acid, and 
hydrogen cyanide are possible degradation-enhancing additives.  
Cellulose acetate has a well-known autocatalytic degradation reaction 
with acetic acid, but this produces a goo which may be too liquid at 
pyrolysis temperatures. 

    Additives like alkali metals and halogens might accelerate 
decomposition as well, but would probably remain in the final 
product. 

    Using thermosets such as the aforementioned vulcanizing 
polyisoprene has the advantage that you don’t have to worry about 
the feedstock melting and running off the workpiece before charring, 
so you don’t need to prefer unsaturated aliphatic compounds.  
Normally thermoset polymerization is tightly controlled to reduce the 
risk of heat degradation of the material produced, but in this context 
that ceases to be a problem.  So any of the common 
thermosets — phenolics, epoxies, polyisocyanurates, urea resins, 
thermosetting polyesters like Lucite, melamine resin — should be fine.  
Thermosetting is the approach universally taken for preceramic 
polymers used for producing silicon-based ceramics. 

Charring polymers into silicon carbide, 
silicon nitride, and silicon oxynitride 

    People have already done this since the 1970s, though, until 
recently, mostly to produce fibers such as Nicalon and Tyranno, and 
coatings.  The technique is called “preceramic polymers”, “precursor 
ceramics”, or “polymer-derived ceramics”, though typically in that 
technique the polymer shape is fully formed before pyrolysis 
begins — an approach that can be taken for all of the materials 
discussed in this note, including carbon and the metal oxides discussed 
below. 

    Large-molecule silicones are usually thermosets.  
Polydimethylsiloxane ((SiO(CH₂)₂)ₙ) has a 2-to-1 carbon-to-silicon 
ratio, which is twice the ideal for producing silicon carbide, so 
polymers that have been used instead include carbosilazane resin, 
poly(methylsilazane), poly(methylchlorosilane), and poly(carbosilane), 
which pyrolyze in nitrogen to silicon carbide, yielding a ceramic 
whose mass is some 60–75% of that of the original polymer (the 
“ceramic residue yield”). 

    An excess of silicon is preferable to an excess of carbon for 
producing high-temperature ceramics, since silicon melts at “only” 
1414°, (XXX Cold Plasma (p.  556) says 1460°) while carborundum is 
stable to 2830° and graphite is stable to 3642°.  Poly(carbosilane), 
(H₂SiCH₂)ₙ, pyrolyzes in nitrogen to essentially pure carborundum, 
but in other precursors some carbon is lost as methane or carbon 
monoxide during pyrolysis. 

    To get silicon nitride instead, an ammonia atmosphere is required 
both to supply more nitrogen than can be jammed into the polymer 
and to cleave off unwanted methyl groups.  It is helpful but not 

http://www.ing.unitn.it/~soraru/download/149-FeatureJACS.pdf


necessary for the original polymer to contain nitrogen;  in fact, 
ammonia pyrolysis can convert Nicalon to silicon nitride. 

    An attractive aspect of these processes is widely reported to be that 
low temperatures, in the 1100°–1300° range, are sufficient to produce 
these ceramics by pyrolysis, while the standard sintering processes 
require 1800° or more, and additionally contaminates the ceramic 
produced with “sintering aids”, in order to avoid even higher 
temperatures.  So not only can polymer-derived ceramics withstand 
higher temperatures than are required for their production, they can 
even withstand higher temperatures than the same ceramics when 
they’re processed conventionally! 

    Some of these processes require a “curing” step in between plastic 
forming, such as spinning, and the pyrolysis step, in order to keep the 
plastic from melting before pyrolysis is complete.  This curing may 
happen by way of cross-linking, as in rubber vulcanization, or by 
evaporation of solvents and other plasticizers.  This approach is also 
applicable to pyrolytic carbon production described above. 

    A problem that commonly afflicts these processes is structural 
damage due to pyrolytic gas production during pyrolysis, which is a 
major reason for requiring high ceramic residue yields.  As with 
traditional fired-clay ceramics, this is a bigger problem with thicker 
material sections (nonexistent below a few hundred microns), and it is 
to be expected that an incremental additive process in which the 
material is pyrolyzed before more material is laid on top of it should 
enable the fabrication of thicker cross-sections. 

    Another problem that commonly afflicts these processes is 
dimensional inaccuracy due to shrinkage during pyrolysis, and 
deposition during pyrolysis will also reduce this problem, since the 
shrinkage will affect individual beads as they are laid down, not the 
fabricated article as a whole, whose dimensional precision will be 
determined grossly by the positioning precision of the end-effector 
and only finely by shrinkage and wiggle. 

    Of course, there are certain practical difficulties attending the 
construction of a “hotend” and manipulator that can function in an 
environment that keeps the workpiece at 1100°–1300°.  A 
combination of liquid-cooling and refractory insulation for a 
manipulator arm would probably be necessary.  The thermal gradient 
near the deposition point poses additional difficulties:  the cooler 
material being deposited onto the hot workpiece will locally cool and 
contract the workpiece, inducing stresses that could produce cracks. 

    Boron nitride, aluminum nitride, boron carbonitride, silicon 
oxycarbide, silicon carbonitride, SiCNO, SiBCN, SiBCO, SiAlCN, 
and SiAlCO have also been synthesized by this route.  Some of these 
ceramics cannot been synthesized in any other known way. 

    Exposure to reactive substances has been used instead of or in 
addition to heating to remove the unwanted moieties.  Examples 
include ammonia, nitrogen dioxide, reactive plasma, and highly 
alkaline solutions.  These approaches could likely also be used with 
the other materials discussed in this note;  incremental deposition of 
the feedstock, as by fused deposition modeling, would give the 
reactive environment access even to material that is ultimately buried 
inside the part. 



    Of special note here is HRL Laboratories’ high-density 
stereolithography resin, which produces almost-fully-dense silicon 
oxycarbide when pyrolyzed at 1000° in argon (“Additive 
manufacturing of polymer-derived ceramics”, Science, January 2016, 
many authors and Tobias Schaedler).  Their recipe is mercaptopropyl 
methylsiloxane and vinylmethysiloxane (in a 1:1 molar ratio of thiol 
to vinyl groups), plus the usual cocktail of stereolithography additives;  
pyrolysis resulted in “42% mass loss and 30% linear shrinkage” to 
amorphous SiO₁.₃₄C₁.₂₅S₀.₁₅ but apparently no porosity or surface 
cracks.  To reduce porosity and cracking, they limited feature size to 3 
mm and heating to 20°/minute (or, according to their supplemental 
materials, 1°/minute), but it is not clear to me what the crucial factors 
were. 

Metal and semimetal oxides 

    (For the purpose of the following, consider “metals” to include 
boron, silicon, and aluminum as well as the usual metals.) 

    A number of metal oxides form minerals with desirable properties, 
and it might be desirable to form them into particular shapes;  many 
of these metal oxides are themselves refractory and chemically 
resistant, so casting or dissolving them is difficult.  In particular, the 
oxides of aluminum, zirconium, silicon, titanium, chromium, 
thorium, and uranium are all hard, refractory ceramics, most 
occurring naturally as minerals. 

    But perhaps salts of the same metals can be formed into the right 
shape, whether as an solution (for example in water), a gel, a paste, or 
as solid particles;  then calcined to yield the oxides?  As the preface to 
the IUPAC–NIST Solubility Data Series volume on formates said in 
2001: 
Bivalent metal formates could be used as precursors for the production of catalysts 
because they show excellent miscibility in the solid state, i.e., they form mixed 
crystals that dissociate at relatively low temperatures (about 300 °C) to form the 
respective oxides and mixed oxides.  Catalysts for the decomposition of alcohols 
have been prepared by the thermal decomposition of Ni and Mg formate mixed 
crystals, from Cu and Mg formate mixed crystals, and from the double salts 
CuSr₂(CHO₂)·8H₂O and CuBa₂(CHO₂)₆·4H₂O.  ...  

    For this we need metal salts that decompose on heating, but ideally 
are soluble in water (IUPAC-NIST database);  moreover, they 
probably need to be soluble together so they don’t precipitate in the 
nozzle.  Basically these are either metal cations with anions that 
decompose on heating — nitrate, sulfate, or organic anions — or 
ammonium or hydronium with metal-complex anions.  
Tetramethylammonium is a possible alternative cation but for now 
I’m going to ignore it.  Here’s a list of candidates. 

| cation           | anion         |      g/100g | decomposition  |
|                  |               |       water | temperature    |
|                  |               |     (20° if |                |
|                  |               |   possible) |                |
|------------------+---------------+-------------+----------------|
| aluminum         | nitrate       |          74 | 150°           |
|                  | sulfate       |          36 | 900°           |
|                  | formate       |           6 |                |
| chromium(III)    | nitrate       |          81 | 100°           |

https://en.wikipedia.org/wiki/Solubility_table
https://srdata.nist.gov/solubility/index.aspx


|                  | sulfate       |   “readily” | 700° (to acid) |
| ammonium         | dichromate    |        high |                |
|                  | paratungstate |       high? | 600°           |
| (hydronium)      | boric acid    |         low |                |
|                  | chromic acid  |         169 |                |
|                  | alumic acid   |             |                |
|                  | tungstic acid |         low |                |
|                  | titanic acid  |             |                |
|                  | zirconic acid |             |                |
| calcium          | nitrate       |             | 500°           |
|                  | acetate       |             | 160°           |
|                  | formate       |             | 200°?          |
|                  | sulfate       |        ≈0 ☹ |                |
| magnesium        | acetate       |          53 |                |
|                  | oxalate       |         low | 620°           |
|                  | chromate      |         137 |                |
|                  | formate       |          14 |                |
|                  | nitrate       |        69.5 |                |
|                  | sulfate       |          35 |                |
| zirconium        | sulfate       |        52.5 |                |
|                  | nitrate       |         yes | 100°           |
|                  | acetate       |           ? |                |
|                  | formate       |           ? |                |
|                  | tungstate     |         low |                |
| titanium         | sulfate       |           ? |                |
|                  | nitrate       |           ? |                |
|                  | formate       |           ? |                |
|                  | acetate       |           ? |                |
| cobalt           | nitrate       |          84 |                |
|                  | sulfate       |        less |                |
| copper(II)       | nitrate       |        83.5 |                |
|                  | sulfate       |        very |                |
|                  | formate       |           7 |                |
| ferrous ammonium | sulfate       |          27 |                |
| iron(II)         | nitrate       |         134 |                |
|                  | sulfate       |          29 | 680°           |
|                  | oxalate       |        poor |                |
| iron(III)        | nitrate       |         138 |                |
|                  | sulfate       |      slight |                |
|                  | oxalate       |      slight |                |
|                  | chromate      |  decomposes |                |
| lead(II)         | acetate       |          44 |                |
|                  | nitrate       |          54 |                |
|                  | sulfate       |        ≈0 ☹ |                |
| lead(IV)         | acetate       | “reversible |                |
|                  |               | hydrolysis” |                |
| nickel           | acetate       |       high? |                |
|                  | nitrate       |          94 |                |
|                  | sulfate       |          44 |                |
|                  | formate       |        low? |                |
| tin(II)          | sulfate       |          19 |                |
|                  | nitrate       |           ? |                |
| yttrium(III)     | acetate       |           9 |                |
|                  | formate       | 26 (at 50°) |                |
|                  | nitrate       |         123 |                |



|                  | sulfate       |           7 |                |
| zinc             | formate       |         5.2 |                |
|                  | nitrate       |          98 |                |
|                  | sulfate       |          54 |                |
|                  | acetate       |          30 |                |
| thorium(IV)      | nitrate       |         191 |                |
|                  | sulfate       |        ≈0 ☹ |                |
| uranyl           | nitrate       |         122 |                |
|                  | sulfate       |          21 |                |
|                  | acetate       |           8 |                |
 

    I can’t find any concrete information about ammonium aluminate;  
I suspect it doesn’t exist, although a number of chemical suppliers 
have it in their catalogs.  Ammonium silicate apparently does exist but 
is too finicky to be of any practical use.  Ammonium borate also seems 
to exist, but information about it is rare. 

    Tetraethyl orthosilicate is commonly used in a way similar to this 
to produce silica gel, but it is itself liquid rather than being 
water-soluble, and its decomposition is driven by exposure to water, 
not to heat. 

    Halogen complexes might be another thing to check out:  titanium 
and zirconium both complex with halogens, and it may be possible to 
drive off the halogens with enough heat. 

    Glasses (frits) of metal oxides melt at lower temperatures;  may be 
suitable fillers 

    Titanium, zirconium, aluminum, magnesium, chromium 

    Aluminum:  nitrate (74%, decomposes at 150°) and sulfate (36%, 
decomposes below 900° to SO₃ and cubic γ-alumina) are highly 
soluble.  Also occurs in soluble aluminates, but there is no aluminate 
of ammonia, so you can’t get alumina by calcining it;  strontium 
aluminate is a glow-in-the-dark pigment and a refractory cement 
good to 2000°. 

    Chromium:  ammonium dichromate is fairly soluble.  
Chromium(III) nitrate and especially sulfate are highly soluble;  
hexavalent chromium oxide too, but we don’t want that. 

    Boric acid is fairly soluble in water at 100°, nearly half as much at 
50° (13% or so) 

    Calcium:  nitrate is highly soluble, decomposes at 500°;  soluble 
acetate releases acetone at 160° leaving carbonate;  soluble formate 
decomposes at 300°, maybe to CaOH and CO, or like NaCOOH to 
an oxalate (CaC₂O₄, insoluble) and hydrogen (at 360° for Na?), then 
to a carbonate releasing carbon monoxide (at 290° for Na, 200° for 
calcium oxalate)?  Calcium will precipitate lots of things including 
sulfate. 

    Magnesium acetate 53%;  chromate 137%;  formate 14%;  nitrate 
69.5%;  sulfate 35%. 

    Zirconium:  sulfate 52.5%.  Nitrate has been successfully calcined to 
produce zirconia:  https://pubs.acs.org/doi/10.1021/cm060883e 

    Titanium:   

    cobalt?  vanadium?  manganese?  nickel?  copper?  zinc?  tin?  

https://pubs.acs.org/doi/10.1021/cm060883e


bismuth?  strontium?  barium?  lithium? 

    Cobalt nitrate is 84% soluble in water;  sulfate a bit less so. 

    Copper(II) nitrate is 83.5% soluble in water, substantially more than 
sulfate. 

    Ferrous ammonium sulfate is 27% soluble.  Iron(II) nitrate 134%;  
sulfate 28%;  iron(III) nitrate 138%. 

    Lead acetate 44%;  lead(II) nitrate 54%.  Lead(II) will precipitate 
sulfate. 

    Lithium acetate 40.8%;  nitrate 70%;  sulfate 34.8%;  tartrate 27%. 

    Nickel acetate “easily soluble”, nitrate 94%;  sulfate 44%;  
everything else pyrolyzable almost insoluble.  (Its highly soluble 
chloride is not relevant.) Hexaamminenickel chloride is soluble in 
anhydrous ammonia and decomposes with heat, presumably to yield 
nickel. 

    Ammonium paratungstate pyrolyzes to tungsten trioxide at 600°, 
which is the soft mineral tungstite;  the paratungstate ion has a 
tendency to precipitate from aqueous solution over time.  There’s also 
a “metatungstate” oxyanion with 12 tungstens in it which is more 
soluble and stable in highly acidic solution. 

    Tin sulfate 19%;  nitrate? 

    Yttrium:  Yttrium(III) acetate 9%, nitrate 123%, sulfate 7%. 

    Zinc:  formate 5.2%, nitrate 98%, sulfate 54%, acetate 30%. 

    Uranium, thorium 

    Thorium:  thorium(IV) nitrate 191%, sulfate almost insoluble. 

    Uranium:  Uranyl nitrate 122%, sulfate 21%, acetate 8%. 

Filled systems 

    A common use for preceramic polymers, apart from the fibers and 
coatings mentioned earlier, is as polymeric binders for powdered 
ceramic — perhaps the same ceramic that the polymer will pyrolyze 
to.  Filled systems like this have a variety of advantages: 

• The resulting part, if the filler consists of fully-dense particles of the 
same ceramic, is denser and therefore stronger than if made entirely 
from the polymer. 
• The powder may be easier to produce than the polymer, reducing 
cost, or even naturally abundant, as with quartz. 
• Controlled composites of different materials, or materials of 
different morphologies, can be thus produced;  this may improve 
mechanical properties or simply be cheaper. 
• Other filler powders can be used to provide other properties;  for 
example, early-90s research at MIT (Seyferth et al., 1992) )produced 
silicon-carbide/metal-carbide composites from poly(methylsilane) 
and organometallic polymers, but found it necessary to mix in metal 
powder to eliminate free carbon from the pyrolysis result. 
• The grain structure of the resulting material can be controlled more 
precisely and customizably than that of objects made by liquid casting 
or sintering. 
• The filler may be adequate to maintain the shape of the material as it 
heats up to the pyrolysis temperature, even if the liquid does not 



cross-link to form a thermoset. 
• The filler may provide egress paths so the gases evolved during 
pyrolysis don’t crack the nascent ceramic structure, even if the filler 
itself burns out before pyrolysis of the ceramic precursors, thus 
forming a porous green structure.  This is the “Ceramicore” process 
by Weifeng Fei;  it’s also a traditional way of making insulating 
refractory bricks from fired clay and organic fillers like sawdust, but 
Fei’s process infuses a liquid preceramic polymer into a continuous 
fibrous matrix.  

    The point about controlled composites bears further exploration.  
For example, pure amorphous carbon is quite weak, but if used in 
small quantities to cement iron filings, the composite would achieve 
significant strengths.  Like cancellous bone, a porous composite made 
by pyrolyzing a binder between fully-dense whiskers of a ceramic will 
tend to be far more fracture-resistant than the same material if 
nonporous.  A mixture of different kinds of particles can provide 
desirable combinations of properties unachievable in a homogeneous 
material, such as high surface hardness along with high crack 
resistance — again, like bone.  Anisotropic filler orientation can 
provide anisotropic mechanical properties — again, like bone, or 
wood. 

    Ferromagnetic fillers like powdered iron can make a ferromagnetic 
bulk material with low electrical conductivity, but ceramic binders 
can maintain dimensions at different temperatures more precisely than 
the usual organic binders used for powdered-iron cores;  also, iron’s 
Curie temperature is 770°, which many ceramics can withstand easily, 
but organic binders can’t even approach.  (And cobalt’s is 1115°!) 

    The cheapest possible combinations would be sugar or flour with 
quartz sand or glass fiber, but at least in my low-temperature, 
poorly-controlled experiments (up to perhaps 400°–600°) the carbon 
resulting from sugar pyrolysis adheres very poorly to glass, 
represented by the glazing of stoneware, and to quartz sand.  I could 
scrub it off easily with steel wool, and even scratch off some with a 
fingernail.  Surface preparation, for example with plasma (perhaps in a 
fluidized bed), could conceivably improve the situation.  Carbon 
should stick well to carbon fiber, though, and many things stick well 
to glass.  And, as I said above, to my sorrow carbon sticks beautifully 
to zirconia. 

Magnesium oxychloride 

Boron nitride 

    in ammonia? 

Olivines 

    Forsterite, including peridot, is Mg₂SiO₄, while fayalite is Fe₂SiO₄;  
these are the endmembers of the olivine spectrum.  Calcium cation 
substitutions also occur, modifying the structure and making it softer, 
going all the way to larnite, the belite of portland cement. 

Mullite 



Ordinary clay pottery 

Self-propagating high-temperature 
synthesis 

Other 

    Titanium carbide?  Zirconium carbide (3530°)?  Tantalum carbide 
(3850+°)?  Zirconium diboride?  Gallium nitrate (soluble, decomposes 
to GaN in flowing ammonia at 500°–1050°)?

Topics

• Materials (p.  784) (51 notes) 
• Digital fabrication (p.  798) (17 notes) 
• Composite materials (p.  864) (4 notes) 
• Silicone



Machine teeth
Kragen Javier Sitaker, 02020-08-02 (updated 02020-12-31) 
(8 minutes)

    Yield strengths and ultimate tensile strengths cover a similar-sized, 
but lower and narrower, range than Young’s moduli.  They generally 
correlate, although there is substantial deviation — the plastics have 
immense deformations at break, the metals smaller, the ceramics 
smaller still. 

Material hardness and the tooth principle 

    Here’s a table of very approximate quantitative figures: 

|                              | Young’s | yield   |      tensile |
|                              | modulus | stress  |      rupture |
|                              |   (GPa) | (MPa)   |        (MPa) |
| diamond                      |    1000 | brittle |        60000 |
| tungsten carbide             |     600 | brittle |          300 |
| sapphire                     |     400 | brittle |          400 |
| carborundum                  |     400 | brittle | 120-3000 (?) |
| cubic zirconia               |     200 | ?       |          700 |
| A36 steel                    |     200 | 250     |          500 |
| zircon                       |     200 | brittle |          300 |
| tooth enamel                 |      80 | brittle |           20 |
| soda-lime glass              |      70 | brittle |          100 |
| 6061 aluminum                |      70 | 76-370  |      130-410 |
| quartz                       |      80 | brittle |           40 |
| concrete                     |   25-50 | brittle |            4 |
| lead                         |      14 | creeps  |           15 |
| wood (along grain)           |    9-14 | brittle |            5 |
| poly(methyl methacrylate)    |       3 | brittle |           70 |
| poly(ethylene terephthalate) |       3 | ?       |           70 |
| gypsum plaster               |     1.4 | brittle |            3 |
| high-density polyethylene    |     0.8 | ?       |           20 |
| styrofoam                    |   0.005 | brittle |          0.4 |
 

    Critters (the technical term) use teeth, claws, and beaks to cut 
things, maneuvering them into position with softer tissues.  A smallish 
tooth can have an even smaller point that digs into the material to cut, 
supported by a wider base rooted in a “handle” of material softer than 
the tooth itself, which is held in still softer material. 

    Machines can use the same technique, and sometimes do:  lathes, 
fly cutters, boring bars, shapers, and D-bits all cut with a single point, 
often made of a cermet;  it’s common to dress grinding wheels with a 
single-pointed diamond mounted at the end of a steel dressing tool;  a 
woodworking plane commonly uses a steel blade held in a wooden 
frame;  and a hand file commonly consists of case-hardened steel teeth 
on the surface of a piece of softer steel, held in a softer wooden 
handle, held in a still softer hand. 

    For example, you could imagine a tungsten-carbide tooth 
(sometimes these are called “teeth”, other times “tools”, “bits”, or 



“inserts”;  analogous artifacts in archaeological contexts are called 
“microliths”) shaving a 100-micron-thick, one-millimeter-wide 
shaving (“chip”) as it scrapes along a steel surface.  WC (the most 
unfortunate chemical formula ever) is several times stronger in 
compression, some 1500 MPa, but suppose we limit ourselves to its 
300 MPa tensile strength;  then the tungsten carbide will keep cutting 
as long as the force is less than 30 N.  This is enough to get the steel to 
yield so that the carbide can propagate a crack under the chip.  
(Carbide’s higher compressive strength clearly helps a lot here.) 

    The carbide can be held in a softer material such as steel or even 
aluminum;  to keep those 30 N under the 76 MPa worst-case yield 
stress of the aluminum, we need at least 0.4 mm² of contact area 
between the carbide and the aluminum.  So the carbide tooth itself 
could be tiny, with a 100-micron-long, 1-millimeter-wide point, 
supported on an 800-micron-tall pyramid with an 
800-micron-diameter circular base.  In fact, at such a low stress, even 
PMMA and PET would be strong enough not to rupture, although 
they would certainly creep;  a more conservative approach would be 
to use a truncated aluminum cone with, say, an 800-micron circular 
tip, 3 mm height, and a 3-mm-diameter circular base, supported on 
wood, HDPE, PMMA, PET, or many other possible materials. 

    It probably isn’t practical to cut most steels with something much 
smaller than that tooth, because the steel is too ductile;  you’ll end up 
just forming the steel instead of cutting it.  The surprising thing is that 
0.2 mm³ of tungsten carbide, about π milligrams, is sufficient to 
enable cutting steel.  200 surface feet per minute (in the medieval 
units commonly used in machining in the USA) is probably 
achievable, which works out to 1.02 m/s in SI units, so this is a 
material removal rate of some 102 mm³/s of steel, about 0.8 g/s, 
removing the mass of the carbide tooth itself roughly every 4 
milliseconds. 

    Assuming a 15 minute tool life, this means that this tooth can 
remove about a quarter of a million times its own mass in steel during 
its lifetime. 

    A single gram of tungsten carbide contains enough material to 
make some 300 such teeth. 

    It is possible to substitute an intermediate-hardness material for the 
base of the tooth.  Steel, a harder aluminum, or yttrium-stabilized 
zirconia would work.  (You could try zircon, but I suspect it would 
be too fragile.) 

    As economic context, here in the kitchen I have a cheap zirconia 
kitchen knife that’s about 100 mm × 25 mm × 1.5 mm, which is 
about 2800 mm³ of zirconia, enough for some 14000 such teeth;  such 
a knife costs some US$7, about 0.05¢ (US$0.0005) per tooth.  I also 
have a high-speed steel hacksaw blade, which is about 310 mm × 12.7 
mm × 600 μm (300 mm between the mounting-hole centers), about 
2400 mm³, which was even cheaper (about US$1.50 per blade), and is 
also suitable for cutting unhardened steel. 

Alternative metal-cutting tooth materials 

    Traditionally, steel was cut merely with case-hardened steel, but 
this has its limitations.  19th-century advances in steel improved tool 



life considerably, but today steel is usually cut with ceramics, 
especially the tungsten carbide mentioned above. 

    Three other hard ceramics mentioned above — sapphire, 
carborundum, and zirconia — may be more easily produced from 
terrestrial materials than tungsten carbide.  Tungsten atoms are 
outnumbered by silicon in Earth’s crust about a million to one.  
Sapphire is made from aluminum and oxygen;  aluminum is very 
nearly as common as silicon, while oxygen is even more common.  
Carborundum is made from silicon and carbon;  carbon is 
outnumbered by silicon only about 300 to 1, and of course diamond is 
entirely carbon.  Zirconium is outnumbered by silicon about 3000 to 
1, making it about 300 times as abundant as tungsten.  Zirconia is 
quite brittle if not stabilized with, for example, 2–3% of yttria, but 
fortunately yttrium is only about one order of magnitude rarer than 
zirconium itself. 

    Zirconium has the additional merit of being relatively easy to 
concentrate, since it forms separate grains of zircon (jacinth, ZrSiO₄) 
in many igneous rocks, including most granites, which are easily 
separated from sand by their high density (4.6 g/cc);  they are also 
separable by their refusal to melt at any reasonable temperature 
(below 2500°, though they sinter at much lower temperatures).  
Zircon itself, perhaps even naturally-occurring crystals, may be usable 
as a material for cutting metal;  but zirconium is readily, if 
expensively, derived from it by calcining with carbon and chlorine, 
then reducing the resulting zirconium tetrachloride with magnesium, 
the same Kroll process used to reduce titanium;  and zirconia is 
superior to zircon in almost every way. 

    Historically carborundum was discovered by Acheson running an 
electric arc through a mixture of clay and coke in an iron crucible, 
insulated by the granular materials themselves, in 1890;  but Despretz 
probably made it without knowing in 1849 by joule-heating of a 
carbon rod embedded in silica sand, which is essentially the “Acheson 
process” used today;  sawdust and salt are former additives now little 
used.  (This is also the first process for making synthetic graphite, by 
heating the carborundum until the silicon sublimes at 4150°.  XXX 
wouldn’t graphite sublime too?  Shouldn’t that be 2830°?) 

    Sapphire is normally refined as an intermediate step in the 
production of aluminum, for example by the Bayer process:  
low-silica bauxite is digested in 170°–180° lye (or anhydrous 1200° 
sodium carbonate and coke, in the Deville process) to obtain sodium 
aluminate, from which crystalline aluminum hydroxide is 
precipitated (by cooling, by neutralization with CO₂, or simply by 
evaporation with seed crystals). 

    Zirconium carbide can be made simply by carbothermic reduction 
of zirconia with graphite;  it is even harder than zirconia itself (?), 
though it has “poor oxidation resistance over 800°”.
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3-D printing iron by 
electrodeposition?
Kragen Javier Sitaker, 02020-08-15 (11 minutes)

Speculation 

    You can form an arbitrary iron shape by simultaneous 
electroforming from a large number of parallel needles?  In a 
near-boiling, oxygen-starved solution of hydrochloric acid, you can 
run current through some needles, but not others, to promote the 
deposition of iron on a cathode surface a short distance away 
(millimeters or less) around just those needles.  By withdrawing the 
array of needles as the cathode grows, the inter-electrode distance 
remains constant.  If the needles are themselves iron, they will dissolve 
anodically and be deposited (in electrolytically purified form) on the 
cathode, and will need to be fed in through some kind of wire feed 
mechanism, but if they are graphite or a noble metal, then iron must 
instead be supplied in ferrous form by pumping in more electrolyte to 
replace the spent electrolyte;  pumping it through the centers of the 
needles themselves is one possibility. 

    If the needles are moved laterally as well as being withdrawn, they 
can produce features of finer detail than the spacing between needles. 

    And, of course, if the current is reversed, the same method 
produces local anodic dissolution and becomes selective 
electrochemical machining, rather than selective electrodeposition. 

    By dispersing fine graphite or amorphous carbon particles in the 
electrolyte, so that some of it gets included in the iron deposits, it is 
possible to deposit iron that can later be converted to steel by heat 
treatment, causing the carbon to diffuse;  this can be localized to just 
certain layers of the workpiece.  Alternatively, the iron can be 
case-hardened if the softness and ductility of pure iron is undesirable. 

    Other metals commonly electroplated can be 3-D printed in the 
same way;  an Argentine savant has already demonstrated this process 
with copper, but zinc, tin, chromium, nickel, gold, silver, cadmium, 
cobalt, lead, and even some alloys such as bronze and brass can be 
shaped in this way.  Additionally, layers of different metals can be 
alternated, and fillers such as graphite, aluminum oxide, and clay 
particles can be included, especially if the cathode voltage is kept 
moderate enough to prevent bubbling. 

    Other liquid electrolytes, such as ionic liquids and perhaps even 
deep eutectic systems, might permit the use of a wider range of 
metals, more rapid electrodeposition of iron, or lower risks than a 
near-boiling strong hydrochloric acid solution. 

    The needles, if iron, need not be pure iron;  they can contain 
metallic impurities as long as their standard electrode potential is 
significantly more negative than iron's -0.44V.  In particular, zinc, 
magnesium, aluminum, and the rare earths should not be a problem.  
Most other metals, however, would plate out in preference to the 
iron, including virtually everything you can electroplate in water 



(except zinc and maaybe chromium). 

Historical background 

    In https://www.finishing.com/94/56.shtml there is some 
discussion of different ways to electroform or electroplate with iron;  
Colin Braathen writes: 
I agree that ferric chloride is not a good basis for plating;  most documents on the 
subject stress the importance of keeping iron 3+ levels in the bath low.  Air for 
agitation is likely to oxidise the ferrous ion to ferric, so I plan to hermetically cover 
the bath with clingwrap and agitate using argon… Bath heating will be by quartz 
tube with a Nichrome coil inside, salvaged from a cheap radiant room heater, 
glanded into the bath walls with silicone.  Bath lining will be PVC, heat gun 
welded at the seams and bonded to a support shell with air-moisture-curing 
polyurethane glue (bath temperature will be uncomfortably close to the glass 
transition temperature of PVC). 
    I, too, have plated iron from a sulphate solution as a tryout.  I got about 1 mm 
before my power supply burned out (15A on about 0.5 sq.ft, i.e. 30 A/ft).  The iron 
was brittle to the point of being crumbly I could almost crush it in my fingers, and 
I had incipient dendrites.  … Chloride baths are run at higher temperature and, 
apparently, can produce a ductile stress-free deposit if done right. 
    … The bath will be Fisher-Langbein, FeCL2.4H2O 300-450 g/l, CaCl2 
150-190 g/l, 85 °C, pH 1.5, current density 2 9 A/dm2 (20 85 A/ft2).  The low pH 
should help to minimize formation of the ferric salt.  

    See also: 

    
https://ukdiss.com/examples/electrodeposition-iron-co-deposits-des.
php is an academic fraud company ("dissertation writing service") 
publishing a purported dissertation on iron electrodeposition in ionic 
electrolytes whose author's name has been removed. 

    https://encyclopedia2.thefreedictionary.com/Iron+Plating: 
an electrolyte whose main constituent is ferrous sulfate or chloride.  … 
electrodeposition proceeds at room temperature with an insignificant concentration 
of acid in the electrolyte at a rate of the order of 1 micron per hr.  For repair work, 
the temperature and acid concentration are increased.  The iron layer is deposited 
more quickly, the ferrous chloride solution is more concentrated, and the 
temperature is about 100°C.  

    
https://www.scientificamerican.com/article/electro-plating-with-iro
n/ https://archive.org/details/scientific-american-1869-11-27 
Electro-Plating with Iron 
    Scientific American volume 21, number 22, p. 346 
    November 27, 1869 
    The Hon.  Cassius M.  Clay†, late U.  S.  Minister to Russia, has recently 
returned from St. Petersburg, bringing with him some fine specimens of iron 
electrotypes, done after the process of Prof.  Jacobi and Klein.  We have before 
alluded to this important discovery.  By its use, nearly all forms of electro-plating, 
such as engravings, stereotypes, medallions and ornaments, may be done in iron, 
with a fineness of texture which is really surprising. 
    Its importance and value will be appreciated when we reflect that the iron 
electro-plates are about five times more durable than the ordinary copper 
electro-plates. 
    Mr. Clay has presented us with an iron electro-plate copy 'Of a copperplate 
engraving of the Prince Imperial of Russia.  This plate is six inches square,.  and 
beautifully done.  It is one thirty-second of an inch in thickness, and has a color 
closely resembling that of zinc.  These iron electrotypes are now used by the 
Russian Government with complete success for the printing of bank notes. 
    The process was patented in this country through the Scientific American Patent 
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Agency, Sept.  29, 1868, and further information can be had by addressing C.  M.  
Clay & Co., 45 Liberty St., New York. 
    The following description of the process we copy from the patent specification : 
    “Our invention consists in the application of a practical galvano-plastic process 
as to the deposits of iron on molds, or any other form, for reproducing engravings, 
stereotypes, and for other useful or ornamental purposes. 
    “The galvano-plastic bath we use is composed of sulphate of iron, combined 
with the sulphates of either ammonia, potash, or soda, which form, with sulphate 
of iron, analagous [sic] double salts. 
    “The sulphate of iron may also be used, in combination with the chlorides of the 
said alkalies, but we still prefer the use of sulphates. 
    “The bath should be kept as neutral as possible, though a small quantity of a 
weak organic acid may be added, in order to prevent the precipitation of salts of 
peroxide of iron. 
    “A small quantity of gelatin will improve the texture of the iron deposit. 
    “As in all galvano-plastic processes, the elevation of the temperature of the bath 
contributes to the uniformity of the deposit of iron, and accelerates its formation. 
    “For keeping up the concentration of the bath, we use, as anodes, large iron 
plates, or bundles of wire of the same metal. 
    “Having observed that the spontaneous dissolution of the iron anode is, in some 
cases, insufficient to restore to the bath all the iron deposited on the cathode, we 
found it useful to combine the iron anode with a plate of gas-coal, copper, 
platinum, or any other metal being electro-negative toward iron, and which we 
place in the bath itself. 
    “As a matter of course, this negative plate may also be placed in a separate porous 
cell, filled with an exciting fluid, as diluted nitric or sulphuric acid, or the nitrates 
or sulphates of potash and soda. 
    “For producing the current, we usually take no more than one or two cells of 
Daniels' or Smee's battery, the size of which is proportioned to the surface of the 
cathode. 
    “It is indispensable that the current should be regulated, and kept always 
uniform, with the assistance of a galvanometer, having but few coils, and therefore 
offering only a small resistance. 
    “The intensity of the current ought to be such as to admit only of a feeble 
evolution of gas-bubbles at the cathode, but it would become prejudicial to the 
beauty of the deposit if gas-bubbles were allowed to adhere to its surface. 
    “The same molds, as employed for depositing copper, may also be used for 
depositing iron, only it is advisable, in employing molds made of lead or 
gutta-percha, to cover them previously with quite a thin film of galvanic copper, 
formed, in a few minutes, in the usual way, and then oring [sic] them, after having 
washed the molds with water, immediately in the iron-bath. 
    “The film of copper may be removed from the deposit either by mechanical 
means, or by immersion into strong nitric acid. 
    “The deposited iron is very hard, and rather brittle, so that some precaution 
must be taken in separating it from the mold.  By annealing, it acquires the 
malleability and softness of tempered steel.  

    † This is a different Cassius Clay than Muhammad Ali. 

    https://www.pfonline.com/articles/iron-plating(2) 
The iron plating bath is particularly useful for when large build-ups (50–100 
thousand[th]s of an inch) are required.  There are a number of different baths 
available:  ferrous chloride, ferrous fluorborate, ferrous sulfamate and ferrous 
sulfate are common examples.  Of these baths, the most common is the ferrous 
chloride bath…  

    Then Kushner gives the recipe:  40–60 oz./gal.  of ferrous chloride 
dihydrate, 20–35 oz./gal.  of calcium chloride, 185–210°F, 20–80 
amps per square foot without agitation or up to 200 with agitation 
(which must not be air to prevent oxidizing the ferrous ions), 
high-quality iron anodes, pH 0.2–1.8 using HCl.  There is some 
confusion in the recipe. 

https://www.pfonline.com/articles/iron-plating(2)


    https://patents.google.com/patent/US2745800A/en 

    By John Poor, 1953.
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Peroxide and bleach
Kragen Javier Sitaker, 02020-08-15 (2 minutes)

    To my surprise, last night I learned from a chemist friend that 
mixing hydrogen peroxide with (sodium hypochlorite) bleach 
liberates oxygen, presumably from the decomposition of both 
substances, leaving water and sodium chloride as well as the oxygen 
gas.  How much oxygen should it liberate? 

    In addition to weight percentages (3% being the usual article of 
commerce in pharmacies) H₂O₂ is commonly sold by "volumes":  "20 
volumes" yields 20 mℓ of O₂ gas from the decomposition of the H₂O₂ 
in 1 mℓ of the solution.  O₂'s molecules weigh 32 daltons, so a mole of 
it weighs 32 g;  two moles of H₂O₂ are needed to produce one mole of 
O₂, and they will weigh 34 g each, 68 g in total.  The combined gas 
law is that PV = nRT, where [R ≈ 8.3144598 kPa ℓ / mol / K] is the 
universal gas constant, so at 20° = 293.15 K a mole of an ideal gas at 
101.325 kPa would occupy 8.3144598 × 293.15 / 101.325 ≈ 24.055 ℓ.  
The density of pure H₂O₂ is 1.450 g/cc, thus 21.32 mmol of O₂ per cc, 
which gives 512.85 cc of O₂ gas per cc of H₂O₂, so pure hydrogen 
peroxide would be "512.85 volumes".  So "20 volumes" H₂O₂ is only 
about 3.900% by weight.  (But Dr. Google says it's actually 6%, so my 
calculations must be off.) 

    The common bleaches sold here are 57 g Cl/ℓ and 25 g Cl/ℓ.  
Sodium hypochlorite is NaClO, with one atom of oxygen per atom 
of chlorine.  ...
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Cyclic fabrication systems
Kragen Javier Sitaker, 02020-08-17 (updated 02020-09-10) 
(56 minutes)

    "Cyclic fabrication systems" is a term Matthew Moses, Hiroshi 
Yamaguchi, and Gregory Chirikjian invented to describe a collection 
of materials, tools, and processes capable of reproducing itself.  A CFS 
is the keystone of economic autarky, of resilience against faraway 
catastrophes, and of escaping resource scarcity traps, and its 
exponential growth rate has historically been the major limit on 
worldwide economic growth;  consequently the study of CFSs is, or 
should be, central to economics, although it is a relatively neglected 
topic, involving as it does cross-disciplinary concerns from 
engineering, materials science, chemistry, metrology, and economics. 

    A programmable, fully automated autotrophic CFS with a growth 
rate exceeding that of the economy would eliminate the scarcity of 
capital goods that has been the foundation of human economics for 
two million years. 

    With that in mind, I thought it would be worthwhile to survey 
historically and potentially existing CFSs.  There are various aspects 
of cyclicity:  there's the simple geometric question of how a machine 
can reproduce the shapes of its own parts in the same materials;  
there's the metrology question of how to measure half a millimeter on 
a ruler measured in millimeters;  there's the control question of how a 
negative-feedback system can produce another working active 
negative-feedback system, there's the chemistry question of how to 
produce a large amount of materials with the necessary degree of 
purity, starting from impure and unknown natural materials and a 
small amount of known and pure materials;  and there's the energy 
question of how such an assemblage of machines can continue 
harvesting energy from its environment, for example building an 
engine that can harness the available solar or chemical energy. 

Geometry 

    The first category of CFSs to survey are those concerned with 
imposing some existing geometry on some existing material.  For now 
we're not so concerned with how the geometry or the material is 
created. 

    A feature common to many geometry CFSs is a sort of 
rock-paper-scissors dynamic;  in a given manufacturing process, 
typically one material is stabler than another, so perhaps it can be used 
to shape that other material. 

    For example, you can melt wax into a pewter mold, you can melt 
pewter into a steel mold, and you can melt steel into a greensand 
mold;  but you can't melt greensand into any kind of mold, both 
because it requires unreasonably high temperatures and because it 
ceases to be greensand when you melt it.  Instead we rely on the fact 
that greensand at room temperature is soft enough to be rammed 
around patterns, made of materials such as wax, with tools made of 
materials such as steel. 



    Pewter beats wax, steel beats pewter, greensand beats steel, and wax 
beats greensand.  Thus we form the cycle that makes our fabrication 
system cyclic. 

Flintknapping 

    Since the Paleolithic, the humans have shaped tools by banging 
rocks together, a process called "knapping".  Arguably this is not a 
CFS, because typically the hammerstones and other flintknapping 
tools such as antlers and copper pressure-flaking tools are not 
themselves shaped by flintknapping or flintknapped tools. 

    Knapping is somewhat limited in the geometries it can achieve, and 
it can only shape materials that break in the right way, such as glass, 
obsidian, and flint. 

Grinding 

    A major innovation in manufacturing technology some 35 
millennia ago, perhaps in Japan, was shaping stones by grinding them 
with abrasives, rather than chipping.  It had spread to the Levant and 
Europe by some 10-18 millennia ago, where it is considered a 
distinguishing mark of the Neolithic.  Grinding permits greater 
liberty of materials, surface finishes, and geometry;  abrasives can 
shape any solid material and can achieve arbitrary geometry down to 
submicron scales.  In particular, in the late Japanese Paleolithic and in 
the Mesolithic and Neolithic, polished stone axes were much more 
durable than traditional knapped axes;  hole-drilling permitted much 
more adaptable and secure forms of assembly;  and Kebaran mortars 
and pestles began to automate the more mechanical aspects of food 
digestion. 

    From a CFS perspective, there are several great features of 
grinding.  One is that the geometry of the workpiece can be more 
precise than the geometry of the tool, because it is determined 
primarily by the movement of the tool, as constrained by the workpiece 
and other external systems, rather than the tool's geometry.  Another 
is that, by grinding three surfaces against each other with abrasive 
between, a precisely flat surface can be achieved without any flatness 
reference.  A third is that some hard materials are relatively easy to 
break, so we can get a rock-paper-scissors cycle with only two 
materials:  a hard, brittle abrasive such as sapphire or quartz and a 
softer, tougher hammering material such as copper or iron.  A fourth 
is that, because of the aforementioned movement feature, it's actually 
possible to get a CFS with just a single material such as sandstone or 
concrete;  you can dress a grinding wheel with an abrasive dressing 
stick just by moving the stick back and forth across the wheel's face 
while spinning it.  A fifth is that grinding generally does not require 
heat or a minimum tool pressure, so it can be done while the 
workpiece is not deformed, providing more precise geometry than 
other ways of shaping materials. 

    Consequently various kinds of grinding, including lapping, play 
central roles in all kinds of precision manufacturing even today.  
Especially on glass materials, deep submicron precision is feasible.  
Grinding is also commonly the only cutting process used for 
applications like cutting rebar or concrete on construction sites and 
smoothing over weld beads, where its material flexibility and low 



equipment cost outweigh its low material removal rate.  In modern 
machine shops, grinding is used for cutting nearly-finished parts to 
final dimensions and for shaping metal-cutting tools out of materials 
that are too hard to drill or cut on the mill or lathe. 

Pottery 

    Since the late Paleolithic or early Neolithic, the humans have made 
pottery by sintering ("firing") composites of clays, sintering aids, 
fillers, and sand into a sort of ceramic.  Sintering in general has the 
advantage that the sintered material can remain solid at temperatures 
exceeding those necessary to sinter it in the first place (for pottery, in 
the 700°–1500° range depending on composition), so if the 
temperature remains relatively predictable, a kiln for sintering such 
pottery can itself be made of the same pottery.  Moreover, it is 
possible (and, in historical practice, usual) to sinter the kiln itself in 
place, rather than sintering firebricks in a separate kiln and then 
assembling them into a kiln. 

    Clays go through a series of states of plasticity according to their 
hydration.  Above about 25% water, they are colloidal liquids called 
"slips";  around 22%, purely plastic solids or thixotropic liquids, which 
shrink substantially as they dry further;  around 20%, they remain 
plastic over a large range of deformations but become capable of 
brittle fracture ("leather-hard") and almost do not shrink upon 
further drying;  and below about 18%, they are fragile, brittle solids, 
which do not shrink on further drying.  (The precise transition points 
vary by clay composition, soaking time, and aqueous solute content.) 
Firing results in further shrinkage.  The other components of the 
so-called "clay body" can enhance plasticity and reduce sintering 
temperatures, and they tend to decrease shrinkage.  The sintered clay 
body is much stronger and can be nonporous, especially if sintered a 
second time coated with a so-called "glaze" which melts fully rather 
than just sintering;  typically this results in further shrinkage. 

    Because fired or even dried clay can plastically deform leather-hard 
or fully plastic clay, it is straightforward to use so-called clay "seals" to 
reproduce geometry (in negative), and such "bullae" have been a key 
security measure for commercial transactions for some 12 millennia, 
since the beginning of agriculture if not before;  recently metals are 
more commonly used instead of clay, but this innovation was 
unknown until just a couple of millennia ago.  This process of 
molding can be carried through multiple generations of clay seals, 
though not without significant loss of fidelity, including, in particular, 
shrinkage. 

    Such a clay-on-clay "sealing" process is probably responsible for the 
oldest instance of movable-type printing, the Phaistos disk;  and of 
course movable type in Asia was made from pottery long before 
Gutenberg. 

    In the leather-hard state, the clay body is still plastic enough to take 
the impressions of seals, but also brittle enough to be cut with blades.  
Typically these are made of metal in current practice, but blades made 
of fired clay also work.  Because most of the shrinkage has already 
happened, forming clay in the leather-hard state results in much more 
precise dimensions. 



    Clay is commonly "slipcast" in porous molds made of plaster of 
Paris:  a slip is poured into a mold, and the absorption of water into 
the mold solidifies a layer of the slip in contact with the mold.  The 
remaining slip is poured out, and the cast piece contracts as it dries 
and can then be demolded.  Presumably it is possible to make the 
molds of porous fired clay instead of plaster, though I have never 
heard of it being done and have not attempted it myself. 

    Dried clay is also friable enough to be easily abraded or carved by 
tools, including tools made of fired clay. 

    The precision of all of these shaping processes is limited by the 
shrinkage and deformation of the ceramic during sintering, if 
sintering is done;  by the grain size of non-clay tempers, such as sand, 
in the clay body;  and by the shrinkage and deformation of the clay 
body to its dry state, for shaping processes that rely on plasticity. 

    Fired-clay ceramics play a key role in many more elaborate CFSs as 
well, because (depending on composition) they can withstand 
relatively high temperatures without losing their shape, they can 
easily be shaped to complex geometries while plastic (especially if 
dimensional precision is not critical), they are themselves relatively 
hard and can embed even harder abrasives, and they are very 
inexpensive. 

    Like most ceramics, clay has extremely small elastic deformation in 
all states, including the fired state, on the order of 0.01% strain at 
failure.  This permits relatively high geometric precision, especially 
when shaping dried clay, but it complicates the use of fired clay for 
springs and other flexures. 

    Worth mentioning is the standard procedure for foaming pottery, 
which is to mix a granular organic material such as sawdust or used 
yerba mate into the clay body.  In an oxidizing kiln the organic 
material burns out completely, leaving voids in the clay which reduce 
its weight, impede crack propagation, and improve its thermal 
insulating capabilities, and at higher void fractions permit easy fluid 
flow through the fired piece.  Because of the crack-propagation 
improvement, the foamed pottery can be cut to shape almost as if it 
were wood.  I've tried void fractions from 50% yerba up to 85% yerba, 
which last was quite fragile;  above 66% yerba, the material permitted 
easy airflow.  This porosity can be beneficial to the firing process in 
allowing the fabrication of thicker shapes without steam explosions. 

    So, the cycles here are:  fired clay shapes plastic clay (by sealing, 
slipcasting, or cutting), plastic clay dries into dried clay, and dried clay 
is fired into fired clay;  and fired clay carves dried clay, and dried clay 
is fired into fired clay. 

Hot forging 

    Cold iron is harder than hot iron or even hot steel, so if you press 
them together the cold iron will reshape the hot metal without itself 
being reshaped.  This is common to a number of metal-shaping 
processes including hot rolling, hot forging, and wire drawing;  
commonly hammering is used to achieve sufficiently high pressures to 
deform the hot metal.  (It is also the reason the World Trade Center 
collapsed, despite the temperatures not being hot enough to melt its 
steel beams;  the heat softened them.) 



    However, the metal thus formed deforms during cooling, so these 
processes generally cannot achieve tight dimensional tolerances. 

    So the cycle here is that cold iron forges hot iron, and hot iron cools 
into cold iron. 

Hardened ferrous tools, cutting and hammering ferrous 
metal 
    Files and other hardened iron and steel tools can be used to cut 
unhardened iron and steel, which can then be hardened.  Similarly, 
hardened iron and steel hammers can be used to cold-forge 
unhardened iron and steel. 

    There are several ways to harden ferrous metals, but nearly all of 
them involve a great deal of heat, and so impose a certain amount of 
uncontrolled deformation.  "Case hardening" by diffusing carbon (and 
possibly nitrogen) into the surface of iron is a form of solid-solution 
hardening known for two or three millennia;  "quenching", applicable 
to carbon steels, is another.  In quenching, the metal is heated until it 
converts from ferrite to austenite, then cooled too rapidly for it to 
reform ferrite at the surface, leaving it in the metastable state of 
martensite, which is much harder than ferrite.  (Sometimes the term 
"case hardening" is also used for quenching only the surface of a piece 
of metal.) 

    Another is "work hardening" by hammering the surface ("cold 
working" or "cold forging"), but typically the resulting hardening is 
relatively small.  Cutting highly work-hardenable metals like copper 
is difficult, because work hardening hardens the surface as soon as you 
have cut it, and perhaps even before;  consequently, the carburization 
and quenching processes described above are the ones used for cyclic 
fabrication systems.  Work hardening plays many critical roles in 
metallurgy, but historically not in CFSs. 

    (Other forms of hardening, such as precipitation hardening, are not 
applicable to iron and ordinary steels, though they are applicable to 
some other alloys, like 17-4 stainless and beryllium copper.) 

    So the cycle here is that hardened steel cuts unhardened steel, and 
then quenching or carburizing unhardened steel makes hardened steel. 

Sandcasting and lost-wax casting 

    As mentioned above, sandcasting is a common CFS, in the sense 
that once you have a pattern for a castable shape, you can ram soft 
greensand around the pattern in a flask to make a mold, disassemble 
the flask, remove the pattern, reassemble the flask, and pour molten 
metal into it to reproduce the shape of the pattern — first perhaps 
arsenical bronze, but also copper, and more recently tin bronze, cast 
iron, tin, pewter, pot metal, Zamak, pig iron, high-silicon aluminum 
alloys, brass, and so on. 

    Greensand is sand (typically quartz;  minerals that outgas at high 
temperatures such as calcite or gypsum are forbidden) containing a 
small amount of wet clay as a binder.  There is little enough clay so 
that the mold is very porous, thus permitting easy passage of gas 
through the sand, among other things to allow the mold to dry before 
casting.  Typically the clay used is bentonite, since it can function as a 



binder at the lowest levels, and those levels are low enough that its 
expansivity is not a problem. 

    Aside from the raw materials, sandcasting requires minimally a 
pattern, a riddle, a ram, a flask, a crucible, and a kiln (called a 
"furnace").  The crucible and the furnace are necessarily formed of 
refractory materials, and in usual practice must be exposed to air, so 
pottery is the traditional material for them, making this CFS 
dependent on the pottery CFS when used for ferrous metals;  the 
non-ferrous metals mentioned above can instead use ferrous crucibles, 
and in theory could use ferrous furnaces as well, but pottery is much 
more practical.  The pattern and flask are traditionally made of wood, 
but metal would also work fine.  The ram can be made of wood or 
metal.  The riddle probably cannot be practically cast of metal, 
because it needs to have many small holes, and casting is bad at those.  
The standard nowadays is to use a riddle of woven wires on a wooden 
frame, but I think you could make one of fired clay (though my first 
attempt to do so was not very successful) or woven flax sized with 
some kind of abrasion-resistant coating. 

    In sandcasting, although the mold is destroyed when the casting is 
shaken out of it, the pattern can be reused many times.  Nowadays the 
patterns are often 3-D printed, but another bootstrapping option 
might be to carve the pattern from foamed pottery. 

    I think older than sandcasting is lost-wax casting, which is similar, 
but with a pattern of wax (traditionally a mix of beeswax and pine 
resin, perhaps with some dry powdered clay as a filler) and a mold of 
pottery.  Rather than removing the pattern from the mold before 
firing the mold, the wax is simply left in the pattern, where it melts 
and then burns out, just like the organic fillers used for foaming 
pottery.  This does not permit the reuse of the pattern, but can 
reproduce finer details than sandcasting, though with worse 
dimensional precision. 

    A modern innovation in these processes is "lost foam casting", 
where the pattern is burned out as with lost-wax casting, but the 
mold is sand as with sand casting.  By making the pattern from an 
organic foam such as styrofoam, it produces little enough gas that it 
need not be removed from the mold ahead of time, but is instead 
burned out by the hot metal;  this eliminates the need for a binder and 
the need to disassemble the flask, and styrofoam is easier to cut than 
the traditional wood or, especially, metal. 

Die-sink/ram and small-hole EDM ("electric discharge 
machining") 

    EDM is capable of holding very tight tolerances (on the order of a 
micron, or somewhat higher at larger material removal rates) and 
cutting very hard materials, even diamond.  You bring an electrically 
conductive workpiece together with a tool ("die") in an insulating 
liquid, such as diesel fuel or deionized water, holding a voltage across 
them, until a spark occurs, vaporizing some of both the workpiece 
and the die.  The vapor immediately condenses in the liquid, and 
some time later you move them toward each other until a new spark 
occurs somewhere else.  This repeats, thus eroding both the workpiece 
and the die.  They never quite make contact, and they never heat up 



except in a very thin surface layer, so the deformations that limit the 
precision of mechanical cutting processes are absent. 

    The die can be of the same material as the workpiece.  However, to 
minimize the necessity to manufacture new dies, it's desirable to use 
die materials that are eroded less than the workpiece because of 
having higher boiling points, higher enthalpy of fusion and/or 
vaporization, or higher thermal conductivity;  graphite, copper, brass, 
and tungsten-copper are ideal, but even things like aluminum last 
longer than steel (I think?), which in turn lasts longer than stainless 
steel, which in turn lasts longer than tungsten carbide and similar 
materials. 

    In particular, copper and graphite electrodes can cut steel with 
almost no wear, removing more than 100× as much workpiece as 
electrode. 

    "Small hole EDM" is a variant of this approach, usually categorized 
separately, in which the tool electrode is a thin tube used to "drill" a 
hole into or through the workpiece.  Dielectric fluid is fed through 
the tool at high speed.  The tool is rotated as it is fed into the hole, 
eliminating circumferential variation, and also permitting the hole to 
be significantly wider than the tool itself if the center of rotation is 
eccentric.  EDM drilling can thus produce very accurately cylindrical 
holes, even in very hard materials.  (And this is a crucial supporting 
process for wire EDM, as explained later.)
  

    Small-hole EDM drills are often insulated up to the tip so that the 
hole only widens near the tip, enabling it to remain the same diameter 
over a long distance. 

    Hypothetically, if the die were of a shape that can be produced by 
helical extrusion, then it could be fed into the cut in the helical path 
along which it was extruded.  The end of the die might be consumed 
in the process, but, especially for through holes, this is unimportant. 

    An EDM die can also be moved to cut out a shape as if it were an 
end mill, known as "orbiting";  if this is done with a die with a thread 
profile ("EDM tapping"), it cuts a thread into the hole it's in with the 
same thread pitch as the die's thread, but a larger diameter.  Small pits 
in the threads of the die are unimportant, as they will be covered by 
the orbital motion. 

    Hypothetically, you could also move the die in two directions of 
motion at once, as if for lapping;  although I do not know of this 
process being used in practice, the same process could produce three 
accurately flat surfaces by translating and rotating them relative to 
each other while using them to erode one another via EDM. 

    EDM is also done at times with dies that are wheels analogous to 
grinding wheels;  as with grinding wheels, small irregularities in the 
wheel surface are inconsequential, so they can make surfaces that are 
more accurately cylindrical than they are themselves.  Presumably 
these EDM wheels must periodically be dressed like grinding wheels, 
but using EDM rather than grinding.  Vollmer calls this process "disc 
erosion", and their process uses copper-tungsten wheels and an oil 
dielectric to sharpen cutting tools made of polycrystalline diamond or 
tungsten carbide, while Setco calls it "spark erosion grinding" and uses 
cold-rolled steel wheels and I think a water dielectric to cut delicate 



metal honeycomb parts for jet engines. 

    A CFS based on die-sink EDM might be able to use a single 
conductive material as both a workpiece and a tool, reorienting the 
tool during the cutting process to produce on it the kinds of radii and 
edges that will be needed for later features to be cut into the 
workpiece. 

    However, a much more efficient die-sink-EDM-based CFS would 
use at least two materials, one harder and easier to cut with EDM, 
such as steel or tungsten carbide, and the other softer and more 
resistant to spark erosion, such as graphite, brass, or copper.  A single 
steel cutting tool can cut hundreds of brass electrodes to precise 
shapes, and a single brass electrode can erode hundreds of steel 
workpieces to precise shapes. 

    However, an EDM machine cannot be made entirely from metal 
parts, because the only electrical path between the cutting tool and 
the workpiece must be the cutting arc.  Thus some insulating 
material, such as a plastic or ceramic, is needed to complete the cycle. 

    (These accounts of EDM-based CFSs take the electronic servo 
control systems necessary to control the EDM motion as given, a 
lacuna I will remedy later on.) 

    In many cases, however, wire EDM supplemented with small-hole 
EDM is orders of magnitude faster than die-sink EDM.  Normally 
die-sinking EDM is only used to finish parts to final dimensions after 
cutting them to approximate shape using faster processes. 

Wire EDM 

    Wire EDM removes material from a conductive workpiece 
through the same spark-erosion process as other kinds of EDM, but 
the tool electrode is a thin brass wire, tens to hundreds of microns in 
thickness.  This wire passes through a thin kerf in the workpiece, 
cutting it to an arbitrary two-dimensional shape with an arbitrary 
taper, while running through the workpiece at high speed.  Given a 
starting hole made by some other process, such as drilling or 
small-hole EDM, wire EDM can enlarge the hole to an arbitrary 
shape.  By cutting a stack of sheets, typically welded together at the 
edge, wire EDM can cut the same shape into many sheets at once. 

    The eroded brass wire must be melted and redrawn before being 
used again, since it has spark-erosion pits at unknown places along its 
length which could cause it to break if used a second time. 

    Die-sink EDM can cut arbitrary three-dimensional shapes, while 
wire EDM is more restricted in the geometry it can produce.  But 
die-sink EDM must vaporize and wash away all the negative space of 
the desired part, while wire EDM need only vaporize a kerf of tens or 
hundreds of microns around its surface, thus potentially permitting a 
speedup of a thousand or so. 

    Wire EDM and small-hole EDM can cut through a meter or more 
of material in a single operation, so it's straightforward to imagine a 
sheet-cutting operation producing 20,000 identical parts from 
50-μm-thick sheet stock in a single operation.  (Other sheet-cutting 
processes, like waterjet, plasma, oxy-gas, bandsaw, and laser, are not 
so flexible;  they tend to blow the layers apart.) But it's not clear that 
this would be an especially fast or cheap way to do it. 



    A CFS based on wire EDM could surely cut most of the parts of 
the EDM machine itself from steel or brass stock, then assemble them 
using an assembly system made similarly.  The wire itself, if not 
treated as a "vitamin" provided from outside the system, could be 
drawn from brass stock using EDM-cut drawing dies.  (These might 
even be workable without small-hole EDM.) Again, I will postpone 
the question of the necessary control electronics, and again an 
insulator is required. 

Grinding, grinder dressing, and machining 

    As mentioned earlier, grinding plays an important role in modern 
machining, as does hardening of steels for cutting tools, but its overall 
cycle is more complex.  Metal is mostly cut with a lathe, drill press, 
milling machine, or hand file, using ceramic/cermet ("hardmetal") or 
hardened steel cutting tools ("machining").  These tools are typically 
shaped and resharpened with a grinding wheel, which can be silicon 
carbide, cubic boron nitride ("borazon" or "qingsongite"), or 
diamond, or (for hardened steel tools only) aluminum oxide, garnet, 
or zirconia†.  Aluminum oxide, zirconia, and silicon carbide are the 
usual materials.  This grinding wheel wears and loads, and must be 
brought back to shape ("dressed") periodically;  Adam Martin of 
Helical Solutions explains that a diamond grinding wheel requires 
dressing every 500 to 600 tungsten-carbide tools.‡ Dressing a 
diamond or silicon-carbide wheel can be done with another 
silicon-carbide wheel, as Helical does;  aluminum-oxide wheels can 
be dressed with a diamond tool or with a star wheel. 

    A star wheel is a steel wheel with many points that is free to rotate;  
bringing it in contact with a spinning grinding wheel sets it to 
rotating, and its points whack into the surface of the grinding wheel, 
chipping it and knocking off grains.  Moving the star wheel back and 
forth as it spins evens out the local variations in its shape, making the 
surface of the grinding wheel accurately cylindrical or conical, 
depending on whether the movement is parallel to the 
grinding-wheel axis. 

    Star wheels can be made by grinding their parts from steel stock 
and assembling them, or more rapidly by cutting the steel stock with 
cermet or hardened steel tools. 

    Grinding wheels are made by casting a mix of abrasive and binder 
in a mold, and often then firing the piece to harden the binder.  The 
mold can be cut from metal;  common binders include clay, 
magnesium oxychloride, and organic polymer resins including 
rubbers, and have historically included sodium silicate and shellac;  
but a wide variety of cements work at low speeds.  Historically, 
grinding wheels were often simply cut from sandstone, whose quartz 
grains are hard enough to cut steel but not tungsten carbide;  they are 
typically bonded together by calcite deposited hydrothermally.  
Wheels using the "superabrasives", diamond and cubic boron nitride, 
commonly use metals as binders. 

    As mentioned above, bonded-abrasive sticks can also be used to 
dress bonded-abrasive grinding wheels.  They can be made in the 
same way as the wheels, but are normally more porous.  Traditionally 
this porosity is achieved in a similar way to foamed fired-clay pottery, 
with a filler that burns out during firing, but, for low-firing binders 
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like rubbers and shellac, a lower-boiling-point filler such as 
naphthalene is needed. 

    Grinding done fast can easily produce temperatures high enough to 
dissolve diamond into transition metals like iron, so diamond abrasives 
are usually not used on metals.  Cubic boron nitride is nearly as hard 
and does not suffer from this problem.  Also, diamond burns in air at 
650°, while boron nitride does not burn at all — it forms an 
impermeable boria layer (though this melts at 490° and starts 
vaporizing at 1100°, well below its boiling point of 1860°), then begins 
to react with transition metals around 1400°. 

    Silicon carbide abrasives don't last as long as alumina, accounting 
for their lower popularity despite their higher hardness. 

    Sometimes the ratio between the workpiece wear and the 
grinding-wheel wear is called the "G ratio";  the G ratio depends on 
the abrasive material, the bond, machining speed, feed rate, and 
workpiece material.  Typical G ratios are 2–200, but can even be 
smaller than unity.  This is orders of magnitude smaller than the ratio 
between the wear on a machining tool and the chips removed from 
the workpiece, which is in the neighborhood of tens of thousands up 
to millions (p.  247), so in the machine shop grinding is only used as a 
finishing operation, similar to die-sink EDM.  This permits a 
machining CFS to achieve much higher offspring numbers than a 
simpler grinding CFS. 

    So, among the geometry-production CFSs in modern machine 
shops, we find:  hardened steel cuts steel, which is then hardened, 
then ground with an aluminum-oxide grinding wheel, which in turn 
is dressed with a steel star wheel, which was also cut with hardened 
steel;  tungsten carbide is ground with a diamond wheel, which is 
dressed with a silicon-carbide dressing stick, and both the wheel and 
the stick were cast in steel molds cut with tungsten carbide;  
silicon-carbide grinding wheels are dressed by grinding them with 
other silicon-carbide wheels;  and many variations. 

    Tungsten carbide cutters are themselves mostly shaped by other 
processes and may not be ground at all;  in particular, they are mostly 
made by hot isostatic pressing ("HIP") of tungsten-carbide powder, 
cemented with cobalt.  This is done mostly with steel equipment 
made by the processes described above. 

    † I'm not sure whether zirconia can be used to cut tungsten carbide, 
why nobody makes grinding wheels out of tungsten carbide, or why 
zirconia is usually used together with aluminum oxide instead of 
alone. 

    ‡ However, in the same video, Martin also claims that tungsten 
carbide is made by sintering tungsten with cobalt, so he may not be an 
entirely reliable narrator. 

Electrochemistry, including ECM ("electrochemical 
machining") and electrodeposition 

    This involves several different applications of the same process, one 
which is somewhat less familiar from daily life than grinding, cutting, 
and spark erosion.  It involves a current between two electrodes in an 
electrolyte;  typically the electrolyte is aqueous, although ionic liquids 
are possible, including deep eutectic systems. 



    A paradigmatic case is nickel plating of steel, in which a nickel 
anode and steel cathode are immersed in a solution of, for example, 
sodium chloride.  The power supply sucks electrons out of the nickel 
anode, ionizing nickel atoms at the surface of the electrode, which 
float freely in the electrolyte as positive Ni²⁺ ions, attracted to the 
negatively charged cathode, where they are reunited with electrons 
and form metallic nickel again.  Thus the anode is gradually dissolved 
while metal is deposited on the cathode. 

    In this case the sodium does not deposit on the cathode because it is 
much easier to ionize — its ionization energy is 495.8 kJ/mol, its 
reduction potential is -2.71 volts, and its electronegativity is 0.93 
Pauling units — not only than the nickel, but even than the water 
itself.  Nickel's ionization energy is 737.1 kJ/mol (and its second 
ionization energy is 1753.0 kJ/mol), its reduction potential to the 
hydroxide is -0.72 volts, its reduction potential to the nickel(II) ion is 
-0.25 volts, and its electronegativity is 1.91 Pauling units.  Water's 
reduction potential to electrolyze hydrogen is -0.8277 volts.  So nickel 
precipitates at a lower voltage than is required to produce hydrogen, 
and hydrogen is produced at a lower voltage than is required to 
produce sodium, although mercury electrodes can change the 
situation by amalgamating the produced sodium. 

    (I'm not sure about this, for a couple of reasons.  Nickel cations go 
into the solution, turning it light green, but the bulk solution does not 
become positively charged like a positive electret, so either it must be 
losing other cations like the sodium, or it must be gaining additional 
anions to compensate, which would have to be hydroxyl anions 
formed by producing hydrogen gas.  But nickel chloride is highly 
acidic, not basic.) 

    Because the nickel's crystal structure is relatively compatible with 
the steel's, it can form a strongly adherent film on the surface. 

    This process, and analogous processes using other metals, is used in 
seven main ways, three of which are more or less geometry 
production: 

• Electroplating of a thin film of metal on the surface of some 
substrate, which might even be a film of graphite paint.  This can be 
used for appearance's sake (as in the case of gold-plating base metals 
for costume jewelry) or to modify some other aspect of the object's 
properties.  For example, steel thus plated with nickel or chrome is 
harder and less prone to corrosion.  (I think it might also be less prone 
to fatigue.)  
• Galvanoplasty of bulk metal shapes, also known as electroforming 
or electrotyping, where the electroplating action is continued until it 
is much thicker than just a thin film.  Historically geometry was 
imposed on the resulting shape by depositing it on the inside of a 
mold, like slipcasting of pottery, or on the outside of a mandrel in the 
shape of the desired object, but nowadays it should feasible to use 
electronic control of anode position and current to deposit metal 
selectively.  Electroforming can hit nanometer tolerances, thus being 
suitable for reproduction even of holograms.  Sometimes the term 
"electroforming" is limited to the case where the mandrel or mold is 
conductive and "electrotyping" to the case where it is not.  
• Electrochemical machining simply reverses the roles of the 
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electrodes from galvanoplasty:  instead of using the cathode as the 
workpiece and the anode as the tool, it uses the anode as the 
workpiece and removes parts of it using the cathode, much like 
EDM.  But EDM passes a current between electrodes separated by a 
dielectric by producing an avalanche breakdown of that dielectric 
which produces plasma hot enough to vaporize part of the workpiece 
electrode and, usually, the tool electrode.  ECM, by contrast, passes a 
current between electrodes separated by an electrolyte, carried by ions.  
As with EDM, by positioning the tool electrode, erosion can be 
carried out selectively in some places and not others.   

    The other uses of electrochemistry are corrosion removal, sacrificial 
anode corrosion protection, electrochemical batteries, and 
electrowinning of metals, which are not geometry-reproduction 
processes and so do not concern us here. 

    There is a gray area between electroforming and electroplating, 
"dimensional recovery", where a film is plated onto a metal part to 
enlarge it by microns to hundreds of microns.  Since the non-mandrel 
side of the electroformed object has relatively uncontrolled geometry, 
this is usually preliminary to a later subtractive process such as 
grinding which produces the final geometry. 

    The electrochemical processes, both deposition and erosion, take 
place faster at some places and times and slower at others.  They can 
be limited by ionic availability, especially for deposition, and by 
voltage.  Generally the deposits are smoother when the limit is from 
ionic availability, while voltage limits tend to deposit dendrites (I do 
not understand why) so it is common to add organic thickeners to the 
water as "leveler brighteners" — originally gelatin and nowadays 
mostly secret chemicals, although some people have reported success 
with things like dishwashing detergent, vanillin, and corn syrup.  
(There are other kinds of "brighteners" also used in electroplating 
which work by other means.) 

    There have been some experiments using electrochemical 
machining to shape nonconductive materials such as soda-lime glass;  
the idea is that the electric field through the workpiece is balanced by 
an accumulation of ions on its opposite surfaces, one of which (in 
close proximity to a "cutting" electrode) is attacked by them.  Since 
this section is dedicated to CFSs that are demonstrated to work, I will 
not further consider here these experiments, nor other possibilities 
like using anodic dissolution as a source of divalent cations to 
precipitate silicates, phosphates, organic anions, and so on. 

    In cases where dissolution of an anode is unacceptable, for example 
because no suitable anode is available, anodes of graphite, amorphous 
carbon, platinum, or palladium can be used;  these will not dissolve 
anodically.  I assume this is because they're held together by covalent 
bonds rather than metallic bonds, but I don't really know. 

    Deposition of metal onto the cathode is unavoidable — even coal 
and graphite can be electroplated, and have been since the very 
inception of the process — but if the cathode is not itself vulnerable to 
such erosion, the deposits can be removed thereafter simply by 
reversing the current. 

    A simple geometric CFS using electrotyping might make a mold 
using wax, paint graphite onto it, electrotype copper onto the 



graphite, remove the copper from the mold, then cast a new wax 
mold on the copper.  A more advanced version that avoids the 
dimensional-imprecision problem of wax shrinkage would use a 
parting layer, perhaps of graphite dust, to electrotype copper directly 
onto copper.  My understanding is that this was common practice 
from a year after the invention of the process in 1848 until the 1930s. 

    A more complex geometric CFS using electrotyping and 
electrochemical machining would first use moving electrodes to 
selectively electrodeposit a metal, such as copper, into a rough 
pattern, then use electrochemical machining with moving electrodes 
to trim it to the precise shape.  Each of these processes is individually 
well-explored. 

Resin casting 

    A soft resin such as latex or silicone can form a mold for casting a 
hard resin such as a polyester or epoxy, and vice versa.  Moreover, 
either type of resin can be used to manipulate the other kind in its 
semi-polymerized state.  Resin polymerization differs from the 
liquid–solid phase change of conventional forms of casting in that it 
does not necessarily, or indeed normally, involve any change in 
dimensions.  (Dimensional changes can be achieved by impregnating a 
soft resin with a solvent before or after casting, respectively shrinking 
or growing the product.) Resin casting is used by the Grating Lab to 
mass-produce research-grade diffraction gratings from a single master 
grating ruled on glass by a ruling engine. 

    Resin casting can of course also make molds for many other kinds 
of casting, use forms or patterns made by them, or modify the resin 
systems with fillers. 

Others 

    There are a lot of other possibilities;  I will mention a few of them 
here. 

    Selective etching is widely used in semiconductor and MEMS 
manufacturing;  for example, hydrofluoric acid removes silicon 
dioxide, but not silicon or organic photoresists, while piranha removes 
organic photoresists but none of the layers in chips, including silicon 
dioxide.  But it's also used in more prosaic ways:  hot water with alum 
in it, for example, will eat steel but not aluminum, copper, tin, or 
zinc, a fact commonly used to remove broken drillbits;  so you could 
imagine a CFS using alum in place of grinding to shape steel cutting 
tools for brass.  Nonpolar solvents like carbon dioxide, alcohol, 
acetone, xylene, or toluene will usually dissolve many nonpolar 
organic resins but usually not sugar or ionic solids, while polar 
solvents like water, ammonia, glacial acetic acid, and ionic liquids 
(including deep eutectic systems) can dissolve many ionic solids like 
salt, sugar, or potassium silicate, but usually not nonpolar solids. 

    Bread dough is easy to shape.  Calcining bread in a reducing 
atmosphere produces carbon foam, which is refractory to 6000°, more 
than hot enough to bake more bread in and even calcine it, or for that 
matter for casting metals, carbothermic reduction of iron, or even 
carbothermic reduction of aluminum.  On Earth such a device may 
oxidize on the outside during operation, where it's exposed to air, but 
this can be tolerated in various ways:  making it large enough to 



survive one or more operations, coating the outside with a layer of 
something more resistant to oxidation (but not necessarily heat), or 
operating it in deep space or in a nitrogen atmosphere, for example.  
At human scales, amorphous carbon foam is a disappointingly weak 
material, but this is less of a problem at the micron scale where all the 
real action is. 

    Above I mentioned that clay bodies for pottery form a 
single-material CFS because they can be sintered into a kiln suitable 
for firing more of the same kind of clay;  this is because of a curious 
property of sintering, that the material being sintered holds its form 
throughout, though not its dimensions.  This is a general property of 
the sintering process, not limited to clay;  granular polymers, glasses, 
metals, and other ceramics can all be sintered at temperatures below 
their melting points and while holding their shapes, and this is 
routinely done in many industrial processes.  So in fact nearly any 
solid can be granulated and used in place of clay with appropriate 
binders, sintering aids, and atmosphere, and adequate temperature 
control;  thus you can form a furnace capable of doing more of the 
same kind of sintering. 

    I have previously written about the possibility of using 
solid-solution "hardening" on sintered objects.  The general outline of 
the process is that, before sintering, the "green" object contains at least 
a low-melting sintering aid and a high-melting filler;  during 
sintering, the sintering aid solidifies and densifies the object (perhaps 
without fully melting, and perhaps partly dissolving the filler).  Then 
you soak the object at a near-sintering temperature for quite a while 
so that the sintering aid diffuses into the still-solid filler.  Given 
sufficient solubility of the sintering aid in the filler, the interstitial 
areas with pure sintering aid will disappear, leaving only solid 
solutions of the two (or more) materials, with the expanded solid 
grains in intimate contact with one another.  For suitable mixtures, 
the resulting solid solution will remain stable even up to considerably 
higher temperatures. 

    If you squint hard enough, you could describe the hardening 
process of plaster of paris in this way;  calcium sulfate hemihydrate is 
the "filler", water is the "sintering aid", and room temperature is the 
"sintering temperature" at which the water dissolves into the plaster, 
forming calcium sulfate dihydrate as the solid solution, which then 
remains stable up to some 150°.  I suspect a similar dynamic is at play 
in the well-known use of boron donors as fluxes for soda-lime quartz 
glass, which I believe produces a borosilicate glass with a higher 
softening point than even the original soda-lime glass.  (Boria melts at 
only 450°, but laboratory borosilicate glasses like type-7740 Pyrex can 
be used up to 500°, soften around 820°, and finally melt at 1648°, a 
temperature at which neat boria vaporizes rapidly.) 

    If the sintering aid forms a eutectic with the filler, it need not even 
be lower-melting;  for example, a tiny amount of table salt can be 
used in this way to stick ice cubes together at temperatures between 
the melting points of the eutectic (-21.2°) and pure water ice (0°), 
even though salt's melting point is higher.  The eutectic water-salt 
solution is initially liquid at the interface between ice and salt crystals, 
but after several minutes the salt diffuses into the ice until no salt or 
eutectic is left.  So you can do this process at -20° and get a solid that 



is stable, though weak and creep-plagued, up to 0°. 

    A very large number of binary, ternary, and quaternary 
solid-solution systems can be coaxed to perform in this 
super-sintering way at the right temperature in the right proportions.  
(The need to control the ice–salt reaction described above to within 
±10.6°, i.e., ±3.9%, may be atypically demanding.) Moreover, their 
properties can be improved further by using the sinterable material 
itself as a binder for a different filler that is inert at the process 
temperatures;  for example, you could thus use salted ice as a binder 
for sawdust (pykrete), or brass as a binder for steel (whether in the 
form of powder, chopped fiber, hollow spheres, solid spheres, some 
other shape, or some combination). 

    This is classified as a "geometry" possibility, since the circularity 
involved is that of using, say, brass tools to give the desired geometry 
to a "brass clay", which are then fired in a brass furnace made from 
the same material, to produce finished brass parts. 

    Stick, flame, wire, or friction welding might be a plausible way to 
additively build up the parts of a stick, flame, wire, or friction welder;  
the only part of the welding apparatus that experiences welding 
temperatures is the filler metal and the workpieces.  As with EDM 
and ECM machines, parts of the welding machine need to be 
electrical insulators as well. 

    Earlier I mentioned that work hardening is not typically used as a 
way to harden metal so that it can cut or hammer out copies of itself, 
because the hardening process takes place during cutting or 
hammering.  This may be less of a concern for cyclic fabrication 
systems than for traditional production systems, because the objective 
is to maximize reproductive rate rather than tool life, but there's also 
another possibility:  bending and forming.  You could imagine, for 
example, folding fingers out of aluminum foil which were sufficiently 
stiff to grasp other aluminum foil and fold it into more fingers, or 
bending a wire into a tight coil that is then used as a tube to guide 
other similar wire to be similarly bent.  And of course you can clearly 
use wadded-up aluminum foil to make forms between which you 
press virgin foil.  In cases like these, where it is possible to bring many 
folds or coils of tool to bear on a single fold or coil of workpiece, 
work-hardening might be more practical — desirable, in fact, since 
work hardening is the negative-feedback mechanism that distributes 
the bending evenly along a curve instead of concentrating it at a kink, 
as happens when you try to bend a drinking straw. 

    (Aluminum foil in particular is an appealing raw material for 
experimentation because it's cheaply and easily available, ships 
pre-annealed, work-hardens readily, has good mechanical properties 
in the tempered state, and is typically of some 10 μm in thickness, 
with submicron roughness on one side.) 

    I mentioned foamed clay earlier, as well as carbon foam from bread.  
Foamed materials have a variety of potentially appealing properties 
for cyclic fabrication systems:  they tend to be much better thermal 
insulators than the fully-dense material, which helps make chambers 
capable of heating and cooling;  achieving a given stiffness with the 
foamed material requires much less mass, though more volume, than 
doing it with the fully-dense material;  and they have very appealing 



cutting properties.  Sintering clay or other materials causes them to 
shrink, and not perfectly uniformly, so it is common to grind sintered 
parts to precise dimensions after sintering.  Foaming greatly facilitates 
such cutting because the bubbles tend to arrest crack propagation and 
reduce the material's hardness.  The 25%-dense foamed pottery I 
made was soft enough to be carved with a fingernail, and it is 
common for people to cut foamed refractory silica-alumina firebricks 
with woodcutting tools.  Foams also tend to have a Poisson ratio close 
to 0, which is potentially helpful for dimensional precision.  Finally, 
foams tend to be much more flexible, even elastically, than the 
fully-dense materials they are made from, which can facilitate the use 
of flexures. 

    Polymer-derived ceramics are a very interesting possibility 
discussed in some detail in Pyrolysis 3-D printing (p.  238), which also 
mentions another "supersintering" alternative to the diffusion-based 
system mentioned earlier:  if the "sintering aid" responds to heat by 
pyrolyzing into a solid substance that is stable to higher temperatures, 
like the bread dough mentioned earlier, it will produce a solid object 
with geometry stable up to those higher temperatures.  Depending on 
the geometry and strength of the filler particles, the pyrolysis products 
need not even be particularly strong to produce a strong object. 

    I've previously written about using various kinds of chemical 
cements for 3-D printing, whether powder-bed or extrusion, focusing 
on those that can be activated relatively quickly, including things like 
double-metathesis reactions, pH-activated gelling agents, 
heat-induced solvent evaporation, and the precipitation induced by 
divalent cations in a number of aqueous ionic systems.  Almost any of 
these approaches, if workable, would provide a CFS. 

    For example, in "Likely-feasible non-flux-deposition powder-bed 
3-D printing processes" in Dercuano, I suggested selectively jetting 
water onto a powder bed consisting of 1.6 kg/l quartz sand, 170 g/l 
unfired-bentonite clumping cat litter, 270 g/l calcium chloride, and 
190 g/l diammonium phosphate, with the calcium chloride 
wet-mixed with the cat-litter bentonite, then the mixture dried and 
powdered, then dry-mixed with the other ingredients and thereafter 
protected from air;  perhaps adding a minority of wood flour, I 
suggested, would help with tensile strength.  This mixture was 
hypothesized to set up rock-solid immediately upon being moistened 
by precipitating calcium phosphate in the interstices of the bentonite.  
If such a mixture works and produces a strong solid, you could 
probably build the entire 3-D printing machine out of it.  (Except for 
the electronics, of course.  And perhaps a little sealant for the water 
pipes.) None of the ingredients or their processing would cause any 
difficulty to the cemented product, unlike the case with trying to 
grind steel with the same steel or cast brass into a mold made of the 
same brass. 

Metrology 

    The fundamental difficulty of metrology is to make finer 
measuring instruments.  With feedback and incremental refinement, 
it is easy to make geometry finer than our manufacturing processes:  
we alternate between measuring the geometry and refining it, thus 
approaching perfection to within the limits of our materials and 



measurement capability, however crude our tools may be.  Thus, for 
example, a patient worker with pine pitch, fine abrasive, two glass 
blanks, a razor blade, and a candle can grind a parabolic mirror to 
within a fraction of a wavelength of light. 

    However, making measurement instruments that can measure 
more finely than our existing measurement instruments can measure, 
that is a real difficulty.  There are many aspects to this difficulty!  To 
name a few axes, there is the kind of quantity being measured:  mass, 
length, volume, luminous intensity, time, angle, information, 
temperature, frequency, force, pressure, speed, density, voltage, 
electric current, energy, power, magnetic flux, magnetic flux density, 
electrical resistance, inductance, capacitance, area, stress, elasticity, 
tensile strength, compressive strength, roughness, viscosity, refractive 
index, specific heat, spectral radiance, pH, chemical concentration, 
magnetic permeability, electrical permittivity, etc.;  the measurement 
to a desired precision of an absolute standard, such as a given number 
of oscillations of a given spectral line, or the distance traveled by light 
in a given time;  the accurate subdivision of such an absolute standard 
or a standard derived from it;  the shielding, balancing, or cancelation 
of unwanted effects that disturb a given measurement;  the estimation 
of how successful such efforts have been;  and so on.
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Foil-marking glass
Kragen Javier Sitaker, 02020-08-18 (4 minutes)

    (Untested.) 

    Suppose you have a layer of aluminum foil or gold leaf on top of a 
piece of glass and you vaporize a pinhole in the metal with an arc.  
You can position the electrode that creates the arc to submicron 
precision, and by controlling the energy of the arc, you can vaporize a 
precisely controlled amount of the metal, creating a hole comparable 
to or slightly smaller than the thickness of the foil — household 
aluminum foil is about 10 μm, aluminized-mylar Doritos bags are 
about 1 μm, and gold leaf is about 0.1 μm.  Smaller controlled 
thicknesses may be feasible if deposited onto a substrate like boPET or 
polyimide, for example by vacuum coating. 

    Some of the vaporized metal will impact the glass, blowing air out 
of the way in the process, and condense there, thus locally depositing 
metal on the glass. 

    This provides a simple way to locally deposit a fairly precisely 
controlled amount of metal onto a substrate, insulating or conductive, 
with submicron positional control.  Aside from the potential utility of 
marking the surface of the glass or other substrate, by repeating the 
process layer by layer, you can manufacture arbitrary 
three-dimensional shapes from the metal with submicron precision, 
and much higher material deposition rates than are possible with 
electroforming. 

    Doing this with noble metals such as gold, platinum, or iridium 
should be possible even in air, but more reactive metals such as silver, 
copper, aluminum, and iron probably require an inert-gas 
atmosphere, or at least nitrogen.  Conductive oxides like those of lead 
or silver might permit the use of this process for simultaneous arc 
deposition and reduction in a reducing atmosphere such as acetylene, 
but hydrogen contamination of the resulting metal might reduce the 
utility of this approach. 

    Electric arcs can easily reach temperatures high enough to 
sublimate even carbon, so this process can deposit even very refractory 
metals like tungsten, molybdenum, or tantalum.  Moreover, by 
putting a little distance between the substrate and the feedstock, very 
thin films can be formed. 

    In most cases, though, minimizing the distance between the 
substrate and the feedstock would be desirable.  One way to achieve 
this is to cut channels at known locations into the surface of the 
substrate, say a one-millimeter grid of 100-micron-wide channels, and 
pull a light vacuum on those channels.  In that way the gas necessary 
to sustain the arc in the process as described above can be employed to 
eliminate the unwanted gap rather than sustaining it. 

    Under vacuum, instead of an arc, a high-power electron beam or 
focused ion beam could instead be used to locally vaporize the 
feedstock, as in e-beam etching and FIB milling.  This should permit 
nanometer resolution rather than the mere submicron resolution 
routinely attainable with mechanically positioned tooltips. 



    Of course, the localized heating of the glass substrate may also have 
effects, desirable or otherwise.  If they are desirable, the optimum 
“feedstock” may be a film of conducting graphene or graphite rather 
than a metal.  And, as Russ of Sarbar Multimedia points out, you can 
use a laser rather than an arc to heat the feedstock, and if the substrate 
is transparent, you can place the feedstock on the opposite side of the 
substrate so that the laser side of the feedstock is the one touching the 
substrate.
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Inductively-coupled plasma 
torches
Kragen Javier Sitaker, 02020-09-10 (5 minutes)

    An inductively coupled plasma torch could operate at atmospheric 
pressure without consumables.  An initial seed plasma is provided by a 
glow discharge, a short-lived conventional arc, or (if we permit 
consumables) a conventional oxidation flame;  then it is advected into 
the center of an induction coil, where inductively-coupled power 
transfer brings it to a high temperature and propagates it opposite 
from the advection direction to sustain it in a constant position.  In 
addition to conventional water cooling, the coil can be separated from 
the plasma by low-permittivity, non-ferrimagnetic, insulating 
refractory ceramics;  for example, magnesia, lime, silicon nitride, 
alumina, urania, thoria, or boron nitride;  the ceramic itself might be 
actively cooled as well.  (Refractories unusable due to high 
conductivity include graphite, amorphous carbon, silicon carbide, 
tantalum carbide, zirconia, and the diborides and nitrides of hafnium, 
titanium, and zirconium;  and silica is probably too low-melting, 
although fused quartz does have an attractively low TCE.) 

    The electrodeless plasma thruster article suggests further possible 
ways to initiate plasma formation, including electron guns and laser 
ionization, and I suppose in theory a sufficiently powerful ultrasound 
wave converging on a point ought to heat it enough to produce 
plasma too, as in sonoluminescence, but doing that without a liquid 
seems like it would be hard. 

    The problem remains of how to limit the damage to the ceramic 
walls from the plasma, since plasma-ceramic contact would surely 
ablate the surface fairly rapidly;  under uniform conditions the outer 
plasma will tend to shield the inner plasma from receiving 
inductively-coupled energy, so the natural tendency is for the plasma 
zone to grow.  Even under adverse applied magnetic field conditions, 
by establishing a gas-flow profile within the induction ring in which 
the flow near the walls is much faster than the flow in the center, it 
should be possible to adjust the induction power so that the plasma is 
self-sustaining only in the center, while being blown away faster than 
it can form around the outside.  (Of course, if the plasma were to 
reach the ceramic wall it would also be self-sustaining there, since in 
contact with the wall it would be stationary, but the plan is to avoid 
this.) 

    It might be possible to manipulate the magnetic field conditions 
instead of the gas flow conditions to keep the plasma away from the 
walls, for example by making the induction coil smaller than, and 
axially displaced from, the ceramic aperture.  I think this would imply 
that the field would get stronger axially into the torch body, creating 
a strong tendency for the plasma to propagate into unprotected areas 
of the torch, but this could be countered by a stronger negative 
advection divergence:  all the gas closer to the induction coil would be 
moving too quickly for the plasma to spread into it.  I’m not sure if 
this is feasible. 

https://en.wikipedia.org/wiki/Electrodeless_plasma_thruster


    In this scenario there is still radiative transfer of heat from the 
plasma to the ceramic walls, but this can easily be kept low enough to 
avoid wear to the ceramic.  If an arc between conventional graphite 
electrodes is used to initially ignite the plasma, the electrodes will 
erode somewhat, but if we’re talking about one spark every 20 
minutes of use or something like that, it should be easy to make the 
electrodes big enough to last the life of the rest of the torch. 

    Such a plasma is of course easier to sustain in gases like argon or at 
lower pressures, but air plasma has the great advantage of not 
requiring any consumables, just an air compressor. 

    Probably the frequency required to efficiently couple into the 
plasma would be on the order of a megahertz for 
human-hand-tool-sized torches, hundreds of kilohertz for larger 
torches, and several megahertz for smaller ones. 

    The torch might require active electronic control at submillisecond 
timescales to stabilize the plasma and keep it from either blowing out 
or flashing back.  Both the complex impedance of the induction coil 
and the blackbody radiative flux from the hot plasma could provide 
crucial feedback information. 

    Operating such a torch in a pulsed mode might be feasible and 
simplify the process further:  the induced current in the plasma tends 
to Z-pinch it into a toroidal plasmoid while repelling it from the 
induction coils, and hence from the torch.  Sakharov reportedly took 
this to the logical extreme by vaporizing a small aluminum ring with 
eddy currents into a self-contained plasmoid traveling at 100 km/s, 
powered by an EPFCG.
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Oxygen generator rocket
Kragen Javier Sitaker, 02020-09-10 (1 minute)

    Could a rocket use chemical absorption of oxygen and hydrogen 
into some other chemical to provide storable non-cryogenic fuel for 
an engine with the attractive 450-to-528-second specific impulse of 
LH₂/LOx engines? 

    Obviously if you allow water the answer is “yes”, but then an 
unattractively large amount of energy is taken up in “releasing” your 
“fuel” from its “storage”.  Like, several times more than your engine 
yields.  This might be okay under some circumstances but probably 
not the ones where people want to use chemical rockets, like escaping 
a gravity well. 

    The problem with other forms of fuel storage is that they leave 
storage mass behind that is comparable to the mass of the fuel itself, 
which is a nonstarter when you need ratios like 100:1 just to hit orbit. 

    Maybe, though, you could grind up this “ash” and either dump it 
out or, especially early in the process when you want more thrust and 
less velocity, mix it into the reaction mass.  I don’t think that saves the 
idea.
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Penalized bits
Kragen Javier Sitaker, 02020-09-10 (3 minutes)

    In topology optimization, you typically design a structure for 
maximum rigidity by beginning with a block of fog and then using 
gradient descent to minimize a penalty function which has a few 
different terms:  one for the structural property of interest (such as 
rigidity under a given load), one for regularization of the problem to 
rule out physically-unrealizable checkerboard solutions full of 
discontinuities, and a third fog-penalty term which forces the 
elements toward 100% density and 0% density and away from 50% 
density, again preferring physically-realizable models. 

    What if you apply the same approach to bits?  Suppose, for 
example, that you want to find the representation of an integer n in 
binary.  You could start with 32 real numbers initially set to 0.5, then 
use gradient descent or something to optimize |2⁰v₀ + 2¹v₁ + 2²v₂ + ...  
+ 2³¹v₃₁ - n|² + αΣᵢvᵢ²(1-vᵢ)², for example.  This function’s only zero 
(for real vᵢ and positive α) should be the correct binary representation 
of the number.  At all other points it takes on strictly positive values, 
and it’s differentiable everywhere.  Moreover, although I haven’t 
looked, I think it’s convex, so its only local minimum is the global 
minimum.  So it should be tractable for gradient descent.  Certainly 
gradient descent with random restarts should always solve it, though 
if the random restarts are actually required then maybe it would take 
an exponentially large time for such problems.  Genetic algorithms 
should have no trouble solving it in a reasonable amount of time. 

    Now, although it’s I hope at least highly plausible that the above 
approach will work for such a simple problem, think about more 
interesting Boolean functions.  For example, given a binary 
multiplication algorithm, the above approach can probably do 
division, or, more interestingly, a square root.  Can it do LDPC 
decoding?  How about inverting other less tractable functions on 
bitvectors, like a round of SHA-256?  If you write down some inputs 
and outputs of a branch-free block of instructions for some CPU, and 
express the execution of a few arbitrary instructions as a similar 
Boolean function of those instructions’ bits, can it do 
superoptimization? 

    Purely agnostic approaches like this — perhaps we should say 
“knowledge-free” or “ignorant”, or “assumption-free” if we want to 
use a euphemism — will surely be inefficient for many problems, even 
if they can solve them at all.  Suppose we train a neural network on 
the distribution of plausible solutions, as explored by Lunz, Öktem, 
and Schoenlieb for inverse imaging problems:  as we apply ad-hoc 
penalties in topological optimization to solutions containing fog and 
singularities, we can train various kinds of neural networks to 
recognize the structure of plausible solutions, using them to penalize 
unlikely solutions, such as superoptimized code containing invalid 
instructions.  This way our search can probably converge much more 
quickly than a purely ignorant search that doesn’t know a 
multiplication from a superoptimization.
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Phosphate precipitation
Kragen Javier Sitaker, 02020-09-10 (12 minutes)

    I finally started trying out the recipe I’d come up with in Dercuano 
for a kind of instant 3-D printing cement based on the precipitation of 
water-soluble phosphate by pretty much any polyvalent cation.  (See 
“Likely-feasible non-flux-deposition powder-bed 3-D printing 
processes”.) 

Initial experiences 

    So I bought 2 kg of calcium chloride desiccant (AR$778, US$5.72, 
US$2.86/kg) and 2 kg of diammonium phosphate fertilizer (AR$850, 
but AR$470 of that was delivery;  the marginal cost of the fertilizer is 
AR$190/kg, US$1.40/kg). 

    The first observation is that this fertilizer is not pure diammonium 
phosphate.  The individual prills have substantial variation in color, 
and they do not dissolve fully in water, even at boiling.  A slight 
ammonia smell evolves on boiling the water, and is absent from the 
bags of fertilizer.  Filtering the liquid through a coffee filter produces 
a transparent brown syrupy liquid, leaving most or all of the solids 
behind (I’m doing this in cut-up aluminum cans, which are not as 
good as glassware for seeing small amounts of cloudiness). 

    This phosphate liquid fails to dry even upon being sealed in a 
room-temperature drying chamber sharing air with the calcium 
chloride for several days.  (The chamber is Saran Wrap over the top of 
a cut-off can, so it may be leaky, but I don’t see any deliquescence on 
the calcium chloride, so it’s at least not very leaky.) 

    The phosphate liquid instantly produces a thick white suspension of 
a fine precipitate upon being poured into a solution of the calcium 
chloride.  Presumably this is some kind of calcium phosphate, along 
with whatever fluoride may have been present as a contaminant. 

    After filtering through another coffee filter, it has the mouthfeel of 
pure clay, making my teeth slide against one another with quite a bit 
of difficulty, but no grittiness, demonstrating that there are no crystals 
above the micron scale.  The taste is also slightly bitter and salty, so I 
probably didn’t wash the filtrate enough.  To the touch of the hand, 
the suspension resembles a thin kaolin slip.  It dries on the skin to a 
powder resembling rock-climbing chalk. 

    The calcium chloride seems relatively pure:  it is plain white, 
dissolves completely in water, and its only smell is a faint whiff of 
quicklime.  Left in open air for a few days with a drop or two of 
water, it gradually begins to deliquesce, producing a liquid that feels 
“oily” because it’s not evaporating.  Nevertheless, it is not a 
food-grade chemical either, and it’s labeled “for industrial use only”, 
so I shouldn’t have tasted it. 

    I also added some of the phosphate solution to an aqueous solution 
of some magnesium chloride I had lying around, which also produced 
an immediate precipitate of, presumably, trimagnesium phosphate, 
dimagnesium phosphate, magnesium ammonium phosphate, or a 
mixture.  This precipitate was slightly brown in color and settled out 



fairly quickly, while the calcium precipitate did not visibly settle out 
at all over the minutes before I filtered it.  Presumably both of these 
differences owe to the crystals being larger or rounder than the 
calcium precipitate.  The magnesium precipitate tastes the same as the 
calcium precipitate. 

    Upon drying, the calcium precipitate has a consistency somewhat 
like dried mud;  I can pick up pieces of it with my fingers and break 
them apart with my finger relatively easily.  However, rubbing it 
between two fingers breaks it into a white powder too fine to have 
any gritty feel, rather like cornstarch.  So it seems that the ammonium 
chloride (or whatever) that is binding together the crystals of apatite 
(or whatever) isn’t able to hold them in clumps of more than a micron 
or so in size;  it might in fact just be van der Waals forces between the 
apatite crystals. 

    After a couple of days of room-temperature air-drying, in the 
calcium precipitate one crystal large enough to glint in sunlight can be 
seen from the proper angle, but the rest of the powder still appears as 
a matte-white, purely Lambertian surface.  Some 10% contraction on 
drying is evident. 

    I have not managed to acquire clay yet, but it occurs to me that this 
calcium phosphate powder (if that is what it is) is probably an 
adequate alternative and may be a superior one.  The grain size is 
about the same as that of clay, the expansion upon absorbing water is 
probably smaller than clay’s and perhaps insignificant, the crystal habit 
can be made to be needlelike or (like clay) platy, the price is only a 
little higher, and the aspect ratio of the grains should be only a little 
worse.  Where it might be superior is that the apatite cement I 
propose to selectively deposit can clearly bond well to these grains, 
while its ability to bond to grains of clay remains a significant 
unknown.  Also, the lower expansivity might enable it to produce a 
higher-density final composite material. 

Gargouri et al.’s purification 

    A 2011 paper from Gargouri et al., “Synthesis and Physicochemical 
Characterization of Pure Diammonium Phosphate from Industrial 
Fertilizer”, explains that in Tunisia the “diammonium phosphate” 
industrial fertilizer is only 75% diammonium phosphate, the 
remainder including “Co, Cu, Fe, Mn, Mo, Ni, Zn, F, As, Al, Hg, Pb 
and Cd”.  They report getting their cheap industrial DAP almost as 
pure as the laboratory DAP they bought from Fisher, simply by 
recrystallizing it with 70% water and 30% alcohol, decoloring with 
charcoal.  They report these results: 

| ppm                                      |   Fe |   Al |   Mg | Ag | As |   Co 
| Pb | Hg |  Si | Sn  | Ti |  Cr |   Zn | Cd | Cu | Ni | Mn |    V |

| plant DAP                                | 6769 | 4273 | 4907 | 6  | 26 | 5419 
| 22 | 3  | 150 | 382 | 93 | 525 | 1203 | 34 | 59 | 25 | 65 | 1341 |

| plant DAP recrystallized (water-alcohol) |   24 |   37 |   14 | -  |  3 |    3 
|  7 | -  |  70 | -   |  2 |  27 |   41 |  3 |  4 | 17 |  1 |   47 |



| commercial DAP (Fisher)                  |   15 |   22 |    9 | -  |  3 |    2 
|  7 | -  |  38 | -   |  - |  25 |   11 |  3 |  2 | 17 |  - |    9 |
 

    This amounts to a reduction from 2.5% of these impurities down to 
0.3%.  2.5% is a lot less than 25%, and I’m not sure what happened to 
the other 22.5%;  it might be impurities they also removed but didn’t 
measure, such as O (for example in OH or SiO₂), Ca, and F.  Their 
analysis of the P and N content before and after their purification 
(46% and 17.7% before, 49% and 18% after) does not support the 
possibility that 25% of the original material was made of 
non-ammonium, non-phosphate components.  However, some of the 
“25% of impurities by weight” they cite might have been compounds 
like ammonium fluoride and magnesium phosphate.  Or maybe it was 
just a typographical error where they were missing a decimal point. 

    I should see if filtering with charcoal reduces the brown color.  
Also, especially if I can get vacuum filtration set up, recrystallization 
as per the standard procedure would eliminate impurities that are still 
soluble in the solution after cooling.  Greg Sittler suggested a 
water-driven venturi as a vacuum pump. 

    Another approach is to make the solution basic, which will 
precipitate hydroxides of (among other things) iron, nickel, copper, 
and cadmium, but not ammonium or phosphate: 
g.  All hydroxides are insoluble except those of the alkali metals.  ...  Ammonium 
hydroxide does not exist.  

    The usual way to do this is with lye, but I don’t have access to lye;  
however, household ammonia solution should also work.  Also, 
sodium carbonate or sodium bicarbonate, which I do have, would 
precipitate the transition metals (“e.  All carbonates, sulfites, and 
phosphates are insoluble except those of sodium, potassium, and 
ammonium”), but by the same token you would think those would 
be precipitated already in a phosphate-rich environment.  (Iron(III) 
phosphate, ferric orthophosphate, is slightly soluble in water, but 
probably not enough to give the brown color.) So maybe I should try 
it and see what happens but not expect success. 

Other notes on next steps 

    Previously I’d written that you’d want to get the ammonium 
chloride out of the finished piece by leaching it out with water.  But 
ammonium chloride evidently dissociates and “sublimes” at 337.6°;  
initially I thought the mix of corrosive gases it produced would be 
something I wouldn’t want around, but apparently the gas on cooling 
re-neutralizes to ammonium chloride rather than going around 
corroding solid objects it encounters, so that might actually be a 
reasonable way to remove the side product. 

    I guess the immediate next step is to dissolve some calcium chloride 
in water and soak a little sand, a little of the supposed calcium 
phosphate powder, and a little of a mixture of both with it, then let it 
dry.  Actually ideally I would do this with both calcium chloride and 
what I suppose to be DAP in order to see what the resulting 
substances are like, since I suspect that calcium chloride in between 
the grains of filler will work better than the other way around because 
it will favor needlelike nanocrystals.  But that might turn out to be 
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wrong. 

    A further thing to try might be to use different pH levels.  I have 
household ammonia to alkalinize the mix pretty thoroughly, but like 
the ancient alchemists, no strong acids. 

Witch-burnings, thoughtcrime, and Inquisitions:  how 
to avoid torch-wielding peasants 

    As always with scholarship, there is danger from the thoughtless 
prejudice of the ignorant, which so often has turned into violence, as 
in the cases of Giordano Bruno, Aaron Swartz, Alan Turing, the 
Maya codices, and Qin Shi Huang’s burying of the scholars. 

    Ammonium chloride is on the national list of “controlled chemical 
substances” which unauthorized people are not allowed to have or 
make;  but, then again, so are everyday products like aqueous 
ammonia solution, lye, acetic acid, ethanol, isopropanol, methyl ethyl 
ketone (the solvent in dry-erase markers), quicklime, slaked lime 
(whitewash), acetone, ethyl acetate (nail polish remover), red 
phosphorus (as found on matchboxes), nitromethane, sodium 
carbonate, sodium bicarbonate, and kerosene.  Phosphorus, 
hydrochloric and sulfuric acids, toluene, dichloromethane, and 
acetone are even in “list 1” along with actual drugs I won’t mention 
here.  Ammonium chloride is in “list 3” along with ethanol, 
isopropanol, sodium sulfate, and kerosene. 

    The definition of “product” is something of 30% purity or better of 
(the total of) substances from lists 1 or 2 P/V (which I suspect means 
“per volume”), or 20% purity or better of hydrochloric acid or 
aqueous ammonia;  except that if it’s impossible to separate the 
substances by physical means, higher concentrations may be approved 
on a case-by-case basis.  Perhaps this is the reason I can buy vinegar at 
the grocery store, lye at the hardware store, and nail polish remover at 
the pharmacy, even though they are all in list 2:  they are dilute. 

    Notably absent are sulfates (of anything but sodium), sulfur 
trioxide, sodium percarbonate, phosphoric acid, nitric acid, and 
nitrates (though sodium nitrite is included in list 3). 

    So, I think as long as I stay away from acetone and hydrochloric 
and sulfuric acids, I shouldn’t run into any pitchfork-wielding 
peasants.
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Notable quotes from Steinmetz’s 
1892 hysteresis paper
Kragen Javier Sitaker, 02020-09-10 (2 minutes)

    I was reading Steinmetz's 1892 paper about hysteresis, and I was 
struck by the readability and elegance of the prose used by learned 
societies at the time, next to which most modern academic writing 
feels leaden: 
The subject that we have to-night before us, and which you will find so ably dealt 
with by Mr. Steinmetz, relates to that phenomenon of molecular friction, which 
Mr. Ewing has denominated "hysteresis." Mr. Ewing, as we all know, has made the 
subject so peculiarly his own, that one might at first suppose there was nothing new 
to be known about it;  but I am confident that after this paper is read, those of us 
who read it with Mr. Steinmetz will find that there is something new under the 
sun.  We will now hear Mr. Steinmetz's paper.  

    This was at the beginning of 1892;  in 1891 he had published 
"Elementary Geometric Theory of the Alternate-Current 
Transformer" in Electrical Engineer, volume (?) 11, 1891, "627ff.  on p. 
627;  12 (1891):  12ff." He also published things in German starting in 
1890:  "Das Transformatorenproblem in elementargeometrischer 
Behandlungsweise", ETZ, 11 (1890):  185-186, 205-206, 225-227, 
233-234, 345-348, and in 1891, "Anwendung des Polardiagrams der 
Wechselstrom für inductive Widerstände", ETZ, 12 (1891):  394-396, 
405-407. 

    Here, in the Q&A, he tries to set that jackass Pupin straight about 
some mistakes Pupin was making: 
On the other hand, to make the current considerable only for a moment, while 
immediately before and after it is small, either the induced E.  M.  F.  must 
suddenly decrease enormously, and the next moment increase just as suddenly --- 
which is impossible, because it is the differential quotient of magnetism --- or the 
primary E.  M.  F.  had to rise and decrease again very suddenly, and such a sudden 
rise, and immediately afterwards decrease of primary impressed E.  M.  F., not only 
is an electro dynamic alternator unable to produce, but no electric circuit would 
permit a current of such enormously large value and short duration to pass. 
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The programmable world
Kragen Javier Sitaker, 02020-09-10 (0 minutes)

    Moore's Law has come to its end.  The astounding exponential 
progress in micro- and nanofabrication of electronics that has 
characterized the Transistor Age, since Engelbart first observed it in 
01959, has leveled off;  CMOS clock speeds have remained frozen at 
0.5–4 GHz since 02005, and  

    We are seeing a  

    pictures under glass 

    3-d printing 

    dynamicland 

    microcontrollers 

    optimization 

    experimentation 

    security and privacy
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Smart plumbing
Kragen Javier Sitaker, 02020-09-10 (updated 02020-09-12) 
(11 minutes)

    Home device networking, sometimes called home automation, is 
elusive, despite predictions of “home computers” going back to at 
least Gordon Moore’s “Cramming” article in 1965, and Ray 
Bradbury’s speculation in his 1950 story “There Will Come Soft 
Rains”.  X-10 powerline signaling was developed in 1975 and on sale 
in Radio Shack and Sears in 1978;  it was affordable by the late 1980s.  
Despite this, home device networking mostly remains a novelty, very 
unlike, for example, networking and automation in industrial 
manufacturing.  Automation has crept into the dwellings of the 
humans mostly in non-networked forms:  toilet tank float valves;  
washing machines;  dishwashers;  thermostats on the air conditioner, 
furnace, and hot water heater;  timers on lights;  shuffle on the CD 
player.  Now in 2020 home illumination is beginning to be automated 
in earnest, with multiple competing brands of color-changing LED 
lightbulbs being used by criminals to launch distributed denial of 
service attacks. 

    Still, though, the majority of the house remains stubbornly 
unmechanized.  In my view, this is largely the fruit of twelve 
millennia of building houses to remain habitable despite being entirely 
passive. 

Water 

    This leads to some drawbacks.  Consider how smart plumbing 
might work.  A small pressurized tank under your sink provides 
immediate availability of high-volume water at whatever pressure 
you choose;  the tank refills at leisure by requesting water from 
upstream, which can come by way of a trickle sized for average flow 
rather than maximum flow.  A shower, for example, might use 15 
liters per minute (250 ml/s) for half an hour per day, for an average of 
5 ml/s, 50 times less. 

    This trickle could travel through a tiny pipe the size of a coffee 
stirrer, but alternatives include miniature aqueducts, greenhouse 
groundwater filtered through sand, a tiny fountain trickling down the 
bathroom wall, and a mobile broom-shaped robot with a bucket.  
None of these are prone to the catastrophic failure modes that 
characterize traditional high-pressure in-wall water pipes, such as 
flooding your basement and destroying everything stored there, 
Fantasia aside. 

Thermal and humidity control 

    Michael Reynolds’s Earthships are designed to permit passive 
climate control by way of a thermosiphon-driven seasonal thermal 
store consisting of an earth berm somewhat larger than the house 
itself with cooling pipes running through it.  The greenhouse section 
of the house, with near 100% glazing and facing the equator, is heated 
by the sun.  To heat the house’s living spaces, the cooling tubes are 



closed and the doors to the greenhouse are opened, permitting natural 
convection to carry the heat into them;  to cool the living spaces, the 
cooling tubes and the greenhouse’s skylight are opened, so that natural 
convection carries hot air out of the greenhouse, which is replaced by 
air that passes through the cooling tubes into the living spaces, from 
which it passes into the greenhouse with difficulty past the closed 
doors. 

    Reynolds and typical hippieish Earthship buyers see the manual 
opening and closing of the skylight and cooling tubes as an extra 
benefit:  it keeps the residents in touch with the natural climate, and 
because of the large thermal mass of the walls, floor, and roof of the 
living spaces, it’s rarely needed even for comfort, and never for simple 
safety.  But more sophisticated redundant thermal homeostasis 
systems, trading off different candidate thermal stores based on 
remaining reserves and predictions of future weather, could probably 
do the same job without all the expensive earthmoving. 

    For example, when plenty of energy is stored in the house’s 
batteries due to recent sun, or especially when they are already full 
and the sun is still shining, it might be essentially free to run a 
vapor-compression or ammonia-absorption heat pump to top up 
thermal-mass or phase-change reserves of either heat, cold, or both, 
or to directly heat or cool the living spaces.  When heating the living 
space, the cold from the heat pump’s evaporator (or corresponding 
part) might be more efficiently stored in a cold thermal reservoir 
instead of vented to the outside air. 

    Cold reservoirs above the house and hot reservoirs below it permit 
the natural convection of air through butterfly valves like those in a 
car’s throttle, which consume energy only when their setting is being 
changed;  this permits not only manual system operation in the case of 
a power failure but also fail-safe measures where, if nobody is home, a 
default thermal coupling to the reservoirs keeps expected temperature 
swings within safe limits.  Such reservoirs can in many cases do double 
duty as drinking-water cisterns. 

    When the reservoirs run low, or an inability to replenish them for a 
long time is predicted, such active heat pumping can also reduce the 
drain on their thermal stores for future use.  Also, house ventilation to 
the outside through countercurrent or regenerative heat exchangers, 
which costs some heat or cool as well as humidity control, can be 
diminished in exchange for increased use of forced-air HEPA 
filters — a measure also warranted when outdoor air quality is poor, 
for example during the acoughalyptic wildfires ravaging California 
and Washington as I write this. 

    And, of course, when trying to keep the indoor temperature from 
rising, lowering equatorial-facing awnings to shade windows, and 
raising polar-facing awnings to unshade them, is another possible 
alternative, which must be traded off against reduced garden growth 
and glossy LCD visibility, on the bright side, and reduced 
illumination and increased human depression, on the dark side.  This 
is also sensitive to time of day:  east is “equatorial” in the morning, 
“polar” in the afternoon, and west vice versa, while both are super 
“polar” at night. 

    Another tradeoff that can be made is the evaporation of collected 



rainwater in rooftop tanks to reject stored heat, especially at night, 
with a fan, or when it’s windy;  or the heating of water in passive solar 
collectors to acquire stored heat.  Such passive solar collectors can do 
double duty as awnings;  such evaporation tanks can do double duty as 
swimming pools.  A cooling tower, indoors or outdoors, is also a fun 
place for kids to play in the spray on a hot day. 

    Different kinds of thermal stores may require different quantities of 
resources and have different “self-discharge rates” as well as different 
impulse responses.  Water at 0° represents a cool resource of some 
100kJ/kg when the objective temperature is 23°, and can be stored in 
a pit lined with geomembrane, possibly surrounded and topped with 
some kind of insulation.  Ice at 0° represents an additional cool 
resource of another 333kJ/kg when the objective temperature is 
anything above 0°, so you can quadruple the density of your storage if 
you can reach a temperature below 0°.  A bunch of thin coolant pipes 
running through a trench in a yard, a few centimeters apart, can heat 
and cool the soil in a cylinder a few centimeters around them as a 
daily thermal store;  but if they are instead a couple of meters apart 
and deep, they can also heat and cool the soil a few meters around 
them as a seasonal thermal store.  These stores can be orders of 
magnitude larger than water tanks of the same cost, but their available 
heat flux is lower. 

    Other phase-change materials that could be useful in this context 
include Glauber’s salt — sodium sulfate decahydrate, which melts at 
32°, yielding 252 kJ/kg — and a eutectic of NaCl and Glauber’s salt, 
which melts at 18°, yielding 286 kJ/kg.  Glauber’s salt can provide a 
very compact high-temperature reservoir, while the eutectic with 
sodium chloride can provide a low-temperature reservoir which, 
though it provides less heat capacity than water, can be operated at a 
much more convenient temperature.  Glauber’s salt costs some 
US$0.05/kg, some fifty times as much as water, but a 10-megajoule 
heat or cool reservoir — roughly a person-day with perfect 
insulation — adds some US$2 to the materials cost. 

    For cooking or hot-water heating, it may be worthwhile to use a 
higher-temperature thermal store than Glauber’s salt can 
provide — for example, a pebble bed of stones or ceramic beads over 
which air is passed, or a phase-change reservoir of sulfur that melts at 
115° yielding 54 kJ/kg, or of the famous “solar salt”, a eutectic that 
melts at 220°. 

    Even simple conversion of battery energy into heat may have a 
role;  the wattage of the active heat pump will inevitably be limited, 
perhaps to a kilowatt or so, but there is no need for such a limit on 
resistive heating.  I bought a 600-watt nichrome resistor for boiling 
water a few weeks ago for US$1, complete with shitty power cable 
and shitty plastic protective cage and ceramic form. 

    So the climate control system, responding to human commands, 
has many available tradeoffs.  Among others, it can spend water to get 
cool;  spend battery to get cool, heat, or both;  spend battery to 
generate light;  spend light to get cool;  spend water and air dryness to 
get cool, or spend heat and water to raise air humidity;  spend battery 
to get air purification;  spend heat or cool, depending on the outdoor 
temperature and pollution level, and possibly air humidity or dryness, 



to get air purification;  and spend cool to generate light and garden 
growth.  (This is not counting the small amount of battery needed to 
pump air and water around and operate valves.) 

    By using active control of these tradeoffs with cybernetics, optimal 
control theory, Bayesian modeling of future climate, and 
Black–Scholes option theory, it should be possible to achieve 
Earthship-like comfort and security without the orders-of-magnitude 
overprovisioning that makes the Earthship design so expensive.
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Inorganic burnout
Kragen Javier Sitaker, 02020-09-11 (updated 02020-09-12) 
(18 minutes)

    Foamed pottery, as described in Cyclic Fabrication System (p.  256)
, is a broadly useful product, easily improving the properties of 
fired-clay ceramics for a number of uses.  However, in its usual form, 
not only does it make a terrible smell;  it also requires organic 
materials as an input, actually in larger volume than the clay;  it 
requires oxygen to react with the materials;  and it requires a fairly 
high temperature, at a bare minimum 250° but typically more like 
800°.  These requirements are not always desirable or feasible. 

    There are other uses for solids that can be thus "burned out" 
without disturbing surrounding materials;  they can be used as support 
material for initially unsupported things, for example during assembly 
or 3-D printing, and investment casting and other lost-wax casting 
relies on burning out the wax from the mold.  Similarly, in lost-foam 
casting, the foam pattern is burned out of the mold by the hot metal 
being cast. 

    So what kinds of "support materials" would make good candidates 
for such processes? 

Evaporants for burnout 

    If you need to do your burnout at low temperatures, carbon 
dioxide sublimes at -79° and is very cheap and pretty inert.  A 
number of other common compounds are solid at accessible 
temperatures below room temperature and are then easily evaporated, 
such as ammonia (-78°, boiling at -33°), sulfur dioxide (-72°, boiling 
at -10°), the highly toxic cyanogen (-28°, boiling at -21°), and water 
(0°).  However, I can't think of any such compounds that don't melt 
first at atmospheric pressure or are totally nonpolar like CO₂;  
nonpolar compounds mostly tend to have a pretty wide liquid range, 
which is annoying here.  At even lower temperatures the toxic, 
inflammable CS₂, may be an option, melting at -112°, but it doesn't 
boil until 46°!  It's famous for dissolving insoluble things like 
cellulose, phosphorus, rubber, sulfur, and asphalt. 

    But at higher temperatures there are a number of inorganic and 
mostly-inorganic compounds that are easy to vaporize or thermally 
decompose into gases, which can perhaps then escape (through pores 
in the mass you want to remove them from, if they're embedded 
within it, as in the case of investment casting).  Sometimes these gases 
are reactive, toxic, or both, especially at high temperatures;  for 
example, table salt (NaCl) melts at 801°, boils at 1465°, and starts 
evaporating rapidly at much lower temperatures of 1100°–1200°, a 
property used in preparing fired-clay pottery — but the resulting 
sodium gas is highly reactive!  Catalyzed by steam, it reacts with the 
surface of both the pottery and the kiln (or saggar) to produce a 
sodium silicate glaze, the desired result. 

    Even before the burnout, it's possible for solid support materials to 
react, especially if the material they're supporting is fully or partly 

https://en.wikipedia.org/wiki/Carbon_disulfide


liquid, as is the case with pottery clay bodies, for example, which are 
colloids plasticized with water.  For example, dinitrogen pentoxide is 
a crystalline solid which melts at 41° into a liquid which boils at 47°, 
so it might seem like a reasonable candidate;  but it reacts violently 
with water to form nitric acid, which can oxidize a wide range of 
materials to nitrates, so it will not work in systems where water may 
be present. 

    So with this burnout process, questions of support-material 
compatibility arise, especially at higher temperatures, as well as 
human and environmental safety if the process is being done near 
humans or within Spaceship Earth or another spaceship. 

Candidate high-temperature evaporants 

    Formamide is organic but only one-fourth carbon;  it melts at 2° 
and at 180° decomposes to mostly carbon monoxide and water.  If 
overheated or catalyzed by acids it produces HCN.  Formamide is 
miscible with water and so nontoxic that it's used as a cryoprotectant 
for vitrification, but it is also teratogenic. 

    Hyponitrous acid is an inorganic solid, if a dangerously unstable 
one, which spontaneously decomposes to nitrous acid and water over 
weeks at room temperature.  I'm not clear on whether this 
decomposition takes place in solid form or not, or what its boiling 
point is. 

    Ammonium nitrite also slowly decomposes to water and nitrogen 
even at room temperature;  perhaps it is stable at some lower 
temperature, but usually it is stabilized instead by an alkaline aqueous 
solution.  However, it, too, is dangerously unstable under many 
circumstances. 

    Hydroxylamine itself, used as a photographic developer, might be a 
reasonable candidate:  it's an inorganic solid, melting at 33° and 
decomposing at 58°, but unstable in a poorly-understood way.  Still, 
its flashpoint isn't until 129°, and its oral LD₅₀ is around 400 mg/kg, 
which sounds considerably more innocent than most of the amines 
mentioned below. 

    Pyrosulfuric acid melts at 36° but may not be a good idea, being 
strong enough to protonate sulfuric acid.  Moreover, I'm pretty sure that 
when it decomposes from heating, it decomposes into SO₃ and 
sulfuric acid. 

    Dinitrogen pentoxide melts at 41° and boils at 47°.  It's a strong 
oxidizer and a strong acid, of course, but much less horrifying than 
the more common nitrogen oxides, which it will produce in 
ultraviolet light.  Eventually it decomposes to nitrogen dioxide and 
oxygen even at room temperature, though. 

    Ammonium bicarbonate decomposes into ammonia, water, and 
carbon dioxide at 42° and is widely thus as a leavening agent for 
cookies and crackers, as well as an acidity regulator, fertilizer, and fire 
extinguishing agent.  Decomposition is already rapid at 36°.  It's an 
irritant that can cause lung damage. 

    Caro's acid melts at 45° but is probably contraindicated, being 
dangerously unstable itself and "one of the strongest oxidizers 
known". 
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    NH₃OHNO₃ is another inorganic solid;  it melts at 48° and 
decomposes somewhere in the 200°–300° range, but it is also very 
toxic and, except in aqueous solution, dangerously unstable. 

    Cyanogen bromide, a common organic synthesis reagent, is an 
inorganic solid which cleaves peptide bonds and reacts with water to 
produce HCN and HOBr.  It also has a tendency to produce cyanide 
while in storage.  It melts around 50° and then boils around 61°.  
Unlike almost every other material on this list, it contains no oxygen, 
but it does contain carbon. 

    Ammonium carbonate decomposes into ammonia and carbon 
dioxide at 58° and is used like ammonia bicarbonate for leavening, 
often in a mixture, as well as an emetic and photographic lens cleaner. 

    Ammonium carbamate occurs with the carbonate and bicarbonate, 
with which it is used as leavening (and with which it spontaneously 
interconverts), and it decomposes at 60°, also to ammonia and carbon 
dioxide. 

    Marshall's acid is similar to Caro's acid but instead decomposes 
without melting at 65° and, I think, isn't itself dangerously unstable, 
as long as you keep it far away from any organics.  I imagine that it 
decomposes into mostly SO₃, though. 

    Ammonium sulfite, used as a food additive, a photographic fixer, 
and a safer alternative to lye for straightening hair, also decomposes at 
65°, into "sulfur dioxide and oxides of nitrogen".  It's also used to 
make blast-furnace refractory-lining bricks;  US patent 2,724,887 
from 1955 explains that in aqueous solution it works as a source of a 
sulfite ion which oxidizes to sulfate and somehow prevents iron-oxide 
contamination in the bricks from causing them to disintegrate under 
blast-furnace conditions.  (Mysteriously, though, he forgot to patent 
this, patenting only the use of lithium chloride for the same purpose.) 

    Ammonium oxalate is organic but only about 20% carbon;  it melts 
or possibly decomposes at 70° and presumably decomposes at a higher 
temperature, below about 130°, I think.  It's so nontoxic that it's 
found in kidney stones and is used as an anticoagulant for blood 
transfusions.  However, the decomposition products include, at first, 
oxamide, and later hydrogen cyanide. 

    In Project Pluto a similar purpose in assembling a hot reactor was 
answered with naphthalene mothballs, which melts at 80° and boils at 
216°, requiring no oxygen.  They also sublime pretty rapidly at room 
temperature, typically millimeters per month (or, in SI units, 
hundreds of picometers per second.) But mothballs are still organic. 

    NH₄ClO3 decomposes at 102° to nitrogen, chlorine, and oxygen, 
but is dangerously unstable;  Wikipedia says, "Even solutions are 
known to be unstable ...  it should only be kept in solution when 
needed, and never be allowed to crystallize." Ammonium chlorite and 
hypochlorite are even worse. 

    Ammonium acetate is organic but only about one-third carbon;  it 
melts at 113°, boils at 117°, and decomposes to liquid acetamide and 
water at 165°.  Acetamide is acutely nontoxic but possibly 
carcinogenic, and doesn't decompose until 221°.  Ammonium acetate 
is deliquescent and sufficiently nontoxic to be used as a diuretic, a 
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biodegradable de-icer, and a food additive for buffering pH.  
Crystallizing it from a water solution is difficult. 

    Just plain crystalline sulfur melts at 115°.  In air it will burn 
enthusiastically shortly thereafter (its flashpoint is 160°, its 
autoignition temperature 232°), but absent oxygen, it boils at 448°.  It 
evaporates with surprising speed even at and below its melting point, 
though. 
A unique property among the materials mentioned here is sulfur's metastable 
"solid" amorphous form, easily produced by quenching molten sulfur from above 
170°, where it is blood-red;  this amorphous polymeric form is red or brown and 
very plastic, like chewing gum ("a more or less sticky mass"), and can be remelted 
at 120°.  At room temperature this material initially seems to show some surface 
tension, fingerprints in its surface disappearing over the course of several minutes, 
so it is really just a viscous liquid, but in a few hours to days it hardens and becomes 
glassy, though without changing color, a phenomenon attributed to 
semi-crystallization of this amorphous polymeric phase into "ω-sulfur" and the 
simultaneous partial crystallization of the non-polymeric impurity. 
    Some sulfur dioxide in the sulfur is apparently necessary for the formation of this 
amorphous phase, and is normally formed when solid sulfur is exposed to air. 
    This "quick-quenched" form of sulfur reportedly has S₈ rings dissolved in it, 
lowering its glass transition temperature to -30°;  these can be removed by washing 
with CS₂.  (Some twenty allotropes of solid and liquid sulfur are known, 
complicating this enormously;  some of them are even metallic.) 
    You could recrystallize this amorphous form either by waiting long enough 
(apparently many years) or by annealing it, reconstituting the familiar brittle yellow 
α-sulfur.  Reportedly above 90° the recrystallization becomes "rapid", which seems 
to mean "hours" or "minutes" rather than "seconds", and is associated with a 
volume loss of some 8%.  This may be useful for, for example, using the sulfur as 
modeling clay, then recrystallizing it to its usual form.  However, four hours at 
100° does not seem to be enough time to have any noticeable effect, even when the 
dark "amorphous" sulfur is in contact with what seems to be yellow monoclinic 
α-sulfur.  Even remelting to the low-viscosity liquid form doesn't seem to revert it 
fully from dark brown to bright yellow.  

    Ammonium formate is organic but only 20% carbon;  it melts at 
116°, and decomposes into water and the nontoxic formamide at 
180°, at which point the formamide decomposes into carbon 
monoxide and ammonia.  Ammonium formate is deliquescent and 
relatively nontoxic.  The above-mentioned considerations for 
formamide apply. 

    Hydroxylammonium sulfate is a stabler and less toxic salt of the 
hydroxylamine mentioned above;  it's used in color film emulsions, 
decomposing at 120° to SO₃, N₂O, NH₃, and water, in a reaction 
exothermic if heated past 138°.  It irritates skin but won't even 
damage your eyes if you splash it in them;  however, it's acidic and a 
strong reducing agent. 

    The inorganic solid ammonium persulfate, used in hair bleach and 
as a food additive, also decomposes at 120°.  However, though its 
toxicity is relatively low, it's a strong enough oxidizing agent to 
oxidize copper and nickel, and it's very acidic.  Worse, I imagine that 
when you do manage to decompose it, it decomposes into ammonia 
and Caro's acid. 

    The fertilizer, flame retardant, and herbicide ammonium sulfamate 
melts at 131° and decomposes at 160°, presumably to ammonia and 
sulfamic acid, an "intrinsically safe" household cleaning product 
which melts at 205° and then decomposes to nitrogen, water, and 
sulfur oxides. 
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    The inorganic solid Hydroxylammonium chloride decomposes 
around 156°, but I don't know what it decomposes into.  I'm guessing 
that nitrogen oxides, probably hydroxylamine, nitric oxide, and 
hydrogen chloride would be in the mix;  maybe nitroxyl, hyponitrous 
acid, and/or hydrogen, too. 

    NH₄NO3 is another solid that can be entirely decomposed with 
moderate heating, sometimes in a dangerous chain reaction.  It melts 
at 170° and decomposes exothermically at 210°.  This decomposition 
can produce relatively innocent nitrous oxide and water;  even more 
innocent oxygen, nitrogen, and water;  or deadly and caustic acids, 
ammonia, and acidic nitrogen oxides;  depending on the conditions of 
decomposition.  It, too, is entirely inorganic.  An additional 
disadvantage, or advantage, is that it deliquesces above 59% humidity 
at 30°, or even lower humidities at higher temperatures. 

    Ammonium thiosulfate is a photographic fixer, fertilizer, defoliant, 
and nontoxic cyanide alternative for heap-leach mining of gold and 
silver.  It presumably decomposes if you heat it up enough, but I don't 
know at what temperature;  different sources suggest 180° or 150°.  It 
decomposes to sulfur oxides and ammonia, normally, though 
sometimes it can produce hydrogen sulfide, and even without 
heating, it can corrode even copper. 

    Sodium persulfate is an almost non-hygroscopic compound used as 
a hair bleach, a soil conditioner, an oxidizer for zinc, a pickling agent 
for copper, and a polymerization initiator which decomposes at 180°.  
Presumably this yields sulfur oxides, probably SO₃, and possibly 
oxygen, and leaves behind a sodium oxide residue, which doesn't boil 
until 1950°.  In some situations, for example in fired-clay pottery, this 
residue may be tolerable;  most of the other anions mentioned here 
can be used with sodium similarly, but I will mostly focus on burnout 
without residue. 

    NH₄ClO4 is an inorganic solid that decomposes around 200° into 
HCl, nitrogen, oxygen, and water, but it's exothermic enough that 
this can be dangerous;  its autoignition temperature is only 240°.  It's 
also a fairly widely used oxidizer.  Its acute toxicity is low, but its 
chronic toxicity is high, and of course the decomposition products are 
caustic. 

    Ammonium sulfate is another inorganic solid that can be entirely 
decomposed by heat at 235°–280°, producing ammonia, nitrogen, 
sulfur dioxide, and water.  It's pleasantly stable and nontoxic, being 
widely used as a fertilizer, a food additive, 30% of worldwide fine 
particulate pollution, and (refreshingly for this list) a flame retardant.  
It's almost alone among ammonium salts in emitting no significant 
ammonia at room temperature.  Ammonium bisulfate is an 
intermediate product in the decomposition, melting at 147°, for better 
or worse. 

    Ammonium chloride, when heated to 338°, decomposes into 
ammonia and hydrogen chloride.  These are presumably quite caustic 
in the gas phase, but are known to recrystallize innocently on delicate 
fossils to reform ammonium chloride.  And ammonium chloride is 
entirely inorganic, and could even be used if oxygen were scarce. 

    Phosphorus pentoxide melts at 340° and then boils at either 360° or 
423°?  I don't understand this but I don't want it going on anywhere 
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near me.  Phosphorus oxides are very complicated and hard to predict, 
and they tend to be hygroscopic. 

    Oxamide, used as a fertilizer and flame retardant, loses water at 
350° to form the highly toxic cyanogen.  It's organic but only about 
one-third carbon.  Different sources claim that it melts at 163°, at 
300°, or not at all. 

    Nitramide?  Probably too dangerous.  Ammonium dinitramide?  
Probably too dangerous, and also how to make it is a secret. 

    acetamide?  Urea?  Melts at 134°, only 20% carbon. 

    Sulfamic acid 

    Iodine 

    Thiocyanates?  Thiocyanides?  Bifluoride?  Cyanate?  Fluoride?  
Hydrosulfide?  Iodate?  Iodide?   

    Thiourea? 

Potential fusible solids 

    If melting like naphthalene rather than vaporizing is acceptable, 
then under some circumstances there are a variety of solids that can be 
easily melted. 

Highly water-soluble and deliquescent 
solids 

    If water won't damage the thing you're trying to remove the 
support material from — not the case for clay bodies for pottery, of 
course, but plausibly the case under many other conditions —  

    Ammonium nitrate 

    Calcium chloride 

    Magnesium chloride, zinc chloride, ferric chloride, carnallite, 
potassium carbonate, potassium phosphate, ferric ammonium citrate, 
potassium hydroxide, sodium hydroxide... 

    phosphorus pentoxide? 

Solids that can be removed by a reagent 

    Pretty much any solid can be removed by the appropriate reagent, 
but not always quickly, and the trick is to pick something that won't 
damage the thing you're trying to remove it from.

Topics
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• Foaming (p.  818) (8 notes) 
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Micro material sorting
Kragen Javier Sitaker, 02020-09-12 (2 minutes)

    Placer mining sorts grains of sand roughly by density, so it can 
separate out gold from the other minerals, which are mostly less dense 
by a factor of five or more.  With somewhat more difficulty it can 
separate out other dense minerals like monazite, zircon, and even 
magnetite.  A miner with a gold pan and some water might be able to 
pan the gold out of 200 mℓ of sand in some 30 seconds;  if the mean 
sand grain is some 30 microns in diameter, this amounts to picking the 
dozen or two grains of gold out of several billion grains of sand, a rate 
of several hundred millions of grains per second.  Impressive, for a 
human. 

    Various kinds of froth flotation, flocculation, and deflocculation of 
crushed rock work in a similar way to separate out massive numbers 
of grains by various physical properties. 

    Suppose that we instead use machine vision, X-ray diffraction, 
frequency-dependent complex electric permeability, and so forth to 
sort through individual grains.  For example, nearly all granite has 
grains of zircon in it, precious for its use in the manufacture of the 
resilient refractory ceramic zirconia.  If we break up the granite, 
perhaps we can use automated feedback systems to sort through at 
least a few thousand crystals per second per machine, needing only a 
few hundred thousand machines to compete with the 49er with his 
gold pan. 

    Of course, in 02020, the idea of constructing a few hundred 
thousand machines sounds absurd, but in fact I am typing this on a 
computer containing several tens of billions of transistors and 
capacitors, one which is already obsolete.  So in fact such things are 
not impossible;  MEMS simply has not focused on them thus far.
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Sparse sinc
Kragen Javier Sitaker, 02020-09-17 (12 minutes)

    It occurred to me that if you wanted to upsample a signal by a lot, 
it would be very convenient to have a sparse approximation of a sinc 
at the original sampling rate, sampled at the new sampling rate --- 
"sparse" in the sense that you don't need very many multiplies. 

    To be concrete, suppose you have a 1024-sample fragment that was 
captured at 50 Msps, and you would like to upsample it to 300 Msps, 
about 6144 output samples, depending on how you handle the ones at 
the ends.  1024 of these output samples are simply the original 1024 
samples, but the others have relatively significant contributions from a 
lot of original samples:  for a given output sample, about 15 input 
samples have contributions attenuated by less than 20dB, about 150 
have contributions attenuated by less than 40dB, and almost all have 
contributions attenuated by less than 60dB.  So if you want an output 
waveform whose error is 60dB or better below the signal --- and this 
may well be what you want if some parts of the signal are 60dB 
quieter than others --- then you will not reach your objective by 
doing a time-domain convolution with a windowed sinc, unless 
you're willing to do the whole 5242880-multiply-accumulate job. 

Standard, well-known solutions 

    There are several standard answers to this. 

    One is to use Lanczos2 or Lanczos3 interpolation and call it good:  
the signal you produce has very significant errors if compared to a 
truly bandlimited signal, but it also has very good locality, which is 
sometimes preferable.  The lanczos3 kernel has six periods of support, 
so in one dimension each output sample (of those that must be 
interpolated) is a weighted sum of six input samples, so you only need 
30720 multiply-accumulates. 

    (One reason you might care a lot about locality is if you're doing 
this operation "online", i.e., before you have the whole signal.  This 
inherently precludes getting anything close to the right answer, since 
the sinc impulse response extends very far into the past before the 
impulse.) 

    Another is to do the Fourier transform, pad with high-frequency 
zeroes to the larger size, and do the inverse Fourier transform.  (In the 
more general case where the filter kernel isn't a sinc, you can do the 
filtering with one complex multiply per frequency in the frequency 
domain.) I think a 1024-point FFT using the radix-2 Cooley-Tukey 
algorithm requires (N/2) lg N complex multiply-accumulates, and a 
complex multiply-accumulate is four real multiply-accumulates, so 
this is 20 real multiply-accumulates per sample;  a 6144-point FFT 
using the mixed-radix version of the algorithm I think requires 22 
real multiply-accumulates per sample.  So this ends up being 155 648 
(real) multiply-accumulates, which is five times slower than the 
Lanczos3 approach, but unlike Lanczos3, gives the correct answer 
except for rounding errors. 

    (Rarely noted is that it's reasonable to do the Lanczos time-domain 



interpolation with fixed-point or low-precision floating point, while 
the Fourier transform really needs floating point and usually double 
precision.  Nowadays, with the availability of low-precision SIMD 
operations in commodity hardware, this is starting to become a 
tradeoff we can make in practice even without taping out our own 
chips.) 

    The third, and I think the most used in this sort of context, is to 
pad with high-frequency zeroes in the time domain, inserting in this 
case five zero samples in between each pair of the original samples, 
then low-pass filter in the time domain to interpolate.  Sometimes this is 
more efficient if done in two or more stages, and there are a lot of 
options for how to do the time-domain filtering, which can give you 
arbitrarily small errors if you're willing to pay arbitrarily large 
computational costs and especially if you can use acausal filters. 

    The filtfilt function in Octave or SciPy applies a given IIR filter 
twice, once going forward in time and once going backward, to 
cancel out its phase shifts and incidentally double its stopband 
suppression (and passband ripple).  So if we have a low-pass IIR filter 
in the usual form that gives us, say, 30 dB of stopband suppression, 
then using it with filtfilt would give us 60 dB of stopband 
suppression and no phase distortion.  I don't know very much about 
signal processing but I think the following interaction with Octave 
means that a 16th-order elliptic filter would mostly do the job, 
though with some error in the top 1% of the Nyquist frequencies (the 
top 250 kHz of our 25 MHz Nyquist frequency): 

>> ellipord(.99/6, 1.01/6, .000001, 30)
ans =  16
 

    I think [B, A] = ellip(16, .000001, 30, 1/6) actually computes the filter, 
but I haven't tested it and don't have enough experience to be very 
confident. 

    So, if that's correct, then this gives us something very close to the 
right answer with 32 (real) multiply-accumulates per upsampled 
sample on each of the two passes, for a total of 64×6144 = 393 216 
multiply-accumulates.  This is comparable to the Fourier approach, 
but if we were slightly less enthusiastic about precision, we can get it 
to be even more comparable.  For example, suppose our 50 Msps is 
actually sampling a signal that's bandlimited to 20 MHz, so maybe we 
don't really care what happens between 20 MHz and the Nyquist 25 
MHz;  then we could use only a 9th-order elliptic filter: 

>> ellipord(.8/6, 1/6, 1e-6, 30)
ans =  9
 

    And if we additionally can tolerate passband ripple of 0.001 dB, or 
0.0005 dB per pass, we can get down to a 7th-order filter: 

>> ellipord(.8/6, 1/6, .0005, 30)
ans =  7
 

    So now we only need 28×6144 = 172032 multiply-accumulates. 



Kooky sparse solution 

    So the sinc impulse response is, you know, one big double-wide 
hump in the middle, and then a bunch of wiggles, all of the same 
width and almost the same shape.  What if you could factor those 
oscillations, or most of them, into linear combinations of a small 
number of basis functions?  Like, maybe something that looks like a 
single hump between two zeroes separated by the sampling interval, 
maybe with some tails on it extending out into the neighboring 
sampling intervals.  Like a Gabor wavelet, maybe.  Or maybe just the 
near-sinusoidal hump.  And then maybe one or two things that 
represent the biggest deviations in those wiggles, since some of them 
near the double-wide hump are kind of skewed to the left or the 
right, although the ones way out in the boondocks are fairly precisely 
sinusoidal. 

    You can make a sparse impulse train which, convolved with your 
single hump or Gabor or whatever, and added to the doublewide 
hump, gives you a pretty good approximation of the sinc.  
Convolving with an exponentially decaying alternating impulse train 
is easy enough (it's a feedback comb filter:  y(n) = x(n) - αy(n-k)) but 
in this case we want to convolve with an impulse train that decays 
subexponentially.  Here are some possible solutions: 

• Try to approximate 1/n as a sum of decaying exponentials.  
Unfortunately this has a sort of discontinuity or step function where 
each new exponential begins.  If your initial exponential decay goes 
from amplitude 2/3 at 3/2 down to amplitude (-)2/5 at 5/2, then at 
7/2, instead of 2/7, its amplitude will be 6/25, which is too low by a 
ratio of 21/25;  we can add in a new exponentially-decaying pulse 
train there with an amplitude of 8/175, and then at 9/2, when we 
want (-)2/9 as our amplitude, the original exponential will have 
decayed down to (-)18/125, leaving a gap of (-)88/1125.  This is 
actually larger than the previous gap of 8/175, so our second 
exponential decay can't fill the gap — it would need to be growing 
rather than shrinking!  So we would need to pick some decay rate for 
it and start a third exponential, and so on.  This doesn't seem like a 
promising avenue because it's going to be a long time before the errors 
are small enough that we can stop adding new exponentials on every 
cycle.  
• Try to approximate 1/n as a sum of functions that eventually tail off 
into exponential decay but have a substantial subexponential plateau 
before that.  For example, you can have a pipeline where your input 
signal goes into one stage of exponential ringdown, which is used to 
excite an output stage that does another exponential ringdown, 
perhaps a much slower one.  The impulse response of this system 
should be a gradually growing alternating impulse train which 
asymptotes up to some maximum amplitude as by exponential decay, 
then dies away with essentially the exponential-decay behavior of the 
output stage.  This two-stage pipeline avoids having a step function, 
but it still has a step-function discontinuity in the derivative of its 
envelope.  
• A three-stage pipeline can have an envelope that looks like the 
integral of the envelope of the two-stage pipeline, with a smoothly 
feathered sigmoid startup, followed by the usual exponential decay 



(which stabilizes the otherwise inherently unstable integrator).  This 
pushes the discontinuity in the envelope out to the second derivative.  

• Use one or two stages of feedforward combs to sort of flatten out 
and shape the plateau of a two- or three-stage pipeline.  
• Way out in the far tails, use different Gabor basis functions that 
have many oscillations in their envelopes, not just a few;  that way 
you can use impulse trains of much lower frequencies.  I'm not sure 
this actually helps because the cost of convolving with an alternating 
impulse train using a feedback comb filter isn't dependent on the 
frequency of the impulse train.  
• The Gabor basis function in particular has an existing efficient sparse 
approximation that I've written about previously in Dercuano.  
• Presumably you need to use some sort of bidirectional filtering to 
get the left tail of the sinc impulse response as well as the 
right — though probably by computing the left filter and the right 
filter on the original signal, then adding them together, rather than 
composing them as in filtfilt.  But maybe a more complicated 
topology of this kind of thing can help out in adding a smooth decay 
to the left side of these globs of alternating impulses.  Like, if you do 
the two-stage pipeline thing both to the left and to the right, you 
could add them together with an offset in order to get rid of the steep 
slope of the initial "attack".   

    I don't know enough yet to know whether this will yield a more 
efficient and/or precise solution than the standard time-domain IIR 
bidirectional filtering approach, but it does seem plausible.  In 
particular a great deal of the signal processing in this approach can be 
done at the lower frequency rather than the higher frequency.

Topics

• Math (p.  804) (13 notes) 
• Digital signal processing (p.  845) (5 notes) 
• Octave (p.  933) (2 notes) 



An index of the 1880 edition of 
Cooley’s Cyclopædia
Kragen Javier Sitaker, 02020-09-17 (updated 02020-10-23) 
(9 minutes)

    The 1880 sixth edition of Cooley's Cyclopædia is available in the 
Archive (vol.  1, vol.  2).  However, the scans are 400 dpi and render 
rather slowly on my netbook, tens of seconds per page, or eight 
seconds in mupdf (which nevertheless doesn't prefetch or give any 
kind of "working" notice!) so I thought I would add a partial 
headword index to accelerate the process of finding things. 

    Without this index, a binary search for a headword would require 
looking at 11 or 12 pages distributed over both volumes, about a 
minute and a half of rendering time.  With it, the worst case should 
be 6 pages, but the average more like 4;  about 5% of pages are 
included directly in the index. 

• Abbreviation (cont.), p. 4 (vol.  1 20/916) 
• Acclimate-Acetic, p. 14 (vol.  1 30/916) 
• Acetic anhydride-Acetification, p. 22 (vol.  1 38/916) 
• Aigremore-Air, p. 44 (vol.  1 60/916) 
• Alkali-Alkalimetry, p. 84 (vol.  1 100/916) 
• Aloes hemp-Alpaca, p. 104 (vol.  1 120/916) 
• Alpenkrauter-brust-teig-Alum, p. 105 (vol.  1 121/916) 
• Alum (cont.), pp. 106-111 (vol.  1 122-7/916) 
• Alvine-Amalgam, p. 116 (vol.  1 132/916) 
• Amalgamated-Amandine, p. 117 (vol.  1 133/916) 
• Ambreine-Ammonia, p. 120 (vol.  1 136/916) 
• Ammonia (cont.), pp. 121-5 (vol.  1 137-141/916) 
• Ammonium, p. 126 (vol.  1 142/916) 
• Ammonium (cont.), pp. 127-128 (vol.  1 143-4/916) 
• Ammonium, bicarbonate of-Ammonium, chloride of, p. 129 (vol.  1 
146/916) 
• Ammonium, chloride of (cont.), pp. 130-5 (vol.  1 147-51/916) 
• Ammonium, citrate of-Ammonium, lactate of, p. 136 (vol.  1 
152/916) 
• Ammonium, bitartrate of-Amykos, p. 139 (vol.  1 155/916) 
• Analysis (cont.), p. 144 (vol.  1 160/916) 
• Antispasmodic-Aplanatic, p. 174 (vol.  1 190/916) 
• Argentine-Aromatic, p. 184 (vol.  1 200/916) 
• Asparagin-Asparagus, p. 209 (vol.  1 225/916) 
• Assimilation-Asthenopy, p. 214 (vol.  1 230/916) 
• Atom, p. 218 (vol.  1 234/916) 
• Atropia-Attenuation, p. 221 (vol.  1 237/916) 
• Autopsy-Axis, p. 224 (vol.  1 240/916) 
• Bacca-Bacterium, p. 226 (vol.  1 242/916) 
• Bacteria (cont.), p. 229 (vol.  1 245/916) 
• Ballooning-Balls, p. 234 (vol.  1 250/916) 
• Belladonnine-Benzoic acid, p. 284 (vol.  1 300/916) 
• Brewing (cont.), p. 359 (vol.  1 375/916) 
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• Burette (cont.), p. 371 (vol.  1 387/916) 
• Butter (cont.), p. 377 (vol.  1 393/916) 
• Cæsalpina-Caffeine, p. 381 (vol.  1 397/916) 
• Cakes, p. 384 (vol.  1 400/916) 
• Calciner-Calcium, p. 386 (vol.  1 402/916) 
• Calumel-Calumbine, p. 389 (vol.  1 405/916) 
• Candles (cont.), p. 394 (vol.  1 410/916) 
• Caoutchoucin, p. 399 (vol.  1 415/916) 
• Capsicum-Caramel, p. 401 (vol.  1 417/916) 
• Carat-Carbolic acid, p. 402 (vol.  1 418/916) 
• Carbon, p. 403 (vol.  1 419/916) 
• Carbon (cont.), p. 404 (vol.  1 420/916) 
• Carbonic oxide-Carmine, p. 407 (vol.  1 423/916) 
• Carnauba root-Carrageen, p. 409 (vol.  1 425/916) 
• Catgut-cathartin, p. 414 (vol.  1 430/916) 
• Cerate (cont.), p. 424 (vol.  1 440/916) 
• Cerium-Chairs, p. 429 (vol.  1 445/916) 
• Chalk, p. 430 (vol.  1 446/916) 
• Chalybeates-Charcoal, p. 431 (vol.  1 447/916) 
• Cheese (cont.), p. 434 (vol.  1 450/916) 
• Chloroformic anodyne-Chlorometry, p. 454 (vol.  1 470/916) 
• Coffee, p. 484 (vol.  1 500/916) 
• Copper (cont.), p. 509 (vol.  1 525/916) 
• Coral-Corn, p. 511 (vol.  1 527/916) 
• Curarine-Curry, p. 524 (vol.  1 540/916) 
• Cutch-Cuts, p. 526 (vol.  1 542/916) 
• Cyanate-Cysticerci, p. 527 (vol.  1 543/916) 
• Damp-Daphnin, p. 529 (vol.  1 545/916) 
• Dead, disposal of, p. 534 (vol.  1 550/916) 
• Draught, p. 584 (vol.  1 600/916) 
• Dutch drops-Dynamite, p. 599 (vol.  1 615/916) 
• Dynamom-Dyspepsia, p. 600 (vol.  1 616/916) 
• Duck-Dust, p. 596 (vol.  1 612/916) 
• Dyspnœa-Eau, p. 601 (vol.  1 617/916) 
• Eau (cont.), pp. 602-3 (vol.  1 618-9/916) 
• Ebony-Ebullition, p. 604 (vol.  1 620/916) 
• Ebullioscope, p. 605 (vol.  1 621/916) 
• Echinococcus Hominis, p. 606 (vol.  1 622/916) 
• Egg, p. 609 (vol.  1 625/916) 
• Electricity-Electrotype, p. 613 (vol.  1 629/916) 
• Electrotype, pp. 613-616 (vol.  1 629-632/916) 
• Electuary, pp. 616-20 (vol.  1 632-6/916) 
• Elements-Elixir, p. 621 (vol.  1 637/916) 
• Elixir (cont.), p. 624 (vol.  1 640/916) 
• Encaustic-Enema, p. 634 (vol.  1 650/916) 
• Extract, p. 684 (vol.  1 700/916) 
• Extract of Oak Bark-Extract of Opium, p. 703 (vol.  1 719/916) 
• Extract of Orange Peel-Extract of Pinkroot, p. 704 (vol.  1 720/916) 

• Extract of Tansy-Extract of valerian, p. 709 (vol.  1 725/916) 
• Extract of Vanilla-Extracts, concentrated, p. 710 (vol.  1 726/916) 
• Eye-Fainting, p. 712 (vol.  1 725/916) 
• Faints-Fardel-bound, p. 713 (vol.  1 729/916) 
• Feathers-Fecula, p. 716 (vol.  1 732/916) 



• Feeding bottle, p. 717 (vol.  1 733/916) 
• Feeding bottle-Feet, p. 718 (vol.  1 734/916) 
• Felting-Fermentation, p. 719 (vol.  1 735/916) 
• Fermentation (cont.), p. 720 (vol.  1 736/916) 
• Fern-Fever, p. 722 (vol.  1 738/916) 
• Finings-Fire, p. 734 (vol.  1 750/916) 
• Gas, p. 784 (vol.  1 800/916) 
• Gems, p. 790 (vol.  1 806/916) 
• Gin, p. 796 (vol.  1 812/916) 
• Gluten-Glycerin, p. 809 (vol.  1 825/916) 
• Green pigments (cont.), p. 821 (vol.  1 837/916) 
• Gum (cont.), p. 829 (vol.  1 845/916) 
• Gunpowder (cont.), p. 831 (vol.  1 847/916) 
• Gunjah-Gut, p. 834 (vol.  1 850/916) 
• Hederin-Hemp, p. 842 (vol.  1 858/916) 
• Hesperidin-Hollands p. 844 (vol.  1 860/916) 
• Hydrocyanic acid (cont.), p. 854 (vol.  1 870/916) 
• Hydrogen, p. 856 (vol.  1 872/916) 
• Hyocholic acid-Hysterics, p. 859 (vol.  1 875/916) 
• Ink, p. 896 (vol.  1 912/916, last) 
• Lac dye-Lacquer, p. 938 (vol.  2 50/916) 
• Lamp (cont.), p. 944 (vol.  2 56/916) 
• Lamp black-Lanthopine, p. 946 (vol.  2 58/916) 
• Lapis-Larch bark, p. 947 (vol.  2 59/916) 
• Lead (cont.), p. 950 (vol.  2 62/916) 
• Light, electric (cont.), p. 963 (vol.  2 75/916) 
• Liqueur de la motte-Liquor, p. 988 (vol.  2 100/928) 
• Lithofracteur-Lithography, p. 994 (vol.  2 106/928) 
• Liver and bacon-Lodging-houses, p. 996 (vol.  2 108/928) 
• Lotion (cont.), p. 1001 (vol.  2 112/928) 
• Lubricating compounds-Luncheons, p. 1013 (vol.  2 125/928) 
• Meat, p. 1038 (vol.  2 150/928) 
• Meconin-Medicines for passenger ships, p. 1050 (vol.  2 162/928) 
• Meerschaum-Mercurial disease, p. 1052 (vol.  2 164/928) 
• Mercury, p. 1053 (vol.  2 165/928) 
• Mercury (cont.), p. 1056 (vol.  2 168/928) 
• Meslin-Metals, p. 1063 (vol.  2 175/928) 
• Mortification-Moulds, p. 1088 (vol.  2 200/928) 
• Neuralgia (cont.), p. 1100 (vol.  2 212/928) 
• Nitric acid (cont.), p. 1106 (vol.  2 218/928) 
• Nitro-glycerin, p. 1109 (vol.  2 221/928) 
• Norfolk fluid-Notices, p. 1112 (vol.  2 224/928) 
• Novargent-Nuisance, p. 1113 (vol.  2 225/928) 
• Oils (mineral) (cont.), p. 1138 (vol.  2 250/928) 
• Olein-Oleometer, p. 1188 (vol.  2 300/928) 
• Paranaphthalin-Parasites, p. 1238 (vol.  2 350/928) 
• Pepper (cont.), p. 1258 (vol.  2 370/928) 
• Percentage-Percolation, p. 1260 (vol.  2 372/928) 
• Percolation (cont.), p. 1261 (vol.  2 373/928) 
• Percussion-Periodic acid, p. 1262 (vol.  2 374/928) 
• Peristaltic persuaders-Petroleum, p. 1263 (vol.  2 375/928) 
• Phylloxera vastatrix, p. 1288 (vol.  2 400/928) 
• Picoline-Pies, p. 1293 (vol.  2 405/928) 
• Pills (cont.), pp. 1298-1314 (vol.  2 410-26/928) 



• Platinum, p. 1338 (vol.  2 450/928) 
• Potassium, chloride of-Potassium, chromate of, p. 1358 (vol.  2 
470/928) 
• Potassium, ethylate-Potassium, hydrate of, p. 1361 (vol.  2 473/928) 
• Potassium, iodate of-Potassium, iodide of, p. 1362 (vol.  2 475/928) 
• Prince's metal-Printing, p. 1388 (vol.  2 500/928) 
• Quinine, p. 1413 (vol.  2 525/928) 
• Reduction-Refrigeration, p. 1428 (vol.  2 540/928) 
• Rock-Rot, p. 1438 (vol.  2 550/928) 
• Ruby-Rust, p. 1440 (vol.  2 552/928) 
• Sack-Saffron, p. 1443 (vol.  2 555/928) 
• Salicylic acid, p. 1448 (vol.  2 560/928) 
• Silica (cont.), p. 1487 (vol.  2 599/928) 
• Sodium (cont.), p. 1513 (vol.  2 625/928) 
• Spheroidal state, p. 1538 (vol.  2 650/928) 
• Stereochromy-Stewing, p. 1563 (vol.  2 675/928) 
• Sturgeon-Succinic acid, p. 1575 (vol.  2 687/928) 
• Succory-Sugar, p. 1576 (vol.  2 688/928) 
• Sugar (cont.), p. 1577-85 (vol.  2 689-97/928) 
• Sugar-boiling-Sugar plums, p. 1586 (vol.  2 698/928) 
• Sulphocyanogen-Sulphur, p. 1588 (vol.  2 700/928) 
• Sulphuric acid (cont.), pp. 1594-7 (vol.  2 706-9/928) 
• Sulphuric anhydride-Sulphurous acid, p. 1600 (vol.  2 710/928) 
• Suppository (cont.), p. 1600 (vol.  2 712/928) 
• Symbols (cont.), pp. 1603-4 (vol.  2 715-6/928) 
• Sympathetic ink-Syrup, p. 1605 (vol.  2 717/928) 
• Syrup (cont.), pp. 1606-13 (vol.  2 718-25/928) 
• Telephone (cont.), p. 1638 (vol.  2 750/928) 
• Tincture (cont.), p. 1663 (vol.  2 775/928) 
• Tinctures (cont.)-Tisane, p. 1673 (vol.  2 785/928) 
• Traumatic balsam-Trout, p. 1678 (vol.  2 790/928) 
• Upas-Urea, p. 1688 (vol.  2 800/928) 
• Urinary diseases (cont.), p. 1691 (vol.  2 803/928) 
• Urine, p. 1692 (vol.  2 804/928) 
• Urine (cont.), pp. 1693-1700 (vol.  2 805-12/928) 
• Vegetables (cont.), p. 1713 (vol.  2 825/928) 
• Water (cont.), p. 1738 (vol.  2 850/928) 
• Wolfram-Wool, p. 1785 (vol.  2 897/928) 
• Wound-Xyloidin, p. 1788 (vol.  2 900/928) 
• Yttrium-Zinc, p. 1791 (vol.  2 903/928) 
• Zinc (cont.), pp. 1792-4 (vol.  2 904-6/928) 
• Zinc-Ethyl-Zirconium, p. 1795 (vol.  2 907/928) 
• Zirconium (cont.), p. 1796 (vol.  2 908/928, last) 
• ads, p. vii (vol.  2 915/928) 

Topics

• Materials (p.  784) (51 notes) 
• History (p.  796) (17 notes) 
• Book notes (p.  867) (4 notes) 



Spark gap logic
Kragen Javier Sitaker, 02020-09-20 (updated 02020-12-16) 
(25 minutes)

    Thinking about Marx generators last night, I realized that their 
traditional elements — two-electrode air spark gaps, capacitors, 
resistors, and a high-voltage, low-current DC power supply — are 
probably sufficient to implement universal sequential digital logic, It 
may be limited to a few kilohertz, but air-gap flashbulbs can produce 
microsecond-level discharges when cooled by a quartz heatsink, so 
faster speeds might be achievable. 

    A Marx generator is a simple sort of RC relaxation oscillator used 
as a source of high-voltage pulses when efficiency is not important.  A 
series of capacitors in series, separated by similar-sized spark gaps, are 
charged through a resistive network connecting their anodes and 
another connecting their cathodes, which, as long as little current 
flows, respectively maintains the anodes at similar voltages and 
maintains the cathodes at similar voltages, so the voltage across each 
spark gap is nearly the negative of that across each condenser;  once 
this voltage rises to a high enough level, the air in the gap experiences 
avalanche breakdown with a large current and effectively connects 
two capacitors in series, immediately overwhelming the breakdown of 
the adjacent spark gaps.  This very rapidly produces a chain reaction 
and a very high voltage, which, as I understand it, then discharges on 
a timescale primarily limited by the self-induction of the elements of 
the system, commonly nanoseconds to microseconds. 

    (Ordinary electrostatic discharges, like from walking across the 
carpet and touching a doorknob, have rise times in the range of a 
nanosecond or so, so the rise time will not be the limiting factor in 
performance;  the recovery time will.) 

    Without the voltage gain, you can build such a relaxation oscillator 
with a single RC timing circuit with a spark gap in parallel with the 
capacitor.  Paschen’s curve has a minimum at one atmosphere at 327 
V and 7.5 μm, tailing off to linear growth at 3.4 MV/m, so, for 
manual work, it might be expedient to work with some 4 kV and 
gaps of 1 mm.  You can easily adjust the period of this oscillator by 
changing the RC time constant, although the arc ignites at somewhat 
imprecise times due in large part to the irregular availability of free 
so-called “seed electrons” at the cathode, provided by photoelectrons 
or background ionizing light and other particles. 

    (Common neon-sign transformers provide 2–15 kV RMS at 18–30 
mA, according to Wikipedia, a much less frequently lethal current 
than the typical 500 mA of a microwave oven transformer.) 

    In particular, it’s straightforward to make a triad consisting of a 
“primary oscillator” running at, say, 500 Hz;  a “reference oscillator” 
at half that frequency, say 250 Hz;  and a “bit oscillator” also running 
at 250 Hz.  (At 1 mm the arc should ignite around 3.4 kV;  with a 4 
kV power supply, that should take about 1.9RC, and the remaining 
voltage after the arc extinguishes should be small;  so, to get 250 Hz, a 
4-ms period, we could use an 10MΩ resistor and a 210 pF capacitor, a 

https://en.wikipedia.org/wiki/Air-gap_flash
https://en.wikipedia.org/wiki/Paschen's_law


1MΩ resistor and a 2100 pF capacitor, and so on, although the resistors 
will start to get rather hot at lower resistances.) 

    In isolation these three oscillators will tend to drift relative to one 
another, but I think this can be remedied.  If we use another capacitor 
to couple the voltage spike from the triggering of the primary 
oscillator into the reference oscillator and the bit oscillator, we can 
advance the timing of the reference oscillator and the bit oscillator so 
that they run at exactly half the frequency of the primary oscillator, if 
they were running slower.  The voltage spike early in the charging 
process won’t be enough by itself to fire the spark gap, but when the 
capacitor voltage is already nearly high enough to strike a spark, it 
will easily overwhelm the dielectric strength of the air in the gap. 

    Now the phase relationship between the reference oscillator and 
the bit oscillator is quantized at either 0° or 180°, so the phase of the 
bit oscillator stores a single bit of data. 

    For reliable storage, it is essential that the free-running frequency 
of the reference and bit oscillators be slower than or equal to that of 
half the primary oscillator;  otherwise, they may spontaneously fire 
early, resulting in phase drift and eventually a bit error.  Various 
expedients are available:  the use of a slightly larger resistance or 
capacitance, of course, but also a slightly larger spark gap that will 
never fire without the excess stimulation provided by the primary 
oscillator;  or a resistive network that charges the capacitor up to only 
a fraction of the power supply. 

    It is worth mentioning at this point that a cascade of two or three 
low-pass RC filters before the spark gap, rather than a single one, can 
provide a more desirable voltage waveform at the spark gap — one 
that remains lower for a longer fraction of the cycle, thus widening 
the voltage safety margin against early firing. 

    Now that we have a reliable way of storing a bit, we have the 
problem of constructing digital processes that evolve in time rather 
than merely remaining stable, by coupling two or more bit-storage 
devices.  And in particular we want to be sure we can achieve chaos or 
instability, known in the world of digital logic as “fanout” or 
“amplification”.  The example of the Marx generator shows that this 
is definitely achievable. 

    One easy way to achieve amplification, though stepping outside the 
framework of the Marx-generator parts mentioned above, is step-up 
transformers. 

    Air-gap flashes pass a lot of charge between the main electrodes at, 
typically, 20 kV, to produce the bright flash, triggering this with a 
quartz-insulated “ignition tube” electrode at a much higher voltage 
like 70 kV, but a much smaller amount of charge due to a lower 
capacitance.  The higher voltage provides initial ionization in the gap, 
which triggers the discharge of the lower-voltage but higher-energy 
arc. 

    This provides energy gain, but not voltage gain — a high voltage is 
used to switch a lower voltage.  A direct way to attack this problem is 
by using a pulse transformer to step up voltages, so that a spark at a 
relatively low voltage can produce a lower-current pulse at a much 
higher voltage, used to trigger other gaps. 



    But, as we have seen above, more indirect routes are also available. 

    For example, if a 3400V spark gap has been charged up to 3000V, 
then a 700V impulse will trigger it to conduct, discharging the 3000V 
down to perhaps 50V or 150V.  This impulse can be coupled in via a 
small capacitor, requiring a correspondingly small amount of charge 
and energy.  This can be facilitated by a small resistance between the 
spark gap and the 3000V-charged capacitor — in this way a 700V 
impulse coupled in thru a coupling capacitor need not charge the 
3000V capacitor, only the capacitance of the spark gap itself, which 
will typically be in the picofarads.  If we suppose the spark gap is 10pF 
and the pulse has a rise time of 1μs, a few hundred kilohms would 
suffice, a number not normally considered a “small resistance”, but 
it’s one or two orders of magnitude smaller than the other resistances 
discussed above. 

    Another more indirect route is used by the Marx generator itself:  
rather than using a small coupling capacitor to trigger the discharge of 
a larger storage capacitor, we can couple the triggering pulse through 
the large storage capacitor itself, suddenly increasing the voltage on its 
other end by a factor of up to 2. 

    A third possibility involves resistive networks.  By charging a small 
capacitor (to ground) through a resistive network from two or more 
other capacitors (to ground), its voltage can be brought rapidly to a 
weighted average of their voltages, and if a spark gap is in parallel 
with it, it will either discharge repeatedly through the spark gap, or 
not, according to whether its terminal voltage is greater or less than 
the spark gap’s breakdown voltage.  The pulses thus generated can be 
used to trigger other, higher-energy spark gaps (and their time of 
occurrence can be synchronized with the primary oscillator by 
coupling in a little of the primary oscillator to them), or the resulting 
larger current draw on the “input” capacitors can be sensed. 

    A particularly interesting possibility here is the use of such a 
threshold device as a phase detector.  Given reasonable waveforms on 
two bit oscillators, their instantaneous sum will rise above some 
threshold for a while each cycle if they are in phase, but for a high 
enough threshold, not at all if they are out of phase.  This provides us 
with the operation XNOR;  combined with negation and access to 
the reference oscillator, we can construct in some sense all boolean 
functions. 

    This same sort of threshold device may be of particular interest as a 
display pixel, glowing or not according to whether its voltage reaches 
the threshold and thus provokes repeated discharges.  Low-pressure 
plasmas, xenon, and mercury vapor coupled with phosphors may be 
useful in boosting visible light output for a given power level. 

    A fourth possibility is to interrupt a continuing arc, ballasted for 
example by a resistor or the self-inductance of the wires, with a 
voltage pulse that temporarily robs the spark gap of the tens of volts 
necessary to continue conduction.  This, however, seems much more 
precarious and sensitive. 

    Encoding bits directly as voltage levels rather than oscillator phases 
seems like it would be more challenging, if feasible at all, unless you 
are spending the enormous amount of energy required to keep a spark 
gap in a state of continuous arcing, or find a way to employ glow or 



corona discharge like an old Dekatron, which I suspect would cost 
significant speed.  So I suspect the phase-encoding approach, although 
less simple, is probably more practical. 

    The above falls short of being a fully worked out design for digital 
sequential logic using spark gaps, resistors, and capacitors, but I think 
it amounts to a convincing argument that it’s practically doable, 
though only over a fairly narrow voltage range in the normal 
atmosphere (400–4000V);  it might be easier to debug something 
closer to the middle of that range, like 1200V, than designs near the 
limits, like the 4000V I was considering above.  Reducing the pressure 
or substituting a friendlier gas like argon (127V at 10μm) might help. 

    Sources of deviation from designed behavior include: 

• Resistors changing resistance as they heat up and as voltages change:  
this is particularly a problem for old carbon-composition resistors, 
although modern high-precision metal-film resistors are not 
completely immune.  
• Spark gap size variation between devices:  this may be particularly a 
problem at lower voltages and lower gap sizes.  
• Spark gap wear:  the spark gaps will increase in size and decrease in 
smoothness over time as the frequent electrical discharges vaporize 
parts of the electrodes;  moreover, some materials may form insulating 
oxide layers, increasing the breakdown voltage significantly.  This can 
be minimized by reducing the operating frequency;  by using higher 
radices rather than binary, with the reference oscillator running at ⅓, 
¼, or less of the primary oscillator frequency;  by using electrodes of 
graphite, copper, or tungsten-copper such as Elkonite;  or possibly by 
using a dielectric coolant liquid rather than gas, or by running cooling 
water through the electrodes.  
• Spark initiation delay:  avalanche discharge is triggered by a seed 
electron, which breaks free at a random time sometime after the 
avalanche threshold is passed.  In neon-tube logic of the 1960s and 
1970s, this problem was often remedied by adding radioisotopes to the 
electrodes or by keeping them brightly illuminated with visible or 
ultraviolet light, while in vacuum tubes it was remedied by heating 
the cathode with a resistive filament and also coating it with a 
low-work-function material such as an alkali-metal oxide.  Other 
possibilities include using small gaps so that field emission is more 
important;  using sharp points, perhaps even carbon fibers as used in 
modern ozone generators, to provide corona discharge in advance of 
the avalanche discharge;  using larger electrodes, perhaps with anodes 
full of holes to permit light to illuminate the cathode;  and suffusing 
the whole machine with slightly ionized gas or ultraviolet light.  The 
use of graphite might worsen this problem because its higher (≈4.6 
eV) work function reduces field emission and the emission of 
photoelectrons.   

    Another crucial question about such devices is to what degree they 
can be miniaturized and sped up.  Near-kilohertz discharge rates 
should be straightforwardly achievable, but neon-tube logic topped 
out around a kilohertz due to the relaxation time required for the gas 
to deionize. 

    Intuitively I would expect higher-ionization-energy gases to 
recover faster — this is why air-gap flashes use air (primarily nitrogen) 

https://cccbdb.nist.gov/ie1.asp
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instead of the more efficient xenon, because it gives submicrosecond 
recovery times, and N₂ (1503 kJ/mol = 15.58 electron volts) is close to 
optimal here, though, e.g., hydrogen (1488 kJ/mol = 15.43 electron 
volts) is close.  SF₆ (≈15.8 eV) may also be worth considering.  Perhaps 
also higher pressures accelerate the recovery time, accounting for the 
difference between the millisecond recovery time of an ordinary 
low-pressure xenon camera flash and the 10μs cited for xenon in 
Wikipedia’s air-gap flash article.  Electric-discharge machining 
routinely uses hundreds of thousands of sparks per second in, 
typically, deionized water, which is pumped through the spark gap at 
a high flow rate;  typically this uses several hundred volts to initiate 
the spark and an average of tens of volts and several amps during 
cutting. 

    Both higher pressures and higher ionization energies would tend to 
promote miniaturization. 

    So, because both air-gap flashes and EDM routinely have 
submicrosecond recovery times, I think submicrosecond recovery 
times are probably feasible, putting this kind of logic in the 
performance range of 1960s CD4000-type CMOS. 

    Nanosecond-scale recovery times would probably be more 
challenging and would probably require mechanical removal of the 
ionized dielectric;  for example, if the spark gap is 10 μm wide, it the 
electrodes can very reasonably be 10-μm-diameter rods with holes in 
their center for coolant flushing.  For the coolant to travel the 5 μm 
required to clear the still-ionized material from the interelectrode gap 
in, say, 100 ns, it needs to be traveling at 50 m/s, Mach 0.15, and 
slightly faster passing through the hole, which is probably achievable;  
waterjet cutting machines achieve many times that speed through 
holes in that size range, and the use of a gas would decrease the 
viscosity far below what a waterjet must withstand.  This amounts to 
a volume flow rate of under 10 microliters per second, again, plainly 
within the bounds of feasibility.  We can conclude that active 
dielectric flushing is a practical way to increase spark-gap logic 
operational frequencies well into the megahertz, though probably not 
to 100 MHz. 

    What about energy usage?  If each spark gap has a capacitance of 10 
pF and discharges at only 500 V, it contains 1.25 μJ in its electrical 
field at discharge time, which will be almost entirely dissipated by the 
spark;  at 1 MHz discharge rates this amounts to 1.25 W.  We might 
thus suspect that active coolant flushing of some sort is necessary to 
prevent the electrodes from entirely vaporizing, quite aside from its 
potential utility for accelerating recovery times. 

    However, the minimal capacitance of a spark gap of 10 μm 
diameter and 10 μm spacing can be approximated with the 
infinite-plate formula C = εA/d, which gives some 70 attofarads in 
this case, five orders of magnitude smaller, so in fact the spark-gap 
capacitance will not be the limiting factor in such cases, even using a 
high-permittivity dielectric like water. 

    This in turn suggests an electrical energy cost on the order of 10 
picojoules per bit operation, comparable to modern CMOS, although 
of course that doesn’t account for the energy cost of pumping all that 
dielectric through the gap.  Also, such low energy costs per operation 

https://en.wikipedia.org/wiki/Electrical_discharge_machining#Sinker_EDM


probably require much higher operational frequencies — for RC = τ 
= 2.1 ms as above, you’d need a 30-teraohm resistor, which would 
normally be called an “insulator”.  So 1 nJ is probably achievable but 
10 pJ may not be. 

    Conductive-mesh spark-gap electrodes may be a more effective 
way to deliver light, dielectric, and coolant to the spark gap, 
permitting as they do the use of spark gaps with electrodes much 
larger than their interelectrode spacing without diminishing the fluid 
flow. 

    Over timescales not too long compared to the relaxation 
(deionization) time of a dielectric, it may be feasible to use a flowing 
fluid as a delay-line memory.  An input spark gap in the center of a 
tube of, for example, rapidly flowing atmospheric-pressure xenon, 
produces a series of plasma blobs which are rapidly carried downwind, 
still glowing;  some 10 μs later, an output spark gap also in the center 
of this tube detects their presence by virtue of the discharges they 
ignite at well below its usual breakdown voltage.  A partial vacuum 
behind a hole in one of the electrodes of the output spark gap sucks 
these blobs into the interelectrode gap.  To minimize the 
time-domain degradation of the memory waveform, this entire 
stream of memory plasma is kept well away from the walls of the tube 
by the xenon flowing around it, which ideally would be in inviscid 
flow so that even the curl of the flow field remains close to zero.  
Operated at 10 MHz such a tube could store at least 50 
Manchester-encoded bits;  gases that relax more slowly than 
atmospheric-pressure xenon could afford larger capacities and 
less-demanding operational frequencies. 

    Somewhat surprisingly for a digital-logic device that can plainly be 
constructed by hand from Victorian-era materials, the above 
dimensional figures strongly suggest that microscopic realizations of 
this family of devices might be not only feasible but even practical, 
particularly with higher pressures and modern insulators like teflon (as 
opposed to sealing-wax and gutta percha).  With adequate plumbing, 
they might be capable of speed rivaling modern solid-state electronics, 
or at least 1980s solid-state electronics.  Spark gaps of under a micron 
should be effective at a megapascal or so of gas, or perhaps at 
atmospheric pressure with liquid dielectrics.  

    Another amusing application of such relaxation oscillators might be 
as microphones:  below the Paschen minimum, even a very small 
change in the electrode spacing should produce a very large change in 
the breakdown voltage of the spark gap and consequently both the 
frequency and the breakdown voltage of a free-running RC oscillator.  
(I’m not sure if it also increases the jitter.) Above the Paschen 
minimum, it should produce a smaller, nearly linear, but still fairly 
reliable change in these variables. 

    The oscillation period also depends, of course, on the resistance and 
capacitance, and in many applications it may be more practical to 
modulate the capacitance rather than the spark-gap size.  3 mm of 
ordinary glass ought to provide about 30 kV of dielectric strength, or 
fifty times that if fused silica instead;  the 2 cm² of a finger touch, 
coupled with the relative permittivity of around 5 for glasses, gives a 
capacitance of about 3 pF, which may be a detectable touch.  Lower 



voltages and thinner materials may be a more practical way to detect 
human touch, or simply mechanical deformation of air-dielectric 
capacitors through levers.  

    DTIC document 633669 from 1991, “Hydrogen spark gap for high 
repetition rates”, reports 10-μs recovery times to 17% for a 1.4 MPa 
2.5-mm “unblown” hydrogen spark gap and 100-μs to 42%, about an 
order of magnitude faster than air;  this is attributed to hydrogen’s 
high thermal diffusivity.  That is, by “undervolting” the gap to 17% of 
its normal breakdown voltage (some 120kV), they can trigger 
discharges at 100-kHz rates, or 10 kHz at 42% of its normal 
breakdown voltage.  Recovery to 90% takes about 1 ms for hydrogen 
and 10 ms for air, “dominated by the cooling time of the hot channel” 
rather than its deionization.  It also points out that narrower gaps 
permit closer gas contact to metal surfaces, thus cooling the gas more 
rapidly, as well as lower inductance and resistance, and that the gas 
requires some time to recover its density after being rarefied by 
thermal expansion.  They were working with three-electrode 
trigatron-type devices and report that “the recovery time varied little 
from millijoules to kilojoules of transferred energy”, though it would 
be unsurprising if the picojoules I contemplate above did result in 
significant variation.  (Hopefully the smaller energies would also 
result in longer electrode life than the hundreds of shots at which they 
reported substantial electrode wear.) 

    Above I haven’t considered inductance, but of course at high 
enough speeds at a given length scale, inductive impedance will 
dominate resistance.  Decreasing the length scale also helps with this. 

    The related DTIC document A636361, “A laser-triggered 
mini-Marx for low-jitter, high-voltage applications”, describes an 
interesting way of triggering spark gaps with ±700-ps 2σ jitter — by 
using ultraviolet light to ionize SF₆ in the spark gap (in this case by a 
frequency-quadrupled Q-switched Nd:YAG laser) it is possible to 
ignite a plasma in a precharged spark gap, which then activates a 
Marx generator with rise times in the range of 2 ns.  There are a 
variety of ways that such spark gaps can detect light, ranging from the 
reduced jitter from photoelectric seed electrons to this sort of 
ionization-induced ignition-voltage reduction, and of course a 
traditional Geiger counter is nothing more than a spark gap arranged 
to detect ionizing light and other particles.  

    A low-voltage way to try out some of these ideas is to replace the 
spark gaps with transistors, or perhaps diodes, in reverse avalanche 
mode, as in Look Mum No Computer’s Super Simple Oscillator, 
which uses two unspecified terminals of a 2N3904 in parallel with a 
10μF capacitor.  Another, better-explained variant of the design uses a 
2N4401 with the emitter toward Vcc and the collector toward 
ground, in series with an LED and in parallel with a 3300μF (!) 
capacitor.  (Thank you very much to Hideki and splud on 
##electronics for linking me!) 

    Folklore says red LEDs suffer reverse avalanche discharge around 
5V and often survive it, so they might be an alternative to the 
transistor or spark gap.  Their lifetime might be limited in this 
application, or it might not.  Probably something like a 1N4001, or 
any ordinary rectifier or small-signal diode, would have an 

https://www.lookmumnocomputer.com/simplest-oscillator
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inconveniently high breakdown voltage, which increases the chance 
of damage to the diode, as well as power consumption and electric 
shock risk. 

    In either case you’re depending on properties of the components 
that are not specified by the manufacturers because they’re irrelevant 
to their usual uses, so consistent results from component to 
component may be hard to obtain.
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Copper salts
Kragen Javier Sitaker, 02020-09-21 (updated 02020-09-23) 
(8 minutes)

    For Hot fabrication (p.  316) I was thinking it might be useful to be 
able to smelt copper into a mold with a thermite reaction.  But for 
that you need cuprite, cuprous oxide, which I do not know where to 
buy. 

    I think you’d probably have to synthesize it. 

    Copper has many salts, but more cupric salts than cuprous salts, and 
its cupric salts are more often water-soluble. 

    Red cuprous oxide (cuprite) is insoluble in water, though not in 
acids, and “degrades to [cupric oxide] in moist air”, while black 
cupric oxide (tenorite) is also insoluble, though, again, not in 
acids — or alkalis, with which it yields cuprate salts;  and there is 
additionally a hypothetical trivalent copper oxide which would be a 
strong oxidizer.  White cuprous sulfate “decomposes rapidly in 
presence of moisture” to copper and the highly soluble skin-staining 
blue vitriol.  “Little evidence exists for” yellow cuprous hydroxide, 
which is “extremely easily oxidized” to insoluble cupric hydroxide.  
Cuprous nitrate is almost unknown;  blue-green cupric nitrate is a 
common water-soluble bulk chemical, easily synthesized from copper 
and silver nitrate.  Cuprous iodide is precipitated from cupric ions and 
potassium iodide, releasing iodine;  there is no cupric iodide, or at any 
rate only a very unstable one.  Rare blue cupric fluoride is “highly 
soluble in water”;  there is no cuprous.  Dark green water-soluble 
cupric acetate, a component of verdigris and used to make Paris 
green, can reportedly be heated with copper to produce white 
cuprous acetate.  Basic cupric carbonate hydroxide, another 
component of verdigris, is the insoluble and hard malachite and 
azurite, depending on the amount of hydroxylation;  the neutral gray 
cupric carbonate readily hydroxylates given half a chance, or decays to 
cupric oxide at low CO₂ concentrations;  there is no cuprous.  
Blue-green cupric phosphate and phosphate hydroxide are the 
insoluble rare mineral libethenite, or more commonly 
pseudomalachite, depending on hydration and hydroxylation — or, 
with aluminum, turquoise;  again there is no cuprous. 

    So, excluding exotics, there seem to be no stable water-soluble 
cuprous salts except (to an almost undetectable degree) the chloride, 
iodide, and bromide. 

    (Incidentally, the above suggests that copper ions offer a way to 
separate iodide and, if cupric, elemental iodine from a mixture of 
chlorides and iodides, though I’m not sure it would work as well for 
sodium iodide.) 

    WP suggests synthesizing cuprous oxide by the following routes:  
directly oxidizing copper by heating it in air (but then how do you 
separate the two oxides?);  reducing cupric solutions to cuprous with 
sulfur dioxide (maybe sodium thiosulfate might also work;  the 
ammonia in ammonium thiosulfate would probably form a 
tetraammine-copper(II) complex, which which would be pretty but 



might interfere);  reacting cuprous chloride with bases to precipitate 
the cuprous hydroxide;  or reducing alkaline cupric solutions with 
reducing sugars in Fehling’s or Benedict’s tests, where the copper is 
complexed with potassium sodium tartrate or sodium citrate, 
respectively, to prevent precipitation of cupric carbonate.  (Fehling’s 
test is mentioned in Cooley’s 1880 Cyclopædia, for example under 
“Urine”, along with Trommer’s test, under “Sugar”, which mixes 
blue vitriol with sugar and “an excess of hydrate of potassium 
[KOH]”, then heats it to precipitate what sounds like cuprous oxide.  
The advantage of Fehling’s test is reputedly that it was more selective 
toward sugars and easier to prepare.  Benedict’s test wasn’t introduced 
until 1907.) 

    Benedict’s test sounds relatively easy, but it consumes reducing 
sugars, such as glucose, fructose, or lactose — but not sucrose!  
Though you can hydrolyze sucrose with HCl — or, apparently, by 
boiling it with citric acid. 

    I think you can also, crossing the streams, use a cupric solution to 
oxidize copper metal, reducing the cupric ions to cuprous ions, and 
simultaneously producing more cuprous ions from the metallic 
copper;  this is reported to work with cupric chloride, for example.  
The etchant is maintained at an acidic pH with HCl so that the cupric 
chloride remains soluble, and the temperature is ideally maintained at 
50° to accelerate the etching process, though Adam Seychell explains 
that this is not necessary;  he prefers 30° to reduce the HCl fumes. 

    Electrolytically pure copper metal is readily available, if expensive, 
and easily oxidized electrolytically to the chlorides, probably with a 
little contamination from the iodide which is insignificant in this 
context.  Somewhat less pure blue vitriol is available for US$5–$7/kg 
as a fungicide and alguicide for swimming pools, though it, too, is of 
course cupric rather than cuprous.  At about 250 g/mol 
(pentahydrate) it’s about 25% copper (63.546 g/mol) by weight. 

    The thermite reaction with cupric oxide is hazardously rapid, so 
cupric contamination is to be avoided here;  washing the 
nearly-insoluble white cuprous chloride thoroughly with water 
should suffice to purify it, but after purification the resulting cupric 
chloride must be kept dry to prevent disproportionation from 
recontaminating the mix.  Similarly, cuprous oxide oxidizes to cupric 
oxide in moist air, which is dangerous in this context. 

    Insoluble tribasic copper chloride (atacamite, another component of 
verdigris) is manufactured in bulk as a nutritional supplement (though 
not for humans — a substitute for blue vitriol for livestock) and a 
fungicide. 

    The electrochemistry chapter of Simon Quellen Field’s scitoys 
suggests making cuprous and cupric oxide by heating copper in air to 
red heat for half an hour, then flaking the black cupric oxide off (by 
allowing it to cool) to reveal the cupric oxide underneath.  I suspect 
this is more practical as a way of making cupric-oxide semiconductor 
thin films than as a way of obtaining bulk cupric oxide.  (The author 
reported 50 μA at 0.25 V from their 0.01 m² cupric-oxide solar cell, 
using salt water as the other electrode.) 

    There’s also “red plague”:  red cuprous oxide forming on the 
surface of copper over months in humid environments due to galvanic 
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corrosion with silver plating. 

    Of all the options for producing cuprous oxide, I think the most 
practical is probably to generate soluble cupric chloride by electrolysis 
of aqueous sodium chloride by copper electrodes, followed by 
reduction to cuprous chloride with copper and HCl, then 
precipitation as cuprous oxide with ammonia, yielding also 
ammonium chloride — although perhaps a different base like sodium 
carbonate or bicarbonate, or calcium hydroxide, is required to prevent 
the copper from complexing with ammonia.  It would be super cool if 
acetic acid were strong enough to allow the reduction and etching of 
copper to proceed;  Cooley’s 1880 Cyclopædia reports that dibasic 
acetate of copper is “prepared on a large scale in France by exposing 
copper to the air in contact with fermenting wine-lees”, so I suspect 
that vinegar may be sufficiently strong to etch the copper.  Where I 
am most uncertain is as to whether it is sufficiently strong to maintain 
cuprous chloride in solution.  The Cyclopædia claims that heating 
cupric chloride reduces it to cuprous chloride “at a high 
temperature”, which Wikipedia suggests is 993°, well above its 498° 
melting point, and a bit too high for this kitchen;  WP claims cuprous 
chloride is stable to 1490°, though melting at 423°. 

    Distillation of ammonia by absorption into pure water may be 
feasible over days at room temperature;  some random YouTuber 
reported successful deposition of a great deal of verdigris by putting 
their vinegar-and-salt-painted copper in a sealed box with a dish of 
ammonia nearby.  Another video experiment report by the impressive 
mopatin claims success at reducing copper oxide, or perhaps the 
sulfides, or perhaps dissolving them, with a mix of vinegar and salt.  
Others report success at making copper acetate from copper metal, 
vinegar, and low-concentration H₂O₂, which last they claim is not 
necessary.
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Hot fabrication
Kragen Javier Sitaker, 02020-09-21 (updated 02020-09-23) 
(16 minutes)

    Thinking a bit about thermite, it occurred to me that, for sand 
casting or investment casting of metal objects on the scale of 
centimeters, it might be best to generate the metal object right on top 
of the mold, thus avoiding the necessity to open a hot furnace, carry a 
red-hot or white-hot crucible, and pour the crucible.  Copper in 
particularly is notoriously tricky to cast in this way. 

Microwave oven kilns 

    The first version of this process I saw was back in the 1990s with 
microwave-oven casting:  some guy whose name I forget stuccoed his 
clay lost-wax mold with magnetite and graphite as susceptors, taped 
over his microwave-oven fan, and microwaved the assembly until it 
was hot enough to melt metal.  A more recent incarnation of a similar 
idea used a microwave-oven-sized tiny porous-insulating-refractory 
kiln with charcoal inside of it to calcine magnesia to make a 
magnesium-oxychloride knife from mostly seawater;  the refractory is 
transparent to microwaves, and avoids the necessity to cover up the 
ventilation fan, but the charcoal picks up the microwaves.  The stucco 
guy explained that magnetite works better than graphite, but only up 
to its Curie temperature, at which point graphite starts to work better 
because of its higher resistance;  presumably less pure forms of carbon 
such as charcoal have higher resistivities and therefore work down to 
lower temperatures as well. 

    I’ve also had success igniting arcs between pieces of charcoal and 
steel wool inside a microwave oven, and such arcs would also work to 
heat up the interior of an insulated ceramic space like that.  (I also left 
a glass of water elsewhere in the microwave to limit the risk of 
magnetron overheating in case my susceptors proved too reflective.) 
Peepholes in an optically-opaque insulating refractory kiln, whether 
for use in a microwave oven or not, might permit the pyrometric 
inspection of the blackbody interior when the microwave and thus 
the arc is turned off.  (I was doing the arcs out in the open on top of a 
bed of granulated salt, because I had no sand;  the molten salt globs 
were easier to remove from the granulated salt than the molten glass 
globs were from the glass floor of my microwave oven.) 

    (Silicon carbide is another susceptor with a wider temperature 
range than either magnetite or graphite.) 

Thermite 

    If you can ignite thermite (whether by arcs, Joule heating, or by 
any other means), in a sand funnel scooped out of the top of a 
metal-casting mold, then you can presumably fill the mold with the 
liquid metal produced, whether that is iron from an 
aluminum/hematite thermite or copper from an aluminum/cuprite 
thermite.  Moreover, if the reaction chamber is sufficiently refractory 
for the reaction not to melt through its bottom, it can be used to heat 



an insulated reaction chamber rapidly to 2500° to 2800°, a 
temperature that can be calibrated by the thermite’s stoichiometry 
rather than regulated by feedback, and which may be useful for other 
reactions that are difficult to perform at more convenient 
temperatures, such as the graphitization of amorphous carbon foam, 
carbothermic reduction of metals with refractory oxides, and so on. 

    (This process is routinely used with graphite crucibles or sand 
molds for welding copper conductors and railway tracks.) 

    Here in Argentina, on Mercado Libre, hematite (“pigmento oxido 
de hierro rojo”) costs US$4 to US$6 per kg, while magnetite is in 
around the same range.  I can’t find cuprite;  see the note on copper 
salts (p.  313) for more.  Cupric oxide (tenorite) is much easier to 
prepare in bulk, but the resulting thermite acts with deadly rapidity;  
you might be able to reduce this menace by diluting the thermite mix 
with less-active hematite, excess aluminum, copper filings, iron 
filings, silica sand, or even — at the risk of producing hot caustic 
gas — blue vitriol.  A small amount of excess aluminum and perhaps 
hematite or iron should produce an aluminum bronze rather than 
copper;  CuAl10Fe3 is 8.5%-11% aluminum and 2%-4% iron, the 
remainder being copper.  Aluminum bronzes are lighter, stronger, 
more corrosion-resistant, and lower-melting than copper. 

    Any excess aluminum would necessarily require that the reaction 
vessel be carefully purged to eliminate gaseous oxygen to reduce the 
risk of an aluminum fire.  At ordinary temperatures carbon dioxide is 
not sufficiently inert to escape this danger, although paradoxically 
above about 2300° at atmospheric pressure the equilibrium goes the 
other way, and carbothermic reduction of aluminum becomes 
possible. 

    In any case, mixing enough of the desired end product into the 
thermite ought to tame it adequately, although thermite is plagued 
with hazards stemming from surprising interactions accelerating its 
action. 

Sulfur thermites 

    Sulfur is another possible oxidant for powdered metals, particularly 
in a sealed pressure vessel.  This poses the risk of the sulfur boiling if 
the reaction is not fast enough and pressure is not contained, but it has 
a couple of very interesting benefits.  First, it is possible to weld 
aluminum with this method, producing only aluminum sulfide 
(melting point 1100°, well above aluminum’s 660°;  very hard but 
decomposes in water to aluminum hydroxide and hydrogen sulfide, 
from which the sulfur can easily be recovered).  Second, iron pyrite is 
a beautiful and interesting material in its own right, quite aside from 
its historical usage in starting fires and in semiconductor diodes.  
Finally, while metal oxides like those of iron, manganese, and copper 
inevitably leave behind a residue of the reduced metal as well as the 
molten oxide, sulfur can produce a pure molten metal sulfide if the 
stoichiometry is correct. 

Welding and sintering 

    Such welds can in principle be executed by pressing a powder of 
the thermite, or even just the oxidant, in between blocks or grains of 
the solid material to be welded, then igniting the mass, thus forming 
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the weld.  Although the sulfides formed will weaken the weld, being 
as they are weaker than the bulk metal (except perhaps in the cases of 
aluminum and zinc), if the weld remains hot long enough for them to 
spheroidize, the loss in strength may be minimal.  As I wrote in 
Dercuano, it may be possible to use such a process as a way to rapidly 
sinter a green body primarily composed of metal grains. 

    (I suspect it’s possible to weld magnesium by this method as well, a 
task which is challenging in general and impossible with ordinary 
thermite.) 

Applications of thermites to 3-D printing 

    By selectively depositing a small amount of oxidant in a bed of 
metal powder which is then suffused with an inert gas before ignition, 
as I wrote in Dercuano, it should be possible to 3-D print near-net 
mostly-metal objects with a rough surface and a small amount of 
oxide or sulfide trapped in spheres deep inside of them.  Moreover, 
this should also be possible with selective deposition of a paste 
consisting mostly of metal powder with a small amount of oxidant 
and binder;  the oxidant might be liquid sulfur or amorphous sulfur, 
in which case no extra binder would be needed;  or the oxidant might 
be crystalline sulfur or oxides, hydroxides, or nitrates of metals, in 
which case the binder would be some other material such as an 
aqueous bentonite colloid or molten lead-tin solder.  A third 3-D 
printing process would involve selectively jetting a binding agent, 
perhaps just water, into a powder bed deposited layer by layer, 
followed by the depowdering of the green body in the way that is 
currently usual for such powder-bed processes;  then the green body 
would be ignited, perhaps after drying. 

    In all of these 3-D printing processes, you could use inert, dense, 
high-boiling, and endothermic fillers to reduce the tendency of the 
ignited body to evolve gas and blow itself apart;  incorporating 
adequate porosity into the design would also help.  Silica, silicon, 
lithium, phosphoric acid, olivine, lead, tungsten, and many other 
substances could be useful here.  Sodium chloride and alumina are in 
use for this purpose today. 

Other ways to heat a pocket furnace 

    Other ways to heat a charge of metal in an insulating chamber 
immediately atop a mold, so as to drop it into the mold once it 
finishes melting and immediately make a cast, include the use of a 
small in-place carbon-electrode electric arc furnace (as demonstrated 
by, for example, The King of Random, RIP);  a small induction 
heating coil, which can be placed outside the refractory chamber itself 
(I’ve written about sealed insulated induction furnaces previously in 
Dercuano);  and optical heating through a peephole, either by a 
focused laser or by focused sunlight, perhaps previously “collimated” 
by passing it through a “pinhole” before focusing, in order to permit 
the usage of smaller solar ovens. 

    Peepholes of transparent silica aerogel or aerogels of other 
high-temperature ceramics, such as yttria or yttralox, may permit 
pyrometry and optical heating without loss of heat to convection, 
although at these temperatures radiative heat loss is probably more 
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significant.  They can also prevent contamination of the reaction 
chamber by reactive gases such as oxygen, though perhaps purging the 
vicinity or directly the chamber with other gases such as argon may be 
more effective, or the loss of scarce reaction products such as vapors of 
gold or mercury. 

    A more everyday way to melt refractory metals and reduce 
ceramics less refractory than tungsten is to heat them with a carbon 
arc in argon on a water-cooled copper hearth, which can provide the 
necessary grounding.  However, this approach is not very efficient due 
to the high thermal losses into the copper, and might result in copper 
or carbon contamination of the melt. 

Zirconium-based ceramics 

    Another potentially interesting powder-bed 3-D printable end 
product, which I didn’t appreciate at the time, is the possibility of 
printing in yttria-stabilized cubic zirconia.  This could be done either 
by sintering or fusing a bed or green body of powder of the ceramic 
with any of the thermite compositions described above, or, more 
outlandishly, by selectively oxidizing a bed or green body of metallic 
zirconium powder (just US$12–33/kg from China in 2015-19, 
according to the USGS!) with the appropriate percentage of yttrium 
present (about 10% on an yttria basis, ideally already as the trivalent 
oxide, US$3–8/kg, but conceivably just as the metal, US$34–48/kg, 
or as some other salt such as the acetate, formate, nitrate, or sulfate, all 
of which are water-soluble;  or as the hydroxide).  The oxidation 
process would inevitably leave bits of the reduced oxygen-donating 
metal behind, probably trapped inside the zirconia mass, probably 
weakening it somewhat and potentially cracking it.  (The candidate 
donor metals — iron, copper, chromium, and so on — are strong, hard, 
and tough, but cubic zirconia is much harder, so it cannot transfer 
mechanical loads to them unless it cracks.) 

    No such concern about donor metal remnants applies for oxidation 
to zirconium carbide, which can perhaps be done with just zirconium 
and carbon;  however, the temperature is probably high enough to 
melt any remaining zirconium, so depositing a bit of zirconium into a 
bed of graphite or diamond dust might be better than vice versa.  
Zirconium carbide is even more refractory than zirconia (to the point 
that I doubt the above-mentioned thermites can sinter it), but its 
standard enthalpy of formation is smaller, only -207 kJ/mol to 
zirconia’s -1080 kJ/mol and alumina’s -1675.7 kJ/mol;  so it’s 
conceivable that it might need a boost to fully fuse upon ignition.  
Analogous considerations apply to zirconium boride, for which this 
process is already in use, under the name “self-propagating 
high-temperature synthesis”. 

    One clever trick from zirconium boride SHS, probably applicable 
to this entire class of processes, is to include metallic magnesium in 
the mix to capture unwanted oxygen from the feedstocks, preventing 
it from outgassing;  the magnesia can then be removed with mild acid 
leaching after cooling.  Glucina might work better for such oxygen 
immobilization in the sense of occupying less volume, and it is harder 
than magnesia, though slightly less refractory;  but removing it later 
requires more aggressive chemicals, and of course it is considered very 
toxic. 
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    Cubic zirconia is the stable structure for zirconia above 2370°, so in 
the case of producing zirconia it is probably necessary for the 
temperature to exceed this level.  Candidate alternative stabilizing 
dopants include calcium, titanium, and magnesium;  calcium and 
magnesium oxides in particular might be particularly easy to handle, 
and they provide superior mechanical properties to yttria! However, 
historically sintering them has been too difficult, a problem this 
thermite-printing process might solve;  they also have worse 
high-temperature stability than traditional yttria-stabilized zirconia. 

    Including aluminum in the zirconium mix might offer some 
additional advantages.  I think it won’t give you hotter 
results — while I think aluminum has a higher energy density of 83.8 
MJ/ℓ than zirconium;  alumina’s molar mass is 101.960 g/mol, while 
zirconia’s is 123.218 g/mol, giving respectively standard enthalpies of 
formation of -16.4 MJ/kg and -8.8 MJ/kg, advantage aluminum;  
however, while alumina’s specific heat is the low 0.88 J/kg/K, 
zirconia’s specific heat is a super-low 0.27 J/g/K, so I think zirconium 
as a thermite fuel will actually get hotter than aluminum, though I 
think it’s entirely likely I’m misunderstanding how to apply the 
thermodynamics.  Also, though, the resulting alumina–zirconia 
composites offer better mechanical properties than either ceramic 
alone, being harder than zirconia but tougher (higher tenacity) and 
consequently stronger than alumina. 

    Several of these powder-bed processes might benefit from the 
powder bed being pressed in a hydraulic press, as for hot isostatic 
pressing but without the heat, at the time of ignition.  This would 
tend to accelerate the reaction dangerously, but it might also diminish 
the tendency for the reaction to blow the workpiece apart or produce 
porosity, or for the heat produced to deform the workpiece. 

    Of course other similar metals, such as titanium, tantalum, 
hafnium, niobium, vanadium, molybdenum and thorium, can be used 
instead of zirconium to 3-D print similar ultra-high-temperature 
ceramics in similar ways;  titanium carbide and molybdenum boride, 
among many other examples, have been made by SHS.  As another 
example, there’s a 1997 paper by Sundaram et al., that got titanium 
diboride by SHS of magnesium, amorphous boria, and rutile.
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Aluminum-air batteries
Kragen Javier Sitaker, 02020-09-23 (4 minutes)

    There is a very interesting device called the aluminum-air fuel cell:  
a consumable aluminum anode (-1.662 V to the oxide, but the 
relevant oxidation here is the oxidation to the hydroxide at -2.31 V), 
separated from a porous carbon cathode by a thin porous insulating 
material soaked with an electrolyte such as sodium chloride.  With a 
caustic potash electrolyte this produces 1.2 V per cell, but table salt 
provides a wholly acceptable 0.7 V. 

    Aluminum’s atomic weight of 26.981 538 4(3), its generous three 
electrons per atom, the electron’s charge of 1.602 176 620 8 × 10⁻¹⁹ C, 
and Avogadro’s number of 6.022 140 9 × 10²³ atoms / mole together 
give us 10.727 928 available coulombs per kilogram of aluminum, or 
about 7 or 8 MJ/kg at 0.7 V.  This is a respectable fraction of 
aluminum’s energy density as a fuel, 31 MJ/kg!  (When burned in 
oxygen.) It’s probably as good as you could expect from fueling a 
steam turbine from aluminum and air, say.  This is astonishing because 
batteries normally don’t come anywhere close to heat-engine 
energy-density territory. 

    Of course you can scale it down in a way that you can’t scale down 
a steam turbine:  a gram of aluminum should provide you with 7 or 8 
kJ, and only 13 mg of aluminum is necessary to provide 100 J. 

    Amateur aluminum-air batteries commonly use a copper 
current-collector grid on the carbon cathode rather than nickel, but I 
suspect that will suffer anodic corrosion to copper chloride over time.  
Replacing the copper wires when you replace the aluminum anode 
should not be too hard, but neither is plating them in nickel, if you 
have some;  maybe lead and/or tin would also work. 

    Removing the gelatinous hydrated aluminum hydroxide may be 
more difficult;  maybe some sodium fluoride or monosodium 
phosphate would work for that if they don’t corrode the aluminum 
fuel itself, but then they become additional consumables.  (There’s 
also the possibility that tridentate citrate complexes might help.) 
Mixing some ethanol or isopropanol into the electrolyte might 
encourage the hydroxide to de-gel without creating too much toxicity 
or fire hazard. 

    I’ve been trying to figure out what kind of small generator would 
work to provide, say, a laptop with long autonomy;  I’ve been looking 
at model-airplane two-stroke diesel glow engines and things like that, 
since those seem to be the smallest heat engines around, but it’s hard 
to find information about their efficiency, and they’re also messy and 
noisy and don’t scale down to low power.  In Dercuano I concluded 
that under ten milliwatts on average, during use, was adequate for a 
responsive interactive computing experience, mostly to update the 
screen.  12 hours a day of usage for a month at 10 mW works out to 
13 kJ, which is only about 1.6 kg of aluminum, so maybe the 
aluminum fuel cell can solve my problem.  It certainly seems to scale 
down better than heat engines do. 

    It would probably be difficult and somewhat dangerous to get high 
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current output from such a battery, for all that aluminum is easily 
available in 10-μm-thick foil.  I think you’d have to finely powder it, 
with all the risk of class-D fires and possible waste via air oxidation 
that that would entail.  But you could likely get it to work. 

    Magnesium is another possible anode fuel for such a battery;  GE 
produced such a device in the 1960s, using the same NaCl electrolyte.  
I think it does not have the problem of fouling the anode with a 
sticky gelatinous hydroxide, but I think its specific energy is lower, 
because a magnesium atom has but two electrons to give for its 
battery;  but the voltage is higher, which might compensate.
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A digital Dagarti might save your 
life
Kragen Javier Sitaker, 02020-09-23 (3 minutes)

    Suppose your exocortex’s radar detects a sniper’s bullet destined for 
your head.  How soon does it need to detect this to yank you out of 
harm’s way? 

    In a worst-case scenario, the bullet is aimed at the middle of your 
chest, and it must jerk you either to the left or to the right by 200 mm 
to save you.  To avoid killing you in the process, it must observe safe 
limits on the accelerations your body can handle;  let’s suppose 20 gees 
is a safe limit for horizontal accelerations.  20 gees over 200 mm is a 
kinetic energy of some 39 J/kg or 8.8 m/s.  Your time-average speed 
over those 200 mm is, however, only half of that, or perhaps less if the 
acceleration is ramped up gradually:  say, 4 m/s.  Thus some 50 
milliseconds are needed;  at typical sniper-rifle muzzle velocities of 
1000 m/s, this means the bullet must be detected at most 50 meters 
away. 

    This is probably hopeless with on-body radar for flechette rounds, 
but for better or worse, those have not been widely adopted.  Spitzer 
bullets have been widely adopted, but perhaps from a 
7.8-mm-diameter bullet we can expect a radar cross section of 
10 mm² or so anyway.  At 60 meters, this is about 3 nanosteradians, 
which I think is a unidirectional path loss of 87 dB, so the reflection 
will be 174 dB quieter than the emitted radar signal.  The exocortex 
would have to detect this doppler-shifted -174-dB signal within a few 
milliseconds.  This is probably not feasible with conventional 
narrowband radars but may be feasible with UWB pulse radar. 

    Possible alternatives include deploying radars tens of meters out, 
and taking advantage of passive radar from 3G, Wi-Fi, and the like, 
so that the path loss is only 87 dB.  From any point of view that isn’t 
directly in front of the bullet, the radar cross section will be much 
larger, and the bullet will have to come considerably closer to at least 
some of the radars on its way to your head. 

    I’ve previously written on kragen-tol about “bulletproof hail” 
which takes the alternative more Dagarti-ish approach of reacting to a 
detected incoming bullet by swinging one of several candidate 
“hailstones” of metal into position to directly block it.  This is an 
easier approach in the sense that the hailstones can be constructed to 
withstand much larger accelerations than 20 gees, and accelerating 
them requires less force and energy than doing the same to your entire 
body, so a much later detection time would be acceptable;  the 
hailstones could be initially positioned closer together than at 
400-mm intervals in the sphere around your body;  and it might pose 
less risk of injury to you.  However, it also has the potential 
disadvantages that such a system would be highly visible and could 
also be used offensively, which might impose some practical obstacles 
to its use.
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Solar netting
Kragen Javier Sitaker, 02020-09-23 (9 minutes)

    One of the surprising results of the precipitous decline of 
photovoltaic panel pricing (which has lowered the cost of energy in 
sunny places), is that the tempered glass used to prevent the 
paper-thin PV silicon wafers from being broken by hailstones, or 
rocks thrown by rowdy teenagers, is now nearly as expensive as the 
PV cells themselves. 

    Greg Sittler tells me that one solution to this is to protect the PV 
panels with chicken wire, which absorbs some 10% of the insolation, 
suspended some distance above them.  Chicken wire is 
tossed-rock-proof and hailstone-proof, and typically withstands a few 
decades of weathering.  Galvanized 20-gauge chicken wire is about 
US$2.90/kg (from wireclothman), which is about US$1.30 per square 
meter for the “fine” 1-inch (25-mm) mesh size, or about US$3 per 
square meter from Ace Hardware.  This seems like a very good 
solution to me.  (You might need two staggered layers in order to 
reliably stop small rocks.) 

    Chicken wire is made of galvanized mild steel, which mostly 
deforms plastically upon impact, thus being broken by a sufficient 
number of repeated impacts.  However, its hexagonal structure is 
better suited to absorbing impacts than a square mesh, because it’s 
inherently stretchy, though not quite so stretchy as a knit-fabric 
structure would be;  a knit-wire structure would be able to absorb 
much more impact energy for a given amount of wire by virtue of 
experiencing more macroscopic deformation, just as a hexagonal mesh 
can absorb more than a square mesh.  Alternative materials that occur 
to me include music wire, nylon, PTFE, UHMWPE, rubber, 
polycarbonate, glass fiber, basalt fiber, polyimide, polyamide-imide, 
glass-fiber-reinforced polyamide-imide, and polyurethane. 

    The ideal material for this purpose would combine a high 
mechanical energy capacity like rubber (2–9 kJ/ℓ), nylon 
(0.3–2 kJ/ℓ), or ASTM A228 music wire (11–14 kJ/ℓ);  excellent 
ultraviolet resistance like steels, PTFE, glass fiber, and basalt fiber;  
and low price, like nylon.  Many of the polymers listed above can be 
heavily filled and mixed with UV-absorbing and 
free-radical-scavenging components in order to improve their UV 
resistance, but generally not to the decades of endurance in thin fibers 
needed for maintenance-free PV operation. 

    An alternative, then, suggested by Greg, is to combine virtues by 
using fairly stiff but UV-proof fibers like glass fiber, mild steel, or 
PTFE to form “trampoline panels” that are suspended around the 
edges by springs made from a material with a higher mechanical 
energy capacity.  These springs might be coils, knit fabric, 
cantilevered leaf springs, zigzag fibers, foam blocks, or in some other 
shape, but at any rate they can be protected from the sun, so they can 
be made of cheap materials like nylon, polyurethane, or perhaps mild 
steel. 

    Both the springs and panels might need to resist creep, which might 
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require using a high-melting material rather than an organic polymer, 
though teflon and polyimide might be good enough.  Also, though, it 
might be the case that creep is not a real concern here, because the 
normal relaxed loading scenario is a tiny fraction of what the 
protective layer must be designed to tolerate during an impact.  So, 
for example, according to Du Pont’s Teflon PTFE Properties 
Handbook, at room temperature teflon creeps by 100% in a few hours 
under a 10-MPa load (close to its ultimate strength), but takes 
hundreds of hours to creep by 1% under a 3.5-MPa load. 

    It might be helpful to use multiple different fiber sizes, like the 
ripstop nylon used in parachutes.  A small rock of 10 mm diameter 
might typically weigh 3 g and be hurled at some 15 m/s, thus carrying 
some 300 mJ.  Stopping it within 100 mm thus requires at least 3 N of 
force along its direction of motion.  Suppose it strikes a single strand 
of the net, which deforms to catch it;  then these 3 N might be 15 N 
in each direction along the strand, so the wire must withstand some 15 
N. 

    The fiber diameter needed to resist this rock depends on the 
material chosen (for the trampoline panels, if those are used).  Teflon’s 
ultimate strength is about 10 MPa;  that of rubber, about 16 MPa, 
depending on fillers;  that of polyimide (Kapton), about 200 MPa;  
that of mild A36 steel, about 500 MPa, though its yield stress is lower, 
around 200;  that of nylon, about 900 MPa;  that of music wire, 
gel-spun UHMWPE, or E-glass fiber, about 3 GPa;  that of S-glass or 
basalt fiber, about 5 GPa. 

    So, depending on the fiber chosen, you might need a fiber of 
1.4 mm (of teflon, suggesting that teflon may be too weak for this) or 
of 60 μm (of basalt fiber) to stop the small rock. 

    But consider a larger rock, 100 mm in diameter, weighing 3 kg, 
thus carrying some 300 J of energy.  Stopping it in the same 100 mm 
requires 3 kN of force, or perhaps 15 kN if it is being stopped by a 
single strand, requiring a 44-mm-diameter teflon bar or a 
2-mm-diameter basalt-fiber rope.  If the strands are 10 mm apart then 
perhaps we can ensure that it strikes at least 27 of them (9 in each of 
three basket-weave directions), so perhaps the load is only some 600 
N each, requiring teflon fibers of “only” 8 mm diameter, converting 
the rock shield into a very effective and expensive PTFE sunshade, or 
400-μm basalt rope. 

    So, the ripstop approach would be to make, say, 90% of the fibers 
thin, weak, and cheap, to catch the small rocks, and the other 10% 
stronger, either by making them thicker or using a stronger material. 

    The stronger “ripstop” or “reinforcement” cables can be thick 
enough to carry a thick UV-protection layer, made, for example, of 
carbon-black-filled teflon.  Even UV-protection fillers in a polymer 
might slow the degradation of such a thick cable to a tolerable degree 
during the panels’ design lifetime. 

    For example, you could use 0.2-mm (AWG 32, much thinner than 
usual 20-gauge 0.8-mm chicken wire) galvanized mild steel wire 
spaced 10 mm apart, then 3-mm (AWG 8) music wire every 100 mm, 
which you would also have to galvanize.  If the weave goes in three 
directions, this works out to 300 m of thin wire (30 g) and 30 m of the 
thick wire (2 kg) per square meter. 



    Unfortunately at onlinemetals.com, 0.125-inch music wire costs 
US$15.79 per pound, or US$34.80/kg, 11 times the price (by weight) 
of chicken wire;  so 2 kg/m² is US$70 per square meter;  while PV 
modules, including the glass, currently only cost about US$40 per 
square meter, so this is still too expensive.  (MSC offers a similar 
price;  it’s not just onlinemetals.) 

    Given that, though, I’m pretty sure it’s possible to relax the 
problem to get the cost down to a reasonable level. 

    Probably what I need to quickly vet materials for such uses is a cost 
per newton meter:  the cost for a meter of cable thick enough to resist 
a load of one newton.  Music wire at US$15.79/pound times 7.9 g/cc 
divided by 3 GPa is about 90 microdollars per newton meter, while 
mild steel at US$2.90/kg times 7.9 g/cc divided by 500 MPa is about 
46 microdollars per newton meter.  (Maybe the bulk metal is cheaper 
than chicken wire, though.) Nylon rope costs US$81 for 250 feet of 
⅜" 3050-pound-test braided rope, or in SI units, 76 m of 10-mm 
1380-kg-test braided rope;  that’s about 80 microdollars per newton 
meter, but not UV-resistant. 

    Amazon suggests “Campbell galvanized steel wire rope, 7×19 
strand core, 3/16" bare OD, 250' length, 840 lbs breaking strength” 
for US$61.92 (“+$209.82 shipping & import fees” to Argentina), 
which is 4.8 mm bare OD, 76 m, 3.7 kN, and is claimed to weigh 16.5 
pounds.  From the weight presumably the cross section is only about 
12 mm², so as a solid round steel rod its diameter would be 4.0 mm, 
the rest I suppose being air between strands.  The strength would thus 
work out to 300 MPa, so either it’s a bit underrated or the spool 
weighs a lot;  one buyer claims that the spools he’s tested broke at 
over 1000 lbs (4.4 kN), which works out to 360 MPa.  Taking them at 
their word, though, this works out to 220 microdollars per newton 
meter, not including shipping;  considerably pricier than the other 
alternatives.
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Mild bases
Kragen Javier Sitaker, 02020-09-23 (updated 02020-10-01) 
(3 minutes)

    Reading about cuprous oxide (p.  313), I saw a couple of plausible 
synthesis routes:  one via Trommer’s test, which requires cupric ions 
from, say, blue vitriol, and reduces them at high pH with a reducing 
sugar, and one via electrolytically produced cupric chloride, which 
etches copper to make cuprous chloride at low pH, at least if chlorine 
is available, and which can then be precipitated as cuprous oxide with 
a base. 

    Unfortunately, both of these routes require a base, and the main 
bases I have handy are household ammonia, baking soda, and sodium 
percarbonate, which decays to washing soda and oxygen when wet.  
The trouble with the sodium compounds is that they both contain 
carbonate, which will bind any cupric ions quite firmly indeed, and 
maybe cuprous ones too;  the trouble with the ammonia is that it will 
complex with the cupric ions and may make it harder to reduce them 
to cuprous. 

    I also have household bleach handy, which includes some soda lye 
in order to stabilize the sodium hypochlorite.  One possibility might 
be to neutralize the bleach with hydrogen peroxide, producing 
oxygen, water, and sodium chloride, which I think will leave the lye 
intact.  But I’d rather avoid lyes if I can.  (I could probably produce it 
more easily by electrolysis from sodium chloride, and maybe leaching 
hydrate of potassa from wood ash would also be an option.  I’d 
thought I could also calcine the sodas, but apparently that doesn’t 
produce lye until past 2000°.) 

    Another possibility that occurs to me is to produce a metal 
hydroxide through electrolysis.  But the water-insoluble hydroxides 
like that of aluminum are of limited usefulness for reactions like those 
above — though they might be able to raise the pH to 7, which might 
be enough to convert solvated cuprous chloride to insoluble cuprous 
oxide.  And the water-soluble hydroxides of the alkali and 
alkaline-earth metals wouldn’t need electrolysis to produce them if I 
had the metals, but the metals are a huge pain. 

    Slaked lime is, of course, another possibility, but it probably needs 
to be freshly calcined, which is also not easy to do in this kitchen. 

    A somewhat less mild base, with its own toxicity problems, is 
sulfide of soda.  It is made by carbothermic reduction of sal mirabilis 
and can also be made from sulfide of lime with enough washing soda, 
though markgollum says the yield is poor.  I am not sure if sulfide of 
lime also acts as a base, but it can be produced by carbothermic 
reduction of alabaster or, along with washing soda, from chalk and 
sulfide of soda, as practiced by that great physician;  or, historically, by 
heating oyster shells with sulfur to red heat, though less than 1084°, 
again according to markgollum.  Slaked lime with sulfur is also 
reported to work at only around 100°.  Sulphuretted hydrogen over 
muriate of lime has also been suggested, though carbonic acid gas 
liberates sulphuretted hydrogen from the sulfide of lime.

http://www.sciencemadness.org/talk/viewthread.php?tid=1245&page=2
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Magnesium fuel
Kragen Javier Sitaker, 02020-09-23 (updated 02020-10-09) 
(13 minutes)

    Magnesium has an energy density of 43.0 MJ/ℓ and a specific 
energy of 24.7 MJ/kg.  This is among the highest energy densities of 
any easily burnable fuel — iron, polystyrene, polyethylene, and 
lithium borohydride are similar, while the more difficult aluminum, 
carbon, and silicon are up in the 70–84 MJ/ℓ range.  (See, however, 
the note on aluminum-air batteries (p.  322) and the note on lithum as 
a fuel (p.  367).) It excels iron at specific energy, and polystyrene, 
polyethylene, and lithium borohydride excel it.  But burning 
polystyrene, polyethylene, and lithium borohydride produces a lot of 
gas, spreading out the heat a great deal.  So, for compact, easily 
ignited fuel to produce a high temperature, magnesium is pretty 
much tops.  As a bonus, it’s pretty abundant and easily obtained from 
seawater;  see notes below on smelting. 

Energetics of magnesia 

    Magnesia has a molar mass of 40.3 g/mol and a heat capacity 
around room temperature of 37.2 J/mol/K;  dividing these two gives 
an unremarkable specific heat of 0.923 J/g/K.  Magnesium itself has a 
molar mass of 24.3 g/mol, so magnesia (MgO) is 60.3% magnesium;  
burning a kg of magnesium yields 1.66 kg of magnesia, and, as 
mentioned above, 24.7 MJ.  From this we can derive that, if its 
specific heat remained constant, the resulting magnesia would be at 
26500°, which means that in practice the upper limit to the 
temperature will be imposed by heat loss mechanisms and the finite 
speed of combustion, since this is several times hotter than the surface 
of the sun. 

    Thus we have magnesium flashbulbs. 

    Consider a kilojoule.  We can store it in 23 microliters of 
magnesium weighing 40 mg.  Liberating it requires another 26 mg of 
oxygen, for example from the air, which contains it at about 210 
mg/ℓ, so about 130 mℓ of atmospheric-pressure air are needed;  the 
reaction can be arranged to proceed at rates of anywhere from tens of 
watts or so up to a megawatt by controlling the introduction of the 
air, as long as the hot magnesium doesn’t start reducing its reaction 
chamber, or of course melting it.  If it is necessary to carry the 
oxidizer as well, water works well once the reaction is going, since 
water is 89% oxygen;  26 mg of oxygen as water thus occupies 29 μl.  
(See below, though.) 

    This makes magnesium appealing as a compact way to store energy 
capable of safe, controlled high-power release.  One of the few 
examples of this being done in practice is the MAGIC engine 
developed by Mitsubishi and Takashi Yabe and others at the Tokyo 
Institute of Technology, which also used a water oxidizer;  Yabe has 
also worked on magnesium-air fuel cells. 

    The oxygen-magnesium reaction produces no gaseous products 
unless the temperature is allowed to go very high (magnesia boils at 
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3600°, though magnesium melts at 650° and boils at 1091°), but the 
water-magnesium reaction produces hydrogen.  The MAGIC engine 
secondarily burns the hydrogen produced in air to recover the 
enthalpy of formation of the water, which was drawn from the initial 
water–magnesium reaction.  Water’s standard enthalpy of formation 
is -285.83 ±0.04 kJ/mol and its molar mass is 18.01528(33) g/mol.  
Magnesia’s are -601.6 ±0.3 kJ/mol and 40.304 g/mol (compared to, 
say, -1675.7 kJ/mol and 101.960 g/mol for alumina, nearly the same 
energy density);  although I’m not very sure of my understanding of 
the thermodynamics, I think this means that splitting the water sucks 
up about half of the heat you’d otherwise get out of the reaction, 
since both MgO and H₂O have a single oxygen, so a mole of H₂O 
produces a mole of MgO;  so you would need about twice the 
amount of magnesium to produce a given amount of energy. 

    The hydrogen also soaks up 28.836 J/mol/K of heat, lowering the 
potential maximum temperature further, but I think by another 
factor of less than 2.  So we’re still talking about maximum 
temperatures that exceed magnesia’s boiling point. 

    (Under appropriate conditions you can generate hydrogen at room 
temperature from magnesium and water.) 

    Using oxygen rather than water you should get the full 601.6 
kJ/mol, which divided by magnesium’s 24.3 g/mol works out to 24.8 
MJ/kg, close to the 24.7 cited above.  This makes me think I am 
understanding the thermodynamics properly. 

Engine design 

    For controlling the reaction rate, the most appealing option would 
seem to be preheating the magnesium to somewhat below its melting 
point, then introducing the oxidizer at a controlled rate.  The 
temperature will immediately rise enough to melt the magnesium, 
which over a long enough timescale will reduce the available area for 
the reaction to take place;  but in many circumstances the reaction can 
be run to completion on a shorter timescale than that, and the 
increasing temperature may be an effective countervailing force. 

    Maintaining the magnesium fuel in large solid pieces until near 
time to use would be a useful safety measure.  These would be much 
harder to ignite accidentally.  Perhaps the simplest approach would be 
a round magnesium rod that twists in a device exactly like a manual 
pencil sharpener to shave off shavings of a calibrated thickness. 

    Under some circumstances, it might be best to first preheat some 
magnesia by burning magnesium, with little or no gas release, and 
then use a second, later burst of gas to move the generated heat to 
where it’s needed.  This decouples the time during which the 
combustion happens — which may be limited by, for example, 
considerations such as the one mentioned above of burning the 
magnesium to solid magnesia fast enough that it doesn’t melt into a 
round mass with little surface area, or inversely by the inability to 
burn the magnesium as fast as would be desired because of limited 
surface area — from the time during which the heat is transferred to 
where it will be used, which might be shorter or longer than the 
combustion time. 
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Recharging, or smelting 

    Recharging spent magnesium fuel should be considerably easier 
than the analogous process for aluminum, which is especially 
interesting for use as a motor vehicle fuel.  Something like three 
fourths of magnesium today is produced in China by the Pidgeon 
silicothermic process, boiling magnesium vapor at sub-atmospheric 
pressures out of mixed MgO and ferrosilicon powders at 
1200°–1400°, and further stabilizing the silica byproduct with CaO.  
However, the historically dominant process was electrolysis of molten 
MgCl₂ produced from HCl and MgO;  the electrolysis releases the 
Cl₂, which can be exothermically recombined with H₂ with 
ultraviolet light, even in aqueous solution, which tames the process a 
bit.  Pure MgCl₂ melts at 714°, but, e.g., Davy fluxed it with 
corrosive sublimate to discover magnesium at a tamer temperature;  
so a recharging apparatus of a reasonably small size and temperature 
might be feasible. 

    A new, more direct process uses a solid zirconia electrolyte to 
directly electrolyze MgO at 1150°–1300°, in order to drop the cost of 
magnesium for structural applications in vehicles.  The cathode is a 
bath of molten MgO through which argon is bubbled, coming out 
containing Mg vapor.  The O₂ can travel through the zirconia to the 
cathode, made, for example, of molten copper, tin, or silver, or of a 
zirconia–nickel cermet coating on the zirconia.  Magnesia-stabilized 
zirconia is more stable in the molten salt bath, but lower conductivity;  
they found some kind of sooper seekrit ingredient to keep the molten 
MgO from corroding regular yttria-stabilized zirconia.  Like the 
Pidgeon process, the magnesium produced is in vapor form, and so a 
distillation step inherently purifies the reaction product.  (With 
appropriate “fluxes” or molten-salt solvents, this same SOM process 
has been used to smelt iron, silicon, tantalum, and titanium.) 

Magnesium sulfide 

    Sulfur is an alternative oxidant;  MgS has a molar mass of 56.38 
g/mol and an enthalpy of formation of -347 kJ/mol, which works out 
to 14.3 MJ per kg of magnesium or 6.2 MJ per kg accounting for the 
oxidant as well.  This reaction is used commercially to remove 
unwanted sulfur from steel.  It doesn’t melt until 2226°, and its 
boiling point is not known, though probably a bit lower than 
magnesia’s.  Interestingly, it can react with oxygen to give epsom salt 
rather than the little-known sulfite. 

    The sulfide’s heat capacity at room temperature is 45.6 J/mol/K, 
which works out to a specific heat of 0.809 J/g/K.  This extrapolates 
out to 7600 K.  This is a lot cooler than the extrapolated temperature 
for magnesia but still pretty toasty. 

    This might be useful in cases where limiting the reaction rate is not 
desired, but it probably isn’t safe in more than milligram quantities 
because of the rapidity of the reaction. 

Magnesium-silica reactions 

    Although, as explained above, you can smelt magnesia with 
ferrosilicon at 1200°–1400° with lime, because the gaseous 
magnesium leaves the reaction and the lime stabilizes the silica 
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product as larnite, under normal conditions the reaction tends in the 
opposite direction:  magnesium will reduce silica to silicon.  As the 
International Magnesium Association cautions: 
The refractories used in the furnace should be high in alumina or magnesia because 
molten magnesium can react violently with even small amounts of silica (often [sic] 
present in ceramic materials).  

    SiO₂ has an enthalpy of formation of -911 kJ/mol, while MgO’s 
enthalpy of formation is -601.6 kJ/mol.  So at room temperature I 
think the reaction would be SiO₂ + 2Mg → 2MgO + Si + 293 kJ per 
mol of silica, noticeably exothermic, though of course a very low 
reaction rate.  Magnesia’s 40.304 g/mol and silica’s 60.08 g/mol add 
up to 140.69 g for the left side of this reaction, which works out to 
about 2.08 MJ/kg with both reagents in the denominator.  Counting 
just the magnesium, 3.63 MJ/kg, so (I think) that’s the intrinsic 
energetic cost of the Pidgeon process’s endothermic aspect.  The 
intrinsic energetic cost of the silicon in the ferrosilicon feedstock is 
three times as much per kg of magnesium produced. 

    The easily-accessible temperature-dependent equilibrium reversal 
of this reaction interestingly makes magnesium somewhat 
interconvertible with silicon, even in the impure form of ferrosilicon, 
assuming you have ample supplies of their ubiquitous oxides.  
Metallurgical-grade silicon is mostly produced by carbothermal 
reduction, though aluminothermal reduction is also performed;  this 
suggests a mostly solar thermal route to smelt magnesium. 

    One of the most interesting aspects of the solid oxide electrolyte 
process for magnesium production mentioned above is that the 
resulting white-hot magnesium vapor is capable of reducing not 
oxides only of silicon but indeed of nearly any metal, including 
exotics like titanium and tantalum (though not, apparently, 
zirconium and yttrium, at least not fast enough to prevent the 
electrolysis from proceeding).  Magnesium’s first ionization energy is 
737.7 kJ/mol, kind of a middle-of-the-road value for metals, so I 
don’t think the issue is that it’s extremely easy to oxidize magnesium.  
And from an entropic point of view you would think temperatures 
well above magnesium’s boiling point would tend to favor the 
reduction of magnesium, as it does in the Pidgeon 
process — presumably at a high enough temperature titanium would 
instead reduce magnesia to magnesium vapor, just as silicon does.  I 
guess I need to go read about Gibbs free energy. 

    At 1200° titanium dioxide is solid (melting point 1843°), magnesia 
is solid (melting point 2852°), and titanium is solid (melting point 
1668°), but magnesium is a gas (boiling point 1091°, as mentioned 
above). 

    A practical aspect of the silica-magnesium reaction is that you 
maybe shouldn’t throw silica sand on an unwanted magnesium fire.  
You will be disappoint.
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Ancient batteries
Kragen Javier Sitaker, 02020-09-23 (updated 02020-12-31) 
(4 minutes)

    The Baghdad Battery was not used for electroplating, but 
Mythbusters has convincingly shown that it could have been:  ten 
similar copper-iron cells with lemon-juice electrolyte produced a 
total of four volts and successfully electroplated a token. 

Did the ancients use electrochemistry 
without knowing it? 

    I wonder if particular applications of electrochemistry were 
actually used but not understood.  For example, in, I think, 
Huckleberry Finn, which is full of folk beliefs about such things, a 
character is at one point faced with the problem of what to do about a 
counterfeit quarter, which had worn and was showing the copper 
around the edge.  So they put the coin inside a baked potato 
overnight, which restores the silver appearance to the edge.  
Huckleberry Finn was published in 1884 but purports to describe the 
beliefs and folkways of people in Mark Twain’s childhood around 
1840. 

    Silver’s standard electrode potential is +0.7996 V, while copper’s is 
+0.520 V.  Alkali metals and alkaline earth metals, which are the most 
enthusiastic about giving up their electrons, have among the most 
negative standard electrode potential, so this means that, in a 
copper-silver circuit, copper has a slight potential to give up electrons 
to the electrolyte and oxidize, dissolving copper cations into the 
potato, while silver would tend to acquire electrons from solution and 
be reduced.  This calculation is confirmed by the existence of the “red 
plague”:  partly-silver-plated copper conductors exposed to moisture 
form red cuprous oxide through galvanic corrosion, rather than the 
silver anodically protecting the copper.  This is unfortunately the 
reverse of the mass flow direction that would be required for the 
counterfeit-quarter trick to work. 

    The other metals known to the ancients were lead (-0.126 V), gold 
(+1.52 V, but I think not actually usable), iron (-0.44 V), tin (-0.13 
V), mercury (+0.85 V), and, in India, zinc (-0.7618 V, or -1.199 V as 
zincate).  Among other significant battery electrode materials, carbon 
(whose electrode potentials are, I think, irrelevant) and air (oxygen?  
+0.401 V?) were also known.  Although the insulators litharge and 
minium were known, lead dioxide was not. 

    (In modern lead-acid batteries, the lead dioxide is formed 
electrolytically by the sulfate electrolyte, but of course this requires an 
external voltage source.) 

    Of these the champions on the positive side are mercury and silver, 
while the champions on the negative side are iron and zinc.  This 
suggests the possibility of constructing a battery with some 1.8 volts 
per cell, almost the same as modern batteries, out of ancient metals, or 
something like a lead-acid battery, but using a different electrolyte, 
out of ancient materials.  It would probably be more practical, 

https://en.wikipedia.org/wiki/Baghdad_Battery
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though, to use plentiful copper, rather than precious mercury and 
silver, despite the rather miserable voltages available. 

Gold probably does work 

    Above I said I didn’t think gold would work, thinking it would be 
too inert to interact with electrolytes.  But gold here wouldn’t be the 
electrode that would need to dissolve, so Bernd Jendrissek tried some 
gold-plated copper contacts along the edge of an old SIMM with a 
paper towel soaked with salty vinegar and a copper wire on the other 
side of the paper towel, getting 0.3 V and a few microamps.  So, if 
Jendrissek’s report is correct, it seems that gold does work.

Topics

• Materials (p.  784) (51 notes) 
• History (p.  796) (17 notes) 
• Experiment report (p.  811) (10 notes) 
• Electrolysis (p.  824) (7 notes) 
• Crackpots (p.  893) (3 notes) 
• Archaeology (p.  905) (3 notes) 
• Batteries (p.  974) (2 notes) 



Modern material processing
Kragen Javier Sitaker, 02020-09-24 (updated 02020-09-26) 
(8 minutes)

    A lot of laboratory apparatus for processing exotic materials hasn’t 
changed much since the time of Bunsen — though electric heating 
mantles are new, and now stir bars are covered in teflon instead of 
glass, many other things are still the same.  What might it look like if 
we designed it from scratch today? 

    Perhaps we would focus more on continuous-flow processing 
rather than batch processing, handling very small quantities of liquid 
or other material at a time.  Maybe we’d use teflon gaskets more.  Our 
lego blocks might be smaller than traditional flasks;  we might have 
micro-channel blocks that swing open at a parting line to expose the 
interiors of the channels for cleaning, pressed together by a clip.  
Captive gaskets between them would separate the cavities along the 
parting line. 

    Some blocks could incorporate their own electrical heating 
elements, catalyst foams, valves, and so on.  For thermal insulation, 
they could incorporate vacuum “panels” containing multilayer 
insulation, for example of gold leaf or aluminum foil. 

    Microfluidic devices are capable of executing many experiments at 
once, and are widely used for this in biology today. 

    At ordinary temperatures gaskets would be made of teflon, but 
higher-temperature blocks would use gaskets that are brittle at room 
temperature, softening as their Tg is exceeded.  Alternatively, modern 
fabrication technology is capable of shaping mating faces to match 
with submicron precision, which by itself may reduce leakage 
sufficiently without gaskets.  If not, greasing the mating faces with 
liquid (whether water, table salt, sulfur, H₂SO₄, lithium with its 
delightfully low vapor pressure, other liquid metals such as lead-tin 
solder, or something else) may be an option, although they probably 
couldn't be separated cold. 

    There is in most cases no need for the surface of vessels to have a 
significant affinity for liquids;  superhydrophobic or omniphobic 
surface treatments would significantly reduce corrosion, 
cross-contamination, and cleaning effort.  Fluorinated surfaces are 
another, cheaper alternative.  Moreover, in many cases, such a surface 
would prevent the entry of water or other liquids into small channels 
without pressure being applied. 

    The use of such blocks could make high-pressure processing 
routine, since they can easily be made to contain high-pressure 
materials. 

    Glass is fragile;  in many cases it could be replaced by fluorinated 
plastics or fluorinated ceramics.  Modern fabrication techniques are 
capable of mechanically carving channels through many materials, 
and often of molding them as well. 

    One possible candidate replacement for glass is fluorite, which cost 
US$300 per tonne in 02020, can be optically clear even into infrared 
and ultraviolet, and has good resistance to some corrosive agents.  It 

https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-fluorspar.pdf
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doesn’t melt until 1418°.  Although it is noticeably more fragile than 
the traditional borosilicate, its major flaw, which is fatal for many 
uses, is that it cannot deal with strong acids. 

    Crystalline alumina is better than borosilicate in every way except 
that it is very difficult to shape.  There is no known alumina glass, and 
polycrystalline sintered alumina ceramics are in wide use, but they are 
never transparent.  General Electric’s 01961 “Lucalox” sodium-vapor 
lightbulbs (“transLUCent ALuminum OXide”) were translucent 
sintered alumina;  the 1959 Nature report on them said they were 
“presumably sintered in vacuo”, and that objects viewed from a 
distance were “blurred as though through frosted glass”.  A 01996 
article by J.E.  Burke, one of its inventors explained that it was doped 
with a fraction of a percent of MgO before sintering at 1800°, 
preventing pore retention by preventing discontinuous grain growth 
that traps pores within grains, and that pore-free alumina is 
translucent because alumina is birefringent.  He also notes that to 
bring out grain boundaries by etching, he resorted to etching the 
alumina with molten exotic K₂S₂O₇, and that sintered pore-free 
alumina is “the only successful material found to date [01996] for 
containing the plasma of the high-pressure sodium-vapor lamp”. 

    Yttria-stabilized zirconia is already seeing some use in labware, but 
usually in a non-transparent form — though transparent YSZ is 
widely used for jewelry.  It is outstandingly resistant to corrosion, 
fairly hard (though less so than alumina), and above all, tough.  When 
hot (900°–1300°, maybe lower) it conducts electricity in the form of 
oxygen ions, and thus can be used to electrolytically add or remove 
oxygen from a hot reagent. 

    Other transparent ceramics include yttria doped with 10% thoria to 
prevent discontinuous grain growth, analogously to Lucalox (the 
former Yttralox, which contains no alumina, despite its name) and 
lanthana-doped yttria, melting at 2430°.  Unfortunately yttria is 
vulnerable to concentrated hydrochloric acid with ammonium 
chloride, thoria is radioactive, and lanthana is soluble in dilute acids.  
Also, Rosenflanz’s alumina-containing rare-earth glass-ceramics from 
2004;  yttria–alumina garnet (YAG);  aluminum oxynitride spinel;  
magnesium aluminate spinel, aka just “spinel”;  topaz;  silicon carbide;  
chrysoberyl;  beryl, such as emerald;  berlinite;  chalcogenide and 
phosphate glasses;  transparent glass-ceramics like Corning VISION;  
zircon (zirconium silicate);  rutile;  boron nitride;  and so on. 

    Fluorinated polymers may be a reasonable inert alternative to 
ceramic materials for many low-temperature purposes, as well.  Tubes 
of materials like PVDF (Kynar) can carry most materials with 
impunity, though only up to 150° in that particular case, and also not 
very aggressive materials.  Teflon can withstand both higher 
temperatures and more corrosive materials, and many plastics and 
even metals can have their surfaces fluorinated in order to make them 
more inert to their contents, as well as in most cases decreasing 
wettability, as mentioned earlier. 

    Blocks can be instrumented with not only stir bars and heaters but 
pumps, thermometers, pH meters, dielectric spectrometers, regular 
spectrometers, imaging spectrometers, sonar (to measure specific 
acoustic impedance, speed of sound (from which density can be 
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inferred), and distance to a liquid surface), immersion densitometers, 
ion exchange beds, flow meters, chromatography columns, distillation 
columns, NMR equipment, reflectometers, X-ray fluorescence and 
diffractometry equipment, and strain gauges for both pressure and 
weight. 

    Pumps need not use a shaft through a sliding seal;  like stir bars, 
their impeller can be driven by a magnetic field from without, a trick 
even easier to do with a flow meter.  Also, piezoelectric devices can 
set up oscillations in the fluid that drive a "fluidic diode" type of 
pump;  in some cases pure fluidic pumping driven by a stream of a 
friendlier fluid can be used;  and in some cases peristaltic pumping is 
applicable.  In the special case of conductive liquids, 
magnetohydrodynamic pumping can be used. 

    By moving a supporting rigid support along an unchanging beam 
and measuring the changing torque at the support, the mass 
distribution of the beam can be easily calculated, most precisely 
toward the center of the beam.  In general there is a tradeoff between 
precise measurement of weight and sealed couplings that permit easy 
fluid passage through the apparatus, but (at least without a pressure 
difference between inside and outside) it can be eased somewhat with 
flexible couplings, in particular plane-like couplings, like flexible 
circuit boards with fluid channels bored through them.
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Materials shopping list
Kragen Javier Sitaker, 02020-09-25 (updated 02020-12-20) 
(1 minute)

Pharmacy 

• sulfur 
• lunar caustic 
• agua blanca del codex 
• borax?  

Pool place 

• pool pH lowerer 
• blue vitriol 
• activated charcoal 
• infusorial earth (diatomea) 
• indicator paper 
• concentrated detergent 
• waterglass  

Hardware store 

• lime (not at shitty one) (not at good one) 
• caustic soda (check, though mislabeled) 
• converter (check) 
• boric acid or borax (not at shitty one) (not at good one) (check, 
borax) 
• infusorial earth (not at good one) 
• plaster (check) 
• magnesium (not at good one) 
• silicone (check)  

Garden store (not Catrilo 4713, that's a pet 
store) 

• Glauber's secret salt 
• green vitriol 
• infusorial earth 
• boric acid or borax (fertilizante) 
• urea (fertilizante) (or at gas station)  

Health food store 

• Alum 
• Salt without sodium (done) 
• Cream of tartar (not at local one) 
• Citric acid  



Grocery store 

• baking soda (cheaper via Viento Norte?  AR$103/kg) 
• food coloring 
• depilation wax  

Parks/neighborhood 

• pine resin 
• copper wire  

Recycler 

• copper 
• lead  

Bath salts 

• epsom salt (also available at pharmacy) 
• kaolin 
• baking soda 
• borax  

Art supply store 

• clay 
• kaolin 
• resins? 
• red copper oxide for ceramic 
• modpodge?  

Paint store 

• converter 
• hematite 
• glow-in-the-dark 
• resins! 
• waterglass? 
• lime? 
• carbon 
• masilla reparadora inoxidable? 
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Toolpath optimization
Kragen Javier Sitaker, 02020-09-27 (updated 02020-09-30) 
(19 minutes)

    A general recipe for planning how to make things to fill some 
requirement Q:  given a simulation of the construction process S and 
a sort of distance measurement M, minimize M(S(P), Q) for some 
given Q;  P is some sort of plan, such as a toolpath. 

    In many cases it’s convenient to separate the simulation S(P) into a 
simulation C of the construction process and a simulation E of the 
usage or testing of the artifact produced by it, E(C(P)).  For example, 
C might convert a toolpath into 3-dimensional geometry and an 
expected cycle time, and E might perform a finite element analysis 
and preserve the cycle time.  In this case our loss function expands to 
M(E(C(P)), Q). 

    This simple recipe ramifies in all sorts of interesting ways. 

    Probably nothing in here is original;  it’s all pretty obvious to 
someone who knows this stuff.  But I haven’t seen it presented this 
way anywhere else, it wasn’t obvious to me, and I don’t see it used in 
practice much. 

Construction simulation C 

    Most CAM systems have very simple simulation capabilities, 
sometimes nothing more than incrementally setting voxels to zero or 
even, for a CNC lathe, pixels.  Consequently the most thoroughly 
automated manufacturing processes have been those like single-point 
metal cutting in which the interaction between the tool and the 
workpiece is very simple.  Modern waterjet cutting systems are 
learning to compensate for waterjet divergence.  But the modern 
simulation techniques used in systems like ANSYS are capable of 
simulating extremely complex systems, and simulation of, for 
example, work hardening makes it possible to simulate the dynamics 
of sheet metal stamping or single-point incremental forming with 
some confidence. 

    Simulating FDM 3-D printing requires simulating the change in 
plastic viscosity as it cools after coming out of the hotend, as well as 
the changing tensions in the viscoelastic material as it stretches, 
squishes, cools, and droops under the influence of gravity.  
Layer-to-layer adhesion is a product of, among other things, the 
heating of already-solid material by newly-deposited material.  If you 
want to accurately predict the effect toolpath variations will have on 
the mechanical properties of such parts, you need to simulate these 
effects. 

    A particularly interesting class of techniques achieving prominence 
in computer graphics in recent years are the “material point 
methods”, which are hybrid particle–field simulation methods 
capable of achieving surprisingly visually convincing simulations of 
snow, cloth, sand, water, hair, cracking mud, and other difficult 
materials, as well as complex material interactions.  It’s possible that 
the MPM might make it possible to adequately simulate more 



complex material dynamics during the construction process, such as 
the thixotropic and frictional behavior of clay smeared by a spatula.  If 
not, perhaps other numerical techniques would be adequate;  for 
example, FEM with or without adaptive remeshing or finite volume 
methods. 

    However, in order to make it practical to run an optimization 
algorithm over your simulation algorithm, there are special 
considerations.  One is that it needs to be fast enough to be run many 
times.  Another is that, for many of the currently most successful 
optimization algorithms, it needs to be differentiable, typically using 
reverse-mode automatic differentiation. 

Evaluation simulation E 

    Once you’ve simulated the thing being made, you need to evaluate 
the simulated thing’s simulated performance.  Perhaps you are 
interested in its appearance from a certain angle, or the load it can 
bear over a certain area, or its acoustic frequency response;  literally 
anything that can be quantified in simulation can be used for 
evaluation. 

    This simulation will often use different algorithms than the 
construction simulation.  But it, too, is subject to the constraints of 
rapidity and possibly differentiability. 

Measurement M of fitness for purpose Q 

    Once you’ve computed the total performance evaluation, you want 
to measure how fit that performance is for the purpose you had in 
mind, reducing its badness (or equivalently its goodness) down to a 
single scalar score, so that optimization becomes a meaningful 
concept.  This may include a variety of factors;  for example, bridge 
designs that fail to span the gap, fall down, or block the river beneath 
might all get very heavy penalties, much larger than bridge designs 
that merely cost too much. 

Optimization algorithms 

    Many high-dimensional optimization algorithms can be used.  The 
most fashionable at the moment, due to their extensive development 
for optimizing ANN parameters, are variants of gradient descent such 
as Adam;  but you can also use things like Nelder–Mead, genetic 
algorithms, and the goofy hybrid of Nelder–Mead and the method of 
secants that I wrote about in Dercuano, and probably also lots of 
things I don’t know about yet. 

    Some of these algorithms require the gradient of the loss function 
with respect to the design variable vector P. 

    Many of these algorithms in their usual form require a space of 
constant, finite dimensionality over which to optimize;  depending on 
the structure of the problem, it may be straightforward to add more 
design variables over time. 

    It’s worth noting that finding the true optimum is often 
unnecessary and nearly always infeasible in practice.  The above 
algorithms generally give a close approximation of a local optimum, but 
are not guaranteed to be able to do even that. 



    There is an applicable generic optimization approach used in a 
number of very interesting recent research papers from Disney 
Research Zürich on the computational design of linkages, compliant 
mechanisms, metamaterials, acoustic responses, and so on.  The 
process starts by generating a database of random samples from a 
parameter space of 2–10 dimensions, characterized according to their 
properties of interest (our E above).  Then, for each new design 
objective Q, the database is searched;  the nearest random sample is 
selected, and continuous optimization algorithms such as gradient 
descent are applied to generate the nearest point in the property space 
(E) reachable by any design in the parameter space (our P, or perhaps 
C(P), since the Disney group generally doesn’t try to simulate the 
fabrication process itself).  Sometimes multiple components from the 
database are combined into a single design.  Sometimes additional 
optimization algorithms are used, often in a new, higher-dimensional 
parameter space. 

Tolerances 

    Performance predictability or stability may be a crucial factor for 
fitness:  if a particular toolpath achieves very high fitness, but 
toolpaths displaced by tiny errors achieve very low fitness, then 
perhaps it is not a very good design.  The traditional way to handle 
this in analog circuit design is by Monte Carlo simulation:  running 
many simulations with component values slightly perturbed in the 
ways that they are known to be perturbed in real life, for example by 
temperature or manufacturing variation, and with some noise added 
to the input.  In this way we can distinguish predictably good designs 
from designs that might be good once in a blue moon. 

    Affine arithmetic, interval arithmetic, reduced affine arithmetic, 
and SAT solvers are alternatives to Monte Carlo simulation which 
may be more efficient for a certain problem. 

Incrementalization 

    A straightforward application of the above recipe requires you to 
repeatedly revise P, re-evaluate C from scratch on it, re-evaluate E 
from scratch on the result, re-evaluate M from scratch on that result, 
then possibly do all of that again backwards and in high heels to 
calculate the gradient of M with respect to P, and finally run a 
optimization step.  But in most cases P is almost the same as a previous 
P, so most of the answers will also be almost the same. 

    Caching-based incrementalization approaches, like Umut Acar’s 
“self-adjusting computation”, can often provide speedups of five or so 
orders of magnitude if P is almost the same in a very particular sense:  if 
most of its components have no change, but some of them have 
arbitrary change.  Incrementalizing the procedure in this way is not 
helpful for gradient descent as such, since very few of the components 
of the gradient are ever precisely 0, but if we modify the optimization 
procedure to search along only one or a few dimensions of P at a time 
(“coordinate descent”) — perhaps the ones whose component in the 
gradient is largest — then we may be able to get a big speedup out of 
this kind of incrementalization.  SKETCHPAD’s 
constraint-satisfaction algorithm used a relaxation approach 



somewhat similar to this. 

    (Self-adjusting computation and similar approaches also suffer from 
some of the same time–space tradeoff difficulties associated with 
reverse-mode automatic differentiation;  indeed, the memoization 
store produced by self-adjusting computation can be used directly for 
reverse-mode automatic differentiation.  I suspect the usual 
periodic-checkpoint approach to reverse-mode automatic 
differentiation may be more difficult to apply to self-adjusting 
computation.) 

    (When doing coordinate descent with some kind of memoization, 
it may be possible to speed the affair up by not memoizing the 
intermediate evaluations during each line search or hyperplane search.  
Also, updating the gradient incrementally would probably blow all 
the advantages of incrementalization, so maybe you want to do that 
search with successive parabolic interpolation or something.) 

    I think the self-validating arithmetic approaches mentioned above 
can also offer, in some cases, an alternative incrementalization 
approach.  For example, we can calculate bounds on the possible 
values of M — and all intermediate variables cached by a memoizing 
incrementalizer — for values of P within a certain many-dimensional 
bounding box.  If a gradient-descent step moves our estimate of P, 
but only a few of the new components are outside the bounding box 
previously used, we can do the computation incrementally as before, 
updating just those components. 

    There are some loose ends there with respect to how big a 
bounding box you pick, and when you decide to shrink it, but I think 
it’s tractable. 

    This hybridization of self-validating arithmetic with self-adjusting 
computation is more general than just checking the inputs;  
intermediate memoized values can also be checked to see if they are 
within previously computed bounds, or can be made so by narrowing 
the bounds on the new input value, and in this case the previously 
memoized values can be used from there on. 

Replanning during construction (automated 
improvisation) 

    As the actual process of making a thing happens, new information 
comes to light.  Perhaps some dimension was achieved to 
better-than-expected precision, or a block of wood has less knotholes 
than feared, or a piece of clay is drier than expected.  In these cases a 
fully general response is to rerun the whole planning process, given 
the current (or near-future) state as the starting point, in order to take 
advantage of the new information. 

    At times it’s necessary to plan out expectations which will permit 
the original plan to continue to be followed.  For example, perhaps 
the profile of light on a rotating clay object should be within certain 
limits;  if not, actuation should immediately cease, reverting to some 
sort of “safe” or “home” position likely to do minimal further 
damage, until a new plan can be formulated.  Less dangerous 
departures from expected results may permit the original plan to 
continue while new plans are hatching. 



    XXX anytime 

Indirection in construction and design 

    A lot of the process of making things is indirect, to the point of 
shaving the proverbial yaks.  Sometimes this indirection is necessary to 
get the job done at all;  at other times it merely improves efficiency or 
quality.  Sharpening your knife or your wood-planing blade every 
few minutes of cutting, or whenever they get dull or nicked, will 
allow you to cut faster despite the lost time.  A form tool on the lathe 
can often produce a particular contour much faster than a single-point 
cutter can;  grinding the form tool may save you time.  Adding an 
assembly step at the end of a process can allow you to stamp a product 
out of sheet steel instead of milling it out of a billet, making it orders 
of magnitude cheaper.  A PLA FDM 3-D printer can’t make things 
out of sheet steel, but it can definitely print press-forming dies for a 
sheet-metal brake, or beading dies for a bead-rolling machine. 

    So it’s worthwhile to keep in mind the possibility of indirect 
construction, by constructing tools or parts that are then 
used — perhaps many times — for the desired final product. 

    Using a single stamp or thread-cutting die or D-bit or mold or 
whatever many times during the making of a thing implies that many 
parts of that thing will be the same, which in some sense means that 
your vehicle of indirection will be a compromise between the needs 
of those different parts.  This compromise has a computational 
benefit, though:  it reduces the dimensionality of the space to be 
optimized.  Moreover, the design of that reusable part is potentially 
valuable for other, unrelated designs, perhaps stored in a database like 
the Disney Research Zurich linkages mentioned above. 

    The invention of reusable approaches that can be applied to many 
parts of a design is not limited to physical tooling, though;  things like 
“gusset”, “tube”, and “truss” are commonly useful to reduce the 
mental effort of mechanical engineering, and things like “differential 
pair”, “negative feedback”, and “cascode” are commonly useful in 
the same way in analog electronic design. 

    There’s a hypothesis that the reason structures like bipinnate 
compound leaves occur in totally unrelated families of plants (ferns, 
mimosas, and fishtail palms, for example) is that they are 
computationally simple to describe in some absolute sense.  But 
another possibility is that they’re simple to describe in terms of highly 
conserved plant genetic capabilities.  With this in mind, you could 
imagine optimizing not a specific toolpath itself but a sort of 
“genome” or “program” to generate a toolpath — an indirection in 
the design process analogous to the indirection of a reusable drillbit in 
the construction process.  Doing this successfully will give a design 
containing reusable parts, not just in the sense of actual immutable 
parts such as a hinge but also in the sense of design tricks like cascodes 
and gussets. 

Experiment design and system 
identification 

    Above I described C as a function of one variable:  P is the design 



toolpath, C(P) is the object or range of objects resulting from 
executing that toolpath, and E(C(P)) is the performance of that 
object.  But really C is also a function of the manufacturing process 
and the materials’ properties;  we could say C(P, T), where T is this 
description of the process and materials. 

    In some cases not enough is known about either the manufacturing 
process or the materials’ behavior in use — T, that is — to simulate 
them with any confidence.  In such a case we have a different design 
objective, one in some sense diametrically opposite to the “tolerances” 
section above:  we want to know the cheapest and quickest toolpath 
that will reduce our uncertainty about the unknown variables.  So, for 
example, to shape something out of plastic clay so that it will work, 
we would like to use a toolpath whose results vary as little as possible 
over a wide range of plasticities, since the clay’s plasticity varies 
rapidly over time and in different parts of the clay.  But, to find out 
what that plasticity is, we would like to use a toolpath whose results 
vary as much as possible.  This is perhaps in a sense the difference 
between science and engineering, or exploration and exploitation in 
reinforcement learning, but we still want the results to vary minimally 
with other unknown properties such as ambient illumination, so that 
we can confidently interpret our experiment’s results. 

    To some extent it may be possible to mix such experimentation 
into the construction process to support replanning;  perhaps prodding 
the clay a bit in a spot we will smooth over later anyway, for example, 
can yield useful observations without affecting the final result.  In 
general constantly adding a little bit of noise well within tolerances 
can provide a “subliminal” experimental result of the effect of that 
noise;  to the extent that the phenomena involved are linear, we can 
confidently extrapolate from these very small effects to much larger 
ones.  The noise can even be much smaller than existing noise in the 
system, only detectable by correlating over a large interval (for 
example, imaging a large area of clay, or feeling a long plasma cut in 
metal).  Impulse responses for a convolution reverb are sometimes 
acquired from real spaces in this way by using white-noise excitation. 

    The simplest way to interpret the results of such experiments is to 
use the same simulation-optimization process as used for design, 
minimizing M(E(C(P, T)), Q);  but now the toolpath P is fixed (it’s 
the experiment we performed), Q is our observations from the 
experiment, T (the description of the process and materials) is the 
“design variables” for the optimizer, and E and M are the 
observations we have available and the probability of various kinds of 
errors and corruptions in them, instead of real-world performance of 
a design and how well that performance fulfills engineering 
requirements. 

“Making things” 

    Although above I’ve focused on manufacturing, this approach is 
quite generally applicable to control and design problems;  the 
“things” being made need not be physical objects.  In the cybernetics 
literature approaches like the above are commonly called “optimal 
control theory”.



Topics

• Manufacturing (p.  795) (17 notes) 
• Mathematical optimization (p.  812) (9 notes) 
• Incremental computation (p.  841) (5 notes) 
• Control (p.  847) (5 notes) 
• Physical system simulation (p.  873) (3 notes) 
• Coordinate descent
• CAM (computer-aided manufacturing)



Reducing sucrose
Kragen Javier Sitaker, 02020-09-30 (7 minutes)

    Sucrose’s enthalpy of formation is -2221.2 kJ/mol according to 
NIST, and it contains 11 oxygens, 12 carbons, and 22 hydrogens.  
What would happen if you decomposed it in a very oxygen-hungry 
environment?  When would the reduction of the sucrose be 
exothermic? 

Candidate reduction products 

    If you were to strip off just the oxygens you would be left with 
C₁₂H₂₂, which is four hydrogens short of being the saturated 
hydrocarbon dodecane, whose standard enthalpy of formation is 
about -350 kJ/mol (and of combustion about -7900, of which about 
400 are water condensing).  22 hydrogens are enough to fully saturate 
10 carbons, producing decane, C₁₀H₂₂, with a standard enthalpy of 
formation of -300 kJ/mol. 

    Bicyclohexyl is fully saturated as well and is C₁₂H₂₂, -273 kJ/mol 
enthalpy of formation (and, of combustion, -7600).  1-dodecylene, 
with a single unsaturated bond, is C₁₂H₂₄, thus needing a couple of 
extra hydrogens, with -165 kJ/mol enthalpy of formation, thus being 
considerably less stable.  1-dodecyne is also a C₁₂H₂₂, but is more 
exotic;  though Sigma-Aldrich will sell it to you, giving data like its 
boiling point (215°) and density;  they don’t include thermodynamic 
data, but I’d guess it’s even less stable.  1,9-decadiene exists (anyway 
Sigma will sell it to you and there are papers about using it) and both 
(e, Z)-2,4-dodecadiene (C₁₂H₂₂) and 2,4-dodecadiene (C₁₀H₁₈) are 
found in NIH’s data;  the former “has primarily been detected in 
saliva” (!!) but no thermodynamic data is available.  No alkadienes 
higher than 1,7-octadiene have Wikipedia pages. 

    Suppose each of the monosaccharides decomposed separately, 
though?  We might end up with 2C₆H₁₁, which doesn’t seem to exist, 
or C₆H₁₀ + C₆H₁₂.  Cyclohexene (-40 kJ/mol Δf liquid) or 
1,5-hexadiene (+50 to 100 kJ/mol Δf) are C₆H₁₀, while hexene (most 
common isomer, 1-hexene, -74 kJ/mol Δf) and cyclohexane (-156 
kJ/mol Δf) are C₆H₁₂.  None of these seem super appealing especially 
compared to decane. 

Including CO₂ 

    So suppose you were to generate 2CO₂ (-393.5 kJ/mol each), 
sucking up four of your 11 oxygens, leaving 7 oxygens and C₁₀H₂₂, 
decane, at -300 kJ/mol, for a total of -489.0 kJ per mole of sucrose.  I 
guess you’d need 1734.2 kJ/mol to make that enthalpically favorable?  
That’s 247.7 kJ per mole of oxygen atoms.  Water’s enthalpy of 
formation is -285.83 ±0.04 kJ/mol, which would seem to suggest that 
you should be able to burn hydrogen with sucrose as an oxygen 
source, barely;  the trouble with this is that it would imply that you 
could get energy by taking the oxygen out of sucrose, leaving its 
carbons and hydrogen behind, and pairing it with new hydrogen from 
the environment.  This seems fishy to me. 



Trying to understand bond energies 

    The https://en.wikipedia.org/wiki/Bond-dissociation_energy of 
O-H bonds is typically on the order of 440 kJ/mol (e.g., in methanol), 
but 497 kJ/mol in water and only 360–380 kJ/mol in phenol;  C-H 
bonds are typically around 420 kJ/mol (e.g., in ethane, or 470 in 
benzene);  and H-H bonds are 436 kJ/mol.  So in the micro-reaction 
H-C-O-H + H₂ → H-C-H + H₂O, we are ripping apart an H-H 
bond and a C-O bond, and forming a C-H bond and an O-H bond in 
the resulting water.  WC claims the C-H bond is 411 kJ/mol and the 
C-O bond is 358 kJ/mol, though those numbers are suspiciously 
exact for numbers outside of context — WP gives a 360–380 kJ/mol 
range for some examples of the latter, for example, and 372–556 for 
the former;  another source, though, gives the C-O bond energy in 
glucose as precisely the 358 kJ/mol given by WC, and the C-H 
energy as 414.  So roughly we should expect to get (414 + 497 - 436 - 
358 = 117) kJ/mol of hydrogen.  This is almost three times higher 
than the discrepancy in the previous paragraph (each mole of 
hydrogen produces a mole of oxygen) but in the same direction. 

    (I think the discrepancy is easily explained:  it comes from the extra 
four hydrogens glomming onto the carbon backbone and releasing 
their own 400 or so kJ/mol, releasing more oxygen to react with the 
extra hydrogen.) 

    However, if this is correct, I think it doesn’t imply that the 
dehydration of sucrose, for example by heating, should be 
exothermic — there we are breaking the H-C bond and the C-O 
bond and forming an H-O bond instead, for a total of (497 - 414 - 
358 = -275) kJ/mol.  But I think that actually when this is done with 
vitriol instead of heating it is exothermic, and the vitriol is a mere 
catalyst;  I’m not sure if this is correct.  Supposedly the spontaneous 
dehydration should be exothermic. 

    Aha, Darius Bacon points out that I’m not accounting for the 
carbon finding a lower-energy state afterwards, where those carbon 
valences are connected to something else — which is amusing, since 
that’s what the first few paragraphs of this very note are about.  So if 
that carbon goes and bonds to one other carbon from some other 
molecule on each side, we gain like 350–380 kJ/mol per carbon (times 
two bonds, but divided by two carbons per bond) which puts us back 
in exothermic territory by like 100 kJ/mol, close to the hydrogen.  
(And indeed the page linked above says it’s due to the formation of 
graphene that the reaction is exothermic.) 

    (There’s also a double-bonded oxygen in sugars which I’m 
ignoring;  in monosaccharides its bond energy is like 800 kJ/mol, and 
in sucrose it glues the two monosaccharides together with an ether 
bond.  Hydrogen might not liberate it, though above some 
temperature that would be entropically favorable.) 

Hydrogen vs. other reducing agents 

    Hydrogen wouldn’t need to generate CO₂ to comfortably liberate 
oxygen from sugars the way I discussed earlier, because it can saturate 
the carbons just fine on its own.  Other reducing agents seeking to 
oxidize themselves from sucrose might need to, thus gaining only 7 
oxygens from the sucrose instead of the 10 or 11 gained by hydrogen;  

https://en.wikipedia.org/wiki/Bond-dissociation_energy
http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
https://en.wikipedia.org/wiki/Carbon�oxygen_bond
https://chemdemos.uoregon.edu/demos/Spontaneous-Dehydration-of-Sucrose
https://chemdemos.uoregon.edu/demos/Spontaneous-Dehydration-of-Sucrose


so their oxidation products would need to have a more negative 
enthalpy of formation than water's -285 kJ/mol of oxygen atoms. 

    So for non-hydrogen reducing agents, we get 7 moles of O per 
mole of sucrose (342.30 g/mol), which works out to 112 g of O per 
342 g of sucrose, 33% oxygen by weight.  We might get even more if 
the reducing agent can reduce CO₂, but at a higher enthalpy cost.  If 
the reducing agent can’t reduce at least H₂O, it probably won’t be 
able to reduce sucrose either. 

    Sucrose caramelizes at 186°, so if you want to reduce sucrose rather 
than water, you’d better do it before that temperature.  Other 
polysaccharides such as cellulose or chitin may survive to higher 
temperatures, and things that can reduce sucrose can probably reduce 
them too.

Topics

• Materials (p.  784) (51 notes) 
• Thermodynamics (p.  802) (13 notes) 



Wang tile chemicals
Kragen Javier Sitaker, 02020-09-30 (2 minutes)

    Wang tiles are one of the simplest Turing-complete systems.  You 
have some set of square tiles of a single size and the task of tiling, say, 
the infinite two-dimensional plane with them;  the restriction that 
makes this difficult is that the tile edges are colored with some finite 
set of colors, and the colors of the adjacent edges of contacting tiles 
must match.  In Hao Wang’s original proposal the tiles were 
forbidden to rotate.  It’s straighforward to see how you can translate, 
say, binary addition or a Turing machine into this formalism;  
moreover it can be deterministic or nondeterministic. 

    This is a handy way to generate things like random game boards, 
but I was thinking of a different application. 

    What if each tile type is a type of molecule?  Molecules can be 
highly selective about what kind of reaction sites they bind to, and 
modern organic chemistry is able to perform quite sophisticated 
syntheses.  You can of course have molecules that bind together in 
three dimensions rather than two, or rotate, but that additional power 
is not necessary in this case, as long as you can keep them from 
glomming together in undesired ways too much.  (It might improve 
efficiency, though.) 

    This could allow you to self-assemble a massively parallel 
computation on a solid substrate.  It might be desirable to use only 
one molecule type at a time to keep them from binding together in 
the solution rather than on the substrate.  This sequence of reagents 
itself can constitute an input stream being processed massively in 
parallel, but for the basic Wang-tile abstraction, you just need to cycle 
through all the reagents repeatedly enough times.

Topics

• Materials (p.  784) (51 notes) 
• Math (p.  804) (13 notes) 
• Physical computation (p.  822) (7 notes) 
• Automata theory (p.  977) (2 notes) 



Scraping Sciencemadness
Kragen Javier Sitaker, 02020-10-01 (updated 02020-10-05) 
(4 minutes)

    I want to snarf some of sciencemadness before it goes down, such 
as: 

    
http://www.sciencemadness.org/talk/viewthread.php?tid=1245&pag
e=2 

Initial look at URL patterns 

    That thread is in forum 2 
http://www.sciencemadness.org/talk/forumdisplay.php?fid=2, 
which has 216 pages such as 
http://www.sciencemadness.org/talk/forumdisplay.php?fid=2&page
=3.  They link to pages like 
http://www.sciencemadness.org/talk/viewthread.php?tid=156102 
which may themselves have page numbers.  Sometimes they link to 
attachments like 
http://www.sciencemadness.org/talk/files.php?pid=643614&aid=82
955 and include images like 
http://www.sciencemadness.org/talk/images/xpblue/default_icon.gi
f. 

    There’s the risk that a thread in that forum might link to a thread 
in another forum, and then another, etc., but I think that mostly 
won’t happen. 

First stab at crawling 

    So some regexps would be something like 

http://www\.sciencemadness\.org/talk/forumdisplay\.php\?fid=2(?:&page=\d+)?
http://www\.sciencemadness\.org/talk/viewthread\.php\?tid=\d+(?:&page=\d+)?
http://www\.sciencemadness\.org/talk/files\.php\?pid=\d+&aid=\d+
http://www\.sciencemadness\.org/talk/images/.*
 

    So I think the command is something like this: 

time wget -r -l inf -np --regex-type pcre -w 17 --retry-connrefused \

  --accept-regex 'http://www\.sciencemadness\.org/talk/(?:images/.*|files\.php\?p
id=\d+&aid=\d+|viewthread\.php\?tid=\d+|forumdisplay\.php\?fid=2(&page=\d+))' \
  http://www.sciencemadness.org/talk/forumdisplay.php?fid=2
 

    I can't use -N because the messageboard doesn’t provide 
Last-Modified.  -nc doesn’t do the right thing because wget doesn’t 
know to reparse the on-disk forum indexes.  I have to use -l inf 
because the default is 5. 

    Happily they do have a robots.txt that implicitly allows this kind of 
mirroring. 

    The above does end up with a bunch of duplicates: 

http://www.sciencemadness.org/talk/viewthread.php?tid=1245&page=2
http://www.sciencemadness.org/talk/viewthread.php?tid=1245&page=2
http://www.sciencemadness.org/talk/viewthread.php?tid=1245&page=2
http://www.sciencemadness.org/talk/forumdisplay.php?fid=2
http://www.sciencemadness.org/talk/forumdisplay.php?fid=2
http://www.sciencemadness.org/talk/forumdisplay.php?fid=2&page=3
http://www.sciencemadness.org/talk/forumdisplay.php?fid=2&page=3
http://www.sciencemadness.org/talk/forumdisplay.php?fid=2&page=3
http://www.sciencemadness.org/talk/viewthread.php?tid=156102
http://www.sciencemadness.org/talk/viewthread.php?tid=156102
http://www.sciencemadness.org/talk/files.php?pid=643614&aid=82955
http://www.sciencemadness.org/talk/files.php?pid=643614&aid=82955
http://www.sciencemadness.org/talk/files.php?pid=643614&aid=82955
http://www.sciencemadness.org/talk/images/xpblue/default_icon.gif
http://www.sciencemadness.org/talk/images/xpblue/default_icon.gif
http://www.sciencemadness.org/talk/images/xpblue/default_icon.gif


www.sciencemadness.org/talk/viewthread.php?tid=27851&goto=search&pid=310821
www.sciencemadness.org/talk/viewthread.php?tid=27851&goto=search&pid=310836
 

    etc. So far this is only a minor irritant, a tarpit that has sucked up 21 
out of the 190 files I’ve snarfed so far on a single thread;  wget isn’t 
smart enough to notice that these are all just redirects to things like 

http://www.sciencemadness.org/talk/viewthread.php?tid=27851#pid310836
 

    This suggests that maybe the regexp is not being required to match 
the whole URL, just the beginning (or maybe anywhere).  Also I 
hadn’t allowed the &page= on the viewthread regexp at the time, so I 
guess it’s pretty certain. 

A second attempted crawl 

    All right, trying again;  seems to be working better now: 

time wget -r -l inf -np --regex-type pcre -w 17 --retry-connrefused \

  --accept-regex 'http://www\.sciencemadness\.org/talk/(?:images/.*|files\.php\?p
id=\d+&aid=\d+|viewthread\.php\?tid=\d+(?:&page=\d+)?|forumdisplay\.php\?fid=2(?:
&page=\d+)?)$' \
  http://www.sciencemadness.org/talk/forumdisplay.php?fid=2
 

    (Apologies for the poorly formatted regexp.  Probably (?x:...) 
formatting across lines would have been a good idea...) 

    Initially I tried it with -w 1.7 until I was sure I’d fixed that problem.  
Now, half a gig later, it seems to be doing okay, though some images 
have been uploaded twice.  Maybe --page-requisites would be a good 
idea but I don’t know how it interacts with --accept-regex.  Maybe also 
-k --adjust-extension would also be useful. 

    After 20-some hours this seems to be doing okay with something 
like 1200 thread pages in 700 threads and 3000 attachments 
successfully downloaded, totaling 1.1 GB: 

while :; do
    echo "$(ls talk/|grep -Po 'tid=\d+'|sort -u | wc -l)" \
         "$(ls talk/|grep -Po 'tid=\d+(?:&page=\d+)?'|sort -u | wc -l)" \
         "$(ls talk/|grep -Po 'aid=\d+'|sort -u | wc -l)"
    sleep 10m
done
 

    There are a few cases where the same file is downloaded under two 
different attachment IDs, resulting in some bloat, but it seems to be a 
minority of the total. 

    The pagination of the forum goes up to page 216, and I think it’s 30 
threads per page, suggesting that the total number of threads is a bit 
under 6500, and so I’m something like 11% done.  (If so, I’m going to 
run out of space on this disk.) 

    Aha, in fact it says on the front page of the forum:  98022 posts in 
6460 threads (“topics”).  Total stats:  36333 topics, 497573 posts, 
288119 members.  So the forum I’m snarfing is about 20% of the total 



number of posts, and I’m about 10% or 15% done with it. 

    I was missing this file: 

wget -x http://www.sciencemadness.org/talk/js/header.js
 

    And this directory: 

wget -r -w 21 -np http://www.sciencemadness.org/scipics/
 

    ...which turns out to have a lot of interesting stuff in it.  And 
actually the default -l 5 wasn’t enough, snarfing only 499 MB in 2249 
files. 

    After another day I’m up to 1412 threads, 2236 pages, and 6201 
attachments, 2.1 gigabytes;  one quarter done with this forum. 

    After another day my netbook crashed, and wget can’t recover, so I 
need to find a better way to spider the site.

Topics

• Materials (p.  784) (51 notes) 
• Practical (p.  806) (12 notes) 
• Web scraping (p.  907) (2 notes) 



Secure Scuttlebutt is a cool idea 
whose realization has fatal flaws
Kragen Javier Sitaker, 02020-10-02 (updated 02020-11-06) 
(17 minutes)

    Some notes from reading the Secure Scuttlebutt protocol 
specification.  I’m coming into this with some prejudices since what 
I’ve heard is that SSB is a pretty good design, similar to some things 
I’ve been toying with for some time, but with some fatal flaws that 
make interoperability very difficult (which turns out to be sort of 
true, due to problems with JSON canonicalization).  So I’m looking 
at it with more of an eye to implementing a similar but incompatible 
protocol than with an eye to implementing SSB itself. 

    My overall sense is that the protocol seems pretty sloppy, although 
probably workable for its intended purpose. 

    The formatting of the document seems okay but I’m not wild 
about essential parts of it being represented as PNGs. 

    Ed25519 keys as identities is reasonable;  might be better to use 
hashes of them.  See below. 

    Broadcasting discovery packets once a second (“advertising”) seems 
excessive, though maybe that’s because I’ve been thinking a lot about 
low-bandwidth networks like FidoNet, LoRa, and shortwave radio.  
Maybe it would be better to broadcast on the order of once every 256 
seconds, after detecting a network change, or after seeing an 
advertisement for a previously unknown peer.  The advertisement 
packet format seems to be about 50 bytes, so the advertisements alone 
suck up 400 bits per second per peer;  ten such peers would render a 
4-kilobit-per-second channel useless.  It would take fewer peers to 
saturate the same connection if framing and lower-level headers also 
consumed bandwidth. 

    I don’t think the terminological distinction between “identity” 
(sometimes called “feed ID”) and “feed” pulls its weight. 

    I like the terminology of “feed” for “all the messages posted by that 
identity”, and I like the one-dimensional URL-like serialization of 
@keys, %messages, and &blobs.  I’m not sure it’s worth it to make 
them not URLs — particularly since keys, the protocol element it’s 
most important to keep lightweight (for example because of their use 
in invite codes), include a verbose namespace identifier “.ed25519” at 
the end!  (However, I’m not a fan of the alternative JSON 
representation of the discovery packet used in the pub message 
format, where, instead of being concatenated into a single string, the 
host, port, and feed ID/identity are stored in the three properties 
“host”, “port”, and — can you guess?  “feed”?  “id”?  
“identity”? — no, “key”, of a JSON “object”.) 

    To elaborate, an Ed25519 key is 32 bytes.  Encoded in base64 it’s 44 
bytes, for 12 bytes of encoding overhead, and the “.ed25519” at the 
end adds another 8 bytes.  Ed25519 is not 
quantum-cryptography-resistant and birthday attacks are not useful 
here, so if we are willing to accept (classical) brute-force resistance of 

https://ssbc.github.io/scuttlebutt-protocol-guide/


only 2¹¹⁹, we need only use 120 bits of public key hash as an identifier, 
or 15 bytes;  this base64-encodes to 20 bytes.  If, at some future time, 
non-Ed25519 keys are desired, they can be signified by beginning 
their representation with one of the 31 printable ASCII characters 
that are not valid Base64 — namely, space or any of the punctuation 
except for ‘=’, ‘+’, or ‘/’.  Thus, instead of the representation 
‘FCX/tsDLpubCPKKfIrw4gc+SQkHcaD17s7GI6i/ziWY=’ 
specified in SSB, we can b64decode that, sha256 it twice, take the first 
15 bytes, and b64encode the result: 

>>> k0 = base64.b64decode('FCX/tsDLpubCPKKfIrw4gc+SQkHcaD17s7GI6i/ziWY=')
>>> sha256 = lambda s: hashlib.sha256(s).digest()
>>> base64.b64encode(sha256(sha256(k0))[:15])
'c71K2cieLixgzReT8TkT'
 

    I argue that ‘@c71K2cieLixgzReT8TkT’ is a more reasonable feed 
ID than 
‘@FCX/tsDLpubCPKKfIrw4gc+SQkHcaD17s7GI6i/ziWY=.ed25
519’, and a classical (non-quantum) brute-force attack on it still 
requires an expected 2¹¹⁹ hashing operations, about 21 quintillion 
machine-years at one hashing operation per machine-nanosecond.  
The drawback is that in order to actually validate any signatures you 
need to somehow obtain the whole 255-bit public key, so the protocol 
needs to have some way for you to get it.  I think this is probably a 
good tradeoff. 

    You could imagine the full URL for a peer owning that key might 
be something like p9://one.butt.nz:8008/@c71K2cieLixgzReT8TkT or 
p9://138.68.8.185:8008/@c71K2cieLixgzReT8TkT, which is noticeably shorter 
than just the key in SSB’s format, let alone the whole discovery packet, 
which I am mostly retyping here because in the original document it’s 
in PNG: 

net:192.168.1.123:8008~shs:FCX/tsDLpubCPKKfIrw4gc+SQkHcaD17s7GI6i/ziWY=
 

    So for example the URL can be encoded as a version 3 QR code 
(29×29), while the SSB discovery packet requires version 4 (33×33).  
The “invite code” explained later on is a total fail;  the example is 
one.butt.nz:8008:@VJM7w1W19ZsKmG2KnfaoKIM66BRoreEkzaVm/J//wl8=.ed25519~r4hIBk7KC
7a9Gknj7Qiuuo4+Et/TS2rjgl6gYgw3OIM=, which I also retyped because it’s also 
in a PNG.  This requires a version 6 QR code (41×41).  See later for 
invite codes. 

    If there’s some kind of advertisement service where you can publish 
your current IP:port, then it might be adequate to say 
p9:@c71K2cieLixgzReT8TkT, which is a version 2 QR code (25×25), 43% 
smaller than the SSB discovery packet above. 

    What’s with this p9 idea for an URL scheme?  Well, shorter is 
better, as long as it doesn’t pose too much risk of a collision.  There 
are only nine two-character URL schemes in Wikipedia’s list, one of 
which is the ni: scheme for naming data by hash;  the W3C also lists 
bk: and kn:, one of which was partly my fault.  IANA lists provisional 
registrations for qb: — and ssb:!  Also, only ten of IANA’s list of 335 
schemes (provisional and otherwise) use digits.  So the risk of an URL 
scheme clash is quite low.  “p” is for “prate (p.  363)”, and 9 is an 

https://en.wikipedia.org/wiki/List_of_URI_schemes
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auspicious number signifying permanence in Chinese.  (You might 
want to use the “URL-safe” variant of base64 in which - and _ are 
used instead of / and +;  in that way you could still interpret / as a path 
separator in the usual way.) On the downside, “p9” is Chromium’s 
and Microsoft WSL's server implementation of the 9P protocol, so it 
might not be a good name for a protocol identifier. 

    ("p8", as in "prate", might be better.) 

    A thing I’m not entirely sure about is whether you’d want to use 
the same identity to talk about two different topics.  Evidently, for 
example, you use a “long term public key” not only to identify a feed 
(and presumably sign messages or blocks of messages on the feed, 
though I haven’t gotten that far yet) but also to authenticate 
incoming connections as a server and to authenticate yourself on 
outgoing connections as a client.  I think it might be worthwhile to 
separate these functions.  (Also, does the key-exchange protocol 
support “name-based virtual hosting”?) 

    I’m not entirely sanguine that Dominic Tarr has evidently invented 
his own key exchange protocol, but it does purport to provide 
security properties that aren’t present in the other key exchange 
protocols I know about.  However, I am not hip to the state of the art 
in key exchange protocols, and never have been, actually.  I wonder 
how well it protects against DoS attacks.  The fact that it’s built on 
NaCl is promising but of course not a guarantee against misuse. 

    The box stream protocol headers are rather bulky at 34 bytes.  At 
300 baud N81 that’s over a second for just the header.  For an 8-byte 
payload that works out to 425% overhead.  However, it may not be 
feasible to offer the cryptographically strong authentication 
purportedly offered by this protocol at a significantly lower cost than 
that. 

    By contrast to the box stream protocol, the rather bulky 
feed-ID/public-key/identity serialization, and the JSON RPC 
protocol body, the RPC protocol header is bummed to within an inch 
of its life, with five bit fields in one byte — which dealigns the 
following fixed-size binary numerical fields. 

    The SSB protocol doc isn’t always clear about the usual 
must/should distinction;  at one point, for example, it says, “JSON 
messages don’t have indentation or whitespace when sent over the 
wire.” Does that mean we should reject JSON messages containing 
whitespace?  What if it’s inside a string?  In another case, it says, 
“Because this is the first RPC request, the request number is 1.” What 
should you do if the first RPC request you get on a stream is 
numbered 0, as any sane person would do, instead of 1? 

    I’m not sure “createHistoryStream” is a good name for “subscribe”.  
I mean it sounds more like “publish” than “subscribe”. 

    The first example RPC response seems like it might have a typo: 

 "key": "%XphMUkWQtomKjXQvFGfsGYpt69sgEY7Y4Vou9cEuJho=.sha256",
 

    I thought previously we said “%” was for messages, not keys?  Also, 
this seems to be a hash, not a key.  (And as such it could use the ni: 
URL scheme mentioned earlier, or for that matter magnet:.  Would 
those be better?) 

https://dominictarr.github.io/secret-handshake-paper/shs.pdf
https://dominictarr.github.io/secret-handshake-paper/shs.pdf


    And we start to see the difficulty with the message signature 
scheme:  we have a JSON structure under the name “value”, then 
what is purported to be an Ed25519 signature.  But Ed25519 cannot 
sign JSON;  it signs blobs.  Perhaps later we will see how this is 
resolved. 

    The pairing of request 1 with response -1, request 2 with response 
-2, and so on, is a bit goofy.  And the name “RPC” doesn’t seem 
entirely apt.  But these are minor details. 

    A perhaps more serious issue — for some applications, anyway — is 
that, when you request the messages from a feed, you apparently have 
no idea if you are going to receive 150 bytes or 150 megabytes of 
response, and no way to stem the flood if it overwhelms you, other 
than the usual TCP mechanisms, assuming you’re speaking over 
TCP.  (A mechanism is given “to abort a stream before it is finished” 
but it’s of the XON/XOFF flavor, not the ENQ/ACK or 
TCP/ZMODEM sliding-window type, so a FIFO in the system will 
totally defeat it.  Later on we do see that createHistoryStream has a limit 
option, but it’s a limit on the number of messages, not a number of 
bytes.) 

    I think the partitioning between messages and blobs is probably a 
good idea for many purposes, though the example messages given for 
the first few requests don’t refer to any blobs;  they just have text 
bodies.  So the introduction of blobs.has (or, as it’s spelled elsewhere, 
["blobs","has"]) is a bit startling. 

    I worry a little bit about the potential information leaks associated 
with blobs.has.  Should I consider the set of blobs that my Scuttlebutt 
client has to be public information, or at any rate visible to everyone I 
connect to?  Might having a blob indirectly reveal something I 
consider private? 

    As I’ve mentioned previously in personal communications, I don’t 
think there’s any benefit in a feed like the Scuttlebutt feed to 
including the hash of the previous message in each message.  
Including such hashes in general cannot defend against message 
blocking:  if nobody is willing to give you Alice’s message #4, then the 
fact that you know its hash from reading Alice’s message #5 does not 
in itself help you to find out message #4’s content.  Rather, including 
such hashes is designed to prevent attackers from silently blocking 
messages (without blocking all following messages) and from altering 
messages.  But Alice’s signature on message #4, if calculated over 
something that includes the sequence number 4, already defends 
against those two attacks. 

    Specifying within the message content the hash algorithm to be 
used to sign the message also seems like a bad idea to me, although a 
relatively harmless one — as with the link to the previous message, it 
only wastes a little bandwidth. 

    The ["Message format", "signature"] section finally explains the JSON 
canonical serialization used for signatures, which is kind of terrible;  it 
refers to the ECMA-262 6th-edition spec for JSON.stringify!  And it’s a 
different JSON serialization from the one used on the wire, because it 
contains mandatory whitespace.  Moreover, it entirely fails to 
mention the order of dictionary keys, and the example message in the 
SSB document to which it refers does not have the keys sorted in any 



discernible order.  ECMA-262 does not appear to specify the 
dictionary key order either:  stringify calls SerializeJSONProperty 
which calls SerializeJSONObject which calls EnumerableOwnNames 
which uses the ordering of the [[Enumerate]] internal method which, 
in the 6th edition, explicitly says “order of enumerating the properties 
is not specified”, although, as I understand it, the committee is going 
to standardize that iteration happens in insertion order, or has already 
done so. 

    Later, contradicting what the “Signature” section says, the 
“Message ID” section says, “Like with signatures, dictionary keys 
must appear in the same order that you received them.” This is at least 
an implementable specification, although it precludes the use of most 
JSON libraries. 

    Basically this is the same design error as XML canonicalization and 
ASN.1 DER, only botched.  If you google “How Not To Sign 
JSON” this is literally what you will find. 

    On the createHistoryStream semantics, I think six options is too many.  
The basic request ought to be “please send me messages on feed X, 
starting from sequence number Y, up to a limit of Z bytes,” and the 
response ought to indicate when all the known messages have been 
sent and the peer is now waiting for new messages to forward on to 
you.  There’s no need to have the option not to know when you’re up 
to date (it costs one bit on each message at worst), no need to have 
other ways to fetch messages, no need for an option to omit messages 
that arrived at the peer before you sent your subscribe, and no need 
for the peer to tell you when it received messages, much less an option 
to turn that behavior off. 

    I do think the decision to handle feeds and blobs separately is good.  
In fact, I think that in many cases they should be even more separate 
than they are in SSB.  The lack of this separation is one of the 
weaknesses in Van Jacobson’s CCN. 

    Blob IDs do not need to be dozens of bytes long (again, presuming 
no quantum cryptanalysis, 120 bits should be fine), and there’s no 
need to have separate get and getSlice procedures (“methods”!?), nor 
multiple argument formats.  A single request to fetch up to X bytes 
from blob Y starting from byte offset Z, whose response includes the 
actual blob size, is sufficient;  if you want the whole blob then you can 
just set X to be very large, or, after the first request, use the actual 
remaining size of the blob. 

    A better hashing scheme such as BLAKE3 would enable the 
verification of partial blobs (down to 1 KiB) as well as entire blobs, 
with a little bit of extra metadata.  (BLAKE3 is also about 30 times as 
fast as SHA-256 on modern multicore SIMD hardware.) I’m not sure 
exactly how truncating BLAKE3 hashes affects its security. 

    I need to come back and read the wants/haves stuff more later, 
except that I really don’t like the name “createWants”.  It seems like 
a reimplementation of CCN, inheriting some of its weaknesses. 

    In a lot of cases I would like to store my blobs in a totally different 
system from the gossip system used for pub/sub broadcasting.  For 
example, I might want to use a DHT to assign blobs to blob servers, 
rather than replicating them to every peer. 

https://www.ecma-international.org/ecma-262/6.0/#sec-json.stringify
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    I think “feeds can follow other feeds” is...  not a useful idea.  But 
it’s entirely separable from the rest of the protocol. 

    “Invite codes” serve a couple of purposes, but I think they can be 
served more easily.  I’ll have to read the invite-code stuff later. 

    Posting private messages on your regular feed, but encrypted, is 
probably a reasonable thing to do, but in other cases it would be more 
useful to create a feed for a particular person-to-person conduit.  
However, encrypting messages and then posting the ciphertext as 
base64 strings in JSON is a stupid thing to do.  It’s like pre-yEnc 
alt.binaries Usenet.

Topics

• Security (p.  807) (11 notes) 
• Protocols (p.  809) (9 notes) 
• Facepalm (p.  819) (8 notes) 
• Chat (p.  967) (2 notes) 



Prate thoughts
Kragen Javier Sitaker, 02020-10-02 (updated 02020-12-30) 
(12 minutes)

    So I just looked at Secure Scuttlebutt (p.  357) and I’m trying to 
figure out what would be better.  Layering would be better. 

The secure gossip protocol 

    The secure gossip protocol in Prate provides a peer-to-peer reliable 
authenticated publish-and-subscribe service to higher-level protocols. 

    A journal consists of a public key and an append-only sequence of 
sequentially numbered pages, each of which is sealed with a signature 
from the private key corresponding to the public key.  Each page 
consists of a header, a delimited sequence of bytes interpreted as the 
page number and an arbitrary set of name-value pairs;  a body, which 
is an arbitrary sequence of any number of bytes;  and the seal, which is 
a cryptographic signature of the concatenation of the header and the 
body. 

    When two peers are talking about a journal --- later we shall 
discuss how this may come to pass --- which is identified by a hash of 
the journal’s public key, they can ask one question: 

• Please send me pages N and up from journal X, up to a maximum 
of M bytes.  

    The polite response to this question takes of one of the following 
forms: 

• I can’t or would prefer not to. 
• I know pages numbered up to N’ from journal X, whose public key 
is Y.  Page N consists of 301 bytes:  <....>.  Page N+1 consists of 1820 
bytes:  <...>.  Page N+2 consists of 238332 bytes.  

    The positive response may include the contents of zero or more 
pages.  It includes the full public key, since the public keys use 
Ed25519 and are therefore only 32 bytes, which is compact enough to 
always send.  The pages may be sent immediately or not until later;  
indeed, they may not exist at the time they are requested.  
Consequently N’ may be less than the maximum page number sent. 

    The final information sent for a positive response is, at times, the 
size of a page that was not sent because it was too large to fit within 
the byte limit M. 

    Holders of private keys must ensure that they never seal two 
distinct pages in the same journal with the same page number, and 
that they never seal a page with a page number less than an 
already-sealed page on the same journal;  in this way journals must 
remain append-only.  They should start numbering the pages in each 
journal at 0 and number them sequentially without skipping any 
numbers.  Peers must never send pages that are not sealed, whose seal 
is invalid, or that have not been requested, either by preceding N or 
by causing the total responses to a request to exceed M.  They must 
never send a public key that does not have the correct hash, either. 



    As in BitTorrent, it does not matter at all who the two peers are, 
because any information published unencrypted in a journal is 
assumed to be public, so sending it to any peer is okay;  and, because 
the pages in the journal are sealed, they authenticate themselves, so it 
is equally valid regardless of who you got it from. 

    Peers can freely choose whatever retention policy they want for 
journal pages, as well as choosing when and whether to make or fulfill 
requests.  Of course if they do not have a copy of page N, they cannot 
send it when requested, but in this case they may send page N+1, 
N+2, etc., as long as they fit within the byte limit.  However, if they 
do send any pages, they must send the lowest-numbered pages they 
have, or (if they do not fit in M) their byte count.  They may not 
choose, for example, to send page N+1 when they could have sent 
page N, or page N+2 when they could have sent page N+1. 

    Again, as in BitTorrent, you might choose which peers and journals 
to devote your resources to based on your past interactions with them 
and/or their identities.  For example, if a peer asks you for pages from 
journal X, you might ask them for pages from the same journal, 
especially if you couldn’t satisfy their request.  And if they do satisfy 
your requests, you might prioritize satisfying their requests in the 
future, perhaps even subscribing to journals you aren’t really 
interested in, but that they have expressed interest in.  As another 
example, you might send requests for pages optimistically to peers 
who you have no real reason to think can satisfy them. 

    One uncertainty:  although sealed page numbers ensure that 
malicious third parties cannot alter the history of an existing journal 
except by unanimous replay attacks (a form of censorship), they do 
not ensure that the legitimate author only publishes pages in order.  
Including the hash of the previous page in each new page, like Secure 
Scuttlebutt, Bitcoin, and Git, would prevent the author from 
publishing pages out of order.  Does this matter? 

Journals, topics, and identities 

    An identity is an agent in a distributed system, such as a human or a 
running program.  A topic is a set of messages an identity might want 
to subscribe to.  Prate’s gossip protocol, described above, does not 
directly provide the ability to subscribe to or “follow” topics, which is 
surprising because it is claimed to provide pub-sub.  It only provides 
the ability to subscribe to journals, which is implemented by asking 
other peers to send you pages from them. 

    Generally there is not a one-to-one relationship between journals 
and topics, topics and identities, or identities and journals.  We can 
implement both identities and topics to a significant extent as groups 
of journals.  To subscribe to a topic, you somehow obtain a list of 
journals that belong to it, then subscribe to all those journals.  To 
publish to a topic, you create a new journal for your publications on 
that topic, then somehow try to advertise your journal so that others 
will subscribe to it. 

    Journals cannot usually be shared between identities, because, as 
explained above, holders of private keys must ensure that they never 
seal two distinct pages in the same journal with the same page 
number.  This means that, for example, if a person wants to publish 



both from their laptop and from their cellphone, they will need to 
create one journal on each, unless they are willing to take on the 
obligation of assigning page numbers manually.  Otherwise, the 
possibility exists that, while their cellphone is in airplane mode, they 
will seal a page on their laptop, save it on their pendrive, accidentally 
run over the laptop with their pickup, then seal another page on their 
cellphone with the same page number and promulgate it, then later 
promulgate the doppelganger page on their pendrive from a different 
laptop.  This possibility is clearly intolerable, so they should either use 
two separate journals or keep the private key on a centralized server 
that both the laptop and cellphone use. 

Signaling, advertising, discovery, spam, and 
denial of service 

    How does the new kid on the block make her first acquaintance?  
Once this is done, the acquaintance can introduce her to others as per 
the Granovetter diagram, who can introduce her to still others, 
progressively widening her circle of acquaintances.  But how can the 
progress get started? 

    For example, suppose there’s a well-known journal (call it 
Factsheet 9) that periodically publishes new lists of journals that 
publish on particular topics.  If you want to subscribe to news about 
wildfires, you can subscribe to Factsheet 9, peruse its past pages for 
announcements of wildfire journals, then subscribe to all those 
wildfire journals.  Similarly for Google outages, time zone changes, or 
new erotic fiction.  But if you want to publish news about a wildfire, 
somehow you must persuade Factsheet 9 to list your new wildfire 
journal.  How can you establish contact as a complete unknown? 

    Whatever solution is adopted to this problem, allowing complete 
unknowns to establish initial contacts, is vulnerable to Sybil attacks 
and spam, and so it cannot be considered reliable.  But that does not 
mean that no solution exists. 

Alternative terminology 

    I’ve considered a number of alternative terms for “journal” and 
“page”.  Perhaps “journal” should be “feed”, “stream”, “channel”, 
“ledger”, “scroll”, “book”, “codex”, “file”, “hair”, “thread”, “tune”, 
“battery”, “log”, “dynasty”, or “chain”, while perhaps “page” (the 
unit of committing to a journal) should be “transaction”, “line”, 
“drop”, “entry”, “scrap”, “chapter”, “cell”, “verse”, “slice”, 
“parcel”, “morsel”, “packet”, “commit”, “king”, “block”, or “link”.  
So we might say we append commits to a log, or lines to a file, drops 
to a stream, or entries to a ledger, or kings to a dynasty, rather than 
pages to a journal. 

    “Page” has the misleading connotations of mutability and a fixed 
size.  “Log”, “journal”, and “ledger”, and to a lesser extent “feed”, 
have the right append-only connotation. 

    “Appending lines to a file” or “to a log” sounds reassuringly 
low-tech and helpfully connotes variable-sized-ness, but misleadingly 
connotes a size closer to 64 bytes than, say, 2048, which I think is 
more likely in the sweet spot.  It also misleadingly connotes plain text, 



and it might lead to confusion when we’re trying to talk about the 
implementation:  “What do you mean, the file is stored in several 
files?” 

    Secure Scuttlebutt (p.  357) uses “feed” and “message”, and 
following that convention might help comprehensibility for people 
who know SSB.  Kafka (p.  48) uses “topic partition” (described as an 
“ordered ‘commit log[]’”, leading me to favor “log” and “commit”) 
and “event”. 

Detached and batched signatures 

    As Remosi pointed out when I brought it up, it might be useful to 
separate the signature from the page, so that a single 
signature-verification operation is sufficient to validate all pages up to 
a given point in the journal.  Moreover, a Merkle chain over the pages 
permits verifying the whole journal up to that point with some degree 
of independence from actually reading the pages. 

    That is, given a signing operation Sk(hashval) and a hashing 
operation H(data), when you author a page Pᵢ, you can compute aᵢ = 
H(Pᵢ), bᵢ = H("cons" || bᵢ₋₁ || aᵢ) and sᵢ = Sk(bᵢ), and distribute all 
three of them.  (We can take b₀ to be some convenient public value 
such as “”.) Someone who wants to verify the journal signature up to 
i needs only sᵢ and all the aⱼ and bⱼ for j ≤ i, which is (for many signing 
algorithms) considerably more compact than a signature per page and 
also faster to verify.  This then allows them to verify particular page 
data if and when they actually get the pages. 

Thanks 

    To Remosi for a very helpful discussion.
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 Lithium fuel  
 Kragen Javier Sitaker, 02020-10-04 (7 minutes)  

     Aside from lithium’s well-known use in batteries (rechargeable 
and otherwise) it seems like it might be useful as a fuel, similar to the 
tamer magnesium (p.  331), or alloyed with it.   
 Property   Li   Li₂O   LiH   Li₂S   O   S   H₂O   SO₂   
 Molar mass, g/mol   6.94   29.88   7.95   45.95   15.999   32.06   18.015  
 64.066   
 Density, g/cc   0.534   2.013   0.78   1.67   .001429   2.07   1.00   .00263 
  
 Enthalpy of formation, kJ/mol   0   -595.8   -90.65   -447   0   0   
-285.83   -296.81   
 ", MJ/kg   0   -20.01   -11.4   -9.401?    0   0   -15.87   -4.63   
 Heat capacity (room temp) J/mol/K   24.860   54.1   27.9   ??    
29.378   22.75   75.39   39.87   
 Specific heat, J/g/K   3.58   1.81   3.51   ??    0.92   0.71   4.184   0.622   
 Extrapolated ΔT, °C   0   11000   3200   ??    0   0   3800   7400   
 Melting point, °C   181   1438   689   938   -219   115   0   -72   
 Boiling point, °C   1330   2600   900   1372   -183   445   100   -10    

     The extrapolated temperature changes here are what the 
temperature would be in forming the compound from the elements, 
if its specific heat stayed the same as that at room temperature and it 
underwent no phase transitions.  But of course specific heats typically 
rise with temperature (at 1200 K SO₂’s heat capacity is 55.81 J/mol/K
) and several of these materials do in fact undergo phase transitions.   

     The lithium combustion equation should be 4Li + O₂ → 2Li₂O, 
producing 1192 kJ per mole of O₂ and per four moles of Li, thus 298 
kJ per mole of Li;  that’s 42.9 MJ/kg, quite impressive, almost twice 
magnesium’s 24.7 MJ/kg.  The energy density then would be 22.9 
MJ/ℓ, lower than magnesium’s 43 MJ/ℓ.   

     So it turns out that lithium as a fuel burned with oxygen has a 
specific energy even higher than magnesium, though much lower 
density.  Because of that and because magnesia’s specific heat is higher 
than lithia’s, burning lithium probably will reach lower temperatures.  
 

     At 2%, magnesium is much more abundant in Earth’s crust than 
lithium — despite lithium’s name, it’s only found at 20 ppm.  This is a 
disadvantage for lithium as an energy carrier.  Aside from lithium’s 
higher specific energy, though, it also melts at a reasonable 
temperature which might make it possible to use as a liquid fuel in 
some kinds of engines, though for some of them the refractory nature 
of lithia would be a drawback.   

     Lithium, like magnesium, is produced by molten-salt electrolysis 
of the chloride, in this case fluxed with KCl, and at a very friendly 
temperature of 450°.  I don’t know of a lithium equivalent to the 
Pidgeon silicothermic reduction process for magnesium.   

     Reacting lithium instead to the hydride or the poorly characterized 
sulfide would produce about half as much heat, although that’s still a 
pretty acceptable energy density, and those reactions also produce no 
gases, just solid or liquid salts.  It may be feasible to produce the 

https://webbook.nist.gov/cgi/cbook.cgi?ID=C7446095&Mask=1&Type=JANAFG&Table=on#JANAFG


sulfide with a reaction between molten lithium and molten sulfur, 
producing molten lithium sulfide, although sulfur’s tendency to 
polymerize around lithium’s melting point may be an obstacle.   

     Also, though, those salts can themselves be used as fuels!   

 Hydride and sulfide fuels  
     Either of these can be burned as a fuel with oxygen to produce the 
other half of the heat, plus additional energy from oxidizing the 
anion.  They may be more or less convenient than the lithium metal 
due to their higher stability in air (?) and melting points.  The sulfide 
has a higher boiling point than lithium as well.   

     As for the hydride’s stability in air, WP says that lumps of it form a 
protective tarnish in humid air, inhibiting further reaction, doesn’t 
ignite “in a metal dish” (?) until heated past 200°, and is “less reactive 
with water” than Li, but still “highly reactive” and “reacts violently 
with water”.  Furthermore you cannot extinguish its fires with 
ordinary (presumably quartz) sand.   

     The sulfide is reported to be deliquescent in air and, like other 
metal sulfides, hydrolyzes to produce sulfuretted hydrogen.  Unlike 
lithium or the hydride, it does not seem to pose an explosion risk with 
water, just a poison gas risk.   

     The hydride combustion equation would be something like 2LiH 
+ O₂ → Li₂O + H₂O, yielding steam and 595.8 + 285.83 - 2×90.65 kJ 
per two moles of the hydride, 700 kJ, which is 350 kJ per mole of the 
hydride or 44 MJ/kg.  This is almost the same as the specific energy of 
lithium itself!  It’s an energy density of 34 MJ/ℓ, the same as gasoline 
or diesel fuel, much better than lithium, and nearly as high as 
magnesium.   

     The sulfide combustion equation would be 2Li₂S + 3O₂ → 2Li₂O 
+ 2SO₂, yielding SO₂ gas and (2×595.8 + 2×296.81 - 2×447) kJ per 
two moles of the sulfide;  that’s 892 kJ per two moles or 446 kJ per 
mole, which is 9.7 MJ/kg and 5.8 MJ/ℓ.  That’s still usable as a fuel, 
but it’s at the low end of what’s usable, and the corrosive gas is 
probably a killer drawback.   

     The hydride may also be interesting as a potential working fluid 
for high-temperature heat engines due to its large expansion when 
heated;  it decomposes to liquid lithium and gaseous hydrogen at 
900°–1000°, and at 1330° the lithium boils, I think to individual 
atoms rather than diatomic molecules.  So each mole of hydride will, 
I think, produce three moles of gas.  At room temperature the 
hydride’s 0.78 g/cc is 0.098 mol/cc, 98 moles per liter, while at 1330° 
the 294 moles of gas produced from that liter would ideally each 
occupy some 132 liters, a total of nearly 39 cubic meters.   

     Whether the sulfide would act similarly is, I think, anybody’s 
guess.   

     The borohydride of lithium has been discussed as a possible fuel, 
though no boron-containing fuel is in use today for excellent reasons.  
 

     There is also a metastable lithium aluminum hydride LiAlH₄, 
containing a “tetrahydroaluminumate” or “alanate” or 
“tetrahydridoaluminate(III)” or “alumanuide” ion;  it decomposes to 

https://en.wikipedia.org/wiki/Lithium_hydride
https://en.wikipedia.org/wiki/Lithium_sulfide


lithium hydride and a different lithium aluminum hydride Li₃AlH₆.  
It contains nearly as much hydrogen by weight as lithium hydride 
itself, and is even denser at 0.917 g/cc, so it contains more hydrogen 
by volume.   

 Topics  

• Materials (p.  784) (51 notes)  
• Thermodynamics (p.  802) (13 notes)  
• Energy (p.  808) (11 notes)  
• Pidgeon process (p.  928) (2 notes)     



Globoflexia
Kragen Javier Sitaker, 02020-10-05 (updated 02020-10-10) 
(37 minutes)

    Globoflexia, or balloon twisting, is a popular form of 
entertainment, especially for children;  a skilled balloon twister can 
make an evocative, if cartoonish, sculpture of an animal or person 
within a few seconds to a minute.  Extremely elaborate sculptures are 
feasible over a few hours;  because the material is so light, getting all 
of its compressive strength from air, sculptors can easily build and 
manipulate sculptures far larger than themselves.  Because the 
balloons leak, the sculptures are ephemeral, lasting at most a few days. 

    Much to my surprise, there’s a world globoflexia conference every 
two years at which teams from dozens of countries compete. 

    What if you could use globoflexia as a medium of expression for 
more permanent ideas?  Obviously you can photograph the 
sculptures, thus making images or videos of them, but the underlying 
three-dimensional form of the object is lost. 

    So I’ve been thinking about three different ways to do this:  
photogrammetry, spray foam, and papier-mâché. 

Photogrammetry 

    If you can 3-D scan balloon sculptures into a computer, you can use 
them as a means for telling the computer what to do;  this could be, as 
in Dynamicland, a real-time interactive process of shaping 
computations with your hands, with real-time projected feedback, or 
it could be more a kind of batch data-entry thing, for example for 
designing three-dimensional shapes for later tweaking and automated 
fabrication, whether at the same scale, a larger scale, or a smaller scale. 

    Existing photogrammetry methods do not work for balloons.  But 
the balloons in question are not inherently algorithmically difficult:  
each is a well-controlled solid color, displaying gradients of intensity 
corresponding to local degree of stretch and illumination, with 
well-controlled specular highlights.  The images generally only 
contain edges at the edges of the balloon silhouette, at wrinkles 
around twists, around specular highlights, and outside the balloons.  
These highlights give a fairly precise read on the surface angle and 
curvature at a particular point, as do the silhouette edges. 

    Moreover the balloon sculptures’ shapes are themselves 
well-behaved:  the surface at most points has a relatively smooth 
curvature determined mostly by the gauge pressure and the tensions 
in two directions.  Rubber’s complex pseudoelastic thermodynamic 
behavior is not so complex as to make this a very difficult problem. 

    Further information can be obtained by looking at the balloon 
sculpture from different angles, as is normally done in 
photogrammetry, thus scanning the specular highlights and silhouette 
contours over the surface. 



    Given this information, it remains to optimize a model of the 
balloon sculpture to account for the observed photos as 
parsimoniously as possible, using standard methods like finite element 
analysis, Markov-chain Monte Carlo, gradient descent, and genetic 
algorithms. 

Spray foam 

    What if you fill the balloons with a hardening foam instead of air? 

    Conventional polyurethane expanding spray foam insulation has 
been available for decades.  You spray it as a thixotropic liquid foam, 
which accommodates itself to the container it’s in before slowly 
polymerizing into a light, hard, thermally and electrically insulating 
foam with substantial mechanical strength.  Some formulations form 
waterproof closed-cell foams, while others form lighter-weight 
open-cell foams.  There are formulations that ship as pairs of liquids 
to be mixed in a gun, for high-volume applications, and other 
formulations that you just squirt out of a can. 

    The materials that form polyurethane foams are fairly reactive until 
they’ve finished forming the foam, and that may be a fatal flaw for 
squirting them into rubber balloons:  they may corrode the balloons 
and pop them before the foam has hardened. 

    Polyurethane is not the only possible hardening foam.  Latex foam 
is widely used for pillows, mattresses, and theater special-effects 
makeup (“prosthetics”), in which last use it is typically cast in molds 
before curing.  Protein foam is a popular dessert, both as meringue 
(with air whipped into it) and as gelatin foam in so-called “molecular 
gastronomy” or “modernist cuisine”, where the gelatin gel is mixed 
with nitrous oxide under high pressure and low temperature, like 
canned whipped cream.  Gelatin foam is also widely used for makeup, 
sometimes whipped like meringue, but sometimes foamed with 
non-double-acting baking powder (for example baking soda with 
cream of tartar) or even yeast. 

    There’s also been a lot of work in recent years on foamed concrete, 
sometimes called “aircrete”.  This consists of portland cement, water, 
a surfactant (Suave shampoo is reputed to work well, though there are 
also specific surfactant mixes from companies like Drexel), possibly 
some foam stabilizers (I suspect gelatin might work well for this), and 
a great deal of gas.  Sometimes sand is used, but rocks are never used.  
The original 1920s process for foaming concrete (“autoclaved aerated 
concrete”) used aluminum powder mixed into the concrete mix.  
After molding the concrete was heated in an autoclave to react the 
aluminum with some of the lime in the concrete, thus foaming the 
concrete with hydrogen gas, as well as accelerating the formation of 
the calcium silicate hydrates that bond the concrete.  The more 
common method nowadays is more like meringue:  air is 
mechanically mixed into some of the water before mixing in the 
wetted cement. 

    You probably can’t foam any traditional concrete with anything 
similar to baking powder, because the strongly basic nature of 
portland cement, lime, Sorel cement, and refractory calcium 
aluminate will destroy the baking-powder acid without producing 
any gas.  Non-traditional concrete binders like low-alkalinity 



waterglass or molten sulfur might be less corrosive, but probably also 
are not a realistic way to fill balloons.  And I suspect that at room 
temperature aluminum powder will not produce hydrogen fast 
enough. 

    The strongly basic nature of these cements might also cause them to 
attack the balloons. 

    Most resins can be foamed in a way similar to polyurethane spray 
foam.  Radio-controlled airplane hobbyists commonly mix a secret 
“foaming agent” from R&G into two-component epoxy to get an 
epoxy foam, for example.  One publication on the use of polysilazane 
for this purpose suggests that powdered aluminum mixed with soda 
lye is the usual foaming agent! 

    Whatever foam is chosen, whether one of the above or something 
else, the idea is simply to fill the balloons with the foam or incipient 
foam rather than just air.  Then you twist the balloons into the right 
shape, carrying the foam along with them, and leave them there until 
the foam has hardened.  You may want to spray some kind of 
adhesive onto the joints, since otherwise the foam in the different 
segments of the balloons will only be connected together through the 
balloon rubber, which may not be very stable. 

Papier-Mâché 

    An alternative, and possibly complementary, approach is to put 
something on the outside of the balloons that hardens there, forming a 
hollow, tubular, continuous version of the shape you have made with 
the balloons.  The traditional material for this is strips of paper dipped 
in wheat paste, but there are many possible variations on the 
papier-mâché theme. 

    In addition to wrapping the balloons tightly, you can use the 
balloons themselves merely to form a frame over which sheets of 
adhesive-soaked fiber reinforcement are draped. 

    For the adhesive, rather than wheat paste, you could use: 

• PVA glue; 
• hide glue; 
• silicone; 
• epoxy resin and similar resin systems, if they don’t attack the 
balloons; 
• cyanoacrylate adhesive; 
• plaster of Paris (thank you, Javier Candeira!); 
• sodium silicate waterglass; 
• slaked lime, if it doesn’t attack the balloons or fibers; 
• portland cement, if it doesn’t attack the balloons or fibers and the 
color isn’t a problem; 
• calcium aluminate cement, if it doesn’t attack the balloons or fibers, 
and refractoriness is desired; 
• Sorel cement, if it doesn’t attack the balloons or fibers, and maximal 
strength is desired; 
• a so-called “geopolymer cement”; 
• latex paint; 
• shellac; 
• polyurethanes; 



• urea-formaldehyde resin; 
• phenolic resin; 
• various kinds of solvent-based plastic cements such as PVC 
dissolved in acetone, if the solvent doesn’t attack the balloons or 
fibers; 
• constant-tack adhesives like those used in scotch tape; 
• wet clay, whether simply allowed to dry or later fired; 
• tar, though probably using a solvent rather than heat; 
• paraffin or other waxes, if the balloons can handle their melting 
temperatures; 
• spray foam; 
• linseed oil; 
• castable refractory mix; 
• other adhesives; 
• some mix of the above.  

    For the fiber reinforcement, instead of paper, you could use: 

• nothing; 
• heavily perforated paper; 
• paper towels; 
• cotton cloth, whether light like cotton tulle or heavy like canvas, 
and whether with a narrow weave like twill to maximize the strength 
of the fabric or a loose weave to ensure good adhesion between the 
adhesive on both sides of the fiber; 
• burlap (aka Hessian), especially sisal or jute, to minimize cost and 
ensure good adhesion between the adhesive on both sides of the fiber; 
• gauze, as in traditional plaster casts for broken bones (thank you, 
Javier Candeira!); 
• mosquito netting; 
• fiberglass cloth, as in traditional glass-reinforced polymer layups or 
in printed circuit boards, although if the binder is strongly basic you 
might need to use alkali-resistant fiberglass; 
• carbon fiber; 
• large flakes of mica; 
• ceramic fiber like those used in refractory blankets and flocking, if 
resistance to high temperatures is desired (typically these fibers are 
mixes of mullite, alumina, zirconia, and silica); 
• basalt fiber; 
• webbing like that used in car seatbelts, made from nylon or other 
fibers; 
• steel window screens; 
• aluminum or fiberglass window screens, if the binder is not strongly 
basic; 
• stainless steel cloth; 
• thicker and stronger metal reinforcement such as traditional rebar 
tie-ups, hardware cloth, chicken wire, or expanded sheet metal; 
• copper wires; 
• gel-spun ultra-high-molecular-weight polyethylene fibers; 
• nonwoven bargain-basement felted polyester fabric (“friselina”); 
• other fibers; 
• some mix of the above.  

    If the adhesive is less flexible than the fiber reinforcement (e.g., has 
a higher Young’s modulus), then the fiber reinforcement may just 



weaken the binder instead of strengthening it, although it can produce 
some “strain hardening” behavior where the adhesive cracks but the 
fiber keeps the adhesive cracks from opening wider and thus 
continuing to propagate.  Still, even weak fibers can hold the adhesive 
in position until it sets, and for some purposes the adhesive alone will 
be strong enough without any help from the “reinforcement”. 

    The fiber reinforcement may have other purposes as well, other 
than shaping or strengthening;  for example, if the adhesive is 
transparent, decorative or informative images can be printed on the 
fiber reinforcement;  conductive fiber reinforcement can provide 
Faraday-cage protection against EMI more cheaply and flexibly than 
sheet metal;  gold leaf or aluminum foil can provide high reflectivity;  
and so on. 

    It may be worthwhile to also include other additives in the 
adhesive, whether inert fillers or reactive;  for example: 

• pigments; 
• quartz sand for extra strength; 
• olivine or zircon sand for extra strength at higher temperatures; 
• clay, such as bentonite, functionalized if necessary to bond well with 
the adhesive, in order to increase strength or decrease oxygen 
permeability; 
• other soils, such as silt, as the lowest-cost fillers available; 
• encapsulated air bubbles to reduce density, such as hollow 
microspheres of steel, glass, or plastic; 
• vermiculite, perlite, pumice, or similar foamed minerals to reduce 
density; 
• polystyrene foam beads or similar foamed plastic beads to reduce 
density; 
• lead, bismuth, or steel particles to increase density; 
• rubber particles to increase shock damping and reduce rigidity; 
• graphite, amorphous carbon, or silicon carbide to increase electrical 
conductivity and/or heat resistance; 
• donors of alkali metals and boron to reduce melting point and 
increase the thermal coefficient of expansion, for example to facilitate 
fire-glazing the surface afterwards — carbonates of sodium and 
potassium, boric acid, and borax are traditional here; 
• foaming agents like baking powder; 
• plasticizers like phthalate esters; 
• chopped fibers, for example of basalt fiber or any of the other types 
mentioned earlier, or other fibers such as hair clippings, horsehair, 
paper fibers as in ordinary papier-mâché, sawdust or other wood 
fibers, grass clippings, used yerba mate, bamboo fibers, or straw; 
• broken glass, for example for decorative purposes; 
• abrasives, such as aluminum oxide or silicon carbide; 
• pesticides such as copper chloride, blue vitriol, salt, or clove oil to 
prevent biodegradation, for example by insects eating wheat paste and 
cotton fibers; 
• UV blockers such as titanium dioxide to prevent photodegradation; 
• additives to increase effective heat capacity, such as 
microencapsulated phase-change materials; 
• milled mica, stainless steel, aluminum powder, or other glitters for a 
sparkly metallic appearance; 



• catalysts; 
• sodium polyacrylate or similar hygroscopic polymers to make the 
surface hygroscopic or cause changes in shape with environmental 
humidity; 
• other fillers and additives; 
• some mix of the above.  

    In some cases you will want to start with a lightweight, 
fast-hardening system such as gauze and plaster of Paris, then overlay 
it with a heavier system that the balloons alone wouldn’t be able to 
support.  There are many other reasons you might want to use 
multiple layers, including making sandwich panels with a light, weak 
inner core and stronger faces, and allowing earlier layers time to dry. 

    In cases where the first layer has no fiber reinforcement, it might be 
useful for that first layer to be sprayed onto the balloons rather than 
placed there by hand.  This would allow it to be applied more rapidly 
and easily, and it could perhaps be strong enough once hardened to 
support significantly more weight than the balloons themselves.  
Spray foam seems particularly appealing for this application. 

    If you combine this process with the foam-filling process you can 
get shapes built from tubes with strong, rigid, hard surfaces braced by 
a weaker foam within. 

    Also, of course, most of these processes can be used on top of a 
form produced by some other method than globoflexia;  for example: 

• 3-D printing; 
• bending a wire armature; 
• using an existing object such as a vase; 
• blowing glass; 
• vacuum-forming plastic; 
• blow-molding plastic; 
• electrotyping; 
• modeling with clay or other modeling compounds; 
• origami, whether with paper, sheets of PET or other plastic, 
aluminum foil, or other materials; 
• commanding a motorized reusable “armature” to assume a certain 
position until the papier-mâché draped over it hardens; 
• CNC machining; 
• cutting, folding, and assembling shapes out of cardboard or MDF, 
though this requires special attention to the adhesive’s water content; 
• laser cutting; 
• piling up sand or other soil, whether with an additional binder or 
not; 
• assembling Legos, Meccano, Ramagon, Heckballs, modular T-slot 
aluminum framing, or other reusable “construction set” parts; 
• building latticework structures out of other kinds of members, for 
example, metal trusses or Tensegrities like Kenneth Snelson’s; 
• manual carving of carveable materials such as metals, wood, foamed 
concrete, alabaster, graphite, lightweight refractory bricks, tuff, 
sandstone (natural or artificial), or papercrete; 
• hot-wire cutting of fusible foams such as styrofoam or 
polyisocyanurate; 
• inflatable shapes made in ways other than balloon twisting;  for 
example, connecting sheets of polyethylene into a large balloon 



sculpture using a hot-wire heat-sealing machine; 
• assembly of a variety of objects, for example with hot glue; 
• forming sheet metal, for example by hammering, stamping, 
single-point incremental forming, or bead rolling; 
• assembling panels or other shapes cut or otherwise shaped from 
closed-cell polymer foam or other materials; 
• carpentry; 
• basket weaving, whether from traditional materials such as bamboo 
and rattan or non-traditional materials such as Ethernet cable and 
sheet-metal strips; 
• other techniques for producing three-dimensional shapes; 
• some combination of the above.  

    In some cases it will be most convenient to apply the adhesive to 
the fiber reinforcement after it is already in position, but in other 
cases, especially with porous adhesives, it will be most convenient to 
combine them ahead of time. 

    During the process of adding layers of fiber reinforcement and 
(possibly filled) adhesive, it may be convenient to embed other 
elements in the object being constructed, in non-random positions.  
For example, you can embed sensors, heating elements, LEDs or other 
lights, antennas, pancake coils, and wires to feed all of these.  For 
some purposes it is best to cover these with a layer of adhesive and/or 
fiber, for example to prevent abrasion or electrical short circuits, 
while for other purposes exposed electrodes or other actuators may be 
useful. 

Specific combinations 

    The above outlines a large design space of processes, a few of which 
are already in use: 

• The ordinary kinds of papier-mâché, which commonly use 
untwisted balloon forms, but sometimes wire armatures. 
• “Cloth mache” [sic] in which fine cotton cloth is used instead of 
paper, either as the last layer or as several layers, sometimes with PVA 
glue rather than wheat paste. 
• Duct tape, masking tape, strapping tape, scotch tape, and electrical 
tape are all composites of adhesive with reinforcing fibers;  strapping 
tape fibers are often parallel glass fibers with a PET or polypropylene 
backing, masking tape is paper, scotch tape is cellophane, electrical 
tape is generally plasticized PVC, and duct tape is often polyester 
scrim with an LDPE backing.  (Velma Stoudt’s original “duck tape” 
used cotton duck, as the name implies.) Duct tape also typically 
includes a powdered aluminum filler in the LDPE for reflectivity.  All 
of them can use a wide variety of so-called pressure-sensitive 
adhesives.  So, pre-combining the adhesive with the reinforcing fiber 
makes for a very convenient and versatile way to make and repair 
things. 
• Découpage, in which the “fiber reinforcement” is primarily 
decorative and the adhesive is transparent, and the form is usually 
made by carpentry rather than globoflexia. 
• Standard fiberglass composite construction uses one or more layers 
of fiberglass cloth as fiber reinforcement, sometimes laid up on top of 
forms made by hot-wire cutting of styrofoam, then smoothed down 



with epoxy.  Often additional layers of epoxy without cloth are added 
after the first in order to provide a smooth surface without any 
fiberglass sticking out of it. 
• “Textile-reinforced concrete” is ordinary portland cement 
reinforced with high-modulus cloth rather than rebar;  typical fibers 
used for the textile include carbon fiber, AR glass, and basalt fiber.  
The forms are typically made of wood or styrofoam rather than by 
globoflexia.  Making TRC forms by globoflexia would likely require 
plastering the balloons first with a lightweight support material such 
as ordinary papier-mâché. 
• Concrete canvas inflatable tents use a form made of a large inflatable 
polyethylene bag to support a pre-sewn canvas fiber reinforcement 
pre-impregnated with an adhesive system made of portland cement 
and quartz construction sand, which is wetted with water before 
inflation. 
• The same kind of concrete canvas is commonly used as a geotextile, 
in which case the form is just the earth’s surface. 
• “Ferrocement” uses a form made by bending rebar and “fiber 
reinforcement” made of lighter-weight metal cloth, such as hardware 
cloth or chicken wire;  once the first layer of fiber reinforcement is in 
place on the form, an adhesive system of typically portland cement, 
quartz construction sand, and water is troweled on, often followed by 
more layers of fiber reinforcement.  Usually a layer of adhesive is also 
added to the inside of the structure to cover up the steel.  The first 
layer of adhesive often includes a chopped-fiber additive more to 
control the rheology of the mix so it doesn’t fall through the holes in 
the fiber reinforcement than to strengthen the final product.  This has 
been used for decades for lightweight buildings and cheap boats. 
• Very similar to ferrocement, fine-art sculptors commonly build 
forms as bent-wire armatures, cover them with chicken-wire fiber 
reinforcement, and trowel on a plaster of paris adhesive, with or 
without strengthening fillers of sand and, for example, horsehair or 
sisal. 
• Traditional lath-and-plaster construction makes forms of lath rather 
than balloons, mixes horsehair and sand into the plaster-of-paris 
adhesive additives to improve strength, and uses no further fiber 
reinforcement. 
• Traditional gauze-and-plaster medical casts for healing broken 
bones were an inspiration, as mentioned above.  In this case the form 
is grown in a womb rather than twisted from balloons.  This 
technique turns out to go back to the Middle Kingdom of ancient 
Egypt, around 4000 years ago;  archaeologists call it “cartonnage”. 
• Shotcrete has been on many occasions sprayed onto inflated domes 
to make Barbapapa-style houses.  In this case the balloons are very 
large and not twisted.  Typically the concrete is portland cement, 
sand, water, and chopped fiber, which last helps reduce slumping. 
• Papercrete is a very-low-compressive-strength, low-weight 
portland cement concrete where consisting of portland cement, water, 
and cellulose fibers from paper.  Sometimes it is applied to forms but 
more commonly it is used to build walls. 
• Paperclay is a composite of cellulose fibers from paper, clay, and 
typically sand or grog.  It is usually shaped by hand rather than being 
applied to forms.  It has superior green strength to more common clay 
materials, reputedly improving freedom of modeling.  When fired, 



the paper burns out, leaving a lightweight porous material. 
• I have seen one person explain their system for constructing 
lightweight RV furniture from blocks of styrofoam cut with a hot 
knife, assembled, and then bonded together by coating the inner and 
outer surfaces of the furniture with window screens glued to the foam 
with latex paint.  This forms sandwich panels whose compressive and 
shear stiffness come from the foam and whose tensile and flexural 
strength comes from the window screens.  

    However, the systematization suggests many new promising 
combinations.  For example: 

Lime-concrete furniture 

    The initial form is produced by globoflexia and wrapped in three 
layers of gauze strips dipped in fresh plaster of Paris.  Fifteen minutes 
later, steel window screens are draped over the plaster frame, and a 
thick mix of slaked lime, water, quartz construction sand, and 
chopped fibers is troweled onto the screens.  Two more such layers of 
screen and lime plaster are immediately applied.  A few hours later, 
the outer surface is painted with sodium silicate to increase its 
resistance to abrasion;  sufficient air can still enter through the porous 
plaster and lime cement to cure the piece over the next 24 hours.  
Filling the final piece with foamed portland concrete, made in the 
usual way, is optional. 

Cement water pipes 
    A balloon for twisting is inflated but not twisted.  It is wrapped in 
five layers of paper towels dipped in wet portland cement, sand, and 
chopped basalt fiber, leaving the balloon’s ends exposed.  The entire 
resulting concrete tube is wrapped in stretch plastic wrap to keep it 
from drying out.  After 48 hours, the balloon is popped, exposing the 
inner surface of the pipe, which is then painted with a solution of 
potassium silicate to waterproof it. 

Bargain-basement roofing 

    A light roof metal truss is built by bending and arc-welding 
together rebar.  Jute burlap cloth is dipped into hot tar and laid on top 
of the truss, one square meter at a time, overlapping squares in a 
shingled pattern.  Three layers should be sufficient for a rainproof roof 
sufficiently flexible not to suffer damage from hail.  However, it is a 
fire menace, it will get very hot in the sun and may drip, and you 
cannot walk on it.  Coating the top and bottom surfaces with 
aluminum foil will ameliorate these defects slightly. 

Cheap, lightweight inert pipes 
    A balloon for twisting is inflated but not twisted.  A4-sized paper is 
dipped in low-melting paraffin and wrapped around the balloon in 
three layers.  Once the paraffin is cool, the balloon is popped or untied 
and removed.  The non-knot end of the balloon can be left open, 
forming a closed tube, or closed.  To improve strength, a fourth and 
fifth layer of paper dipped in two-component resin rather than 
paraffin can be added on the outside. 

Flexible heat-resistant oven mitts 
    The clay form of a hand is slipcast from a clay slip containing a 



mildly acidic flocculating additive such as vinegar, using a porous 
mold made of plaster of Paris.  The hollow slipcast clay form is 
demolded and tightly wrapped in four layers of loosely woven cotton 
or linen cloth, richly smeared with high-temperature 
acetic-acid-catalyzed silicone (“red RTV”).  Once the silicone has 
cured, the still-wet clay interior is washed out with water and a mild 
base such as baking soda in order to deflocculate the clay.  The 
resulting piece, once the acetic acid has escaped, can withstand 
temperatures up to some 240°;  substituting a cloth with 
higher-temperature capabilities should allow it to handle 280° 
continuously or brief exposures to 320°. 

    (Other reversible flocculants might be epsom salts, which can be 
deactivated by barium carbonate, and muriate of lime, which can be 
deactivated by soda ash or barium carbonate.  I’ve also seen muriate of 
lime recommended as a deflocculant, presumably to throw down 
vitriol in the form of alabaster.) 

    It might be necessary to protect the cotton from hydrolysis by the 
acetic acid before curing is complete;  this can be done either by 
replacing acetic-acid silicone with more expensive tin-catalyzed or 
platinum-catalyzed varieties, or (with lower certainty) by 
impregnating the cotton with a buffer of, for example, baking soda. 

    This is a case where a balloon form shaped by globoflexia is 
probably better than clay, actually, because it’s both easier to shape to 
the appropriate smooth blobby shape and easier to remove.  But it’s 
important to remove it completely, because the balloon latex will 
probably fail at a much lower temperature. 

Translucent all-natural low-VOC objects 
    By wrapping your twisted balloons in gauze soaked in shellac, you 
can get a waterproof, light, flexible material that allows significant 
light through, due to the gauze’s light weave.  Alcohol is emitted as 
the shellac dries, but this is a fast process;  once dry the material emits 
almost no VOCs. 

A coarse filter unplugged by heat 
    If you stamp one or two layers of a loose steel mesh such as a 
window screen, impregnated with warm paraffin wax, with a die, 
then you have a waterproof and chemically inert plug which, at a 
predetermined temperature (one calibratable within 5°) will melt and 
allow liquid to flow through freely, while filtering out particles larger 
than the mesh.  This could be useful for some kinds of 
over-temperature safety valves, for example for resin casting, where, 
if the resin starts to overheat, the ideal thing to do might be to dump 
it quickly out of the mold into something that dilutes and cools it.  It 
is possible for this mesh to have a much larger area than the aperture it 
covers, which may be desirable for keeping it from getting clogged by 
particulates. 

    Under some circumstances it might be better to use injection 
molding to inject the paraffin around the reinforcing mesh.  This 
would provide more consistent paraffin thickness but, I think, less 
consistent mesh protection thickness. 

Ultralight tools for corrosive environments 

https://digitalfire.com/article/deflocculants%3A+a+detailed+overview


    By cutting the shape of a stirrer out of, for example, styrofoam, 
you can get a very lightweight tool.  But styrofoam is soluble in all 
kinds of solvents, and it’s kind of weak.  By wrapping it with 
fiberglass cloth, as is done to construct some boats and aircraft, you 
can greatly strengthen it.  A coating of, for example, paraffin, 
low-density polyethylene, teflon, epoxy, or polyester casting resin, 
could both firmly adhere the fiberglass reinforcement to the foam and 
add substantial chemical resistance. 

Carved aircrete furniture 

    You can pour portland cement foamed in the usual way, by 
mechanical aeration of a surfactant-water solution before mixing in 
the cement, into forms that are merely blocks.  The next day, once the 
cement has partly set, you can sculpt these blocks into desirable shapes 
using hand tools like hacksaws, wood rasps, wire saws, hammers, and 
so on.  The resulting surface will be porous and friable, and therefore 
not directly suitable for furniture use, and also an ugly gray unless you 
used super fancy portland cement.  Several coats of lime mortar 
(slaked lime and quartz construction sand) can give it a hard shell, 
perhaps reinforced in key places with copper wires.  The next day, a 
coat of polyurethane finish for heavy-duty floors can seal the lime and 
provide a softer, warmer surface to sit on or rest your feet on. 

Fiber-reinforced pottery 

    The usual kind of pottery is fragile.  The ceramic fibers used in 
foundry blankets are much less fragile, and some of them can be used 
up to 1600°.  You could perhaps take segments of refractory-fiber 
cloth like these foundry blankets, dip them in a clay slip, and drape 
them over forms (for example, blow-molded from thermoplastic) to 
make a shape of two or three millimeters of thickness.  Once the clay 
slip was plastic, but before it became leather-hard, you could add 
another millimeter of clay to the inside and outside.  After drying and 
biscuit-firing these pottery pieces in the usual way, the clay should be 
sintered into a solid body;  you can get a good biscuit fire out of at 
least some ball clays in 6 hours at 1020°, at which temperature some 
ceramic fibers are still quite inert.  So they should remain embedded 
as fibrous reinforcement in the finished ceramic, making it 
dramatically less fragile. 

    However, care must be taken to ensure that the chemistry of the 
clay is compatible with that of the blanket.  Pure zirconia fiber (or 
yttria-stabilized zirconia fiber) would probably be perfectly safe, but I 
think everybody includes at least alumina and usually silica in their 
ceramic foundry blanket fiber.  (Vendors of pure zirconia fiber say it 
can be used up to 2200°.) I suspect that any low-firing clay would be 
able to flux and dissolve silica out of part-silica fiber, and maybe 
alumina too.  The end product might still be stronger than ordinary 
ceramics, though. 

    Silicon carbide fibers are more widely available than zirconia fibers;  
four companies already sell them commercially, at least two since the 
1980s (under the names Nicalon, Tyranno, Sylramic, and Ultra SCS).  
I think they are not attacked by clays at common pottery-firing 
temperatures, and they are already in use for reinforcing 
ceramics — but I think primarily ceramics otherwise made of sintered 
silicon carbide, not fired clay. 



    If desired, a second glaze firing can glaze the pieces to give them 
waterproof surfaces and provide protection against abrasion and crack 
initiation.  However, this poses the risk that the more aggressive 
fluxing of the glaze might attack the fiber reinforcement;  this is the 
reason for the extra protective layer of clay without fiber in it.  If this 
is a problem, a possible alternative to traditional glazing is waterglass 
allowed to dry on the ceramic and then crosslinked by, for example, 
exposure to calcium chloride. 

“Ceracement”:  refractory “ferrocement” 

    The usual ferrocement recipe uses iron (and consequently a little 
iron oxide), portland cement, and quartz, none of which is very 
friendly to temperatures above 1000° or 1500°.  Calcium aluminate 
cement can replace the portland cement, and olivine, sapphire, or 
carborundum can replace the quartz, but what can replace the iron? 

    Refractory metals like tantalum and niobium are well known, but 
very expensive.  Ceramic fibers like those mentioned above (zirconia, 
alumina, carborundum) might be adequate;  the “ceracement” 
structure won’t need flexurally-stiff reinforcement to hold it up, since 
it can hold itself up once the cement is set. 

    At even higher temperatures calcium aluminate fails and needs to 
be replaced with higher-temperature castable refractory binders such 
as aluminum phosphate. 

Shatter-resistant grinding stones 
    Modern synthetic grinding stones have a variety of compositions:  
sapphire, silicon carbide, cubic boron nitride, etc., bonded with 
rubber, thermoset resin, waterglass (mostly historically), Sorel cement, 
and so on.  But they tend to fail in a brittle fashion rather than a 
ductile fashion, which frequently kills people when they are spinning 
fast around people. 

    Cutoff discs are like thin grinding wheels, but they are usually 
reinforced with a fiber, typically fiberglass, I think. 

    Perhaps grinding wheels could be made with much heavier fiber 
reinforcement to encourage them to fail in a more ductile fashion.  
High-energy-capacity fibers like rubber, nylon, or music wire might 
work better for this than high-modulus fibers like fiberglass and basalt 
fiber. 

Water-activated concrete tape 

    Coat a roll of cotton scrim fabric with a low-temperature nonpolar 
thermoplastic adhesive like EVA.  Heat the cloth and run it through a 
pile of premixed quick-setting dry lime cement and construction 
sand, which sticks to the EVA and coats the cloth.  Allow the cloth to 
cool before spooling it onto the takeup roll.  Seal the finished roll 
hermetically in a reclosable container. 

    The resulting tape can be torn by hand like duck tape, although 
gloves are advised.  Once a form is wrapped with it to a few 
millimeters thick, and flexed into the desired shape, you can moisten 
the tape around the form to start the cement setting.  Water can soak 
through it easily, and it will amalgamate into a cotton-reinforced 
mortar mass. 

    Perhaps such tape can be laid between bricks or stones to hold them 



together, rather than troweling in mortar. 

    Other cements can be substituted, such as portland cement or 
calcium aluminate, which would give stronger results.  There may be 
faster-setting high-strength cement formulations that are not in 
traditional construction use and that would activate the tape even 
faster.  Using plaster of paris instead of the cements suggested would 
provide much faster results (and perhaps this is already in use) but 
much lower strength. 

    One particularly interesting possibility is using dissolved 
sodium-silicate waterglass as cement, which is somewhat tacky 
immediately and will set up hard when dried;  but a variety of things 
will cause it to set up immediately and become water-insoluble, such 
as carbon dioxide gas or, I think, calcium chloride or magnesium 
sulfate.  So you could perhaps spray solutions of those on the tape, 
once it is applied, from a spray bottle. 

    Steel wire mesh would be a stronger alternative to cotton scrim, 
and might still be possible to tear by hand.
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DNS Cache Rendezvous:  a 
permissionless signaling channel 
for bootstrapping end-to-end 
connections
Kragen Javier Sitaker, 02020-10-07 (13 minutes)

    In today's internet, IP addresses are often assigned dynamically and 
unpredictably, but not changeably at will.  So if you want to send a 
person IP packets, you need some way to find out what their current 
IP address is.  If they're behind a NAT, you may also need to find out 
what their current port is on that IP address so that you can do NAT 
hole-punching.  (Some kinds of NAT don't even support that, but 
most do.) 

    The IPv4 + UDP port data is 48 bits.  If you could get that data, or 
most of it, to your contact, the two of you could establish a UDP 
connection.  So you need some kind of rendezvous point. 

    Here's a permissionless, harmless, efficient solution vaguely similar 
to private information retrieval protocols. 

Background on the DNS 

    Let's consider the side channel associated with a caching DNS 
server and a domain name with a relatively long TTL value, such as 
18000 seconds.  For example: 

100.172.217.172.in-addr.arpa. 17429 IN  PTR eze06s02-in-f4.1e100.net.
eze06s02-in-f4.1e100.net. 34228 IN  A   172.217.172.100
 

    From an authoritative server the TTL on eze06s02-in-f4 is actually 
86400 seconds, so what we're seeing here is that someone sharing the 
DNS server with us did a lookup of this domain name 86400-34228 
= 52172 seconds ago, plus or minus a second or so.  They have 
effectively written about 16.4 bits into this DNS server's cache, which 
now anyone who the DNS server is willing to respond to can read. 

    There's a "norecurse" bit you can set on a DNS request.  This 
doesn't prevent the DNS server from returning you a value from its 
cache, but it does prevent it from going and fetching the value.  This 
is useful because it permits a nondestructive read of this timing data.  
Here we see two identical queries on the public DNS server 8.8.8.8, 
one of which fails with SERVFAIL, and the other of which succeeds, 
because 8.8.8.8 is not only anycasted, but also its local instance seems 
to be load-balanced on a per-request basis: 

$ dig +norecurse @8.8.8.8 eze06s02-in-f4.1e100.net.

; <<>> DiG 9.10.3-P4-Ubuntu <<>> +norecurse @8.8.8.8 eze06s02-in-f4.1e100.net.
; (1 server found)
;; global options: +cmd
;; Got answer:



;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 2151
;; flags: qr ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;eze06s02-in-f4.1e100.net.  IN  A

;; Query time: 44 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Wed Oct 07 13:36:44 -03 2020
;; MSG SIZE  rcvd: 53

$ dig +norecurse @8.8.8.8 eze06s02-in-f4.1e100.net.

; <<>> DiG 9.10.3-P4-Ubuntu <<>> +norecurse @8.8.8.8 eze06s02-in-f4.1e100.net.
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 12898
;; flags: qr ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;eze06s02-in-f4.1e100.net.  IN  A

;; ANSWER SECTION:
eze06s02-in-f4.1e100.net. 21586 IN  A   172.217.172.100

;; Query time: 42 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Wed Oct 07 13:36:47 -03 2020
;; MSG SIZE  rcvd: 69
 

The DNS cache rendezvous protocol 

    Suppose you have a prearranged list of 128 DNS servers somewhere 
on the internet that do not use load balancing, are not anycast, and 
probably are willing to provide recursive, caching DNS resolution to 
each of you.  And you also have a prearranged list of 128 long-TTL 
DNS records. 

    What we are going to do is store a 50-bit value in this 128x128 
matrix of caching DNS servers by splitting it into ten 5-bit chunks, 
and storing each 5-bit chunk in the cached TTLs of these 128 shared 
recursive caching DNS servers.  First, we take the key we want to 
associate information with and we hash it to produce a long random 
bitstring.  Each 14-bit chunk of this hash identifies one bucket in the 
128x128 matrix:  a particular DNS record on a particular caching 
server.  We are going to store each 5-bit chunk of information 
redundantly in 5 such buckets as the low-order 6 bits of the clock 
when we make the request, except for the least significant bit, which 
is not reliable.  In order to do this, we send a single 50-byte packet to 
the indicated server in the middle of the indicated time interval, 



requesting a recursive retrieval of the indicated DNS record. 

    If our request is successful, and the record was not previously in the 
cache, the server will cache the record for its TTL.  So we have 
successfully published 5 bits of data in such a way that the DNS server 
will send them to anyone who subsequently requests the same record 
before the TTL expires.  Then they need only add the remaining TTL 
to their current clock and subtract the origin TTL to find out when 
the original request was sent to a precision of one second. 

    But the request may not have been successful, or the record may 
have been previously in the cache.  So we store the same data in 4 
more buckets, which in general will be on other DNS servers.  Now, 
someone who wants to read this 5-bit chunk of data can make the 
same 5 requests --- though ideally with the no-recurse bit turned on, 
so that they won't prevent the data from being published in the future 
if it's currently not published --- and simply take the most common 
value from among the results.  Really they probably only need to read 
two or three of the buckets on most occasions, since two or three 
equal values is already very strong evidence. 

    Repeating this process 9 more times stores or retrieves 50 bits of 
data.  Of these, 48 are the IPv4 address and port at which to contact 
the publisher of the advertisement. 

    So advertising in this way requires sending out about 50 packets of 
about 50 bytes each, about once every 5 hours, and receiving the same 
number of response packets of about 70 bytes each;  this works out to 
about 1-2 bits per second both inbound and outbound.  Retrieving 
such an advertisement requires only about 25 requests and responses. 

    The choice of using the low 6 bits of timestamp imposes a 
minimum latency of 64 seconds on publishing new data (which could 
be reduced, except in cases of strong interference, by XORing the 
data stored in each bucket with more bits derived from the key);  if a 
longer latency were acceptable, you could store more bits per bucket, 
thus requiring fewer buckets, fewer packets, less bandwidth, but more 
latency.  For example, with half an hour of latency, you could get 10 
bits per bucket, not counting the ignored LSB, rather than 5.  
Inversely, you could get latency down to 4 seconds by storing only 
one bit per bucket. 

    In a sense, although in absolute terms the cost is very low, in 
relative terms it's fairly high:  to publish 48 bits of data --- 6 bytes --- 
you send out 2500 bytes and receive 3500 bytes.  That's three orders of 
magnitude of bloat.  It's only efficient in absolute terms because the 
service required is so minimal. 

    A large number of publishers can use the same 128x128 matrix as 
long as they aren't trying to stomp on each other's keys, because each 
one only uses 50 out of the 16384 buckets.  However, it's easy for 
anyone who has the whole matrix to deny service to everyone. 

    A possible partial defense against that is to distribute different 
versions of the matrix from a central authority to different 
participants in the system, having for example two possible 
alternatives for each row and two possible alternatives for each 
column, half of which are concealed from each participant.  
Geographically distant participants will share, on average, half the 
headings and one quarter of the buckets, and so mildly more queries 



will be needed. 

    Another partial defense would be to use a much larger matrix, like 
a million by a million, which preliminary tests suggest is feasible (see 
below).  Then anyone who wants to flood the whole matrix needs to 
send out one trillion packets, like, fifty terabytes.  Every five hours:  ten 
terabytes an hour. 

    Any attacker who knows the key of a publisher is likely to be able 
to jam their broadcasts.  This suggests that perhaps keys should be 
per-relationship, not per-identity:  if Alice uses one key to announce 
her location to Bob and another to announce it to Carol, then Bob 
can't jam the information Carol is reading, unless Carol tells him the 
key or he can jam essentially the whole matrix. 

    A publisher might need to use two or three keys for rapid failover 
when its IP address changes unanticipatedly, since it can't overwrite 
its previously published data. 

    Of course there are more efficient error-correction codes than 
repeating each symbol N times, and using these might be worthwhile. 

There are 300 million servers currently 
providing this service 

    One key question I didn't know about when I started this is how 
many publicly-accessible recursive DNS servers are still out there.  I 
started out fairly confident that the answer is "more than 128".  I 
think the answer is actually "hundreds of millions" because the very 
first random IP address I generated, 39.188.24.230, happened to be 
willing to answer my DNS query: 

$ dig @39.188.24.230 www.google.com.

; <<>> DiG 9.10.3-P4-Ubuntu <<>> @39.188.24.230 www.google.com.
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 37948
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.google.com.            IN  A

;; ANSWER SECTION:
www.google.com.     141 IN  A   31.13.95.38

;; Query time: 423 msec
;; SERVER: 39.188.24.230#53(39.188.24.230)
;; WHEN: Wed Oct 07 14:16:44 -03 2020
;; MSG SIZE  rcvd: 48
 

    The next hundred or so I generated got me 5 answers (all 
different!), so probably about 5% of all the possible IPv4 addresses 
have working (?) recursive DNS servers that are willing to answer 
queries from my Argentine residential address.  That's about 200 



million currently existing and accessible servers.  Presumably a tiny 
fraction of them are anycast or dynamically load-balanced like 8.8.8.8, 
while the rest would work fine. 

    Further random sampling refines that estimate to about 7%, which 
is about 300 million servers.  I generated 1000 random IPv4 addresses, 
sent a DNS query for www.google.com to each one (once), and got 
back 67 responses and 934 timeouts.  Not sure where the 1001th 
request went. 

Detectability 

    You could easily tell someone using this technique from a normal 
DNS user:  if publishing, they're sending DNS queries with recursion 
turned on to several different DNS servers.  Stub resolvers send 
queries with recursion turned on, but normally only to your ISP's 
nameserver, or to 8.8.8.8 or opendns or alternic or something, not to 
50 different servers.  Someone only reading would look like someone 
running their own caching DNS server, in that they're sending out 
queries with recursion turned off, except that many of their queries 
are getting non-authoritative results.  Queries with the NR bit set 
generally will get either authoritative results or no results;  it's very 
unusual for someone to send a no-recursion query and just happen to 
get a successful response from some random cache. 

    The publisher might look like a sysadmin trying to debug a DNS 
problem.  I can't think of any activity that would look like the person 
trying to read. 

    That said, I don't know what kind of offbeat DNS things happen in 
the wild nowadays.  Maybe there's some common DNS 
implementation bug that looks just like this. 

Alternatives 

    Other permissionless signaling channels for such low-bandwidth 
rendezvous tricks include blog comment sections, wiki edits, 
Freenode, OFTC, Tor hidden services, altering the latency of 
publicly-accessible servers on low-bandwidth connections by 
packet-flooding them, shortwave radio, moonbounce, Usenet, web 
forums, and IM service statuses.  Most of these impose significant 
social costs on others, could disappear at any time, or have other 
drawbacks that this public DNS side channel does not have.
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Nodebook:  autotagging quantities 
for ad-hoc calculation and 
example-based end-user 
programming
Kragen Javier Sitaker, 02020-10-07 (7 minutes)

05:16 <xentrac> I think I have a UI direction for bicicletaish/halpish stuff that
 I think might be really 
                appealing

05:17 <xentrac> the basic interaction is that you're typing text into a text edit
or, but the editor is 
                watching your text for "quantities"

05:18 <xentrac> it might have different patterns for a "quantity".  Like clearly 
3.14 would be a quantity, and 

                for my purposes I want to also recognize things like 3.14 mm and 
3.14 m/s

05:18 <xentrac> but you could imagine an arbitrarily wide range of quantities.  a
nyway it's looking for them 

                in your text and initially it just tags them, say with a dotted u
nderline

05:19 <xentrac> now that gives you the option of scrubbing it with your mouse to 
change it, bret-victor-style, 
                but so far that's not very useful

05:20 <xentrac> you can correct its autotagging if it fails to notice a quantity 
or if its parse boundaries 

05:21 <xentrac> so this nodebook node is, so far, just some text with markup.  an
d, I don't know, maybe if you 

                type a #fe77cc color you get a color swatch, and clicking on it p
ops up a color picker, or 
                something

05:23 <xentrac> so the next thing you can do is that you can initiate a calculati
on, which starts by popping 

                up a menu of recognized quantities in the neighborhood, and you c
an select one of them or you 
                can start typing more numbers and operators and stuff

05:24 <xentrac> and so you can perform a concrete calculation on these concrete q



uantities, and by default the 
                formula and the result are displayed there in your text too

05:25 <xentrac> so now when you scrub on things your document responds, recalcula
ting.  and you can mouse over 

                parts of the formula or navigate it with keys in order to see int
ermediate quantities

05:26 <xentrac> it's still all basically text, though maybe latex or something is
 rendering your formulas

05:28 <xentrac> so maybe you write "An air conditioner of 2 ton capacity is 7033 
W; if it consumes 12 A at 240 
                V, that's 2880 W, so its coefficient of performance is 2.44."

05:28 <xentrac> and here 7033 W, 2880 W, and 2.44 are all calculation results, wh
ich might have formulas 
                displayed before them

05:28 <xentrac> And you probably have some kind of command to control the units a
nd precision of such displays

05:30 <xentrac> the next thing you can do is to name the quantities, whether dire
ctly entered quantities or 

                the results of calculations (which are implemented in the same wa
y for execution, but perhaps 
                not in the user interface)

05:32 <xentrac> now, once you have named the quantities, you can do what-if quest
ions, like "By contrast, if 

                it must consume {i2=} 25 A, its CoP is {this{i=this.i2}.cop:%.2f}
."

05:33 <xentrac> where the stuff in {} is not displayed in the document but is a g
oofy way I just came up with 
                to try to describe what's underneath.

05:34 <xentrac> This also allows you to do optimization ("goal-seek") calculation
s where you specify a model, 
                a set of design variables, and an objective function to minimize

05:34 <xentrac> and plotting, where you specify a range for one or more independe
nt variables and one or more 

                dependent variables to plot, along with specifying what kind of p
lotting you want

05:36 <xentrac> and tabulation, where you specify a set of columns, the number of
 rows, and override values 
                for some cells

05:37 <xentrac> note that so far this is all without any functional abstraction! 



 no nested scopes yet, just 

                "the document (or universe or node)" and conditional versions of 
the document with some 
                variables overridden and maybe not fully displayed

05:38 <xentrac> there's a hierarchical structure to the execution but not to the 
definition (except insofar as 

                maybe a formula might be written in a context-free language rathe
r than, say, Forth)

05:40 <xentrac> now if you can write multiple independent documents like this, yo
u maybe have everything you 

                need, but I do think it would be handy to highlight a block and s
ay "refactor tthis block of 
                text into a child node"

05:40 <xentrac> which would leave the display of the document pretty much unchang
ed, except for some formulas, 
                since by default you'd be transcluding the child node there
05:41 <xentrac> but would maybe make it easier to reuse

05:42 <xentrac> I think this is a more appealing user interface than observablehq
, but it can support the same 
                kinds of interactions

05:44 <xentrac> It supports fully concrete example-based computation, with condit
ionals and lazy evaluation 

                it's Turing-complete, and it doesn't inherently require vectors i
n the data model, for better 
                or wose
05:44 <xentrac> worse

05:47 <xentrac> and of course each of these "documents" or "nodes" could exist in
 a "nodebook", with or 
                without a [human-readable] name, and be invocable by one another

05:48 <xentrac> for testing purposes, I think it would be useful to have an "asse
rtEqual" formula operator 

                which produces an error object with explanatory text and a hyperl
ink to its invocation site

05:49 <xentrac> and that interpolation of such an error object into a textual tem
plate (since the underlying 

                representation of the node is a set of instance variable definiti
ons, the value of one of 

                which is a formula using a textual template and a textual substit
ution operator)



05:50 <xentrac> would produce text similar to non-erroneous interpolation, but fl
agged as an error as well

05:51 <xentrac> so you could just look for (top-level) nodes whose display value 
was an error, and put a bunch 
                of asserts into one as tests
05:51 <xentrac> maybe they would be red in a display

05:51 <xentrac> I'm curious what you think, and sorry for subjecting you to this 
steam-of-consciousness 
                explanation
 

    This seems like it might really work as a Wiki thingy. 

    So much for the user interface.  What should the storage format 
look like? 

    The traditionalist approach would be to define a plain ASCII (or 
Unicode) text grammar and write a parser for it.  This would have the 
advantage of making source control easier.  But it also involves 
writing a parser and a deparser, as well as the user interface, and then 
fixing bugs where they mismatch. 

    Probably a better approach is to serialize data in some kind of very 
general format that is still likely to be source-controllable.  The Lisp 
object-graph memory model maps reasonably well to something like 
YAML. 

    It's possible to use multiple files like R Markdown notebooks, 
where the source is stored in one file and the rendered result in 
another file next to it (perhaps not checked in to Git).  Rendering to 
HTML is also super important.
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Single-bridge Tor 
deanonymization?
Kragen Javier Sitaker, 02020-10-07 (4 minutes)

    I just saw this: 

06:14 -!- rabbitear_g [~rabbitear@gateway/tor-sasl/rabbitearg/x-03735317] has qui
t [Remote host closed the 
          connection]

06:14 -!- bb-8 [~bb-8@gateway/tor-sasl/bb-8] has quit [Read error: Connection res
et by peer]

06:14 -!- DiffieHellman [~Ident@gateway/tor-sasl/diffiehellman] has quit [Write e
rror: Connection reset by 
          peer]

06:14 -!- andreas303 [~andreas@gateway/tor-sasl/andreas303] has quit [Write error
: Connection reset by peer]

06:14 -!- stipa [~root@gateway/tor-sasl/stipa] has quit [Write error: Connection 
reset by peer]

06:14 -!- Ryuuguu [~Ryuuguu@gateway/tor-sasl/ryuuguu] has quit [Remote host close
d the connection]

06:14 -!- martian67 [~martian67@about/linux/regular/martian67] has quit [Read err
or: Connection reset by peer]

06:14 -!- ZombieChicken [~weechat@gateway/tor-sasl/forgottenwizard] has quit [Rea
d error: Connection reset by
          peer]

06:14 -!- CombatVet [~c4@gateway/tor-sasl/combatvet] has quit [Read error: Connec
tion reset by peer]

06:14 -!- milkt [~debian@gateway/tor-sasl/milkt] has quit [Read error: Connection
 reset by peer]

06:14 -!- kreyren [~kreyren@fsf/member/kreyren] has quit [Read error: Connection 
reset by peer]

06:14 -!- bamdad [~bamdad@gateway/tor-sasl/bamdad] has quit [Read error: Connecti
on reset by peer]
06:14 -!- bamdad [~bamdad@gateway/tor-sasl/bamdad] has joined ##electronics
 

    13 users knocked off Freenode ##electronics at once, out of 630 
people.  One of them, kreyren, was using a project hostname cloak.  
Presumably a Tor node somewhere went down --- I think an exit 
node, due to the ECONNRESET error message.  This event can be 



observed with subsecond precision. 

    Suppose you wanted to deanonymize a Freenode Tor user.  You 
could set up a bridge or a Tor entry node.  Periodically you could 
drop connections from users who use it, a normal event that can be 
provoked by backbone routing problems or Wi-Fi signal fades, after 
which the user will retry connecting to Tor.  If you log the time of 
this event while simultaneously observing Freenode, you can see if it 
correlates with your target Freenode users going offline with a 
“Remote host closed the connection” message.  If so, you log the IP 
address and port. 

    These are relatively rare events;  I observed one 8 minutes ago and 
another 11 minutes ago in this same channel, giving a rate on the order 
of 200 kiloseconds, so even a single “hit” is a p < .001% event --- 
good enough, as they say, for government work.  Two hits on 
different days would be a stronger confirmation and would also allow 
you to characterize the Tor user’s IP address distribution. 

    An uncertainty that I need to test out is whether closing the circuit 
from its origination point within the Tor network will immediately 
close all the outgoing TCP connections from that circuit from the 
Tor exit node, and if so, whether it’s a “connection closed” kind of 
normal situation or more an RST RST RST kind of thing. 

    Another uncertainty is how many Tor entry nodes a given user will 
end up using.  If they choose randomly with a nonzero probability for 
each entry node, they will eventually use all of them, so every entry 
node will have the opportunity to launch this attack.  Bridges, 
however, as I understand the situation, are treated differently, and 
may be a defense against the attack:  each Tor bridge is only revealed 
to some users, and the use of a Tor bridge would hide the real IP of 
the user from the entry node.  So if you try to launch this attack with 
a single bridge against a single user, you will fail with high probability;  
if you try to launch it against many users, you will succeed with only 
a few of them. 

    I’m not clear that this is something anybody needs to respond to or 
defend against in any way, even if I’m correct, since Tor is not 
designed or claimed to defend against a global passive adversary --- 
that is a very difficult problem to solve.  And of course there are some 
well-known problems with malicious exit nodes, and at least one 
person has been prosecuted for sending a bomb threat to his university 
over Tor, because he was the only person connecting to the Tor 
network from the campus at the time the threat was sent.  But I’m 
surprised that such a simple active attack seems so likely to work.

Topics

• Security (p.  807) (11 notes) 
• Traffic analysis
• Tor



LOGSL:  Lisp object-graph 
serialization language
Kragen Javier Sitaker, 02020-10-07 (updated 02020-10-09) 
(8 minutes)

    LOGSL:  Lisp object-graph serialization language.  Not a markup 
language.  I insist that it is not merely aping YAML. 

Problem to solve 

    The problem to solve is mostly the problem of Python pickle:  to 
serialize a possibly-cyclic in-memory object graph, then deserialize it.  
However, I have a couple of desires that pickle fails to fulfill: 

• I would like it to be mostly human-readable and line-oriented so 
that I can check the result in to Git and successfully resolve update 
conflicts.  
• I would like it to not be a security hole by default, even at the 
possible cost of being less convenient to use.   

    (I seem to be undecided about whether this is a 
single-programming-language thing or a 
cross-programming-language thing.  Maybe it should be a 
single-programming-language thing.  And maybe that language 
shouldn’t be Python.) 

Inspiring examples 

    Here are some examples of syntax I think might be worth 
supporting: 

- one
- two
- three
 

    That’s a list or array containing three byte strings. 

x 37
y 38
 

    That’s the dictionary represented in JSON as {"x":  37, "y":  38}.  
The ordering of the keys is mandatorily ASCIIbetical. 

[Point]
x 37
y 38
label A
 

    That’s an object of class Point whose instance variables are {"x":  
37, "y":  38, "label":  "A"}.  The ordering of the keys is mandatorily 
ASCIIbetical. 

- "31"



- "32"
 

    That’s a list of two strings.  Without the quotes they would be 
integers.  Strings that contain only ASCII alphanumeric characters 
and the punctuation _, -, ., ?, and @, and do not start with “-”, “.”, or a 
digit, must be represented as barewords as in the previous examples.  
All other strings, such as those that start with “3” or contain spaces, 
must be represented with doublequotes, backslashing backslashes and 
embedded doublequotes. 

[Rect]
start
    [Point]
    x 1.5
    y 2.4
end
    [Point]
    x 3.1
    y 2.6
 

    That’s an object of class Rect whose instance variables start and end 
are Point objects.  The indentation must be four spaces. 

- "ø"u
 

    That’s a list containing a Unicode string consisting of a single 
codepoint.  In the concrete syntax this codepoint is represented by a 
quote, two UTF-8 bytes, another quote, and a lowercase “u”.  This 
bullshit is Python’s fault, and in decent languages that just store 
Unicode in byte strings as Pike and Ritchie intended, producing such 
an abortion will require the use of a custom mapping to a 
LOGSL-specific Unicode class. 

# John Doe
[Person]
firstname John
lastname Doe
wife (Mary Roe)
 

    That’s a definition of an object labeled “John Doe” so that it can be 
referred to elsewhere, specifically by the reference “(John Doe)”.  Its 
instance variable “wife” is indirected through just such a reference, to 
an object named “Mary Roe”.  Such definitions must occur in 
ASCIIbetical order following the main object graph.  Their identifiers 
are arbitrary but must be unique.  All those objects that are referred to 
more than once must be defined in this way.  Other objects may be 
defined in this way as well, for example to keep indentation 
manageable. 

    No objects not transitively referenced from the main object graph 
may be thus defined. 

    The label line “# John Doe” must be preceded by a blank line, 
unless it is at the beginning of the file.  Other blank lines are 
forbidden in LOGSL. 



    If such a label line is at the beginning of the file, it is a label for the 
root of the main object graph, enabling things within the object graph 
to refer to that root. 

    The main object graph, and indeed all such top-level objects (the 
others being labeled objects), is constrained to be an aggregate object 
such as a dictionary, a list, or a class instance, not a primitive object 
such as a string, a number, or null, which is represented as “???”. 

    Hmm, that restriction could be avoided, especially with colons: 

# John Doe
[Person]
firstname: John
lastname: Doe
wife: (Mary Roe)
 

    Dictionary keys that are compound objects could be referred to by 
title: 

(John Doe) 5
(Mary Roe) 18
 

Python calling interface 

    To enable serialization and deserialization of class instances without 
implicitly granting LOGSL sources the permission to instantiate 
arbitrary classes, a set of classes or other factories must be provided to 
the deserializer.  Each must be possessed of a unique name. 

    In Python, the default behavior for deserialization should be 
something like the following.  Get the name from __name__.  In the case 
of classes, magically set up an object as follows: 

obj = klass.__new__(klass)
obj.__dict__ = instance_variables
 

    Other behaviors can be provided by a factory object that has __name__ 
and can be called;  an AliasedClass factory is provided to enable the 
resolution of name conflicts: 

class AliasedClass:
    def __init__(self, name, klass):
        self.__name__ = name
        self.klass = klass

    def __call__(self, instance_variables):
        obj = self.klass.__new__(self.klass)
        obj.__dict__ = instance_variables
        return obj
 

    Other factory functions or objects can be used to support schema 
upgrade. 

    For serialization, we need to supply more or less the same whitelist, 
and also the possibility of snipping unwanted object references at 
output time --- the link from the banana to the gorilla, or at least 



from the gorilla to the rest of the jungle. 

    Python pickle does this by defining methods on the banana object;  
at this point the interface (“the copy protocol”) is extremely complex, 
involving methods known as __getstate__, __getnewargs__, __getnewargs_ex__ 
(I’m not kidding), __reduce__, and, just to add insult to injury, 
__reduce_ex__.  In a simple case, Banana.__getstate__ can simply return a 
copy of its instance variables dictionary with gorilla set to null (None). 

    I think that probably a better approach for such cases is to include 
something other than a class in the whitelist of “classes”, which 
undertakes the work of computing different serialization data.  The 
simplest case is AliasedClass, where we might want to map the class 
name of the object back to the alias we’re expecting to find at 
deserialization time.  This requires making an entry that maps the 
runtime dynamic class to the AliasedClass instance.  But in another 
case we might want to, say, produce a “reduced” banana: 

def Banana(banana):
    d = banana.__dict__.copy()
    del d['gorilla']
    return 'Banana', d
 

    Somehow, this function must be associated with the class it is 
intended to reduce, perhaps with a function attribute like Banana.klass = 
fruits.Banana. 

    It may be worthwhile to define a similar sort of thing for producing 
candidate labels like the “John Doe” example above.  Python’s default 
repr for class instances is terrible in that it includes hexadecimal 
memory addresses, which create unnecessary merge conflicts and false 
diffs in IPython notebooks.  Even “Point 1”, “Point 2”, “Point 3” 
would be better, but “Point x=37” would be better still.  “Rect 
start=<main.Point object at 0xb64858ac>” would not be an 
improvement, though. 

Golang calling interface 

    The Golang standard library includes serialization in “Gob”, JSON, 
generic arbitrary XML, and a generic “binary” format.  All of these 
use reflection a lot.  So I think it’s probably okay for LOGSL to use 
reflection too. 

    I don’t know how to use reflection in Golang but I bet the source 
code for those four standard library modules is a good example to 
work from. 

JS calling interface 

    JS lacks byte strings.  Otherwise I think it’ll be pretty similar to 
Python.

Topics

• Security (p.  807) (11 notes) 
• File formats (p.  823) (7 notes) 
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Ancient machinists
Kragen Javier Sitaker, 02020-10-08 (26 minutes)

    YouTube keeps recommending me fringe-science videos with 
catastrophist theories of history, positing the existence of prehistoric 
high-technology civilizations terminated by a Younger Dryas impact 
event.  I decided to watch one entitled, “Evidence for Ancient High 
Technology - Part 1:  Machining”. 

Sawing stone blocks 

    After the author, who goes by “UnchartedX” or “Ben”, spends 21 
minutes complaining about how Wikipedia and the archaeological 
establishment are suppressing the theories he favors so they won’t lose 
tenure†, in between deprecating “savages”, he finally gets to 
explaining some actual arguments.  He points out that some basalt 
blocks at what he says is the Old Kingdom Egypt site of Abusir are 
sawn:  the cut surface has striations or grooves on it, with a 
characteristic spacing of a few millimeters and a height typically 
under a millimeter, and the block was broken off after being sawn 
most of the way through, showing that the kerf was a few millimeters 
thick.  He says that it has “clearly been cut by a blade with a very 
distinctive circular arc to it”, but to me the striations look straight.  
He claims that the striations imply a “rapid rate of cutting”, which I 
don’t think follows at all;  he doesn’t explain why he thinks this. 

    He says that the radius of the curvature of the striations suggests a 
circular saw of 8 or 9 meters. 

    (In passing it’s worth noting that, while Abusir does have 
Fifth-Dynasty Old-Kingdom pyramids, from around 2400 BCE, it 
also has the remains of a Ramesside temple from only about 1250 
BCE, during the New Kingdom.  Ben doesn’t mention why he thinks 
these blocks are from the Old Kingdom.) 

    To me it seems more likely that the cuts were made with an 
abrasive “wire saw”, as is commonly done in quarrying today, rather 
than a circular saw;  but probably using plant-fiber cord, thin wood 
boards, or copper wire or sheet, to move the abrasive sand through 
the cut, since steel cable and synthetic diamond were unavailable.  
Quarrying stone with plant-fiber ropes, water, and sand is a 
well-documented technology in recent centuries, and could easily 
date back to the Neolithic.  The block seems to be about a meter 
across, and a meter-long piece copper wire seems more likely to me 
than a circular saw of 8 or 9 meters in diameter.  It would produce the 
observed kind of striations, but of course without a very consistent 
radius. 

    Wikipedia explains that abrasive sawing is the mainstream theory 
for how the Egyptians cut granite blocks, citing among other things 
Denys Stocks’s 2003 book on the subject.  I wonder why Ben doesn’t 
mention this, or indeed abrasive cable sawing at all.  He does say, 
“Until barely 100 years ago, the technique used in the field to cut 
through granite was far different, and far more primitive,” talking 
about wedge-wetting. 

https://www.youtube.com/watch?v=6KUDu40BC5o
https://www.youtube.com/watch?v=6KUDu40BC5o
https://en.wikipedia.org/wiki/Abusir
https://en.wikipedia.org/wiki/Egyptian_pyramid_construction_techniques
https://en.wikipedia.org/wiki/Egyptian_pyramid_construction_techniques


    He points out that most of the blocks at the site do not have such 
striations, suggesting that they were polished smooth, which is clearly 
a thing that the Egyptians did with stone (see below about flatness). 

    The standard sawing technology for millennia has been a bow saw 
or bucksaw, where the blade is held in tension by a frame with some 
levers, usually tensioned with a twisted pair of ropes;  although, with 
the recent advent of cheaper, stiffer, and harder steels, it’s become 
common to use blades that are just cut from sheet metal, often with 
the stiffness of the blade itself enabling the saw to be pushed through 
the cut.  Even today you use a bow saw or hacksaw with an abrasive 
wire blade to cut materials that are too hard for metals to cut. 

    He points out that at Giza (Fourth Dynasty, Old Kingdom) there 
are stone blocks with similar saw marks that run only partway 
through the stone.  To me some of these cuts are distinctly curved 
rather than planar, which is easy to achieve with a wire saw but very 
difficult with a circular saw — you’d have to make the saw blade 
accurately spherical (or cylindrical, like a hole saw or core drill) rather 
than a flat disc.  Indeed, somewhat later he points out a sawn granite 
block at Abu Rawash whose surface is visibly concave, which to my 
mind clearly demonstrates that it was cut with something like a cable 
saw or bucksaw, not a circular saw. 

    You would think that if the Egyptians had 9-meter-diameter 
circular saws for cutting huge blocks with, they would also make 
much smaller saws for making the smaller cuts, which would leave 
circular striations with a much smaller radius as they moved through 
the cut. 

    Stocks, who doesn’t seem to have one of the academic positions so 
scorned by Ben, actually went to Egypt to try out abrasive cutting 
with copper tools;  he has some 16 other academic publications from 
1986 to 2013 on such subjects in addition to his 2003 book.  Most of 
them are in the academic journals that won’t accept Ben’s work.  
However, Stocks doesn’t seem to be in favor of the cable-saw theory, 
instead advocating the use of 6-mm-thick copper sheets to drive the 
abrasive, using no lubricant — not only because water increased wear 
on his reed tube drills, but also because it slowed cutting in his tests 
with both saws and tube drills, rather than speeding it, and was more 
inconvenient to remove;  however, it is known that the later Minoans 
used water or oil lubricants for abrasive cutting of stone with reeds.  
Ben attacks the copper-blade approach as impractical, I think rightly 
so — a cable saw would be more efficient, cheaper, and produce 
similar markings. 

    † This suggests that Ben doesn’t know what “tenure” actually is, 
seriously impairing his ability to understand the motivations of the 
opponents he demonizes. 

Core-drilling stone 

    Ben makes much of spiral grooves found in cores drilled out of 
stone using core drills, saying these are “machining marks not 
explainable by the tools and techniques in the archaeological record”.  
Wikipedia claims that core drills date to 3000 BCE in Egypt, so he 
seems to be in accordance with the “establishment” he so bitterly 
attacks.  He even shows a museum tag saying, “UC.44985:  Basalt 

https://en.wikipedia.org/wiki/Giza_pyramid_complex
https://www.pbs.org/wgbh/nova/egypt/dispatches/99032102.html
https://www.pbs.org/wgbh/nova/egypt/dispatches/99032102.html
https://scholar.google.com/citations?user=IGx10rUAAAAJ&hl=en
https://scholar.google.com/citations?user=IGx10rUAAAAJ&hl=en
https://en.wikipedia.org/wiki/Core_drill


tube drill core from enlarged hole.  Tools & Weapons, LII, 61;  p.45.  
?Dyn.  IV,” so I guess he knows this is already the mainstream theory.  
Nowadays of course we use metal or cermets for our core drills, but 
hollowed wood or bamboo would probably also work, because what 
cuts is the abrasive. 

    Stocks did some experiments using Egyptian hollow reeds, very 
similar to bamboo, as bow-driven tube drills, with some success, but 
he thinks these were displaced by copper tube drills not long after 
3600 BCE, resulting in a “rapid increase in the manufacture of hard 
and soft stone vessels” at that time, and mentions that in Minoan 
Crete (around 2000 years later) emery has been found adhering to 
drilled-out cores.  He was not able to drill granite with the reeds.  
Emery is impure corundum, or sapphire, which is the major abrasive 
used today in industry and is dramatically more effective than quartz;  
Stocks believes, however, that emery was not available in Egypt. 

    I suspect that if you needed to cut basalt or granite with a reed tube 
drill, you might have more success after fire-hardening it, a 
technology 400,000 years old, predating stone weapons, though not 
stone tools.  Using an oil abrasive would have avoided softening the 
reed with water, and probably would improve the efficiency of the 
process. 

    Beaten copper tubes from the Fifth Dynasty have been found, and 
would be much harder than either reeds or cast copper tubes.  They 
can also be much thinner, also improving the efficiency of the process 
by reducing the kerf width.  Despite this, Stocks believes that cast 
copper predominated, in part because in his tests soft metal worked 
better for abrasive cutting. 

    Ben claims that the evidence of the spiral groove on Petrie’s UC 
16036 tapered red granite core is suppressed by mainstream 
archaeology textbooks that tilt photos of it to make it appear 
non-spiral.  However, Stocks’s book — my reference for mainstream 
archaeology — discusses this groove as an established fact, mentioning 
Petrie’s resulting hypothesis that it demonstrated the use of tube drills 
with jeweled teeth firmly fixed to the tube, rather than abrasive 
cutting;  Stocks rejects this as impractical.  He also points out that 
Petrie found verdigris in tube-drill holes as well as saw cuts, 
suggesting sawing with copper or bronze, and in one case even bronze 
particles in a New Kingdom tube-drilled hole. 

    Another non-mainstream theory is that the Egyptians used sound 
vibrations to drive their tube drills, rather than bow drills;  modern 
loudspeaker-driven experiments have demonstrated that this is a 
practical approach.  Stocks points out that in his experiments, the 
tapering observed in many ancient Egyptian tube-drilled holes and 
cores was only observed with bow drills, which tend to rock the drill 
back and forth in the hole.  Also, tomb paintings show woodworkers 
with bow drills. 

Flatness 

    Ben makes much of the “flatness” of the various surfaces he 
observes.  However, it’s easy to see that many of the masonry walls he 
admires are made of stones tightly fitted together upon installation, 
rather than by using the flat surfaces that a circular saw would easily 



produce.  Corners are curved, and hollows are cut into the corners of 
stones (presumably by grinding away the points of contact), to enable 
the blocks to fit together despite the extremely visible non-flatness of 
their mating surfaces. 

    Some of the surfaces are indeed quite flat and well-polished, with 
in many cases parallel scratches from the grinding and polishing 
process. 

    I have a vague memory that the technique of grinding three trial 
surfaces against one another pairwise to achieve flatness, refined by 
Henry Maudslay with hand scraping of metal, dates to ancient 
Sumeria, however, I can’t find my source for this.  Clearly it 
wouldn’t require any technology or materials unavailable at the time, 
though.  Sandstone or fired clay pottery with sand can easily achieve 
100-micron flatness in this way, and fired clay tempered with silt 
instead of sand can reach 10 microns. 

    In modern machining practice, once you have a flat surface, a 
standard way to transfer this flatness to a new surface is by “lapping”:  
putting a piece of sandpaper on your flat granite surface plate, then 
moving the part to be lapped around on the sandpaper in order to 
grind it flat.  This technique has been routinely used in optics for 
centuries to achieve surfaces perfect to within a fraction of the 
wavelength of light, though without interferometric inspection, 
roughness of several microns is more commonly achieved. 

    A very similar process allows you to produce surfaces that are 
perpendicular to very high precision, once you have a surface plate;  
three trial squares are tested against one another on the surface plate, 
being ground at their high spots. 

    In the sequel video, Ben claims that Christopher Dunn‡ has used a 
modern straightedge to measure some surfaces in some kind of stone 
box in the Serapeum as being flat to within one thou, 25 microns, 
strongly suggesting the use of the three-surfaces grinding method;  
the perpendicular surfaces examined were also perpendicular to 
within measurement precision (claimed to be much better, but he 
shows a photo of the measurement being taken with a machinist’s 
square not capable of such precision).  Ben does not mention why 
Dunn didn’t use a dial indicator to examine flatness to micron 
precision, and indeed describe’s Dunn’s method as “relative 
rudimentary testing”. 

    Although this video claims to be about “precision”, Ben doesn’t 
provide a single metric of precision in the whole video;  he never says, 
“The interior of this vase is spherical to within 100 microns,” or “The 
two sides of this statue’s face vary from one another by no more than 
one millimeter.” He only says things like “basically perfect” and 
“identical”. 

    Ben makes much of the fact that incised hieroglyphs are not 
polished, even when cut into flat polished stone surfaces, claiming 
that this demonstrates that a much later and more primitive culture 
cut the hieroglyphs than that which made the flat surfaces themselves.  
To me it seems more likely that hieroglyphs are unpolished to 
improve the visual contrast with the surrounding stone. 

    ‡ Christopher Dunn is author of The Giza Power Plant, a book 
claiming that the Great Pyramid was actually a power plant 

https://www.youtube.com/watch?time_continue=2359&v=YZFN29FdCM0&feature=emb_logo


harnessing “harmonic resonance” to convert seismic energy to 
hydrogen and microwave energy.  Ben promotes this book in the 
video. 

Lathes 

    Bow lathes are well-attested from ancient Egyptian drawings.  Ben 
is puzzled about how ancient Egyptian stone vessels were made (“I’d 
like to see anyone try and make these by hand with copper chisels and 
the known techniques of ancient Egypt,” he says in his second video), 
but a glance shows that they were made on lathes — not 
continuous-rotation lathes like modern lathes, but reciprocating lathes 
like bow lathes and pole lathes, which allow you to, for example, 
leave handles on the side of your jug, though those handles don’t 
enjoy the precise circularity of the lathe-cut surfaces.  Bow lathes and 
pole lathes were the common form of the lathe until the 18th century. 

    However, it must be admitted that the oldest surviving Egyptian 
depictions of lathes date only from 1300 BCE, only 3300 years ago.  It 
hardly seems surprising that the ancient Egyptians had lathes another 
1000 years before that.  Ben does eventually mention lathes, 
explaining that Petrie believed these pieces to be lathework.  As far as 
I know, this is also the current mainstream academic archaeological 
opinion as well;  Ben claims that it is not, because the wheel was not 
known at this date.  But a lathe does not require wheels any more 
than a tube drill does. 

    Immediately after quoting Petrie talking about alabaster vases, Ben 
starts talking about how amazing this is, particularly in “these very 
hard materials”.  But alabaster is the second softest stone of all;  it’s 
gypsum, also known as plaster of Paris or sheetrock;  you can carve it 
with your fingernails.  (Some archaeological “alabaster” is actually 
calcite, which is harder than gypsum, but only slightly.  Chalk is 
calcite.) 

    Perhaps Ben doesn’t know what alabaster is and didn’t think it was 
worth looking it up, just like he seems to not know what “tenure” is.  
But at some point the evidence starts to suggest that Ben is not just 
misinformed or deluded but deliberately deceiving people. 

    Of course, lathework on such brittle materials would need to be 
carried out by abrasion in the last stages, not cutting with gouges or 
chisels. 

    Stocks in his book points out that the interiors of many of these jars 
and vases were bored out using stone and wood boring tools, which 
are clearly depicted in hieroglyphs. 

The schist disc 

    Ben is also mightily impressed (in his second video) by a beautiful 
schist disc in the Cairo museum with three graceful thin hyperboloids 
symmetrically carved around a wheel;  it’s usually known as the 
Egyptian Tri-Lobed Disc.  He perhaps is not aware that you can make 
such hyperboloids by cutting a series of straight lines between evenly 
marked points along two curves. 

    Again Ben lies about the nature of a stone in order to persuade the 



ignorant:  he calls schist “this very hard stone”, but the defining 
characteristic of schist is that it is very friable due to high 
phyllosilicate content, which is in fact where its name comes from:  
σχίζειν, to split. 

    Sometimes the artifact is described as “metasiltstone”, described as 
a weakly metamorphosed form of siltstone or silty shale favored by 
Egyptian sculptors for its suitability for thin carvings like this. 

Weight 

    Ben makes much of the fact of moving stones that weigh tens of 
tonnes.  But if one person can lift 50kg, then, without levers, you only 
need 200 people to lift ten tonnes, which is a small number compared 
to the population of Egypt at the time.  And if they can get 5:1 
leverage with some logs, then you only need 40 people. 

    Moreover, most of the process of moving a large stone like that 
doesn’t involve actually lifting it;  it’s much less effort to slide it 
horizontally or on a seked-2 ramp, and you can do that with just 
ropes rather than having to stick stuff underneath it.  And a fellow in 
Canada has demonstrated his proposed stone-manipulation technique 
with a several-tonne chunk of concrete:  you balance it horizontally 
on a small number of stone pivots near its center of mass, push down 
on one end to lift it off all but one pivot, rotate it around that one 
pivot, possibly position pivots anew, then release its weight so that it 
settles on the pivots again.  Then you can start again from the other 
end, allowing you to move the pivot you were using previously.  He 
was able to move this slab entirely by himself, using the slab itself as 
the lever. 

Geometry of statues 

    Ben, quoting Dunn, is very impressed with the geometric precision 
of the heads of the Rameses statues at Luxor and the Ramesseum, 
claiming that the only way to make such shapes nowadays is with 
CNC machining;  in 1970, he claims, it would have been impossible.  
But he show Dunn’s diagrams demonstrating that the heads’ shapes 
are mostly composed of simple circular arcs and convex solids of 
revolution, carefully planned to be tangent to one another.  (Dunn 
claims you’d need NURBS, but his diagrams demonstrate the 
opposite.) 

    I do think it’s clear that the statues, like Tibetan sand paintings and 
like pyramids since the time of Djoser, are laid out geometrically, 
using precise procedures and measurements.  But I don’t think this 
requires 18th-century technology, much less 21st-century technology.  
The Romain du Roi typeface was thus laid out in two dimensions on 
a regular grid with circles and arcs in 1692. 

    The simplest brute-force approach would be to simply measure out 
a large number of points in space.  Since we’re presumably talking 
about enormous numbers of workmen sawing and grinding granite 
for decades, the hard part is not the stone cutting;  it’s knowing which 
stone to cut and which to leave.  That is, the problem is measurement, 
or sensing, not actuation. 

    A point in open space can be precisely located by its distance from 
three reference points, which can be measured out precisely by metal 



chains.  (Aside from the reflection ambiguity, of course, which would 
not have presented the problem for sculptors that it does for GPS.) 
Copper’s linear coefficient of expansion is 16–17 ppm/K;  a 
five-meter-long copper chain will thus lengthen and shorten by some 
800 microns with a 10° temperature change, less than a millimeter.  
The lengths of pieces of wood, clay, or plaster are even more precisely 
constant, and even plant-fiber rope would probably be good enough.  
Distances measured with tiny copper chains on a small plaster scale 
model of a sculpture can thus be scaled up to a full-scale megalithic 
sculpture with submillimeter errors. 

    Ben, as usual, never quotes a tolerance, but he does include some 
measurements from one of Dunn’s books, which are given to only 
four significant figures, which would not be enough to detect 
millimeter-scale errors. 

    Moreover, the Egyptians seem to have understood the Pythagorean 
Theorem by the time of the Berlin Papyrus 6619 (12th or 13th 
Dynasty, around 1800 BCE), several centuries before Ramesses, and it 
was in widespread use in Mesopotamia at that time as well.  So you 
wouldn’t have needed to make a scale model;  you could have 
calculated. 

    Drawing tangent arcs and tangent lines on sand (or paper, or 
papyrus) is easily done with compass and straightedge, both of which 
are ropes stretched thin over sand until the Hellenistic period.  This 
may not be appreciated by those who have never done it. 

    To make an arc tangent to another arc at point P, draw a line 
through P and the center of the arc.  Any arc through P centered at 
any point Q on this line will be tangent to the other arc there.  They 
form a beautiful smooth curve. 

    Given a point P on a line L, select a point Q on L.  L and the circle 
through Q centered at P have two intersections;  one is Q;  call the 
other R.  The circle through Q centered at R and the circle through R 
centered on Q have two intersections;  the line through them is 
perpendicular to L at P. 

    To make an arc tangent to a line L, and choose a point P on L.  
Draw a line M through P perpendicular to L.  For any point Q on M, 
an arc centered at Q starting at P will be tangent to the line at P. 

    To make a line tangent to an arc at a point P on the arc, draw a line 
M from the center of the arc through P.  The line perpendicular to M 
through P is tangent to the arc at P. 

    Solids of revolution are most easily produced by a series of circles 
around their axis, each circle produced by swinging two chains 
around the axis from two reference points on it.  Given a smooth 
curve in one plane containing the axis, you can use it to repeatedly set 
the distances on the two chains to a point on the curve, then generate 
the rest of the circle.  However, this will not work for convex surfaces 
to be cut out of a solid material, because the chains would have to be 
inside the material. 

    However, there are many other contrivances that can be put to the 
same use, one of them being the lathe, which was already in use, as we 
have seen.  But a wooden board that rotates around two pivot points, 
like a door, would work just as well;  the curve to generate the solid 



of revolution can be cut into the board, allowing it to be accurately 
cut into a plaster model.  To directly apply the method to the full-size 
statues without a scale model, you probably need a different way to 
swing your pattern points around your axis. 

    (To be continued?) 

Backward progression 

    One of the few things Ben says that I agree with, in his second 
video, is that there seems to be a “backward progression of 
technological capability” in ancient Egyptian technology, with 
Old-Kingdom artifacts being often more finely made than 
Middle-Kingdom artifacts, which are more finely made than 
New-Kingdom artifacts, which are more finely made than 
Hellenistic-period artifacts.  The Egyptians themselves at the time are 
known to have made similar comments, and of course the Bronze Age 
Collapse loomed large in Classical Greek mythology and popular 
culture. 

    I think the reason for this is relatively easy to understand:  
technological progress is created by innovators like Imhotep, Djoser, 
Champollion, and Feynman, not by conservative traditionalists.  
Innovators must constantly struggle against conservatism to make any 
progress.  But it’s easy to see, looking at the development of 
hieroglyphic writing, ancient Egyptian art, and ancient Egyptian 
metallurgy, that for millennia Egypt was a very traditionalist, 
conservative society, even for its time;  1200 years after Imhotep, they 
deified him and thus halted progress.  Even the adoption of iron 
smelting in Egypt took from 2000 BCE until the neo-Assyrian 
conquest in 671 BCE, several centuries after neighboring kingdoms.

Topics

• Manufacturing (p.  795) (17 notes) 
• History (p.  796) (17 notes) 
• Facepalm (p.  819) (8 notes) 
• Crackpots (p.  893) (3 notes) 
• Archaeology (p.  905) (3 notes) 
• Collapse (p.  964) (2 notes) 
• Egypt
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Level shifter
Kragen Javier Sitaker, 02020-10-08 (updated 02020-10-10) 
(9 minutes)

    We were talking about level shifters;  I asked if a voltage-divider 
level shifter from 3V3 to 5V was going to sink current into the 3V3 
pin, and cloudevil surprised me! 

Passive level shifters 

14:06 < cloudevil> xentrac: No, it doesn't have to, depending on setup.          
                              |

14:07 < cloudevil> xentrac: Something like 3.3K from 3.3V out to ground, 1K from 
3.3V out to 5V in, and 2K     |

                   from 5V in to 5V.                                             
                              |

14:22 < cloudevil> It is not much good (without great care paid) if you need to d
o a MHz signal, and level     |

                   shifters may be the right way there.                          
                              |
 

    In Falstad’s circuit simulator, that’s: 

$ 1 0.000005 10.20027730826997 50 5 43
R -48 160 -80 160 0 2 40 1.65 1.65 0 0.5
r -48 256 -48 160 0 3300
r 32 160 -48 160 0 1000
r 32 80 32 160 0 2000
R 32 80 32 48 0 0 40 5 0 0 0.5
g -48 256 -48 272 0
368 32 160 80 160 0 0
 

    This does indeed work as advertised.  When the 3.3V wave is at 
3.3V, it holds the 3k3 at 1 mA.  Then the 3k voltage divider between 
there and the 5V supply divides the 1V7 difference into 570 mV 
across the 1k and 1.13 V across the 2k, with the same 570 μA through 
both, so the 3V3 source only has to source 430 μA.  This pulls the 
input on the 5-V chip to a very acceptable 3.87 V.  Then, when the 
3V3 I/O pin is pulled down to ground, you instead have 5V split 
across the 3k voltage divider, so the 5V I/O pin is at 1.67 V, which is 
probably still okay, though well above TTL’s 0.8V threshold, and 
precisely at 5V CMOS’s ⅓Vdd threshold. 

    (It works a little better if you use 470R instead of 1k in the middle.  
You don’t get a lot of noise immunity but you do get some, at least 
with CMOS thresholds.) 

    Now, 3V3 is almost precisely 5V CMOS’s ⅔Vdd threshold, so you 

https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsAoAJRAFoa9xCqW8qwuoIFLT7RCSMGKRUYCegCdW7IQkJKO-GSGy5IC7cM3rOWsPH3ZhvAycFo4TG9cu0OWmlWmDZ9AObGUVQCMYT1sQg4XI2sjGXogA


may be able to just use a wire.  And going in the other direction, 5V 
to 3V3, you can just use a 2:1 voltage divider, when a simple 
current-limiting resistor isn’t enough.  (Generally 3V3 input pins, 
when they aren’t actually 5V-tolerant, have some specified limit on 
how much current they can sink from a higher-voltage place, like half 
a milliamp or something.) 

    I just hadn’t realized that a non-bogus level shifter could be so 
simple and passive. 

Active and bidirectional level shifters 

    Here’s a more elaborate circuit shifter on Falstad’s circuit simulator: 

$ 1 0.000005 10.20027730826997 50 5 43
R -48 160 -80 160 0 2 40 1.65 1.65 0 0.5
g 160 240 160 288 0
t 128 192 80 192 0 1 0.642686555624928 0.6693572978862428 100
t 192 192 240 192 0 1 -4.2135673793996755 0.02667074272282007 100
r 128 192 240 48 0 4700
r 192 192 80 48 0 4700
w 80 48 80 176 0
w 80 208 80 240 0
w 240 208 240 240 0
w 240 240 160 240 0
w 160 240 80 240 0
w 240 48 240 176 0
r 80 48 80 -16 0 1000
R 80 -16 80 -48 0 0 40 5 0 0 0.5
r 240 48 240 -16 0 1000
R 240 -16 240 -48 0 0 40 5 0 0 0.5
r -48 160 32 160 0 470
w 128 192 128 160 0
w 128 160 32 160 0
368 240 48 336 48 0 0
368 -48 160 -48 96 0 0
 

    This circuit uses a simple RS latch made out of four resistors and 
two bipolar transistors to do level-shifting in a way that has, I think, 
some bidirectional potential.  The output on the right generates 
0.06 V or 4.24 V according to the state of the latch, and the 3V3 input 
(connected through a lower-value resistor) is strong enough to 
overpower the latch’s state. 

    Now, the reason I say this has some bidirectional potential is that, if 
the 3V3 pin isn’t driving anything (you disconnect the square-wave 
source), then you can drive the “output” directly with 0V or 5V, 
which is also enough to overpower the latch.  The leftover part is that 
your tri-stated 3V3 pin isn’t being driven to 3V3;  it’s being driven to 
just a Vbe. 

    This can be remedied by driving the feedback override in the level 
shifter through a voltage divider: 

$ 1 0.000005 10.20027730826997 50 5 43
r -144 -16 -144 128 0 15000

https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsAoAJRAFoa9xCqW8qwuoIFLT7RCSMGKRUYCegHNOVFDT4CUeDpHoAXcBvDFhvQ8L5QxNInnEIEhFUYIXCJbAgwoymh1eLJtPTAjUyFVUPM2aBQwd0IcDGJsUlctWCJ4yAwrTw084TA4egAnfQ5g4RUqdkEaDCLSitCTGur67QB3EBaOEzAMQih6LpM0XuVwzrDlfGm5qaq5-gmZYaU50cm1xZrF-sHtUp7u7n5BQqLmExYz69baqmlBWRK53fCbg4DtZkXPubYWge1BkFjkpUB62wBQEbSmYAMTQR5Vha2RUJhq2whA4Ow42GxtCB2mxHEhy1YNWIX20QA
https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsAoAJxAFowabWxCuPwU8UcJThNenMAPEgUNKlRRpRAF2myqLPArlCILGtAyFsWDOwKEEGBMSjQwkDMUlg8hQlkJ4axQQ8j0AOasWjIIPJpUuJwBzJEysiDYKAkxSbgqSSmKnKE5unYIKMRFCDRKCNhlBHbGGHRGkJXE2HhgCH6iwXk6odFQYvH58SyEaf4BAEohGmMzrMQ88rRUSMswCPTToaO5GotCVDprh9CbzDtzefi68PQA7iDXflJoggGPkoJv-IJsSw9flwIuxOP8Bp9Xjcfj8AgBnGTQpF-OZUCDKRgAVwApltESjOD8WAdlsdDoV6AiYciZHh3uAQBicUF8bTvjd+gFsF5WTCMNkbvJAWw+F9WD8xfDxTcxSwYXSCkzccE5dCFarBJz6Ny-hKpHL+UChQiNUDTdxFVjcdNzREiclyTpsNBsOSNvQgA
https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsAoAJxAFowabWxCuPwU8UcJThNenMAPEgUNKlRRpRAF2myqLPArlCILGtAyFsWDOwKEEGBMSjQwkDMUlg8hQlkJ4axQQ8j0AOasWjIIPJpUuJwBzJEysiDYKAkxSbgqSSmKnKE5unYIKMRFCDRKCNhlBHbGGHRGkJXE2HhgCH6iwXk6odFQYvH58SyEaf4BAEohGmMzrMQ88rRUSMswCPTToaO5GotCVDprh9CbzDtzefi68PQA7iDXflJoggGPkoJv-IJsSw9flwIuxOP8Bp9Xjcfj8AgBnGTQpF-OZUCDKRgAVwApltESjOD8WAdlsdDoV6AiYciZHh3uAQBicUF8bTvjd+gFsF5WTCMNkbvJAWw+F9WD8xfDxTcxSwYXSCkzccE5dCFarBJz6Ny-hKpHL+UChQiNUDTdxFVjcdNzREiclyTpsNBsOSNvQgA


r -144 128 -144 240 0 22000
t -144 240 -80 240 0 1 -4.763777148265759 0.10791218667768503 100
g -80 256 -80 304 0
r -80 224 32 224 0 33000
t 32 224 80 224 0 1 0.529525420053551 0.6374376053938159 100
g 80 240 80 304 0
r -80 224 -80 -64 0 1000
R -80 -64 -80 -96 0 0 40 5 0 0 0.5
R 80 -64 80 -96 0 0 40 5 0 0 0.5
r 80 -64 80 208 0 1000
w 80 208 128 208 0
w 128 208 128 -16 0
w 128 -16 -144 -16 0
w 128 208 208 208 0
s 208 208 208 -64 0 1 true
R 208 -64 208 -96 0 0 40 5 0 0 0.5
s 208 208 208 288 0 1 true
g 208 288 208 304 0
368 208 208 272 208 0 0
w -144 128 -208 128 0
s -208 128 -208 288 0 1 true
g -208 288 -208 304 0
368 -208 128 -272 128 0 0
s -208 128 -208 16 0 1 true
R -208 16 -208 -32 0 0 40 3.3 0 0 0.5
 

    This is basically the same latch circuit as before, but now the 3V3 
input is connected to the middle of the feedback resistor, so it sees a 
lower voltage. 

    Of course cloudevil points out that seven discrete components are 
probably not cheaper than a level shifter chip!  And I might want to 
consider under what conditions it might oscillate.  But mostly I just 
thought it was an interesting way to tackle the problem.  And, 
amusingly, it’s only one more component than two purely passive 
unidirectional level shifters made from three resistors each — but it 
contains two transistors, which are both more expensive and often 
slower than resistors. 

    (It’s kind of goofy to describe a resistor by itself as “slow” or “fast”;  
it’s really the whole circuit.  But I did it anyway.) 

    DocScrutinizer05 proposed the following alternative bidirectional 
level-shifter circuit, based on a design he saw from NXP, which uses 
8 components instead of 7, but only a single transistor: 

$ 1 0.000005 10.20027730826997 50 5 50
f 544 240 544 304 32 3 0.02
v 240 160 320 160 0 0 40 2.3 0 0 0.5
w 320 160 352 160 0
w 544 160 544 240 0
g 240 160 240 192 0
R 656 192 768 192 0 0 40 15 0 0 0.5
r 352 160 352 304 0 10000
w 352 304 528 304 0
s 304 304 336 304 0 1 true
s 592 304 624 304 0 1 true

http://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgosgCgAzCgFiZBSaoRZF1exR5RYKWgDc2HcISr8qYaVEWSU0bIqowEtAO480UmQgHyNO5qxPmJpgObWD9sMQF0ASiEIJC4ZyAyE8HxclOSQNIS0AJx4jB2xY3kUweDpdeIFEo0DEugBnHkg+Qp5sbxzwEAAXSIBXAFNafIRfRMJ2AtY5KtqG3U9vJwFm419UkrLi9I6oM0TElC9pujsFidZVnjxOsy8ZYuGl2miDzN9BpJTaOzai1huQDlMAEwe4ONjLASe6+gBDGoANpUjlZLAdLFQmBh4DszgpwaNaC8uBYFExiAMFF8fv8gUiHvwHI8HNi-oDgS90ZjIYTPiBvmS8QB7cAWFCBGlcHzQUjOSBtDBQpiEDDENQweAQKjGPi0FnkMDspTxVhMaDSSDYDF4Nq66RhWBwCAQATkbC0IA
http://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgosgCgAzCgFiZBSaoRZF1exR5RYKWgDc2HcISr8qYaVEWSU0bIqowEtAO480UmQgHyNO5qxPmJpgObWD9sMQF0ASiEIJC4ZyAyE8HxclOSQNIS0AJx4jB2xY3kUweDpdeIFEo0DEugBnHkg+Qp5sbxzwEAAXSIBXAFNafIRfRMJ2AtY5KtqG3U9vJwFm419UkrLi9I6oM0TElC9pujsFidZVnjxOsy8ZYuGl2miDzN9BpJTaOzai1huQDlMAEwe4ONjLASe6+gBDGoANpUjlZLAdLFQmBh4DszgpwaNaC8uBYFExiAMFF8fv8gUiHvwHI8HNi-oDgS90ZjIYTPiBvmS8QB7cAWFCBGlcHzQUjOSBtDBQpiEDDENQweAQKjGPi0FnkMDspTxVhMaDSSDYDF4Nq66RhWBwCAQATkbC0IA


w 656 192 592 192 0
w 336 304 352 304 0
w 304 304 256 304 0
g 256 304 256 384 0
w 560 304 592 304 0
r 592 304 592 192 0 10000
g 624 304 624 400 0
d 400 160 352 160 2 default
r 544 160 592 160 0 47000
w 592 160 592 192 0
d 544 160 496 160 2 default
d 432 160 400 160 2 default
d 496 160 432 160 2 default
o 14 128 0 4354 19.999206274746793 0.0001 0 2 14 3
o 7 128 0 4354 4.600396862626605 0.0001 1 2 7 3
 

    I need to think more about how this works;  it’s explained in NXP 
appnote 10441.

Topics

• Contrivances (p.  786) (44 notes) 
• Electronics (p.  788) (42 notes) 

https://www.nxp.com/docs/en/application-note/AN10441.pdf
https://www.nxp.com/docs/en/application-note/AN10441.pdf


Merkle ropes
Kragen Javier Sitaker, 02020-10-09 (15 minutes)

    (From a discussion with Nick Johnson, though any errors are my 
responsibility, not his.  And probably a lot of this is not novel, being 
implicit in Okasaki at least.) 

    Bitcoin and similar systems include a hash of the previous block in 
each new block, forming a chain of blocks.  But verifying that any 
particular previous block in the block chain is truly an ancestor of 
what you believe the tip block to be requires verifying all the blocks 
in between. 

    (Often a more interesting question is whether a current candidate 
tip block really does have the height it claims to have.  The approach 
outlined below is not primarily concerned with that question, but it 
does permit fast noninteractive probabilistic proofs of it.) 

Merkle blockchain ropes and 
logarithmic-time appending 

    What we would ideally like is a Merkle tree of the previous blocks 
instead of a linear Merkle block chain.  Both can be thought of as 
Cedar’s “ropes”, which represent sequences as the leaf nodes of a 
binary tree;  in OCaml: 

type rope = Leaf of string | Fork of rope * rope
 

    Or, more abstractly, a rope of some arbitrary type 'a or α: 

type 'a rope = Leaf of 'a | Fork of 'a rope * 'a rope
 

    Sometimes there's a third alternative: 

type 'a rope = Leaf of 'a | Fork of 'a rope * 'a rope | Empty
 

    In these Merkle graphs, the pointers are realized as message digests 
rather than memory addresses.  A chain is just the degenerate case 
where the binary tree is pessimally balanced.  What we want is to 
incrementally rebalance the tree as we append to the end of it. 

    If you have 8 leaf nodes to form into a perfectly balanced binary 
tree, you need to construct 7 internal nodes (“forks”).  The first fork 
can be added when you add the second leaf, but the second fork 
cannot be added until you add the fourth leaf, at which point you can 
also add the third fork.  Then the fifth leaf does not enable adding any 
new forks, so it would have been okay to wait to add the third fork 
until then.  The sixth leaf enables adding the fourth fork, the seventh 
leaf does not enable adding any new forks, and the eighth leaf makes 
it possible to add the fifth fork (over leaves 7 and 8), the sixth fork 
(over forks 4 and 5), and the seventh fork (over forks 3 and 6). 

    You could think of these fork nodes as being an “index”, like that 
in a relational database, of the block chain;  but, instead of allowing 



you to answer queries quickly, they allow you to construct proofs 
quickly. 

    On average, you only need to add one fork for each leaf after the 
first, but sometimes you cannot add it immediately.  So if you add at 
most one fork with each new block (which adds a leaf), you will start 
to fall behind.  But you fall behind only by a logarithmic amount;  the 
256th leaf enables the construction of 8 new forks, so at that point the 
perfect binary tree will be 7 blocks delayed from the state of the 
blockchain. 

    In essence each new fork consolidates the two previous smallest 
remaining binary trees into a larger binary tree;  the trees can be held 
in a stack of fully compacted trees and a queue of possibly not fully 
compacted trees.  Before adding a new leaf, we compact two trees if 
possible, then add the leaf to the queue.  Here’s what the stack;  queue 
state looks like as we add the first 40 leafnodes, one at a time: 

1: ; 1       11: 8 2; 1      21: 16 2 2; 1   31: 16 8 4 2; 1  
2: 2;        12: 8 2 2;      22: 16 4; 1 1   32: 16 8 4 2 2;  
3: 2; 1      13: 8 4; 1      23: 16 4 2; 1   33: 16 8 4 4; 1  
4: 2 2;      14: 8 4 2;      24: 16 4 2 2;   34: 16 8 8; 1 1  
5: 4; 1      15: 8 4 2; 1    25: 16 4 4; 1   35: 16 16; 1 1 1 
6: 4 2;      16: 8 4 2 2;    26: 16 8; 1 1   36: 32; 1 1 1 1  
7: 4 2; 1    17: 8 4 4; 1    27: 16 8 2; 1   37: 32 2; 1 1 1  
8: 4 2 2;    18: 8 8; 1 1    28: 16 8 2 2;   38: 32 2 2; 1 1  
9: 4 4; 1    19: 16; 1 1 1   29: 16 8 4; 1   39: 32 4; 1 1 1  
10: 8; 1 1   20: 16 2; 1 1   30: 16 8 4 2;   40: 32 4 2; 1 1
 

    The new leaf can embed the fork within it, thus “signing” the fork 
at insignificant extra cost.  The pointers in the fork can be the hashes 
of the two blocks containing its child nodes, annotated with bits to 
indicate whether the pointers are leaf pointers or fork pointers.  You 
might think that when the fork is included, this eliminates the need to 
include the hash of the previous block in the new block, because the 
previous block can be reached by following the right-child pointers 
down the tree of forks;  but in fact the new fork might not include 
the previous block.  So you still need the previous block pointer. 

    Moreover, to permit efficient traversal of the trees, each fork also 
needs to include a pointer to the previous fork on the stack, if any.  In 
the above example, the fork containing the first 16 leaves is created 
with the 19th leafnode, but is not merged into a 32-leaf fork until 
leafnode 36.  When you’re looking at leafnode 35, how are you going 
to find the older 16-node fork?  You need a pointer back to leaf 19. 

    From a rope perspective, your sequence of blocks is a concatenation 
node of the stack and a queue;  the stack is either empty or a 
concatenation of a stack of all the balanced trees before the last, and 
the last balanced tree;  each balanced tree is either a leafnode or a 
concatenation of two balanced trees;  and a queue is either empty or a 
concatenation of a queue and a leafnode 

    From the rope perspective, this structure is just a rope;  the 
distinctions between the state, stacks, queues, and balanced trees can 
be entirely implicit in the structure.  A state is a fork of a stack and a 
queue;  a stack is empty or a fork of a stack and a balanced;  a balanced 
is either a leafnode or a fork of two balanceds;  a queue is empty or a 



fork of a queue and a leafnode.  So the “type” of each fork (state, 
stack, queue, or balanced) is encoded by its parent’s type and which 
side it’s on. 

    Each new block encodes, in a sense, a new balanced and a new stack 
with it as the right child and a new queue with a new right child 
(which is the block itself).  The only funny business is that, as I’ve 
described the queue above, consuming items from the front of the 
queue requires reconstructing all the forks inside the queue, and these 
forks are not recorded at all in the blockchain. 

    The length of the queue is bounded by the height of the tree, so it’s 
only logarithmic.  With an ephemeral data structure (rather than an 
FP-persistent structure like an orthodox rope) you could do the 
queue operations in constant time, making the whole node-append 
operation constant-time.  This isn’t important for block-chain 
applications, but it could be useful in other rope applications. 

    However, although appending to the structure can be thus made 
constant-time, it still takes logarithmic time to query it, which is 
usually more common, so I think logarithmic time for appending will 
almost always be good enough. 

Code for the table 

    The data for the above table was produced by the following code;  I 
then formatted it into columns: 

s, q = [], []

for _ in range(40):
    if len(s) > 1 and s[-1] == s[-2]:
        s[-2:] = [s[-1] + s[-2]]
        q.append(1)
    else:
        q.append(1)
        if len(q) > 1:
            n = q.pop(0)
            n += q.pop(0)
            s.append(n)
    print('{}:'.format(sum(s) + sum(q)),
          ' '.join(str(i) for i in s) + ';', ' '.join(str(i) for i in q))
 

Probabilistic chainheight validation 

    As for the probabilistic proof mentioned earlier, if you annotate 
each fork with the total amount of hashing (PoW) work in its 
leafnodes, then you can choose a random leaf node to which to 
validate the path down from the current state, for example in 
proportion to the amount of hashing it is claimed to represent.  If 
you’ve been fed a fake blockchain that pretends to represent 10% 
more work than it really does, then you’ll have a 10% chance of 
finding a discrepancy, say where a fork’s work total isn’t the sum of 
its children’s work totals, or where the previous node in the tree isn’t 
actually the predecessor it specifies.  This assumes the thief can’t 
predict which random node you’ll try to validate. 

    By validating several randomly chosen leafnodes this way, each in 



logarithmic time, you can achieve an arbitrarily high confidence level 
that the whole blockchain is valid, as it claims to be.  For example, 
after validating 44 random leafnodes in this way, you would have a 
99% chance of finding one that was in the faked 10%, I think.  If only 
1% was faked, you would need to check 459 random leafnodes to have 
99% chance of detecting the fraud. 

    But this is a fairly small cost.  Suppose there are 8 million leafnodes, 
so you may need to go through as many as 44 forks on your way 
down to a leaf;  if all you have is a sequential file of blocks and an 
index of it by hash, this could take 87 random accesses, about a second 
on spinning rust with 8-ms seek times.  So you could finish the 
459-leafnode probabilistic validation in under ten minutes. 

    Less pessimistically, you could arrange the 8 million forks into a 
B-tree;  each consists of, say, a 32-byte hash for each of its two 
children, 64 bytes in total.  On spinning rust, you might use a 
524288-byte treenode size, which can holds 8192 forks, really 8191:  13 
levels of the tree.  The up to 23 stack items and the up to 23 queue 
items can be held in RAM.  So validating each leafnode involves 
reading two B-tree blocks and the leafnode, 3 random accesses rather 
than 87, plus checking the hashes.  So you can finish all 459 
validations in 10 seconds rather than 10 minutes. 

    On SSD you can use 16384-byte B-tree nodes — 255 forks each, 8 
levels of tree — and access them in 100 μs each.  So traversing 23 levels 
of the binary tree requires traversing only 3 levels of the B-tree plus a 
leafnode, 400 μs, so your access time for the 459 leafnode validations 
is 180 milliseconds. 

    (Hmm, actually I realize I didn’t include the chainheight 
annotation in the sizes of the forks, but the difference is not very 
large.) 

Application to LSM-trees 

    Much of the logic above isn’t concerned with precisely what 
operation we do to merge together two trees into a larger tree.  In the 
above, it was simply a matter of constructing a new fork with the two 
trees as children, a constant-time and constant-space operation.  But 
it’s all highly suggestive of Lucene’s merge-based approach, also used 
in LevelDB, nowadays called a “log-structured merge tree”.  In an 
LSM tree, when you merge two 16-item segments into a 32-item 
segment, you have to read through each of them sequentially in order 
to sort them into order by key, perhaps constructing some kind of 
skip file or index to enable rapid random access by key. 

    The amount of work becomes smaller if we use N-way merges:  
instead of first merging 1+1 = 2, then 2+2 = 4, then 4+4 = 8, then 
8+8 = 16, then 16+16 = 32, which involves appending an item to a 
new segment 63 times, we directly merge 1 + 2 + 4 + 8 + 16 = 32, 
thus only doing it 32 times.  We can also exchange some more 
variability in query time for a lower index construction time, by 
delaying merges for a longer time, say until the new segment will be 
4× or 8× larger than the largest old segment being merged, not just 
2× as in the examples above. 

    The larger point, though, is that LSM-trees fundamentally involve 
more work per item than just concatenating them into ropes.  But it’s 



only logarithmically more work, and we can spread it evenly over the 
time when items are added in an analogous way.  The temporal 
sequence won’t be exactly the same:  generating the 32-item merged 
node, done atomically at block 36 in the above example, will take 16 
times as much work as generating the 2-item merged nodes, which in 
the above example are created at blocks, 2, 6, 37, etc. 

    So we will generate these larger merged nodes gradually, over the 
course of adding several leafnodes.  And I think the amount of work 
we do per leafnode will gradually increase, but only logarithmically.  I 
haven’t worked out the reality yet.  Each new leafnode might include 
some logarithmically large set of pointers to segments it’s merging and 
cursor positions in them, and a chunk of merged data. 

    What does this have to do with blockchains?  Well, you could 
plausibly collectively generate a queryable database index in this way 
as part of a blockchain, but efficiency is in some sense not the point of 
a blockchain — inefficiency is.  A blockchain is designed to make it 
infeasibly inefficient to violate the established consensus rules on who 
owns what. 

    Outside of blockchains, I suspect that LevelDB does in fact work 
this way in order to avoid unbounded pauses when inserting and 
deleting.
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A seamless CMG-driven walker
Kragen Javier Sitaker, 02020-10-11 (updated 02020-10-12) 
(6 minutes)

    A control moment gyroscope, CMG, or гиродин is a device used, 
typically in pairs, to control the attitudes of large spacecraft, as an 
alternative to reaction wheels.  Someone has built a cute little 
cube-shaped robot called Cubli that can get up and walk by rolling 
from one corner to another using reaction wheels, so the robot has no 
externally protruding components or pivoting joints, other than the 
bearings for the reaction wheels themselves.  It would be interesting 
to do something similar using CMGs. 

    The idea is that you’d have something like an opaque, matte 
tetrahedron with rounded corners, or perhaps some more irregular 
shape, of a few hundred mm in diameter, mostly made of some very 
light material;  however, inside of it would be hidden two or more 
gimbaled gyroscopes, whose rims would contain most of the mass of 
the whole device, as well as several motors, a battery, and control 
electronics.  If the walker decides to start walking, it spins up its 
CMGs and starts torquing them in order to stand up on, for example, 
one corner, and move around. 

    As a concrete example, perhaps the height of the tetrahedron 
would be 720 mm, but the last 100 mm of the point are rounded off.  
The inscribed sphere has diameter 360 mm, so perhaps the largest 
gyroscope has diameter 350 mm and can rotate to any angle within;  
the rim of its perfectly toroidal rotor is, say, 100 mm in minor 
diameter, with a circular cross section centered at 170 mm from the 
center, thus 340 mm major diameter.  The torus has a volume of 
about 8.4 liters, so if it is mostly or entirely made of lead, 11.34 g/cc, 
then it will weigh about 95 kg, too heavy for most humans to lift.  I 
think it should be possible to build the rest of the machine — frame, 
bearings, smaller gyros, gimbals, motors, cables, etc. — under 5 kg.  So 
95% of the machine’s mass will be in its primary gyro, which can 
safely be spun at some 30 m/s. 

    At this speed its kinetic energy would be some 43 kJ, enough to 
drain a 2400-milliamp-hour USB power pack just to spin it up, on 
the order of 50 g of Li-ion battery.  (The 10050-mAh USB power 
pack next to me weighs 205 g.) So probably 1 kg or more would need 
to be battery. 

    So clearly this beast could have an angular momentum to be 
reckoned with, and with the appropriate gearing, motors, and 
secondary CMGs, would have no trouble at all slowly lifting itself off 
the floor to stand on one point, or walking across the floor on two of 
its points.  It could perhaps walk up and down stairs, light up, vibrate, 
make sounds, and, by balancing on one point, serve as a cocktail-party 
coffee table, though keeping it from being a very noisy and 
vibration-heavy table would take substantial engineering of the 
bearings. 

    In addition to walking, it could tilt a bit to one side and rotate on 
its rounded point, which would cause it to roll across the floor rather 



than merely walking. 

    Equipped with a sense of touch to feel things placed on top of it, it 
could balance a ball on its center, constantly tilting slightly to nudge 
the ball back toward its center.  It might even be able to 
simultaneously engage in such a motion while balancing an object on 
its top. 

    If you wanted it to carry things around, though, a more useful 
polyhedral shape would have an edge between two vertices, usable for 
walking, opposite a flat face, so that it could walk while objects 
remained on its upper surface mostly by friction, minimally tilting 
back and forth to shift its weight between these two feet.  An 
equilateral triangular prism, for example, would work;  so, too, would 
a square pyramid, though there is only one angle for such a pyramid 
at which one of its triangular faces will be horizontal when its center 
of gravity is over the opposite edge. 

    More irregular shapes would offer more versatility. 

    A prototype of 1% the mass could probably be constructed.  Instead 
of weighing 100 kg, it would weigh about 1 kg.  You’d scale it down 
by a linear factor of, say, 0.22.  So the tetrahedron would be 158 mm 
tall, the incribed sphere 79 mm diameter, the rotor rim 22 mm thick, 
centered 37 mm from the center (74 mm major diameter).  This rim 
has a volume of 89 ml, 1.01 kg.  If we also scale down the rotor linear 
speed and leave its angular speed alone, it’s only going 6.6 m/s, which 
is still 1700 rpm.  (I guess I should work out what the scaling laws for 
CMGs are;  I think that small CMGs are worse than reaction wheels.) 
The kinetic energy has dropped even more:  now it’s only 22 J.  I feel 
like this would still probably work but you might need to spin up the 
motors. 

    The total mass left over, if it scaled the same way, would be about 
50 g. 

    A collection of such contrivances possessed of concave surfaces, or 
even surfaces that could be horizontal near floor level, could climb 
atop one another;  with adequate friction, they could then function as 
if parts of a single body, with rolling contact between them rather 
than flexible joints or bearings.
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Rigid glider
Kragen Javier Sitaker, 02020-10-12 (1 minute)

    In CMG Walker (p.  416) I wrote about how to make a mobile 
machine with a totally rigid and seamless surface:  no joints, no 
wheels, no flexion. 

    A glider or submarine of this sort could perhaps work exclusively 
by moving its center of mass internally, like the OrbSwarm robots, 
rather than using reaction wheels or CMGs;  this is a significant part 
of how hang-gliders work.  In the case of a submarine, a similar tactic 
can alter its buoyancy, which can be used to propel it forward, though 
this requires either a flexible surface or some transport of mass, 
probably water, across the surface, for example through a hole.
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Skip list variants
Kragen Javier Sitaker, 02020-10-12 (4 minutes)

    Skip lists are generalized sorted linked lists that incorporate 
logarithmic-time insertion, deletion, and search.  In their normal 
form, the link pointers point in only one direction, let's say forward.  
The generalization is that each node has a "height", a positive integer 
chosen randomly from an exponential distribution, which tells how 
many pointers it will contain.  The height-1 pointers are the usual 
linked-list pointers, but the other pointers skip nodes;  a height-P 
pointer, instead of pointing to the next node, points to the next node 
of height P or greater. 

    Skip lists are transposed, randomized B-trees.  You take a B-tree, 
replace all of its adjacency relationships within B-tree nodes with a 
previous or next pointer — turning the node into a doubly-linked 
list — and then replace all child pointers with new adjacency 
relationships.  (You can treat the child pointers as going to the first 
piece of the split-up child node, or the last — it doesn't matter, as long 
as the other pieces are reachable from it.) Now you have a skip list, 
but an unorthodox one, with fairly regular spacing between nodes of 
the same height. 

    The B-tree invariant that each node has between N and M keys 
translates into a new invariant in these lists:  if you can reach a 
previous node by following a single pointer at height P, then it will 
take between N and M hops by following a single pointer at height P 
- 1. 

    You can do the usual operations of insertion and deletion, including 
appending, on such a list without violating its invariants.  Whenever 
you create a node containing a pointer at height P - 1, you must check 
to see how many nodes surround it that do not contain a pointer at 
height P.  If there aren't enough, you need to extend the node to 
height P, then repeat the process. 

    (It is by no means clear that this is superior to the standard 
approach of picking a random height for each new node, but it gives a 
one-to-one mapping to B-trees maintaining their usual invariants.  
Clearly you can use the skip-list random-level approach with the 
B-tree layout as well.) 

    A somewhat inconvenient aspect of the standard skip-list 
implementation is that the nodes are many different sizes, which is 
more difficult for dynamic memory allocation (and some type 
systems) to handle.  It's reasonable to ask if there's a way to avoid this. 

    If the distribution of heights is 50% 1, 25% 2, 12½% 3, and so on, 
then the mean height will be 2.  You could maybe provide 2 link 
fields per node, which sounds like...  a binary search tree! 

    So here's an idea.  What if you assign heights as before, but only 
have two pointers per node:  one to the immediately next node, the 
other to the next node of a larger height than the immediately next node?  
(I also thought of "of a larger height than the current node," and 
"preceding a node of a larger height than the immediately next node" 
and such things.) This ought to permit rapid traversal in essentially the 



same manner as an ordinary skip list. 

    XXX try it 

    Clearly you can also just sort of bulldoze the pointers of an ordinary 
skip list across the following nodes, so a node of height 4 will have a 
heigh-4 pointer, then be followed with a node with a height-3 
pointer, then one with a height-2 pointer, and then if either of those 
nodes had a height of more than 1 themselves, then the corresponding 
pointer will be pushed onto the next node.  The difficulty with this 
variant is that insertion and deletion is no longer cheap.
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VGA oscilloscope?
Kragen Javier Sitaker, 02020-10-13 (5 minutes)

    I mentioned the CCD oscilloscope idea from Dercuano on 
##electronics, and Stipa pointed out that the whole laser mirror 
thing was far more complex than needed.  You can just use a VGA 
monitor! 

    In more detail, the problem to be solved is that of building an 
oscilloscope out of discarded junk, for ghettobotical purposes.  With 
an oscilloscope, designing, debugging, and characterizing electronics 
becomes enormously easier;  some old vacuum-tube oscilloscopes had 
a rolloff (-3dB point) of 10MHz, but the standard basic analog 
oscilloscope for decades was 20MHz.  So expedients like wiring your 
signal source to your sound card through a resistor and some limiter 
diodes are grossly insufficient:  your sound card is 20kHz, three orders 
of magnitude crappier. 

    Once you can bring the problem into the digital domain, 
everything else becomes easy, because you can do it as slowly as you 
like.  But how can you digitize a 20MHz signal if you don’t have 
access to the market?  50Msps ADCs are quite scarce in the municipal 
waste stream. 

    Analog oscilloscopes achieved these bandwidths by using a 
cathode-ray tube;  the beam’s Y deflection was what you observed on 
the screen.  So you might think that you could salvage an old TV and 
use its CRT, but TV CRT beams are magnetically deflected, while 
oscilloscope CRT beams are electrostatically deflected, allowing 
deflection frequencies two or three orders of magnitude higher at 
reasonable voltages.  TV CRTs are not going to be useful for that;  
they’re designed for horizontal scanning with a 15.734-kHz sawtooth 
wave (for NTSC;  PAL and SECAM vary slightly.) 

    However, the beam intensity is modulated at higher frequencies, up 
to about 5 MHz in the case of NTSC, PAL, or SECAM TV;  more 
promisingly still, tens of MHz in the case of computer monitors, 
whose VGA connectors still accept analog waveforms for red, green, 
and blue.  A monitor running at 1600×1200 at 85 Hz, which was 
high-end in the 1990s but quite likely junk today if it’s a CRT, is 
drawing 163 million pixels a second, so it can “sample” signals up to 
80 MHz or so.  A lower-end 60Hz 1024×768 monitor is only drawing 
47 million pixels per second, but that’s still enough for more than the 
20 MHz for a basic oscilloscope.  Pixel brightness is not linear in signal 
voltage, being transformed by the “gamma curve”, but it’s not 
outrageously nonlinear.  And an RGB VGA monitor, like nearly all 
of them, will “sample” three channels at once, which is very 
respectable indeed. 

    You also need electronics to generate sync pulses, of course. 

    So how do you get the signal off the screen?  With a camera, of 
course.  Many-megapixel cameras are now common on cellphones, 
and they are fast enough, high enough resolution, and clean enough 
(with good signal-to-noise ratios) that you can use them capture 
individual pixels from an individual video frame off a monitor. 



    (My previous proposal used a laser diode and two spinning mirrors 
to scan the laser beam across a reflective screen — certainly doable 
with discarded materials, but substantially more difficult.) 

    Once you have that data, it’s a Simple Matter of Programming to 
find the individual scan lines, compensate for lighting and 
viewing-angle variability, undo the gamma-curve transformation, 
look for triggers in the signal stream, and draw a waveform with the 
resulting data. 

    There are some limitations of this method.  All data is lost during 
the horizontal blanking interval and vertical blanking interval, unless 
you are driving three separate monitors out of phase to avoid this.  
(Two monitors is not enough to eliminate these dropouts because the 
VBI of each monitor will inevitably contain many HBIs of the other.) 
There are cases where this matters:  where you’re watching for a 
single-shot event and you really need a lot of data on both sides of it, 
for example.  Calibration may drift, since slight brightness changes 
don’t affect the normal use of monitors;  occasionally displaying a 
calibration frame or two instead of the input signal may help with 
this. 

    Aside from its use as electronics test equipment, this approach 
should work well for software-defined radio, in which case it is 
probably possible to use analog-domain downconversion and 
frequency filtering to smear the signals of interest around in the time 
domain enough that the HBI and VBI are less problematic.

Topics

• Contrivances (p.  786) (44 notes) 
• Electronics (p.  788) (42 notes) 
• Metrology (p.  794) (17 notes) 
• Radio (p.  828) (6 notes) 
• Oscilloscopes (p.  932) (2 notes) 



Wire machines
Kragen Javier Sitaker, 02020-10-13 (updated 02020-12-31) 
(12 minutes)

    The bent-wire locking toggle used to close the tops of some bottles 
is a beautiful little piece of mechanical design, and CNC wire benders 
can produce such devices at high speeds and high precision.  And 
bending wire manually is often expedient and relatively easy.  
Galvanized mild steel wire is widely available at very low cost, and 
rusty mild steel wire is constantly discarded by the side of the road.  
And in both US English and Argentine Spanish, there’s a common 
figure of speech for an expedient, low-quality solution that refers to 
it:  “duct tape and baling wire” and “atar con alambre”, respectively. 

Straightening with two plates 

    You can straighten a piece of wire by rolling it back and forth 
between two flat surfaces after approximate straightening;  it’s helpful 
to feed it in incrementally so that you’re only straightening a little bit 
at once.  I’ve used a slab of granite and the back of a scrap ceramic 
floor tile in this way, getting bent-up wire to sub-diameter deviations 
from straightness over short lengths.  It’s easier if your wire is round 
rather than needing to be twisted to approximate roundness. 

Work-hardening and annealing 

    Mild steel can’t be hardened martensitically, but it can experience 
considerable work-hardening, and this plays a significant role in 
shaping things from mild-steel wire by hand, for example with 
needlenose pliers. 

    It’s usually a difficulty:  once you bend some wire, you ain’t never 
gonna unbend it, because the place you bent is harder than the rest of 
the wire.  But if you buy some wire, it doesn’t come straight.  It’s 
coiled, if you’re lucky.  If you grab discarded rusty wire off the street, 
it’s gonna be bent all to hell, and that’s going to introduce some 
unpredictability. 

    CNC wire-bending machines deal with this problem by bending 
the wire back and forth in all directions with rollers, in order to 
straighten it and harden it uniformly before they shape it.  This way 
all the wire is hardened to a greater extent than the kinks were 
beforehand.  Even if you can do this by hand, you may regret it, 
because the uniformly hardened wire is uniformly harder to bend, 
too. 

    Maybe a better approach is to anneal the wire.  Annealing steel 
properly is a pain in the ass.  You need to austenitize it, which takes 
temperatures ranging from 738° to 900° for mild steels, with the 
highest temperature being pure iron;  in itself that’s not too hard, but 
then the recommended cooling rate is about 11 mK/s, or 
11°/kilosecond.  Not only does this take all day, it also demands a 
degree of temperature control well beyond the capability of a stove 
burner or butane torch, which can easily heat the wire up to 1000°, 
high enough to anneal steel, but probably can’t cool it down any 

https://en.wikipedia.org/wiki/Annealing_(metallurgy)
http://threeplanes.net/toolsteel.html
http://threeplanes.net/toolsteel.html


slower than about 1°/s, 90 times faster. 

    However, mild steel is less demanding than quench-hardenable 
steels in its annealing requirements, and I think you can get substantial 
softening at these much higher cooling rates;  the literature seems to 
claim that anything from 5°/s to 200°/s should be just fine.  I took a 
straightened wire and heated two spots on it on the stove burner, one 
to orange heat and the other a bit below, for 20 minutes, then let it 
cool over the course of about a minute, so on the order of 20° to 50° 
per second.  Subsequent bending happened preferentially at the 
annealed spots, showing that they were softer than the rest of the 
wire. 

    Work hardening is not all bad, though.  When you bend wire, it 
bends into a smooth curve instead of kinking like a drinking straw 
because the parts that have bent least are the softest.  (In a drinking 
straw, or in a collapsible tube in general, the parts that have bent most 
are the softest, which is why they bend even more, forming the kink.) 
And, by twisting two wires around one another, we can make them 
dramatically harder, in the sense of having a much higher yield stress, 
though no stiffer elastically. 

Creepage and nicking 

    Design for bending wire, like design for bending sheet metal, 
requires a creepage allowance;  tight bends are not ideal points, but 
curves.  Tighter and more precisely placed bends can be achieved, at 
the expense of strength and stiffness, by nicking the wire at the 
desired bend location.  This permits bends whose radius is less than a 
single wire diameter.  However, imprecision in nicking (I’m using 
needlenose pliers) can result in either a failed bend or a cut wire.  This 
takes about a joule with these needlenose pliers and this baling wire I 
have here, which is about 1.7 mm in diameter;  but it depends on the 
shape of the nicking dies (these have about a 90° dihedral included 
angle) and on the hardness of the wire.  I measured this energy by 
dropping a known weight of 827 g from a known height of 100 mm 
onto the handles of the needlenose pliers. 

Compliance 

    Wire is very springy.  Although baling wire is much less springy 
than music wire or other hardened steels — both in the sense of 
elongating less before beginning plastic deformation, and in the sense 
of having lower moduli of elasticity — it is still capable of storing 
enormously more energy elastically per volume than other everyday 
materials like wood, fired clay, glass, paper, cardboard, or PET.  
(Rubber beats it, though.) 

    As a result, to an enormous extent, you can change the compliance 
of a wire structure by changing its geometry.  If you can use an 
arbitrarily large amount of wire, you can get an enormous but not 
arbitrarily large amount of compliance into a given space.  (If you can 
make the wire arbitrarily thin, you can get to an arbitrarily large 
amount of compliance.) 

    In the opposite direction, achieving high rigidity is more difficult.  
To some extent you can make progress with triangulated structures 
made of short struts, and wires as straight as you can get them;  but 



connecting wires together with high rigidity without welding is very 
difficult.  Twisting two wires together increases the thickness of a 
strut, but at the same time it turns each wire into a helix, which is less 
rigid. 

    When two or more wires are twisted together, they spring back 
when you stop twisting, loosening their grip on one another.  
Thereafter they are connected with a screw joint with substantial 
backlash.  I think it’s possible to take the backlash out;  the usual way 
is to preload two coaxial screw joints with a spring under axial 
compression, though tension works just as well.  I haven’t tried this 
with twisted wire yet, but I suspect it will be difficult. 

Wireframe design as graph traversal 

    Suppose you want to make a regular rhombic dodecahedron of a 
given size with a minimal amount of wire and no unnecessary cuts, 
outlining its edges in wire.  By Euler’s theorem about the bridges of 
Königsberg (pbuh), you cannot do it with no cuts and no repeated 
edge traversals;  for all that the rhombic dodecahedron has 6 vertices 
of degree 4, it also has 8 vertices of degree 3, and each of those vertices 
requires either the beginning or ending of a wire, or a double traversal 
of an edge, for example by twisting two wires together. 

    So, one way to do it is to build the shape from 4 wires, each starting 
and ending at one of the degree-3 vertices. 

    But suppose instead we duplicate one of the edges out of these 
degree-3 vertices, representing our double traversal of an edge.  This 
converts it into a degree-4 vertex, but the duplicated edge connects at 
the other end to one of the old degree-4 vertices, which now becomes 
a degree-5 vertex — so far we are no better off than before!  But that 
vertex is exclusively connected to (old) degree-3 vertices, so we can 
simply duplicate one of its edges to one of them, converting what was 
originally a degree-4 vertex into a degree-6 vertex, and eliminating 
the other degree-3 vertex. 

    Now we have only 6 odd-degree vertices.  By repeating this process 
twice more we can reduce it to 2, where the wire is free to begin and 
end, curled around the kink between two more edges;  and our 
wireframe is complete. 

    A similar process can be done with wireframes in general, but it 
clearly demonstrates the difficulties introduced by odd-degree 
vertices in hand-twisted baling wire.  If you are designing a wireframe 
de novo rather than using one Archimedes thought up, you may prefer 
to avoid odd vertices entirely.  For example, if you create a so-called 
“geodesic dome” by subdividing the triangles of an octahedron rather 
than the traditional icosahedron, you will have greater inequality in 
strut lengths, but no odd vertices.  The curvature will be provided 
ultimately by degree-4 vertices rather than degree-3 or degree-5 
vertices. 

    You might think that an alternative basis for subdivision may be 
the cuboctahedron, the polyhedral dual of the rhombic 
dodecahedron, since all its vertices are degree-4;  but, by the time you 
eliminate its square faces as an offense against omnitriangulation, you 
are back to having a subdivided octahedron.  It’s a distinction without 
a difference. 



Dimensional stability 

    Even baling wire is fairly dimensionally stable, due to steel’s 
temperature coefficient of expansion of some 12 ppm/°, compared to 
most other common materials.  Brick and glass (even soda-lime) 
exceed its dimensional stability, as does the lengthwise dimension of 
wood. 

Kinematic pairs and flexures 

    It’s easy enough to twist some baling wire into a tight helix that 
another piece of wire can fit through, forming a cylindrical joint.  But 
its translational motion is highly unsatisfactory, due to the usual 
problems of translational motion in kinematic pairs between rigid 
bodies, but exacerbated by the compliance of the wire.  As a revolute 
joint it works better, but it’s somewhat prone to unwanted 
translational motion.  I think it’s usually possible to overcome this, 
but it takes some doing. 

    In many cases, though, I think a flexure design may be more 
suitable for the characteristics of the wire.  Clothespin-like spring 
clips bent from a single piece of wire, with or without a helical 
flexural pivot, are well-known, and of course the paper clip is a 
flexural bent-wire machine ubiquitous throughout the modern 
world. 

Ends and burrs 

    Snipped wire ends have sharp burrs on them.  Deburring is an 
option.  With needlenose pliers, though, it is generally easier to curl 
them into a tiny circle so that these burrs are up against the edge of 
the wire a few millimeters away.  This is enough for many purposes. 

    Paperclips use smoothly curved radii to grab paper without tearing 
it, a potential problem despite their neatly deburred ends.
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Thermistors, resistance 
temperature detectors, and other 
thermal sensors
Kragen Javier Sitaker, 02020-10-14 (updated 02020-11-06) 
(12 minutes)

    How can you measure a wide range of temperatures without exotic 
materials?  High-temperature thermocouples and thermistors 
typically use things like platinum and iridium because they don't 
oxidize in air. 

    A cartridge heater, as I understand it, consists of a resistive heating 
element coiled up, packed into a solid insulator made of something 
like MgO or BeO, combining very high resistivity and high dielectric 
strength with high thermal conductivity;  all packed into a metal can 
to exclude oxygen and avoid abrasion of the relatively weak insulator 
(very weak in the case of MgO). 

    You can get fairly fine (≈100μm) copper wire by, among other 
things, untwisting Ethernet cables or some power cables.  Annealed 
copper's temperature coefficient of resistivity α is about 0.0039, 
comparable to platinum's.  You could maybe stick such a coil of fine 
copper wire inside some kind of insulator, such as quartz sand, and do 
a four-wire resistance measurement on it, using more copper wires 
twisted onto it. 

Exploring a candidate design:  millikelvins 
to 1000° should be attainable 

    To be concrete, 200 mm of 100-μm-diameter annealed copper wire 
should be about 439 mΩ at room temperature, about 610 mΩ at 120°, 
and about 2.15 Ω at 1020°, close to copper's melting point of 1085° 
(though probably α diverges a bit by then).  If you were to dump a 
1-amp pulse through it through two of the wires for 100 μs, then it 
should develop a voltage on the order of 400–2000 mV across the 
other two wires;  100 μs is plenty of time to measure the voltage and 
current waveforms even with a 44.1 ksps ADC, much less a 1 Msps 
ADC. 

    What error should we expect?  Let's suppose we can calibrate out 
the thickness of the thermistor, copper's nonlinear 
temperature-resistance curve, and the impurities in the particular 
copper wire we're using. 

    An input impedance of 1 MΩ on whatever voltage measurement 
thing you have connected to the other two wires would give you a 
parasitic offset current on the order of 1 μA, causing a relative error of 
10⁻⁶ or so on the temperature measurement.  You can get op-amps 
with much lower offset current than that;  they would provide a more 
precise measurement.  For example, TI's datasheet for the 
LM741 — not a spectacularly low-offset-current op-amp — says its 
offset current at 25° is typically 20 nA, worst-case 200 nA, and the 
whole bias current is typically 80 nA, worst-case 500 nA. 

https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity#Resistivity_and_conductivity_of_various_materials
https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity#Resistivity_and_conductivity_of_various_materials
https://en.wikipedia.org/wiki/Copper


    The current you measure on the current wires outside the device 
would differ from the current through the "thermistor" only due to 
parasitic capacitances around the thermistor;  if these were, say, 10 pF, 
then the current error would be around 10 pA, a relative error of 10⁻¹¹.  
For this error to rise to 10⁻⁶ you would need 1 μF, a totally 
unreasonable amount of parasitic capacitance. 

    Parasitic inductance is larger, but it's less of a problem.  Suppose 
you have 100 nH of parasitic inductance in each pair of leads, which 
you can reduce by keeping them as closely antiparallel as possible, and 
another 100 nH in the "thermistor" itself (which you could reduce by 
alternating winding directions, FWIW).  This would be very large;  
axial-lead TVS diodes are around 10 nH while surface-mount devices 
are closer to 4 nH.  And suppose the current ramps up to 1 A in 10 μs.  
This produces 10 mV of voltage drop on the current leads and 10 mV 
of inductive voltage in the thermistor superimposed on the actual 
desired voltage.  The first doesn't matter;  the second, without any 
further measures, would produce a temperature error of some +6° 
during that time.  Since the current through the voltage-sensing wires 
is sub-microamp, the error from their inductance is a million times 
smaller. 

    The reason this is less of a problem is, first, once the current finishes 
ringing, for the rest of the 100-μs pulse, the inductance introduces no 
error at all;  second, you're probably applying more voltage than that, 
so the ramp time is even faster;  third, if you take two or more 
samples of the voltage and current during the pulse, it's easy to 
decompose the results into an inductive component and a resistive 
component. 

    Heat is the biggest error.  1 amp through 439 mΩ is 439 mW, 
which is a lot.  In 100 μs, it's only 43.9 μJ, which is not a lot.  But this 
is a small wire;  at copper's density of 8.96 g/cc, it's only 14 mg of 
wire.  Still, at copper's molar heat capacity of 24.440 J/mol/K, which 
divided by its atomic weight of 63.546(3) g/mol gives 0.38460 J/g/K, 
that's a temperature rise of 8.2 millikelvins, 14 μV.  Crudely, this 
would introduce an error of about 3 × 10⁻⁵ in the measured voltage, 
about 30× larger than the other sources of error discussed above. 

    However, this heating error is zero at the beginning of the 
measurement process, and on short time scales it is proportional to the 
integral of squared current so far.  (Over slightly longer time scales 
the heat will start to leak away.) So I think it's probably relatively 
straightforward to cancel this source of error, at least down to the 
same 10⁻⁶ level as the offset current.  If your ADC is fast you might be 
able to just use a 3-μs current pulse. 

    The whole process of generating heat and conducting it away from 
the wire into the rest of the device can be fairly closely approximated 
as a linear time-invariant process, so we can estimate its impulse 
response function, then cancel it, probably down to a 10⁻⁸ level, 
particularly if you stimulate it with random current pulses rather than 
regularly spaced ones. 

    It might be hard to get such a low error in the measurement of 
voltages and currents, due to things like drift, noise, and the 
temperature coefficients of the measurement device.  Still, it's 
achievable, and even an 0.1% error in voltage would be an error of 

https://www.microsemi.com/document-portal/doc_download/14608-micronote-111-parasitic-lead-inductance-in-tvs
https://www.microsemi.com/document-portal/doc_download/14608-micronote-111-parasitic-lead-inductance-in-tvs


1 K, which is enough for most of my purposes. 

    All of this is really quite astonishing, and it makes me wonder if I 
am overlooking some kind of enormous source of error. 

    It's important that thermal expansion and contraction not change 
the resistance of the current path, for example by tightening and 
loosening connections.  For the voltage-measurement path, this is less 
important.  So probably the right way to make the device is by tying 
and/or soldering some voltage-measurement wires onto the relevant 
part of the current-measurement wire. 

Alternatives 

    Carbon, being a semiconductor, has a temperature coefficient about 
an order of magnitude higher, and it can also handle higher 
temperatures than the 1085° of copper.  You can get 
carbon-composition and carbon-film resistors already in sealed 
ceramic "cases", though generally those aren't built to handle more 
than about 300°.  (The paint on traditional axial-lead packages is 
organic and burns.  Maybe surface-mount packages are better.) 

    Steel wire and stainless steel wire have temperature coefficients 
similar to copper's, but can withstand higher temperatures without 
melting, typically up to 1400° or more, though they must be 
protected from oxygen at these temperatures.  They are better than 
copper for use in hot-wire cutters (at temperatures low enough that 
they don't burn) because they are stronger.  They're typically thicker, 
though;  stranded picture-hanging wire from an art store has the 
thinnest stainless-steel wire commonly encountered. 

    Tungsten wire is also similar, and comes much thinner in 
conveniently packaged US$1 quartz-halogen lightbulbs to protect it 
from oxygen, though perhaps not all of those envelopes will 
themselves withstand temperatures over 1000°.  (And these lightbulbs 
can do double duty as heating elements.) However, they don't 
normally have four wires.  I have such a 28W 220V lightbulb here;  at 
room temperature (20°?), this untrustworthy multimeter, which 
measures a short circuit as 10Ω, measures it as 147.3–148.3Ω, so maybe 
it's actually 138Ω or so.  In theory tungsten's α should be around 
.0045, according to the Wikipedia table above, so at 100° it ought to 
be about 188Ω and measure about 198Ω.  I boiled it for 20 minutes on 
the stove, miraculously without breaking it, and it measured 
185–186Ω.  But the multimeter had gone to measuring a short circuit 
as 3Ω, so maybe that's really about 183Ω.  Not the most spectacular 
agreement with theory but it's within measurement error.  Next day 
short-circuit reading is 0.3Ω and bulb reading is 141Ω.  (To work at 
28W at 220V it would need to increase to 1700Ω;  if it's at 1100° then 
its average α over that interval would need to triple, which is totally 
plausible.  Some 70W-rated halogens I bought measure 51Ω so it's 
even more plausible.) 

    Silicon carbide, commonly used for heating elements and abrasives, 
is also a semiconductor, and can withstand even higher temperatures 
(decomposing at 2830°), protecting itself against air up to about 1600° 
by oxidizing the surface to silica.  I don't know what its temperature 
coefficient of resistance is, but I imagine that it's negative and larger 
than copper's. 

http://aries.ucsd.edu/LIB/PROPS/PANOS/sic.html


    When using the same element to sense temperature and raise it, 
you can either measure the average temperature to which the element 
is heated (though not the peak, which is what you usually really 
want) by measuring the voltage and current while it's on, or the 
temperature of its surroundings by turning it off and letting it 
equilibrate. 

RTDs 

    This turns out to be what's standardly called a "resistance 
temperature detector" or "resistance thermometer", which is 
commonly used for high-precision temperature measurements, 
usually with a precision more like 60 millikelvin than 1 millikelvin.  
Copper is indeed a material commonly used for them, though usually 
not above 150° because of oxidation;  other common materials are 
nickel, despite its poorer coefficient, and platinum;  the most common 
configuration is Pt100:  platinum with 100Ω at 0°.  This higher 
resistance reduces the influence of lead-wire resistance. 

    I don't think copper is going to be able to reduce silica or magnesia, 
but if that turns out to be wrong, as a last resort you could pack it in 
copper oxide. 

    Wikipedia explains that above 660° your sensing filament tends to 
get contaminated with metal from the can it's in, so people usually use 
thermistors at higher temperatures despite their poorer precision and 
repeatability, typically having errors on the order of 2°.  Because 
RTDs typically have microscopically thin wires flapping around, like 
lightbulbs, they tend to be less durable than thermocouples.  The 
alternative to flapping around is to use a "wire-wound RTD" where 
the wire is wrapped around an insulating winding core, but the 
winding core generally has a different thermal coefficient of 
expansion from the metal, which causes strain in the metal, which 
introduces at least nonlinearity and maybe nonrepeatability. 

    The problem with picking up metal from the can seems like it 
could be reduced by using a can made of fused quartz or sapphire or 
something, or using carborundum and periodically burning off any 
metal that has deposited. 

    Many thanks to Greg Sittler for the very informative discussion!
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Atkinson differential blower
Kragen Javier Sitaker, 02020-10-14 (updated 02020-12-31) 
(10 minutes)

    The four-stroke Atkinson differential engine uses a clever 
arrangement of linkages to move its two pistons in a single cylinder, 
out of phase with one another.  It can use reed valves, like a 
two-stroke engine;  both the intake valve and the exhaust valve are at 
the same end of the cylinder. 

The orthodox Atkinson cycle 

    The sequence is as follows.  Suppose the intake and exhaust valve 
are at the right end of the cylinder, and the pistons are close together, 
with the intake and exhaust valve between them.  First the pumping 
piston, on the left moves to the left, opening the intake valve and 
sucking air and fuel into the cylinder.  Then the working piston, on 
the right, moves to the left, covering the valves and compressing the 
fuel-air mix against the now-stationary pumping piston.  Then the 
spark fires, and the working piston moves to the right, providing the 
power stroke.  Finally the working piston passes the exhaust valve, the 
hot gas escapes through it, and the pumping piston follows it to the 
right, preparing to pump in the new fuel-air mixture. 

Quiet piston blowers 

    On ##electronics cloudevil was talking about piston-powered 
blowers, displacing multiple liters of air per stroke, suggesting that 
they could be much quieter than traditional types of blowers, though 
of course they’ll still produce turbulent airflow.  But such a blower 
will fail to be quiet if it’s using poppet valves or reed valves, since 
those produce an impulse every time they open and close. 

    You could imagine using a round, triangular, or teardrop-shaped 
port or hole in the side of a cylinder as a valve;  when the piston passes 
over it, it opens or closes, but not impulsively.  But this has two 
problems. 

    First, in the Atkinson engine design, the intake and exhaust valves 
are at the same end of the cylinder, so if there’s no reed valve or 
anything, they’ll be open at the same time.  This is no way to make an 
air pump. 

    Second, if there’s a pressure difference across the valve as it opens, 
the airflow through it will still start suddenly and with a lot of 
turbulence, so it will be noisy, though maybe less so than a reed valve. 

    Both of these problems can be solved by moving the valve openings 
to opposite ends of the cylinder and redesigning the cycle for 
pumping without such events. 

    First, the left cylinder is at the left end of the cylinder, just to the 
left of the intake port, and the right cylinder is to the right of the 
intake port.  Second, the right cylinder moves to the right, almost to 
the exhaust port, at the right end of the cylinder;  in this way air is 



sucked into the cylinder from the intake port.  Third, both cylinders 
move in unison to the right, first closing the intake port and then 
opening the exhaust port.  Fourth, the right cylinder stops, while the 
left cylinder continues moving to the right, expelling the air through 
the exhaust port.  Fifth, both cylinders move in unison, close together, 
back to the left. 

    These movements can easily be scripted by cams to minimize the 
bandwidth of the pistons’ movements, thus eliminating the direct 
production of sound above, say, four times their movement 
frequency, which might be 2 Hz.  Then only turbulence and surface 
roughness are left as noise sources. 

    Why four times?  If the pistons moved back and forth in unison a 
single time, or with a simple difference in phase, they could move in a 
perfect sinusoid, thus generating no sound from their sheer movement 
at frequencies higher than their movement frequency.  But the 
movement I described above is not simply sinusoidal, so it would 
involve some harmonics.  8 Hz is inaudible, but 20 Hz or more might 
be audible and highly annoying.  Of course air turbulence and surface 
roughness will generate higher-frequency noise no matter what the 
cylinders’ movement. 

    You might be able to find a lower-displacement purely-sinusoidal 
movement pattern with the right characteristics — most crucially that 
the cylinders be closer together when moving leftwards than when 
moving rightwards, and the same distance apart when the intake port 
closes and when the exhaust port opens.  If a single sinusoid can’t do 
the job, you might be able to find something that only uses two or 
three harmonics rather than four, and thus enable higher operating 
frequencies while remaining purely infrasonic, maybe up to 5 Hz or 
10 Hz.  But I’m confident that with four harmonics you can do it. 

Engines 

    You can take the same approach and apply it to the problem of 
making an engine, too, in the sense of a device that converts heat 
energy into mechanical energy. 

    The most direct approach is to feed steam or pressurized air into the 
intake;  then the suction stroke becomes the power stroke, but you 
still have a sharp noise when the pressurized air gets over to the outlet 
port, and that noise of course represents wasted energy.  Similarly, 
when the small space between pistons moves over the intake port, the 
pressure in it is the exhaust pressure, which is low.  If you revise the 
cycle somewhat so that the space between pistons is zero when they 
open the input port, then continues expanding after the input port is 
closed, you can get all the adiabatic energy in the input working fluid.  
Alternatively, rather than making the space zero, it could simply be 
smaller than its size when the exhaust port closed by an amount 
sufficient to bring its pressure up to the intake pressure. 

    However, if you want it to be a standard four-stroke 
internal-combustion engine, you need the following cycle: 

• Intake:  pistons separate, pulling in some fuel-air mixture from the 
intake port. 
• Close intake:  pistons move in unison to the right, closing the intake 



port. 
• Compression:  pistons approach one another, compressing fuel-air 
mixture. 
• Expansion:  spark fires, pistons separate, allowing expansion. 
• Open exhaust:  pistons move in unison to the right, opening the 
exhaust port. 
• Exhaust:  left piston continues moving to the right, reducing 
volume of chamber and expelling exhaust gases. 
• Close exhaust:  pistons move in unison to the left, closing exhaust 
port. 
• Return:  pistons move in unison to the intake port.  

    This requires some fancy camwork;  the followers pressing on the 
cams during the expansion stroke is what drives the engine forward.  
Alternatively it may be possible to design a linkage that does all this, 
which may be beneficial in terms of being easier to adjust. 

    Adjustment of the cycle might be useful for a variety of reasons: 

• Exhaust gas recirculation:  by including some exhaust gas from the 
previous stroke in the mix, you can reduce pollution by lowering 
combustion temperatures and improve engine efficiency.  In this 
engine you can simply not bring the pistons all the way together, so 
some exhaust remains trapped between them when they return to the 
intake. 
• Atkinson cycle:  by using a greater expansion ratio than compression 
ratio — that is, by compressing the gas less in step #3 than the 
combustion products expand in step #4 — you can improve energy 
efficiency.  Any pressure difference remaining between combustion 
products and the outside world when the exhaust port opens in step 
#5 represents a waste of energy and a source of noise. 
• Anti-Atkinson cycle:  by using a greater compression ratio than 
expansion ratio, you can get more power at the expense of lower 
efficiency, more noise, and less complete combustion. 
• Throttling:  by increasing or reducing the amount of fuel-air mix 
brought into the cylinder on each stroke, we can increase or reduce 
the engine’s power output further.  This eliminates the need for a 
butterfly or other throttle valve and the associated vacuum losses.  

    A second cylinder configured as described above can be used to 
harvest further energy from the exhaust, in the manner of 
double-expansion or triple-expansion steam-engines;  this will also 
reduce noise further, as the second cylinder serves as a sort of muffler 
for the first.  (You could also use such an engine as a muffler for a 
conventional internal-combustion piston engine, surely not a novel 
idea, since triple-expansion steam-engines go back generations.) 

    An engine with two or three cylinders cascaded in this way can be 
fitted with valves to redirect the flows of gases to answer demands 
that change from moment to moment:  now a triple-expansion 
engine with a single combustion chamber, one cylinder feeding into 
the next, for greater efficiency, now a three-cylinder engine with all 
three cylinders burning fresh fuel for greater power. 

    By virtue of moving the expanding gas chamber down the cylinder 
as it expands, the loss of heat to the cylinder walls is reduced — while 
this benefits an internal-combustion engine less than a steam-engine, 



it may pose difficulties in keeping the hotter parts of those walls 
lubricated. 

    As the space between the pistons can be reduced indeed to zero, 
requiring no accommodation for the opening of valves, the 
spark-plug is redundant in these classes of engines;  it can be designed 
to ignite purely by adiabatic heating as in Diesel’s engine.
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Inspiration
Kragen Javier Sitaker, 02020-10-15 (3 minutes)
I've seen the kingdoms blow like ashes in the winds of change, yeah, but the power 
of truth is the fuel for the flame.  So the darker the ages get, there's a stronger 
beacon yet.  ...  If the world is night — shine my life like a light.  

    — Indigo Girls, "Let It Be Me" 
When your vision stays clear in the face of your fear;  when you see turning out the 
lights, which is their only power, when we stand like spotlights in a mighty 
tower — all for one and one for all!  Then we sing the common call.  

    — (same) 
Everything that we call Invention, discovery in the higher sense, is the ultimate 
outcome of the original perception of some truth, which, long perfected in quiet, 
leads at length suddenly to and unexpectedly to productive recognition.  

    — Goethe, quoted by Reuleaux in the introduction to Kinematics 
of Machinery, as translated by Alexander Blackie William Kennedy 
Help, I'm a rock!  Somebody!  Please!  Help, I'm a rock!  

    — The Mothers of Invention 
Thank you so much for your warm hospitality this evening.  We are so grateful to 
play for you.  Thank you so much, friends;  we are so privileged to be able to 
gather in moments like this when so much of the world is plunged in darkness and 
chaos.  

    — Leonard Cohen, at a concert in London 2008, before playing 
Anthem 
Don't dwell on what has passed away.  ...  Ring the bells that still can ring;  forget 
your perfect offering.  There is a crack in everything.  That's how the light gets in.  

    — Leonard Cohen, Anthem 
Staring at the blank page before you, open up the dirty window, let the sun 
illuminate the words that you could not find;  reaching, so close you can almost 
taste it — release your inhibitions!  Feel the rain on your skin;  no one else can feel it 
for you, only you can let it in.  No one else, no one else can speak the words on 
your lips.  Drench yourself in words unspoken, live your life with arms wide open;  
today is where your book begins.  The rest is still unwritten!  

    — Natasha Bedingfield, Unwritten 
Wandering Star, for whom it is reserved the blackness, the darkness, forever.  ...  
And the masks that the monsters wear to feed upon their prey.  ...  Always doubled 
up inside, taunted, cruel.  

    — Portishead, Wandering Star
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Oscillating flexion
Kragen Javier Sitaker, 02020-10-15 (updated 02020-10-16) 
(11 minutes)

    A single perfectly rigid reciprocating rod transmits power only 
intermittently;  near the moment between its movement in one 
direction and the movement in another, the power it transmits falls to 
zero, unless it experience an infinite acceleration in that movement, 
and thus too an infinite force, if its mass not be infinitesimal.  This 
must happen twice per cycle. 

    Two such rods can transmit power continuously by virtue of being 
out of phase.  If the resistance against which they push and pull be 
variable, they can even transmit constant power;  this is the case for 
example if they are each in simple harmonic motion in quadrature 
and connected to equal idealized dashpots;  for the power transmitted 
by one varies as k sin² xt, the other as k cos² xt = k(1 - sin² xt). 

    A more interesting case is where two pushrods push and pull a 
crankshaft rotating at a constant speed:  a pushrod whose 
displacement at time t is y sin xt, whose velocity is thus xy cos xt, has a 
lever arm for its crank of k cos xt.  If its force should vary in 
proportion, z cos xt, then the power it transmits will be xyz cos² xt, 
just as in the dashpot case, and summing with a pushrod in quadrature 
provides constant power transmission. 

    Now we can see also that the torque on the crankshaft from the 
first pushrod is kz cos² xt, and so the pushrod in quadrature brings us 
also to constant torque. 

    If we want to transmit power some distance, pushrods are 
impractical because they will buckle unless supported.  If we use four 
cranks instead of two, we can substitute four longitudinally oscillating 
cables rather than two pushrods, transmitting power only through 
two of the cables at any given moment, and clearly getting the same 
constant power transmission. 

    This is temptingly analogous to two-phase AC power transmission, 
strongly suggesting the possibility of improving efficiency by using 
three cables oscillating at phase angles of 0°, 120°, and 240°, rather 
than four quadrature angles.  The situation is not totally analogous;  if 
the tension on each cable varies in proportion to its velocity as before, 
the power transmitted by a cable at phase angle φ is ReLU(sin xt + φ
)².  I think these still sum up to a constant, but if not, varying the 
tension according to some different curve can clearly provide constant 
power transmission over three cables.  I’m not entirely sure that this 
would also provide constant torque, but actually I don’t care. 

    That’s because the reason I think this is interesting is for 
continuously transmitting power between parts of a flexure;  
flexagons aside, most flexures can’t manage continuous rotation, so 
the traditional forms of continuous mechanical power transmission 
such as belts, shafts, and gears are unhelpful.  Cable transmission also 
has the generally-noted property of fitting conveniently into smaller 
spaces. 

    Such oscillating cable transmission might use radically 



non-sinusoidal force and displacement profiles — for example, think 
of four cables, of which at any given time three are under high 
tension transmitting power, while the fourth is under low tension but 
higher velocity, being returned to its starting position.  This sort of 
thing can, I think, increase the material efficiency of such power 
transmission systems. 

    A cable tensioned at 2 GPa traveling at 1 m/s is transmitting 2 
gigawatts per square meter, which is 2 kilowatts per square 
millimeter.  If the cable can only be safely tensioned to 200 MPa, it 
can only transmit 200 W/mm² at this speed.  In theory you could 
increase the cable speed arbitrarily — for example, your wimpy 200 
MPa cable would transmit 4 MW/mm² at 20 km/s — but, aside from 
concerns about sonic booms and friction heating, the process of 
reversing the cable’s direction of movement involves accelerating it, 
which also requires force, and that force adds to the cable’s tension. 

    However, for cable lengths short compared to the free breaking 
length of the cable material, this acceleration can reach many gees 
before the load on a cable during the return stroke equals the load 
during the power delivery stroke.  Indeed, the number of gees is 
precisely the ratio of the cable length to the free breaking length.  So, 
for example, gel-spun UHMWPE at 3 GPa and 0.96 g/cc has a free 
breaking length of 319 km, so a 100-mm-long cable can be accelerated 
by pulling on one end at about 31 million gees before it breaks. 

    Return strokes faster than some 10–100 times the acoustic length of 
the cable will result in waves noticeably propagating back and forth in 
the cable, unless it’s properly acoustically terminated to prevent such 
reflections.  This is precisely analogous to the phenomenon in RF 
electronics with unterminated transmission lines, but I don’t know of 
any electrical power transmission scheme for which it is essential to 
keep the mean drift velocity of the charge carriers in the cable to zero, 
so the analogy only goes so far. 

    To reduce the total displacement of the cable and thus permit 
higher instantaneous velocities and power densities, it might be 
desirable to transmit power at much higher acoustic frequencies than 
this, such that indeed many wavelengths of the tension wave fit 
within the cable.  Taking this step renders the power transmission 
capability of the cable independent of its length. 

    As one point among many in this possible design space, consider 
four parallel cables oscillating in simple sinusoidal motion in 
quadrature, carved from ASTM A36 steel, each 100 μm square.  
According to Machine Teeth (p.  247) A36 yields at 250 MPa, and its 
Young’s modulus is 200 GPa.  It weighs 7.9 g/cc, so if they’re 200 
mm long, each weighs about 16 mg.  Suppose they’re oscillating 
longitudinally at 3 kHz by a distance of 100 μm.  Their peak speed is 
only 1.9 m/s, but their peak acceleration is 36 km/s/s, 3600 gees, 
which requires about 570 mN peak acceleration force, working out to 
57 MPa, comfortably below A36’s yield stress.  Such a stress will 
elongate the wire by 0.03%.  If the one or two wires actively 
transmitting power at any given time are loaded sinusoidally up to 125 
MPa, the peak power transmitted on a wire is 2.4 watts, but about 1.1 
W of that is “returned” during the return stroke for the wire.  I think 
this means that the total net power is consistently about 1.3 watts for 



the whole assemblage. 

    This is a promising but not outstanding amount of power to 
transmit through something the thickness of a beard hair.  How can 
we increase it? 

    If we increase the distance of displacement, holding constant the 
frequency, then we linearly increase the velocity and thus the power, 
at the expense of linearly increasing the acceleration.  If we increase 
the frequency instead, while holding the displacement constant, then 
we linearly increase the velocity but quadratically increase the 
acceleration. 

    If we use a (nonexistent) material of the same physical 
characteristics except that it had a lower density, or if we were 
transmitting over a shorter distance, it would reduce the force 
required to accelerate the wires;  we could trade that for a reciprocally 
higher acceleration.  If instead we used a material with the same 
physical characteristics except a higher yield stress, such as a harder 
steel, then we could proportionally increase both the acceleration and 
the load force. 

    The totally free way to improve the system seems to be decrease 
the frequency linearly while increasing the distance quadratically, thus 
holding the acceleration constant while increasing the velocity and 
thus the power reciprocally with the frequency.  So maybe we could 
increase the total displacement to 10 mm while decreasing the 
frequency to 300 Hz, increasing the power to about 13 watts, a much 
more respectable power level.  Further development in this direction 
would seem to be dependent on very precise motion control to avoid 
having to space the wires further apart. 

    If we drop the density by a factor of 8 while multiplying the yield 
stress by 10, then the first would allow us to increase the frequency 
and power further by a factor of 2.8 (increasing the acceleration by 8), 
and the second would allow us to increase the frequency by a factor of 
3.2, but also the tension by a factor of 3.2, increasing the power by a 
factor of 10.  I think this means you could transmit 360 watts of 
mechanical power through your new hair-thin gel-spun UHMWPE 
cable, at least for 20 mm. 

    (In practice I doubt this could be sustained continuously;  the 
imperfectly elastic nature of any real material results in some heat 
dissipation from stretching and relaxing it, and UHMWPE is, I 
suspect, worse in this aspect than steels.  Moreover it melts at a very 
low temperature;  tens of milliwatts of such dissipation would likely 
be fatal.) 

    With the acoustic traveling wave mode of energy transmission 
mentioned earlier, the maximum power per unit area is the energy’s 
elastic energy density (half its yield stress multiplied by its yield strain) 
multiplied by the speed of sound in the substance. 

    Consider how the example above compared to electrical power 
transmission through an electrical cable of comparable size.  If you 
enclosed three 40 AWG solid copper wires, each 80 microns in 
diameter, in 20 microns of Kynar insulation, you would have a 
similar-sized cable.  You could run three-phase AC power over it at 
whatever frequency was convenient;  your phase-to-phase voltage 
would be limited by the breakdown voltage of 40 μm of Kynar, while 

https://www.ipolymer.com/pdf/PVDF.pdf


your RMS current would be limited by the resistance per meter and 
heat dissipation per meter of the cable at Kynar’s maximum service 
temperature of 149°.  You can decrease the radius of the conductor 
and increase the thickness of the Kynar by an equal amount, thus 
increasing the voltage linearly but also increasing resistance as the 
square of the remaining wire. 

    The dielectric strength is supposedly “1700 V/mil” for a short 
period of time;  if we figure that’s 1000 V/milli-inch in practice, 
that’s about 40 volts per micron, so 1600 volts peak, 1100 VAC RMS 
phase-to-phase.  40-gauge wire is rated for 90 milliamps over short 
runs.  I think this ends up at a few hundred watts, too, so it’s the same 
ballpark.
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Reuleaux
Kragen Javier Sitaker, 02020-10-15 (updated 02020-10-18) 
(19 minutes)

    I’m reading Reuleaux’s 1874 book on machine kinematics, or rather 
its English translation, and I thought I’d make some notes.  Reuleaux 
formulated kinematics as it is studied today, in terms of lower and 
higher kinematic pairs with varying degrees of freedom, such as 
revolute, prismatic, and cylindrical joints. 

    This is one of the rare cases where the Google scan is of less bad 
quality than the Archive’s own scan;  kinematicsofmach00reulrich.pdf 
has the left side of many pages cut off, while so far Google’s 
kinematicsmachi01reulgoog.pdf seems okay.  As always it is lower in 
resolution and color depth, but so far this seems to be an 
improvement, accelerating as it does the rendering.  It seems to lack 
OCR text, though, while the Archive’s own scan has somewhat 
passable OCR.  The OCR is still not good enough to copy and paste, 
but sometimes it may be faster to edit the results than to retype from 
scratch. 

    The Archive’s scan also does a less appallingly bad job of capturing 
the figures, though it still leaves something to be desired.  (Compare 
p. 31, for example;  49 of 646 in the Archive’s scan, 52 of 651 in 
Google’s.) 

    Mupdf in particular handles the total absence of OCR text rather 
disappointingly when you initiate a search, freezing for a few minutes 
before it comes to the end of the document. 

    Many aspects of the typography and usage of this work deviate 
from modern standards, but none more glaringly than its use of 
increased letter spacing for emphasis, where modern practice, or even 
common 19th-century English practice, would use italic.  This was of 
course necessary in German blackletter typesetting, which entirely 
lacks italic, but I suspect that even the original German version of this 
work was set in modern humanist letters rather than blackletter.  
(Perhaps I should go back and check.) I often fail to notice this on the 
first reading of a passage. 

    Where I’ve quoted passages using this form of emphasis below, I’ve 
replaced it with italics. 

    The typography does use italics to distinguish mathematical 
variables and references to points in figures. 

Introduction 

    It’s interesting that Reuleaux traces the development of kinematics 
though a whole series of 19th-century researchers, including (to my 
surprise) Ampère.  I had sort of thought that the systematic study of 
kinematics had sort of been stuck at the level of Archimedes’ “simple 
machines” still taught in the vulgar elementary schools:  the inclined 
plane, the screw, the lever, the wheel and axle, the pulley, and the 
wedge.  But indeed Reuleaux outlines the development of the ideas 
by Galileo, by Hâchette, by Borgnis, by Lanz, by Monge, by Willis, 
by Ampère, by Newcomen, by Watt, and by a dozen others, prior to 



himself.  Justifiably, though he characterizes all their theories as 
“wrecked”. 

    It’s intriguing to see the etymology and sense development of 
“automatic” and “automation”: 
Moreover, as a further fruit of this uncertainty there has been an attempt to 
construct yet another special study which demands mention.  This is the so-called 
Automatics, the study of the realization in mechanism of motions either supposed or 
given by mathematical expressions.  For this further attempt at separation we have 
to thank the engineer E.  Stamm, who wishes again to divide his subject into pure 
and applied parts, as fully described in his Essai sur l’automatique pure, 1863.  

    Of course the term “automaton” is much older. 

    When Reuleaux speaks of “the real end before us — the progressive 
development of the machine,” it is difficult to avoid being reminded 
of Forster’s The Machine Stops from a few years later. 

    The modern development of flexure design methods is a 
disquieting echo of the disjointed and “wrecked” development of 
mechanisms of which Reuleaux complains;  the stamp-collecting 
botany of the Handbook of Compliant Mechanisms closely resembles 
what he deplores in Monge’s and Lanz’s work.  This is startling since, 
of course, we have a fairly complete theory of elastic deformation as 
well as well-developed practical numerical methods of computation.  
But in Reuleaux’s time, the analogous theory of rigid motion was 
similarly well-developed;  you can design a planar four-bar linkage to 
tween between three predetermined positions with compass and 
straightedge, and the whole lovely theory of quaternions commonly 
used for rigid motion in modern games engines predated this book by 
decades.  As Reuleaux laments: 
Here again is a point from which the weakness of the method hitherto employed 
can be surveyed at a glance.  Its difference from the ideal method is not that it 
employs the inductive instead of the deductive method ;  that would indeed be no 
advantage, but it might still be defensible.  No, it has been entirely unmethodical.  
It has chosen no fixed method of investigation, or rather, it has not found any in 
spite of zealous search...  

    Rhetorically, this Introduction is a masterpiece;  Reuleaux promises 
the world to his diligent student, while warning them of the difficulty 
of their quest and deprecating their existing knowledge: 
We often do not know ourselves how closely wedged-in our ideas are by the 
boundaries which education and study have drawn around us.  ...  all these pile up 
mighty hindrances.  I cannot therefore shorten the way, although the truths to 
which it leads are of great simplicity.  ...  to conclude in the words of Göthe, ” 
What is not understood is not possessed.”  

    It’s interesting to note that in Reuleaux’s time it was not yet known 
how recent the introduction of the wheel was, due to the still 
primitive state of the archaeological science;  he claims “carriages” are 
known from the oldest times, while in fact they seem to postdate even 
such recent artifacts as the Great Pyramid. 

    His account here of Watt’s parallel motion is sticking with me.  I 
keep thinking about it. 

General Outlines 

Nature of the Machine-Problem 

    I just can’t get over the evocative nature of the prose, and the sharp 



contrast with the uniform oatmeal mediocrity of modern academic 
writing: 
So soon as the force Q begins to act it calls forth in the interior of the wheel, the 
shaft and the supports, internal molecular forces, opposite in direction and exactly 
equal to it.  ...  there are opposed to all external forces others concealed in the 
interior of the bodies forming the system,...  

    after which he proceeds to quote a verse from Schiller (!). 

    Reuleaux actually comments a bit on the question of flexures here:  
“In actual machines...we use however only those materials 
which...alter their form under the action of external forces very little, 
so little that the corresponding variations from the original form may 
be neglected.” 

    I enjoy his description of the strength or rigidity of bodies as being 
“latent forces”, in contrast to actually existing “sensible forces”. 

    His definition of a machine is thought-provoking, as much for the 
aspects it omits (material handling, information, control, energy, 
force, thermodynamics, friction, efficiency, metrology, electricity, 
programmability, strength, tolerances, troubleshooting, wear, 
reliability, cost, clamping) as for what it includes: 
A machine is a combination of resistant bodies so arranged that by their means the 
mechanical forces of nature can be compelled to do work accompanied by certain determinate 
motions.  

    It’s a damned sight better than “a combination of simple 
machines”, though, and it doesn’t exclude the use of kinetic energy or 
hydraulics as many inferior definitions have. 

    It’s interesting that this more or less explicitly excludes the boilers 
and condensers of the steam-engines Reuleaux has given such 
prominent placement earlier. 

The Science of Machines 

    Here we see again the primacy Reuleaux grants to position and 
motion, but also what a high priority he places on forces.  So far 
there’s no mention of compliance and backlash except as an enemy;  
nothing about springs or preloading. 

General Solution of the Machine-Problem 

    Even with the limited definition Reuleaux has given, this section 
heading seems amazingly ambitious. 
The moving bodies are prevented, by bodies in contact with them [emphasis in 
original]...  this contact ...  must take place continually, ...  

    This seems to exclude backlash and clearances entirely! 

    I have no idea what a “plummer block” is. 

    This is the section where he introduces the kinematic pair. 
    It’s fascinating that in is Figure 4, the first kinematic pair he 
introduces (before he even introduces the term) is not any of the basic 
ones, but rather a block sliding in an irregularly curved plane channel 
as the channel constrains it to rotate unevenly.  Then on the next page 
his figures 5 and 6 are classic screw and prismatic joint. 

    Aha, and after Figure 9 he explains the meaning of “higher 
kinematic pair”: 
Accordingly the reciprocal combinations of two elements gives us again a pair of 



elements, which may differ from either of the single pairs of which it is composed.  

    (And, as with his Figure 4 example of the weird sliding block, his 
first explicit example of a higher kinematic pair is an arbitrary weird 
thing, rather than something well-known.) 

    I really appreciate that Reuleaux is giving one or two examples first 
and only then giving definitions. 

    Also, he defines kinematic chain here, far more clearly than I’d heard 
it defined before.  So I’m finding this reading very rewarding so far. 

    I’d never thought of this before, but there’s an interesting analogy 
between how changing the position of one element in a closed 
kinematic chain (a term I’m not sure I understand completely yet) 
alters the position of all the others, and how changing the current or 
voltage of one element such as a capacitor or inductor in an electrical 
circuit alters the current and voltage of all the others.  In both cases 
you can’t analyze a single component in isolation;  to see the system 
non-wholistically you must find other elements into which to 
decompose it, such as eigenstates or linearly superimposed circuits.  
But I don’t know what those components could be for either a closed 
kinematic chain or a nonlinear electrical circuit.  (And I don’t think 
anything similar to the linear decomposition of circuits is known for 
kinematic chains, or things like the linkage-synthesis papers I’ve been 
reading would be using it.) 

    The aside “a cylindrical pin fitting a corresponding eye, the axes of 
all being parallel” immediately calls to mind Hoberman spheres and 
the like;  if the axes instead all intersect at a point, you get the same 
sort of linkage, but thus constrained to a sphere rather than a plane.  
And of course there are other relationships that can provide more 
interesting movements.  (Hoberman’s insight was similar but had to 
do with lines drawn transversely through the centers of multiple such 
joints.) 

    Aha, and here we have another key definition of Reuleauxian 
kinematics: 
A closed kinematic chain, of which one link is thus made stationary, is called a mechanism.  

    At this point it’s worth comparing 19th-century European 
automata with 19th-century Japanese automata;  while both treat the 
outward form and appearance of the mechanism as being as important 
as its position, work, and movement, the Japanese automata 
extensively used cable drive, including on uneven cams, while the 
European automata like Jaquet-Droz’s Writer used exclusively rigid 
bodies.  Reuleaux is seeking to embrace not only pulleys and belts in 
his analysis but even hydraulic machines, but he has barely mentioned 
anything flexible or hydraulic yet, despite the world-shaking 
importance of the mechanization of textile manufacture in the late 
18th and early 19th century, in part by Vaucanson himself. 

    So we can see in some sense why Babbage’s work was so 
unsuccessful and why the Writer would not be equaled for some 150 
years, roughly until Bush’s Differential Analyzer.  To keep the world 
of machinery intellectually manageable, its paradigm deliberately 
excluded consideration of the aspects crucial to such achievements.  In 
Reuleaux so far I see not even the smallest hint of the approach that 
animated Zuse, Shannon, and Turing. 



    Here we see boldface in the text for a definition: 
The effort thus applied performs mechanical work which is accompanied by determinate 
motions;  the whole, that is to say, is a Machine.  

    We also see the first mention of clocks, though nothing about the 
questions of metrology, calibration, and cancelation of errors that had 
enabled the conquest of Latitude with machinery a century before, as 
well as the first mention of balances (in the sense of a weighing-scale);  
though he does promise to “consider these questions systematically” 
later. 

    One of the words whose usage has apparently changed significantly 
since this book was translated is “empirically”, which seems here to 
mean “by trial and error”. 

    He does finally mention “the spinning-machine” in this section, 
and the sewing-machine.  The thread and fabric of the 
sewing-machine seems to fit very poorly into Reuleaux’s 
theory — the whole machine exists to put them into certain regular 
motions with respect to one another, but their motion is neither rigid 
nor determinate, and substantial parts of the machine exist purely in 
order to modulate the friction and tension on them. 

Phoronomic Propositions 

    “Phoronomic” is explained in the first section here;  it means 
something like “concerning the study of the geometric motions of 
rigid bodies”. 

Preliminary remarks 

    Phoronomy, etc. 

Relative motion in a plane 

    Newtonian relativity. 

    Relative motion of two points is considered only in terms of their 
distances, thus omitting rotation — rotational orientation is not 
considered proper to a point.  Motion of a point relative to a plane it’s 
moving in requires only its distances from two points, not three, 
permitting a reflection ambiguity — perhaps chiral orientation is not 
considered proper to a plane. 

    Interestingly, it seems that when he considers motion of a line 
relative to another line, he does consider sliding motion along the line 
to be motion. 

Temporary Centre;  the Central Polygon 

    It’s surprising that he considers “the Phoronomics of 
point-systems” to be “exhausted” by propositions in two dimensions 
only! 

    This idea of a “temporary center” of rotation, for any arbitrary 
rotation, is very interesting.  It reminds me of the 
compass-and-straightedge four-bar-linkage construction technique. 

    “Open polygons” occur frequently in computer graphics but they 
are usually called something else. 

    I don’t understand this “reciprocal polygon” yet.  Why exactly 
must it exist, and be reciprocal? 



§ 7.  Centroids;  Cylindric Rolling 

    Oh, this makes the reciprocal polygon thing a bit clearer, though 
it’s still not clear why it must exist.  Boy, this sure is a different 
meaning of “centroid” than the one I’m familiar with, though not 
completely unconnected — the centroid of a uniform shape is its center 
of gravity, which is the center on which it turns when it has only 
angular momentum. 

    All this terminology of “common, curtate, and prolate trochoids” is 
new to me, and I think I’ll have to look it up. 

    When he says, “All relative motions of con-plane figures may be 
considered to be rolling motions”, he seems to be omitting the possibility 
of pure translational motion, which is the limit of rolling about an 
infinitely distant center. 

    It’s nice that he is getting into three-dimensional objects moving 
now, but I can’t help but wonder if there are possibilities of 
three-dimensional motion other than the possibilities arising from 
extending two-dimensional motions prismatically, although Reuleaux 
claims there aren’t.  For example, motions where the instantaneous 
axis of rotation twists from one moment to the next.  And what is the 
instantaneous axis of rotation of a common screw? 

    It is now apparent that the reciprocal polygons of which Reuleaux 
was speaking may have quite different shapes. 

§ 8.  The Determination of Centroids 

    The construction he gives for finding the second point M₁ in Figure 
19 (p.  66) escapes me at the moment.  I will have to come back to 
this. 

    Oh.  Because M₁ is notionally part of the same rigid body as P and 
Q, its distances to them are not changed by rolling;  at the given point 
in the movement has been brough into coincidence with O*₁, so those 
distances are the distances from the moved positions P₁ and Q*₁. 
    Figure 20 in the Google scan (p.  67, 88/651) is partly illegible;  it is 
identical to Figure 10.  In the Archive’s scan it is perfectly legible.  
Incidentally, I think this page shows that the scans were taken from 
two separate physical copies, as the Archive’s scan is stamped, “Reese 
Library of the University of California”. 

    Aha, and here he confronts the question of pure translational 
motion, using the device of “infinitely distant points”, which seems 
pretty kosher, although not all this geometry so far is projectively 
invariant.  (Or is it?) 

    Figure 22 is blowing my tiny fucking mind. 

§ 9.  Reduction of Centroids 

    I am totally not understanding this.  I thought the motion uniquely 
determined the two centroid curves?  But now we can invent more 
centroids for the same motion? 

    Here he confronts the question of parallel motion in all of its 
complexity. 

    Hmm, there’s a clue about these “secondary centroids” in the part 
where he talks about gear teeth (though he never says “gear”, always 
“spur-wheel”). 



§ 10.  Rotation about a Point 

    Now Reuleaux seems to be taking up the question that had 
worried me earlier, that of motions in space that are not merely the 
extrusion of motions in a plane. 

§ 11.  Conic Rolling 

    Whoa, trippy, dude. 

§ 12.  Most general Form of the Relative Motion of 
Rigid Bodies 

    Okay, great, now we’re getting into screwing motions? 

    Oh wow. 

§ 13.  Twisting and Rolling of Ruled Surfaces 

    Holy shit. 

    Hmm, he has a hypoid drive here, although he doesn’t call it that. 

Pairs of Elements 

§ 14.  Different Forms of Pairs of Elements
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Intervals and gradients
Kragen Javier Sitaker, 02020-10-16 (4 minutes)

    Darius Bacon linked me to 
https://twitter.com/paniq/status/1317063053339406336: 

    @paniq@mastodon.social / L.  �� .  Ritter / @paniq: 
apparently these good people solved the explosion in steps when the ray gets close 
to the surface during SDF sphere marching (thanks to @Atrix256 ) 
https://diglib.eg.org/handle/10.1111/cgf13951 
    i must say i'm a little angry with myself because i spent hundreds of hours on 
getting around this exact problem and couldn't find a better way. 
    there's only two shadertoys yet https://shadertoy.com/view/WdKczW 
    the classical sphere marching method:  lipschitz continuity guarantees that the 
blue line never intersects the diagonal of the red stepping function, which always 
moves as many units forward as it has measured upwards. 
    plotting the first derivative of our curve (green), the light green lines designate 
the global lipschitz limit that the function is guaranteed never to overstep. 
    the purple lines bracket the local upper and lower bounds of the first derivative 
within a local region. 
    plotting the limits as as a wedge of tangents, all positive, we see that the region 
can't possibly contain a root, and thus deem it safe to skip the entire interval. 
    whereas in this less beneficial interval, our tangent bundle can only guarantee us 
safe passage up until the cyan colored point. 
    this region here however allows us to make a step twice as a large as a simple 
SDF lookup would permit us. 
    it is easy to see how this method becomes particularly useful when we are 
grazing surfaces with low curvature, as the tangent width narrows, and we can 
practically perform an interation of the newton-raphson method. 
    the authors don't do a good job of showing these connections.  the provided 
formula is effectively a version of the newton-raphson method which uses a 
gradient interval instead of a local gradient. 
    to compute the gradient interval, you use a combination of automatic 
differentiation and interval arithmetic on the first derivative.  here are primitives 
for both: 

• Interval Arithmetic https://shadertoy.com/view/lssSWH 
• Derivative Arithmetic https://shadertoy.com/view/4dVGzw  
    the new arithmetic primitives will likely look a lot like joint ranges from revised 
affine arithmetic (https://shadertoy.com/view/4sV3zm), except that we get a 
right facing interval cone instead. 
    a much more important consequence of all this is that the lipschitz continuity 
requirement |f'(x)| <= 1 no longer applies as we always see a local gradient cone.  
you can use this to trace any old implicit function, not just only distance functions. 
    bonus:  with 1 more sample at the right end of the interval, we can reuse the 
same gradient interval, flip it, and use it to truncate our extrapolated destination.  
in this case, we discover that we can skip the entire interval rather than having to 
jump to the cyan point. 
    the right hand samples amortize over time, as we can reuse them in the next 
iteration.  

    Matt Keeter @impraxical: 
Dumb question:  if you can do interval arithmetic on your function, why not 
directly check the interval result in the target segment (to see if it contains 0), 
rather than the interval of the gradient in the segment?  

    @paniq: 
what do you do when the interval contains a possible root? 
    Ah, that explains why this is useful :D 

https://twitter.com/paniq/status/1317063053339406336
https://twitter.com/paniq/status/1317063053339406336
https://diglib.eg.org/handle/10.1111/cgf13951
https://diglib.eg.org/handle/10.1111/cgf13951
https://shadertoy.com/view/WdKczW
https://shadertoy.com/view/lssSWH
https://shadertoy.com/view/4dVGzw
https://shadertoy.com/view/4sV3zm


    I agree that affine arithmetic could tell you how far you could safely walk;  I'm 
curious to see how "point + gradient range" (this paper) compares to "affine 
region" (RAA), in terms of ease of computation / tightness of bounds / etc.  

    @paniq: 
RAA is costly, and has overshoots i.e. false positives, which means you're frequently 
backtracking.  building intervals on the first derivative should in many cases be 
cheaper. 
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Plaster foam
Kragen Javier Sitaker, 02020-10-16 (updated 02020-11-08) 
(8 minutes)

    Plaster of Paris is easily formed at room temperature, nontoxic, and 
somewhat refractory, withstanding temperatures up to 1200°;  it 
decomposes by releasing vitriol at 1460°.  But it doesn’t insulate 
against heat extremely well, and it weakens somewhat when heated 
enough to start dehydrating again, becoming easily crumbled with the 
fingers.  It reputedly strengthens again above 800°, but if that’s true, it 
must be a process that takes more than the few minutes I tried.  It has 
a bad reputation for use in forging iron, because while it will survive 
up to 1200°, it slowly degrades at iron-forging temperatures.  NIST 
wrote about the various stages of alabaster calcination in the 1940s. 

    Once re-calcined, the plaster remains solid (except that portion 
heated to white heat, which evolves a vitriolic air), but is enormously 
more fragile than before;  rubbing it between fingers produces a fine 
floury powder.  It also contracts slightly, producing cracks when 
heating is uneven.  These are more serious problems for larger objects, 
which more easily collapse under their own weight, than for smaller 
ones. 

    Fired clay and portland-cement concrete can be foamed — aerated 
with bubbles — to improve their insulation capabilities, make them 
more resistant to crack propagation, and reduce their weight, at the 
expense of strength.  I haven’t heard of anyone doing the same thing 
with plaster of Paris or lime cement. 

    There’s a special-effects material described as “aerated plaster” 
called Gypsnow:  it expands rapidly when wet;  remains soft;  absorbs 
impacts.  “Place 3.7 liters or 125 oz of water into a 5 gallon plastic 
bucket.  Add 10 lbs of Gypsnow and mix with an electric drill, pour 
the mixture into a lined plastic form and after about an hour you can 
remove the item.” It claims that this is “aerated” but to me it sounds 
like maybe it has styrofoam or some hygroscopic polymer in it. 

    Mixing expanded perlite or, better, expanded vermiculite into the 
plaster would surely work.  But I think they are less refractory than 
the plaster itself. 

    WP says vermiculite bonded with vaguely specified adhesives 
including sodium silicate is good to 1150°.  It says perlite is only good 
to 850°.  Hydrated sodium silicate itself will foam up like vermiculite 
or perlite when you heat it, but the remaining solid material is still 
sodium silicate, and retains the very low softening point of alkali 
silicates.  Perhaps this is less of a problem in the vermiculite 
composite, where perhaps the sodium can diffuse away into the 
vermiculite rather than leaving points of contact very vulnerable to 
melting. 

    Abandoned US patent application US20160339606A1 describes 
trying to reinforce plaster of Paris with graphite and “cenospheres” 
(making the plaster a syntactic foam;  for example, of vermiculite) so 
it will retain more strength for use in molding high-temperature 
(310+°) thermoplastics.  (The patent application pointed out that once 
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you’ve used it in molding you can wash it out with water, since the 
plaster becomes water-“soluble” again at the casting temperatures.) 

    The standard way to foam fired clay is to mix it with sawdust, 
coffee grounds, used yerba mate, or a similar granular material that 
will burn off in the kiln.  This might work with alabaster plaster too.  
I have made a lump of plaster mixed with yerba;  it is quite hard, less 
dense than plain plaster, and pale green, and it seems to survive fire a 
bit better than plain plaster;  but I haven’t yet had the chance to fire 
such an article long enough to burn out all the organics. 

    Naphthalene is reportedly used in this way to make porous 
grinding wheels, boiling out at quite reasonable temperatures instead 
of needing to be oxidized away like yerba mate.  A wide variety of 
substances would work as alternatives;  they need to survive the 
plaster’s setting process in solid form — so water ice, for example, will 
not work;  be capable of breaking apart into granules and remaining as 
separate granules, ruling out, for example, chewing gum and candle 
wax;  not be soluble in or reactive with water;  not react with the 
plaster itself, which I think might rule out, say, iodine;  be easily 
removable after the plaster is set, for example by heating (as 
naphthalene) or dissolution with another solvent (as brimstone or 
rubber in disulfuret of carbon);  and, ideally, be very cheap. 

    Other compounds with these properties include 
para-dichlorobenzene, camphor, brimstone, rubber, and chlorargyrite, 
which last requires ammoniated water to dissolve.  A more extensive 
note on some such possibilities, though mostly water-soluble, is in 
Inorganic Burnout (p.  290).  Many common plastics including LDPE 
are also suitable;  though more expensive than the plaster itself, they 
are reusable.  Brimstone has the unique advantage of being very cheap 
as a petroleum waste product, and its common form melts into a thin 
liquid at 115°.  However, it requires precautions against fire. 

    Fired-porous-clay kitty litter is another possible porous aggregate, 
similar to vermiculite but denser. 

Plaster muffins 

    Ttk Ciar suggests mixing a low-boiling-point material into the 
mix, such as isopropanol, so that it will form bubbles when heating.  
Maybe a baking powder would work well, as suggested by “Ken” in 
2013, who also suggested trying dishwashing detergent.  I baked such 
a loaf of plaster with baking powder;  the top of the foam seemed a bit 
spongy during baking, but the expansion seems to be less than a factor 
of 2.  I turned off the oven after about 20 or 30 minutes of baking;  a 
couple of hours later it seems to be setting reasonably well, resembling 
a lava rock, so I demolded it and put it in a plastic bag to finish setting 
overnight. 

    The cylinder is about 30 mm high and about 80 mm in diameter. 

    Upon being flamed with a butane torch, the foamed plaster turns 
first black before turning a brighter white than originally, signaling 
the presence of some off-white organic compound, maybe bitartrate 
of soda.  It seems to be an open-cell foam;  I can blow through it, 
which is probably why it didn’t expand further.  Unfortunately it also 
has an aroma something like formaldehyde, so I question whether 
putting my lips on it was a good idea. 
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    It was somewhat harder the next day, and another day later a 
powdery white efflorescence had formed on the surface, containing 
tiny soft white needlelike crystals.  I suspect that the evaporation at 
the surface of the block carried with it either the unreacted baking 
powder or its reaction products. 

    I’d used an empty tuna can as the mold for this plaster muffin in 
the oven, and I think I’d scratched its internal plastic protective layer, 
perhaps while mixing the plaster with a chopstick, because there are a 
couple of thin lines of rust-colored discoloration on the bottom of the 
muffin.  There was also a spot of discoloration on top, which I don’t 
know the source of. 

    As an interesting note on crack propagation, I was able to snap the 
muffin in half with my hands after scoring the top and bottom 
surfaces with fingernails, and then later to drive a metal wire through 
the whole height of the cylinder.  No visible cracks propagated out 
from the wire. 

    Another possible way to foam it:  hydrate it with water with a lot 
of dissolved gas, perhaps Priestley’s carbonated water, under pressure 
if necessary.  The gas will bubble out and form a foam, but not before 
the pressure is released.
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Fluidic household pumping
Kragen Javier Sitaker, 02020-10-18 (updated 02020-10-19) 
(7 minutes)

    Earthships are cooled by the sun.  The greenhouse contains a 
skylight, which when open produces suction from the buoyancy of 
the sun-heated air.  This sucks air through the dwelling spaces from 
the cooling tubes that run through the giant thermal mass behind the 
house.  When this is not desired, the inhabitants close the skylight and 
the cooling tubes and open the doors to the greenhouse to let the heat 
in. 

    Thus can a tiny air pressure difference produce an enormous heat 
flow:  the viscosity of air is low, so if an opening is wide, even an 
imperceptibly tiny difference in pressure can produce a mass flow as 
fast as the wind, which can carry with it an immense power of heat. 

    To be concrete, let us suppose that we have an opening of two 
meters square with a subtle breeze of 2 m/s flowing through it.  
Evidently 8 m³/s of air flows thus;  at 1.225 kg/m³ this is about 
9.8 kg/s, a staggering rate of 35 tonnes per hour.  At typical air’s 
isobaric mass heat capacity of 1.012 J/g/K this works out to 9900 
watts per kelvin.  That is, if the air traveling through this aperture 
have a temperature a single degree hotter or colder than the space it 
enters, it brings or displaces 9900 watts.  If the temperature difference 
be ten degrees, the power is 99 kilowatts, and if it be 40°, the power is 
nearly 400 kilowatts. 

    Air has some other remarkable advantages as a heat transfer 
medium, aside from its low viscosity.  It’s less toxic than any other 
fluid.  It’s relatively non-corrosive up to 300° or so, and up to over 
2000° for oxides, phosphates, and fluorides.  It spans a wide range of 
temperatures in gaseous form, from -182° (oxygen’s boiling point) to 
some 1600° while preserving its nontoxic and noncorrosive character, 
and up to an unlimited temperature if this is not important.  For the 
time being, it’s easily available, and the cost is low. 

    At temperatures between 0° and 100° we can direct the flow of air 
with nearly any everyday solid material, including polyethylene bags, 
waxed or lacquered paper, styrofoam, plaster, wood, oiled muslin, 
PET bottles, mica, EVA glue, cardboard, clay, glass, and aluminum 
foil;  outside this temperature range it can become more demanding.  
Within this temperature range the most diaphanous of materials can 
contain airflow without injury, needing only enough support from 
wires or the like to prevent its collapse.  Inflatable tubes, with stagnant 
air in a tube alongside the moving-air tube, may provide the 
lightest-weight support of all. 

    The idea inevitably suggests itself to raise a flexible chimney with a 
hot-air balloon to produce suction from sun-heated air.  A solid 
bootstrapping heating chamber provides initial warm air to initially 
inflate the ultralightweight balloon, made perhaps of mylar;  once it 
achieves inflation, it can serve as its own air-heating chamber, 
particularly if the exterior is visibly transparent and painted or mixed 
with an infrared-blocking paint and/or a low-infrared-emissivity 
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coating, while an inner mylar partition is black, re-emitting the visible 
light absorbed as thermal infrared into the interior of the balloon.  
Alternatively, the balloon can be fed from the chimney itself, which if 
fastened to the top of the balloon can inject any available hotter air 
into the balloon, displacing less-hot air out of an open balloon 
bottom. 

    The chimney itself can have a construction similar to that of the 
balloon, and perhaps either or both would benefit from a light springy 
spiral or two to prevent their collapsing or rippling, resulting in 
airflow obstruction. 

    Of course, a more conventional rigid chimney can also be used, 
with a greenhouse at its base and perhaps transparent panels within it 
to permit further heating of the air during its ascent.  If it can be laid 
upon the slope of a hill or mountain, it would require minimal 
material. 

    Unlike chimneys intended for flue gases, such chimneys need only 
handle air in the range of 50°–200°, depending on the design, and can 
thus use non-heat-resistant materials, perhaps even PET. 

    Even on cloudy days, greenhouses and greenhouse-effect chimneys 
can achieve significant temperature rises and thus significant pressures. 

    Such a comparatively high-pressure, low-volume flow can be 
called upon to fluidically pump larger volumes of air at lower 
pressures, as in the Dyson bladeless fan.  I’m not quite sure how to use 
this negative gauge pressure to pump air into spaces at a zero or 
positive gauge pressure, particularly without sending the hot air into 
those areas;  some ideas follow. 

    By accelerating air down a wide tube toward a suction aperture, the 
air can be given momentum, and the air that misses the suction 
aperture can then be diverted through other tubes wherein it loses 
some, but not all, of its speed;  this air, now at a positive gauge 
pressure (?), can then be used to direct other air at still lower speeds. 

    Another approach, which may sort of be the same thing, is to use 
the low pressure to suck a flow down a long tube, which near the end 
has an aperture in its wall to another similar long tube, transferring 
some of its momentum to the fluid in the other tube, and mixing 
somewhat. 

    Bistable fluidic valves of the well-known design using the Coandǎ 
effect can be used to change the direction of flows for an arbitrarily 
long period of time with just a puff of air. 

    If you’re just using the vacuum to drive a closed-circuit 
thermodynamic system, the problem vanishes;  you can maintain the 
whole system at a negative gauge pressure and bring in nozzles of 
zero-gauge-pressure air as “compressed air” to blow the flow 
wherever it’s desired. 

    One difficulty arises if your thermodynamic system is evolving 
some gases you don’t want in your chimney, perhaps because they are 
toxic or corrosive.  In some cases you can bubble them through 
limewater or something, but in other cases no such convenient outlet 
is available.  In such a case some kind of pumping system like the ones 
I mentioned above seems essential, whether purely fluidic or merely 



pneumatic. 

    Pumping via pneumatic, rather than fluidic, methods at low 
pressure simplifies the problem enormously;  a flexible balloon of any 
kind (polyethylene, cloth, origami) within a larger space serves as a 
gas-tight piston, while a flap of flexible material over an aperture 
serves as a check-valve.  A balloon that inflates to obstruct an air 
passage provides a simple form of pneumatic switching that easily 
permits the construction of oscillators and the like.
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Muriate thermal mass
Kragen Javier Sitaker, 02020-10-18 (updated 02020-10-28) 
(11 minutes)

    A common phase-change material used for thermal mass in 
household climate-control applications is the miraculous salt of 
Glauber, issuing from his production of muriatic acid.  Its melting at 
32.38° enables it to store comparatively immense amounts of latent 
heat to be released upon its resolidification. 

    Consider, though, muriate of lime, notorious for its deliquescence 
throwing off heat.  This, too, is a process that can be reversed by the 
application of gentle heat, driving out water from the 
material — nearly the reverse of the process with the salt of Glauber.  
Burns are said to have resulted from injudicious ingestion of crystals 
of this muriate.  Yet it is very cheap and much more widely available 
than the salt of Glauber. 

    Unlike the situation with the salt of Glauber, the heat-absorbing 
reaction requires the reversible separation of two components, the 
muriate and the water.  This is a virtue in that it can delay both the 
absorption of the heat until a higher temperature is reached, by virtue 
of holding the water vapor in by pressure, and, more importantly, the 
evolution of the heat at lower temperatures, by preventing moisture 
from entering the mixture again until the heat is desired.  So sealing 
only, not thermal insulation, is required. 

    Perhaps this exothermic disssolution can supply an alternative form 
of “phase-change thermal mass” for household use.  Not only can it 
be used to store heat for heating the house, but also it can provide 
stored heat to drive a desiccant-refrigeration cycle of the well-known 
type, if the desiccant can be regenerated at a suitable temperature.  
One such suitable desiccant is muriate of lime itself, in higher states of 
hydration than those used to store the heat. 

    In this way it is possible to store up the heat of the sun during the 
day to power an air-conditioning system during the night. 

    It supports monohydrate, dihydrate, tetrahydrate, and hexahydrate 
solid states, as well as a liquid solution and an anhydrous solid state.  
The anhydrous state weighs 2.15 g/cc, melts at 772°, and boils at 
1935°;  the monohydrate weighs 2.24 g/cc and dehydrates at 260°;  
the dihydrate weighs 1.85 g/cc and dehydrates at 175°;  the 
tetrahydrate weighs 1.83 g/cc and dehydrates at 45.5°;  and the 
hexahydrate weighs 1.71 g/c and dehydrates at 30°.  Thus gentle 
heating can get us to the dihydrate, but fiercer heating would be 
required to obtain the ferociously hygroscopic anhydrous salt. 

    The anhydrous salt’s standard enthalpy of formation is 
-795.42 kJ/mol, compared to -1403.98 kJ/mol for the dihydrate and 
-2608.01 kJ/mol for the hexahydrate.  However, presumably much of 
that is already in the water, whose standard enthalpy of formation is 
-285.83 kJ/mol;  six times that is -1715 kJ/mol, leaving only 
-97 kJ/mol from adding water to the anhydrous form (- 2608.01 795.42 
(* 6 285.83)) = 97;  from the hexahydrate to the dihydrate we have (- 
2608.01 1403.98 (* 4 285.83)) = 60 kJ/mol.  The molar mass of the 
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anhydrous muriate is 110.98 g/mol, and of the water is 18.015 g/mol, 
so this is 147.01 g/mol for the dihydrate or 219.07 g/mol for the 
hexahydrate;  in theory, then, we can produce 408 kJ per kg of the 
dihydrate by hydrating it to the hexahydrate, whose heat capacity is 
300.7 J/mol/K;  this works out to a temperature rise, theoretically, of 
199.5°.  (The heat of dissolution of the hexahydrate I do not know.) 
This 408 kJ/kg compares very favorably to 251.2 kJ/kg for the salt of 
Glauber. 

    (The water-solubility of the muriate does increase with 
temperature, so it is also possible to absorb heat in this fashion, as with 
the salt of Glauber.  I am not entirely clear on how the humidity of 
air and temperature interact with the degree of hydration of the salt.) 

    Short-circuiting the process a bit, you could cool the house at night 
with the sun’s daytime heat by dehydrating the muriate with sun, 
then let it cool, eliminating its sensible heat.  Then, when cooling is 
desired, we can first dry some air by passing it over the muriate, then 
cool the air back to the outdoor temperature by passing it through a 
recuperator or regenerator, then cool the air further by evaporating 
water into it. 

    To cycle the desiccant between liquid and solid states, it would be 
useful for the solid state to be granular;  otherwise it will tend to 
agglomerate into a solid mass impermeable to air.  Spray drying is a 
potentially useful way to do this;  to avoid getting grains that are too 
small, perhaps an updraft can be used to select only drops in a certain 
size range, before passing the remainder into a continuous updraft that 
keeps them at a stable height until they are dry. 

    Alternatively, the liquid could be held in very carefully leveled, 
very shallow pans, drying into a thin crust in the bottoms of these 
pans when 50° air is passed over them.  This way the solid salt will 
have a large surface area without being granulated.  The pans can be 
made of thin plastic, for example PET, polystyrene, or PMMA, and 
surrounded with high walls on all sides, with the airflow coming in 
from and departing from above, so that an error in tilt will not spill 
the solution. 

Giglio’s thesis 

    I was pleased to discover Evaluation of heat available from calcium 
chloride desiccant hydration reaction for domestic heating in San 
Francisco, CA, Michael Giglio’s 2017 mechanical engineering 
master’s thesis at Santa Clara University.  He calls out as advantages of 
this “thermochemical energy storage” approach its ability to function 
without insulation and the higher storage capacity available for 
dehumidification and cooling, and reports a “best-case scenario” of 19 
kWh/m³ [68 MJ/m³] of storage capacity for heating, using “a 
dilution reaction between 100% concentrated [muriate of lime] and 
water to a 20% solution”.  While there are surely conveniences to 
using a purely liquid system, I think higher densities can be achieved 
using solids.  Giglio’s final design used a closed system rather than 
exchanging moisture with ambient air. 

    It’s unfortunately very poorly written, with a great deal of 
repetition, occasional contradictions, and much ambiguity (What 
would a “100% concentrated” solution be?  The anhydrous muriate?), 
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but I managed to slog through it. 

    He reports (p.  7, 17/71): 
A solar driven liquid desiccant cooling system has been developed in Singapore by 
L-DCS and shown to provide a storage capacity of 183 kWh/m³, while a similar 
system has been developed by ZAE Bayern that utilizes a lithium chloride solution 
and district heating to provide 12 kW of cooling and a storage density of 
150 kWh/m³ [11].  

    These densities work out to 660 kJ/ℓ and 540 kJ/ℓ respectively.  
His ref.  11 is “Hublitz, A., 2008, ‘Efficient Energy Storage in Liquid 
Desiccant Cooling Systems,’ Dissertation, Technical University of 
Munich.” 

    He also reports that muriate of lime costs US$0.10–$1.00/kg, but 
I’ve found it at retail in Argentina to cost more like US$1.60–$4/kg.  
He also reports (p.  44, 54/71) that he bought it for US$100/kg from 
Sigma-Aldrich. 

    He reports that the enthalpy of dissolution of the compound should 
be “-740kJ/kg of desiccant”, but I don’t know whether that’s 
dissolution of the anhydrous salt or what. 

    On p. 27 (37/71) he reports that he got a 63° temperature rise by 
adding water to muriate of lime;  a bit later he explains that this was 
solid, but it’s unclear whether it was the anhydrous form or one of the 
solid hydrates.  On p. 37 (47/71) he claims to have gotten 288 kJ per 
kg of muriate of lime. 

    Giglio concludes that his prototype system would cost too much to 
be economical if scaled up, estimating its cost at US$13000 with 8 
square meters of solar collector costing US$8000, 285 kg of muriate of 
lime costing US$2850, and two copper-tubing heat exchangers 
costing US$775 each, and consequently providing a levelized cost of 
energy of US$0.86/kWh with a 30-year lifespan, competing with 
US$0.04/kWh for natural gas, 21½ times too expensive;  by his 
calculations, US$600 would be the price point at which such a system 
would be cost-competitive. 

    I think US$500 is a more reasonable cost estimate for this quantity 
of desiccant, and using copper is a terrible idea — not only is it 
expensive, but it’s vulnerable to attack from the chlorine, and it 
cannot be made thin.  Polyethylene, polypropylene, or 
polytetrafluoroethylene would be much better materials.  Most of the 
necessary heat exchange can probably be provided by bubbling air 
through a liquid desiccant or blowing it over a solid one.  And 
thermal solar collectors using air can be as simple as thin transparent 
glass or plastic, which costs about US$20/m², not US$1000/m², over 
a styrofoam box painted black on the inside.  (See Solar Netting (p.  
326) for how to prevent cheap glass from being broken by hailstones, 
using chicken wire.) 

    As noted in Desiccant Climate Control (p.  485), there seem to be 
wholesale vendors that will sell you a tonne of muriate of lime for 
apparently US$272.  This would bring the cost of the desiccant in 
Giglio’s system down from the US$28’500 he was paying Sigma, or 
the US$2850 he estimates, to US$78.  This 36× reduction has a 
significant impact on the economic plausibility of such systems!  Also, 
it’s likely that the wholesale vendor is selling the anhydrous salt, since 
that’s the most useful form for use as a desiccant, while what Giglio 



bought from Sigma is likely the hexahydrate, since that’s the form 
most stable when exposed to air at room temperature. 

    (The heat transfer rate of a bubbler is limited by the size of the 
bubbles, but a saturated solution of muriate of lime gets quite frothy, 
from which I conclude that either the muriate itself reduces the 
surface tension substantially, or my sample is contaminated with a 
surfactant.  Either way, if a heat and/or vapor exchange is effected 
through direct contact, as in a droplet-column or bubbler exchanger, 
cyclonic separators or something might be necessary to filter the 
desiccant out of the air.) 

    Moreover, as mentioned above, this thermal collector and desiccant 
can serve not only to provide house heating, but also house cooling 
and, when necessary, dehumidification.  This means it’s competing 
against not just natural gas but also the electricity to run an air 
conditioner and, perhaps, a refrigerator.  Desiccant Climate Control 
(p.  485) goes into more detail here.  It also notes some other 
desiccants that are more than an order of magnitude cheaper than 
muriate of lime.
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Calcium strengthening
Kragen Javier Sitaker, 02020-10-21 (updated 02020-10-24) 
(23 minutes)

    Plaster of Paris and lime mortar are widespread, cheap, rigid 
materials that can be easily shaped, especially before they harden.  But 
they don’t harden that much.  What if we could harden them further, 
once they were shaped, or otherwise strengthen them? 

    In all of what follows, it’s worth keeping in mind that the material 
produced can be formed either as a solid or, sometimes more easily, as 
a foam.  Solid foams can permit faster permeation of liquid reagents, 
permitting the reaction throughout the whole material of a reagent 
that would otherwise only be able to reach the surface, and can also 
have superior mechanical properties in some applications. 

Coating 

    The simplest way to alter such objects’ material properties is to coat 
them with a liquid or gel which then adheres to them.  For example, 
portland-cement mortar, calcium-aluminate mortar, 
magnesium-phosphate mortar, shellac, wax, sodium silicate, paint, or 
glued paper.  Often a shell of a hard, dense, or tensilely-reinforced 
material around a lightweight, rigid core provides better tradeoffs of 
strength and weight, and sometimes even better absolute resilience to 
impacts, than either material could alone. 

    The material in my note on globoflexia (p.  370) goes into 
considerably more detail about this family of construction, as well as 
the note in Dercuano about sandwich panels. 

Infiltration 

    Plaster is fairly porous, lime a bit less so unless you find some way 
to foam it.  You can make plaster even more porous by the expedient 
of making it with more water.  These porous substances can have 
their pores infiltrated with other substances, such as polymerizing 
resins;  vacuum or high pressure may be a useful way to make this 
infiltration more complete. 

    Other useful infiltration materials might include thermoplastics, 
paraffin wax, molten sulfur, and reagents for replacement reactions. 

Replacement reactions 

    As I mentioned in Dercuano, there are many anions that precipitate 
as water-insoluble solids (chart) when confronted with polyvalent 
cations such as calcium, magnesium, iron, copper, zinc, titanium, 
manganese, boron, or aluminum.  Anions with such behavior include 
phosphate, carbonate, alginate, silicate, sulfide, and also usually 
hydroxide and occasionally oxalate or sulfate (with barium or 
calcium). 

    In the note there on “Likely-feasible non-flux-deposition 
powder-bed 3-D printing processes”, I suggested using binder jetting 
to exploit these reactions to instantly cement powders.  But a possibly 
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even more interesting possibility is using such reactions to change the 
properties of an already-existing object made from, for example, 
plaster of Paris or lime.  For example, tadelakt is made by 
precipitating calcium stearate (etc.) in a lime surface from soluble 
stearates (etc.) such as that of sodium or potassium, then burnishing 
the surface;  thus lime is waterproofed. 

    It might be reasonable to use other semi-soluble or semi-solid 
sources of polyvalent cations as well, such as gelatinous aluminum 
hydroxide, or iron metal in the case of phosphate conversion coating. 

Phosphates 

    There are lots of phosphates, many water-insoluble, hard, and 
refractory, even without getting into pyrophosphates, 
metaphosphates, and polyphosphates.  A wide variety of phosphate 
minerals exist in nature. 

    I’ve gone into some details on possible combinations in the note 
mentioned above.  Perhaps you could, for example, apply a solution 
of diammonium phosphate, monoammonium phosphate, or 
trisodium phosphate to an object made of plaster of Paris, calcium 
hydroxide, or calcium carbonate, and thus get a harder object made 
partly or wholly of calcium phosphate.  The ammonium-carbonate 
combinations seem particularly appealing, since it can be thermally 
decomposed to fairly harmless materials.  Phosphoric acid probably 
would not work on plaster of Paris, and although it reacts with calcite 
(same source), I’m not sure it strengthens the material in the process. 

    One thing that does not work is ordinary hardware-store aqueous 
phosphoric acid at room temperature and pressure;  after a couple of 
days no change was observable, and the plaster crumbled just as easily 
as before.  This is in retrospect completely obvious:  commercial 
phosphoric acid is prepared by precisely this reaction, in reverse.  I’ve 
now gradually added enough baking soda to mostly convert the 
phosphoric acid into some kind of gel;  we’ll see if the phosphate of 
soda presumably now dominating the scene is any more effective at 
phosphating the calcium. 

    Gelatinous aluminum hydroxide is another appealing target for this 
kind of phosphate replacement reaction, since it is so easily molded;  
perhaps it would yield extremely insoluble and refractory aluminum 
phosphate (whether berlinite or in some other form, most likely an 
amorphous one), along with either caustic soda or easily-boiled-off 
aqueous ammonia.  Maybe some such reaction would be useful for 
preventing neutral-electrolyte aluminum-air batteries (p.  322) from 
getting clogged up with slime. 

Magnesium phosphates 
    Although as a mineral its Mohs hardness is 6, magnesia or periclase 
is a cheap “crushable ceramic” commonly used for electrical 
insulation of heating elements due to its high thermal conductivity, 
and experiments have been done reacting it in this way with 
monoammonium phosphate;  they explain: 
Phosphate cements possess mechanical and chemical properties that are superior to 
those of ordinary hydraulic (Portland) cements, … The reaction between a reactive 
form of magnesia and acid ammonium phosphate is very rapid and exothermic, and 
the materials cannot be practically used as such.  Thus, the use of calcined or 
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deadburned magnesia is suggested.  

    This is music to my ears, since of course instantly setting cements 
are precisely what I most want for 3-D printing.  Also, they mention 
that struvite, the very soft ammonium magnesium phosphate that I 
feared would be formed from such reactions, does in fact form, but 
decomposes to monomagnesium hydrogen phosphate at 55° by losing its 
water and ammonia! 

    To retard the setting and permit molding, and in particular to avoid 
increases in temperature that would be fatal to their 
waste-immobilization purpose, they include boric acid as a setting 
retardant.  They also included sodium tripolyphosphate, to increase 
strength and reduce porosity, sand, and grinding dust (probably 
mostly aluminum oxide and steel, with significant amounts of 
fiberglass);  the monoammonium phosphate:water:magnesia 
relationship seems to have been 3:2:4, probably by weight. 

    They report final compressive strengths in the 20–40 range (MPa, I 
assume), and tensile strengths in the 1–2.5 MPa range. 

    Another 2011 paper explains: 
Magnesium phosphate cements (MPCs) have been extensively used as fast setting 
repair cements in civil engineering.  They have properties that are also relevant to 
biomedical applications, such as fast setting, early strength acquisition and adhesive 
properties.  However, there are some aspects that should be improved before they 
can be used in the human body, namely their highly exothermic setting reaction 
and the release of potentially harmful ammonia or ammonium ions...  

    They also used borate (as sodium borate) as a retardant, and also 
used larger grains of phosphate salt.  They reported that monosodium 
phosphate rather than phosphates of ammonium gave an amorphous 
result instead. 

    Very interestingly, this also mentions “apatitic calcium phosphate 
cements”, which have been investigated by the same authors and 
others as possible bone cements. 

    Yet another paper, this one in 2015, reports on 3-D printing: 
Strontium ions (Sr²⁺) are known to prevent osteoporosis and also encourage bone 
formation.  Such twin requirements have motivated researchers to develop 
Sr-substituted biomaterials for orthopaedic applications.  …developing 
Sr-substituted Mg₃(PO₄)₂-based biodegradable scaffolds.  … powder printing, 
followed by high temperature sintering and/or chemical conversion….  strength 
properties of 36.7 MPa (compression), 24.2 MPa (bending) and 10.7 MPa (tension) 
were measured.  

    They were using powdered trimagnesium diphosphate with 
strontium replacing varying amounts of magnesium (up to ⅓), 
sintering it, crushing it, 3-D printing it with a bit of 
hydroxypropylmethylcellulose, depowdering it, sintering it again, and 
then soaking it in diammonium phosphate to post-harden it. 

    See also below about zinc phosphate dental cement. 

Phosphates of zinc, manganese, and iron 

    Phosphate conversion coating coats steel with water-insoluble 
phosphates of these three metals by taking advantage of their 
solubility in acid, such as (of course) phosphoric acid. 

    Ferric phosphate is what protects the Iron Pillar of Delhi, and also 
some of my girlfriend’s kitchen pans, from rusting, despite its 
porosity.  It can be achieved using nothing more than phosphoric acid.  
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Wikipedia leads me to believe that it should be orange to brown, but 
mixing hardware-store phosphoric acid “converter” with powdered 
orange rust gives a black insoluble compound instead, and so too is the 
coating on the pans produced by boiling Coca-Cola in them. 

    Zinc phosphate is sometimes deposited on steel in the same way;  
the steel reduces the hydrogen ions at its surface, precipitating zinc 
phosphate out of solution.  It’s also used together with magnesium 
phosphate as a dental cement;  zinc oxide and magnesia are mixed 
with phosphoric acid on a glass plate to allow them to cool, giving a 
pot life of a few minutes.  Wikipedia explains: 
Zinc phosphate dental cement is one of the oldest and widely used dental cements.  
It is commonly used for luting permanent metal and zirconium dioxide restorations 
and as a base for dental restorations.  Zinc phosphate cement is used for 
cementation of inlays, crowns, bridges, and orthodontic appliances and occasionally 
as a temporary restoration. 
    It is prepared by mixing zinc oxide and magnesium oxide powders with a liquid 
consisting principally of phosphoric acid, water, and buffers.  It is the standard 
cement to measure against.  It has the longest track record of use in dentistry.  It is 
still commonly used;  however, resin-modified glass ionomer cements are more 
convenient and stronger when used in a dental setting.  

    Manganous phosphate is used similarly for metal protective 
coatings.  Natural paragenetic combinations with iron phosphate 
include triplite (Mohs 5–5.5), triploidite (Mohs 4.5–5), and purpurite 
(Mohs 4–5, without iron).  Another score of other minerals include 
manganese and phosphate. 

    All three of these relatively hard phosphates, or families of 
phosphates, can reasonably be formed by reacting phosphoric acid 
with the respective oxides, which are easy to prepare and acquire, and 
relatively inert (except, of course, for the heptoxide of manganese.) I 
suspect that other soluble phosphate salts would also work as 
phosphate donors.  Most of the oxides are soft materials that are easy 
to shape and even cast, though solid pyrolusite (dioxide of manganese) 
is 6–6.5.  In the form of fine powders with a little binder, the 
materials might be more easily shaped before being bonded with a 
phosphate donor. 

    Other possible cation-donating solids include the hydroxides (more 
or less equivalent to the oxides, if we’re talking about aqueous 
reactions) and the chloride of zinc. 

Phosphate of boron 

    Boron phosphate is a somewhat refractory material, subliming 
above 1400°, and water-insoluble in its crystalline form.  However, 
both the reaction and the crystallization seem to be fairly slow at 
room temperature. 

Phosphates of zirconium 

    There is a very interesting monozirconium diphosphate but I 
suspect that zirconia will not yield it easily.  You could surely deposit 
zirconium nitrate on an inert surface, wash it with aqueous lye to 
produce mostly insoluble zirconium hydroxide, and react that with 
phosphoric acid;  there might be easier routes. 

Etc. 
    Copper?  Titanium? 
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Carbonates 

    Perhaps you can convert plaster of Paris to the harder lime, once 
shaped, by one of the following approaches: 

• Soak it for a long time in sodium bicarbonate. 
• Or sodium carbonate. 
• Hell, or wash it heavily in aqueous ammonia.  Or lye. 
• Or soak in ammonium carbonate, then heat it up above 58° to drive 
off the ammonia. 
• Or wash it heavily with aqueous ammonium carbonate. 
• Or blast it with hot CO₂, which seems like maybe the most likely 
approach.  

    I’m not confident that any of these will work.  Hot CO₂ works to 
convert the sulfide of calcium into calcium carbonate, releasing 
sulphuretted hydrogen, but you cannot convert plaster of Paris into 
the sulfide as far as I know.  Heating the plaster past 1400° in air will 
outgas vitriol, leaving behind lime, which is so much smaller that it 
tends to fall apart.  Perhaps heating it to a somewhat lower 
temperature in a CO₂ atmosphere, particularly under high pressure, 
would work better;  and perhaps it would help if something else were 
removing vitriol from the gas chamber. 

    A process that would more likely work:  carbothermically reduce 
the sulfate to the sulfide, perhaps with carbon plasma, carbon 
monoxide, or ethylene, rather than solid carbon, and then blasting the 
sulfide with hot carbonic acid gas to liberate sulphuretted hydrogen 
and produce the carbonate. 

    This is not the kind of tranquil process of painting on some kind of 
conversion liquid that I was hoping for. 

    Lots of other polyvalent cation donor materials can productively 
form insoluble carbonates, though.  Barium, copper, iron, lead, 
manganese, nickel, and zinc, for example. 

Alginates 

    I haven’t seen a whole lot about alginates except for the usual 
dental-mold and spherification stuff, using soluble sodium alginate 
and insoluble calcium alginate.  I imagine that most candidate 
polyvalent cations would work to coagulate the stuff.  In particular, 
though, washing lime or plaster of Paris with a solution of sodium 
alginate ought to give you a waterproof surface, similar to tadelakt. 

Silicates 

    Presumably washing the surface of lime or plaster of Paris with 
soluble silicates such as those of sodium or potassium would 
strengthen and waterproof the surface, and perhaps also improve its 
refractory properties.  By applying these solutions to an open-cell 
foam, perhaps the change could be usefully obtained throughout the 
material. 

    As with phosphates, the possibilities of aluminum anions here are 
tantalizing:  can you mold something out of gelatinous aluminum 
hydroxide, then harden it with sodium silicate?  But the silicates of 
aluminum are enormously varied, ranging from kaolin and zeolites to 
mullite. 
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    One form of natural magnesium silicate, with a 3:4 Mg:Si ratio, is 
talc, itself very easily carved, even with thumbnails, before being fired 
to hardness.  Synthetic magnesium silicate, for example as a food 
additive or a plastic filler, is routinely precipitated in amorphous form 
by mixing sodium silicate with the nitrate, chloride, or sulfate of 
magnesium. 

    Another form of natural magnesium silicate, with a 2:1 Mg:Si ratio, 
is forsterite olivine, including the gemstone peridot.  Olivine is a 
spectrum between forsterite and the silicates of iron (fayalite) and 
manganese (tephroite).  Forsterite is just as hard as quartz and 
considerably more refractory;  forsterite melts at 1890°, fayalite at 
merely 1205°, and tephroite at only 1345°. 

    So you could imagine that a sufficiently small amount of silicate 
added to a concentrated source of somewhat soluble magnesium, such 
as magnesia, would produce forsterite, or an amorphous polymorph 
thereof.  The carbonate of magnesium (magnesite, Mohs 3.5–4.5) is 
some four times as soluble as the oxide, and the fluoride (sellaite, 
Mohs 5–6) a little less soluble than the oxide. 

Borates 

    Boric acid can form insoluble, hard, and sometimes refractory 
borates of many polyvalent cations, as well as the water-soluble borax;  
worth mentioning are chambersite:  Mohs 7 (manganese);  boracite:  
Mohs 7–7.5 (magnesium);  suanite:  Mohs 5.5 (also magnesium);  and 
hilgardite:  Mohs 5 (calcium and chloride).  Other borate minerals are 
known. 

    Really though I suspect that the most promising thing to do with 
borates is to burn them into boria or to somehow convert them into 
boron nitride.  Ammonium borate seems like the ticket: 

• 10.9% soluble by weight at room temperature 
• stable to about 230°F (110°C), at which point it loses all but two moles of water.  
If heated sufficiently, it releases the balance of its hydration water and decomposes 
to boric oxide and ammonia.   

    (Though boric acid decomposes to boria at 300°.) 

Sulfides 

    Generally the sulfides have the problem that they slowly 
decompose to produce sulphuretted hydrogen and sulfuric acid, given 
access to moist air.  Carbothermic reduction of plaster of Paris 
produces calcium sulfide. 

Fluorosilicates 

    Toxic ammonium fluorosilicate is reasonably water-soluble, as are 
the fluorosilicates of copper, ferrous iron, lead, lithium, manganese, 
and magnesium, but the fluorosilicates of barium and calcium are 
much less so. 

Oxalates 

    Oxalates of soda, potassa, and ammonium are fairly water-soluble, 
while oxalates of magnesium, silver, scandium, iron, and barium are 
practically insoluble, and the oxalates of lime, copper, and zinc are 
almost totally insoluble.  WP says the oxalate of lime starts to 
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decompose at 200°, though, so it’s not very heat-stable — but what it 
decomposes to is, I think, the carbonate.  It looks like that’s right, but 
the temperature is around 500°, not 200°.  The magnesium oxalate, 
similarly, decomposes to the carbonate between 420° and 620°. 

    To take a particular example, the oxalate of potassa (LD₅₀ 660 
mg/kg orl-rat) dissolves 36.4 g/100 mℓ water at 20°, the sulfate of 
potassa 11.1 g, the oxalate of lime 670 μg, and the sulfate of lime 
255 mg.  This suggests that a solution of 10% potassium oxalate will 
eventually convert plaster of Paris into >99% insoluble oxalate of 
lime, which can then be gently heated to get limestone. 

Fluorides 

    Bernd Jendrissek very graciously pointed out that a fluoride 
replacement reaction is commonly used to harden teeth and make 
them more acid-resistant by converting hydroxyapatite to 
fluoroapatite.  The fluoride of calcium, fluorspar, is both harder and 
less water-soluble than either its sulfate or its carbonate, and so a 
double metathesis with a soluble fluoride salt such as sodium fluoride 
might plausibly work to harden plaster bodies.  These salts are 
somewhat poisonous;  NaF’s LD₅₀ is about 100 mg/kg, so it’s used as 
rat poison, but also in toothpaste and to treat osteoporosis. 

    Sodium monofluorophosphate, as used in some toothpastes, might 
be another alternative, doing the phosphate conversion and 
fluorination in a single step;  its LD₅₀ is [about 500 mg/kg][40]. 

    [40:  
https://en.wikipedia.org/wiki/Sodium_monofluorophosphate 

Inert fillers and high-temperature 
activation 

    There’s a fourth totally different approach to strengthening these 
quasi-refractory calcium compounds, one that doesn’t involve 
room-temperature gas-phase or aqueous reactions. 

    Both plaster of Paris and ordinary lime cement remain solid up to 
high temperatures — plaster of Paris decomposes to quicklime above 
1400°, while fully carbonatated lime decomposes to quicklime starting 
much colder, above 825°, but then quicklime itself remains solid to 
2613°.  However, it may be in smaller pieces than the original shape, if 
the changes in volume were enough to crack the shape. 

    One possible approach to the problem is to incorporate inert 
needlelike material into the original plaster to bridge the gaps;  mullite 
can be bought in crystals for this purpose for making pottery, or as 
polycrystalline fibers for foundry linings.  At lower temperatures, wire 
of steel, copper, or stainless steel can work.  Plant fibers, such as sisal, 
sawdust, or used yerba mate, char between 200° and 300°;  but the 
charcoal can survive and continue to add significant strength up to 
much higher temperatures than the rest of the components, unless 
oxygen burns it out first. 

    Even ordinary quartz sand may help.  Suppose your plaster mix is 
90% quartz sand and 10% plaster of Paris binder, and when you heat 
the plaster enough to dehydrate it, the plaster shrinks by 0.2% linearly 
(0.6% in volume).  But, since each linear dimension is only about 1.2% 
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plaster binder across most of the perpendicular cross-sectional area, 
the linear shrinkage is only 0.0024% instead of 0.2%.  This can make 
the difference between heat cracking the material and not. 

    (Quartz is not the ideal material because it dunts at 573°, expanding 
0.45%.  Many other tempers are used in pottery to improve this 
situation, crushed-brick grog being one of the most common.) 

    However, we can go further and actually use fillers that will 
actually react with the calcium compounds at high temperature.  I saw 
this on a sciencemadness thread, but I don’t know who to credit:  for 
example, you can incorporate an “inert” filler such as rutile, which at 
1300° and above will stop being inert and combine with the quicklime 
to form calcium titanate (melting point 1975°).  Even silica, 
particularly in an amorphous form such as infusorial earth, or as 
soluble silicates, might work for this;  larnite melts at 2130°.  And 
clays could provide both alumina and silica. 

    (Titanate also forms mineral salts with manganese, magnesium, 
barium, lead, zinc, iron, and half a dozen other metals.  These are 
basically all insoluble, even the metatitanate of soda, but supposedly 
there’s a water-soluble triethanolamine titanate.)
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Minimal cost computer
Kragen Javier Sitaker, 02020-10-23 (updated 02020-12-01) 
(12 minutes)

    Dave Jones, author of EEVBlog, has been playing with these 
Padauk one-time-programmable PMS150 and PMS150C 
microcontrollers which cost 2.7¢ (1 yuan I guess?), and his fans on the 
EEVBlog Forums have put together the Free PDK and 
easy-pdk-programmer-hardware projects to make the Padauk chips 
more usable (so you can have, you know, for loops and function 
arguments). 

    So consider a personal computer consisting of a 5¢ USB micro-B 
jack, three 8¢ CPUs, three 5¢ bypass capacitors, a 60¢ 8-kibibyte 
20MHz SPI SRAM module, a 15¢ 2-megabyte NOR Flash chip, a 
30¢ piezoelectric buzzer (here in Argentina, US$2 as part of a musical 
Christmas card, but a 10-pack from Anri TV costs US$4), and a 
resistive touch input surface made of paper and powdered graphite 
(rather than 3M Velostat) using Chris Harrison’s “Electrick” 
electrical field tomography technique.  The total BOM cost is 
US$1.49, plausibly reducible to under US$1, and it is probably capable 
of executing about 24 million 8-bit Padauk instructions per second, or 
2.4 million interpreted instructions per second, superior to an original 
IBM PC.  It might also be feasible to bitbang SPI to a MicroSD card, 
to bitbang PS/2 keyboard input, and to bitbang video output signals 
for NTSC, PAL, or VGA. 

Overview of the Padauk microcontrollers 

    In EEVBlog #1306 Jones starts by buying a STM32F072C8T6 on 
Digi-Key for, I guess, the Easy PDK Programmer Hardware, then 
demonstrates how to instead upload the BOM CSV file from 
easy-pdk-programmer-hardware to LCSC’s website.  Then he 
uploads the Gerbers to JLCPCB and PCBWay for fabrication as a 
demo.  I haven’t watched the rest of the series yet, because there’s 
only so much Dave Jones I can deal with in a day. 

    Digi-Key doesn’t carry the PMS150 or other Padauk micros;  you 
have to buy them via LCSC or some other Chinese distributor.  
EEVBlog forum user spth reports that they’re available for less than 
1¢ on Taobao. 

    Jay Carlson wrote a review of the PMS150 family of 
microcontrollers.  He explains that the family runs from 512–4096 
words of program memory and 64–256 bytes of RAM, all running at 
up to 16 MHz (normally 8 MIPS).  The PMS150C is 3.18¢ and has 64 
bytes of RAM, 1024 words of ROM, 6 I/O lines (including an 8-bit 
PWM line), and runs on 2–5 (?) volts at 450 μA/MHz.  The cheapest 
one with 256 bytes of RAM is the 8.64¢ PMS133, which also includes 
a 14-bit ADC, 18 I/O lines, 3072 words of ROM, 2 8-bit PWM 
lines, 3 11-bit PWM lines, running on 2.2–5 volts at 750 μA/MHz. 

    He says they can run on a high-speed 16MHz internal oscillator 
(“IHRC”), as well as a low-speed internal oscillator of tens of kHz 
(“ILRC”) for lower-power operation. 
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    Carlson is mightily impressed that some of these processors have 
hardware multithreading, context switching on every instruction, 
though with only two threads.  He tried this out with a WS2812B 
adaptor, for which he had to bump the clock speed up to 18 MHz. 

Power efficiency:  1 μW sleep, 1800 pJ/insn 

    He also measured that the PMS150C only used 350 nA on 3.3 V in 
sleep mode, concluding, “A CR2032 battery could power this thing 
in sleep mode for 10-15 years — the limiting factor would be the 
self-discharge of the battery itself.” 

    By comparison, my notes in Dercuano say the datasheet says a 
STM32L in “stop” mode uses 540 nA with the RTC running and 
290 nA with the RTC stopped, which I calculated at 134 years of a 
CR2032, which of course won’t physically last that long, as Carlson 
said.  This is comparable, but its low-power modes sound like more of 
a pain to wake up from.  I estimated that the STM32L0 requires 
210–400 pJ per 32-bit instruction;  the PMS150C’s 450 μA/MHz at 
two clocks per 8-bit instruction at 2.0 volts would be 1800 pJ per 8-bit 
instruction, about an order of magnitude less efficient.  However, the 
STM32L0 costs US$1.50 rather than US$0.03. 

Memory 

    If you want the Padauk chip to be a general-purpose computer 
rather than translating some voltage levels or performing a biquad 
filter on PCM data as Carlson did for his review, you’re going to need 
some external memory, at least 4 KiB or so.  Adesto (the new brand 
for Atmel’s SPI Flash chips and so on) has published a bizarrely titled 
whitepaper about “AI memory”, in which they claim their new 
EcoXiP line of nonvolatile memory offers a better tradeoff for SPI 
execute-in-place uses, because large SRAM and especially PSRAM 
chips use a lot of power, while large SPI nonvolatile memory chips 
have historically been intended for booting and are consequently kind 
of slow. 

    The upshot seems to be that, if the firmware on the Padauk chips 
themselves is running some kind of interpreter on instructions it loads 
over SPI, you might be able to run them faster if you use either 
EcoXiP or SRAM (or PSRAM), than if you try to get by with only 
nonvolatile storage.  This is the reason for including the 60¢ 
Microchip 23K640T SRAM chip in the design sketch at the top of 
this document.  Microchip’s datasheet claims it requires 4 μA of 
standby current, which is 10× more than the microcontroller, and 
3 mA of read current at 1 MHz, which presumably scales to 60 mA at 
20 MHz, as much as all three microcontrollers put together.  (Also 
that particular chip won’t run at 5 V, but presumably there are 
comparable or better chips that will.) 

Prospects for self-hosting a development 
environment 

    EEVBlog’s fans ported SDCC to the hardware, under the 
architecture names “pdk14” and “pdk15”, so new these devices have a 
free-software toolchain.  SDCC is a pretty decent C compiler, mostly 
ANSI C99, used among other things to write CP/Mish.  Could it be 
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made to run on the Padauk platform? 

    SDCC is in all about 10 megs of source code, compressed, and only 
“officially” supports the 386 and amd64 platforms these days, on 
MacOS, Linux, and Microsoft Windows, including Cygwin.  It’s 
built using autoconf and maybe automake, though, and the 
ChangeLog is full of mentions of platforms like FreeBSD, OpenBSD, 
NetBSD, sparc64, SPARC, ARM, PowerPC, ppc64, and even the 
Alpha (though that was in 2006).  Support for compiling it with 
Borland C was removed in 2009. 

    The stripped executable is about 2.8 megs on i386, roughly the 
internal RAM of 10949 PMS133s, which would cost US$946 (BOM 
cost).  So clearly it wouldn’t be a straightforward port;  you’d need to 
use some kind of external memory, which probably means using some 
kind of a virtual machine. 

    On this Atom netbook SDCC 3.5.0 takes 40–52 ms of user time to 
compile hello.c for Z80 (this old SDCC doesn’t support Padauk) as 
follows: 

$ cat hello.c
#include <stdio.h>

int main() { printf("hello, world\n"); return 0; }
$ time sdcc -mz80 -c hello.c

real    0m0.066s
user    0m0.040s
sys     0m0.016s
 

    Valgrind claims that this takes 36'131'256 instructions, so you 
probably need at least to run a few million 32-bit-equivalent 
instructions per second to make SDCC usably fast. 

    Fred Brooks made a famous declaration (in The Mythical 
Man-Month?) that the System 360 linker around 1968 was probably 
the most advanced overlaying linker that would ever be written, since 
virtual memory made overlays obsolete.  But SDCC’s targets mostly 
don’t have virtual memory, though many do support banking, so 
SDCC supports overlays today. 

    The most immediate problem with compiling SDCC with itself is 
that it does #include <memory.h> but does not provide such a header file 
for its targets.  This is not in itself a terrible problem (SDCC does 
provide <string.h>) but it does suggest that nothing like this has ever 
been tried. 

    Another problem is that, even if you can get the Padauk chips to 
emulate one of its supported platforms, it doesn’t support generating 
code for any of the targets mentioned above that the ChangeLog 
suggests it’s been ported to, or indeed for any target that GCC 
supports.  (It used to have AVR support, but that has been removed.) 

    So to get a self-hosting compiler on the Padauk chips, SDCC 
doesn’t seem like a particularly promising starting point. 

    Building an in-circuit emulator for the chips (important because 
they’re mostly one-time programmable and don’t have a lot of extra 
pins to devote to debugging) seems like it would be pretty difficult to 



do with the chips themselves.  If you were willing to accept an 
order-of-magnitude slowdown it might be reasonable. 

    Building a programmer board using more of these microcontrollers 
(rather than, say, an STM32) might be feasible. 

Portable power 

    What if you didn’t have to plug the fucking thing in all the time? 

    In my note on aluminum-air batteries (p.  322) I noted that ghetto 
aluminum-air batteries reportedly have an energy density of 7 or 
8 MJ/kg, which is to say, 7 or 8 joules per milligram (!).  At 1800 pJ 
per instruction, each milligram of aluminum buys you 3–4 billion 
instructions, a few hours of computing at Commodore-64 speeds, or 
maybe an hour at IBM PC speeds.  (On the other hand, if you’re 
relying on a piezo tweeter for output, you may burn through your 
energy noticeably faster.) Using my estimate from the Dercuano note 
on keyboard-powered computers, that basic word processing 
functionality needs about 30 μJ per keystroke (mostly to update an 
e-paper screen not considered in this design), each milligram of 
aluminum buys you around 33000 keystrokes, about a chapter’s worth 
of writing. 

    If we’re running all three microcontrollers at their full 16-MHz 
speed, we’re using about 22 mA or, say, 60 mW.  This is 0.6 cm² of 
full sunlight, or 6 cm² if you’re using those 10%-efficient amorphous 
solar cells from solar calculators, or 48 m² if you’re using cuprous 
oxide solar cells made in your kitchen from expensive household 
materials. 

    If you had a capacitor or battery you were efficiently charging and 
discharging, then one second of charging at those 60 mW (60 mJ) 
would pay for 30 million instructions or 2000 keystrokes of word 
processing. 

    One gram of aluminum would be enough to run the computer for 
3–4 trillion instructions:  almost 40 hours at full speed, or almost 4000 
hours, 5 months, at Commodore-64 speeds. 

    (None of these figures include power consumption for electric field 
tomography, VGA signal generation, etc., or more problematically, 
the RAM mentioned above.) 

    In LED Computation (p.  476) I link to an article by James Bryant 
of Analog Devices saying that a 5-mm red LED can generate 20 μA in 
photovoltaic mode in full sunlight.  If we assume that this is at 1.6 V, 
roughly the forward voltage of the LED, and we can step it up to a 
voltage the CPU can run on — or use a few smaller LEDs in 
series — then it’s 32 μW.  At 1800 pJ per instruction, that’s 18000 
instructions per second, not very powerful but still faster than a 
typical calculator.
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Abbe-limited DRO
Kragen Javier Sitaker, 02020-10-24 (updated 02020-12-31) 
(11 minutes)

    How precisely can you measure position?  How precise can a servo 
be?  What if it’s bodged together from mass-market junk? 

Fused-quartz glass scales 

    It’s practical to illuminate a fused-quartz optical scale with 
365-nm-wavelength LEDs.  A modern CMOS imaging sensor can 
fairly easily reach the Abbe limit;  if we take our numerical aperture 
as 1.4, the Abbe limit is λ/2.8;  at 365 nm that’s 130 nm.  We can 
reasonably expect to estimate the centers of blobs in the image to 
within about a quarter of the resolvable feature size, so we should be 
able to estimate our absolute position along the scale to within about 
35 nm by this method. 

    This is only about an order of magnitude worse than the recently 
best available optical position sensors, such as Renishaw’s 
5-nm-resolution “RELM” scales that limited the precision of Awtar 
and Parmar’s XY HiPER NAP from 2008, and it should be 
achievable with cheap off-the-shelf parts.  The EPSRC Center for 
Innovative Manufacturing in Ultra Precision at Cranfield University 
routinely achieves better precision than this, 10 nm in many cases and 
down to 1 nm in some cases, but I don’t know how. 

Temperature compensation 

    Fused quartz’s linear thermal coefficient of expansion is about 
0.5 ppm/K, so a meter-long fused-quartz scale will lengthen or 
shorten by 35 nm every time the temperature changes by about 70 
millikelvins.  I don’t think infrared thermometers can measure 
temperature with this precision, so compensating for temperature 
variations would probably require the use of some kind of contact 
thermometer;  I’ve argued in my note on Thermistors (p.  427) that 
this level of temperature measurement precision is fairly easily 
achievable without super-precision circuitry.  Note that precise 
temperature calibration is not necessary, but the absence of drift is. 

    But contact thermometers are slow, at least the macroscopic ones I 
was considering in that note, so it seems likely that a more viable 
approach is to prevent temperature variations of more than 70 mK or 
so.  To do this, you would use PID thermostatic control of a stream of 
coolant, such as water, air, or hydrogen, continuously pumped past 
the fused-quartz scale to prevent thermal variation;  and you can 
calibrate the impulse response of the scale’s thermal expansion to the 
error signal from the PID control system, so you can to some extent 
compensate for smaller variations. 

    500-millikelvin-precision temperature control has been a sine qua 
non for precision manufacturing since Michelson’s first grating 
engines. 

    A different and possibly more difficult problem is that, if you’re 
measuring motion along such a scale, you may actually be interested 
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in the relative positions of things attached to the scale and the sensor.  
And those things will almost certainly have a much larger TCE than 
fused quartz, as well as being subject to some side loading that causes 
them to deform elastically.  It may be feasible to use the 
above-described techniques to take measurements from different 
points of them to quantify these deformations. 

A cellphone camera as sensor 

    Consider the Samsung Galaxy Note 20 rear camera, which is 108 
megapixels (presumably 9000×12000) with, if I understand correctly, 
0.8 μm pixel pitch;  it is capable of delivering 720p video at 960 
frames per second.  (0.8 μm would give us a sensor physical size of 
7.2 mm × 9.6 mm, which is quite reasonable.) For the pixels of such a 
sensor to correspond to 130-nm regions of the surface being focused 
on, the optics need to magnify it by only about 6.1×, which is to say 
that the focal-plane sensor would need to be 6.1× further from the 
lens plane than the surface is. 

Improving tracking with noise 

    You might think that this technique would require a specially 
printed pattern on the glass scale, and indeed that is the standard 
approach, but that is not necessary;  you can simply store 
high-resolution photographs of the whole scale and match the image 
against them.  Relatively efficient algorithms for this kind of thing are 
used for precise orientation by star tracking in spacecraft, but that 
really isn’t important;  a particle filter would probably be perfectly 
adequate, since most of the time your new position and velocity can 
be nearly extrapolated from the old ones.  A meter is only about 6 
million pixels long at 130-nm resolution, so probably a few tens of 
megabytes would suffice for a long enough map. 

    As I wrote in Dercuano in a note on sparkle servos, resolution can 
be improved with moiré effects.  In this case, though, the “moiré 
grating”, which obscures part of the field of view except for some 
subpixel-sized holes, needs to be in the optical near field of the glass 
scale to work, say positioned within 200 nm or so of it.  But if another 
transparent object is scraping against the fused-quartz scale, not only 
can it deform it elastically, but also it will either scratch the glass, be 
scratched itself, or both.  So I think you need either a lubricating film, 
an air bearing with high-quality filtered gas, or some other kind of 
arrangement to hold the two within a few dozen enanometers 
without making contact. 

Other positioning feedback approaches 

    Hard disks routinely servo back to the same 80-nm-wide track 
reliably within a few milliseconds;  the heads float on an air bearing 
tens of nanometers away from the constantly-moving disk surface.  
I’m not sure there’s any practical way to reuse this amazing feat of 
engineering for nanopositioning. 

    To achieve higher positioning resolution than an optical system can 
provide, a scanning tunneling microscope (“STM”) may be an option.  
These can provide subatomic precision (on the order of 0.01 nm) but 
are not normally used as positioning servos.  Also, they are sensitive to 
shock and vibration.  However, they can be homebrewed with a few 
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hundred hours of work and can operate in air. 

    Capacitive sensors routinely achieve nanometer precision, but only 
over submillimeter distances.  I’m not sure if there’s a way to improve 
this. 

    Maybe a holographic approach with light has some hope of 
working? 

Temperature compensation metamaterials 

    Metamaterials similar to gridiron pendulums could potentially take 
the place of fused quartz and Zerodur for applications like this. 

    You could imagine, for example, three concentric metal tubes, the 
inner and outer tube of steel and the intermediate tube of zinc, with 
the inner tube being interrupted at 0 cm, 2 cm, 4 cm, and every other 
even centimeter;  the outer tube being interrupted at 1 cm, 3 cm, 5 
cm, and every other odd centimeter;  and the zinc tube being 
interrupted at every centimeter, and soldered to the interrupted steel 
tube at that point.  In this way thermal expansion of the zinc shortens 
the tube, while expansion of the steel lengthens it, but by a slightly 
smaller factor (about 12 ppm/K against about 30–35 ppm/K for zinc.) 
By adjusting the kerf width at the interruptions, the expansion and 
contraction can be perfectly balanced. 

 ---# #-------# #-------# #-------# #-------# #-------#
 #==# #==# #==# #==# #==# #==# #==# #==# #==# #==# #==#
 #--+-+--# #--+-+--# #--+-+--# #--+-+--# #--+-+--# #--+
 |  | |  | |  | |  | |  | |  | |  | |  | |  | |  | |  |
 |  | |  | |  | |  | |  | |  | |  | |  | |  | |  | |  |
 #--+-+--# #--+-+--# #--+-+--# #--+-+--# #--+-+--# #--+
 #==# #==# #==# #==# #==# #==# #==# #==# #==# #==# #==#
 ---# #-------# #-------# #-------# #-------# #-------#
 

    Consider the section from 0 cm to 2 cm with an effective kerf width 
k of 1 mm.  We have a total of 38 mm of steel pipe in the “kinematic 
chain”:  9.5 mm on the outside, 19 mm on the inside, and another 
9.5 mm on the outside, 40 mm - 2k.  And we have 18 mm of zinc 
pipe, in two 9-mm lengths, 20 mm - 2k.  Suppose its TCE is 
32 ppm/K.  If the temperature increases by 100° the zinc pipe will 
lengthen by 0.32%, to 18.0576 mm, thus shortening this section by 
57.6 μm, and the steel pipe will lengthen by 0.12%, to 18.0456 mm, 
thus lengthening it by 45.6 μm.  This already gives us a much reduced 
thermal expansion coefficient, but by widening the “kerfs” to a bit 
more than 3 mm to diminish the zinc with respect to the steel, we can 
reduce it to zero. 

    However, that zero depends on the precision of our effective kerf 
width (which extends roughly to the middle of the solder joint), on 
the precision of our estimation or measurement of the thermal 
coefficients involved (which vary with temperature), and on the 
precision of equality of temperature of the different components.  
Still, it should be straightforward to excel invar’s 1.5 ppm/K 
performance. 

    The resulting object, if properly soldered, has strength similar to a 
single layer of the zinc tubing, if it were a continuous pipe, and a 
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lower stiffness — the compliance is roughly the sum of the 
compliances of the three pipes. 

    There are a number of common materials with smaller TCE than 
steel, but nearly all of them are brittle:  soda-lime glass (9 ppm/K), 
limestone (8), granite (7.9–8.4), sapphire (5.3 or 8.1, depending on 
which part of that table you believe), tungsten carbide (4.9), brick 
masonry (4.7–9), graphite (4–8), industrial porcelain (4), borosilicate 
glass (4), wood parallel to the grain (3–5), silicon (3–5), mica (3, 
presumably parallel to the grain), carborundum (2.77), and diamond 
(1.1–1.3).  Common materials in the table with substantially larger 
TCEs include basically all organic chemicals (with some polymers up 
into the hundreds), plaster (of Paris?) (17 ppm/K), 304 stainless (17.4), 
aluminum (21–24), fluorite (19.5), magnesium and its alloys (25–27), 
lead (29), wood across the grain (30), and rock salt (40.4).  Kapton is 
notable in this table among organic polymers for having a TCE of 
only 20, though a different source gives 55 for “polyimide”.  Unfilled 
epoxies are claimed to be in the 45–65 range. 

    You can do this kind of trick with materials whose TCE is 
arbitrarily close together, but you need more layers of pipe;  that’s 
why traditional gridiron pendulums had seven vertical bars rather 
than five, because in the Victorian age they just had brass and steel, no 
aluminum or magnesium, and even zinc was comparatively exotic.  
To get by with just three layers you need materials whose TCE differs 
by more than a factor of 2. 

    By using materials further apart in TCE, such as brick masonry and 
magnesium alloys or rock salt, you may be able to get by with much 
smaller “compensatory pieces”.  Brick masonry has the additional 
advantage that it is cheap enough and hard enough that you can 
achieve very high stiffness with it at a reasonable cost. 

    A different metamaterial approach would be to use leverage to 
amplify small differences in thermal expansion into larger 
compensating contractions.

Topics

• Materials (p.  784) (51 notes) 
• Contrivances (p.  786) (44 notes) 
• Mechanical things (p.  791) (19 notes) 
• Metrology (p.  794) (17 notes) 
• Manufacturing (p.  795) (17 notes) 
• Digital fabrication (p.  798) (17 notes) 
• LEDs (p.  831) (6 notes) 
• Optics (p.  839) (5 notes) 
• Control (p.  847) (5 notes) 
• Sparkle (p.  914) (2 notes) 
• Scanning probe microscopes (p.  917) (2 notes) 
• Metamaterials (p.  939) (2 notes) 

https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html
https://www.carbideprobes.com/wp-content/uploads/2019/07/TungstenCarbideDataSheet.pdf
https://omnexus.specialchem.com/polymer-properties/properties/coefficient-of-linear-thermal-expansion


LED computation?
Kragen Javier Sitaker, 02020-10-25 (5 minutes)

    Could you construct universal sequential digital logic with just 
LEDs? 

    It’s straightforward to use LEDs for diode logic, which can give 
you sum-of-products logic, up to monotonicity — you can get any 
monotonic logical function that way, but diode logic alone doesn’t 
give you inversion. 

    LEDs can function as photodiodes, although not very good 
photodiodes.  So you could imagine using the light from one LED to 
switch another LED.  But it would seem that you can’t get any 
current gain that way:  each charge-carrier pair that gets annihilated 
in the transmitting LED produces at most one photon, and then 
produces at most one charge-carrier pair in the receiving LED.  And 
there are losses at every stage of this process, thanks to non-ideal 
quantum efficiencies and the like, so you can’t even get to unity gain. 

    I think there are at least four ways to solve this problem, which sort 
of blur into each other. 

• You can get voltage gain, because the voltage in the emitting LED 
will be close to its usual forward voltage, say 1.6V, while I think the 
voltage in the receiving LED can be much higher if it’s back-biased, 
say 5V.  But it’s easy to trade that off for current gain by putting 
LEDs in series.  For example, you can put three 1.6V LEDs in series 
and thus generate three photons per charge carrier.  
• You may be able to increase the number of photons with 
fluorescence, though at the cost of speed.  
• You can use a “regenerative” design using positive feedback, in 
which the back-biased receiving LED is in series with one or more 
forward-biased LEDs which also illuminate it.  This way, most of the 
electrons produce one or more photons on their way to wherever 
they’re going, thus allowing another charge carrier pair to spawn in 
the receiving LED. 

    (One problem that occurs to me with the above techniques is that 
it’s going to be hard to get more irradiance at the photodetector 
junction than, like, in the rest of these diodes that are glued together.)  

• You can initiate an avalanche discharge in the receiving LED and 
directly get current amplification after all, similar to how SPADs 
work.  Like, if you’re close to the diode’s reverse avalanche voltage, 
maybe you can reduce that voltage threshold by varying irradiation, 
and thus get both voltage gain and current gain.  
• You can get amplification through a bridge configuration.  As long 
as you don’t exceed the reverse breakdown voltage, an LED works as 
a (not very sensitive) differential voltage detector.  However, this still 
suffers from a lack of current gain.  
• You can use LEDs as if they were PIN diodes to switch RF signals 
by changing their capacitance with a DC bias, providing enormous 
current gain (like a JFET, leakage current down in the femtoamp 
range controlling an RF current up in the milliamp range) despite 



below-unity voltage gain.  But then how do you rectify the RF 
signal?  A faster LED, I suppose.   

    Apparently a 5-mm red LED can generate over 20 μA as a 
photovoltaic diode in full sunlight, while 1N4148 diodes only 
generate about 10 nA.  Assuming a 19.6 mm² area and 1000 W/m², 
the total solar power incident on the diode is 19.6 mW, which would 
be 12.3 mA at 1.6 V.  So that’s an efficiency of about 0.16%, compared 
with 16% for common low-cost photovoltaic cells. 

    Typically LEDs work better to detect slightly shorter-wavelength 
light, which is a major reason the red LED has such poor efficiency in 
sunlight.  So that 0.16% might really be a quantum efficiency on the 
order of 2% or so in the right wavelength band. 

    These data make me think that getting even a current “gain” of 0.1 
is going to be quite difficult with the first three approaches, much less 
getting a current gain above 1.0.  The situation can be improved 
somewhat by heating up the LEDs you want to have lower bandgaps 
and cooling down the ones you want to have larger bandgaps, but 
maybe not to the point where those approaches are feasible.
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Sequestered CO₂ would fill many 
oil fields
Kragen Javier Sitaker, 02020-10-25 (2 minutes)

    Suppose we build big machines to remove CO₂ from the 
atmosphere to get back down from 400 ppm back to pre-industrial 
levels.  If we froze all that excess CO₂ into a big block of dry ice, how 
big would it be? 

    The atmosphere has a mass of about 5.15 × 10¹⁸ kg, and 0.414% of 
that is CO₂, by volume.  The average molecular weight of dry air is 
about 28.95 g/mol, while CO₂ is 44.01 g/mol, making it 1.52 times 
the density of dry air.  (The CO₂ page on WP says 1.53 times.) This 
means that CO₂ is about 0.629 / (0.629 + 100 - 0.414) = 0.628% of 
the atmosphere by mass, or 3.25 × 10¹⁶ kg.  Pre-industrial levels were 
about 250 ppm, so we only need to remove about 164 ppm, or 
164/414 of the total;  that's about 1.29 × 10¹⁶ kg. 

    The density of dry ice varies from 1.4–1.6 g/cc, so this would be 
about 8–9 × 10¹² m³ of dry ice, roughly a cube 20 km on a side.  This 
is the volume of about 50–60 trillion barrels of oil, almost a thousand 
times the size of the Ghawar supergiant oil field, the largest among 
the 40 000 or so oil fields in the world. 

    If you pump the CO₂ back into the ground, the high pressure will 
convert it to highly compressed supercritical CO₂, almost the same 
density as dry ice, so this is probably a reasonable estimate of how 
much underground storage space is needed.
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Residue number systems
Kragen Javier Sitaker, 02020-10-26 (2 minutes)

    I was wondering about residue number systems and I was thinking 
that in particular bases that are close to a power of 2 are relatively easy 
to reduce modulo.  Nathan Laredo came up with the list 63 62 61 59 
55 53.  (* 63 62 61 59 55 53) = 40978178010.  68 719 476 736 is the 
number of possible 36-bit numbers;  40 978 178 010 is a reasonably 
large fraction of that.  All the fractional bits of loss between all those 
don't add up to even a whole bit of loss! 

    So consider, like, 1411 and 8675309.  1411 % [63 62 61 59 55 53] is 
[25 47 8 54 36 33];  8675309 reduces to [20 21 11 8 49 4].  If we 
multiply these elementwise we get [ 500 987 88 432 1764 132], which 
reduces to [59 57 27 19 4 26].  And waves hands with the Chinese 
Remainder Theorem we can get the product of 1411 * 8675309 = 
12240860999, modulo 40978178010 anyway. 

    This works for addition and subtraction;  you can only get division 
if the bases are actually prime instead of relatively prime I think. 

    The reason this is potentially interesting is that six circuits to 
multiply two six-bit numbers modulo a six-bit base are a lot cheaper 
than one circuit to multiply 34-bit numbers, and have a lower path 
length to boot, so you can clock them faster.  So RNSs like this get 
used a lot for high-sample-rate DSP.
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COVID-19 risk and vitamin D
Kragen Javier Sitaker, 02020-10-27 (updated 02020-10-28) 
(12 minutes)

    Today the study “Vitamin D Status in Hospitalized Patients With 
SARS-CoV-2 Infection” was published.  The key point from the 
abstract is 
Vitamin D deficiency was found in 82.2% of COVID-19 cases and 47.2% of 
population-based controls (p<0.0001)… No causal relationship was found between 
vitamin D deficiency and COVID-19 severity as a combined endpoint or as its 
separate components.  

    This strongly suggests a causal role for vitamin-D deficiency in 
covid hospitalization, and probably in risk of infection.  This might 
explain some of the curious patterns, where the previously healthiest 
countries are the ones where COVID-19 has spread fastest. 

    There are several other such studies and a website that summarizes 
them. 

Bayesian calculation from this study 
suggests a risk ratio of 4.2 

    Let’s take a look at the basis for this statistic: 
including 216 patients aged ≥ 18 years, with confirmed COVID-19 admitted to the 
University Hospital Marqués de Valdecilla in Santander, Northern Spain from 
March 10 to March 31, 2020, and 197 sex-matched population-based controls 
recruited from the Camargo Cohort (14,15) during their last follow-up visit on 
January–March of the past year.  

    I’m a bit fuzzy on all this statistics stuff, so I’m going to walk 
through this in baby steps to make sure I get it right. 

    During that period Spain went from 3'258 confirmed covid cases to 
111'541, out of a population of 47'400'000.  This range of 34× during 
the study period makes it a bit difficult to do the calculations I want 
to do, but let’s use, say, 50'000, since presumably the vast majority of 
the patients admitted to hospitals during that period were admitted 
toward the end.  (And as we’ll see at the end, this doesn’t matter 
anyway.) 

    Presumably only a fraction of the people with COVID-19 were 
hospitalized;  at present 157'881 people have been hospitalized out of 
1'046'132 PCR-confirmed cases, or 15%.  So maybe 7500 people were 
hospitalized with covid during that time, and maybe we can assume 
that the 82.2% number is typical of them:  6200 hospitalized covid 
patients with vitamin-D deficiency, 1300 hospitalized covid patients 
without it.  Out of the total population, if we assume the 47.2% 
number from the previous year is typical, we have 22 million people 
who weren't hospitalized with covid and were vitamin-D deficient, 
and 25 million people who weren't hospitalized with covid and 
weren’t vitamin-D deficient either. 

    So, 6200 out of 25 million vitamin-D-deficient people were 
hospitalized with covid at the time (250 out of every million people), 
and 1300 out of 22 million non-vitamin-D-deficient people were (59 
per million).  So the relative risk is 250 ÷ 59. 
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    That’s a relative risk of 4.2. If you were vitamin-D deficient in 
Spain at that point, you were 4.2 times as likely to get hospitalized 
with covid than if you weren’t deficient, probably because the 
deficiency raises your risk of catching covid.  A lot.  This is a huge 
relative risk.  (Or is it? Apparently risk ratios are the thing to use 
instead of odds ratios.) 

    Note that 6200 and 1300 are products of my estimate of the 
number of people hospitalized with 82.2% and (100% - 82.2%) 
respectively.  So you get the same relative risk regardless of whether 
the actual number of hospitalized people was 750, 7500 or 75'000.  (At 
750'000 or more it might start to matter if people who later got covid 
were excluded from the “population-based control group” or not, but 
even now, in October, Spain hasn’t hospitalized nearly that many 
covid patients.) 

Possible confounding factors exist 

    Are there other explanations, other than vitamin D deficiency 
causing an increased risk of serious covid, probably through causing 
an increased risk of covid? 

    Well, the most obvious is that covid could cause vitamin D 
deficiency, for example by interfering with digestion or by directly 
depleting vitamin D stores.  I don’t know enough about vitamin D 
metabolism to be very confident in this, but I don’t think it’s very 
likely;  as a fat-soluble vitamin, it can be stored for long periods of 
time, so I think the body usually contains a fairly huge amount 
compared to what it can use in the first week or two of a covid 
infection. 

    A second possible connection is for a common cause to produce 
both vitamin D deficiency and covid susceptibility.  As Aaron 
Ferrucci points out, this could be something as simple as spending 
time indoors and not getting exercise outside. 

    The above is not exhaustive, but it hopefully clarifies that the 
posited protective effect of vitamin D against covid might not really 
exist, despite the astounding risk ratio computed above. 

    There are other recent papers like “Vitamin D and COVID-19”, 
Bilezikian et al., that strongly suggest a causal mechanism, though 
that one cautions that it’s “a putative clinical link that at this time 
must still be considered hypothetical.” 

Doses and sources:  2000 IU daily from 
mostly supplements 

    Normally 40 IU is 1 μg.  I’m not sure if the weird IU-density 
variability thing that comes into play with some other vitamins is at 
play here, but for now I’ll assume it’s not. 

    The US RDA is 600 IU or 15 μg, with the tolerable upper intake 
level being 4000 IU or 100 μg;  Australia and NZ instead recommend 
10–80 μg/day, and the EU 15–100 μg/day, same as the US. 

    Given this, I’d think supplementing with a dose of some 2000 
IU/day would be strongly advisable, as well as getting lots of UV-B 
exposure. 
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    Gwern suggests it’s important to take it in the morning, not at 
night, and reports that he’s taking 5000 IU per day.  He says overdose 
starts around 70'000 IU, so it might be a good idea to start the 
vitamin-D regimen with a single dose on the order of 20'000 IU.  He 
also suggests that “an hour on the beach” is likely to give you 10'000 
IU, and so this should be a safe daily dose.  The Endocrine Society 
Clinical Practice Guideline on the subject counts 4'000 IU daily as 
“maintenance tolerable upper limits”, and suggests that adequate 
blood levels “may require at least 1500–2000 IU/d[ay]”.  It confirms 
Gwern’s thing about sunlight:  a minimal erythemal dose (mild 
first-degree sunburn) is 20'000 IU! 

    Gwern also recommends vitamin D supplementation for life 
extension, quite aside from covid and nootropic reasons:  it extends 
your life by an expected four months or so. 

    ChristianKI wrote a vitamin D primer on Lesswrong, 
recommending among other things to take vitamin K2 as well;  this is 
a common practice for OTC supplements. 

    The CPG also mentions that the circulating half-life of the 
25(OH)D form is 2–3 weeks, which reinforces my earlier-mentioned 
skepticism that a covid infection could drop vitamin D levels rapidly 
enough to provoke a deficiency in the study linked.  And it mentions 
that body fat sequesters the vitamin, increasing the risk of deficiency, 
which might explain several puzzling things about covid, including 
how smokers are at lower risk for covid in countries with high 
obesity — except that smoking lowers vitamin D in Copenhagen and 
in Guangzhou, so the smoking link is nonexistent. 

    Damn, this CPG is a fucking goldmine. 

    Getting such large quantities of vitamin D from food is very 
difficult. 

    Vitamin D₃, cholecalciferol, is used as rat poison and possum poison 
with a LD₅₀ of about 10 mg/kg, so if I were a possum the acutely 
lethal dose would be about 1.2 grams, about 48 million IU.  In 
humans there are concerns with continued doses over 4000 IU per 
day, as mentioned above. 

Fish:  I’d need to eat 450 g of mackerel per day costing 
US$1.28 

    This can of jurel (“jack mackerel”, the marketing name for horse 
mackerel, which is not a mackerel) says it contains 300 grams of fish 
and 12.5 grams of fat.  This supposedly contains 4.6 IU of vitamin D 
per gram, so the can I just ate should have given me 1380 IU, two 
days’ worth of the minimal allowance but only about 8 hours of the 
upper limit.  I don’t remember how much it cost, but maybe AR$150, 
88¢, 640 microdollars per IU, or US$1.28/day for 2000 IU/day. 

Eggs:  useless 

    An egg only has about 44 IU, 1% of the upper intake level, 2% of 
my goal, and 14% of the US RDA.  Eating four dozen eggs a day to 
get to 2000 IU is probably not a good idea.  I don’t think eggs 
contribute enough to be worth consideration here. 

Cod liver oil:  the best option at 15¢/day 
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    Cod liver oil (aceite de higado de bacalao) as a supplement is 100 IU/g 
or 450 IU per spoonful, and eating several spoonfuls of it per day 
seems plausible (and is the recommended dose).  150 mℓ of cod liver 
oil goes for AR$825 in a bottle, which is US$4.85,or 3.2¢/mℓ, which 
is basically a gram I guess.  This works out to 72 microdollars per IU, 
or 14.4¢ per day for 2000 IU/day. 

Fortified milk:  not useless but even worse than fish 

    This box of La Serenísima instant dry whole milk says it contains 
400 g to make 3 ℓ, and a 200-mℓ serving contains 2.1 μg (84 IU, 42% 
of the daily value, which I guess we can deduce is 5 μg, ⅓ of the 
US/EU value and ½ of the .au/.nz value.) This serving supposedly has 
26⅔ g of dry milk in it, so it’s about π IU of vitamin D per gram of 
dry milk, a bit less than the fish.  I think the price per gram is also 
similar or maybe a little higher.  I’d need to eat 600 g, a box and a half 
of dried milk, per day, to reach 2000 IU per day.  Eating nearly a kilo 
of dried milk per day, consisting mostly of lactose, seems even less 
appealing than eating hundreds of grams of fish. 

    On the plus side, it’s a lot more feasible to eat 600 g of dried milk 
than it would be to drink 4.8 liters of milk. 

    Perhaps not entirely coincidentally, this supplementation level is 
precisely the maximum that would be allowed in the US. 

    The Armonía brand cut-rate instant dry whole milk is basically the 
same. 

Pills:  3.7¢ per day, but perhaps less trustworthy 

    There are several brands of vitamin D supplements available;  
Puritan’s Pride sells 100 softgels of supposedly 250 μg each (10k IU) 
for AR$3120 (US$18.35).  This is 18.35 microdollars per IU or 3.7¢ per 
day.  Now Foods sells 120 softgels of the same dose for AR$3850 
(US$22.60), or 22.6 microdollars per IU or 4.5¢ per day.  Their 
recommended dosage is one pill every three days, which seems pretty 
reasonable. 

    Lower dosages tend to cost about the same per pill rather than per 
IU.
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Some of the cheapest memory ICs
Kragen Javier Sitaker, 02020-10-27 (updated 02020-10-30) 
(1 minute)

    I thought I’d look at some cheap chips.  These are not the absolute 
best price/performance in any Pareto sense but maybe they’re sort of 
close. 

Memory 

• US$0.10 for the STM M24C02-FMN6TP I²C 400kHz 256-byte 
EEPROM 
• US$0.10 for the Atmel AT34C04-SS5M-B I²C 1MHz 512-byte 
EEPROM 
• US$0.13 for the Fremont FT93C46A-UTR-T SPI 2MHz 1KiB 
EEPROM 
• US$0.18 for the ON Semiconductor CAT24C64WI-GT3 I²C 
1MHz 8-KiB EEPROM, reducing to less than US$0.15 in quantities 
over 100 
• US$0.19 for the Catalyst 2156-CAT25C64VA-1.8-ND SPI 10MHz 
8-KiB EEPROM 
• US$0.27 for the GigaDevice GD25D05CTIGR 100MHz 64-KiB 
NOR FLASH with dual SPI 
• US$0.29 for the Adesto AT25SF041B-SSHB-B 85 MHz 512-KiB 
NOR FLASH with quad-I/O SPI 
• US$0.15 for the Cypress S25FL116K0XBHI030 108MHz 2MiB 
NOR Flash with SPI and quad-IO “SPI” in a 24-BGA 
• US$0.48 for the Winbond W25Q16JVSSIQ 133MHz 2MiB NOR 
Flash with SPI and quad-IO "SPI", down to about 38¢ in quantity 
100 
• US$0.76 for the Cypress S25FL064LABNFI043 108MHz 8MiB 
NOR Flash with SPI and quad-IO "SPI" in an 8-USON 
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Desiccant climate control
Kragen Javier Sitaker, 02020-10-27 (updated 02020-11-24) 
(31 minutes)

    In Muriate Thermal Mass (p.  455) I did some basic evaluation of 
the reversible hydration of the dihydrate of muriate of lime to the 
hexahydrate as a way to store up heat. 

    I concluded that it was a very attractive alternative to the 
miraculous salt of Glauber for domestic space heating applications, 
because although it needs to be heated to 45.5° to recharge it, by my 
calculations it holds 408 kJ/kg of heat energy and can produce 
temperature rises of well over 100°;  and it’s considerably more 
flexible in when it releases that heat, instead of trying to release it all 
the time and needing to be somewhat restrained by thick thermal 
insulation. 

    However, I now conclude that I had only begun to scratch the 
surface of the amazing possibilities of such systems;  the Cromer cycle 
is just the beginning. 

    It may be that all of this is irrelevant now that photovoltaic panels 
are becoming so cheap, with module prices down to 15¢ per peak 
watt, that collecting the large amounts of solar heat that make these 
things attractive is actually more expensive than just storing energy in 
batteries.  I suspect not, though;  more exploration of this theme 
below. 

Heating 

    In Muriate Thermal Mass (p.  455) I described the use of muriate of 
lime a desiccant for heating in the following process, which turns out 
to be well-known: 

• Heat the desiccant to regenerate it, driving off water vapor, for 
example with sunlight. 
• Store the dry desiccant at ambient temperature until it is desired to 
heat, for example, your floor, your blanket, the air in your house, or 
some hot water. 
• Add water to the dry desiccant to produce the desired heat, which 
can be produced either at the point where it’s desired, or transferred 
using some kind of liquid coolant.  Using an efficient heat exchanger 
such as a countercurrent recuperator or pebble-bed regenerative heat 
exchanger can make the heat transfer almost complete. 
• Store the spent desiccant until heat is available to regenerate it, for 
example from sunlight.  

    By itself this process can produce only a limited range of 
temperatures — with muriate of lime my simplified calculation in 
Muriate Thermal Mass (p.  455) estimates a temperature rise of just 
under 200°, but other desiccants may not perform so spectacularly, 
and I suspect that even muriate of lime would require high pressure in 
step #3 to achieve this, since otherwise the water will volatilize. 

    However, a cascaded heating cycle can achieve higher 
temperatures, as follows: 

https://en.wikipedia.org/wiki/Cromer_cycle


• As above. 
• As above. 
• As above, but instead of transferring the heat directly to the desired 
location, transfer it to more ambient-temperature dry desiccant and, 
separately, ambient-temperature water. 
• Repeat step 3 one or more additional times, but using the now-hot 
desiccant and water to reach even higher temperatures.  On the last 
repetition, transfer the heat to the desired location. 
• Store the spent desiccant from all stages until heat is available.  

    If there were no heat losses and the absorption reactions were 
equally exothermic at all temperatures, this would give you unlimited 
temperatures, but neither of those is true. 

    But heating is just the beginning. 

Cooling 

    Refrigeration is monumentally important, historically.  The 
introduction of refrigerated cadaver ships is what made Argentina the 
richest country in the world for a shining few decades, since suddenly 
we could export our virtually unlimited supply of cow corpses to 
Europe.  Lee Kuan Yew credits refrigeration, specifically air 
conditioning, for making it possible for Singapore to develop 
economically: 
Question:  Anything else besides multicultural tolerance that enabled Singapore’s 
success? 
    Answer:  Air conditioning.  Air conditioning was a most important invention for 
us, perhaps one of the signal inventions of history.  It changed the nature of 
civilization by making development possible in the tropics. 
    Without air conditioning you can work only in the cool early-morning hours or 
at dusk.  The first thing I did upon becoming prime minister was to install air 
conditioners in buildings where the civil service worked.  This was key to public 
efficiency.  

    A simple air conditioning cycle is as follows: 

• Heat the desiccant to regenerate it, as before. 
• Allow the dry desiccant to cool to outdoor temperature, then store 
it that way if desired.  If necessary, rapid cooling can be achieved 
through either a heat exchanger with outdoor air or through direct 
contact with closed-cycle dry air which is itself cooled by a heat 
exchanger with outdoor air. 
• Pass indoor air over the ambient-temperature desiccant to eliminate 
its humidity, though this warms it up. 
• Evaporate water into the warm, dry air to restore its humidity and 
cool it to a lower temperature than before;  vent this cold air into the 
indoor space. 
• Store the spent desiccant until regeneration energy is available, if 
necessary.  

    Optionally, after step 3, you can cool the dried, warm air by 
running it through a heat exchanger with outdoor air.  This improves 
the efficiency of the system.  As with the heating cycle, you can 
improve the system’s temperature range by cascading the reaction, 
cooling the air (and dry desiccant) through two or more stages. 

    Several different kinds of mass-exchange contact between the 



desiccant and the air are feasible:  liquid desiccant can be sprayed into 
an air column or a fountain, or pumped over pads of excelsior, as in a 
traditional swamp cooler, or air can be bubbled through it;  a solid 
desiccant can be held in granular or foam form in a rotating wheel, or 
in a packed bed, or stuck to the surface of many flat plates in a sealed 
box or boxes, which may or may not double as solar thermal 
collectors. 

    This is a perfectly orthodox desiccant refrigeration system.  It can 
be simplified to an outdoor evaporator and a pair of exposed fountains 
in an indoor space, one of water and one of desiccant, though this 
may be more advisable for oil of lime than for, say, oil of vitriol.  In 
general all the options for contact with liquid desiccant are also 
options for contact with liquid water. 

    It can be used as well for refrigeration and even freezing of food or 
water, and water ice may be a denser and cheaper way to store cold 
until it is needed than as dry desiccant;  water ice is 333.55 kJ/kg.  
Depending on the efficiencies of the cycle, though, it’s entirely 
plausible that storage of energy in the form of some desiccants might 
be an even denser way to prepare for the need for cooling than water 
ice, and it certainly has a better shelf life and more flexibility. 

    Interestingly, brine of muriate of lime is commonly used in 
industrial refrigeration as a coolant rather than a desiccant — by virtue 
of remaining liquid down to -50° it permits the transport of a whole 
lot of cold in a very small pipe. 

Dehumidifying 

    In addition to the above-mentioned heating and cooling 
applications, stored dry desiccant can of course be used to dehumidify 
indoor air simply by passing the air over it.  And of course if you can 
heat up water, as explained above under “Heating”, you can humidify 
as well by passing air over the heated water. 

    Dehydration sounds like an extremely niche use (raw-food vegans 
and a few other people have 500-watt home dehydrators), but I think 
it isn’t;  it just hasn’t been available at a low enough price previously.  
Consider the Earthship’s list of six basic human needs satisfied by 
architecture:  energy, garbage, sewage, shelter, water, and food.  
Dehydration is directly applicable to three of those basic human 
needs:  garbage, sewage, and food. 

    Garbage and sewage are mostly problems because they rot and stink 
and carry pathogens. 

    (Garbage is a more complex problem with many aspects, though:  
used motor oil, radium paint, nickel-cadmium batteries, demolition 
debris, linseed-oil-soaked rags, and so on;  but food waste in 
particular, like these chicken bones I have here, is mostly a problem 
for those three reasons.  And the physical volume of non-construction 
non-food garbage can be kept pretty minimal, like, cubic meters per 
person per year, or less.  So I’m focusing here on food waste as the 
central core of the garbage problem.) 

    At Burning Man we deal with food waste first of all by dehydrating 
it, after which we can burn it or just store it in its inert dry state until 
it’s time to carry it away.  There, it’s easy to dehydrate things:  you 



put them in one of those plastic netting bags they sell oranges in and 
hang them out in the sun and wind. 

    Abundant desiccant regeneration capabiity makes it possible to 
dehydrate food waste thus even in humid climates. 

    And similarly for sewage.  At Burning Man, we just copped out 
and used chemical toilets, and at a local ecovillage here they used to 
use potash.  Piss they would dilute with water and use as fertilizer, but 
shit they would pickle with wood ash from the cooking fires.  
Eventually, they switched to composting toilets, and getting those to 
work with aerobic mesophilic rotting instead of the usual noxious 
kind is a matter of partial dehydration:  you cover your shit in the 
bucket with dry leaves, which also cut down on the relative nitrogen 
content, which gives you better rotting.  Civilized people don’t have 
dry leaves, so instead they use sawdust or coir or something in their 
composting toilets. 

    But, if you have ample desiccant capacity, you can use that to arrest 
decay completely, and then you can either burn the remains or you 
can bake them to kill all the pathogens and then use them as safe 
manure. 

    In the food category, there are a lot of foods that can be preserved 
for longer periods of time by dehydration than by refrigeration, 
although the change in flavor may be agreeable or disagreeable.  
Outside of the former Tawantinsuyu, food dehydration is usually 
done hot, which also changes the flavor of the food;  in particular, 
dehydrated eggs are made by a desugaring and flash-spray-drying 
process that requires significant amounts of equipment and chemistry 
to replicate.  Freeze-dried food in, for example, the US, is merely a 
novelty:  Astronaut Ice Cream, etc. The tradition of chuño from 
Tawantinsuyu is unknown.  And freeze-drying also changes the flavor 
of food, mostly through changes to mouthfeel, though chuño also 
owes its flavor to a fungus that grows during the process. 

    I think that food preservation by desiccant drying should be feasible 
at low temperatures, and might offer possibilities for food 
preservation with much less impact on flavor. 

    Thus a stored desiccant is a sort of all-purpose indoor climate 
control resource, capable of blowing hot or cold, like Aesop’s traveller 
in the satyr’s cave. 

    But wait!  Don’t touch that dial!  There’s more! 

Water harvesting 

    Water supplies are a major concern for the humans’ survival in 
many places, to say nothing of their ability to farm.  But if you can 
dehumidify by sucking water out of the air into a desiccant — and the 
equilibrium relative humidity for some of these desiccants is very low 
indeed — then you can recondense that water when you regenerate 
the desiccant, particularly if you can chill a sort of cold trap to help 
the water recondense. 

    This allows you, in theory, to harvest an amount of water limited 
only by the available low-grade heat energy (solar or otherwise) and 
the amount of humidity in the air you can lure into the moisture 
vaporators of your moisture farm. 



Alternative desiccants 

    Although in the above I chiefly referred to the properties of the 
muriate of lime, many other possible desiccants exist and could be 
thus applied, including alabaster, amorphous mesoporous magnesite, 
zeolites, silica hydrogel, ferric chloride, polyacrylate of sodium, 
pearl-ash, salt, sugar, silica aerogel, chloride of zinc, oil of vitriol, 
activated charcoal, soda-ash, lye, the bromide or muriate or nitrate of 
lithia, quicklime, oxide of phosphorus, nylon 6, carnallite, chloride or 
sulfate or perchlorate of magnesia, waterglass, infusorial earth, 
cellulose-rich waste plant material such as sawdust and straw, porous 
dehydrogenated hydroxide of alumium, fired clay ceramic, unfired 
clays, other desiccants, and mixtures of the above. 

    Different desiccants have different tradeoffs, and some may not be 
well suited to some uses;  for example, perchlorate of magnesia must 
be regenerated under vacuum, quicklime must be regenerated at the 
inconveniently high temperature of 512°, and the hydration of 
alabaster only produces a temperature rise of some 60° or less.  It’s 
unlikely that muriate of lime is the optimal choice, but I haven’t 
investigated the tradeoffs thoroughly. 

    Muriate of lime can work as an aqueous solution, avoiding the 
massive inconvenience of your lovely pebble bed deliquescing into a 
sticky, solid, impermeable lump, but I suspect that a porous solid mass 
of alabaster may have even better heat transfer properties than the 
aqueous solution of muriate of lime.  And alabaster doesn’t deliquesce;  
at worst it may crack a bit.  As explained in Plaster Foam (p.  449), I 
got a nice porous alabaster biscuit by mixing calcined powdered 
alabaster with baking powder and baking it in a tin in an ordinary 
oven. 

    One of the chief figures of merit here is the price — either per joule 
or per kg of water absorbed.  Other relevant quantitative information 
includes the minimal relative humidity the desiccant can reach, the 
temperature needed to regenerate it, the maximum temperature rise it 
can produce, its water capacity, and its energy capacity.  Relevant 
qualitative information includes whether it is solid or liquid, its 
viscosity if liquid, its tendency to clump if solid (fixable in some cases 
with larnite or similar substances), and its hazards if spilled or inhaled. 

    But let’s look at prices first. 

    Muriate of lime, or oil of lime, has been one of the chief desiccants 
used for centuries, and it is relatively cheap — US$1.60/kg here in 
Argentina, for example, as I noted in Dercuano.  A few other 
candidates approach or excel this price.  Slaked lime sells for 
US$0.12/kg at retail here, and alabaster as the hemihydrate for about 
US$0.40/kg, and the USGS gives its wholesale price as about 
US$8/tonne, thus US$0.008/kg, while giving the various potassa 
products including pearl-ash as closer to US$800/tonne (US$0.80/kg) 
as fertilizer, and soda-ash as US$150/tonne (US$0.15/kg).  Lime is 
calcined from limestone, which the USGS lumps with crushed stone 
in general at US$12/tonne (US$0.012/kg), but the calcining and 
slaking process is a significant cost by comparison.  Raw natural 
zeolites have their wholesale price given as US$50–300/tonne 
(US$0.05-US$0.30/kg), various clays as US$10–140/tonne 
(US$0.01–0.14/kg), and infusorial earth US$310/tonne (US$0.34/kg).  
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The USGS report on magnesia gives no explicit price but it seems to 
be about US$0.70/kg.  For rock salt they say US$60/tonne 
(US$0.06/kg). 

    Waste plant material is often free or of negative cost, but often 
must be treated to stop fire and rot. 

    These bulk minerals, except for pearl-ash and magnesia, have 
wholesale prices in the two orders of magnitude of 
US$0.005-US$0.5/kg.  Probably most industrially-produced 
materials are unable to approach that range, though perhaps a few, 
such as lye, oil of vitriol, and muriate of lime might make it. 

    L29Ah was kind enough to point out that the random Russian 
website opt6.ru offers a tonne of 99.2%-pure muriate of lime for 
21000 rubles;  a ruble is presently US$0.01294 reportedly, so that’s 
US$272/tonne or US$0.272/kg.  If this price is correct, it’s toward 
the high end of the price per kg of the cheap desiccants, and 34× the 
price of calcined alabaster, but it’s still kind of within the range. 

    Using the 408 kJ/kg number from [Muriate of Lime], this price 
works out to 1.5 MJ/$, 666 nanodollars per joule. 

    Alabaster is especially tempting due to its 34 times lower price per 
mass, and also because it doesn’t glom together into a sticky mass 
when you regenerate it, though it can when you hydrate it. 

    Alabaster’s molar mass is 136.14 g/mol anhydrous, 145.15 g/mol as 
hemihydrate, and 172.172 g/mol as dihydrate.  Converting the 
dihydrate back to the hemihydrate is more difficult than with muriate 
of lime, requiring 100°–150°, and conversion back to the anhydrous 
form requires 180°.  Upon hydration it can reportedly reach 60°.  The 
key datum I lack here for comparison is the enthalpy of formation of 
the different hydrated forms. 

    Quicklime is notorious for producing enough heat to boil water 
when rehydrated, and it’s very nearly as cheap as alabaster.  However, 
regenerating it requires inconveniently high temperatures, and it’s 
lethally caustic. 

    Farulla et al. characterize “thermochemical thermal energy storage” 
systems like these as storing 120–250 kWh/t, or 430–900 kJ/kg in SI 
units, much higher than sensible-heat thermal energy storage systems 
at 10–50 kWh/t (36–180 kJ/kg);  but it claims TCTESs also cost 
€8–100/kWh (2500–32000 nanodollars per joule), far more than the 
€0.1-10/kWh (32–3200 n$/J) of sensible TES, identifying these high 
capital costs as a key reason for TCTES’s non-adoption. 

    It seems plausible that one of the materials described above could 
deliver low capital costs, in the range of sensible TES costs or even 
lower.  Farulla et al.  are not unaware of these materials, and they even 
survey a number of published results from prototypes using them, as 
well as results designed for both heating and cooling.  However, it 
seems that a great deal of research in the field has been focused on 
somewhat more exotic and therefore costly materials such as bromide 
of strontia, synthetic zeolites, muriate of lithia or baryta, and so on.  I 
need to finish reading their paper. 

Efficiency and comparison with electrical 
alternatives 
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    Wholesale photovoltaic modules at 15¢ per peak watt at 20% 
capacity factor cost US$0.75 per average watt, which is 86.4 kJ per 
day.  At a 6% annual discount rate an average watt amounts to 30.6 
net present MJ in the first year, 59.3 in the first two years, 135 in the 
first five years, 235 MJ in the first ten years, 362 MJ in the first 20, 487 
MJ in the first 50, asymptoting to 509.7 MJ at infinite time.  (That is, 
although it produces 30.6 MJ per year, the 1580 MJ it produces in its 
first 50 years are only worth 487 present MJ to us at a 6% discount 
rate.) So photovoltaic modules work out to 680 MJ per US$ (at 6% 
APY). 

    If your thermochemical energy storage system can store 10 MJ per 
US$, which Farulla et al. say that current TCES systems don’t come 
close to, how does that compare?  How about the 2500–32000 
nanodollars per joule (0.03–0.4 MJ/$, US$2.50–32/MJ) reported by 
Farulla et al.?  How do you measure energy storage against energy 
generation? 

    Well, they aren’t really commensurable.  No amount of 
photovoltaic modules on your roof will allow you to run the air 
conditioner at night, and no amount of calcium chloride will heat or 
cool your house if it’s all fully hydrated;  the TCES as such trades off 
against batteries, not solar panels.  And it doesn’t trade off against all 
uses of batteries.  And it also trades off somewhat against other 
climate control systems like vapor-compression refrigerators. 

    But when I was looking at balcony batteries a couple of years ago in 
Dercuano, lead-acid batteries cost US$23-73/MJ, which I don’t think 
has changed much (though possibly lithium-ion will surpass them in a 
year or two).  In crude terms this is about 1 to 700 times more 
expensive than a TCES, depending on whether you rely on Farulla et 
al.’s reports on existing prototype systems or my optimistic 
projections from possibly impractical but very cheap desiccant 
materials.  But that doesn’t include the cost of the vapor-compression 
air conditioning system itself. 

    Energy storage is strongly complementary, in the economic sense, 
to solar energy, and this is responsible for much of the interest in 
thermal energy storage systems in recent years.  The cheaper TES is, 
the more valuable solar modules become;  the cheaper solar modules 
become, the more valuable TES is.  TES can’t fulfill all of the energy 
storage needs for intermittent solar and wind energy, because it has 
very poor round-trip efficiency for mechanical energy, light, and so 
on.  So batteries will still be needed. 

    (Still, for small low-power things like clocks and cellphones, TES 
might be a useful backup power source, perhaps using a 
thermoelectric generator or a Stirling engine.) 

    However, it’s very likely that you can get more solar energy for 
your TES by gathering solar thermal energy than by gathering 
electrical energy with solar cells with an efficiency of 16% or 21%.  
And you can do it with collectors that are cheaper than photovoltaic 
modules, which still cost US$0.15 per peak watt.  For example, you 
can use 1 m × 1 m × 19 mm boxes made of thin styrofoam, open at 
the top (one of the large faces), painted black on the inside, with 
plastic wrap wrapped around them to let light in, and smeared with a 
“chemical sunscreen” to slow UV damage.  The airspace within 



permits air to be blown through there, using a couple of holes in the 
back of the box, to harvest the heat.  I think these will be about 30% 
efficient.  The material would cost about US$20 for a 4’×8’ sheet (3.0 
m² in non-medieval units), so that’s about 1000W peak for US$20, 
US$0.02 per peak watt. 

    (Rather than plastic wrap, you might be able to use UV-blocking 
polyester film intended for outdoor use.) 

    So solar collectors for a TES can probably be about a factor of 5 or 
10 cheaper than photovoltaic modules. 

Scaling down 

    One of the great advantages of thermochemical energy storage is 
that you don’t need to insulate it.  This, in turn, means that you can 
scale it down from building-sized systems to very small systems, and 
the stored energy has a shelf life of potentially years;  “self-heating 
cans” have used muriate of lime for many years, for example. 

    You could thus scale these systems down to a wearable size, 
providing personal climate control. 

Innovation considerations 

    If this is such an advantageous technology, why hasn’t it been 
adopted previously?  The humans have used fire to warm themselves 
for at least a million years.  The calcining of alabaster goes back at 
least to Old Kingdom Egypt, the calcining of lime even further, to 
the Neolithic, before Çatal Höyük.  Tubes of dried clay for guiding 
air date back, I think, at least to the beginning of iron smelting in the 
Hittite empire 4000 years ago.  Evaporative cooling via the qanat goes 
back 3000 years in Iran.  Texts purporting to be from 1200 years ago, 
by Jabir ibn Hayyan (“Geber”), described the “spirits of salt”, and 
undoubtedly observed their action on chalk, producing bubbling and 
oil of lime.  Émilie du Châtelet’s discovery of energy was published in 
1756, after Leibniz’s pioneering efforts in the 1670s and 1680s.  
Thermodynamics was well-developed in the 19th century.  Solvay 
began mass production of soda ash, with a byproduct of muriate of 
lime, in 1864.  Gibbs described his “available energy” in 1873.  
Refrigeration and air conditioning was developed in the late 1800s, 
and the hazards of leaks of toxic and caustic refrigerants were such a 
major issue that Einstein and Szílárd patented their 
ammonia-absorption refrigerator without moving parts in 1930, a 
variant of the 1922 Munters–von Platen design, and Electrolux 
immediately put it into production;  the same year, Midgley famously 
snuffed a candle with a breath of dichlorodifluoromethane, which 
he’d developed for the same humanitarian reasons, and which became 
the most popular refrigerant for decades.  Harold Ellingham published 
his “Ellingham diagram” in 1944. 

    So the materials needed for thermochemical energy storage systems 
have been not only available but abundant for centuries, if not 
millennia;  the theory necessary to design them for a century and a 
half;  and they fulfill needs that have been universal human 
experiences for a hundred times longer than civilizations have existed.  
So, if these systems are so advantageous, why have they not been 
applied widely? 
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    In the particular case of sewage, given the depth of mind-crippling 
tabus on the subject, I don’t think we need much reason for slow 
diffusion of shit-handling innovations;  the US still hasn’t adopted 
bidets, for example.  Squat toilets like the traditional Turkish and 
Japanese designs help greatly with constipation.  The US has a huge 
constipation problem.  Nevertheless, diffusion of squat toilets is 
actually negative, because aping the less-functional English design is 
more prestigious than using a design that works better anatomically.  
Garbage suffers from similar mind-crippling tabus, but they are less 
severe, and indeed garbage-handling practices have changed 
dramatically and rapidly in past decades. 

    So, in the case of garbage, but especially in the case of food 
preparation, air conditioning, and heating, I think we need a better 
explanation.  There are some commercial installations using desiccant 
air conditioners, dating back to the 1980s in some cases, but it is not a 
widely adopted technology.  There are even a few cases of using 
thermochemical energy storage for both heating and cooling in this 
way, though I haven’t seen previous suggestions of using a single 
thermochemical energy store for so many different purposes:  space 
heating, heat for cooking, air conditioning, air dehumidification, food 
refrigeration, food dehydration, garbage dehydration, and sewage 
dehydration. 

    Moreover, many of the deployed and research systems use 
expensive desiccants such as lithium bromide;  I can’t find any 
trustworthy sources on its cost, but I doubt it approaches the 
US$0.27/kg price of muriate of lime or US$0.008/kg of alabaster.  
Lithium carbonate costs US$13/kg and is 18.8% lithium, making the 
lithium cost US$69/kg.  Bromine costs US$2.19/kg.  Lithium 
bromide is 8% lithium and 92% bromine.  This suggests a cost of 
US$5.50 for the lithium and US$2 for the bromine, per kg of lithium 
bromide, thus US$7.50. 

    I tentatively suggest that perhaps what I am proposing in this note 
has not been tried, though I cannot imagine why not. 

A complement to compressed air?  Maybe 

    Compressed air has been a widely used temporary storage form for 
energy for over half a century;  air-powered tools are common in auto 
shops all over the world, and the non-electric Amish in particular 
have developed quite an economy of compressing air with windmills, 
shipping compressed air around in tanker cars, storing it in enormous 
underground tanks, and so on, with the objective of easing their work 
without becoming dependent on the “English” for electricity. 

    One of the disadvantages of compressed air energy storage is that, 
when air is adiabatically compressed, much of the compression energy 
is lost as heat rather than being stored in the compressed gas.  Another 
is that when room-temperature compressed air expands, it cools, and 
this cooling can condense water out of it, which tends to cause various 
kinds of problems in compressed-air-powered and 
compressed-air-handling machinery. 

    The solution, in theory, is isothermal compressed-air energy 
storage, where the air is cooled to maintain a constant temperature as 
it is being compressed, and heated back up as it is being decompressed. 
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    Doing this on a small scale is difficult, because doing it the normal 
way requires access to some kind of “heat absorbing and releasing 
structure” connected to a huge heat reservoir, such as a lake or the 
ocean, to keep its temperature change minimal.  But phase-change 
and thermochemical energy-storage systems have the possibility of 
absorbing and later releasing massive amounts of heat without 
changing their temperatures;  thermochemical systems additionally 
have the possibility of releasing the heat at a lower temperature than it 
was initially provided.  This reheating not only improves the 
efficiency of the energy storage device;  it also avoids condensation.
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Bluepill aspirations
Kragen Javier Sitaker, 02020-10-30 (updated 02020-11-01) 
(9 minutes)

    So I got a Blue Pill for US$4.  This one has a CS32 rather than an 
STM32 in it;  it says CKS32F 104C8T6 NMCM4 2013 A or 
something on it.  Later today the ST-Link should arrive.  All I know 
so far is that the board weighs 6 g, measures 22 mm × 52 mm without 
the pin headers soldered, and lights its power LED when plugged in 
over USB.  So I am currently in that delicious limbo where 
everything is possible and nothing is yet difficult. 

    (Aha, now my ST-Link has arrived, and the board powers up with 
it correctly.  The programming connector is labeled with reasonable 
clarity 3V3 SWIO SWCLK GND, matching 8 of the 10 pins on the 
ST-Link;  missing are 5.5V, RST, and SWIO.) 

CS32 

    People have reported success flashing these with openocd after 
tweaking its config a bit;  they also mention that the GD32 mirrors 
Flash into RAM, presumably at startup, which presumably causes 
slower startup but apparently faster run speed and maybe lower power 
consumption;  the CKS part may or may not be the same.  The CKS 
chip supposedly has 64K of RAM instead of 20K (or 40K?), which 
might be a plus.  Also, 128K of Flash instead of 64K.  But then others 
in that thread reported that it really only has 20K.  And so does the 
datasheet. 

    It was hard to find the Chinese datasheet but I did finally find it in 
an stm32duino forum thread.  Another page of the forum thread has 
another datasheet.  It seems to have two 12-bit 1 Msps ADCs, some 
kind of DAC including an LFSR, 2 I²C channels, 2 18Mbps SPI 
channels, CAN (!), 3 USARTs, JTAG, USB, an RTC, etc. (I’m not 
sure the STM32 part has all of these!) Officially the clock only goes 
up to 72 MHz. 

    Apparently you can run it at 80 MHz, though not the 120MHz or 
128MHz of the GD32 parts.  User Macbeth says they couldn’t get the 
stm32duino bootloaders to work on their possibly CKS chips (which 
claim to be brand-name STM32) but could get mecrisp to work: 
I figured these dodgy STM32s just have a crippled USB port but then I flashed 
‘mecrisp’ which is an implementation of Forth running over its own USB serial 
and it works perfectly!  Very odd.  

    Maybe it would be worthwhile to look at the boot ROM to 
compare it to ST’s with $ st-flash read system.bin 0x1ffff000 2048 using 
the st-flash program from Arduino’s STM32Tools.  User ag123 says 
the bootloader matches ST’s. 

    Aha, I measured R10;  it’s 1.5kΩ as it ought to be, not 10kΩ as in 
the original Blue Pill design.  Hopefully the silkscreen hasn’t been 
switched around, so that R10 is the correct R10. 

Possible things to try 

    Clearly the first thing to do is to try to get it to blink an LED.  
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Then it would be nice to get a USB bootloader programmed to see if 
that works, so that I can program it (with the Arduino IDE?) without 
the ST-Link dongle. 

    The next thing to try is probably something with audio:  generate 
some bytebeat and try to feed it into my microphone port (or this 
speaker’s audio in) with a hacked cable.  Hmm, better find those 
audio plugs I scavenged...  although alligator clips or copper wire 
twisted around a phono plug would work too.  It has real DACs, too, 
not just PWM. 

    Next thing is probably hooking up these potentiometers I have 
here as analog inputs. 

    Next thing after that is to get a voltmeter running with analog 
inputs, limiting diodes, and a voltage divider or three.  (Though see 
Multimeter metrology (p.  498).) If USB serial is working then I can 
transmit the result over USB serial.  Otherwise I’ll be limited to 
blinking an LED or doing speech synthesis or something.  Or a 
modem. 

    Being able to run it off two AAA (or AA or C) cells, or a CR2032, 
would be pretty handy.  I should try that.  In theory it should be good 
from 1.8V to 3.6V. 

    From voltmeters, the next steps branch out:  oscilloscope-style data 
acquisition at 1 Msps, ohmmeter, milliammeter, and thermometer, 
using some random component as the temperature sensor.  In 
particular I want to calibrate it to use these quartz-halogen lightbulbs 
as temperature sensors, but I suspect that at room temperature.  
Averaging ADC readings over 16 seconds should in theory permit 
adding an extra 12 bits of precision to the ADC, giving us 24 bits of 
precision.  But what is the temperature sensor being measured against? 

    As Weston said in his Weston-cell patent, a voltage standard that 
varies with temperature (like the Daniell cell or the Clark cell) is 
dependent on the thermometer for its precision. 

    I think it has some kind of ability to write to Flash under program 
control.  This should enable me to tell whether it was turned on while 
disconnected from USB. 

    I’d like to then see about using scavenged LEDs as light sensors and 
photocells.  Three or four LEDs in series ought to be enough to 
provide it with 5V which can then get regulated down, but this 
probably involves disconnecting the power LED.  (Too bad it’s in the 
wrong direction to use as a photocell...) 

    It would be good to verify that the part really does have 128K of 
working Flash;  some forum users report only 64K. 

    Some kind of component ID thing?  Like an LCR meter.  This is 
pretty similar to complex impedance sensing, which would be useful 
for identifying materials.  Touch sensing and electrical impedance 
tomography seem like promising next directions to move in. 

    A logging wattmeter should be pretty simple, but will need 
multiple boards.  And megohm resistors. 

    All of the above (except generating audio and blinking an LED) is 
just measurement exercises.  Although those are useful, some 
actuation would be super helpful too.  The simplest thing is probably 



turning a motor (or an ATX power supply?) on and off with a 
transistor.  Maybe I can use a triac or something to put a timer on the 
water pump. 

    Of course the noblest of all actuators is the spark, capable of 
marking metal, perforating plastic, and deodorizing apartments.  The 
spark can also sense;  in particular it can detect flame.  The board 
ought to be able to time such events to within ±6 ns. 

    Given some kind of temperature sensor and heating element, it 
ought to be able to do PID control of temperature.  These 240V 70W 
quartz-halogen lightbulbs are under 150Ω at room temperature, over 
180Ω at 100°, and (240V)²/70W gives 822Ω at operating temperature;  
cf. Thermistors (p.  427).  Although XXX I may have miscalculated 
something in there...  anyway, if the resistance stays the same, at 83 
mA I should be able to get a watt out of them, 120 mA for 2W, 190 
mA for 5W, 260 mA for 10W, 373 mA for 20W.  At 3.3 V the most I 
can get is 76 mW, but 12 V should be able to give 1 W. 

    Dimming some colored LEDs also seems promising. 

    If I can rig up some kind of weighing scale, maybe using capacitive 
sensing, I ought to be able to measure materials more precisely. 

    A couple of electronic gadgets I’ve been putting off doing anything 
with are this PAL acoustic delay line and these linear servos from 
inkjets. 

    Speaking of PAL, bitbanging PAL or NTSC would be a pretty 
awesome thing to do, although in practice probably bitbanging VGA 
would be easier and more useful. 

    Another extremely awesome thing to do with it would be to get it 
to be a USB HID so that it can type on my computer.
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Multimeter metrology
Kragen Javier Sitaker, 02020-11-01 (updated 02020-11-27) 
(23 minutes)

    A standard TL431 voltage reference is only accurate to ±0.5% at 
best, more often ±2%.  TI’s REF5050 is accurate to ±0.1% or ±0.05% 
in the “high-grade” version, with 3 ppm/K temperature drift and 50 
ppm/1000 hours, but those cost US$5–10.  The internal voltage 
reference in the STMF103C8 used in many Blue Pill boards is 
specified as 1.16–1.26V over the -40° to 105° range, an error of about 
±4.2%, with a temperature coefficient of 100 ppm/K.  The datasheet 
for the CKS32 in the Blue Pill I got says the same thing in §5.3.4 
内置的参照电压:  its VREFINT (内置参照电压) goes from 1.16V 
(最小值) to 1.26V (最大值). 

    This is pretty shitty fucking accuracy.  4.2% is 42000 ppm.  For 
measuring temperature with a tungsten wire near room temperature, 
a ±4.2% error is a ±10° error, and it gets larger at higher temperatures.  
Using a standard TL431 ripped out of some scrapped power supply we 
can cut that error to 19000 ppm or so, but that’s still nothing to write 
home about.  How the fuck are you supposed to build a fucking 
voltmeter?  Or anything that depends on voltage for accuracy? 

    By contrast, the quartz crystal on the Blue Pill is 8 MHz with, 
probably, an error of about 10 ppm, common for watch crystals.  The 
damn chip can measure voltages to 1.5 digits of accuracy and time to 5 
digits of accuracy, 4200 times better.  (And it can count electrical 
pulses to a lot more accuracy than that, to the point that the concept 
of tolerance stops being meaningful.) We can get down to probably 
1 ppm timing error if we can measure the temperature to compensate, 
0.1 ppm if we can control it.  (And nowadays we can reference to 
GPS.) 

    Like, something similar to the open-source Transistortester AVR 
by Karl-Heinz Kübbeler and Markus Frejek, now commonly known 
as the “M328 Transistor Tester” (Instructables) (English manual) or 
“LCR TC1 ESR meter”, which sells for US$38 here in Argentina or 
US$13 in the US.  But with better accuracy, precision, and 
repeatability, and ideally without any bought components. 

    The 0.1%-precision LM4040CIM3X-20-NOPB voltage reference 
costs US$1.67 from Mouser. 

How good are multimeters usually? 
Some random YouChube video from TheSignalPath (#175 (ⅱ)) found about 25 
ppm of voltage difference between his not-recently-calibrated Fluke 744 
Documenting Process Calibrator and his not-recently-calibrated 8-digit Keithley 
DMM 7510, so tens of ppm is achievable in ordinary electronics labs, but expensive;  
he apologized for the lack of calibration, so apparently he was expecting better.  His 
resistance error was worse, 4600 ppm at 100Ω, 400 ppm at 1kΩ, 20 ppm at 10kΩ;  
this pattern makes me suspect that this error was due to not using a 4-wire 
measurement.  His current error was about 250 ppm.  Testing the 744 against its 
own meters he instead got 400 ppm emf error and 500 ppm resistance error;  he 
neglected to thus test its current measurement capability.  

    I tested a shitty digital multimeter from 2016, US$6 from the 
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hardware store, against another similar meter to get an idea of how 
bad they are, and also how aggressive they are.  It seems like the old 
multimeter’s diode-testing range uses up to 1.4 mA at up to 2.72 volts.  
Their diode test readings differ by about 2%, resistance by about .03%, 
voltage by about .3%.  pretty impressive metrology for US$6.  These 
are lower bounds on their actual errors, but they’re unlikely to be 
conservative by more than an order of magnitude or so. 

Canceling out voltage errors in 
measurements 

    Ratiometric voltage measurements with the dual ADCs ought to be 
a lot more precise, and probably limited only by the 12-bit bit depth 
and whatever the noise is.  So, for example, if we run an exactly 
known current through a tungsten lightbulb and measure the voltage, 
we’re subject to that shitty ±4.2% precision;  but if we put some 
unknown voltage across a series combination of the lightbulb and an 
exactly known resistance, we can get a much higher-precision 
measurement. 

Resistance standards 

    How do we get an even approximately known resistance, though?  
Typical resistors used to be ±20%, now they’re ±1%, but nothing 
close to 1 ppm.  On MercadoLibre we can buy a temperature standard 
resistance made of Weston’s manganin, intended for converting 
precise voltage measurements to current measurements or vice versa, 
for US$20.  At 25° manganin’s temperature coefficient of resistance 
crosses zero, having fallen from 6 ppm/K at 12° on its way to -42 
ppm/K at 100° and -52 ppm/K at 250°, before crossing zero again at 
475°.  This suggests that a ±10° error of temperature measurement 
around 25° would give you about a ±5 ppm error of resistance.  
However, these resistors are not so precisely made, having a ±0.5% 
error, 5000 ppm;  one wonders if they are correctly annealed or even 
truly made of manganin.  Better precision calibration resistors are 
available. 

    A better option might be a known capacitance;  you can easily 
measure the RC time constant as long as your voltage reference isn’t 
too noisy over the short time involved.  C = εA/d, so it’s 
straightforward to construct a capacitor with a known capacitance;  
however, if we want its capacitance to be known to within, say, 
10 ppm, we need less than 10 ppm error on all of ε, A, and d.  A is 
relatively easy:  a 1 m x 1 m square of foil is a square meter to within 
10 ppm if its width and height are each accurate to within 7 ppm (i.e., 
an average of 7 μm) and it’s square to within cos⁻¹(1-10ppm), which is 
about 15 minutes of arc.  Getting d accurate to within 10 ppm is more 
difficult;  if the dielectric is intended to be 100 microns, its average 
thickness must be correct to within 1 nm.  But getting ε accurate to 
within 10 ppm is feasible in only one way:  vacuum.  Even the 
permittivity of air is 590 ppm higher than vacuum, and it varies 
according to pressure and temperature.  Common solid dielectrics are 
hopeless;  WP gives polypropylene’s relative permittivity as 
“2.2–2.36”, i.e. ±35000 ppm.  A vacuum capacitor of these 
dimensions would have a capacitance of 88.5419 nF. 

https://en.wikipedia.org/wiki/Relative_permittivity


Oversampling 

    Every time we quadruple the measurement time, we add another 
bit of precision, because the variances of Gaussian noise combine 
additively.  So the sum of four measurements has four times the 
variance, thus twice the standard deviation, as a single measurement, 
and their average thus has half the standard deviation.  The Blue Pill’s 
ADCs run at 1Msps, so if we take 1048576 samples, 1.05 seconds’ 
worth, we can get a 22-bit-precision reading, which has a 
quantization error of ±0.125 ppm.  Probably averaging 65536 or 32768 
samples is a better tradeoff, giving you more like 1 ppm error in 
exchange for much faster data acquisition. 

Hamer’s monograph on Clark, Daniell, and 
mostly Weston cells 

    In despair, I turned to a shitty scan of NBS Monograph 84, from 
1965-12-15, titled, “Standard Cells:  Their Construction, 
Maintenance, and Characteristics”, by one Walter J.  Hamer.  He 
explains to some extent the construction of the Daniell cell, the Clark 
cell, and the Weston cell, which served as laboratory references from 
1836 until 1990.  A Daniell cell, using copper, zinc, and their sulfates, 
is relatively straightforward to construct, but drifts rapidly over time 
owing to the mixing of the sulfates, depends strongly on the purity of 
the copper and the zinc, and has a horrific temperature coefficient.  
The Weston cell was the first to have a roughly zero temperature 
coefficient, which it achieves by the use of cadmium salts, which 
unfortunately are rather difficult for me to procure. 

    Hamer also goes into the history of other metrological standards for 
voltage (a word he disdains to use, preferring “emf”) and other 
electromagnetic units.  He points out that in theory you can use an 
absolute electrometer as a standard, using the permittivity of free 
space and precise measures of current, but that this gives an error on 
the order of 100 ppm.  (He doesn’t go into detail, but it turns out this 
is a matter of charging a known capacitance, constructed as above, to 
a known voltage or charge and measuring the resulting force;  one 
version is an electrostatic balance where the electrostatic repulsion 
between two plates is countered by a sufficiently precise weight to 
return them to their original position.) 
I suspect that you could construct a microscopic absolute electrometer that would 
give you much more precise readings;  all the absolute electrometers I can find in 
the literature were on the order of 100 mm in diameter with on the order of 10 mm 
plate separation, and so involve weights on the order of 10 N but electrical forces 
on the order of 10 mN when operated at a few kV, and are additionally tricky to 
operate under vacuum.  If you were to scale it down by a factor of 10,000, you 
would have capacitors with 10-μm-diameter plates separated by 1 μm, weighing on 
the order of 1 ng;  with those precise dimensions it would be 0.88541878 
femtofarads.  But what would the force be? 
    In a parallel-plate capacitor, C = εA/d = q/V = 2E/V², so the capacitance varies 
directly with the plate area, inversely with the plate spacing, inversely with the 
voltage at a fixed charge, directly with the energy at a fixed voltage, and inversely 
with the squared voltage at a fixed energy.  If you were to start with the plates in 
contact (but miraculously not discharging;  maybe they’re triboelectric insulators 
like packing tape and its adhesive) the capacitance would be infinite, so the voltage 
would be zero.  If you then pull the plates apart to some distance, you have to add 
some energy as the capacitance starts to fall and the voltage correspondingly to rise, 
proportional to the distance. 

https://en.wikisource.org/wiki/1911_Encyclop�dia_Britannica/Electrometer
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    Now, if we measure dE/dd at some distance then we get the force between the 
plates there.  E = ½CV², and as we pull the plates apart at a fixed charge the 
capacitance drops (proportional to distance) and the voltage rises (also proportional 
to distance):  q/V = εA/d, so V = qd/εA, so V² = q²d²/ε²A², and E = ½CV² = ½εAq
²d²/ε²A²d = ½dq²/εA.  So that means the force between the plates is constant:  dE/d
d = ½q²/εA regardless of the distance (as long as the parallel-plate approximation is 
valid).  So for example if we charge this cap to 1 kV it would have 0.88541878 
picocoulombs on it, producing a force of 0.88541878 millinewtons. 
    Actually you can’t charge it up that far because after 20–40 MV/m you get field 
emission across the vacuum which limits you to 20–40 V/μm.  Say you charge it to 
10 V instead.  Now it’s only 88.541878 nanonewtons. 
    That doesn’t sound like a whole lot, but it’s 8000 times larger than its weight 
instead of a thousand times less, so you could easily make it overwhelmingly the 
largest force on the capacitor.  It’s a lot less than an atmosphere, though.  

    As a standard of resistance, he describes the construction of an 
air-core inductor of known dimensions and thus computable 
inductance, and the measurement of its E–I relationship at different 
frequencies to obtain a precise standard for the ohm;  but he describes 
the Wenner method, which seems to be some kind of differential 
measurement that I don’t fully understand, getting a ±5 ppm 
precision.  He also mentions using the rotation of a magnet in a coil, 
or a coil in the earth’s magnetic field.  (The quantized Hall effect is 
the modern absolute standard since 1990.) 

    He says that using computable capacitors (like my microscopic 
thought experiment above) to check the ohm measure is “less 
involved” and “may be used [text lost] an annual basis” to check 
resistance standards against absolute units in preference to the 
inductive approach.  (He also says they normally used 1-pF 
computable capacitors rather than the 88000-pF jobby I used above 
for calculations.) “Thompson-Lampard theorem” seems to be the key 
term here. 

    Given the possibility of measuring a computable inductor or 
computable capacitor with a microcontroller, I’d think that it would 
be easier to do the measurements in the time domain rather than the 
frequency domain. 

    Note that a precise standard of resistance, or a precise standard of 
both time and either inductance or capacitance, allows you 
immediately to convert between precise current and precise voltage.  
Time is, as I said, easy enough now. 

    Hamer then explains that an absolute standard of current is 
available in the form of a current balance, in which you measure the 
electromagnetic repulsion or attraction between two conductors 
against a standard weight, and of course this is the standard definition 
of the ampere;  he says this is about ±6 ppm.  The method he 
describes requires some kind of measurement over time, but I think 
current balances are more commonly used in a quasistatic fashion, in 
which after adding a mass, the current is increased until repulsion 
returns the mass to its original position, thus requiring only 
measurement of length and mass to calibrate.  And I think that in fact 
they are commonly used nowadays for measuring masses in terms of 
known currents rather than vice versa. 

    Force balances have the stunning metrological advantage that the 
difference in force produces an acceleration, the acceleration 
integrated over time produces a velocity, and the velocity integrated 
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over time produces a displacement.  So even a very small force 
imbalance can produce an easily visible displacement, particularly if 
you use it to deflect a mirror reflecting a laser pointer across the room. 

    It’s feasible, though not an everyday occurrence, to get weights that 
are calibrated to within 1 ppm, though care must be taken to 
compensate for local gravitational fields and atmospheric pressure and 
humidity.  Atmospheric pressure can diminish by as much as 14% in 
hurricanes, and of course varies by much more when you go up in 
elevation or underwater;  a 100 g steel weight that occupies 
12.6582 mℓ under some conditions is displacing about 15 mg of air, 
diminishing its apparent weight by 150 ppm.  This can decrease by 
2.5% from humidity or 14% from weather-related pressure variation, 
causing a deviation of some 20 ppm.  Thermal expansion and 
contraction of the weights is not a concern;  the 36 ppm/K 
volumetric expansion coefficient of steel means that the 
above-described weight will occupy 12.6628 mℓ at a temperature 10° 
higher, displacing about 5 μg more of air, lowering its apparent 
weight by 5 μg or 0.05 ppm. 

    Joe blocks, similarly, can measure lengths on the order of 100 mm 
down to a precision of 0.1 μm or so, though they expand and contract 
by 12 ppm/K, thus requiring 80 mK control to reach 1 ppm. 

    The Clark cell, Hamer says, was adopted in 1893 as 1.434 volts at 
15°, though the modern value is 1.4328, and its temperature 
coefficient is -1.15mV/K.  It uses a zinc or zinc amalgam anode, a 
mercury cathode, and a saturated aqueous electrolyte of zinc sulfate, 
plus mercurous sulfate paste as a depolarizer, to prevent hydrogen 
buildup on the plate (converting it instead into oil of vitriol;  
removing impurities in the mercurous sulfate lowered the voltage by 
another 300 μV).  This would probably also be challenging for me to 
fabricate.  We can estimate that a ±10° temperature error would 
result in a ±11.5mV error, about ±8000 ppm, which is why the 
Weston cell was adopted as the new standard in 1908. 

    The Weston cell has a temperature coefficient of about 41 ppm/K, 
substantially better than the 800 ppm/K given above for the Clark 
cell. 

    We can see why the NBS controlled the temperature of its 
Weston-cell room to within 1°, the temperature of its oil baths for 
the Weston cells to within 10 mK, and the oil baths’ temperature 
during measurements to within 1 mK.  Such measures applied even to 
the Clark cell would have reduced its temperature-induced voltage 
error to some 0.8 ppm, at which point other errors would surely 
dominate. 

Calibrating voltage by measuring power in 
a bomb calorimeter 

    It occurs to me that power might be a useful way to calibrate 
voltage given a known current or especially a known resistance, 
because if you can measure the power of a known resistance to within 
1000 ppm, you know the voltage to within 1 ppm;  moreover, ΔT = ∫
P dt / Cth, so you get the same kind of integration effect as with force 
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balances, but only to the first order, not the second order.  Somewhat 
surprisingly, although specific heats vary with temperature, some are 
in fact known to the required precision;  for example, according to 
definitions.units, the energy to raise a gram of water from 14.5° to 
15.5° is 4.18580 J, the energy to raise it from 19.5° to 20.5° is 4.18190, 
and the energy to raise it from 0° to 100° averages 4.19002 per degree.  
So you could imagine, for example, heating 1000 kg (±1 kg) of 
very-well-insulated water by applying an unknown voltage to a 
known resistance (±1 ppm) from 0° to 100° (each ±10 mK) and 
measuring the time required (±1000 ppm), and thus getting a 
measurement of power to a precision of 1000 ppm, and thus 
measuring the voltage to 1 ppm.  The imprecision of the specific-heat 
number only adds about 1.3 ppm to the power imprecision, and thus 
1.7 parts per trillion to the voltage imprecision. 

    XXX hmm, maybe I screwed up that resistance calculation too? 

    XXX all of this stuff about calculating from power is based on a 
wrong logic step.  1000 ppm power error gives you 500 ppm voltage 
error (499.9 to be exact), not 1 ppm. 

    The main sources of imprecision in such an experiment would 
seem to be the insulation of the water, which would have to leak less 
than 0.4 joules during the experiment, and the original measurement 
of the resistance. 

Computable inductors are easier to isolate 
from the environment 

    Which brings us back to the resistance-measurement problem.  It 
occurs to me that it a computable inductor might be a more precise 
way to measure a resistance, particularly if it can be made very small 
in physical dimensions so that its magnetic dipole does not impinge on 
materials with a substantial permeability;  wood’s, for example, is 0.43 
ppm higher than the vacuum, a situation three orders of magnitude 
more promising than the corresponding situation with capacitors, and 
teflon’s is even closer (how much closer is not known). 

Differential measurement of computable 
capacitors or inductors 

    A different tack might be to use some kind of differential 
measurement to precisely calibrate the dielectric constant or 
permeability of some material whose presence cannot be avoided but 
whose quantity can be varied.  Operating the same air-gap capacitor 
at various air pressures, for example, might enable you to extrapolate 
its capacitance at hard vacuum, without having to actually produce 
100-mPa vacuums. 

Sensors 

    All these “sources of error” can equally well be seen as “observable 
variables”.  The only difficulty is untangling them.  If your capacitor’s 
resonant frequency (with a given coil) varies linearly with the air 
pressure, then by measuring that resonant frequency with 1 ppm 
accuracy, you can measure the air pressure with 1-ppm accuracy.  If it 
also varies dramatically with the air’s moisture content, well, 
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congratulations, you have a moisture sensor (p.  562) too, as long as 
you have some other way to sense air pressure that varies differently 
with humidity.  (Inversely, ideally, or failing that, not at all.) 
Everything varies with temperature, but if some things vary more 
than others and you can keep it at the same temperature, you can 
measure the temperature.  If you find something that varies a lot with 
temperature, maybe like the leakage current in a Schottky, you have a 
very precise temperature sensor, which you can use to cancel out 
temperature effects on other things, as long as you can characterize 
them.  Force of gravity makes your watch crystal run faster when it’s 
sideways?  Great, kid, you gotcherself a MEMS accelerometer that 
costs 25¢. 

A photoelectric-effect voltage standard? 

    Can we use light of a precisely known color — a low-pressure 
sodium line, for example — to produce photoelectrons with a 
precisely known energy, and thus a photocell with a precisely known 
cutoff potential?  Unfortunately the work function of the cathode 
material is subtracted from that energy, and this depends on the purity 
(and identity, and crystal grain orientation) of the surface material, 
and the temperature also affects the cutoff potential slightly.  Typical 
variations between differently prepared samples of the same element 
are ±10%. 

    Still, I suspect this might be a feasible way to get some sort of 
voltage standard, even if not a very good one. 

    It might be possible to precisely measure aging-stable 
photoemission in air if you use a metal with a sufficiently conductive 
and nonhygroscopic oxide, such as zinc. 

    You also get photoelectric emission inside solid-state 
semiconductor junctions;  that’s how photodiodes work.  However, I 
suspect the cutoff voltage for this solid-state photocurrent may be 
fuzzier, just because of the messy nature of condensed matter.
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Guide to finding datasheets and 
avoiding malicious datasheet SEO 
sites
Kragen Javier Sitaker, 02020-11-02 (updated 02020-12-22) 
(7 minutes) 

    Getting datasheets used to be easier, but it’s gotten harder on the 
modern web due to SEO scum.  Google is almost useless.  
https://yandex.ru/ gives much better results for datasheet searches.  
(Compare the results for searching [bp2842 datasheet] on the two 
engines:  Yandex gives you datasheets for the TI TL2842BP, which 
may be a slightly wrong chip, but Google gives you random bullshit.  
The term “Даташит” may be helpful,) However, you run into 
CAPTCHAs occasionally on Yandex.  For non-obsolete parts, 
Digi-Key is often a better source.  Still, though, you need to blacklist 
some providers. 

    Yandex puts a link saying “pdf Посмотреть” after search results 
that actually point to PDFs.  Do not follow this link;  it goes to 
docviewer.yandex.ru.  But it does allow you to distinguish PDF links 
from fake links.  (Except that the SEO scum sometimes generate fake 
PDFs.) 

    Most of the sites mentioned have their own search engines. 

    Octopart has its own search engine, and it’s useful if you want to 
buy things, and it does provide datasheet links, but for example 
searching for bp2812 on Octopart gives you sealed lead-acid batteries.  
With a datasheet, mind you.  Searching for “c3205” (the marking on 
the common 1990s 2SC3205 transistor) similarly produces no useful 
results. 

Known-good sources 

• datasheetspdf.com:  iframe with PDF datasheet accessible from the 
“Download Foobar3103 datasheet” link as well as the “Foobar3103 
datasheet” links in the left column.  C3205, for example. 
• ndatasheet.com:  alternate domain for datasheetspdf.com, saying, 
“The site has been moved :  DatasheetsPDF.com” at the bottom.  
BP2812, for example. 
• chipdip.ru 
• datasheet-pdf.com:  iframe with PDF datasheet in third iframe on 
page.  C2878, for example. Decent filenames too.  Apparently scraped 
from datasheet4u. 
• njr.com:  direct links to PDF show up in Google, but only for their 
products.  NJM4565, for example. 
• Mouser:  datasheet link after “Datasheet:” saying “Foobar3103 
Datasheet (PDF)”, but only for current products.  NJM4565, for 
example. 
• digchip.com:  iframe “ifr data” on page reached from “Download 
Foobar3103 datasheet” link;  BA5936S, for example. 
• datasheet4u.com:  iframe with PDF datasheet on page reached from 
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“PDF Download:  [IMG] Foobar3103 datasheet PDF” link, same as 
datasheetspdf.com.  C3199, for example. 
• kazus.ru:  iframe “datasheet pdf” contains PDF datasheet with 
unreasonably long filename, on page reached by posting “[ 
Foobar3103.PDF (338 Kb) ]” form.  TL2842BP, for example. 
• rlocman.ru:  link “Скачать” to vendor’s site via a redirector.  
TL2842BP, for example. 
• power-on.tech:  links labeled “Datasheet Foobar3103” and “Скачать 
Datasheet Foobar3103” on main page.  UC2842B, for example. 
• chinesechip.com:  PDFs directly linked from Google, albeit with 
goofy GUID firenames.  BP2812, for example. 
• ibselectronics.com:  PDFs linked directly from Yandex, with good 
filenames.  BP2832, for example. 
• onsemi.com:  PDFs linked directly from Yandex and Google, with 
good filenames, but only for ON Semiconductor products.  Note that 
they’ve recently fucked us over by breaking the Fairchild links from 
Digi-Key. 
• st.com:  PDFs linked directly from Google, with good filenames, 
but only for ST products.  With shitty filenames. 
• alltransistors.com:  iframe and “Abrir como PDF” links of the form 
https://alltransistors.com/pdfdatasheet_panasonic/2sd1512_e.pdf on 
“Foobar PDF datasheet” page with URL of form 
https://alltransistors.com/es/pdfview.php?doc=2sd1512_e.pdf&dire=
_panasonic on link of form “2sd1512_e.pdf” on “Foobar .  Datasheet.  
Equivalente.  ...” page linked from Google, for example, 2SD1512. 
• datasheetcafe.com:  link under header “Foobar Datasheet” labeled [ 
FOOBAR.PDF ] linking to link of the form 
http://j5d2v7d7.stackpathcdn.com/wp-content/uploads/2015/09/T
T2140.pdf, for example, TT2140. 
• yoreparo.com:  people post service manuals in the forums. 
• tvsat.com.pl:  datasheets directly linked from Google, e.g., 2SB985 
• datasheet.octopart.com:  datasheets directly linked from Google, 
e.g., 2SA1015 
• pdf.voron.ua:  datasheets directly linked from Google, e.g., 2SA984 
• vishay.com:  datasheets directly linked from Google, but only for 
their products (including old Siliconix parts) 
• nxp.com:  similarly, but including old Freescale and Philips parts;  
e.g. the mc9s08sg32 
• infineon.com:  similarly, but including old International Rectum 
Fryer parts 
• irf.com:  similarly, though they redirect to infineon.com (with a 
working link to the PDF) 
• datasheet.lcsc.com:  similarly, but they carry a huge array of current 
parts, including many even Digi-Key doesn’t;  for example, the 
HT7333  

Broken at the moment 

• ru.datasheetbank.com  

Malicious but sometimes usable if nothing 
else works 

https://www.datasheet4u.com/datasheet-pdf/JSL/C3199/pdf.php?id=91129
http://kazus.ru/datasheets/pdf-data/4298625/TI/TL2842BP.html
https://www.rlocman.ru/datasheet/data.html?di=174635&/TL2842BP
https://www.rlocman.ru/datasheet/data.html?di=174635&/TL2842BP
https://power-on.tech/datasheet-техническая-документация-uc2842b/
http://www.chinesechip.com/files/2015-06/d271a84d-12eb-4cd0-b0bb-3accb73bee96.pdf
http://www.ibselectronics.com/ibsstore/datasheet/BP2832A_EN_DS_Rev.1.0.pdf
https://alltransistors.com/pdfdatasheet_panasonic/2sd1512_e.pdf
https://alltransistors.com/pdfdatasheet_panasonic/2sd1512_e.pdf
https://alltransistors.com/es/pdfview.php?doc=2sd1512_e.pdf&dire=_panasonic
https://alltransistors.com/es/pdfview.php?doc=2sd1512_e.pdf&dire=_panasonic
https://alltransistors.com/es/pdfview.php?doc=2sd1512_e.pdf&dire=_panasonic
https://alltransistors.com/es/transistor.php?transistor=18229
http://j5d2v7d7.stackpathcdn.com/wp-content/uploads/2015/09/TT2140.pdf
http://j5d2v7d7.stackpathcdn.com/wp-content/uploads/2015/09/TT2140.pdf
http://j5d2v7d7.stackpathcdn.com/wp-content/uploads/2015/09/TT2140.pdf
http://www.datasheetcafe.com/tt2140-datasheet-sanyo/
https://www.tvsat.com.pl/pdf/2/2sb985_san.pdf
http://datasheet.octopart.com/2SA1015-Y(F)-Toshiba-datasheet-9586966.pdf
https://pdf.voron.ua/files/pdf/tranzistor/2SA984.pdf
https://www.nxp.com/docs/en/data-sheet/MC9S08SG32.pdf
https://datasheet.lcsc.com/szlcsc/1810171710_Holtek-Semicon-HT7333-A_C21583.pdf
https://datasheet.lcsc.com/szlcsc/1810171710_Holtek-Semicon-HT7333-A_C21583.pdf


• datasheetarchive.com:  iframe with PDF accessible via “PDF” link 
in “PDF” column — but for the wrong part!  A1286, for example.  
However, I did get the right datasheet for CXA1498S. 
• kynix.com:  links to alldatasheet.com, for example for STP7N60FI.  

Blacklist;  never visit (at least if you want the 
datasheet) 

• radiolibrary.ru:  provides lots of information in HTML, in Russian, 
but no datasheet 
• datasheetq.com:  iframe “contentpdf” on “DOWNLOAD” link 
redirects to home page.  A1286, for example. 
• web-bcs.com:  refreshes to page with no PDF;  A1286, for example. 
• datasheet.es:  not only no PDF link, but malicious SEO alt text 
(“Foobar3103 arduino”) on links to PNGs that have had all the text 
removed.  “PDF descargar” link with “download.php?id=foobar” 
points to HTML page containing only malicious cloaking JavaScript 
redirecting you to the HTML page.  CXA1498S, for example.  Does 
have text ripped from the PDF in HTML, though. 
• datasheet26.com:  same as datasheet.es, but in Russian.  BP2812, for 
example. 
• datasheetcatalog.com:  no PDF link;  link labeled “Download 
Foobar3103 pdf datasheet from FOOCORP” is JS, linking to an URL 
ending in “.pdf”, but that page is HTML and just links you back to 
the original page and similar ones.  CXA1498S, for example. 
• y-ic.com:  generates PDFs with no actual information about the 
chip, containing only advertisements.  BP2812, for example. 
• transistordata.com:  PDF pages are 404;  also has hits for things it 
doesn’t have datasheets for 
• assets.nexperia.com:  403 Forbidden for wget 
• worldwayelec.com:  generates fake datasheet PDFs containing only 
ads, has no actual information on parts;  AVC479, for example. 
• alldatasheet.es/alldatasheet.com:  previously quite difficult:  PDF 
with application/octet-stream content-type and .html URL ending, 
accessible via form POST of “[ Download ]” button, on page 
accessible via “Download” link to URL of form 
https://pdf1.alldatasheet.es/datasheet-pdf/download/35940/ROHM/BA3126N.html, in 
a locked filing cabinet with a sign saying “Beware of the jaguar”;  
BA3126N, for example, or TL2842BP.  Was a last resort.  Now the 
button says “[ If You Want to View Datasheet, Click To Here !!  ]” 
instead, but doesn’t work. 
• ic-components.com:  generates fake datasheet PDFs containing only 
ads;  AS12W-K, for example.  

Transistor part numbers 

    kludge explains: 
There are three religions:  Japanese numbers, Pro-Electron numbers, and American 
JEDEC numbers.  Japanese numbers all start with 2S so they don’t bother printing 
the 2S part.  American ones start with 2N but they print it.  Pro-Electron ones 
have two letters for type and then more numbers.  

    So if you have a Japanese transistor that says C3205 on it, maybe 
look for 2SC3205. 

https://www.datasheetarchive.com/A1286-datasheet.html
https://www.datasheetarchive.com/CXA1498S-datasheet.html
https://www.kynix.com/Detail/38114/STP7N60FI.html
http://www.datasheetq.com/datasheet-download/219014/1/Isahaya/A1286
https://www.web-bcs.com/transistor/tc/a0/A1286.php?lan=en&cl=1
http://www.datasheet.es/PDF/199122/CXA1498S-pdf.html
http://www.datasheet26.com/search.php?sWord=BP2812
http://www.datasheet26.com/search.php?sWord=BP2812
http://www.datasheetcatalog.com/datasheets_pdf/C/X/A/1/CXA1498S.shtml
https://www.y-ic.com/pdf/dc/5383541-BP2812.pdf
https://www.worldwayelec.com/pro/sanyo/avc479/3488317
https://www.alldatasheet.es/datasheet-pdf/pdf/35940/ROHM/BA3126N.html
https://www.alldatasheet.es/datasheet-pdf/pdf/35940/ROHM/BA3126N.html
https://www.alldatasheet.com/datasheet-pdf/pdf/168231/TI/TL2842BP.html
https://www.ic-components.com/products/caf694907/AS12W-K.pdf


    Surface-mount parts are a bitch.  There’s a book I’ve seen 
somewhere...
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Audio vector image
Kragen Javier Sitaker, 02020-11-04 (2 minutes)

    I was just thinking about transmitting a live vector image over 
analog ultrasound in as simple a way as possible, for example to 
provide an oscilloscope display.  The minimum is an X coordinate and 
a Y coordinate, with brightness/blanking being optional;  if we want 
the image to stay “live”, rather than “slow-scan”, we need at least 24 
fps.  If it’s analog there isn’t a defined X resolution or Y resolution, 
more a signal-to-noise ratio kind of thing.  So then we have the 
question of how complex a picture we want to be able to encode. 

    Probably the minimum interesting picture is a single letter, which is 
about two or three cycles per frame, and so at least 48 Hz of 
bandwidth per channel, probably more like 100 Hz per channel.  You 
could encode the signal in any number of ways:  AM, 
suppressed-carrier single sideband, FM, and so on.  AM uses up twice 
the bandwidth but is otherwise pretty identical in characteristics. 

    The next step up might be a word, maybe 500 Hz per channel for 
five letters, maybe 15 or 20 cycles per frame.  This is sufficient for 
simple oscilloscope waveforms, too, if you modulate the X scan to 
slow down before reaching sharp peaks and valleys.  Simple analog 
circuitry can’t do that, though. 

    The next step up in complexity might be 3000 Hz per channel, and 
at this point I’m going to guess that this is about 60 curved lines, or a 
reasonably elaborate drawing.  At this point, if we’re trying to fit in 
underneath the 20kHz cutoff of many audio systems, people with 
good hearing will be able to notice the signal, because it’ll be 14 kHz 
to 20 kHz.
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Dead bugging
Kragen Javier Sitaker, 02020-11-04 (3 minutes)

    As mentioned in Ghettobotics Nonshopping List (p.  512) I 
measured the individual copper conductors in a stranded power cable 
as 100 μm, a distance usually described as “the width of a human 
hair” — my beard is human, perhaps, but apparently not my head.  I 
thought I’d work out a little bit about the properties of 100-μm 
wiring. 

    This would be 38-gauge wire on the AWG scale, and it should be 
about 2.2Ω per meter.  (This may be correct, but I’m not able to 
measure it with much accuracy.  My meter measures a short circuit as 
0.8Ω and a 150-mm length of this wire as 2.8Ω.  At least it doesn’t say 
10Ω.) So, for circuits with diameters in the millimeters with 
impedances in the kilohms, this wire is perfectly adequate for carrying 
voltages around. 

    If it’s carrying 100 mA it should drop 0.22 V/m, or 0.22 mV/mm, 
and dissipate 22 mW/m, or 22 μW/mm.  So you might want to use 
multiple strands for your ECL chips’ VCC and GND pins, or for your 
precision analog supplies. 

    So perhaps you can prototype a circuit by gluing a bunch of SMD 
components to a piece of paper or wood, a millimeter or two apart, 
then soldering this hair wire to their terminals, all under a microscope.  
You should only need a few micrograms of solder per joint, and 
melting that solder shouldn’t require much heat.  The hair wire 
doesn’t come insulated, but at centimeter scales it’s sufficiently rigid 
and elastic that it won’t easily produce accidental shorts on the 
workbench from vibration or other random forces;  nevertheless you 
might want to do some conformal coating with nail polish or lacquer 
or something before sending your little circuit out into the big, scary 
world.  In some cases you might even pot it. 

    A spot welder might be more appropriate equipment than a 
traditional iron that relies on thermal conduction.  Thermal 
conduction is necessarily fairly slow, so if you’re soldering onto a large 
thermally-conductive mass, you need to heat the whole thing up, not 
just the solder for the connection.  This increases the energy needed 
by orders of magnitude.  Still, a regular soldering iron does work. 

    Non-surface-mount components, as well as BGAs and the like, can 
perhaps be handled by dead-bugging them, gluing them with their 
legs in the air. 

    Here’s a photo of three such wires soldered to three of the pins of a 
through-hole SZIP, taken with my hand computer’s built-in camera, 
which I used for the soldering as well: 
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Ghettobotics nonshopping list
Kragen Javier Sitaker, 02020-11-04 (updated 02020-12-21) 
(22 minutes)

    So, I have some basic gifted, bought, or lent electronics equipment:  
a multimeter with a broken lead and I think broken current 
measurement, a low-temperature hot glue gun, an audio cable, an 
amplified battery-powered speaker, a non-temperature-controlled 
soldering iron that leaks some mains current into the workpiece, a 
Blue Pill, an ST-Link, a couple laptops, a netbook, some USB 
chargers and cables, a USB power pack, some tin snips, some yogurt 
cups, some acetic transparent silicone caulk, a couple of cellphones 
running Android, some quartz-halogen lightbulbs, some butane 
lighters, a butane blowtorch, some box cutters, a vise-grip, nail polish, 
ethanol, some nail-polish diluent, some Q-tips, needlenose pliers, a 
scrap terry-cloth towel, some electrical tape, a carpentry tape 
measure, a hammer, some chopsticks, an electric screwdriver, some 
hex tips for it, and some popsicle sticks.  My current objective is to 
bootstrap from this to a reasonable electronics lab, buying a minimal 
additional amount and replacing as many as possible of the bought 
items with custom items, made out of garbage. 

    Of these, I think it's reasonable to list the following as reusable 
electronics-workshop equipment: 

• a multimeter 
• glue gun 
• soldering iron 
• Blue Pill 
• ST-Link 
• box cutters 
• needlenose pliers  

Recent repairs and improvisations 

    Although listing my numerous follies would probably help people 
to avoid repeating them, these are just the successes. 

Soldering sponge 

    The soldering iron came with a stamped-steel stand to hold the tip 
off your workbench.  But to clean the tip of a soldering iron (and also 
to reduce the temperature of a non-temperature-controlled iron like 
this one) you need a tip cleaner.  Typically this is a wet cellulose 
sponge.  But all the sponges here are polyurethane, which would not 
work;  it would melt onto the tip instead of cleaning it. 

    So I cut a square of some 70 mm from the terry-cloth towel with 
the tin snips, wet it, and put it under the soldering iron stand.  The 
towel turns out to be cotton, so this works well. 

Multimeter lead repair 

    I repaired the broken multimeter test lead by using some modeling 
wax (paraffin + rosin) as flux.  To solder the wire, I carved back the 
plastic around the broken wire with the box cutter, stripped the wire 



with the flush cutters, fluxed the wires, tinned them with some solder 
from generous joints in a discarded VCR, and touched them together, 
held in my hand. 

    To reinsulate it, I should have used hot glue, but instead I used 
transparent silicone caulk;  this sticks inadequately to the plastic, isn't 
stiff enough to provide adequate strain relief, took a day to cure, and 
may turn the wire into copper acetate. 

    To stiffen it, I squirted hot glue all over it, wrapping it all the way 
around the silicone in places, since the EVA sticks inadequately to the 
silicone.  The hot glue didn't stick adequately to the plastic, making it 
a strain concentrator instead of a strain relief;  this turned out to be 
because a thin layer of silicone was in between. 

    I melted the hot glue with a butane stove lighter, scraped the 
molten hot glue out of the way with a popsicle stick coated in 
silicone, and then removed the intrusive silicone.  Then I used nail 
polish diluent and a Q-tip to scrub the plastic, then applied more hot 
glue to complete the repair. 

Solder braid 

    I cut a meter from the power cord of a pressure washer I had found 
disassembled and discarded on the sidewalk a few months ago;  after 
slitting the end of the outer insulation with a box cutter, I was able to 
pull one of the inner insulated conductors out to tear the outer 
insulation lengthwise, just using my hand.  It contained two stranded 
copper wires made of dozens of 100-μm-wide strands.  (I measured 
using the cellphone as microscope;  see below.).  I separated out three 
hanks, trimmed them with the flush cutters, tied them into an 
overhand knot, and began braiding.  After I had 220 mm of braid, I 
cut it at both ends with the flush cutters.  I then heated it with the 
soldering iron to coat it with the modeling wax as flux. 

    This solder braid makes it enormously easier to scavenge soldered 
parts with large or numerous pins. 

Cellphone as microscope and flashlight 

    My cellphone can focus down to about 70 mm.  This body is so old 
that it can no longer focus its eyes closer than about 210 mm.  The 
cellphone is a little less clear than these eyes;  they can read 
3.8-mm-tall text from 1600 mm, while the camera can only read it 
from about 900 mm.  (This works out to about 3.8/6/1600 ≈ 400 
μrad ≈ 1'20" of resolution for the eyes, or 700 μrad or 2'30" for the 
camera;  double these numbers for resolution in terms of distance 
between lines.) So even without any additional optical magnification 
the cellphone can provide about 1.7× magnification of small objects, 
and of course it’s easy to expand the resulting blurry pictures on the 
screen to be much larger, which I measure as 20× the linear size of 
the original object;  this doesn’t make any new details visible but does 
make the same details more obvious. 

    It is of course common to use cellphones as flashlights or to use an 
LED on them to illuminate an object being photographed. 

    Attempts to use cheap pocket Fresnel magnifiers to improve the 
resolving power of the cellphone have so far met with failure.  I’m 
considering buying one of those “60×” clip-on “cellphone 



microscopes”. 

    Closeup image quality is improved substantially by supporting the 
cellphone on top of a table on a a 75-to-76-mm-tall triangular prism, 
with triangle sides of 55, 55, and 60 mm, folded from a 75-mm-wide 
strip cut from a cardboard box discarded by the supermarket using 
box cutters, measured with the tape measure, marked with a ballpoint 
pen, and taped into shape using electrical tape.  The triangle firmly 
supports the cellphone’s center of gravity and the place where you 
have to tap to take a photo, without obstructing its camera, “flash”, 
light sensors, or power button.  This reduces non-parallelism, 
eliminates motion blur, and keeps the imaging range near optimal (as 
close as possible without losing focus.) So this probably gets to better 
than 1.7× resolving power, maybe 3×. 

    Both of the cellphones I happen to have here are more or less 
equivalent for this. 

    password2 points out that there’s a program called scrcpy which 
might be useful for this, allowing me to disable the screensaver and 
display the cellphone’s screen on a laptop or netbook connected over 
USB or TCP/IP.  This would afford greater magnification, because 
those screens are bigger, though of course not greater detail, and 
probably with more latency. 

My equipment wishlist 

    In addition to the stuff above that I already have, I want: 

• helping hands 
• a bench power supply 
• magic tweezers (i.e., with an integrated LCR meter) 
• a second multimeter (with working current measurement and a 
buzzer) 
• alligator-clip wires 
• breadboards 
• an oscilloscope 
• a temperature-controlled hot-air setup 
• a temperature-controlled soldering iron 
• a 3-D printer 
• a custom PCB fabrication machine such as a mill 
• an autonomous solar-powered personal computer 
• a stock of consumable parts (see below) 
• some way to organize parts 
• a workbench 
• a portable tool chest for carrying all this around with a place for 
every item 
• a precision multimeter 
• a printer 
• a dremel 
• a Kelvin-sensing power supply 
• thermometers 
• a Kelvin-sensing ohmmeter 
• a thermal imager 
• a function generator 
• a caliper 
• a protocol analyzer 

https://github.com/Genymobile/scrcpy


• a microscope, and 
• micro-scale waldos.  

    These are not in priority order. 

Desired consumable parts 

    I want: 

• solder 
• solder braid 
• flux 
• resistors 
• capacitors 
• LEDs 
• inductors 
• microcontrollers 
• connectors 
• breadboard jumper wires 
• transistors 
• triacs 
• batteries 
• supercaps 
• crystals 
• op-amps 
• linear regulators 
• switchers 
• buttons and other switches 
• photodiodes 
• phototransistors 
• Darlingtons 
• potentiometers 
• other linear and rotational sensors 
• MOSFETs 
• motors 
• motor drivers 
• MOSFET drivers 
• speakers 
• microphones 
• temperature sensors 
• heating elements 
• diodes 
• zeners 
• voltage references 
• level converters 
• humidity sensors 
• pumps 
• valves 
• displays 
• cameras 
• accelerometers 
• gyros, and 
• touch sensors.  

    These are not in priority order either. 



Breadboards and jumper wires 

    A standard solderless breadboard is extremely useful for 
prototyping and testing circuits.  But the original breadboards were 
actual boards, made of wood, used for the same purpose;  to connect 
two or more components, you would put their leads under a washer, 
dished outwards, and screw the washer to the board to pinch their 
leads under its edge, making a tight connection.  This is feasible but 
far less convenient than the now-standard approach. 

    In my childhood, I would take government welfare cheese boxes 
and poke electronic components through the non-corrugated, 
non-plastic-coated cardboard.  Panel-mount components I would 
poke through all the way, then screw them down to the cardboard as 
normal;  for through-hole components, I would poke just the leads 
through.  Then I could connect the leads inside the box using 
alligator-clip jumpers.  All of this was made easier by the use of parts 
that hadn’t been used yet, so the leads were still long, and the near 
complete nonexistence of surface-mount parts.  This approach is 
convenient;  construction paper is of the appropriate weight, and so 
are the inner and outer walls of single-wall corrugated cardboard, 
which can be soaked apart in water. 

    A disadvantage to this approach is that it doesn’t scale to more than 
a few dozen connections. 

    At the time, I also had a Radio Shack “300 in 1” electronics kit, 
which had about 50 components mounted on a piece of cardboard 
next to some extension springs.  By thumbing a spring to the side, you 
opened up space between its coils to insert one or more wires into. 

    In some YouChube video, Espacio de César demonstrated the 
construction of a now-conventional solderless breadboard from a pile 
of 2.54-mm-pitch DIP sockets;  he snipped out the middle of the 
sockets, stacked five socket sides together, and wired them up in the 
conventional way.  I suspect that even a very modest effort in this 
direction would yield useful results:  three 8-pin molex female 
connectors or socket sides stacked up would be sufficient for a fairly 
wide variety of circuits with discrete through-hole components. 

    Other candidate sources of such female connectors include 
connectors on cables and jumpers for configuring boards by 
connecting two such adjacent pins. 

    The usual way to use the now-conventional breadboard is with 
jumper wires made of hookup wire with nothing on the ends, but you 
can also solder traditional male pins onto the ends of wires in order to 
make it easier to plug and unplug them. 

    The absolute minimum hardware for that kind of convenient 
plugging and unplugging of pins is female-female jumper wires:  
basically a single-pin female molex connector soldered onto each end 
of a jumper wire.  You engulf a lead of a component with each pin, 
thus setting up a two-terminal net.  Nets with three or more terminals 
can be constructed with Y-shaped female–female–male jumpers, 
which additionally have a third wire attached with a male pin on it;  
these can be daisy-chained to make nets of any degree of complexity. 

    These female–female jumpers seem to be more or less the standard 
that the Arduino world is converging on:  each component is on its 



own little PCB, with some 2.54-mm-pitch pins sticking off the edge.  
(I’ve even seen such a PCB for an ULN2803, which is a 
2.54-mm-pitch DIP with eight Darlingtons on it.) You can either 
plug it into your breadboard or you can hook up each of the pins 
directly to some other pin on some other board with a female–female 
wire.  Often, 1970s-style rainbow cable is involved between the two 
ends of the cable. 

    If I rip apart a largish motor, dead or otherwise, I can get many 
meters of thick magnet wire out of it, which is directly suitable for 
use as breadboard-style hookup wire once you sand its ends.  For 
very-low-frequency or very-low-current circuits, twisty ties from 
bread bags can also be used;  and jumper wires from single-sided 
PCBs can sometimes work for short distances. 

    So, connectors are the most immediate, urgent necessity. 

Tool chest 

    How can the lab fit into a portable toolchest?  Suppose it’s 15 kg, if 
it has wheels, and maybe 200 mm × 400 mm × 500 mm, an 
acceptable size to carry on the bus, stuff under your seat, or carry 
through a doorway.  (This ATX tower PC in front of me is 200 mm 
× 450 mm × 450 mm, a very similar size, though a marginally more 
inconvenient one.) 

    The toolchest needs to be able to contain the 7 pieces of equipment 
I have, plus the 27 other pieces of equipment I want, and the 44 kinds 
of consumable parts.  In a very crude averaging sense this allocates 
about 190 g to each of these 79 “items”, including the toolchest itself, 
and just over 500 mℓ per “item”.  Because any item larger than these 
averages must be compensated for by items additively smaller, the vast 
majority will need to be smaller than that;  I think it makes sense to 
“budget” 40 g and 100 mℓ per “normal item” in order to have space 
left over for the few that can’t squeeze in that way. 

    As some motivating examples, this multimeter — a lightweight 
handheld one — weighs 152 g without its leads, 202 g with its leads, 
and occupies 70 mm × 25 mm × 125 mm without its leads, 219 mℓ.  
The flush cutters weigh 64 g;  the soldering iron weighs 174 g with its 
stand and “sponge”.  The iron is some 230 mm long and, with the 
cord, 60 mm in diameter, thus occupying some 650 mℓ.  The flush 
cutters occupy 150 mm × 60 mm × 10 mm when closed, thus some 
90 mℓ, the only item to come in under the 100 mℓ “normal item” 
threshold, though they exceed the weight threshold by more than 
half. 

    So the vast majority of “items” need to be much smaller than this, 
and probably these three in particular need to be replaced by smaller 
and lighter items. 

    Suppose the items have a Zipf distribution of weight and volume, 
which is maybe pessimistic but probably not much.  Then the first ten 
weights would be 3 kg (perhaps the 3-D printer), 1.5 kg, 1 kg, 750 g, 
600 g, then 500 g, 430 g, 380 g, 340 g, 300 g;  the next ten between 
150 and 275 g;  the next ten between 100 and 150 g;  the next ten 
between 75 and 100 g;  the next ten between 60 and 75 g;  the next 
ten between 50 and 60 g;  the next ten between 43 and 50 g;  and the 
last nine between 38 and 43 g.  In particular this gives the quartiles as 



about 50, 100, and 150 g.  And the top few volumes out of 40 ℓ are 
8 ℓ, 4 ℓ, 2.7 ℓ, 2 ℓ, 1.6 ℓ, etc.;  and the quartiles are roughly 130 mℓ, 
200 mℓ, and 400 mℓ. 

    This suggests that my “normal item” quotas above were maybe a 
bit too stingy.  A “normal item” can be 100 g and 200 mℓ;  every item 
over the threshold must be compensated for by an item below it.  
Still, of the three test items, only the flush cutters are under these 
thresholds. 

    Suppose the resistors are close to the median and I have, say, 1000 
resistors.  (An SMD sampler book I was looking at online has 25 
resistors of each of 170 values, 4250 resistors in all.  It costs about 
US$8 overseas but about US$50 in Argentina.) Then the resistors 
average 100 mg each and 200 μℓ each.  Right now I have about 50 
resistors (five of which are trimpots) and they weigh about 3 grams, so 
I think this is realistic. 

    But how can I keep them organized?  This is actually far more 
pressing than the problem described above of how to reduce the 
multimeter’s weight by half;  to build circuits with the hundreds of 
components I’ve already scavenged from discarded machinery, I must 
be able to find the components I need quickly, I must be able to 
connect them together, and then I must be able to probe the resulting 
assemblage in some way to find out why it’s broken. 

    Ideally I’d press the “heat” button to heat the smart tweezers’ tips 
to desoldering temperature, pick up a component with them, and the 
smart tweezer would chime, indicating that the component had been 
successfully characterized;  I could then press a “print” button with 
my foot, storing the test results and printing a tiny envelope 
describing the component and giving the crucial test values.  Then I 
would put the component into the envelope, and file the envelope in 
the larger envelope for its type. 

    A common 100-mW 0805 resistor is 2 mm × 1.25 mm × 0.5 mm, 
totaling 1.25 mm³ or 1.25 μℓ;  you can fit 800 of them in a milliliter.  
So the whole collection of 4250 resistors mentioned earlier would, 
without the paper, amount to some 6 mℓ. 

Resistor envelopes 

    I’m trying out categorizing physicaly-small resistors by E12-series 
resistance and putting them into paper envelopes, one for each E12 
value (10 12 15, 18 22 29, 33 39 47, 55 68 82).  Most of the resistors 
I’ve salvaged so far are in the 100Ω–100kΩ range, which requires 37 
envelopes, much like Merlin Mann.  There are a few higher and quite 
a number lower, but so far I don’t have an accurate way to measure 
resistances below 100Ω.  Hopefully I can rig something up soon. 

    So far I only have on average two or three resistors of each 
denomination, many with very short leads.  I probably need at least 
four times the number of resistors I have already, a couple hundred, 
to make even smallish projects straightforward. 

    I found my helping-hands to be very helpful for resistor 
measurement:  I can connect one lead of the multimeter to one 
alligator clip, place the resistor in the other clip where I can see it 
through the glass, and touch its other lead with the other probe.  I got 



up to about two resistors a minute that way.  I suspect that a better 
ohmmeter and using alligator clips will speed me up further. 

    I also have a partitioned plastic box, like those for fishing tackle, 
which is partitioned into E3 resistor values. 

Bench power supplies 

    I have a 12-volt power brick that includes current limiting, as I 
found when I used it to electrolytically dissolve some copper;  for 
some 45 minutes the output voltage was well below 12 volts.  But I 
need something where I can twist a knob to scan across a range of 
voltages.  The “Tech Ideas” YouTube channel from India points out 
that there’s typically a TL431 on the low-voltage side of modern 
isolated switching power supplies, directly hooked up to the feedback 
optocoupler, and the TL431 is programmed with a voltage divider, so 
you can replace its fixed voltage divider with a pot, and maybe 
upgrade the output-side filter caps, and you get typically a 3V–25V 
adjustable switcher, with whatever current limiting the original 
supply had. 

    One difficulty is that you typically want to know what voltage 
you’re getting, so you probably want to add some voltmeters on the 
output.  Also it’s common to want voltage down to zero;  for 
low-power loads you can do this very easily with a linear output stage 
consisting of an emitter follower following a potentiometer.

Topics

• Electronics (p.  788) (42 notes) 
• Ghettobotics (p.  793) (18 notes) 
• Metrology (p.  794) (17 notes) 
• Microcontrollers (p.  801) (14 notes) 
• Practical (p.  806) (12 notes) 
• Experiment report (p.  811) (10 notes) 
• Espacio de César (p.  887) (3 notes) 
• Hand computers
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Foaming infiltration
Kragen Javier Sitaker, 02020-11-06 (1 minute)

    Infiltration of a porous object is a common and very useful 
technique for strengthening, waterproofing, or otherwise altering 
shapes fabricated initially by a process that inherently produces a 
porous green body or other shape. 

    One difficulty is that you can't infiltrate with solids;  the infiltrant 
needs to be liquid.  In some cases it would be possible to infiltrate 
with a colloid or suspension, but once the solvent is removed, the 
shape becomes porous again. 

    Various ways of causing solid grains of material to expand into a 
foam are known:  shooting rice out of steam cannons, heating 
waterglass (or vermiculite or perlite) to drive out the water, baking 
muffins to react their baking powder, and so on.  If such processes are 
applicable to the infiltrant grains and produce a closed-cell foam, they 
can seal up the porosity. 

    Construction spray foam illustrates another approach to foaming 
via heating:  the polymerization reaction of the foam produces heat 
which produces the foaming gas.

Topics

• Materials (p.  784) (51 notes) 
• Foaming (p.  818) (8 notes) 
• Waterglass (p.  836) (5 notes) 



Hard sticky balls
Kragen Javier Sitaker, 02020-11-06 (1 minute)

    Bearing balls are commonly machined to unbelievably tight 
tolerances, like, deep submicron roundness, I think.  This is exploited 
in many kinds of precision machinery.  They’re also quite hard and 
cheap. 

    So if you take two bearing balls that are coated in some sort of 
sticky liquid or plastic material such as clay, and you press them 
together until their surfaces touch, their centers are a very precise 
distance apart.  If the sticky substance then hardens without 
expanding, it will preserve this very precise distance. 

    If you have three bearing balls thus all mutually attached, they will 
have not only precise distances between them, but also precise angles.  
If you add a fourth in contact with the first three, it will be in a 
precisely located position in space relative to them, as long as it 
doesn’t shove them apart..  So, too, will any further sticky balls stuck 
onto the mass. 

    This permits the construction of arbitrarily large shapes with 
micron-level precision and some degree of geometric freedom, which 
is larger if you use multiple different sizes of balls.  If the balls are 
millimeter-scale or smaller, you can get very substantial structures 
with reasonable strength.  If surfaces are finished with non-sticky 
balls, those surfaces too will be precisely located. 

    “Voxel-based 3-D printing” is a name sometimes used for this sort 
of process.

Topics

• Manufacturing (p.  795) (17 notes) 
• Digital fabrication (p.  798) (17 notes) 
• Bearing balls



OCR with linear optimization
Kragen Javier Sitaker, 02020-11-06 (1 minute)

    Can you use linear optimization to efficiently solve the OCR 
problem? 

    One reasonable linear objective function might be a weighted sum 
of the entropy of the text and the number of wrong ("noise") pixels, 
or perhaps the total absolute pixel error.  You can use the standard 
one-of-N mixed integer linear programming approach to select 
which glyph is at a given position, and a reasonable entropy function 
might use digraph frequencies in your language of choice.  You might 
be able to use some design variables that indicate the X-Y position of 
each glyph, and the font would perhaps be a shitload of parameters. 

    Alternatively, simple hill-climbing with a nonlinear problem state 
ment might be simpler to formulate and work adequately;  it might 
"learn" the font simultaneously with the position and angle of text on 
the page.  Gradient descent could more efficiently provide fine glyph 
positioning and adjust the glyph contents.  (Or just simple 
mean/median?)

Topics

• Mathematical optimization (p.  812) (9 notes) 
• Gradient descent (p.  883) (3 notes) 



Pit firing
Kragen Javier Sitaker, 02020-11-06 (3 minutes)

    One of the problems with refractory materials is that they tend to 
be brittle at room temperature.  The ductile-brittle transition of a 
material, if it exists, tends to be not too far from its melting point, so 
materials that are ductile at room temperature tend to not survive 
1000° or 1500°, with a few exceptions. 

    As a result, when they heat up and cool down, they tend to crack. 

    The Neolithic solution to this was to pit-fire pottery:  you bury it 
in a pit and throw burning coals on it, then, perhaps, cover up the pit, 
partly or fully, with dirt.  It’s fine if the dirt is brittle and cracks, 
because it’s already powder;  you aren’t demanding any strength of it.  
If it crumbles, it crumbles onto the other dirt and pot underneath it. 

    A modern equivalent of this is the salt bath or sand bath used by 
opticians and labs to heat up materials to a desired temperature, either 
to partly melt or soften them, or to provoke some reaction. 

    It occurred to me that you can do this with heating elements in the 
salt or sand, thus achieving a high-temperature capability without 
constructing a castable refractory with any kind of strength.  Quartz 
sand is cheap, and olivine sand isn’t that expensive.  You can jam 
temperature sensors into the sand too, and they might be able to be at 
a significant distance from the thing that’s heating up, so they can be 
at a lower temperature. 

    Vermiculite, charcoal, ash, cat litter, and plaster of paris may also 
be useful;  they are somewhat refractory substances that thermally 
insulate better than sand.  Even perlite should be useful up to a point, 
and that point is about 900°. 

    Higher temperatures may require the use of arc heating rather than 
solid heating elements, although carborundum heating elements can 
extend this considerably. 

    Carborundum itself was discovered in just such a way and is still 
produced by this process:  a sort of arc furnace is set up under a layer 
of silica sand with carbon electrodes, originally in an iron crucible, but 
nowadays at a much larger scale. 

    To some extent you should be able to measure the temperature 
distribution within the pile of fluff with temperature sensors that are 
not exposed to its hottest part.  You can estimate the conductivity, 
thermal mass, thermal resistance to ambient, and heat input using a 
few sensors at known or estimated locations, a continuous 
measurement of the thermal input, and some PDE solvers.  This could 
potentially permit very precise control of the temperature distribution 
within the pile.

Topics

• Materials (p.  784) (51 notes) 
• Contrivances (p.  786) (44 notes) 



• Refractory (p.  817) (8 notes) 
• Heating (p.  843) (5 notes) 



Machine-readable PNG circuit 
diagram watermarks
Kragen Javier Sitaker, 02020-11-06 (1 minute)

    Fractint stored the fractal parameters in its GIF89a output files, so 
that if you or someone else loaded them into Fractint later, you could 
recalculate at a higher resolution, or explore other parts of the fractal, 
or vary parameters. 

    Screenshots or PNG files are a common way to share circuit 
diagrams from circuit simulation programs.  What if 
machine-readable circuit topology information was included in these 
files?  You could take the Fractint approach and just include a special 
parameter block, but that will be lost if someone, say, crops the image, 
or uses a screenshot program to get the image, or transcodes it to 
JPEG.  What if you sort of barcode or watermark it in the image 
itself? 

    The first circuit given in Level Shifter (p.  407) has 6 components;  
in the encoding used by Falstad's circuit simulator, it occupies 224 
bytes, or 133 bytes gzipped, about 22 bytes per component.  I think it's 
probably possible to beat this by about a factor of 3, about 7 bytes per 
component, 56 bits per component.  Given that each component 
occupies about 500 pixels it seems like it should be pretty feasible to 
do this.

Topics

• Electronics (p.  788) (42 notes) 
• File formats (p.  823) (7 notes) 
• Communication (p.  825) (7 notes) 
• Nostalgia (p.  829) (6 notes) 
• Falstad’s circuit simulator (p.  833) (6 notes) 
• Coding (p.  865) (4 notes) 
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 Arduino support for STM32  
 Kragen Javier Sitaker, 02020-11-06 (10 minutes)  

     I'm trying to get my Blue Pill board to run Blink, the hello-world 
of embedded development.   

    
https://www.instructables.com/Getting-Started-With-Stm32-Using
-Arduino-IDE/ says:   

•  Launch Arduino.cc IDE.  Click on "File" menu and then "Preferences".   
     The "Preferences" dialog will open, then add the following link to the 
"Additional Boards Managers URLs" field:   
     "http://dan.drown.org/stm32duino/package_STM32duino_index.json"     

     But I thought maybe this might be outdated and maybe it's better 
to use ST's official package.  Boy, was I ever fucking wrong.  It's a 
fucking trojan horse.   

    https://github.com/stm32duino/wiki/wiki/Getting-Started says:   

• Launch Arduino.cc IDE.  Click on "File" menu and then "Preferences".    
     The "Preferences" dialog will open, then add the following link to the 
"Additional Boards Managers URLs" field:   
    
https://github.com/stm32duino/BoardManagerFiles/raw/master/STM32/packag
e_stm_index.json   

     This installs, by default, version 1.9.0, which occupies tens of megs, 
takes fucking forever, and then gives an error about 
STM32CubeProgrammer.  What the fuck is 
STM32CubeProgrammer?   

    https://github.com/stm32duino/wiki/wiki/Upload-methods says  

 STLink
  
     Deprecated since core version > 1.5.0 replaced by STM32CubeProgrammer 
(SWD)
  
     Requires a ST-Link/V2 device connected to the PC over USB and to the board 
via the SWD interface.
   

     (Actually, it's not deprecated, it's fucking missing.)  
 ...   
     STM32CubeProgrammer
  

 Since core version > 1.5.0
   
     ...   
     Requirement
  
     To use those upload methods, STM32CubeProgrammer have to be installed 
manually as it is not provided through the tools packages.   
     ...  In any case, if the STM32CubeProgrammer binary is not found, user will be 
warned like this:
  

https://www.instructables.com/Getting-Started-With-Stm32-Using-Arduino-IDE/
https://www.instructables.com/Getting-Started-With-Stm32-Using-Arduino-IDE/
https://www.instructables.com/Getting-Started-With-Stm32-Using-Arduino-IDE/
http://dan.drown.org/stm32duino/package_STM32duino_index.json
https://github.com/stm32duino/wiki/wiki/Getting-Started
https://github.com/stm32duino/BoardManagerFiles/raw/master/STM32/package_stm_index.json
https://github.com/stm32duino/BoardManagerFiles/raw/master/STM32/package_stm_index.json
https://github.com/stm32duino/BoardManagerFiles/raw/master/STM32/package_stm_index.json
https://github.com/stm32duino/wiki/wiki/Upload-methods


 STM32_Programmer.sh/STM32_Programmer_CLI.exe not found.                         
                              

 Please install it or add '<STM32CubeProgrammer path>/bin' to your PATH environme
nt:`                          

 https://www.st.com/en/development-tools/stm32cubeprog.html`                     
                              
 Aborting!

  

     Okay, fuck, I guess I have another fucking hoop to jump through.  
What's this STM32CubeProgrammer thing?  Some kind of 
open-source firmware uploader?   

     No, that couldn't be more wrong.  
https://www.st.com/en/development-tools/stm32cubeprog.html is 
pants-shittingly menacing:   
 [Please choose a sub-application] An end application is required.
  
     Nature of Business:
  
     [ _______] A nature of business is required.
  
     Military Related:
  
     [ __] A military relation status is required.
  
     Software Country/Region of Use:
  
     [ _______] A country of use is required.
 Please keep me informed about future updates for this product.
 [ ]
  
     Comment:
     
     [ ] I accept all Terms & Conditions of the Export Control regulations Accept 
Terms & Conditions
 Confirm Request Cancel
  
     ...   
     Request for software successfully submitted.  The approval process may take up 
to 48 hours.  After you have
 been approved, you should receive a link to the requested software via email.
  
     ...   
     If you don't want to login now, you can download the software by simply 
providing your name and e-mail address in the form below and validating it.   
     ...   
     For security / validation purposes, all software download requests must 
originate from a valid email address.   
     BY INSTALLING COPYING, DOWNLOADING, ACCESSING OR 
OTHERWISE USING THIS SOFTWARE PACKAGE OR ANY PART 
THEREOF (AND THE RELATED DOCUMENTATION) FROM 
STMICROELECTRONICS INTERNATIONAL N.V, SWISS BRANCH 
AND/OR ITS AFFILIATED COMPANIES (STMICROELECTRONICS), 
THE RECIPIENT, ON BEHALF OF HIMSELF OR HERSELF, OR ON 
BEHALF OF ANY ENTITY BY WHICH SUCH RECIPIENT IS 
EMPLOYED AND/OR ENGAGED AGREES TO BE BOUND BY THIS 
SOFTWARE PACKAGE LICENSE AGREEMENT.   
     \4.  This software package or any part thereof, including modifications and/or 

https://www.st.com/en/development-tools/stm32cubeprog.html
https://www.st.com/en/development-tools/stm32cubeprog.html


derivative works of this software package, must be used and execute solely and 
exclusively on or in combination with a microcontroller or a microprocessor 
devices manufactured by or for STMicroelectronics.   
     \9.  The software package is and will remain the exclusive property of 
STMicroelectronics and its licensors.  The recipient will not take any action that 
jeopardizes STMicroelectronics and its licensors' proprietary rights or acquire any 
rights in the software package, except the limited rights specified hereunder.   
     \10.  The recipient shall comply with all applicable laws and regulations 
affecting the use of the software package or any part thereof including any 
applicable export control law or regulation.   
     \11.  Redistribution and use of this software package partially or any part thereof 
other than as permitted under this license is void and will automatically terminate 
your rights under this license.    

     Regardless of whether you'd have any ethical reason to obey this, 
or whether it could actually be enforced in court or not, I have a 
CKS32, not an STM32, and the above is a crystal-clear threat from 
ST:  buy our hardware or else.  Ew ew ew ew ew.   

     I'm installing version 1.5.0 now, which is still literally 82 fucking 
megabytes.  And still takes fucking forever.  Like on the order of half 
a fucking hour.   

     This done, "STLink" appears as an option for "Upload method" 
under the Arduino 1.8.14 "Tools" menu.  However, the "Port" 
submenu is grayed out, and evidently it can't find the "STLink".  On 
replugging it, I see in dmesg:   

[802528.168367] usb 2-1: USB disconnect, device number 6
[802531.948113] usb 2-1: new full-speed USB device number 7 using uhci_hcd
[802532.117227] usb 2-1: New USB device found, idVendor=0483, idProduct=3748
[802532.117248] usb 2-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[802532.117261] usb 2-1: Product: STM32 STLink
[802532.117273] usb 2-1: Manufacturer: STMicroelectronics
[802532.117285] usb 2-1: SerialNumber: L/28S5KN

 

     And I have a new file in /dev/char:   

lrwxrwxrwx  1 root root   18 Nov  6 19:54 189:134 -> ../bus/usb/002/007

 

     I can read some data from it, so it's probably not a permissions 
problem:   

$ < /dev/char/189:134 xxd
00000000: 1201 0002 0000 0040 8304 4837 0001 0102  .......@..H7....
00000010: 0301 0902 2700 0101 0080 3209 0400 0003  ....'.....2.....
00000020: ffff ff04 0705 8102 4000 0007 0502 0240  ........@......@
00000030: 0000 0705 8302 4000 00                   ......@..

 

     What that means is anybody's guess.  The device disappears if I 
unplug the "STLink".   

     In theory, according to 
https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Pr
ogramming-an-STM32F103XXX-with-a-generic-%22ST-Link-V2

https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Programming-an-STM32F103XXX-with-a-generic-"ST-Link-V2"-programmer-from-Linux
https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Programming-an-STM32F103XXX-with-a-generic-"ST-Link-V2"-programmer-from-Linux
https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Programming-an-STM32F103XXX-with-a-generic-"ST-Link-V2"-programmer-from-Linux


%22-programmer-from-Linux, OpenOCD should work:   

$ openocd -f /usr/share/openocd/scripts/interface/stlink-v2.cfg \
          -f /usr/share/openocd/scripts/target/stm32f1x.cfg 
Open On-Chip Debugger 0.9.0 (2018-01-24-01:07)
Licensed under GNU GPL v2
For bug reports, read
        http://openocd.org/doc/doxygen/bugs.html

Info : auto-selecting first available session transport "hla_swd". To override us
e 'transport select <transport>'.

Info : The selected transport took over low-level target control. The results mig
ht differ compared to plain JTAG/SWD
adapter speed: 1000 kHz
adapter_nsrst_delay: 100
none separate
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : clock speed 950 kHz
Error: libusb_open() failed with LIBUSB_ERROR_ACCESS
Error: open failed
in procedure 'init' 
in procedure 'ocd_bouncer'

default@default-Aspire-one:~/Downloads/arduino-nightly$ sudo openocd -f /usr/shar
e/openocd/scripts/interface/stlink-v2.cfg -f /usr/share/openocd/scripts/target/st
m32f1x.cfg 
[sudo] password for default: 
Open On-Chip Debugger 0.9.0 (2018-01-24-01:07)
Licensed under GNU GPL v2
For bug reports, read
        http://openocd.org/doc/doxygen/bugs.html

Info : auto-selecting first available session transport "hla_swd". To override us
e 'transport select <transport>'.

Info : The selected transport took over low-level target control. The results mig
ht differ compared to plain JTAG/SWD
adapter speed: 1000 kHz
adapter_nsrst_delay: 100
none separate
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : clock speed 950 kHz
Info : STLINK v2 JTAG v29 API v2 SWIM v7 VID 0x0483 PID 0x3748
Info : using stlink api v2
Info : Target voltage: 3.139057
Warn : UNEXPECTED idcode: 0x2ba01477
Error: expected 1 of 1: 0x1ba01477
in procedure 'init' 
in procedure 'ocd_bouncer'

 

https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Programming-an-STM32F103XXX-with-a-generic-"ST-Link-V2"-programmer-from-Linux


     That's wonderful!  That's precisely the error I've seen other people 
report with the CKS32 devices.  So I made the relevant config 
change:   

$ diff -u /usr/share/openocd/scripts/target/stm32f1x.cfg ~/devel/dev3/cks32f1x.cf
g

--- /usr/share/openocd/scripts/target/stm32f1x.cfg  2018-01-23 22:08:20.000000000
 -0300
+++ /home/default/devel/dev3/cks32f1x.cfg   2020-11-06 20:46:58.606514993 -0300
@@ -31,7 +31,7 @@
       set _CPUTAPID 0x3ba00477
    } {
       # this is the SW-DP tap id not the jtag tap id
-      set _CPUTAPID 0x1ba01477
+      set _CPUTAPID 0x2ba01477
    }
 }

 

     And then OpenOCD apparently works;  anyway it doesn't crash 
immediately like before and the LED on the "STLink" turns from 
orange (?) to blue:   

$ sudo openocd -f /usr/share/openocd/scripts/interface/stlink-v2.cfg
               -f ~/devel/dev3/cks32f1x.cfg 
Open On-Chip Debugger 0.9.0 (2018-01-24-01:07)
Licensed under GNU GPL v2
For bug reports, read
        http://openocd.org/doc/doxygen/bugs.html

Info : auto-selecting first available session transport "hla_swd". To override us
e 'transport select <transport>'.

Info : The selected transport took over low-level target control. The results mig
ht differ compared to plain JTAG/SWD
adapter speed: 1000 kHz
adapter_nsrst_delay: 100
none separate
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : clock speed 950 kHz
Info : STLINK v2 JTAG v29 API v2 SWIM v7 VID 0x0483 PID 0x3748
Info : using stlink api v2
Info : Target voltage: 3.135959
Info : stm32f1x.cpu: hardware has 6 breakpoints, 4 watchpoints
^C

 

     So OpenOCD is successfully connecting!  But I'm still some 
distance away from burning the "blink" sketch onto the hardware.   

     The access-denied problem that led me to try running it with sudo 
straces as follows:   



open("/dev/bus/usb/002/008", O_RDWR)    = -1 EACCES (Permission denied)

write(2, "Error: libusb_open() failed with"..., 53Error: libusb_open() failed wit
h LIBUSB_ERROR_ACCESS

 

     And indeed I don't have permission to write to that device, only 
read:   

$ ls -l /dev/bus/usb/002/008
crw-rw-r-- 1 root plugdev 189, 135 Nov  6 20:49 /dev/bus/usb/002/008

 

     However, I am in /etc/group as belonging to plugdev, I guess I 
just haven't logged out and back in since then.  So I launch the 
arduino IDE in the plugdev group:   

arduno-nightly$ sg plugdev ./arduino

 

     However, that doesn't help;  the "Port" submenu of "Tools" is still 
grayed out.  And sudo ./arduino of course doesn't have the STM32 
board package installed.  I copied everything in my ~/.arduino15 to 
root's, and then the board package is installed, but it has the same 
problem.  I tried chmod 666 /dev/bus/usb/002/008, and then OpenOCD 
works without sudo, but the Arduino IDE still has a greyed-out "Port" 
menu.   

     Next steps, I guess, are to try Arduino with the Dan Drown 
stm32duino stuff (or maybe rogerclarkemelbourne's zip file (actual 
file)?);  or to try to program it with OpenOCD;  or to use OpenOCD 
to install some kind of USB bootloader on it.   

     But I think that's about all for tonight;  I've been trying things on 
and off for 9 hours.  I'll see what I can manage tomorrow.  The fact 
that now OpenOCD works means that success is in sight.   

 Topics  

• Electronics (p.  788) (42 notes)  
• Microcontrollers (p.  801) (14 notes)  
• Practical (p.  806) (12 notes)  
• Experiment report (p.  811) (10 notes)  
• Embedded programming (p.  814) (9 notes)  
• The STM32 microcontroller family (p.  821) (7 notes)  
• Arduino (p.  904) (3 notes)     
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Swashplate screwdriver
Kragen Javier Sitaker, 02020-11-06 (1 minute)

    If you have a knob with two ball bearings in its center with a shaft 
running through them, and that shaft is connected via a hinge to 
another shaft which is held in some position but not free to rotate, 
then you can rotate the second shaft by changing the plane in which 
the knob is without changing the angle at which the hinge is bent.  
This is easy to do with your hand;  the movement is the same as that 
used to spin a Powerball gyroscope.  The knob functions as a 
swashplate through which you can turn the second shaft with an 
adjustable mechanical advantage, which can be arbitrarily small when 
the angle between the shafts is arbitrarily small, and can go up to the 
diameter ratio between the second shaft and the knob. 

    This amounts to a new kind of screwdriver, which allows you to 
unscrew screws arbitrarily fast without a motor.  It does need some 
way of being held in the screw. 

    I thought this might work especially well using a ball-end hex 
wrench, with the second shaft being the screw itself, but I don't think 
that works.

Topics

• Contrivances (p.  786) (44 notes) 
• Mechanical things (p.  791) (19 notes) 



Thermal expansion speaker
Kragen Javier Sitaker, 02020-11-06 (1 minute)

    Suppose that instead of stringing string between two cups to make 
a telephone, you string the thin copper wire I talked about in Copper 
Segelín (p.  534) and produce the sound by heating the wire with joule 
heating by passing varying amounts of current through it, thus 
making the wire expand.  How much current do you need, and what 
does the frequency response look like? 

    Well, you probably need to stick to a few hundred mA to avoid 
melting the thin wire, as calculated there.

Topics

• Contrivances (p.  786) (44 notes) 
• Electronics (p.  788) (42 notes) 
• Physics (p.  792) (18 notes) 



Copper segelín
Kragen Javier Sitaker, 02020-11-06 (updated 02020-11-08) 
(19 minutes)

    There’s discarded styrofoam on the streets every day, so I want a 
hot-wire foam cutter, for which the best wires are stainless steel.  But 
the fine wires I have handy here are not stainless steel:  they are real 
steel and copper.  Also I have nichrome wires, but they are not fine.  
Which is okay, neither am I, but it’s not ideal. 

    These copper wires are about 100μm in diameter (38 AWG) and 
are strands of wire from a stranded power cable.  I’ve calculated that 
this should be about 2.2Ω/m, and simple measurements seem to 
confirm that this is in the ballpark.  Copper oxidizes in air, but only 
quite slowly below about 300°, and isotactic polystyrene melts at only 
240°.  And molten foam charring and then burning on the surface of 
the wire ought to reduce the copper oxide thus formed back to 
copper, rather than oxidizing it. 

    I can probably use a high-frequency buck converter to efficiently 
produce a high enough current through these wires to heat them into 
the appropriate temperature range, and I could probably even servo it 
with the resistance of the wire;  see Thermistors (p.  427). 

    So how many amps do I need to reach, say, 270°?  That depends on 
the black-body emission of the wire, which must balance the joule 
heating from its resistance at that temperature.  2.2Ω/m is also 2.2 
W/m/A², which means that, say, at 100 amps, it would be dissipating 
22000 W/m, but at 10 amps, only 220 W/m. 

    Copper itself doesn’t have super high emissivity, but the charred 
foam or black copper oxide that will undoubtedly cover it in use has 
virtually 100% emissivity, so at 270° it will emit about 4900 W/m².  
π 100 μm is of course π 100 μm²/μm, or 0.314 mm²/mm.  4900 
W/m² is about 1.5 mW/0.314 mm², so that works out to about 1.5 
mW/mm of length, or 1.5 W/m. 

    So if you have, say, 100 mm of this wire, you need about 150 mW 
to maintain it at 270° in the face of radiation (a fact independent of 
the wire material except for its emissivity, as well as the source of the 
heat), and maybe a few times that when foam is cooling it down.  As 
mentioned above, this is 1.5 W/m (a fact additionally independent of 
its length), and so for copper we need about 830 mA, which is again 
independent of the length.  The only difficulty is that, for 100 mm, 
our resistance is only 220 mΩ, so our 830 mA must be delivered at 
about 180 mV. 

    If we want to deliver this with a buck converter from a 5-volt 
power supply such as a USB charger or battery pack — and 150 mW 
or even 450 mW is a totally reasonable power level for that — we 
need about a 3.6% duty cycle on the pass transistor.  That is, 96.4% of 
the time, the freewheel diode or equivalent will be supplying the 
(average) 830 mA through the inductor, and the transistor will only 
be supplying it 3.6% of the time. 

    But wait!  The resistivity I was using to compute 2.2Ω/m is the 
room-temperature resistivity of copper.  As noted in Thermistors (p.  
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427), copper’s room-temperature coefficient of resistivity α is about 
.0039Ω/°Ω, and its resistance is quite linear with temperature up to 
over 300°, so actually at 270° we should expect the resistance to be 
4.4Ω/m.  This drops our current requirement to 580 mA but actually 
increases the voltage requirement to almost 260 mV.  This permits the 
use of a less extreme duty cycle, about 5.2%. 

    How could you use the wire’s resistance to control the buck 
converter?  When its resistance is low, like 220 mΩ instead of 
440 mΩ, you want to feed it more current so it heats up;  and if its 
resistance gets higher, you want to feed it less.  A lot less, in fact, if it 
gets more than a little bit higher, since at 300° the copper won’t last 
long. 

    There are other desiderata, though.  You never want to use more 
than 2.5 W, both to stay within the original USB spec and because 
that’s an absurd amount of power to dump into 7 mg of copper;  it 
should get you up to temperature in less than a second and allow you 
several milliseconds to respond to stop overshoot.  And you never 
want to dump much more than the steady-state 150 mW in there once 
the wire is decently hot, because it might just be locally cooled by 
water or something, and you might overheat the rest of it.  And you 
never want to try to push the voltage or current too high, because the 
output might have gotten open-circuited (because the wire broke) or 
short-circuited.  This suggests that you might want to shift into 
discontinuous conduction mode for shutdown cases, so that both the 
current limit and voltage limit can be low, and have some parallel 
bleeder resistor that will drop less than 100 mW at whatever max 
voltage is acceptable, thus keeping the buck’s output from soaring.  
For example, a 10Ω 0805 resistor would pass 70 mA at 700 mV, thus 
49 mW. 

    270° is 1.55 W/m;  280° is 1.67 W/m;  290° is 1.79 W/m;  300° is 
1.92 W/m.  So as long as we don’t have too much insulation around 
the wire (of something other than foam!) we have about a 24% power 
cushion, where if we’re sending in too much current we just get a 
too-high temperature instead of actually melting the wire.  This 
amounts to about an extra 11% of current.  In theory it might be 
possible to detect “abnormal heat dissipation” resulting from, say, 
cold spots, and that might work better than hoping the cold spot isn’t 
more than 24% of the wire. 

    This level of complexity makes me think using a microcontroller 
might be easier than trying to design an analog circuit that does 
everything automatically with separate components. 

    2.5 W with 220 mΩ is 3.37 A or 740 mV, so the maximum current 
and voltage definitely shouldn’t be higher than that. 

Bang-bang 

    The simplest possible control scheme for this, other than just 
relying on the wire’s power dissipation, would probably be bang-bang 
control:  heat the wire at epsilon over the desired voltage level, say 
280 mV instead of 260 mV, until the resistance increases to the 
expected level of 440 mΩ.  Then cut off the supply for a while. 

    It would be ideal if you could just leave it turned off until the 
resistance has dropped by some amount of hysteresis, but you can’t do 



that because you don’t know what the resistance is when the power 
supply is turned off, so maybe it would be reasonable to use a period 
of time that’s not so long that the wire has cooled down too much.  
At 150 mW and 7 mg and copper’s room-temperature heat capacity 
of 24.440 J/mol/K and 63.456 g/mol, thus 385 mJ/g/K, thus 
2.7 mJ/K, thus 18 ms/K, it seems like 10 ms would be a reasonable 
time to turn off for. 

    Incidentally, this works out to 56 K/s, which means that even 
without using multiple watts at startup, you only have to wait about 5 
seconds before it’s up to temperature — less, really, since using a 
constant voltage means the lower 2.2Ω cold resistance will give you 
600 mW initially. 

Series sense resistors are bad 

    To measure the resistance, one way would be to put a sense resistor 
in series with the cutting wire, and you probably want it to have a 
resistance that’s small compared to the cutting wire itself so it doesn’t 
get too hot — say, a few milliohms instead of a few hundred 
milliohms.  You probably can’t really do this by adding a voltage 
probe to the cutting wire itself, because your probe section will heat 
up too, and the voltage you read won’t depend on the wire’s 
temperature, just where the probe is and what the total voltage is.  If 
±10° is an acceptable error, then the cutoff resistance can range from 
426 mΩ to 443 mΩ, about a 4% error (±2%), some of which can come 
from the sense resistor, say about 2% (±1%).  Maybe 5 mΩ ±1% would 
be suitable. 

    Probably the way to deal with this precision requirement is to make 
a current-measurement resistor out of the same wire as the cutting 
wire, but using about 50 strands of it, cut to, say, 113.6 mm ±1%, to 
get 5 mΩ.  Or you could build or buy a milliohmmeter before you try 
to build the foam cutter. 

    The other problem with the series-sense-resistor approach, though, 
is that you also have to measure its voltage to within ±2%, or better 
±1% to avoid spending the entire error budget on voltage 
measurement and having none left over for, I don’t know, variation 
of ambient temperature.  But its voltage is 580 mA times 5 mΩ, or 
2.9 mV, and 1% of that is 29 μV.  That’s not a lot of noise immunity 
for a switching power supply running on 5 volts. 

Instead, measure the current with the bleeder 

    Above I said that you need a bleeder to keep the output from 
soaring when the wire breaks.  If we make the dubious assumption 
that the input voltage and buck duty cycle are precisely constant, then 
in CCM the average output voltage will also be precisely constant, 
but the current will vary according to the load.  So, if we suddenly 
open-circuit the output with a second transistor, the output inductor 
will suddenly be feeding only the bleeder, but its current can’t change 
instantaneously, so the voltage there will suddenly jump enormously, 
potentially even higher than the 5-volt input.  This new peak voltage 
will immediately start to fall, but the peak should fairly precisely be 
the output current multiplied by the bleeder. 

    And if the peak is too low, then the cutting wire has too much 
resistance, so we should leave it turned off for 10 ms to maybe cool 
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down. 

    For this to give us a precision measurement, the bleeder needs to 
stay at a constant temperature, and so can’t dissipate much heat during 
normal operation.  Let’s spitball 1 mW.  At 280 mV, this would 
suggest using a 78.4Ω resistor.  If that 280 mV was previously feeding 
the 220-mΩ cutting wire, it will have been producing 1.27 A (!), and 
if this resistor suddenly finds itself carrying 1.27 A, it’s going to spike 
up to a somewhat dismaying 99.6 V.  If the wire is at temperature, 
and thus 434 mΩ, then it’s only 645 mA, and we see only 50.6 V.  So 
when the inductive spike falls below 50.6 V then we need to turn off 
the wire for a while, maybe by just leaving the spike-generation 
transistor turned off.  Well, at least we don’t have to worry about 
microvolt noise anymore! 

    At these voltages, a peak detector consisting of a diode and a 
capacitor will be pretty precise;  the variation in the diode’s forward 
drop is going to introduce maybe 0.3% error at 50.6 V, and the 
capacitor’s capacitance doesn’t matter for the voltage peak as long as 
it’s not so large that the inductor’s current droops significantly (more 
than 1% I guess?) before the capacitor is charged. 

    Then we can just divide down the capacitor’s sample of the peak 
voltage to some kind of reasonable level to see if it’s so low that we 
should leave the output turned off for a while.  Or, from a different 
perspective, to see if it’s high enough to turn the cutting wire back on.  
And the divider network, though it also needs to be precise to 
sub-percent levels, can also double as a bleeder resistor to drain the 
peak-detector capacitor so that the next peak actually gets detected. 

    This suggests also using the peak-detector draining to time the time 
until the next sample — that is, when the capacitor has drained far 
enough, we turn off the output spike-generation transistor, just as we 
would if the capacitor hadn’t charged far enough in the first place 
(because the current was too low, because the output resistance was 
too high, because the wire was too hot).  We probably need some 
kind of Schmitt-trigger action to make sure the transistor turns off 
quickly instead of gradually;  I gotta think about how to do the 
comparison of the peak-detector output to the reference voltage by 
using something simpler than a differential pair. 

    We can, of course, vary the bleeder/measurement resistor to any 
similar convenient value;  we just have to vary the peak-detector 
divider factor proportionally. 

    The 78.4Ω example value results in 3.6 mA of bleeder current at 
the normal 280 mV, which seems like it ought to be enough to keep 
the output from soaring.  I guess I don’t really know how to calculate 
that, but it’s a pretty non-negligible amount of current. 

Or maybe just use the wire voltage for 
feedback 

    On ##electronics Famine suggested instead feeding the wire with 
a constant-current supply and servoing off the wire’s voltage;  they 
gave an example linear circuit that drives an output Darlington off an 
op-amp which compares to a reference voltage from a voltage divider.  
This still means you need measurement precision of a couple of 



millivolts, but in a linear circuit like the one they designed, that’s 
totally reasonable, especially if it’s running off a battery or something 
instead of a USB power bank;  and it avoids having hundreds of volts 
anywhere in the circuit.  The only real drawback I see is that it can’t 
step up the current from what the power supply can provide, the way 
a buck converter can, and at any reasonable input voltage it burns 
most of the power in the output Darlington. 

    Here’s Famine’s circuit in the format of Falstad’s circuit simulator: 

$ 1 0.000005 0.529449005047003 50 5 43
R -960 -160 -960 -192 0 0 40 10 0 0 0.5
r -960 -48 -960 -96 0 1000
t -960 -48 -912 -48 0 -1 1.271599532576758 -0.586456396571938 100
r -960 0 -960 48 0 84
r -912 -32 -912 48 0 1000
t -912 -32 -864 -32 0 1 -1.858055929148696 0.6422963295577914 100
w -912 -96 -912 -64 0
w -864 -48 -864 -96 0
w -864 -96 -912 -96 0
w -864 -16 -864 48 0
w -864 48 -912 48 0
w -912 48 -960 48 0
g -912 48 -912 80 0
r -960 -96 -960 -160 0 1000
34 default-led1 0 9.32e-11 0.042 4.6 0
162 -960 -48 -960 0 2 default-led1 0 1 0 0.01
w -864 -96 -832 -96 0
w -960 -96 -912 -96 0
r -832 -16 -832 -96 0 20000
r -832 48 -832 -16 0 2200
w -864 48 -832 48 0
207 -832 -16 -800 -16 4 WREF
207 -832 -96 -800 -96 4 REF
207 -832 -128 -864 -128 4 VIN\p
207 -320 0 -272 0 4 VIN-
t -400 -128 -400 -160 1 1 -8.961181213242781 0.7739571557760819 100
R -416 -160 -416 -192 0 0 40 10 0 0 0.5
w -384 -160 -320 -160 0
r -320 0 -320 48 0 0.265
g -320 48 -320 64 0
207 -832 -128 -800 -128 4 WREF
207 -416 -48 -416 -16 4 OUT
w -544 -128 -544 -160 0
w -576 -160 -544 -160 0
w -720 -80 -720 -112 0
w -592 -80 -592 -48 0
w -720 -80 -592 -80 0
r -720 -160 -720 -112 0 10000
w -720 -48 -720 -80 0
w -576 -112 -576 0 0
g -544 -96 -544 -64 0
r -576 -160 -720 -160 0 3000
t -576 -112 -544 -112 0 1 -1.0940530012757717 0.6209041892124895 100
g -592 48 -592 64 0
g -720 48 -720 64 0
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r -576 -112 -720 -112 0 2200
w -720 0 -576 0 0
w -592 16 -592 -16 0
w -720 0 -720 -16 0
w -720 16 -720 0 0
r -592 16 -592 48 0 10000
r -720 16 -720 48 0 1000
207 -624 -32 -640 -32 4 VIN-
t -624 -32 -592 -32 0 -1 -0.550781216679921 -0.574071418383921 100
t -688 -32 -720 -32 0 -1 -0.3620094258350334 -0.5800382859876023 100
207 -544 -160 -496 -160 4 OUT
207 -688 -32 -672 -32 4 VIN\p
R -720 -160 -720 -192 0 0 40 10 0 0 0.5
t -416 -96 -416 -128 1 1 -8.306594149635059 0.6545870636077218 100
w -432 -128 -432 -160 0
w -432 -160 -416 -160 0
r -416 -96 -416 -48 0 220
370 -320 -160 -320 0 1 0 0
 

Alternative energy sources 

    Using only 150 mW means you could use even a CR2032 coin cell;  
Energizer suggests theirs has under 10Ω of internal resistance for 
much of its lifetime, and under 20Ω until it’s almost dead.  3 volts at 
20Ω is 150 mA, which is half a watt.  The battery won’t last long at 
that kind of drain.  Its typical capacity is given as “235 mAh”, or in SI 
units 846 coulombs, or about 2.5 kJ, but you’ll be lucky to get a tenth 
of that at these high drains.  So the battery might only last a few 
minutes to half an hour or so. 

    Various kinds of capacitors can hold a few hundred joules as well 
XXX
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Alien screws
Kragen Javier Sitaker, 02020-11-06 (updated 02020-11-11) 
(4 minutes)

    How would an advanced alien civilization design screws or similar 
fasteners? 

    Four improvements in particular occur to me:  bayonet 
connections, two-quarters threads, hollow threads, and positive 
screwdriver coupling. 

Bayonet connections and two-quarters 
threads 

    Bayonet connections like those used for camera lenses, BNC cables, 
fluorescent light starters, US childproof pill bottles, and some kinds of 
lightbulbs (the English standard) are far superior to screws in most 
cases, though they do require a spring. 

    I understand that some barrels use threads that run around only one 
quarter of the barrel, leave a slot for one quarter of the barrel, run 
around another quarter of the barrel, then leave a slot for the final 
quarter.  So, by rotating the barrel to the position where the threads 
do not engage, you can just insert it translationally, then screw it a 
quarter-turn to lock it into place.  This scheme also allows fractional 
numbers of starts and variable mechanical advantage, similar to 
bayonet connections, and of course you can use it with larger numbers 
of starts as well. 

    By adding a stop at the end of the quarter-turn rotation, as in 
bayonet connections, you can prevent the screw from being turned 
too far, which will weaken the connection. 

    If there is a bit of waviness to the thread, an energy barrier can be 
provided which will make the screw resistant to coming out during 
impact or vibration;  it must rotate a significant amount before the 
energy gradient tends toward screwing out, as it always does in a 
conventional screw, rather than back in.  This undulation must come 
out of the clearance between the inner and outer threads, so it may be 
necessary to increase the thread spacing to permit it. 

    By using different thread pitches at different positions along a 
tapped hole that joins two or more pieces, you can cause the screw to 
squeeze them apart or, more promisingly, together, by an amount 
determined by the difference between the thread pitches.  
Conventional bolted joints depend on the screw head and the nut 
bearing against the tapped material for this, but if the hole is long, the 
screw threads can engage more material, thus producing a joint 
stronger against pullout.  This also eliminates the need for a screw 
head in many applications, allowing the use of a headless screw similar 
to a grub screw. 

Hollow threads around a smooth shank 

    A conventional screw is only stretched in three areas:  any shanks 
where threads are absent;  near its head;  and near each place where it 



passes through a gap between two parts.  This purely local stretching 
makes for maximal rigidity, and consequently maximal fragility to 
impacts.  If this is not desirable, one approach is to leave a long 
unthreaded shank between the threads needed to provide enough 
engagement to prevent pullout, in either the screw or the hole or, 
ideally, both.  A better tradeoff can be provided in many applications 
by making the threads at each end a hollow cylinder maintained in 
compression, free to slide along an internal unthreaded shank or tension 
rod which is welded to the thread-covered pipes at each end of the 
fastener.  (So they’re only sliding to the extent that either the threads 
or the rod are deforming.) This may reduce the screw’s tensile 
strength somewhat, because the shank is narrower than it would 
otherwise be — although the thread roots are no longer available as 
crack-initiation stress risers.  But it increases the impact resistance of 
the joint, because the screw can extend further before breaking, so 
more energy is needed to break it. 

Positive screwdriver coupling 

    Positive screwdriver coupling might involve a ball bearing that 
pops out of the side of a square-drive screwdriver to engage a cavity 
in the screw head, with a shim that slides into place inside the 
screwdriver to lock the ball bearing in place.  A simpler design uses an 
L-shaped screwdriver blade half the width of the screwdriver and a 
shim that slides in behind it to push the bottom of the L into a slot in 
the screw head.

Topics

• Contrivances (p.  786) (44 notes) 
• Mechanical things (p.  791) (19 notes) 



The Spungot sentential database 
for end-user logic programming
Kragen Javier Sitaker, 02020-11-06 (updated 02020-12-31) 
(27 minutes) 

    I’ve written a little bit previously about a sort of pattern-matching 
Prolog, where instead of dealing with explicitly given relations: 

father(fred, mary).
parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
 

    you deal with strings of text, such as lines in a CSV file or a chat 
transcript, or sentences: 

Fred is Mary's father
Mary is John's mother

'Foo' is 'Bar''s father
----
Foo is Bar's parent

'Foo' is 'Bar''s mother
----
Foo is Bar's parent

'Alice' is 'Bill''s parent
----
Alice is Bill's ancestor

'Alice' is 'Carol''s parent
Carol is 'Bill''s ancestor
----
Alice is Bill's ancestor
 

    From this we can deduce: 

Fred is Mary's parent
Fred is Mary's ancestor
Mary is John's parent
Mary is John's ancestor
Fred is John's ancestor
 

    In Prolog-style top-down search, this is kind of tricky, since you 
kind of have to guess which inference rules can match which patterns, 
but in Datalog bottom-up inference, there’s no difficulty;  each newly 
inferred sentence need only be matched against the premises of all the 
rules to see if it enables additional sentences to be inferred.  This 
won’t be nearly as efficient as Prolog, but that’s fine.  It’s probably 



efficient enough for many uses just by brute force, and a little 
indexing on infrequent words should go the rest of the way. 

    I was thinking about this last night and got really excited.  I think it 
might offer an easily usable system with enough expressive power to 
be useful. 

Basic UI 

    Interactively or in batch mode, a UI for such a database can add a 
table of results underneath each set of premises, which are 
distinguished from ground facts by containing variables.  (Above I’ve 
marked these with apostrophes, but other syntax might be better, 
especially for natural languages containing contractions.) In batch 
mode, it could simply process a text file and produce a file annotated 
with deductions and query results. 

Negation 

    But you can also add negation, using the standard Datalog 
stratification approach (done dynamically rather than statically): 

'Aaron' is indicted
\+ Aaron is guilty
----
Aaron is falsely accused
 

    I’m not totally clear on how this works without doing the kind of 
textual rule analysis that I said above was difficult. 

    I think this approach might work: 

• Initially, put all the purely monotonic rules in stratum 0, and all the 
nonmonotonic ones in stratum 1.  
• Do inferences stratum by stratum.  
• Maintain a list of inferred assertions for each rule, and of course the 
derivation for each inferred fact.  
• When a newly inferred fact Ⅰ requires the retraction of some 
previously inferred fact Ⅱ, that means that Ⅱ was inferred too early.  
So we retract all the assertions inferred from the rule by which Ⅱ was 
inferred — call it R(Ⅱ);  add an inequality constraint putting it in a 
strictly greater stratum than R(Ⅰ), calling Ⅰ’s rule’s stratum S(R(Ⅰ)):  
“S(R(Ⅱ)) > S(R(Ⅰ))”;  and move it to the stratum after R(Ⅰ).  We also 
need to retract all assertions from other rules that are constrained to be 
in S(R(Ⅱ)) or later and move them as well.  
• When a newly inferred fact Ⅰ permits the inference of another newly 
inferred fact Ⅱ, that means that the rule R(Ⅱ) by which Ⅱ was inferred 
should be at a stratum greater than or equal to the stratum of the rule 
R(Ⅰ) by which Ⅰ was inferred.  So we add an inequality S(R(Ⅱ)) ≥ 
S(R(Ⅰ)) to a topological sorting database on that basis, if it is not 
already there.  This may involve moving R(Ⅱ) to the current stratum, 
may involve moving other rules constrained to be in a greater than or 
equal stratum to the current stratum, and may require moving other 
rules to higher strata.  
• Retraction chaining from retraction to either assertion or retraction 
is handled by the shotgun approach of retracting everything from a 



rule that is being promoted to a stratum after the current one, because 
any rule that transitively depended on a rule being thus promoted will 
also be promoted and thus all its assertions also retracted.  
• Upon encountering circular dependencies with a negation in the 
chain, throw up hands and report them to the user.   

    This clearly isn’t the most efficient mechanism, since we may waste 
substantial work on a chain of reasoning that must be later retracted 
when it was discovered to depend on a rule that was applied too early, 
but I think it might be adequately efficient in practice. 

Aggregate formulas 

    Also you can add aggregate functions: 

'X' has line item 'Y'
'Y' costs 'Z'
----
X totals =total(Z)
 

    where implicitly we are quantifying over all Y (or, I guess, 
reducing over all Y) because Y does not occur in the rule’s conclusion 
outside of an aggregate. 

    Aggregates include =count(), =sum(), =total(), =mean(), =stdev(), 
=max(), =min(), =product(), =list() (which separates items with 
commas) and =any(), which just picks one of the values in some 
unspecified way. 

    =argmax() and =argmin() are aggregates taking two arguments:  the 
first is the thing to be returned, while the second is the thing to be 
maximized or minimized.  So, for example, to get the material that 
provides the lowest cost, you say =argmin(material, cost). 

    This kind of aggregation involves a form of negation similar to the 
above.  Suppose you want to count the children of each node in a tree: 

'Child' is a child of 'parent'
---
Parent has =count(child) children
 

    We may at some point have deduced that X has 3 children, and 
then later infer a fourth child of X.  The result involves not only 
adding “X has 4 children” to the database of known facts, but also 
retracting “X has 3 children”.  So something like stratification is 
necessary to provide the aggregation feature, at least without a lot of 
wasted work, possible nondeterminism (where the result depends on 
what order the rules were applied in), and possible nontermination.  
(See the section below about dynamical systems, though, for other 
sources of nontermination.) 

Scalar formulas 

    And of course you can have other formulas as well: 

'C' is a cylinder
C has radius 'r'



C has height 'h'
---
C has volume =(pi r² h)
C has surface area =(2 pi r² + 2 pi r h)

'Something' is made of 'unobtainium'
Unobtainium has density 'D'
Something has volume 'v'
----
Something has mass =(D*v)
 

    Here because D and v occur outside of an aggregate function you are 
not aggregating over all the densities and volumes.  If it happens that 
some object has two volumes and is made of two materials, each of 
which have two densities, then the system will deduce eight masses 
for it. 

Abbreviation 

    It’s probably better to abbreviate this: 

'C':
    is a cylinder
    has:
        radius 'r'
        height 'h'
---
C has:
    volume =(pi r² h)
    surface area =(2 pi r² + 2 pi r h)

'It':
    is made of 'unobtainium'
    has volume 'v'
Unobtainium has density 'D'
----
It has mass =(D*v)
 

Goal seek 

    In this form the system is sort of unidirectional;  it can infer the 
volume of a cylinder from its radius and height, but it can’t infer its 
radius from its volume and height.  Spreadsheets use a special “goal 
seek” interaction for this;  you identify which cells are “design 
variables” the optimizer can twiddle and which cell you want to give 
a given value, and it twiddles the design variables to approximate it as 
closely as possible.  This could be supported syntactically, using the 
same syntactic distinction between variables and constants as in 
premises: 

c1:
    is a cylinder
    has height 32cm
*seek*:
    c1 has:



        volume 1 m³
        radius 'r'
 

    This doesn’t give you the whole bidirectional power of constraint 
solvers, but it’s very simple to use and implement, and perfectly 
adequate for many computations I do in Derctuo. 

Libraries 

    You probably want to be able to import library modules so that you 
don’t have to explain things like cylinders and densities in every 
database.  Probably the best way to do this, in a textual system, is to 
stick a line in the file saying something like 

:use circuits geometry shapes
 

    But this should probably be at the end of the file. 

Existentials 

    If you say that some object is a cylinder, you probably don’t want 
the system to posit a material from which it is made.  But there might 
be cases where you do want such deductions: 

'x' is a car
----
'something' is the steering wheel of x
 

    Here we have a free variable in the conclusion of the rule, with the 
meaning that the system is entitled to make up an object to fill that 
role if nothing else turns up.  This involves a sort of negation. 

Quantities 

    Above I’ve talked about quantities like 32cm and 1 m³, which have 
units and are expressed in Unicode notation.  This is very valuable for 
a lot of the calculations I’m doing.  I’m not sure if you can implement 
that within the system or what. 

    You know what else would be very valuable?  Intervals.  32cm±5cm.  
1–1.5m³.  And gradients:  when a value is computed by a formula from 
some given data, it would be useful to see what its gradient is in terms 
of those givens.  Computing the gradient is of course also very useful 
for “goal seek”. 

UI affordances 

    Tabular output can go beyond the simple column-per-variable 
default;  you can, for example, specify a sort key, change the order of 
columns, change the formatting of columns, pivot one or more 
variables to be the column headers for the others, hide columns, etc. 
In an interactive system, you could add rows to the table as a form of 
data entry. 

    A non-interactive system can be implemented that just reads in a 
text file and spews out an augmented version of it. 

    It’s probably useful to see all the inferred facts, as well as which 



given facts and rules were used to infer each inferred fact.  In rules 
with a single conclusion, there’s a one-to-one correpondence between 
table rows (pace pivoting) and inferred facts, but if there are multiple 
conclusions there may be more than one. 

    Filtering this list of inferences down to a usable list might be a 
challenge.  Interactively, too, we might want to know why a given 
conclusion was not reached from a given rule:  which of the premises 
failed to hold true?  This kind of “why not” debugging is usually easy 
in functional programs but very difficult in imperative programs;  it 
seems like it would be pretty difficult to incorporate non-interactively 
in a “program listing”, but you could supply it as a separate 
batch-mode command similar to goal-seek. 

Multiple words and nesting 

    All of the above is entirely without nesting, and the lack of nesting 
is one of the great UI benefits of logic programming in general.  But 
sometimes you do need nesting in order to be able to correctly reason 
about complicated propositions, especially without existentials. 

    A really simple approach, which doesn't go far, is to allow variables 
to match arbitrary sequences of words instead of single words: 

Bob Smith is a person
Mary Smith is a person

'Someone' is a person
----
Someone has skin

'John' 'Doe' is a person
'Richard' Doe is a person
---
John Doe is related to Richard Doe
 

    From this we can infer, among other things, that Mary Smith has 
skin and Mary Smith is related to Bob Smith. 

    The simplest possible approach to nesting would be not allowing 
variables to match arbitrary sequences of words containing unmatched 
parentheses.  That way you could use parentheses to supply arbitrary 
nesting structure. 

    It might be desirable for a variable to not match multiple words by 
default.  This is partly a usability question that ought to be studied by 
studying users. 

Regexps 

    If you're trying to apply this kind of tool to parsing text that it 
wasn't intended for, it might be convenient to specify a regex to 
constrain the matches. 

start 'year/\d+/'-'month/\d+/'-'day/\d+/'
---
Session began 'day'.'month'.'year'
 



Denesting 

    The abbreviation facility above suggests writing: 

I should buy:
    red peppers
    bananas
    apples
 

    to create three facts.  But what if we're trying to assimilate 
something like 

I should buy red peppers, bananas, apples
 

    Then maybe it would be useful to be able to write a rule with a 
premise like 

I should buy 'food...'
 

    to match three times food=red peppers, food=bananas, 
food=apples, vaguely similar to Scheme syntax-rules. 

Syntax 

    Especially for a textual system, syntax is important for UI.  Some 
alternatives to the strawman syntax above: 

• Alternative syntax for variables.  Above I've only stuck sigils on 
variables to indicate their variable nature the first time they occur, but 
it might be worthwhile to use the sigil every time for readability;  Tcl 
and bash seem to suffer in usability compared to PHP and Perl's more 
universal sigil usage.  Here are some possible alternatives: 

'It' is made of 'unobtainium'   # example above
«It» is made of «unobtainium»   # much harder to type but safer
<It> is made of <unobtainium>   # common metavariable syntax in grammars
`It` is made of `unobtainium`   # e.g., SQL
"It" is made of "unobtainium"   # also SQL but less weird; harder to
                                # type than '' but safer with contractions
It is made of Unobtainium       # Alain Colmerauer's Prolog, without punctuation
IT is made of UNOBTAINIUM       # variant
it IS MADE OF unobtainium       # variant, often used informally for, e.g., SQL
it Is Made Of unobtainium.      # Darius Bacon's Pythological
It$ is made of unobtainium$     # BASIC
$It is made of $unobtainium     # Perl/PHP, taken from BASIC and sh; also Tcl
@It is made of @unobtainium     # Perl variant
.It is made of .unobtainium     # minimal line noise variant
:It is made of :unobtainium     # Logo/Smalltalk/Ruby(?) params, almost as calm
It :is :made :of unobtainium    # Lisp/Ruby keywords/symbols
It 'is 'made 'of unobtainium    # Lisp quoted symbols
,It is made of ,unobtainium     # Lisp quasiquoted
?It is made of ?unobtainium     # Lisp-family logic languages; N3
It? is made of unobtainium?     # variant
¿It? is made of ¿unobtainium?   # Spanish variant
{It} is made of {unobtainium}   # various templating languages
                                # including Python .format and f''



#{It} is made of #{unobtainium} # Ruby's equivalent
[It] is made of [unobtainium]   # easier to type on standard keyboard than {}
(It) is made of (unobtainium)   # the remaining ASCII nesting delimiters
%It% is made of %unobtainium%   # MS-DOS batch
%It is made of %unobtainium     # variant
¤It is made of ¤unobtainium     # variant
|It| is made of |unobtainium|   # more little-used delimiters
It* is made of unobtainium*     # asterisk connotes reference
It† is made of unobtainium†     # though daggers connote it HARDER
It... is made of unobtainium... # ellipses connote indefiniteness
It_ is made of unobtainium_     # Mathematica
 

    In a multi-font system, we could imagine writing It is made of 
unobtainium, It is made of unobtainium, It is made of unobtainium, or 
It is made of unobtainium instead.  (Note that if you're viewing this 
on GitLab some of the formatting in this paragraph gets mangled by 
their buggy Markdown parser.)  
• Alternative syntax for deduction.  The line of dashes echoes the 
sequent calculus but it's kind of heavyweight, and how many dashes 
do you use, anyway?  Does it matter?  And then there's the question 
of how far its scope extends (above, to the first blank line).  And 
should the premises come before the conclusion, as above, or after it?  
Here is the original and some strawman alternatives: 

    {Alice} is {Carol}'s parent
    {Carol} is {Bill}'s ancestor
    ----
    {Alice} is {Bill}'s ancestor

    {Alice} is {Bill}'s ancestor :-
        {Alice} is {Carol}'s parent
        {Carol} is {Bill}'s ancestor

    {Alice} is {Bill}'s ancestor?
        {Alice} is {Carol}'s parent
        {Carol} is {Bill}'s ancestor

    if:
        {Alice} is {Carol}'s parent
        {Carol} is {Bill}'s ancestor
    then:
        {Alice} is {Bill}'s ancestor

    {A} is {C}'s parent; {C} is {B}'s ancestor |- {A} is {B}'s ancestor

    :A is :C's parent; :C is :B's ancestor { :A is :B's ancestor }

    {Alice} is {Carol}'s parent
    {Carol} is {Bill}'s ancestor
    :. {Alice} is {Bill}'s ancestor

    {Alice} is {Carol}'s parent
    {Carol} is {Bill}'s ancestor
    => {Alice} is {Bill}'s ancestor
 



    Although I like the one with “:.”, the closest ASCII equivalent of 
“∴”, I think the last one with “=>”, due to deltab, is better.  They 
both avoid spurious visual suggestions of nesting, it's compact, and 
there's only one way to do (each of) them.  The premises { conclusion } 
idea, also due to deltab, is also very nice, but like the turnstile |- it 
clashes somewhat with the overall line-oriented style.  
• Alternative syntax for formulas.  I think most formulas will 
probably be fairly simple affairs, so it's nice to be able to introduce 
them with just a single character instead of nested delimiters;  
=total(cost) beats [total(cost)] on visual noise.  And the = syntax is 
familiar from Excel, having replaced Visicalc's @ syntax (also used in 
Lotus 1-2-3, though with one less period for ranges):  +B1-SUM(C2...C8).  
Still, you could imagine other syntaxes.  ES5 template strings use ${2 * 
a + b}.   

Queries and reporting 

    Every set of premises is a query whose answer is a table, but it 
might be more useful to be able to include only some of these tables in 
a formatted output report. 

Inequalities 

    For a lot of calculations I care a lot about inequalities:  the weight is 
less than the weight capacity, the temperature is less than the melting 
point, the change in Gibbs free energy is negative, the absolute 
pressure is positive, and so on.  It seems like the best way to 
incorporate these inequalities into rules is simply as a special sort of 
premise that is handled specially;  rather than being matched against 
known or inferred facts, it is checked once the relevant variables are 
instantiated: 

{The body} is:
    made of {stuff}
    at atmospheric pressure
{Stuff} has:
    melting point {M}
    boiling point {B}
=> {The body} is liquid from {M} to {B}

{The body}:
    is liquid from {M} to {B}
    has temperature {T}
{M} < {T} < {B}
=> {The body} is liquid

{The body}:
    is liquid from {M} to {_}
    has temperature {T}
{T} < {M}
=> {The body} is solid

{The body}:
    is liquid from {_} to {B}
    has temperature {T}
{T} > {B}



=> {The body} is gaseous

{The body}:
    is liquid from {M} to {_}
    is slushy
=> {The body} has temperature {M}
 

    For point-valued scalar real quantities, these inequalities are 
trichotomous:  either {T} < {M}, {T} == {M}, or {T} > {M}.  
But for interval-valued quantities, this may not be the case;  if the 
temperature of some water is known to be between -4° and +4°, we 
cannot conclude either that it is liquid or solid.  (Or gaseous, of 
course;  a more powerful modal reasoning system than what I'm 
proposing could demonstrate that it is not gaseous, and that if the 
temperature is >0°, it is liquid.) 

    Equalities can not only be checked in this way, but if we permit 
formulas in premises, they can also instantiate variables, which is 
potentially useful as a way of factoring out formulas.  However, this 
also has potentially complex interactions with interval-valued 
variables, since knowing that two masses are both in the range (100 g, 
200 g) does not demonstrate that they are equal.  (And of course this 
already pops up with the equality testing implicit in multiple 
occurrences.) 

Frames and modal reasoning 

    All of the above puts both rules and facts in a sort of global tuple 
space or string space.  But the system is clearly capable of expressing 
logical consequences:  if the temperature is 329°, then the wax is 
liquid.  We could imagine “creating a frame” that contains some 
additional facts (and perhaps omits others), and looking to see what 
can be newly inferred from those facts. 

    If you have some way to export computed values from these 
frames, this very quickly gives you something like Bicicleta, only with 
logic programming rather than functional formulas. 

Arrays and dynamical systems 

    Computers are great at iteration.  You can integrate a system of 
ordinary differential equations with Euler's method in Python in a 
minute or two of programming, using a fraction of a second of CPU 
time: 

$ time python
...
>>> x0, y0 = 100, 0
>>> x, y = x0, y0
>>> for t in range(1000):
...   x, y = x + .01 * y - .01 * x,  y - .02 *x - .01 * y
...
>>> x, y
(-0.0006995268370926552, -0.006688316539762943)

real    1m11.032s
user    0m0.072s



sys     0m0.056s
 

    Systems like Modelica include robust numerical ODE solvers using 
much more efficient, higher-precision methods. 

    But even without getting into dynamical systems, iteration is pretty 
useful.  It turns out that the system as described above can handle this 
example with no problem: 

At time {t} of {n} we are at ({x}, {y})
{t} < {n}

=> At time =({t} + 1) of {n} we are at (=({x} + .01 * {y} - .01 * {x}), =({y} - .
02 * {x} - .01 * {y}))

At time {n} of {n} we are at ({x}, {y})
=> Our final position is ({x}, {y})

At time 0 of 1000 we are at (100, 0)
 

    Given how easy this is, it might be worthwhile to have an implicit 
loop limit you can override to avoid accidental looping.  Like, in a 
sense this is just transitive closure, right? 

    This kind of explicit indexing can be used for things that aren't 
iterative, too, but rather data-parallel: 

{It} emits {x} watts per square meter per nm in band {λ}
The CIE photopic perceptual weight of band {λ} is {w}
=> {It} emits =mean({x} * {w}) lumens
 

    This is easy to distinguish from the dangerous case above because 
the derivation chain doesn't go through the same rule over and over 
again.  However, I'm not entirely sure how to tell the difference 
between the (safe) transitive closure of a finite relation produced in 
some other way, and the (unsafe) looping case above.  So it isn't 
obvious how to implement something like Turner's Total Functional 
Programming. 

    There's a practical concern for how to get these arrays of data into 
the system as a large set of assertions like the example above in the 
first place.  But the solution for that doesn't have to be elegant;  it just 
has to be practical. 

    Consider this Numerical Python example, where I wanted to see 
the number of RC time constants needed to decay past a number of 
candidate thresholds: 

>>> [round(i, 2) for i in -log((arange(99)+1)/100.0)]
[4.61, 3.91, 3.51, 3.22, 3.0, 2.81, 2.66, 2.53, 2.41, 2.3, 2.21,
2.12, 2.04, 1.97, 1.9, 1.83, 1.77, 1.71, 1.66, 1.61, 1.56, 1.51,
1.47, 1.43, 1.39, 1.35, 1.31, 1.27, 1.24, 1.2, 1.17, 1.14, 1.11,
1.08, 1.05, 1.02, 0.99, 0.97, 0.94, 0.92, 0.89, 0.87, 0.84, 0.82,
0.8, 0.78, 0.76, 0.73, 0.71, 0.69, 0.67, 0.65, 0.63, 0.62, 0.6,
0.58, 0.56, 0.54, 0.53, 0.51, 0.49, 0.48, 0.46, 0.45, 0.43, 0.42,
0.4, 0.39, 0.37, 0.36, 0.34, 0.33, 0.31, 0.3, 0.29, 0.27, 0.26,
0.25, 0.24, 0.22, 0.21, 0.2, 0.19, 0.17, 0.16, 0.15, 0.14, 0.13,



0.12, 0.11, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01]
 

    This is awkward to do in Numpy because Numpy doesn't have 
output format control, so I had to resort to a regular Python list 
comprehension. 

    The Scheme syntax-rules macro system includes an interesting “...” 
construct, permitting you to rewrite, for example (foo (as a...) (bs b...)) 
to (bar (b a)...), without providing full list-processing capabilities.  
That example would rewrite (foo (as 1 2 3) (bs x y z)) to (bar (x 1) (y 
2) (z 3)), for example.  You could imagine supporting a similar but 
more limited “...” construct in patterns in order to be able to input 
array data more easily. 

Fuck RDF N3 syntax, seriously 

    Consider this example from EYE, in RDF N3: 

@prefix log: <http://www.w3.org/2000/10/swap/log#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix : <http://www.agfa.com/w3c/euler/socrates#>.

:Socrates a :Man.
:Man rdfs:subClassOf :Mortal.

{?A rdfs:subClassOf ?B. ?S a ?A} => {?S a ?B}.
 

    This looks like a bunch of fucking line noise.  I think it’s 
dramatically more understandable to express it as follows;  the result, 
“Socrates is a mortal”, is even more understandable than the over a 
page of line noise generated by EYE. 

Socrates is a man
Every man is a mortal

Every {X} is {Y}
{Z} is a {X}
=> {Z} is {Y}
 

    Also, the input is not only more readable, but also 85 characters 
instead of 317 characters, almost four times smaller. 

    (The more flexible syntax might be not only more readable, but 
also permit subtle bugs.  Suppose the template above had said Every {X} 
is {Y}., with a period at the end;  then it would unintentionally fail to 
match.) 

    N3 is, of course, capable of expressing enormously more powerful 
forms of inference than that, including anonymous entities and so on.  
But I don't think that's an excuse for it to read like line noise. 

Naming 

    Names considered:  Heef Jumbus, Spungot (file extension:  .spug), 
Facdotum, Axiopolis, Expressum, Shuntence, Nollidge, Ret-o'-Rick, 
Infoflow, Conceptium, Polythink, Knecksus, Mirrorgation, The 

https://github.com/josd/eye/blob/master/reasoning/socrates/socrates.n3
https://github.com/josd/eye/blob/master/reasoning/socrates/socrates_proof.n3
https://github.com/josd/eye/blob/master/reasoning/socrates/socrates_proof.n3


Mind Machine, Databog, Thinksluice, Monad's Revenge, Itshift, 
Cherry-go-Round, Connectionalismus, Meshotron, Cogtionary, 
Equationsheet, Mathbox, Logivox, Neotinker, The Bitsmith's Forge, 
Omnilathe, Spinfluence, Elementalis, Wonderiensis, Bowdos, 
Monkin, Fleuf, Trurbus, Ploomish, Grufty, Rencum, Dolus, 
Mujimbo, Stooshiong, Treebus, Widgity, Cleophlembic, Entrisculi, 
Quimbrus, or Factpool?  Thanks to sbp for the cromulentisimo 
suggestions.
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Rosining chips
Kragen Javier Sitaker, 02020-11-08 (2 minutes)

    In Peter Laackmann and Marcus Janke’s “Uncaging Microchips” 
talk, at 30'20" they presented an approach I hadn’t heard of for 
removing epoxy, the most common encapsulant, from a microchip 
package.  By heating ordinary rosin or colophony to its boiling point 
of 320–360° with a heat gun (which also is not a temperature I knew 
rosin would withstand without charring) you can dissolve the cured 
epoxy package in under 20', then clean it with acetone at 40°, though I 
suspect alcohol might work as well, since what must be removed at 
that point is mostly colophony.  Reportedly it smells terrible and 
leaves the chip unusable because it loses the bond wires. 

    They also mention that chloroform, dimethyl formamide, and 
DCM can swell or dissolve epoxy, so that you can “brush it away”, as 
they say, although I would rather not be around any of those;  and 
you can use a CNC milling or grinding machine with micron 
precision;  and you can burn it with a laser, especially a 10-micron 
infrared laser to which the silicon is transparent. 

    I suspect you could probably burn off the epoxy with a 
non-thermal oxygen plasma as well;  the epoxy’s reaction products 
with oxygen will be gaseous at room temperature, while the reaction 
products with the bulk components of the chip — aluminum, silicon, 
copper, silica, hafnia — either don’t exist or are solid.  Maybe a 
non-thermal steam plasma would also work, because although silane 
is a gas at room temperature, it’s not very stable.  And of course 
ionization of air generates oxides of nitrogen, which are of course well 
known as a way to decapsulate epoxy-encapulsated chips;  the talk 
above says you usually need several grams of them.  See the note on 
cold plasma (p.  556) for more. 

    The rosining process is pretty interesting to me not only for seeing 
the chip — for example for reverse engineering — but also for the 
possibility of converting a packaged chip into a WLCSP, since 
WLCSPs are usually hard to buy, especially in quantity 1.  The chip 
would need to survive its rosining, but I don’t think 360° for 20' is 
enough to cause substantial dopant diffusion;  I think it’s just a 
question of replacing the broken bond wires.

Topics

• Materials (p.  784) (51 notes) 
• Electronics (p.  788) (42 notes) 
• Ghettobotics (p.  793) (18 notes) 
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https://www.youtube.com/watch?v=pIpxawdUb4I
https://www.youtube.com/watch?v=pIpxawdUb4I


Cold plasma
Kragen Javier Sitaker, 02020-11-08 (updated 02020-11-24) 
(14 minutes)

    I was reading about cold plasmas after learning about rosining chips 
(p.  555).  They're already used in many applications (1 ppm ionization 
is becoming commonly used for sterilizing in medicine, for example) 
but I was thinking about a few more, including a possible 
low-temperature mostly electrolytic route to rutile reduction that 
doesn't have the low cathode efficiency problems that plague 
traditional molten-salt electrolysis. 

Ionized air oxidation 

    I'm pretty sure a cold plasma of air can eat epoxy, and I suspect that 
a cold plasma of just oxygen could do so.  Ozone is mostly known to 
attack olefin double bonds, which by itself would not be sufficient to 
eat epoxy, but I suspect ozone and the other reactive oxygen species 
in the cold oxygen plasma would be sufficient. 

    Ionizing air generates oxides of nitrogen, which tend to not only 
oxidize things (more aggressively even than ozone) but also to nitrate 
them.  I suspect this would be fine for decapping chips;  aluminum, 
silicon, and copper are all relatively inert to such materials.  However, 
at temperatures below 100°, zirconia may be vulnerable, and perhaps 
thus also hafnia.  Typical arcs in electric arc furnaces can reach a few 
hundred ppm of oxides of nitrogen, and rarely go below a few tens of 
ppm.  This suggests that to produce the ten grams or so needed to 
decap a chip you'd need to run tens of kg of air through your plasma 
pencil, most of which of course won't react, so you'd probably need 
tonnes.  This seems slow but perhaps a feasible approach. 

    (Of course if you have a drop of water on the object, that will 
facilitate the attack of oxides of nitrogen on many materials, including 
copper, zirconia, and hafnia;  though, perhaps, at first, before the 
water has absorbed much of the gas, it might have a protective effect 
instead.) 

    I've written before about using an air cold plasma with simply a 
glow discharge for selective functionalization, for example for 
selective electroless metal plating or selective wetting of otherwise 
nonreactive surfaces. 

    A cold plasma of steam would be easier to produce than that of 
oxygen, and it would have a similar oxidizing effect on some 
materials.  However, I think the hydrogen ions would prevent other 
materials, such as many metals, from oxidizing.  This could be used in 
some cases for more selective oxidation. 

Ionized hydrogen reduction 

    A potentially more interesting application of cold plasmas is 
reduction with just hydrogen.  It's been routine since at least WWII 
to anneal the iron powder in hydrogen before using it in powder 
metallurgy, to reduce the oxide film from its surface and enable it to 
cold-weld and sinter.  Similarly experiments have successfully 

https://en.wikipedia.org/wiki/Nonthermal_plasma


extracted oxygen from lunar regolith simulant by reducing it with 
hydrogen.  Surely a similar effect can be achieved with a cold 
hydrogen plasma. 

    For example, you could pack a powder bed with a powder of an 
iron oxide, infuse it with hydrogen at above 100° to drive out all the 
air, insert an iron electrode into it, and apply a high-frequency high 
voltage to the electrode.  This would produce a hydrogen plasma in 
contact with some of the powder, and some of the iron oxide would 
be reduced, producing steam, which would diffuse away from the 
electrode and be replaced by fresh hydrogen to continue the process.  
The iron electrode would thus gradually grow dendritically through 
the oxide powder, though not converting all of it.  Some flow of 
hydrogen would be useful to flush out the steam and prevent it from 
re-oxidizing the iron;  alternatively some kind of desiccant such as 
calcined alabaster could sequester the water, or a more easily oxidized 
metal could reduce it.
  

     
Ellingham diagram by Wikipedia user DerSilberspiegel, CC-BY-SA 4.0 

    Looking at an Ellingham diagram with hydrogen to steam ratios, it 
seems that for hydrogen reduction of magnetite to hematite, the 
equilibrium favors reduction as long as there is less than about ten 
thousand parts of steam to one part of hydrogen, almost independent 
of temperature over the usual ranges;  and for hydrogen reduction of 
iron oxide to iron, about 10× as much hydrogen as steam is needed, 
again almost independent of temperature.  Unless I'm reading this 
diagram wrong. 

    Copper, cobalt, and nickel seem similarly simple.  Other metals are 
a bit less so;  zinc seems to require a bit more hydrogen than water, 
and that only at 1100°.  Getting down to below zinc's melting point 
requires a million-to-one hydrogen-to-steam ratio, and getting down 
below 200° requires a trillion to one.  At silicon's melting point of 
1460° (XXX Pyrolysis 3-D Printing (p.  238) says 1414°, maybe this is 
the wrong temp) we should be able to reduce it with hydrogen at ten 
thousand times the concentration of steam, and at a trillion to one this 
reduces to a balmy 600°.  Rutile at its melting point above 2300° can 
be reduced with hydrogen at about 3000 times the concentration of 
steam, but at a more comfortable 1000° it's a billion to one, and at a 
trillion to one we're down to about 600°, a bit higher than silex.  
(Damned Tuftean plots with no grid lines.) Even at these 
trillion-to-one levels, sapphire doesn't yield to hydrogen's persuasion 
until past 800°, magnesia alba until 1000°, and lime until 1200°. 

    (Maybe in some cases you'd get the hydride of the metal rather 
than the metal itself.) 

    Actually, lime is particularly interesting in this connection because, 
as in the Pidgeon process, it can combine with silex into the stabler 
larnite.  This reaction can work as a sort of desiccant, in effect 
allowing metallic silicon (or ferrosilicon) to reduce most metals, even 
very active ones like magnesium, again as in the Pidgeon process.  
Facilitating this reaction with ionized hydrogen rather than hellish 
temperatures seems potentially useful. 

    Ferrosilicon is normally obtained by carbothermal reduction.  I 
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wonder if you could go further, passing a cold plasma of hydrogen 
contaminated with steam over carbon at some more everyday 
temperature, to increase its hydrogen-steam ratio before passing it 
over the metal powder again?  You could use the carbon itself as an 
electrode to ionize the water. 

    A more quotidian approach to removing water would be to cool 
the hydrogen–steam mixture, pass it over a garden-variety 
low-temperature desiccant such as alabaster, muriate of lime, or 
quicklime, and then heat it up again to the reaction temperature 
before reionizing it.  Carrying out the cooling and heating steps with 
countercurrent heat exchangers or regenerators would eliminate their 
unnecessary energy consumption. 

    In such a case, where does the energy come from?  We apparently 
have hydrogen circulating in a closed loop at constant pressure to 
reduce an oxide, say silex or rutile, to its base metal, which entails 
adding energy to it — if we burn the metal we will get the energy 
back.  The desiccants are losing energy by being hydrated, but not 
nearly enough to reduce the metals.  The mystery is solved, though, 
when we observe that we must continually add hydrogen to the 
system if we are to prevent its pressure from dropping.  The energy to 
reduce the metals was the chemical potential energy in the hydrogen. 

    In the case of the desiccants, one is left to wonder what to make the 
heat exchangers out of if the reaction gas is corrosive at only 800° to 
even sapphire and tends to oxidize metals.  Zirconia, perhaps, or some 
kind of highly refractory carbide or nitride:  BN, TiN, WC, HfC, the 
usual suspects.  Or maybe just aluminum, if it's countercurrent:  pipes 
with enough water vapor will be lined with amorphous sapphire the 
way aluminum normally is, while pipes without will eventually just 
be bare aluminum, but neither will corrode.  Other metals that form 
similar passivation coatings serve just as well at higher temperatures 
that aluminum can't handle. 

    So, as an example, maybe you can reduce a packed bed of 
powdered rutile at, say, 800°, in a hydrogen atmosphere at 
atmospheric pressure, by applying a high-frequency electrical charge 
through an electrode to ionize the hydrogen, while maintaining the 
hydrogen very dry (better than 100 billion to one ratio to the water) 
by passing it through a desiccant such as alabaster at a lower 
temperature such as room temperature, say 20°, with a 
countercurrent heat exchanger in between the rutile chamber and the 
alabaster chamber to maintain them efficiently at different 
temperatures, plus some additional heating to maintain the rutile at its 
high temperature and some additional heatsinking to maintain the 
desiccant at its low temperature, while continually adding new 
hydrogen to the system to replace the hydrogen absorbed as water in 
the desiccant.  The energy to reduce the rutile comes principally from 
the hydrogen, whether that is produced by electrolysis or, for 
example, from natural gas. 

    Hmm, shit, that desiccant probably can't get the hydrogen that dry.  
So you probably need a somewhat higher temperature.  Or maybe if 
you cool the desiccant more, or use a more aggressive desiccant, you 
can get down to those levels.  Obvious candidates include sodium (as 
in the Hunter process), calcium (as in the Kroll process), ferrosilicon 



with lime (as in the Pidgeon process), and of course lithium, 
magnesium, or aluminum. 

    Solid magnesium and aluminum have the annoying problem of 
forming an adherent solid oxide film when oxidized, preventing them 
from reducing any further water;  as outlined in Petrovic and 
Thomas's 2008 "Reaction of Aluminum with Water to Produce 
Hydrogen:  A Study of Issues Related to the Use of Aluminum for 
On-Board Vehicular Hydrogen Storage", approaches to solving this 
problem for aluminum include "hydroxide promoters such as NaOH, 
oxide promoters such as Al₂O₃, and salt promoters such as NaCl", but 
I think all of those are necessarily in aqueous solution, and would thus 
produce too much contaminating steam of their own.  Other 
approaches might include maintaining the desiccant metal molten, 
with a layer of flux salts on top to keep the oxides molten, and 
bubbling the gas through it to deoxidize it.  Magnesium melts at 650°, 
aluminum at 660°, their eutectic of about 65% aluminum at a pleasant 
437°, but as explained above, even at these temperatures, not much 
oxygen will escape to reoxidize the hydrogen.  Alternatively, you 
could disrupt the oxide layer with plasma, perhaps using the very 
same hydrogen gas or perhaps using a more conventional sputtering 
gas like argon, which would of course then be mixed in with the 
hydrogen. 

    In this form, you're essentially performing an aluminothermic (or 
magnesiothermic) reduction of rutile, but with hydrogen acting as a 
catalyst (instead of, as previously, a fuel.) 

    Higher pressures would tend to increase the reaction rate, but I 
don't think they'll affect the equilibrium of the metal reduction 
much, because both hydrogen and steam are gaseous, with the same 
number of moles as the resulting water.  If you instead used a 
reducing gas with a different number of hydrogens, such as methane, 
ammonia, maybe hydrazine if it can stand the heat (silane can't), nitric 
oxide, or even plain nitrogen, you might be able to use pressure to 
shift the equilibrium.  (Probably by reducing the pressure.) This might 
allow you to tolerate a larger percentage of water vapor in the system 
before the metal stopped reducing. 

    However, higher pressures do beneficially affect the relationship 
between the oxide equilibrium and a desiccant equilibrium!  That's 
because at a certain temperature, a certain percentage of desiccant 
being hydrated corresponds to a certain partial pressure of steam, and 
this is unaffected by the partial pressure of hydrogen.  So, by 
increasing the pressure, you proportionally increase the proportion of 
hydrogen in the desiccated gas. 

    Zircon, zirconia, coltan, and molybdenite could likely be reduced 
in the same way. 

Flue gas decontamination 

    If you have an unlimited supply of sufficiently dry hydrogen, the 
unused hydrogen contaminated with steam could be disposed of by 
simply passing it through a flame.  Ozone and oxides of nitrogen are 
perhaps not as easy, though natron water should serve to some degree, 
and automotive catalytic converters are a common solution to 
precisely this problem.  Olefins such as ethylene, propylene, or hexene 



would probably also eliminate ozone and oxides of nitrogen, and 
could then be burned with impunity.  2-methyl-2-butene is used in 
such a way as a free radical scavenger. 

    Diesel engines commonly spray urea water ("diesel exhaust fluid" 
or "AdBlue" or "Azul 32") into the exhaust to eliminate nitrogen 
oxides instead of using a catalytic converter.  This also eliminates 
ozone.  Urea is nontoxic and quite cheap;  the solution is sold by the 
ten-liter bottle.  The final resulting gas mix still contains nitrogen 
dioxide, though.
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Cutting steel with steam
Kragen Javier Sitaker, 02020-11-11 (1 minute)

    In my note on cold plasma (p.  556) I wrote about the possibilities 
of using cold plasma to slowly reduce metal, dissolve away epoxy, and 
so on.  But it's also very useful to be able to oxidize metal, especially 
iron, for example to cut it.  And, as I found there, hydrogen can 
reduce iron from FeO at almost any temperature as long as there's 
about 10× as much hydrogen as steam.  But that also means that steam 
can oxidize iron to FeO at almost any temperature until 90% of the 
steam has been reduced by the iron. 

    This suggests the use of steam as a substitute for oxygen in an 
oxy-acetylene cutting torch. 

    That's probably a dumb idea because probably you lose more than 
79% of the heat of oxidizing the iron to splitting up the water.  FeO's 
melting point is 1377°, its enthalpy of formation is XXX ????, and 
water's enthalpy of formation is -285 kJ/mol.
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Improvised humidity sensors with 
PET dielectric spectroscopy
Kragen Javier Sitaker, 02020-11-11 (3 minutes)

    Humidity sensors are useful.  Dielectric spectroscopy is easy with 
modern microcontrollers.  PET bottles are widely available.  PET is 
quite hygroscopic, and this alters its permittivity.  We can make 
humidity sensors by dielectric spectroscopy of PET bottles. 

    Küchler, Farber, and Franck (2020, "Humidity and Temperature 
Effects on the Dielectric Properties of PET Film") found 7–10% 
variation in permittivity in 10°C PET films across the 1Hz–1kHz 
range when relative humidity varied from 0% to 80%;  dry PET film 
had a permittivity magnitude of about 3.18–3.20ε₀, while PET film 
exposed to air at 80% humidity was in the 3.40–3.45ε₀ range, 
depending on frequency.  Temperature also influenced the 
measurement;  temperatures from 0°–65° were all about the same, 
but the permittivity started to soar, especially at lower frequencies, at 
85° and above.  However, even at the low temperatures where the 
permittivity magnitude was effectively unchanged, the loss angle 
varied dramatically with temperature, especially between 10 Hz and 
10 kHz. 

    The frequency at which the peak loss occurred varied even more 
dramatically with humidity than did the permittivity itself, varying 
from about 100 mHz at 35% up to 100kHz at 80%;  however, the 
curve they plot seems somewhat irregular, though roughly 
exponential, and it's not clear whether this is due to measurement 
imprecision or to it having a complex shape.  The detection of such a 
peak may thus permit a more precise measurement of humidity. 

    Such a sensor might drift over time, but it should at least be good 
enough for a rough measurement of humidity and temperature, and it 
can easily be made from garbage. 

    How slow would it be?  cloudevil on ##electronics pointed out 
that this might be a problem.  The paper actually explains Fick's Law 
for diffusion and did weight gain measurements.  They were using 
23-micron boPET and seem to have reached steady state after 
something like 10'.  This bottle I have here is more like 400–450 μm:  
I cut out a piece, folded it in half four times, and it was about 7 mm 
thick, giving about 440 μm per layer.  Extrapolating quadratically 
gives a time to steady state of 40 hours.  This bottle is only partly 
biaxially oriented, and probably less crystalline, so permeability might 
be higher.  But it seems like it would be useful to use thinner plastic 
to get faster response.  This wasn't a pressure bottle, but it's a bit 
thicker than water bottles, and much thicker than chip bags. 

    This lubricating graphite powder I got at the hardware store (48 g 
bottle labeled as 60 g) doesn't want to stick to the PET;  I'm not sure 
if abrasive will help or if stronger measures like plasma are necessary.  
A bit of scrubbing by hand with toothpaste was not sufficient.
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Printf tracebacks
Kragen Javier Sitaker, 02020-11-11 (2 minutes)

    I watched a video demo of a new Visual Studio Code plugin for 
Autodesk Fusion 360 "postprocessor" plugins, which are evidently 
written in JS.  These emit G-Code — I think they might take 
G-Code as input, but I'm not sure.  The video demo showed a feature 
similar to Bret Victor's famous tree-landscape-drawing demo, in 
which by clicking on a piece of G-Code in the output, you would 
immediately jump to the line of source code that emitted it. 

    This is a super cool feature, and I realized that I really want this for 
debugging printfs in general:  I want to be able to click on a debug log 
message and get a stack trace of the program as it was at the moment 
the log message was emitted.  Perl's Carp module has provided such a 
facility in a purely textual form for a long time, and Purify and 
Valgrind have provided it for memory allocation, but I want to be 
able to do it for any output, especially debugging output. 

    Moreover, I especially want to be able to do this for 
immediate-mode GUIs;  I want to be able to jump from a GUI 
control on the screen into the code that painted it, and see the stack 
trace as it was at the moment that control was painted.  This is 
actually maybe easier to provide than the purely textual version of this 
feature, because if the feature is still there on the screen when I click 
on it, and the program is still running, that stack is actually running at 
the moment that my click is delivered. 

    Delivering this functionality for screenshots and recorded sessions 
would be harder.
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Random synchronous motor
Kragen Javier Sitaker, 02020-11-11 (2 minutes)

    I just ripped apart a microwave, and one of the things I got out of it 
was a turntable motor.  This turns out to be a 5-watt, 5 RPM, 
synchronous 240VAC gearmotor.  This is one of the few occasions 
where it really doesn't matter which way the motor turns, so in fact 
they used a synchronous motor that turns in a randomly different 
direction each time, depending I suppose on where it was when it 
stopped. 

    Even if you couldn't sense its position well enough to predict which 
direction it would turn at startup, you still might be able to use it for 
motion control with closed-loop feedback, using the following 
scheme:  when you start up the motor, if it's going the wrong way, 
wait a random fraction of a rotation (of the motor, not the gearbox 
output shaft), turn it off, and, after enough time for it to stop, turn it 
on again. 

    You could take this simple control scheme one more meta level to 
flagellate bacterium behavior:  while the conditions for a machine 
continue to improve, run the motor continuously;  while conditions 
remain the same or get worse, run the motor intermittently.  Connect 
the motor to a mechanism such that, in one direction of rotation, the 
machine moves in a straight line in whatever direction it's pointed, 
but in the other direction of rotation, the machine wanders around 
randomly.  When the motor is running intermittently, it will 
sometimes go in a straight line, and sometimes wander, but once it 
happens to be moving in a straight line that improves the situation, it 
will continue. 

    Unfortunately, such a mobile machine would probably be 
battery-powered, and running a synchronous AC motor off DC 
requires about as much circuitry as the above feedback scheme would 
take to implement.
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Specular photogrammetry
Kragen Javier Sitaker, 02020-11-11 (3 minutes)

    I was watching a porn video yesterday, and as the model poured 
mineral oil all over her body, I was struck by the thought that the 
specular reflections of the room that were appearing in the oil 
contained enough information to reconstruct a fairly precise 
three-dimensional model of the surface of her body, particularly 
given two simultaneous images from different points of view, or if she 
were to rotate without deforming. 

    The forward problem is relatively straightforward:  you have a 
surface, the surface has some Lambertian texture, some Phong 
exponent, and some percentage specularity, and the surface is in some 
environment with some lighting and reflecting some scene around it, 
in front of and occluding part of that same scene;  and the surface has 
some orientation in space that is changing.  Given all these parameters, 
it’s straightforward, if somewhat expensive, to do the computation to 
ray-trace a photorealistic image. 

    By solving the inverse problem through iterative methods, and in 
particular methods based on the difference between corresponding 
points on the surface at different rotations, you can estimate the 
surface, the texture, the Phong exponent, the specularity, the scene, 
the lighting, and the orientation.  Generally each part of the scene is 
reflected in several places on the surface.  Most of these parameters are 
of low dimensionality or effectively so;  a small number of spherical 
harmonics, for example, suffice to approximate Lambertian lighting 
fairly precisely, and of course the lighting is itself part of the scene.  
Only the surface geometry, the texture, and the scene are of high 
dimensionality, and given a few frames of video, they are amply 
overdetermined. 

    Spilling some water on my mate and observing the sparkly 
reflection around the powdered yerba, I am reminded that the Phong 
specular blurriness exponent is generally taken to be an approximation 
of surface microfaceting, and one of the major effects of such wetting 
is to make such microfacets larger, so you can actually see them 
individually.  This allows you to track them from frame to frame, 
even if the surface’s Lambertian texture is too uniform. 

    If you have two different linearly polarized cameras, you can use 
Brewster’s angle to additionally estimate the refractive index of the 
surface gloss, and this polarization data gives you an additional 
measurement of the angle and magnitude of the surface normal, as 
projected on the focal plane.  This should serve to improve surface 
reconstruction further. 

    To date, specular reflection has been a major obstacle to 
photogrammetry, handled only in special cases (like flat reflecting 
mirrors placed in a scene) or not at all;  the standard advice is, to 
accurately scan the geometry of a highly reflective object, cover it in 
paper tape or cornstarch.  This approach, if it works, would turn that 
advice on its head — you might find yourself wetting objects, or 
pouring mineral oil on people, to get a more precise 3-D model of 



them.
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A compact textual format for 
interchange of electronic circuit 
designs
Kragen Javier Sitaker, 02020-11-11 (updated 02020-11-26) (1 minute)

    Consider 5V-{4n7F-2k2||2.2mH(2%)-npn(B=50)[1k-G]}-G.  This describes an 
analog circuit, kind of a stupid circuit, but a circuit, with five 
components.  In Falstad’s circuit simulator’s save format, such a 
circuit would take about 190 bytes, but here it takes 42.  Moreover 
you could sort of imagine that such a representation provides a sort of 
key command interface;  it takes me about 20 seconds to type it, and 
that’s tremendously faster than I think anyone can click through all 
the stuff in KiCad or Falstad’s simulator or LTSpice to do the same 
thing. 

    I think it’s probably worthwhile building something that 
simultaneously maintains this representation and a 2-D schematic 
representation. 

    (For human readability it might be better to say “gnd” rather than 
“G”.)
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Dictionary data structures for tiny 
memories
Kragen Javier Sitaker, 02020-11-12 (3 minutes)

    Instead of using a hashtable you can use binary search on an array, 
which wastes no space and permits ordered traversal.  This is slow to 
insert into when the array gets big.  If you only have 64K of RAM it 
doesn't get that slow;  if you have 16384 entries then the worst case is 
moving 16384 entries, and building the whole 16384-entry thing 
incrementally takes an expected 67 million entries moved of work. 

    But it gets a lot faster if you have a side file with, say, 128 entries, 
which you maintain sorted and then merge into the main array 
whenever it gets full.  Filling memory that way requires doing an 
expected 2k entries moved to build each side file, and then iterating 
over the whole array to do the merge, which takes on average 
copying 8k entries, so 10k entries moved in all;  doing this the 
requisite 128 times requires 1.3 million entries moved to fill RAM.  
This is slightly more complex and wastes 128 entries more RAM than 
the single-array approach but is 50 times faster.  Also instead of 
requiring worst-case 14 probes to find an entry it requires 21.  You 
need slack space for 256 entries because merging requires you to copy 
one of your merge inputs.  (Supposedly there's an in-place mergesort 
but I don't understand it.) 

    The standard log-structured merge tree approach where you have a 
1-entry side file merged into a 2-entry side file merged into a 4-entry 
side file, etc., starts to run into problems when you don't have more 
RAM to merge in.  A possible solution to this problem is to use 
quicksort or introsort instead of doing large merges, at the cost of 
some extra complexity and slowness;  merging 16384 entries takes 1 
step per entry, but quicksorting them takes expected about 20 steps 
per entry, and heapsort is even slower. 

    A sort of library-sort approach might help:  divide your sorted 
dictionary into hashtable-like buckets, each big enough to hold, say, 8 
items, binary-search the buckets, and then linear-search the selected 
bucket.  This allows some slack space within each bucket, so inserting 
an entry is usually very fast;  when a bucket fills up, you can sort the 
entire array (sorting the slack-space items to the end, say;  perhaps 
first compact, then do an insertion sort) and redistribute evenly into 
either the same number of buckets, thus redistributing the slack space, 
or a larger number, dramatically increasing it.  There's a tradeoff 
between wasted slack space and frequency of resizing, a tradeoff 
which eases with larger bucket sizes at the cost of search time.
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Adiabatic separation
Kragen Javier Sitaker, 02020-11-12 (updated 02020-11-14) 
(14 minutes)

    Some novel material separation techniques. 

Thermoacoustics basics 

    Adiabatic compression and expansion of gases changes their 
temperature as well as their pressure, so every sound wave generates 
local temperature oscillations.  Sound waves in air can reach a few 
megahertz over meter-like distances and much higher amplitudes 
than we are commonly used to, up to nearly an atmosphere even at 
atmospheric pressure, and higher amplitudes still at higher pressures.  
Let’s consider a sinusoid. 

    Normally the oscillation of pressure, volume, and temperature is 
almost perfectly in phase;  especially at high frequencies, the hot 
compressed gas only has time to lose a tiny amount of heat through 
radiation or conduction before it’s being decompressed and thus 
cooled, and once cold it only has time to gain a tiny amount of heat by 
absorbing radiation or conduction before the cycle starts again.  In a 
traveling wave, 90° out of phase to this oscillation of volume (and, to 
a very good approximation, temperature and pressure, XXX no that’s 
exactly backwards), is an oscillation of displacement.  Assuming no 
overall movement, a parcel of air passes its average position when it is 
either maximally small or maximally large.  Suppose the wave is 
moving to the right.  When it is maximally small, the parcel is 
moving at its peak velocity to the right;  when it is maximally large, it 
is moving at its peak velocity to the left.  Halfway in between, when 
its pressure is changing fastest, its velocity is zero, but its displacement 
is at its maximum. 

    That is, the velocity oscillation in the direction of wave travel is 
180° out of phase with the volume oscillation (and, to an excellent 
approximation, pressure and temperature, XXX no that’s exactly 
backwards);  the velocity oscillation in the direction opposite wave 
travel is in perfect phase with the volume oscillation.  The 
displacement oscillation lags the velocity oscillation by 90°:  the 
displacement in the direction of wave travel is at its maximum when 
the volume is at its average level and is expanding most rapidly, and at 
its minimum (moving at maximum speed in the opposite direction 
from wave travel) when the volume is at its average level and is 
contracting most rapidly. 

    Because the displacement is almost exactly 90° out of phase with 
the temperature, there is no tendency to transfer heat preferentially in 
either direction.  When the parcel is at its extremal positions it is at its 
average temperature, and when it is at its extremal temperature it is at 
its average position.  So the average temperature of the parcel at each 
position is the same. 

    Now, if we have some liquid or solid particles suspended in the air, 
such as fine dust, they will move with it — effectively increasing its 
density by a bit — but will not be subject to the same adiabatic heating 



and cooling, since their volume changes with pressure orders of 
magnitude less than the air’s does, basically a rounding error in this 
context.  They will change temperature, but only because they are 
exchanging heat with the air they are suspended in.  This will cause 
the temperature oscillation to lag the pressure variation a little, with 
the result that the volume variation (PV = nRT, thus P = nRT/V) 
will not be precisely 180° out of phase with either of them, but a little 
bit in between.  This means that the temperature oscillation is no 
longer precisely in quadrature with the displacement oscillation, and 
so there is a tendency to pump heat in one direction or the other. 

    This is the basis of two major thermoacoustic effects.  Typically, 
instead of using dust, they use solid objects the gas can flow past, 
which makes the heat pumping substantially more useful.  This allows 
the moving gas to leave the heat behind.  The process is reversible, so 
it can also be used as a heat engine, essentially a Stirling engine where 
the mass of the air itself acts as a piston.  In either case, there is a 
temperature gradient along the “regenerator”.  Many thermoacoustic 
machines using these two effects are known. 

Regular gas chromatography 

    Gas chromatography separates gases by mixing them into a mobile 
phase that passes through a stationary phase (normally a liquid 
supported on an inert solid) which preferentially adsorbs some of the 
gases, slowing their passage.  Consequently the different gases arrive at 
the other end of the chromatography column at different times.  This 
is usually used for analysis rather than purification;  it’s kind of 
inherently a batch process. 

Thermoacoustic mixture separation 

    But perhaps we can use this same thermoacoustic effect to get a sort 
of continuous-flow gas chromatography or rapid fractional 
distillation.  When the stationary phase (for example, a powder bed or 
a liquid on the surface of a powder bed) is at its peak temperature, it 
will tend to free the gases adsorbed onto or absorbed into it;  if this is 
immediately followed by movement in a given direction, all those 
adsorbed gases will tend to move in that direction.  Then, at the lower 
temperature in the other part of the acoustic cycle, all the gases will 
move back in the opposite direction — but those that are more 
strongly adsorbed will do so less.  This cycle can happen at kilohertz 
to megahertz frequencies, so even a small difference can be used.  I 
suspect that by feeding in gas in the center of such a column, you 
should be able to get one gas out one end of the tube and another gas 
out the other.  The net direction of movement for each gas will 
depend on the degree to which its adsorption or absorption varies 
across the temperature range reached by the sound wave, and on the 
average axial flow in the tube, which is controlled by the difference in 
the amounts of gas drawn off at each end. 

    An inefficient version of this, without the packing, was discovered 
by accident in 2000 at Los Alamos. 

    If gas is drawn off at several points along the length of the column 
then the average flow rate through the column will change at each 
such point.  I think this permits the removal of certain components, 

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-01-3040
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-01-3040


giving a sort of horizontal thermoacoustic version of fractional 
distillation. 

Liquid separation 

    But what if you want to do this with liquid chromatography 
instead?  You can’t rapidly heat and cool the liquid or the solid 
stationary phase by running sound waves through them;  they aren’t 
compressible enough.  But there are other possibilities. 

    The most obvious one is that if you’re doing TLC, thin-layer 
chromatography, you can heat and cool your TLC layer by heating 
and cooling the plate.  But there are other more interesting 
possibilities. 

Fractal recuperator reciprocating liquid 
purification 

    I’ve previously written about synthetic retia mirabilia, fractal 
recuperator-style heat exchangers where the heat-exchange capillary 
surface, which separates the hot and cold reservoirs, is convoluted like 
the surface of a cauliflower in order to maximize its area.  Such a 
device could be used directly for this kind of separation. 

    Consider it to have four main spaces:  A1, A2, B1, and B2.  A1 is 
connected to A2 by capillaries through the cauliflower surface, and B1 
is similarly connected to B2 by separate capillaries through the 
cauliflower surface.  The A and B spaces are not connected by mass 
flow at all, but intimately exchange heat through the capillary walls.  
A1 and B1 are always cold;  A2 and B2 are always hot.  So there is a 
thermal gradient along the capillaries.  B1 initially contains the liquid 
mixture we would like to separate, and A contains some arbitrary 
fluid, either liquid or gas.  The cycle goes as follows: 

• We add, say, ten times the volume of the capillaries to A1.  This 
makes the capillaries cold and causes hot liquid to come out the A2 
spout.  Because the B capillaries become cold too, more components 
of the liquid adsorb to them.  
• We add, say, a tenth of the volume of the capillaries to B1.  This 
moves some liquid into B2, from the ends of the capillaries.  
• We add the same amount of liquid as in step 1 again, but now to A2 
instead.  This makes the capillaries hot and causes cold liquid to come 
out the A1 spout.  Because the B capillaries are now hot, less 
components adsorb to them.  
• We add, say, a twentieth of the volume of the capillaries to B2.  
This moves some liquid into B1 from the ends of the now-hot 
capillaries.   

    So, components of the B liquid that are more than twice as mobile 
at the hot temperature tend to move from B2 to B1, while 
components that are less than twice as mobile tend to move from B1 
to B2.  And on average the liquid goes through twenty of these 
“fractional distillation” cycles in the capillaries before making it all 
the way from B1 to B2.  By adjusting the ratio of the amounts in steps 
2 and 4, we can adjust “twice” to whatever ratio we want;  by 
adjusting the amount added in step 2 we can adjust the number of 
cycles and thus the purification. 



    It probably isn’t possible to do this at macroscopic scales at more 
than a kilohertz or two, and maybe much less, which is a big 
disadvantage compared to the thermoacoustic approach above. 

An H-bridge 

    Another alternative approach is an H-bridge, like the motor control 
circuit.  Here you have five tubes forming the shape of a capital H.  
The horizontal tube is your packed column.  Fluid moves both left 
and right in it, but in the vertical tubes it only ever moves down.  The 
vertical tubes have valves.  The left vertical tube is connected to a 
source of cold liquid at the top, and the right vertical tube to a source 
of hot liquid.  First you open the upper left and lower right valves, 
causing cold liquid to flow down, flow rightward through the packed 
column, and then flow down the right bottom leg.  Then you close 
these valves and open the other two, so hot liquid flows down the 
right top leg, leftward through the packed column, and down the left 
bottom leg. 

    This works somewhat similarly to the rete mirabile approach 
described above, but requires much stronger adsorption or absorption 
onto the stationary phase to be of any use, because a useful amount of 
temperature change has to move through the column faster than the 
eluent.  It has the advantage, however, that it does not require exotic 
fabrication technology. 

    (It also may be reasonable to add the materials to be separated in the 
center of the column, as above.) 

The Hot Chocolate Effect 

    It may be possible to use thermoacoustic techniques with liquids by 
filling the liquids with bubbles.  As observed in the Hot Chocolate 
Effect, even fairly small admixtures of bubbles give the liquid 
compressibility of the same order of magnitude as the gas in question, 
but because the mixture’s density is still the same order of magnitude 
as the liquid, sound-wave speeds are extremely slow, and 
displacements are extremely small for a given sonic power level.  It 
seems like this might make these methods less effective with bubbly 
liquids. 

Pressure-swing solidification 

    An alternative mechanism for varying the mobility of ingredients 
of a mixture is to use the change in the pressure (rather than the 
temperature) out of phase with the displacement.  With notable 
exceptions like boric acid and water, most liquids reduce in volume 
when they solidify, so they tend to solidify under higher pressure and 
liquefy under less pressure.  So by repeatedly moving a fluid to the 
right, compressing it, moving it to the left, and rarefying it, you can 
get separation of the components that more easily solidify under 
pressure.  (It will work for liquids like boric acid as well, just in 
reverse.) This will probably work a lot better at near-gigapascal 
pressures and pressure swings, which is a very loud sound indeed. 

    One advantage of this version of the approach are that the 
stationary phase and the mobile phase can be chosen to have nearly 
the same acoustic impedance, which is not feasible with gases (except 



perhaps at extraordinary pressures), which means that interfaces will 
scatter the sound less, so the sound will be attenuated less.  Another 
advantage is that liquids and solids can transmit much higher 
frequencies of sound than gases can. 

    The key challenge in this variant is probably going to be getting 
enough displacement to outrun diffusion. 

Packed columns? 

    All these “packed columns” might be better as a honeycomb of 
narrow parallel tubes, a configuration already commonly used for 
catalyst support, in part to reduce acoustic losses.  You could imagine 
that it would also reduce turbulence losses, but if your passages are 
wide enough to permit turbulence, your system probably has bigger 
problems.

Topics

• Materials (p.  784) (51 notes) 
• Contrivances (p.  786) (44 notes) 
• Physics (p.  792) (18 notes) 
• Plumbing (p.  856) (4 notes) 
• Purification (p.  876) (3 notes) 
• Thermoacoustics
• Retia mirabilia



The rep-2 cuboid
Kragen Javier Sitaker, 02020-11-13 (5 minutes)

    A4 paper is a rep-2 rectangle:  by putting two sheets of A4 paper 
next to each other, you get a larger sheet that’s the same shape as A4 
if you turn it 90°, but twice as big.  The whole A0/A1/A2 etc. system 
is designed that way.  In the A-size papers, you’re never more than √2 
away from the ideal size for your application.  If you add the B-size 
papers, which have √2 area relation to the A-size papers, you’re never 
more than ∜2 away. 

    I’m thinking about how to pack together boxes to make a portable 
electronics lab (see Ghettobotics Nonshopping List (p.  512)) and it 
occurred to me that it would be nice to have boxes with volumes that 
were powers of 2.  That way, a small number of box designs would 
cover several orders of magnitude, and I could always 
“buddy-system” two boxes of one size together to fit into a space the 
next size up.  It’s an attempt to minimize space fragmentation in the 
toolbox. 

    One way (maybe the only way) to make a rep-2 box in three 
dimensions is to make the sides in the ratio of ∛2 to one another;  for 
example, 100 mm × 126 mm × 159 mm.  Then the next size up is 
126 mm × 159 mm × 200 mm, for example.  These ratios are correct 
to within about a sixth of a percent. 

    To approximate a 200-mℓ box, reasonable values are 46 mm × 
58 mm × 74 mm.  A list of mm dimensions covering a wider range, 
produced by rounding and exponentiation, is [12, 15, 18, 23, 29, 37, 
46, 58, 74, 93, 117, 147, 186, 234];  the resulting box volumes in mℓ 
are [3.24, 6.21, 12.006, 24.679, 49.358, 98.716, 197.432, 399.156, 
805.194, 1599.507, 3199.014].  There’s clearly some approximation in 
there;  you can put together two 12×15×18 boxes into a 15×18×24 
box, a millimeter over;  two 15×18×23 boxes make an 18×23×30 box, 
slightly over 18×23×29, and so on. 

    Perhaps a more reasonable approach is to just start with some small 
dimensions and double them exactly.  For example, [18, 24, 29, 36, 
48, 58, 72, 96, 116, 144, 192, 232] mm gives us [12.528, 25.056, 50.112, 
100.224, 200.448, 400.896, 801.792, 1603.584, 3207.168] mℓ.  I 
probably only really need the first seven of those sizes, and they’re 
actually closer to the ideal volumes than the ones given above, 
although their ratios are a little more imperfect. 

    There’s no real need to have 200 mℓ be on the list, though.  I could 
just look for the best triplet under about 35, which turns out to have 
only about 1% error from the real cube root of 2: 

>>> min(((a, b, c) for a in range(1, 36) for b in range(1, a) for c in range(1, b
)),

    key=lambda (a, b, c): max(abs((a/float(b))**3 - 2), abs((b/float(c))**3 - 2))
)
(24, 19, 15)
 



    We can cut that 24 in half:  [12, 15, 19, 24, 30, 38, 48, 60, 76, 96, 
120, 152] mm, giving [3.42, 6.84, 13.68, 27.36, 54.72, 109.44, 218.88, 
437.76, 875.52] mℓ. 

    After cutting two 12×15×19 boxes, a 15×19×24 box, a 19×24×30 
box, an a 24×30×38 box out of cardboard, I conclude that probably at 
the smallest sizes it makes more sense to use paper envelopes, as I am 
for resistors already.  The 24×30×38 box, 27.4 mℓ, is about the 
smallest one that it makes sense to make as a separate box.  And 
around that size, 27×34×43 has more precise ∛2 proportions, erring 
by +0.4% in the 34:43 proportion and -0.05% in the 27:34 proportion. 

    On that basis, the dimensions should be [27, 34, 43, 54, 68, 86, 108, 
136, 172, 216, 272, 344] mm and [39.474, 78.948, 157.896, 315.792, 
631.584, 1263.168, 2526.336, 5052.672, 10105.344] mℓ.  I probably 
won’t need anything bigger than the 1.26-ℓ box!  So the sizes are: 

• 27×34×43 mm:  39.47 mℓ;  call it “one bix” 
• 34×43×54:  79 mℓ, two bixes 
• 43×54×68:  158 mℓ, four bixes 
• 54×68×86:  316 mℓ, eight bixes 
• 68×86×108:  632 mℓ, 16 bixes 
• 86×108×136:  1263 mℓ, 32 bixes  

    So with six box sizes I should be able to cover pretty much the 
whole portable-lab size spectrum, with boxes always within √2 of the 
ideal volume, and packing together nicely.  The 40-ℓ toolchest I was 
spitballing works out to about 1013 bixes, so rounding it up to 1024 is 
probably more pleasant.  It won’t be bix-shaped itself.

Topics

• Contrivances (p.  786) (44 notes) 
• Ghettobotics (p.  793) (18 notes) 
• Math (p.  804) (13 notes) 
• Household (p.  842) (5 notes) 



Mica composites
Kragen Javier Sitaker, 02020-11-14 (3 minutes)

    Mycalex is a composite of mica and glass, one of Dan Gelbart’s 
favorite ceramics for its cheapness and ease of machining, though it’s 
much less popular now than it was in the 1940s.  (Machinable 
glass-ceramics that precipitate mica crystals during heat treatment 
were invented in the 1970s and may be responsible for some of this).  
But mica is used as a filler in many composite materials. 

    I dissected a broken microwave last weekend and found that the 
window protecting the magnetron from spattering food seems to be a 
mica composite;  it’s slightly translucent to light, but when heated 
with a butane torch to orange heat, it remained intact and barely 
burned.  It did turn black and outgas a little, enough to blister the 
surface a bit.  Wikipedia says phlogopite can withstand 900°, though 
some other micas only survive to 500°, so this seems likely to be 
phlogopite-based “mica paper”, as the USGS calls it.  It isn’t pure 
phlogopite, because that wouldn’t turn black.  Many vendors offer 
sheets of “mica” on MercadoLibre for microwave repairs, suggesting 
to cut them to the correct size with scissors or a razor knife. 

    I think such sheets (or sheets of pure mica) were the traditional 
form on which wire resistors were zigzagged, from which we get the 
schematic symbol. 

    WP also points out that it’s used in drywall mud, presumably for 
mechanical strength, and as a filler in paint and plastics, where it has 
many benefits, including increasing strength and dimensional stability.  
Dry-ground mica is dull, wet-ground mica is sparkly. 

    It occurs to me that including ground mica in “Starlite” might help 
it retain strength when it’s being charred.  (And maybe foam up 
better, too.) Similarly, it seems that it might help keep alabaster from 
crumbling when dehydrated;  see the note on plaster foam (p.  449).  
The alabaster would still remain solid to a higher temperature than 
the mica, but it becomes very friable when dehydrated (at under 
200°);  retaining substantial strength to 900° could be very valuable. 

    Ceramics-supply vendors on MercadoLibre sell finely ground mica 
for about US$2 per kg, but of course they don’t tell you which mica 
it is.  Calcining microwave-oven window panels would be a sure way 
to get refractory mica, but it’s rather expensive by comparison.  The 
USGS says scrap and flake mica costs US$120–165/tonne at wholesale
;  this is an interestingly low price because it means that alabaster 
mixed with mica is still cheaper than muriate of lime;  see the note on 
desiccant climate control (p.  485).  If the admixture of mica were 
under about 40%, the mixture would cost the same order of 
magnitude as the alabaster alone.

Topics

• Materials (p.  784) (51 notes) 
• Ghettobotics (p.  793) (18 notes) 

https://en.wikipedia.org/wiki/Mica#Properties_and_uses
library/mcs2020-mica.pdf
library/mcs2020-mica.pdf


• History (p.  796) (17 notes) 
• Pricing (p.  800) (14 notes) 
• Refractory (p.  817) (8 notes) 
• Composite materials (p.  864) (4 notes) 
• Gelbart



Improvised display options for 
embedded hardware development
Kragen Javier Sitaker, 02020-11-16 (updated 02020-11-17) 
(16 minutes) 

    It’s 02020-11-15.  Four days ago my options for microcontroller 
output were limited to one four-digit LED display I’d painstakingly 
desoldered from a microwave, some other LEDs I’d painstakingly 
desoldered from other random discarded electronic equipment, and 
the microwave’s beeper.  Now the covid quarantine is over and I’ve 
been able to visit my apartment (I’ve spent the last 7½ months at my 
girlfriend’s apartment) and now I have a number of additional 
options.   

| display    | w(mm) | h(mm) | type | shows   | color | pins | conn        |
|------------+-------+-------+------+---------+-------+------+-------------|
| DeV96      |    50 |    18 | LED  | 4 0-9   | red?  | 14   | SIP 2.54mm  |
| microwave  |    45 |    12 | LED  | 4 0-9   | green | 14   | SIP 2.54mm  |
| breadboard |    50 |    18 | LED  | 4 0-9   | red   | 36   | DIP 2.54mm  |
| Kenko      |    52 |    12 | LCD  | 8 0-9   | grey  | ≈32  | flex 1.26mm |
| Kadio      |    60 |    18 | LCD  | 12 a-z? | grey  | ≈75  | flex 0.8mm  |
|            |       |       |      | +12 0-9 |       |      |             |
| Franklin   |    53 |    18 | LCD  | 25 a-z? | grey  | ≈105 | flex 0.5mm  |
 

    Some of these are sort of package deals with a keyboard and maybe 
a battery and case, which tempts me to rebrain them (see Rebraining 
(p.  593)), while others are just displays. 

    The LED displays are suitable for PWM fading;  not sure if this 
will work with the LCDs.  Nobody ever does PWM fading of 
7-segment LED displays, which is going to rock.  Also I think LED 
displays would look much better shining through cloth, another thing 
nobody ever does.  These LCDs are all reflective LCDs, so they 
would have the best readability in daylight. 

    Cellphone screens are pretty interesting, especially SPI Nokia 
screens, although I don’t happen to have any at the moment. 

DeV96 

    A guy at a hackerspace gifted me this display he’d made on 
perfboard, evidently on 01996-10-13.  It has an 8-key keypad, 
apparently configured as a 2×4 matrix with diodes, and five BC548B 
transistors onboard;  four of them are hooked up to turn on a 
particular digit of the 7-segment LED display.  I traced the wiring out 
before, but I forget if you can fully control the display from offboard 
with the 14-pin header he’s provided, or if it’s partly under control of 
the keyboard. 

    The 7-segment displays are helpfully in a socket, so not only can 
you replace them if you burn them out, but you can easily transplant 
them into other things.  Each has a decimal point. 

    This may be the easiest option to use, since it already has 



current-limiting resistors (probably sized for 5V) and 
common-electrode transistors with current-limiting resistors on it.  
The individual segments are driven from offboard, so you need to 
source or sink (source I think) enough current to light them up.  It’s 
also one of the largest displays, which will make it easy to read.  It’s 
probably not using high-brightness LEDs, which means it won’t be as 
bright as some other options, especially if run off 2V or 3V. 

    I suspect 12 pins of the 14 pins, plus power and ground, would be 
enough to drive the display, and it would probably work down to 2V. 

Microwave 

    The front-panel display from the microwave oven I ripped apart 
has four 7-segment digits without decimal points, a colon with 
separately illuminable dots, and ten miscellaneous 
microwave-oven-related ideographic indicators above and below.  
The digits are slightly smaller than the DeV96 digits, but the 
component as a whole is much smaller, and it lacks any onboard 
resistors or transistors.  There are nine cathodes (?) for the individual 
segments of a digit, then five common anodes (?) to select the digit;  
one of the five “digits” is the colon and two of the miscellaneous 
indicators, while each of the other digits controls two more 
miscellaneous indicators.  So you can control all the digits proper with 
11 pins. 

    The digit segments light up faintly green on the milliamp or two 
from my multimeter’s diode-test mode, but are presumably intended 
for a much higher current.  I could probably stress one of the colon 
dots until it blows to get an idea of what they could stand, but 20mA 
is probably safe, and close to the limit of what my microcontrollers 
can provide anyway. 

    It’s labeled GAL9801-OI on one side, but GAL-something was the 
microwave’s model number, and no datasheets seem to be 
forthcoming. 

    I was able to get the microwave’s somewhat yellowed front panel 
off in one piece;  it has a flat-flex cable (dated “11/18/99”) which 
went into a 12-pin cable-pinch connector on the mainboard (where 
the display was soldered), and I was able to desolder that connector, 
which has the same breadboard-friendly 2.54mm pin spacing as the 
display.  Its polarized front window of course can fit the display in it.  
It has 17 membrane-keyboard buttons labeled with 
microwave-related things and connected in some kind of matrix with 
resistive ink on flat-flex to the 12-pin connector.  I was able to detect 
a press on one of them with the multimeter;  it read as about 120 Ω. 

    I’m not sure, but I think these are “bright green” 3-volt LEDs 
rather than the older 1.7-volt-or-so older green type.  So running the 
display at 20 mA per segment would probably cost 420 mW 
worst-case.  But at an equivalent brightness it probably costs less 
power than the DeV96 display. 

    I could very reasonably tack the display in place inside the front 
panel with some silicone or something, then mount a control board 
and even power supply inside, repurposing the shitty membrane 
microwave keyboard for some nobler purpose, perhaps covering it 



with labels.  The 7 segment-selector pins could presumably be shared 
with at least 6 and probably 7 of the pins for the keyboard, so you’d 
probably only need 16 pins between the keyboard and the display.  
The 18-GPIO ATTiny2313 has enough pins for that, but not to do 
much else, and no ADC, which would be useful for many of the 
things I want to show on the display.  But it can blow or suck 40 mA 
per I/O pin, so it could drive the display at a dimly readable intensity 
without any external hardware at all, and probably very brightly if 
supplied with four per-digit high-side transistors. 

    If I’m wrong and they’re actually low-side transistors, it might be 
able to drive the transistors with its internal pullup resistors!  50kΩ 
worst-case at 5 volts gives us 100 μA, and with an unremarkable β of 
300, that would give us...  30 mA.  Which is worse than what it can do 
itself.  sad trombone It might happen to be higher than that, or you 
might be able to use a darlington.  But then you can also get 
transistors with integrated base resistors. 

    An STM32 or CKS32 is more appealing in many ways because it 
has a kickass ADC and a lot more I/O pins, but the STM32 can only 
source or sink 25 mA per pin, and can only run at 3.3 V.  (I think the 
CKS32 is the same, but I have a harder time reading the datasheet.) 
And I only have two, so if I blow one up, I will be a lot sadder than if 
I lose a 2313 or a few ATTiny45s. 

    As for 45s, I have dozens, and it might be possible to gang several of 
them up to drive the display, maybe using two wires for I²C (“TWI” 
according to Atmel) and leaving four GPIOs per chip, or three 
GPIOs plus an ADC.  Four of them would be enough to drive the 
display and read the keyboard, though you’d probably still want 
external drive transistors for the display digits. 

Breadboard 

    At my house I picked up a breadboard that has two 18-pin 
two-digit 7-segment red displays in it, probably from 2006.  They’re 
labeled LDD5111-11.  These have decimal points and need external 
current limiting.  They’re probably the largest digits I have available.  
The datasheet, from 1996, says they have a surprisingly rational 
pinout with 16 individual per-segment anodes and two common 
cathodes.  You could gang up the corresponding per-segment pins to 
get a 12-pin interface, but you’d probably want to drive them at more 
than 40 mA per digit, so you probably still want external low-side 
drive transistors for the common cathodes. 

    The datasheet (“Jameco Part Number 24723”, “Ligitek”, for a 
whole family of such displays) says these are red GaP LEDs at 697 nm 
with a 90-nm bandwidth and a 1.7–2.8 V forward voltage drop, with 
2.1 V being typical;  0.5 millicandela minimum at 10 mA, 
0.8 millicandela typical;  either 40 mA or 15 mA maximum current 
“per chip” (or 200 mA or 60 mA pulsed at a 10% duty cycle), and 
either 110 mW or 45 mW maximum power per chip;  and 10 μA 
reverse current “absolute maximum”.  I don’t know which power 
rating to use;  the higher rating is “SR”, and the lower is “H”, but I 
suspect it’s the lower one, because that’s the one that is dimmer at 
10 mA. 

    I think “per chip” means “per LED” rather than “per digit” or 



“per package” because 15 mA per digit would be 2 mA per LED, just 
too low. 

    This may be the easiest option of all, as well as the most readable, 
indoors anyway. 

    So, to run these manually off 5 volts, I probably want 8 
per-segment resistors of 220–2200Ω, and maybe 55Ω when driving 
them with a microcontroller. 

    A little testing shows that the forward voltage at 14.5 mA is about 
2.1 V, and they aren’t terribly bright at that current.  I may try 
burning out a decimal point in one to see how bright they go. 

Kenko KK-9835TS 

    I have a talking Kenko KK-9835TS desk clock/calculator from 
2007, which has an extremely abrasion-resistant transparent keyboard, 
an 8-digit 7-segment LCD display, a dynamic speaker with a plastic 
cone, and lots and lots of wasted space inside.  It runs off two AA 
batteries.  It’s about 155×120×32 mm and weighs 143 g.  The 
mainboard is of course a chip-on-board with a blob of epoxy over it. 

    This display probably has the largest LCD digits of the displays I 
have and would thus be optimal for daylight readability, and the flex 
cable to the LCD has a very comfortable 1.26-mm “pin spacing” 
between its 32 or so lines.  The slightly mushy 26-key keyboard is also 
connected via a flat-flex cable, making it ideal for rebraining.  The 
keys are easily replaced (I’ve turned the digits upside down) but it 
might be even more interesting to reformat them by taking them out, 
grinding the opaque backing off the back, and replacing it with a 
custom-printed sticker. 

    Driving 32 LCD lines in software probably requires 32 GPIOs and 
a certain amount of attention to properly alternating the polarity so 
you don’t electrochemically degrade the display.  But it doesn’t 
require much voltage or current. 

Kadio KD-82TL 

    I have a Kadio KD-82TL copy of a Casio scientific calculator from 
2002, which I’ve written about previously in Dercuano.  It has a 
50-key very mushy keyboard and a two-line display, one line of 
which is something like 12 5×7-pixel bitmaps (used for displaying 
formulas and programs) and the other line of which is something like 
12 7-segment digits with decimal points.  (It also has 11 indicators for 
calculator modes.) It’s about 85×165×30 mm and weighs 139 g with 
the cover on. 

    This is also very appealing for rebraining;  again, both the keyboard 
and the screen are connected to the brainboard with flat-flex cables, 
and it runs off a couple of AA batteries, which I have removed 
because they had run down.  It comes with a protective shield that 
slides over the face to protect it from damage.  There is less wasted 
space inside than on the Kenko. 

    Driving the LCD seems potentially a lot more challenging than on 
the Kenko:  there are twice as many pins, and they are less than a 
millimeter apart.  Worse, I seem to have torn the flat-flex cable off 
the LCD edge where it was connected, and so I need to figure out 



how to re-establish contact. 

Franklin TES-118A 

    This alphabetic LCD display is in a “Franklin� model TES-118A 
Spanish-English translator, ISBN 1-56712-689-8” Beatrice and I 
bought in 2005.  The whole device runs off a CR-2032 coin cell, 
measures about 105×70×15 mm, weighs 64 g, and has a 
pushbutton-latching domed clamshell cover that covers everything 
but the power button and the screen, which is recessed so far into a 
hole in the clamshell that it still hasn’t broken, though it’s a little 
scratched.  Under the clamshell cover is a very mushy rubber 
QWERTY keyboard with arrow keys, five ideographic keys for 
different “applications”, and six miscellaneous buttons:  menu, power, 
clear, back, space, and “conj”.  Since I don’t have a CR-2032 handy, 
I’m not sure how many pixels are on the display, but it’s intended to 
display a few words at a time. 

    Opening the case was a little tricky;  the clamshell unclipped from 
two steel rods acting as hinge pivots, three Philips screws under the 
battery cover came out, and then the two halves of the bottom of the 
case unclipped with fingernail pressure — at which point the tiny 
hinge pivots and plastic clamshell latch button fall out.  I was glad to 
have a styrofoam sandwich tray underneath it to catch the parts, but 
still had to shake some out of my clothes. 

    This is unbelievably appealing for rebraining:  a pocket computer 
ruggedized to survive being sat on, with a daylight-readable tiny 
LCD that can run on microwatts, with a space for a coin cell!  But it 
would be very challenging:  the LCD connector not only has many 
pins (about 100) but also the keyboard is on the same PCB as the 
chip-on-board epoxy brainblob.  And there’s not a lot of wasted 
space;  from the dimensions above you can see that it’s about 0.6 g/cc.  
So the most feasible approach might be to grind away the 
chip-on-board and wire up the new brain to the now-floating 
connections, rather than try to use the flat-flex connector. 

    There’s actually a bit of extra space under a silver-covered 
“keyboard template” which snaps over the keyboard.  Like a 
millimeter or three.  Hard to use but it’s about 15% of the device’s 
total volume.

Topics

• Electronics (p.  788) (42 notes) 
• Ghettobotics (p.  793) (18 notes) 
• Embedded programming (p.  814) (9 notes) 



Capacitor meter
Kragen Javier Sitaker, 02020-11-16 (updated 02020-12-03) 
(26 minutes)

    The project in Multimeter Metrology (p.  498) is a bit large to 
tackle all at once.  So I think it would be good to start with a 
manageable subset.  In particular what I want is something to use for 
measuring capacitors in the 47 pF to 1000 μF range to within about 
1%. 

A basic design 

    If you put a string of two resistors between analog switchable pins 
A and B of a microcontroller, and a capacitor between the junction 
between the resistors and ground, then you have the following 
configurations available: 

• pin A output high, pin B input:  capacitor charges through resistor 
A, being continuously watched; 
• pin A output low, pin B input:  capacitor discharges through resistor 
A 
• pin A input, pin B output high:  capacitor charges through resistor B 

• pin A input, pin B output low:  capacitor charges through resistor B 
• pin A high, pin B low:  capacitor charges to Ra/(Ra+Rb), can be 
measured later 
• pin A low, pin B high:  capacitor charges to Rb/(Ra+Rb) 
• pin A low, pin B low:  capacitor discharges through Ra||Rb 
• pin A high, pin B high:  capacitor charges to Vcc through Ra||Rb 
• pin A input, pin B input:  capacitor discharges through its internal 
leakage resistance  

    All of these measurements are essentially ratiometric, so we don’t 
care about the power-supply or reference voltage as long as it isn’t too 
noisy or so high the capacitor blows up (which a double-layer 
capacitor might.) 

    Ideally, for component ID, we could go through all 9 
measurements in 50 ms or so for capacitors anywhere in range.  If Ra 
and Rb are some distance apart, like an order of magnitude or so, they 
can provide different “scales”;  but if they’re too far apart, then several 
of the cases won’t be meaningfully different.  How far apart is “too 
far apart” depends in part on the ADC’s precision. 

    I can measure the resistances to an error of about 0.1% with my 
existing multimeters (in Multimeter Metrology (p.  498) I found that 
they were about 0.03% apart).  This doesn’t tell me their temperature 
coefficients until I heat them up or cool them down and measure 
them again. 

    If the resistance is too low, the capacitor will charge all the way to 
its destination voltage too quickly to get a reasonable number of 
samples, so higher sampling rates mean we can get by with lower 
resistances.  If the resistance is too high, the capacitor won’t charge or 
discharge enough to measure reliably within the measurement 



interval, so higher sampling precision means we can get by with 
higher resistances.  Also, though, higher resistances make life harder 
for the input circuits. 

    Larger numbers of resistors and pins could be deployed to get more 
measurements. 

    I’m going to look at a few candidate chips. 

ATTiny45 

    I have 18 surface-mount ATTiny45s and 19 DIP ATTiny45s left 
over from 2006.  They run at 20 MHz on an external crystal, or up to 
16 MHz on a PLL from their internal oscillators, and have six GPIO 
pins, 4K of Flash, 256 bytes of RAM, four single-ended ADC 
channels with a 10-bit ADC, an analog comparator, and supposedly 
two differential ADC channels with switchable 20× gain (although I 
wonder if maybe that last feature is actually only in the ATTiny45/V
).  The I/O pins have a selectable pullup resistor of 20–50 kΩ. 

    The internal RC oscillator is only calibrated to ±10%, but the 
datasheet says you can calibrate it to ±1% at a given temperature, 
voltage, and frequency.  This would seem to eat the whole error 
budget right out the gate.  But an external crystal eats up two of the 
six GPIO pins. 

    Like most AVRs, at its maximum precision of 10 bits, it can only 
do 15 ksps, but it can run about 5× faster if you’re willing to accept 
more error.  It recommends an input impedance of 10 kΩ or less and 
says its sample-and-hold capacitor is 14 pF, which makes it sound like 
it’s going to be pretty hard to measure down below 100 pF. 

    At 15 ksps we would get 45 samples in 5 ms.  If we were interested 
in the average voltage, this would give us about a 12½-bit 
measurement, which is plenty precise enough for our 1% objective.  
Probably measuring the charge or discharge rate will give us a 12-bit 
(0.1% precision) measurement, which is still plenty.  (I haven’t done 
the analysis rigorously using the various error numbers from the 
datasheet but I think these are in the ballpark.) 

    How fast of a time constant can we tolerate?  A measurement stops 
being 1% accurate once it drops below 100 counts or so, about a tenth 
of full range, so we have about ln 10 = 2.3 time constants, maybe a bit 
more, to get our measurements.  (I’m glossing over the fact that what 
we need to be 1% accurate is not the voltage but the timing, which I 
don’t think matters.) I think we need at least 3 samples, probably 
more, say 5 to be safe.  So we need the RC time constant to be at least 
2 samples, 133 μs, when we’re using at least one of the resistors. 

    Getting that at 47 pF would require a 2.8-megohm resistor, which 
is inconvenient not only because my multimeters can’t measure that 
high (I’d have to do a four-wire measurement with two multimeters) 
but also because the ATTiny45 datasheet specifies input leakage 
current of up to 1 μA, though typically below 0.05 μA, and claims the 
analog input resistance is typically 100 MΩ.  So compromising with 
470 kΩ for the low-capacitance-range resistor might be a better idea.  
(I suspect this might still be too high for the inputs to work reliably 
with.) 

    How low of a charge/discharge rate can we tolerate?  By the same 



handwaving arguments above, I think we want to ensure that the 
charging/discharging makes it up to 200 counts, about 20% of full 
range, within the 5-ms measurement window.  ln 80% ≈ -.22, so 
that’s about 0.22 time constants, so τ can be up to 5 ms/0.22 ≈ 22 ms.  
This is disappointingly close to the minimal τ of 133 μs above, only 
165 times longer.  If we want to get to 22 ms with 1000 μF, then we 
would need a 22-Ω high-capacitance-range resistor, 20000 times 
smaller than the low-capacitance-range resistor.  This would allow us 
to meet our performance objective for 1000 μF, but at the cost of 
precision in the midrange. 

    This situation probably calls for compromising like crazy to reach 
acceptable performance.  Here are some candidate compromises: 

• Use the internal pullup (on the 22-Ω pin) as an alternative 
medium-range pullup resistor.  This requires some kind of calibration 
procedure to find out what the internal pullup’s E-I curve looks like 
(maybe not a straight line) and how it varies with temperature. 
• Use a third pin with a third external resistor.  But keep in mind the 
chip only has six GPIOs! 
• Use a longer measurement time for large capacitances so you can use 
a larger resistor.  470Ω would give you a time constant of 470 ms with 
1000 μF, so you could reach the desired performance at 100 ms per 
measurement rather than 5 ms. 
• Accept some performance degradation at the ends of the range.  

    However, there are some tactics not yet investigated: 

• Maybe I’m being too pessimistic in some of my calculations.  
• Can the differential-input mode with its selectable 20× amplifier 
help?  Maybe that would allow us to double the number of samples 
we can take for small capacitances, by turning the amplifier on when 
the signal gets low.  
• Maybe if the capacitor is charging/discharging too fast, we could 
charge it to way outside the ADC range and measure how long it 
takes to discharge down into the range.  For example, we could 
charge it to 5 volts and use the 1.1V internal voltage reference as 
full-scale.  The 20× amp might help there too.  This obviously only 
works for  
• You can configure the ATTiny45’s PWM output to generate PWM 
levels at up to the system clock speed.  If running off a 16MHz clock 
you could get three PWM levels at 8MHz (0%, 50%, 100%), four at 
5⅓MHz, five at 4MHz, and so on.  Even at 1600 kHz you have 11 
levels.  I’m not really sure how this helps though.  
• Maybe a higher sampling rate at the expense of precision would be 
good when the capacitance is small.  
• Maybe even if the capacitor finishes charging or discharging in two 
or three samples, by repeating the measurement dozens of times we 
can get a precise enough average.  
• For fast charging/discharging, the ATTiny45 also has an analog 
comparator, which can be configured as an interrupt source.  IIRC 
AVR interrupt latency can vary by up to two clock cycles, so this 
would give you timing information precise to ±62.5 ns on the RC 
oscillator or ±50 ns on a quartz crystal.  This would require an 
additional external voltage divider and I/O pin to provide the 



threshold voltage, but it gives you 1000 times tighter timing than the 
ADC.   

    Marcel Post’s postwiki article goes into some detail on the ADC on 
these chips.  (The ATTiny85 is the version with twice as much RAM 
and Flash.) 

    It seems like it would be pretty difficult to meet the targeted 
performance on the ATTiny45, but maybe possible. 

    (Actually I think the interrupt latency is not an issue because I 
think there’s an option to latch a timer value automatically when the 
comparator fires, and I think you can run the timers at the chip’s full 
clock speed, but I need to check those out.) 

Time-domain sensing is a better option here 

    A much easier thing to do on this chip would be to do only the 
comparator time interval measurement against a fixed threshold, 
using a single pullup resistor from Vcc to one comparator pin and a 
divider from Vcc to ground across the other comparator pin.  If you 
can calibrate at startup or at regular intervals against a standard NP0 
calibration capacitor then you ought to be able to compensate for the 
internal oscillator’s vagaries.  We can choose whatever threshold we 
want, such as Vcc/2.  Then, if we want charging a capacitor to our 
threshold to take at least 10 clock cycles at 16 MHz, we need a time 
constant of at least 902 ns;  if it’s 47 pF we need at least 22 kΩ.  In 
50 ms we can take 80,000 measurements, perhaps alternately of the 
DUT and a reference capacitor, and average them, giving about 11 
bits of precision. 

    As the capacitor under test gets bigger, the measurements get 
slower, until at 3.3 μF our time constant is 73 ms, so it takes the whole 
50 ms to hit the comparator threshold.  This gives us a nice 
high-precision measurement of 19.6 bits but it starts to get slow.  At 
1000 μF it would take 15 seconds! 

    A possible solution to this problem is to generate the reference 
voltage threshold with PWM instead of a voltage divider, thus using 
an external RC filter instead of two external resistors.  At 160 kHz, 
you can get 99 voltage theshold levels, taking times ranging from 4.61 
time constants to 0.01 time constants to cross them.  So we can deal 
with a time constant from 100× longer than our measurement period 
(50 ms) down to 4.61× shorter than our shortest acceptable time 
(spitballed as 625 ns above).  This means 136 ns (47 pF · 2.9 kΩ) to 5 
seconds (1000 μF · 5.0 kΩ).  That’s close enough to be reasonable. 

    (Alternatively the PWM can feed one of the ends of the DUT and 
we can use a low fixed divider for the threshold.) 

    We probably want to RC-filter the PWM enough to get 1% ripple 
or less, which is easy if it’s just providing a reference voltage, which 
means the filter’s RC time constant should be at least 625 μs;  but we 
want it to be fast enough to be able to switch “ranges” while trying to 
get the discharge time reasonable, at most a few milliseconds.  The 
filter’s time constant (and thus the capacitance and resistance) is not 
critical to precision, but it needs to have low enough leakage current 
that its voltage doesn’t sag by more than 1% during a 6.25 μs PWM 
cycle, but anything with such high leakage current that its own 
leakage time constant is under 625 μs would be too poor to be sold as 

https://www.marcelpost.com/wiki/index.php/ATtiny85_ADC


a capacitor.  On top of this, we have the ATTiny’s < 1 μA input 
leakage current;  at 22 nF and 6.25 μs this would be a 280 μV voltage 
shift, which would amount to a 1% error on a 30-mV reference 
voltage, so the filter capacitor should be bigger than 22 nF.  A 1 μF 
capacitor and a 2.2 kΩ resistor would give a 2.2-ms time constant and 
worst-case 6.25 μV drift from the leakage current. 

    If the RC filter is feeding the DUT the problem of its design 
becomes much more difficult. 

    Atmel app note AVR400, document doc0942.pdf describes a 
similar design, using an AT90S1200 (lacking an ADC entirely) with a 
crystal and an RC circuit to measure a voltage to 6 bits of precision.  
In that case the “reference voltage” is the thing to measure and the 
RC circuit just provides a sawtooth to compare it to. 

    The analog comparator in the ATTiny45 can take its negative input 
from any of the four ADC input pins, which enables us to switch 
between the standard/calibration capacitor and the DUT on each 
measurement cycle, which reduces the time available for decalibration 
to be produced by a temperature shift, a supply voltage shift, a clock 
speed shift, or resistor aging.  A temperature shift will also change the 
value of the standard capacitor, though the NP0/C0G tempco is 
limited to 30 ppm/K, and it may be possible to use the ATTiny45’s 
on-chip temperature sensor to compensate for that. 

    The AVR TransistorTester manual mentions that the offset voltage 
of the AVR’s analog comparator limits its accuracy on low-value 
capacitors. 

    So the final circuit is something like PWM1-2k2-AIN0-1μF-gnd;  
Vcc-2k2-ADC0-DUT-gnd;  Vcc-2k2-ADC1-1nF(NP0)-gnd.  That 
is, the reference-voltage pin is connected to the output of a 
single-pole RC low-pass filter from PWM1 to ground, and the 
multiplexed inputs ADC0 and ADC1 are connected to similar RC 
filters that are “filtering” just VCC.  Some external protection diodes 
and a protection resistor might be useful on the DUT terminals to 
reduce the risk of damage from connecting a precharged capacitor. 

ATTiny2313 

    The time-domain design is also applicable to the ATTiny2313, 
which has PWM outputs and an analog comparator but no ADC at 
all;  it has only 128 bytes of RAM.  But it has 18 GPIOs instead of 6.  I 
have a tube of 16 ATTiny2313 SOICs left over from 2006. 

    The ATTiny2313A is “the picoPower version”.  Amazingly, both 
versions of the device are still in production, though the manufacturer 
Atmel is dead. 

    However, the ATTiny2313 has one serious drawback compared to 
the ATTiny45 for this purpose:  its analog comparator doesn’t have 
multiplexed inputs, so it always compares pin 12 and pin 13 (AIN0 and 
AIN1) (or pin 10 and pin 11 in the MLF/VQFN packages I don’t 
have).  So it can’t recalibrate to a calibration capacitor evey 
measurement cycle.  So getting reasonable precision on the 
ATTiny2313 (better than 1%, maybe better than 10%) would probably 
require using a crystal with that design. 

A simpler design 

http://ww1.microchip.com/downloads/en/AppNotes/doc0942.pdf
https://raw.githubusercontent.com/svn2github/transistortester/master/Doku/tags/english/ttester_eng112k.pdf
https://www.microchip.com/wwwproducts/en/ATtiny2313
https://www.microchip.com/wwwproducts/en/ATtiny2313
https://www.microchip.com/wwwproducts/en/ATtiny2313


    A possibly better design, at least for the ATTiny2313, is 
gnd-1kR-{1kR-AIN0 || 10nF(NP0)-GPIO1 || DUT-GPIO2}, 
with AIN1 connected to a filtered PWM output as before.  With 
GPIO2 tristated, we can toggle GPIO1 to charge and discharge the 
10nF NP0/C0G capacitor through the 1kΩ ground resistor, and 
observe the charging process as a falling voltage on AIN0.  When 
we’re discharging it we may be in part discharging through the 
clamping diodes of GPIO2 and AIN0 (and AIN0’s protection 
resistor), and also the voltage on AIN0 is negative, so only the charge 
time is visible. 

    At 16 MHz the time constant for the specified values is 160 cycles, 
which is plenty, and maybe a bit generous. 

    So then we tristate GPIO1 and do the same charge-discharge 
process with the device under test, allowing us to observe its time 
constant with the same 1kΩ resistor.  If it’s 47 pF the time constant is 
47 ns (0.75 cycles), which is a bit on the low side, and if it’s 1000 μF 
the time constant is a full second, so we’re stuck measuring it against 
high thresholds like 0.9VCC (0.105 τ, 105 ms) and 0.99VCC (0.01005 τ, 
10.05 ms).  But both of these values seem reasonable. 

    The current decay curve through the GPIO pins depends on the 
capacitance (and, a little, on the supply voltage), but initially it’s 
5 mA, assuming VCC = 5 V, which is a safe limit and probably won’t 
even heat up the chip much.  Heating up the chip might be bad 
because it might be local and so unbalance the analog comparator, 
introducing error.  Heating up the resistor might be a bigger 
concern — the peak power there is 25 mW, and for large DUTs it will 
dissipate essentially 25 mW all the time — but most of that heating 
effect will be canceled out by alternately measuring the DUT and our 
reference capacitance. 

    Since we’re only measuring the τ₁/τ₂ ratio, by charging up to the 
same max voltage through the same resistor measured against the 
same voltage thresholds with the same clock, our measurement should 
be independent of slow changes in any of these. 

    Checking out the datasheet (doc8246.pdf, 8246B-AVR-09/11).  
The microcontroller only has 128 bytes of RAM (p.  1), including the 
return/interrupt stack, plus the 32-byte register file (p.  11), which is 
mapped at addresses 0 through 0x1f, while the data SRAM is mapped 
into the 128 bytes at 0x60 to 0xe0 (p.  17, clearly incorrect), and also 
there are three spare bytes in the I/O register space, GPIOR[012] (p.  
17);  all together, this is enough for a few state variables but not much 
of a buffer of past samples.  The 1024 instructions of Flash may be a 
bit of a pinch but should be doable.  It has two timers (p.  6), which is 
enough to generate PWM from one while using the other to measure 
the charging time. 

    There’s a clock prescaler CLKPR (p.  32) which can divide the 
master clock by any power of 2 from 1 to 256, and a separate 
CKDIV8 “fuse” which is initially programmed (p.  33), which means 
the ATTiny2313 runs at 1 MHz by default (p.  27).  The internal RC 
oscillator is 8MHz (p.  19) so you only get 40% of the chip’s potential 
clock speed without a crystal.  (There are also 4 MHz and 128 kHz 
internal oscillators, selectable via CKSEL (p.  27).) 

    The analog comparator (p.  168) is specified as having less than 



40 mV of offset voltage and typically less than 10 mV, which is pretty 
reasonable — it’s better than 0.1% of 5 volts.  And it’s specified as 
having an input leakage current of -50 to 50 nA, which is a lot better 
than I expected.  (p.  ???) 

    For sourcing and sinking current it looks like the output impedance 
is in the neighborhood of 60Ω (charts on p. 242) or 25Ω when 
running on 5V (pp.  243–4).  It can do 20 mA per pin. 

    There’s an “input capture unit” that can be configured to latch the 
timer value when triggered by the analog comparator on at least timer 
1, the 16-bit timer (p.  92).  This seems like a much better option than 
using interrupts, which is four clock cycles, minimum, plus normally 
a three-cycle jump, and possibly finishing a multi-cycle instruction 
that was in progress when the interrupt fired:  7–9 cycles of latency.  
The worst part there is the two cycles of jitter, which will make hash 
of any data about fast RC time constants. 

    There’s an implication that there’s a clock prescaler specific to 
timer 1 (p.  94, where it says it doesn’t apply to the optional noise 
canceler, which adds four cycles of latency). 

    There’s also a third timer on the chip, the watchdog timer, which 
always runs at 128kHz and “can be configured to generate an 
interrupt instead of a reset” (p.  43) by setting the WDIE bit in 
WDTCSR (p.  45).  Aside from the usage they suggest — waking 
from power-down — this could be useful for doing regular tasks.  I 
don’t think you can read its counter value, though, just reset it. 

    Datasheet questions: 

• what’s the timer precision? 
• what’s the comparator noise?  hysteresis? 
• can we maybe use the pullup to see if the cap is too big? 
• what’s the input impedance of the pins?  might we have error from 
that? 
• what’s the input clamp diode rated for?  

    Interestingly I think this approach also would work for light 
sensing with LEDs;  when I did 
http://canonical.org/~kragen/light_sensing in 2006 this approach 
didn’t occur to me, and consequently my light sensing on the 
ATTiny2313 was extremely slow. 

STM32/CKS32 

    I have two Blue Pills, an STM32 and a CKS32.  These feature a 
12-bit 1Msps ADC, 128KiB of Flash, and 20KiB of SRAM, a shitload 
of pins, and run at 72MHz.  This suggests that we ought to be able to 
do the whole curve tracing thing. 

    If we again want to get at least 5 samples before the signal drops 
below 100 counts, well, 100 counts is 1/40.96 of full scale, so 3.7 time 
constants instead of 2.3, so our time constant needs to be at least 
1.35 μs, a hundred times faster than the AVR ADC, attainable at 
47 pF with a 29-kΩ resistor.  And if we again want to make sure we 
get at least 200 counts of change within the 5-ms window, that’s only 
4.9% of full scale, about 0.05006 time constants, so our time constant 
can be up to 99.8 ms, which I’ll just irresponsibly round to 

http://canonical.org/~kragen/light_sensing
http://canonical.org/~kragen/light_sensing


100 ms — which still requires a 100-Ω high-capacitance-scale resistor. 

    So even with these more powerful chips, the two resistors are a 
factor of 290 apart, which doesn’t give you much benefit from all the 
cute tricks at the beginning of this document;  but now they cover the 
center of the range to adequate precision as well. 

ATTiny12 

    The 8-pin ATTiny45 or its larger version the ATTiny85 sell for 
US$1.50 to US$2 on MercadoLibre here, but there’s a vendor that 
sells the deprecated ATTiny12 (also 8-pin) for US$0.30 or so, so it’d 
be interesting to see if it might be usable for this kind of thing.  It only 
has 1 KiB of program memory, enough for 512 instructions, runs at 
only 8 MHz (or less in some configurations, like the ATTiny12V-1), 
and has no RAM other than its 32 8-bit registers, 64 bytes of 
EEPROM, and a 3-level hardware return stack.  It has no ADC, but 
it does have the analog comparator — without multiplexed inputs, as 
in the ATTiny2313, but with interrupts.  It has a single timer, but 
without hardware PWM;  you could use it to time the discharge or 
recharge curve, but you’d have to do PWM in software, where 
interrupts would screw it up.  The internal RC oscillator runs at 
1.2 MHz instead of 8 MHz, so you need to use an external crystal to 
get higher speed or consistent speed, which of course eats up two of 
the 5 GPIO pins. 

    I feel like this chip would be pretty difficult to get anything done 
on due to its extremely limited resources.  Maaybe you could get it to 
work for measuring a capacitor, but I’m not sure how. 

7-segment LED displays 

    I’m thinking a 4-digit 7-segment LED display is probably sufficient 
for a 1%-error meter.  Possible capacitance displays might look like 
any of these: 

.001F 100μ 10μ0 1μ00 100n 10n0 1n00 100p 10p0
 

    A “μ” on a 7-segment display can look like a backward 4.
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Rebraining
Kragen Javier Sitaker, 02020-11-16 (updated 02020-12-06) 
(12 minutes)

    One of the things I’ve been wanting to do is to make an 
autonomous personal computing device, since one doesn’t seem to be 
forthcoming from the economy.  It seems likely the easiest way to do 
this is to get an existing device with the right peripherals (power, 
input, and output), remove its CPU and RAM, and implant a new 
microcontroller. 

    None of the photos below are mine, so I cannot release them to the 
public domain;  they are included for the purpose of factual 
commentary, including links to their sources. 

Miscellaneous 

    Scientific calculators seem particularly promising here, but I should 
probably start with something easier, like a large four-banger.  See the 
note on screens (p.  580) for some details. 

    The most interesting possibility here is probably a cellphone, maybe 
a flip phone for lower battery usage — these tend to have low-power 
sunlight-readable screens, rechargeable batteries, USB connections, 
usable keyboards, speakers, and microphones, as well as some radio 
stuff.  Old Nokia displays in particular are SPI and so relatively easy 
to connect up to (easier than directly driving an LCD), though you 
suffer some display latency as a result, and they only use a couple of 
microwatts.  A broken Nokia 1110 goes for AR$500 (US$4) on 
MercadoLibre;  a lot containing a 3200, a 9300, and a 2651 go for 
AR$1600 (US$10);  a lot containing eight broken cellphones from 
that epoch, including two QWERTY phones, goes for AR$2000 
(US$14);  a broken QWERTY Nokia Asha 303 goes for AR$900 
(US$7).  (The key words on Mercado Libre are nokia reparar.) But 
this is probably a much more advanced project. 

    

 

    I also have a solar garden light that seems like an appealing 
possibility, though perhaps to dissect for parts;  see Garden Light 
Panel (p.  608) for details.  I was disappointed to learn that the panel is 
only 40–80 mW rather than the 300 mW I was hoping for, probably 
because it’s amorphous, but that’s still enough to be useful. 

Toys 

    There’s a “Lionel’s Smart Tablet infantil” on MercadoLibre right 
now for sale by “chiquiplanet” for AR$3000 (US$20);  it has what 
appears to be a large passive-matrix LCD screen that seems to be 
monochrome and about 80×16 non-square pixels, and has a gaudy 
46-key ABCDEF membrane keyboard: 

https://articulo.mercadolibre.com.ar/MLA-875748264-celular-nokia-1110-a-reparar-o-repuestos-no-enciende-_JM
https://listado.mercadolibre.com.ar/nokia-reparar
https://articulo.mercadolibre.com.ar/MLA-846202429-smart-tablet-infantil-precio-promocional-_JM


    

 

    It runs on AA batteries and appears to have a reasonably robust 
construction, although it’s not marketed for kids under 3, which 
makes me wonder if it’s aimed at kids with intellectual disabilities.  
It’s 250 mm × 190 mm, and looks to be about 15 mm thick, which 
seems like it would be a lot of space for adding a solar panel. 

    For AR$3500 (US$23) there’s a toy “bilingual Disney Cars 
computer” sold by El Mundo del Juguete, which looks like it maybe 
has a higher resolution display and also runs on AA batteries;  it has a 
QWERTY keyboard and a mouse: 

    

 

https://articulo.mercadolibre.com.ar/MLA-825577235-computadora-bilingue-de-cars-original-ditoys-_JM
https://articulo.mercadolibre.com.ar/MLA-825577235-computadora-bilingue-de-cars-original-ditoys-_JM


    And the old standard “9999 in 1 brick game” from 2006 or earlier 
is still selling, at AR$790 (US$5), which I think is the same price I 
paid in 2006: 

    

 

    This thing has pixels on the LCD screen that are literally the Tetris 
squares;  I think that means it’s 10×20 pixels.  The standard 
chip-on-board hardware provides you with a number of different 
games (with a “difficulty” parameter to multiply out to the 9999 
number) within that context. 

    Kinderland sells, for US$10, a keychain-sized clone of the Pac-Man 
arcade machine that runs on two AAA batteries: 

    

https://articulo.mercadolibre.com.ar/MLA-763348812-tetris-portatil-brick-game-con-9999-video-juegos-clasicos-_JM
https://articulo.mercadolibre.com.ar/MLA-856207550-mini-juego-retro-tiny-arcade-pac-man-376-efull-_JM
https://articulo.mercadolibre.com.ar/MLA-856207550-mini-juego-retro-tiny-arcade-pac-man-376-efull-_JM


 

    This doesn’t have much of a keyboard, but it does have lots of 
space to add one, and it has what appears to be a thumb-sized backlit 
LCD (20 mm square) with a resolution on the order of an NTSC TV.  
The advertisement explains several times that it’s a completely 
functional replica.  Several buyers marvel at how well it works.  Tim 
Schuerewegen says he reprogrammed a similar but somewhat larger 
game console just by reprogramming its SPI Flash ROM. 

    I don’t know what kind of electronic interface the Pac-Man LCD 
takes but I imagine it’s pretty power-hungry. 

    A more modern version of the "brick game" is the “GC-26 
168-in-1 portable console”, which is a sort of Gameboy form factor 
(78mm × 117mm × 24mm) with a 2.8-inch backlit color LCD and a 
volume knob, for US$12.50: 

    

https://hackaday.com/2019/12/09/teardown-168-in-1-retro-handheld-game/#comment-6204409
https://hackaday.com/2019/12/09/teardown-168-in-1-retro-handheld-game/#comment-6204409
https://hackaday.com/2019/12/09/teardown-168-in-1-retro-handheld-game/#comment-6204409
https://articulo.mercadolibre.com.ar/MLA-797382657-consola-portatil-supreme-retro-simil-gameboy-168-juegos-gc-26-_JM
https://articulo.mercadolibre.com.ar/MLA-797382657-consola-portatil-supreme-retro-simil-gameboy-168-juegos-gc-26-_JM


 

    The resolution looks pretty decent, like at least 640×480;  probably 
it’s precisely NTSC or PAL resolution: 

    

 

    This has composite video output, charges over USB, includes an 
800mAh lithium battery, an 8-bit CPU, 8 megabytes containing 168 
ROMs, and probably no programmability.  Hackaday did a teardown 
of one under the brand “Weikin” last year; they found it had a 128 
mebibit NOR Flash chip you could probably reprogram.  Some dude 
on YouChube reviewed the games and found some problems in the 
composite video output;  he also took it apart and fixed a video 
problem. 

    There are a variety of branded variants of this device, including the 
Level-UP RetroBoy (“5 hour”, “600 mAh” battery), the NogaNet 

https://hackaday.com/2019/12/09/teardown-168-in-1-retro-handheld-game/
https://hackaday.com/2019/12/09/teardown-168-in-1-retro-handheld-game/
https://www.youtube.com/watch?v=XrieCn9-9GU&feature=youtu.be
https://www.youtube.com/watch?v=XrieCn9-9GU&feature=youtu.be
https://www.youtube.com/watch?v=ceI4CeIN1SQ
https://www.youtube.com/watch?v=ceI4CeIN1SQ


Pocky, and the Sup.  A smaller-scale version is sold for US$8 as the 
351-gram Seisa SY-891 or SY-888A Game Player Digital Pocket 
System, with 328 games on a 2.2-inch screen: 

    

 

Telephony 

    Various kinds of telephony devices have displays, keyboards, 
buttons, and sometimes radios. 

    For US$9.50 there’s a caller-ID display for sale: 

    

 

    This evidently has about 20 digits of 7-segment reflective LCD 
plus some specific indicators, and a compartment for two AAA 
batteries. 

    For US$19 there’s a cordless phone with a backlit LCD (which the 
vendor fraudulently claims is an LED display), an Alcatel Versatis 
E100: 

    

https://articulo.mercadolibre.com.ar/MLA-747359420-consola-de-juego-portatil-8bits-328-juegos-sy-891-_JM
https://articulo.mercadolibre.com.ar/MLA-747359420-consola-de-juego-portatil-8bits-328-juegos-sy-891-_JM
https://articulo.mercadolibre.com.ar/MLA-609831162-identificador-cid-apto-telefonos-fijos-hasta-100-llamados-_JM
https://www.mercadolibre.com.ar/telefono-inalambrico-alcatel-versatis-e100-negro/p/MLA7992211
https://www.mercadolibre.com.ar/telefono-inalambrico-alcatel-versatis-e100-negro/p/MLA7992211


 

    This gets you a phone keypad with some menu buttons, a handset 
for voice communication, a rechargeable battery (supposedly 
400-mAh and 7-hour talk time) and recharging base, what looks like 
a 12-character 14-segment alphanumeric display, and of course the 
short-range license-free radio, probably 900MHz with a 6kHz 
bandwidth. 

Other radios 

    Someone is selling a Motorola one-way pager for US$8 with what 
looks like a 20×4 character dot-matrix character display: 

    

https://articulo.mercadolibre.com.ar/MLA-878695319-pager-morotola-radiomensaje-_JM


 

    I’m not sure if text pager service still exists (and neither is the 
seller), but presumably this device comes with keyboard and screen 
intact, and Motorola pagers were famously durable.  It probably 
doesn’t have a rechargeable battery, but rather a AAA battery carrier. 

    There are various walkie-talkies on sale (called “handy” 
apparently), like this Baofeng BF-T12 for US$10 from DigitalStore: 

    

 

    This is a push-to-talk walkie-talkie transmitting on 16 25-kHz 
channels of the 400–470 MHz band, with a 1500-mAh 
USB-rechargeable battery that claims 8-hour battery life, a two-digit 
7-segment LCD, earphone and microphone jacks and a volume knob, 

https://articulo.mercadolibre.com.ar/MLA-828118171-handy-baofeng-radio-walkie-talkie-bft12-16ch-uhf-auricular-_JM


claiming a 6–10 km range in the country, or 1–5 km in the city. 

    In the US, using most of this band requires operator licensing or is 
even reserved for emergency services, although two of the channels 
are FRS channels (up to 500 mW, while this radio is supposedly 
2 W), but 95% of users ignore this, even though they’re potentially 
subject to 5-figure fines.  Also the US FCC restricts these radios to 
transmitting on 12.5-MHz channels since 2013 (“narrowbanding”).  
Here in Argentina at least some of this band is exclusively assigned to 
individual licensees but I’m not sure what the legal status of the rest 
of the band is. 

MP3 players 

    Someone’s selling what seems to be a 2GB S1 MP3 USB stick for 
US$8: 

    

 

    

https://www.amazon.com/ask/questions/Tx16UEO8P1U0I6S/
https://www.techwholesale.com/fcclicense.html
https://www.argentina.gob.ar/noticias/banda-de-frecuencias-de-450-mhz
https://www.argentina.gob.ar/noticias/banda-de-frecuencias-de-450-mhz
https://www.argentina.gob.ar/noticias/banda-de-frecuencias-de-450-mhz
https://articulo.mercadolibre.com.ar/MLA-898635390-mp3-i-modo-2-gb-usado-funciona-bien-_JM
https://articulo.mercadolibre.com.ar/MLA-898635390-mp3-i-modo-2-gb-usado-funciona-bien-_JM


 

    This is about the same price it went for in 2007, the last time I 
bought one.  It has a reflective dot-matrix passive-matrix LCD screen 
with on the order of 128×32 monochrome pixels, 2 GB of storage, an 
iPod-style conductive volume control, four buttons, and a USB A 
female connector to plug it in with.  If I’m right that it’s an S1 MP3, 
there are a couple of open-source firmwares for them (SourceForge, 
the former s1mp3.de, Wladston’s former s1mp3.org) that added 
features, so you might be able to program it instead of rebraining it.  
But they’ve been abandoned since 2009, and the CPU is just a 
24-MHz Z80. 

    Someone else is selling their SanDisk Sansa 4GB MP3 player for 
the more reasonable price of US$3.30;  it has a MicroSD slot and a 
backlit LCD that looks to be something like 320×240...  and a dead 
battery: 

    

 

    

 

    There are also “MP4 players” that have, typically, larger backlit 
color screens for viewing videos, which have apparently not been 
totally replaced by cellphones;  some cost US$30 or more and have 
Bluetooth, FM radio transmission, and so on. 

Plain screens 

    You can get a used “digital picture frame” for US$23, basically a 
backlit 7-inch color LCD with what looks like resolution of about 
640×480: 

    

https://sourceforge.net/projects/s1mp3/
http://s1mp3.w1r3.de/
http://s1mp3.w1r3.de/
http://web.archive.org/web/20170718212035/http://s1mp3.org/
https://articulo.mercadolibre.com.ar/MLA-794481832-reproductor-mp3-sandisk-sansa-clip-zip-4-gb-500--_JM
https://articulo.mercadolibre.com.ar/MLA-886881618-portarretratos-digital-philips-_JM


 

    Presumably this sucks battery like nobody’s business and is hard to 
rebrain. 

Measuring instruments 

    MercadoLibre has an entire category of "balanzas para valija", 
suitcase scales, like this US$3.30 specimen: 

    

 

    This includes a large, easy-to-read 3-digit 7-segment LCD, three 
buttons, and presumably some kind of strain gauge and battery. 

    There are similar displays on digital meat thermometers (US$2.50), 
digital calipers (US$10), and digital countertop scales (US$10). 

    

https://articulo.mercadolibre.com.ar/MLA-871992554-balanza-digital-portatil-de-mano-hasta-50-kg-valija-pesca-_JM
https://articulo.mercadolibre.com.ar/MLA-870915952-termometro-digital-pinchacarne-liquidos-y-verduras-50-300-_JM
https://articulo.mercadolibre.com.ar/MLA-857590423-calibre-digital-de-medicion-crossmaster-fibra-de-carbono-_JM
https://articulo.mercadolibre.com.ar/MLA-857590423-calibre-digital-de-medicion-crossmaster-fibra-de-carbono-_JM
https://articulo.mercadolibre.com.ar/MLA-815753063-balanza-digital-de-cocina-tara-1gr-5kg-7-kg-10-kg-con-pilas-_JM


 

    

 

    

 

    There are also indoor/outdoor digital weather thermometers with 
LCD displays like this 3-digit 30mm-tall TPM-10 for AR$600 
(US$4) which tend to have fairly large displays: 

    

https://articulo.mercadolibre.com.ar/MLA-875477172-termometro-digital-refrigeracion-aire-acondicionado-c-cable-_JM
https://articulo.mercadolibre.com.ar/MLA-875477172-termometro-digital-refrigeracion-aire-acondicionado-c-cable-_JM
https://articulo.mercadolibre.com.ar/MLA-875477172-termometro-digital-refrigeracion-aire-acondicionado-c-cable-_JM


 

    Some of them are larger and have more digits.  And the 
temperature sensor itself is potentially useful;  simply rebraining such 
a thermometer without drilling any further holes could give you a 
logging Wi-Fi thermometer. 

Clocks and watches 

    One digital alarm clock sells for US$3.40 and also has an LCD 
display with quite a number of 7-segment and 14-segment characters. 

    

 

    And for larger digits there’s a 45-mm-tall LCD alarm clock Planeta 
Zenok sells for US$6.50, with somewhat fewer digits: 

    

 

    For US$2 you can get a MegaCuper LCD calculator watch, 
though most competitors are much more expensive: 

    

https://articulo.mercadolibre.com.ar/MLA-805212889-reloj-despertador-cubo-cambia-7-colores-temperatura-alarma-full-time-mania-mercadolider-platinum-importadores-_JM
https://articulo.mercadolibre.com.ar/MLA-759038721-reloj-despertador-sensor-luz-lcd-digital-alarma-temperatura-_JM
https://articulo.mercadolibre.com.ar/MLA-870440210-reloj-pulsera-calculadora-vintage-retro-digital-clasico-_JM


 

Remote controls 

    There are lots of remote controls that include a shitty keyboard, an 
infrared LED for communication, and a reflective LCD display, 
mostly those for air conditioners;  for example, those of the LG split 
air conditioner Akb73756210 (US$5), the LG BGH Arcool Ar809 air 
conditioner (US$5), the Samsung AR807 air conditioner (US$4.50), 
and the Sanyo Y512f2 air conditioner (US$4.50).  The LCD displays 
typically have a few 7-segment or 14-segment digits or character 
positions and a bunch of special-purpose indicators:  fan, snowflake, 
and so on.
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• Electronics (p.  788) (42 notes) 
• Ghettobotics (p.  793) (18 notes) 
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https://articulo.mercadolibre.com.ar/MLA-785536413-control-remoto-aire-acondicionado-split-lg-akb73756210-fc-_JM
https://articulo.mercadolibre.com.ar/MLA-785536413-control-remoto-aire-acondicionado-split-lg-akb73756210-fc-_JM
https://articulo.mercadolibre.com.ar/MLA-676496899-control-remoto-aire-acondicionado-split-lg-bgh-arcool-ar809-_JM
https://articulo.mercadolibre.com.ar/MLA-676496899-control-remoto-aire-acondicionado-split-lg-bgh-arcool-ar809-_JM
https://articulo.mercadolibre.com.ar/MLA-652573558-control-remoto-para-aire-acondicionado-split-samsung-_JM
https://articulo.mercadolibre.com.ar/MLA-652573901-control-remoto-para-aire-acondicionado-split-sanyo-y512f2-_JM


Oscilloscope superresolution via 
compressed sensing?
Kragen Javier Sitaker, 02020-11-17 (1 minute)

    Can compressed sensing make a better oscilloscope? 

    The STM32 has a 1Msps 12-bit ADC, and there are oscilloscope 
projects using it.  But a decent oscilloscope has at least 20MHz of 
bandwidth, and the Miniscope has 461kHz, so it’s about 2.3% of a 
decent oscilloscope. 

    Actually though the STM32F103C8T6 used in that project and in 
the Blue Pill has two such ADCs.  If you apply them both to the same 
input, though, you won’t get any more information because (IIRC) 
they sample in sync.  This is ideal if you’re trying to measure the 
voltage-current characteristics of some device but suboptimal if you 
want to measure a single signal faster.  You could perhaps put an 
analog filter on one of the inputs in order to phase-shift some signal 
components. 

    But what if you can fire the ADCs, or an external sample-and-hold 
circuit feeding them, at effectively random times?  Then you could 
sample the signal in a time-domain basis that’s incoherent with 
respect to its frequency-domain content.  Then maybe you could use 
a standard ℓ₁-minimizing basis-pursuit algorithm to look for a sparse 
frequency-domain signal that explains what you saw? 

    It seems like that might be enough to get you an effective 20MHz 
or so of bandwidth, though of course only for signals that really are 
sparse.
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https://tomeko.net/miniscope_v2c/
https://tomeko.net/miniscope_v2c/


A solar panel from an LED garden 
light
Kragen Javier Sitaker, 02020-11-17 (updated 02020-12-01) 
(5 minutes)

    There are these solar garden lights for sale for US$1.15 or so which 
contain a Ni-Cd battery, a monocrystalline solar panel to recharge it, 
an LED, and a bit of circuitry to turn the LED on only at night.  The 
battery in one of mine had died, so I took it out long ago, so I just 
thought I’d do a little poorly-controlled MPPT measurement in a 
spot of sunlight that comes in through the window here. 

    I disconnected the panel from the circuitry and hooked it up to 
some resistors instead:  117Ω, 156Ω, 454Ω, and 988Ω, measuring 
respectively 0.60 V, 0.75 V, 1.91 V, and 2.09 V across the loads, and 
2.25 V at open circuit (loaded only by the meter), giving respectively 
5.1 mA, 4.8 mA, 4.2 mA, and 2.1 mA, and 3.1 mW, 3.6 mW, 8.0 mW, 
and 4.4 mW, suggesting that in this partial sun the panel’s maximum 
power point is somewhere around 8 mW. 

    The panel is about 38 mm square, so in full sunlight it would 
receive about 1.4 W of irradiation, and at the 21% efficiency expected 
for monocrystalline panels it could produce 300 mW.  So 8 mW is 
pretty low, and I should maybe repeat the experiment while actually 
going outside and getting direct sunlight — maybe the spot of light 
through the window was dimmer than direct sunlight by an order of 
magnitude or more.  It’s also possible that this isn’t really a 
monocrystalline cell but rather an amorphous cell.  Either way, it was 
nice to get this 8-mW lower bound, because that’s already enough for 
a pretty decent personal computer these days. 

    (I was using one of the shitty multimeters mentioned in the note on 
multimeter metrology (p.  498), which ought to give all these figures 
an error somewhere around 1% or a bit lower.) 

    Even when loaded by only the meter, the panel’s voltage sagged 
when in indirect sunlight, down to hundreds of millivolts, suggesting 
that it would not be usable for indoor energy harvesting. 

    Trying to convert the above to a Thevenin equivalent gives internal 
resistances for the panel of 320Ω, 310Ω, 82Ω, and 83Ω respectively, 
suggesting that either the sunlight conditions changed as I was taking 
readings or the panel is very far from being ohmic. 

    As a rebraining (p.  593) candidate the garden light is somewhat 
appealing:  it has a built-in energy-harvesting power source, and the 
cylinder containing it, the battery cartridge, and the electronics is 
mostly empty, easy to open (three screws), 30 mm high, and 70 mm 
in diameter.  This provides lots of potential space for stuffing 
electronics into.  What it lacks is much in the way of I/O devices, 
possessing only a white LED. 

    A potentially more appealing approach is to carefully remove the 
PV cell and graft it into something else, maybe something easier to 
carry. 

    In really full sun, I got 2.47 V open-circuit and 2.10 V across a 



105Ω load, thus 20 mA, 42 mW.  This suggests I’m actually not at full 
max power and could benefit from going to a lower load impedance:  
the load voltage is more than half the open-circuit voltage.  If the 
panel had an ohmic internal resistance dropping 370 mV at 20 mA, it 
would be 18.5Ω. 

    However, I think we can be reasonably sure that, although that 
“internal resistance” won’t remain constant, it won’t go down.  Which 
means that the maximum power output available in this sunlight 
would be (½ 2.47 V)²/18.5Ω = 82.4 mW.  So I can squeeze at most 
another factor of 2 out with lower impedance, so this panel is at best 
5.7% efficient.  It must be an amorphous panel, not monocrystalline 
like I thought. 

    On MercadoLibre there’s a 22mW 22mm×7mm panel for US$4 
(crystalline) and a few 1000mW panels in the range of 110mm×60mm 
for US$3 or so (also crystalline).  But there are also 310-watt panels 
for US$82, which is US$0.25 per peak watt rather than US$3.  And 
there are (supposedly) solar calculators under US$1, but those have 
much smaller cells (when they’re not totally fake).  So I think this is 
largely a question of transaction costs, and these garden lights are 
probably the cheapest way to get solar cells in the 40–60mW range.
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Representing E12 electronic 
component values musically
Kragen Javier Sitaker, 02020-11-17 (updated 02020-12-26) 
(16 minutes)

    Resistors, capacitors, and sometimes even inductors are 
conventionally manufactured to have a set of “preferred values” in 
each order of magnitude:  the E3 series, 10 22 47;  the E6 series, which 
intercalates 15 33 68;  the E12 series, which additionally intercalates 12 
18 29 39 55 82;  and longer series.  So it’s common to see a 220-ohm 
resistor or a 220-μF capacitor, but you’ll very rarely see a 200-ohm 
resistor or a 200-μF capacitor. 

    Despite appearances, these values are fairly evenly spaced — just in 
exponential space.  82÷68 ≈ 1.206;  29÷22 ≈ 1.318;  18÷15 = 1.2;  and 
so on.  The intervals all approximate 101/12 ≈ 1.2115. 

    Component identification — knowing whether this resistor you 
have is a 2k2, a 22k, or just broken — is a big challenge for salvaging 
electronics.  Especially for us old colorblind humans.  Usually it’s 
good enough to know which E12 value something is.  
Microcontrollers that can easily distinguish components are easy to 
come by, but getting their output into a useful form requires some 
kind of screen (p.  580), and those are comparatively rarer and more 
finicky to interface with. 

    The humans can easily distinguish notes of the 12-tone equal 
temperament scale traditionally used for Chinese music (though this 
is far easier when presented as intervals rather than as bare notes), and 
there’s a pleasing perceptual correspondence between the 12 tones in 
an octave and the 12 E12 values in a decade.  And speakers are cheap 
and easy;  sometimes, as in surface-mount MLCCs using piezoelectric 
X7R dielectrics and similar, they’re even included by accident.  
Auditory output also has real advantages for high temporal resolution 
that the humans can perceive. 

    So I propose that a component-identifying smart-tweezer program 
should map measured component values to the musical scale in this 
way and alternately play a couple of notes through a speaker, 
separated by the appropriate interval.  One of the notes can be 
something like a flute playing a standard frequency, like 261.62557 Hz 
for A440 middle C (C₄ except in MIDI), to give a point of reference, 
while the other plays after it as a string instrument or something, with 
each decimal order of magnitude of component values mapped to one 
musical octave.  That is, represent them with a fundamental 
frequency of k 2log₁₀ v, where v is the value to represent and k is some 
proportionality constant. 

Psychoacoustics 

    The humans can easily hear the eight octaves from 32.70 Hz up to 
8372 Hz, while the next octave and a half up is mostly audible only to 
larval humans;  the next octave down from 32.70 Hz to 16.35 Hz is 
audible in its pure form only if it is very loud, but if provided with 

https://en.wikipedia.org/wiki/C_(musical_note)#Frequency


rich harmonic content, it is clearly comprehensible even when the 
fundamental is too low to hear or even not reproducible by the 
speakers.  Their hearing sensitivity is about 1 Hz for complex tones up 
to 500 Hz and about 0.6% above 1000 Hz;  between 1kHz and 2kHz 
their perception of frequency is least distorted by amplitude, while 
between 2kHz and 5kHz they are most able to detect sounds.  This 
suggests that it’s probably best to stick to the lower octaves as much as 
possible, even down below 20 Hz, since their harmonics will populate 
the most sensitive regions of hearing more densely. 

    However, we start to lose relative precision once we go below 
500 Hz;  at 500 Hz the frequency precision is about 0.2%, at 250 Hz 
only about 0.4%, at 100 Hz only about 1%, at 65.41 Hz about 1.5%, and 
at 20 Hz only about 5%.  After being transformed through the inverse 
of the representation function above, these perceptual imprecisions 
are respectively 0.7%, 1.3%, 3.4%, 5.2%, and 14%.  At higher 
frequencies errors climb again but not so high. 

Resistors, with high resistances at high 
frequencies 

    Resistors generally used by the humans range from 1Ω to 1MΩ, six 
orders of magnitude apart, with most being in the 100Ω–100kΩ 
range, only three orders of magnitude apart.  Generally low-value 
resistors are used for precise measurement (linear conversion between 
voltage and current), and current limiting, while high-value resistors 
are used for less-precise applications like pullups, pulldowns, capacitor 
bleeders, and protection.  This suggests maybe positioning 1Ω around 
110 Hz (A₂, A below small C or A above deep C), giving the 
following correspondences: 

• 10 mΩ:  27.5 Hz, A₀, lowest key on a normal 88-key piano 
• 100 mΩ:  55 Hz, A₁, A below low C 
• 1 Ω:  110 Hz, A₂, A below small C 
• 10 Ω:  220 Hz, A₃, A below middle C 
• 100 Ω:  440 Hz, A₄, A above middle C 
• 1 kΩ:  880 Hz, A₅ 
• 10 kΩ:  1760 Hz, A₆ 
• 100 kΩ:  3520 Hz, A₇, highest A key on a normal 88-key piano 
• 1 MΩ:  7040 Hz, A₈  
    This of course gives k = 110 Hz. 

    This assignment is a compromise between not “wasting” the lowest 
octaves on little-used low resistances that require Kelvin probing to 
measure accurately, assigning the best precision to values in the 
1–100 Ω range where it often matters the most, and not assigning 
megohm values to totally inaudible frequencies. 

    Resistances above a few megohms might be best represented by 
some additional gimmick, like using a different musical instrument. 

Capacitances, and a better resistance scale 

    Capacitances are trickier because they span a wider range;  common 
capacitors are in the 47 pF to 470 μF range, though up to 22000 μF is 
not unheard of — though anything above 1 μF probably isn’t very 
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precise, because the piezoelectric and electrolytic technologies used at 
those higher capacitances aren’t very precise.  (And then there are 
supercaps, up to 100 F — that is, 100 000 000 000 pF.) In the 
47 pF–4.7 μF range, though, we have only five orders of magnitude, 
which seems quite manageable. 

    It’s unclear whether to use high frequencies for high capacitances 
(like, microfarads) or low capacitances (picofarads).  Arguments in 
favor of using them for low capacitances include: 

• In real life smaller capacitances do things at higher frequencies.  
0.01 μF is 1 kΩ at about 16 kHz;  100 pF doesn’t drop to 1 kΩ until 
1.6 MHz.  Whether in an LC tank, an RC oscillator, or an RC filter, 
using a smaller capacitor means your frequencies go up. 
• Also, high capacitances tend to be physically larger, and, 
psychologically, larger things should make deeper sounds, while tinier 
things make tinnier sounds.  

    Arguments in favor of using high frequencies for high capacitances 
include: 

• Precision is more important for low capacitances, which are largely 
used for tuning things, than for high capacitances, which are more 
used for bypassing things.  If we put 47 pF at 880 Hz so that 
perceptual precision is best around 100 pF, and go down from there, 
then at 0.047 μF we’re already at 110 Hz, and by 4.7 μF we’re at 
27.5 Hz.  What on Earth would we do with 470 μF?  The noise of an 
idling motorcycle without a muffler, at 6.875 Hz?  And we’d be 
wasting a couple of audible octaves that correspond to capacitances 
too small to measure reliably under ordinary conditions, because 
they’re swamped by parasitics. 
• You’ll be able to transfer your numerical ear learning from 
resistance to capacitance more easily.  (“Oh, that C# is 2.2kΩ.  That 
means it’s 0.022 μF.”) 
• Higher resistances move RC oscillators and filters to higher 
frequencies too, so what gives?  (Higher resistances move RL circuits 
to lower frequencies, but nobody uses RL circuits.) 
• The difference in response frequencies of capacitors is vastly 
understated by the frequencies you hear.  

    The rebuttal arguments in favor of using high frequencies for low 
capacitances include: 

• Maybe high resistances should be represented as low frequencies too, 
both because they slow down RC circuits and because we think of 
higher resistances as being “larger”, so maybe they should speak in 
deeper voices too?  (Also, really high resistances, like 10 MΩ and up, 
tend to be used with high voltages, so they are physically large, both 
for power dissipation and creepage allowance.  Still, lots of physically 
large resistors I have here are 10-Ω current-sensing shunts or 25-Ω 
heating elements, not multi-megohm high-voltage protection 
resistors.)  

    So I propose this scale for capacitances: 

• 10 000 μF:  1.71875 Hz, A₋₄, 103 beats per minute, moderato or 
allegretto musical tempo, hunt-and-peck 17 words per minute typing 



speed;  largest common electrolytic capacitor 
• 1000 μF:  3.4375 Hz, A₋₃, 206 beats per minute, prestissimo musical 
tempo, beginner touch-typist 34 wpm typing speed 
• 100 μF:  6.875 Hz, A₋₂, 412½ RPM, too fast to be a musical tempo 
but too slow to be an idling diesel truck engine, respectable typing 
speed of 69 wpm 
• 10 μF:  13.75 Hz, A₋₁, Harley engine idling too slow at 825 RPM, 
near the 800-RPM bottom limit permitted by the stock EFI, risking 
running your starter battery down and also engine damage from 
insufficient oil pressure;  138 wpm, maximum human typing speed 
• 1 μF:  27.5 Hz, A₀, lowest key on a normal 88-key piano;  smallest 
common electrolytic capacitor;  largest common film capacitor;  
largest common ceramic capacitor;  microwave oven capacitor 
• 0.1 μF:  55 Hz, A₁, A below low C;  smallest common tantalum 
capacitor 
• 0.01 μF:  110 Hz, A₂, A below small C 
• 0.001 μF:  220 Hz, A₃, A below middle C;  smallest common film 
capacitor 
• 100 pF:  440 Hz, A₄, A above middle C 
• 10 pF:  880 Hz, A₅;  smallest common ceramic capacitor 
• 1 pF:  1760 Hz, A₆, but you probably have parasitic capacitances 
larger than this;  the manual for the famous AVR TransistorTester 
says, “Capacitors with value below 25pF are usually not detecte[d].”  

    So, for example, 120 pF would be about G#₄, 415.30 Hz, one 
half-step deeper than A₄, because it’s one step higher on the E12 scale;  
150 pF would be about G₄ (392.00 Hz), and 220 pF would be about F₄ 
(349.23 Hz).  These are approximate because the E12 scale is 
approximate:  120 pF would be more accurately 416.50 Hz, 150 pF 
more accurately 389.44 Hz, and 220 pF more accurately 347.03 Hz.  
So 150 pF, for example, is flat of G₄ by 11.3 cents, a difference audible 
to trained musicians and possibly somewhat painful, but hard for the 
untrained ear to detect, though probably possible in this region of best 
sensitivity.  A perfect G₄ would be closer to 146.8 pF, an error of 
-2.2% from the nominal value. 

    Correspondingly, I propose this one for resistances, equating a 
microfarad to a megohm, a nanofarad to a kilohm, and a picofarad to 
an ohm, as if we were interested in an electrical signal of 160 kHz: 

• 10 GΩ:  1.71875 Hz, A₋₄, 103 bpm, allegretto 
• 1 GΩ:  3.4375 Hz, A₋₃, 206 bpm, prestissimo 
• 100 MΩ:  6.875 Hz, A₋₂, 412½ RPM 
• 10 MΩ:  13.75 Hz, A₋₁, 825 RPM 
• 1 MΩ:  27.5 Hz, A₀, lowest key on a normal 88-key piano 
• 100 kΩ:  55 Hz, A₁, A below low C 
• 10 kΩ:  110 Hz, A₂, A below small C 
• 1 kΩ:  220 Hz, A₃, A below middle C 
• 100 Ω:  440 Hz, A₄, A above middle C 
• 10 Ω:  880 Hz, A₅ 
• 1 Ω:  1760 Hz, A₆;  at this point you need Kelvin connections for 
precision measurement 
• 100 mΩ:  3520 Hz, A₇, highest A key on a normal 88-key piano 
• 10 mΩ:  7040 Hz, A₈;  at this point you need Kelvin probing for any 
measurement at all  
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    Note that this also solves the problem of what to do with arbitrarily 
high resistances, although you have to be careful you aren’t swamping 
the whole audio spectrum with harmonics from a spurious detection 
of a 100-GΩ resistor that’s really leakage through your probe 
insulation or something. 

    It might be reasonable to do, say, a square wave for capacitance and 
a repeatedly plucked Karplus–Strong string (or two, slightly offset in 
frequency, like a piano) for resistance, so that you can play them at 
the same time if you’re doing an ESR measurement.  Using different 
envelopes will help the humans hear them as two separate sounds 
rather than one sound with a discordant timbre. 

Inductors 

    Now we’re faced with another consistency dilemma:  do we 
represent large inductances with low pitches or with high pitches? 

    In favor of low pitches: 

• Large inductances, like large capacitances, are used at low 
frequencies.  A 60-Hz fluorescent light ballast might be an entire 
henry.  A millihenry has a kilohm of reactance at 160 kHz;  at 16 MHz 
you only need 10 μH to get to 1kΩ. 
• Inductors with large inductances are physically large, so should ring 
deeply, like a church bell, not like a jingle bell.  Also they tend to have 
heavy magnetic cores. 
• It would be numerically consistent with the systems suggested above 
for capacitances and resistances. 
• Of course in LC circuits increasing the inductance lowers the 
frequency.  

    In favor of high pitches: 

• Steal underwear. 
• ??? 
• Profit! 
• In some metaphorical or Steinmetzian sense a large inductance is the 
opposite of a large capacitance.  

    I think the underwear gnomes lose this one. 

    If we try to use the same 160-kHz signal frequency to figure out 
where to set the equivalence, we get this: 

• 10 000 H:  1.71875 Hz, A₋₄, 103 bpm, allegretto 
• 1000 H:  3.4375 Hz, A₋₃, 206 bpm, prestissimo 
• 100 H:  6.875 Hz, A₋₂, 412½ RPM;  largest common inductor 
• 10 H:  13.75 Hz, A₋₁, 825 RPM 
• 1 H:  27.5 Hz, A₀, lowest key on a normal 88-key piano, fluorescent 
light ballast inductance 
• 100 mH:  55 Hz, A₁, A below low C 
• 10 mH:  110 Hz, A₂, A below small C 
• 1 mH:  220 Hz, A₃, A below middle C 
• 100 μH:  440 Hz, A₄, A above middle C, maybe an air-core coil for 
an RF circuit 
• 10 μH:  880 Hz, A₅ 
• 1 μH:  1760 Hz, A₆ 
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• 100 nH:  3520 Hz, A₇, highest A key on a normal 88-key piano;  
smallest common inductor 
• 10 nH:  7040 Hz, A₈, typical axial lead parasitic inductance 
• 1 nH:  A₉, 14.08 kHz, out of my hearing range, a wire of 1 mm 
length and 1 mm radius  

    This seems reasonable. 

    It’s probably worthwhile to use a different instrument again for 
inductor detection, perhaps an FM-synthesized bell sound or 
something.

Topics

• Electronics (p.  788) (42 notes) 
• Metrology (p.  794) (17 notes) 
• HCI (p.  797) (17 notes) 
• Music (p.  859) (4 notes) 
• Audio (p.  901) (3 notes) 
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Microcontroller inventory
Kragen Javier Sitaker, 02020-11-18 (updated 02020-11-28) 
(4 minutes)

    I have several microcontrollers:  an Arduino Duemilanove with an 
ATMega328, a couple of Blue Pills (one with an STM32 and one 
with a CKS32;  see notes on STM32duino (p.  526)), two or three 
ATMega8s, 18 surface-mount ATTiny45s, 19 DIP ATTiny45s, two 
loose ATMega328s, 16 ATTiny2313s, an Arduino Nano (or is that a 
Teensy?), two Raspberry Pi Zeros, a Raspberry Pi 2 Model B 1.1 from 
2014, and a Raspberry Pi from 2012 which I think is a Pi 1 B.  66 
computers in all. 

    But right now the Duemilanove is the only one I have successfully 
programmed! 

ATTiny45 

    It's apparently straightforward to rig up Arduino to program an 
ATTiny45;  you use the ArduinoISP sketch, wire up the ATTiny45 
pin 1 (/reset) to Arduino pin 10, ATTiny45 pin 5 (MOSI) to Arduino 
pin 11, ATTiny45 pin 6 (MISO) to Arduino pin 12, and ATTiny45 
pin 7 (SCK) to Arduino pin 13, and of course VCC and ground on 
pins 8 and 4, and then I guess avrdude can program it.  There's an 
updated Arduino support library for Arduino 1.6 at 
https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards
-manager/package_damellis_attiny_index.json, but probably just 
avr-gcc is fine most of the time.  And there's an Arduino Create Hub 
page about this too.  For ArduinoISP you probably want to hook up a 
cap to stop the Arduino from resetting. 

    Luna also gave me a PC with a parallel port, which might work 
with avrdude without ArduinoISP. 

    The ATTiny45 is not super powerful and has only 8 pins, but it 
does have an ADC and support multiplexing the analog comparator 
between pins. 

ATTiny2313 

    The ATTiny2313 is the first AVR I programmed actually, using a 
parallel port, using Limor Fried's minipov2.  It doesn't have an ADC 
at all, and its analog comparator isn't multiplexable between pins, but 
it has a somewhat less cripplingly small number of pins:  17 GPIOs 
instead of 6, 18 if you push it. 

    Arduino support is available at 
http://drazzy.com/package_drazzy.com_index.json.  You hook up 
pin 1 (reset) to pin 10 of the Arduino, just as with the ATTiny45, and 
similarly pins 17, 18, and 19 (DI, DO, SCK) to pins 11, 12, and 13 of 
the Arduino.  (I'm guessing they're "DI" and "DO" because the 2313 
doesn't have SPI hardware.) TinyDebugSerial is supposed to make the 
serial port work. 

    This last link also gives a somewhat mangled command line for 
using ArduinoISP or something called "TinyISP" directly from 
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avrdude. 
Avrdude, when using ArduinoISP 

avrdude -P COM20 -b 19200 -p t2313 -c avrisp
 
    Upload using TinyISP 

-p attiny2313 -c stk500v1 -P COM3 -b19200 -Uflash:w:Blink.hex:i
  

    The best documentation for avrdude is still Limor Fried's. 

    There are a few different options for serial data on these tiny 
machines actually. This is very useful because it provides a way to 
debug, and also to use these devices as sensors before having a screen 
to display the results on, and also a way to use them for continuous 
data acquisition or later download from EEPROM data.  And because 
it's reasonable to use a crystal on it, you can meet RS-232 timing 
requirements! 

Programming AVRs with pushbuttons 

    Heinz D.  wrote an ATTiny13 tutorial in German which starts out 
by attaching switches to the reset, SCK, and MOSI lines of an 
ATTiny13 and programming it with them. 

    

 

    Here's Heinz D.'s schematic: 
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    The ATTiny2313 datasheet has "serial programming timing" on p. 
205: 

    

 

    This doesn't really explain how you get into serial programming 
mode, or what data gets input or output, though.  It does mention the 
protocol a bit on p. 29:  "If the RSTDISBL fuse is programmed, this 
start-up time will be increased to 14CK + 4 ms to ensure 
programming mode can be entered." So apparently you program it 
during reset?  Surely I'll eventually find the full procedure.

Topics



• Microcontrollers (p.  801) (14 notes) 
• Practical (p.  806) (12 notes) 
• Facepalm (p.  819) (8 notes) 
• The STM32 microcontroller family (p.  821) (7 notes) 
• The AVR microcontroller (p.  835) (6 notes) 
• Arduino (p.  904) (3 notes) 



Keyboard object environment
Kragen Javier Sitaker, 02020-11-19 (13 minutes)

    I’m going through a list of part numbers and snarfing datasheets for 
them.  I’ve written a googling script for this, but I still end up copying 
and pasting URLs, typing “wget ” or “links ” or “mupdf ”, 
tab-completing filenames that were just output, and so on. 

    I feel like the ideal thing here would be to have my keyboard focus 
be on some object, such as an URL or a downloaded file, and have a 
menu of keystrokes for operations or for changing the focus.  This 
doesn’t have to be modal in the Bravo sense — the command 
keystrokes could all be control keys, for example. 

    The operations I’m currently going through are: 

• search an existing collection of datasheets for a part number 
• google datasheets for a part number 
• look at the SERP results 
• select an URL from the SERP 
• run links or wget on it 
• navigate in links and maybe save a file 
• delete the resulting file 
• open it in mupdf (faster) or xpdf (shows outlines but often has trouble 
with non-ASCII) or evince (handles Chinese in outlines better, and 
prefetches) 
• rename it  

    It would be really nice to have an environment where I could 
implement new object types, or add new operations to existing object 
types, and have them immediately visible and instantly invocable. 

    For integrating existing programs like links or catdoc into the 
environment, it would be useful to run them inside a container so that 
the environment can observe what new files they create and reify 
them in the UI.  But it might be good enough to just rescan the 
directory after they exit. 

    (You could implement such an environment with multitouch too, 
of course.) 

A nested stack-based keyboard interaction 
design 

    The idea here is that you are standing on top of a linear “operand 
stack” of objects, some of which correspond to filesystem files, and 
you can use keyboard commands to invoke operations provided by 
the objects, or to navigate and manipulate your environment.  
Generally objects are not destroyed, just moved to a second “discard 
stack” from which you can easily recover them;  nor are they 
duplicated. 

    The discard stack is displayed upside down above the operand stack. 

    The basic navigation commands are: 



• ^N or downarrow:  discard the top of stack by moving it to the top 
of the discard stack  
• alt-^N or alt-downarrow:  discard the object under the top of the 
stack by moving it to the top of the discard stack  
• uparrow or ^P:  recover the object at the top of the discard stack by 
moving it to the top of the operand stack  
• alt-uparrow or alt-^P:  recover the object at the top of the discard 
stack by moving it under the top of the operand stack.   

    It will be seen that these four operations are sufficient to move your 
focus to any object and to permute the objects arbitrarily, though 
inconveniently.  You can also type to create new string objects or edit 
the text in existing string objects;  if your focus is on something that 
doesn’t handle text, the environment will create a new string object 
for you in this case.  If your focus is on a string and you want to create 
a new blank string to type into, you can press Enter. 

    For more efficient structuring, you can create a new “frame” by 
typing ^O.  Frames can contain other objects.  They support some 
additional key commands: 

• Alt-^F or alt-rightarrow:  make the frame gobble up the thing 
below it on the operand stack, moving it from that operand stack to 
the bottom of the frame’s operand stack.  
• Alt-^B or alt-leftarrow:  move the item at the bottom of the frame’s 
operand stack into the current operand stack, under it.   

    These two provide a convenient way to gather together a group of 
related objects to move them together to some other place and deposit 
them there.  But frames also contain a whole new operand stack and 
discard stack, a whole universe within a universe, allowing you to 
enter them and navigate around within them: 

• TAB:  cycle the frame’s display on the stack between one-line, 
expanded, and fully expanded versions  
• ^F or rightarrow:  enter the frame to abide within it a while.   

    The environment also has a ^B or leftarrow command to get out of 
the current frame, returning to wherever it lives. 

    There is an important distinction here between modeless universal 
commands available everywhere — ^B, ^N, ^P, alt-^N, alt-^P, ^O, 
typing text, and a few others to be mentioned later — and 
per-object-type operations only available on a particular kind of 
object such as a frame. 

    So, so far we have, apparently, an outliner.  But each object type 
can both affect our view of the stack and provide additional 
operations.  The simplest case of this is provided by strings, which 
implicitly highlight matches for their contents when you are focused 
on them, slightly graying out other parts of the stacks that don’t 
match them.  But they also have an operation that hides 
non-matching parts entirely, toggled by the TAB key!  And, when 
this is activated, the ^N, ^P, alt-^N, and alt-^P commands leap past 
the hidden items as if they weren’t even there;  so by creating a search 
string and activating it with TAB, you can fold space and ride the 
string as a swift vessel to your destination. 

    (Hmm, at this point I think it’s probably better to have a separate 



“kill frame” accessed with ^K and ^Y, so that you don’t leave the 
search string beached at your destination.  Then our two stacks merge 
into a single buffer that you move around in, rather than being two 
stacks.) 

    Such navigation is facilitated by further commands attached to 
alt-0, alt-1, and so on up to alt-9, displayed next to applicable items.  
In the case of a search, these just move your focus to the specified 
item, but other types of objects can instead use them for other 
purposes. 

    The datasheet example doesn’t involve ever combining two objects 
together in a single operation, so it is not a good source of such 
operations;  my original example in Dercuano was numerical 
calculation.  In the datasheet example, though, it’s just fanout:  string 
search term → Google SERP list → choose a link → open, rename, or 
delete the file.  You might choose the same link more than once, so 
you probably don’t want the links to get consumed when you invoke 
operations on them (like “open in links”). 

    Actually, maybe there is an opportunity:  represent the SERP as a 
sequence of 14 or so items, the first few of which are “wget”, “links”, 
“firefox”, and “close SERP”, and the others of which are the various 
URLs: 

wget <-
links
firefox
close SERP

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-0896-FPGA-AT40K05-10-20-40-
Datasheet.pdf
https://www.microchip.com/AT40K20
https://datasheetspdf.com/datasheet/AT40K20.html
https://datasheetspdf.com/pdf/865245/ATMELCorporation/AT40K20/1

https://www.mouser.com/ProductDetail/Microchip-Technology-Atmel/AT40K20-2BQJ?qs=N
b%252BVlYz%2F1KKCyOZ25ZvByg%3D%3D
https://www.digikey.com/number/en/microchip-technology/150/AT40K20/9619
http://www.digchip.com/datasheets/parts/datasheet/054/AT40K20-2AQC.php
https://www.trustedparts.com/en/part/microchip/AT40K20-2BQJ

https://www.application-datasheet.com/pdf/microchip-technology/519015/at40k20-2aj
i.html
 

    So initially your focus will be on, say, “wget”, and you can just 
select a link with alt-0 or whatever to invoke “wget” on the first link, 
creating another item for the file which you can then open with, say, 
“mupdf” or “xpdf”.  The “wget” object isn’t just a string;  it knows 
that only URLs are acceptable fodder for it. 

    But it might be just as reasonable to give the URL objects methods 
for wget, links, etc., that are invoked with separate keys.  That’s not a 
reasonable alternative for numerical calculation, though. 

Numerical calculation with units 

    Suppose you have some length on top of the stack, 3.1 meters or 



something, and you invoke its multiplication operator, which pushes 
a curried multiply onto the stack.  Well, you can multiply 3.1 meters 
by any quantity:  5 newtons, or 2 meters, or 14.5 square centimeters, 
or just 3.  But not by, say, “your mom”.  So all the quantities (and 
none of the strings) on the stack are highlighted and given numbers;  
you can either use alt-5 or whatever to select the thing you want to 
multiply by, or you can navigate the multiply up or down to the 
appropriate place, or in and out of frames, or whatever.  And then you 
can invoke it with whatever operand, the multiply operator 
disappears, and you get a product. 

    But if you invoke the addition operator instead, then only other 
lengths are fair game for addition, and 5 newtons and 14.5 square 
centimeters are grayed out.  Just like your mom. 

    One thing I really like about this design is that you can very 
reasonably pop up menus of other things to do with your quantity.  
You can see a length represented in all the common length units, for 
example, and if you select one the list of units disappears and the 
displayed representation changes.  And you might reasonably include 
actions like changing the plot color or numerical display format of a 
value, as well. 

    The focused element having the opportunity to change the display 
of everything else offers a substantial set of possible flexibility.  In a 
numerical calculation, one obvious thing to include is the gradient, 
but also you can imagine various kinds of objects that change the view 
in various ways, perhaps previewing effects they could have if 
invoked. 

Quasimodal operator keys 

    Hmm, if you really want to minimize calculation keystrokes, you 
could make + or - or * or whatever quasimodal:  when you press it, 
the reified operation appears in the buffer and its intended target is 
highlighted, and if you want to apply it to something else you need to 
select from a menu or start navigating, because if you don’t, it gets 
applied to the nearest applicable target as soon as you release the key.  
But I think that’s a different interaction design. 

    The preview principle mentioned above would suggest that in such 
a system, the default second target would have preview operation 
results displayed next to it.  So if you have three numbers with the 
third one focused, you might have a display like 

-6
 3  +: 7 -: 1 *: 12 /: 1.33
 4
 

    and if you start pressing the * key, you might see 

-6 0: -24
 3     12
 4      *
 

    and if you then release * without pressing 0, then you’d send both 
the 3 and the 4 to the kill list and end up looking at 



-6  +: 6 -: 18 *: -72 /: -½              3
12                                       4
 

    If you instead pressed 0 before releasing *, 3 survives, -6 and 4 get 
killed, and you end up looking at 

  3  +: -21 -: -27 *: -72 /: -8         -6
-24                                      4
 

    If instead of having a kill list you just have the two stacks as I 
initially suggested, the “killed” numbers might just move down and 
be unhighlighted: 

  3  +: -21 -: -27 *: -72 /: -8
-24
 -6
  4
 

A flat list 

    Note that the ^K/^Y formulation suggested above with a separate 
“kill frame” eliminates the need to have arbitrary frames and frame 
navigation to reorganize things easily;  you can just vacuum up all the 
items you want to move to a particular part of the list and then truck 
them all over there at one in the kill frame.  This is probably simpler 
than the outliner and dual-stack approach. 

A filesystem 

    You could imagine applying such a formulation, either with nested 
frames or with just a working list and a trashcan list, to the problem of 
a filesystem for a small computer such as a pocket calculator — rather 
than giving your files names, you might give them positions in the 
list.  This might include executable files — which perhaps can be 
simply frames, containing lists of steps (as in HP-48 RPL) or lists of 
methods annotated with control keys.

Topics

• HCI (p.  797) (17 notes) 
• Embedded programming (p.  814) (9 notes) 
• Calculation (p.  834) (6 notes) 
• Quasimodes



Relay buzzer
Kragen Javier Sitaker, 02020-11-23 (2 minutes)

    As a test of mostly breadboading, I breadboarded this 12V relay 
buzzer from a couple of random NPN transistors and a microwave 
oven relay: 

    

 

$ 1 0.000005 0.010109782498721881 50 5 43
R -48 64 -48 32 0 0 40 12 0 0 0.5
r -48 64 -48 176 0 1000
t -48 176 32 176 0 1 0.6207115498642259 0.6788785101220731 410
t -96 192 -48 192 0 1 -0.02761021024479937 0.6512682998772737 760
r -96 192 -176 192 0 1000
g -48 208 -48 256 0
g 32 192 32 256 0
178 80 128 80 80 0 1 0.2 0.019618688531384095 0.05 1000000 0.02 280
w -48 64 0 64 0
w 64 64 64 80 0
w 64 64 144 64 0
w 144 64 144 176 0
w 32 128 32 160 0
w 48 128 48 176 0
w 48 176 144 176 0
w 80 128 256 128 0
w 256 128 256 368 0
w 256 368 -176 368 0
w -176 192 -176 368 0
d 0 128 0 64 2 default
w 0 128 32 128 0
w 0 64 64 64 0
x -56 319 146 322 4 12 Relay\sbuzzer\swithout\sNC\scontacts
 

http://falstad.com/circuit/circuitjs.html?ctz=
http://falstad.com/circuit/circuitjs.html?ctz=


    Falstad’s simulation runs the relay at 200kHz by default, much 
faster than the relay I have, which is at about 100 Hz. 

    It was frustrating and slow to build the circuit because: 

• I was making jumper wires by sanding varnish off coarse magnet 
wire with sandpaper between my fingers; 
• I didn’t know the pinouts of the transistors or the values of the 
resistors (actually I think one of them may have been 1k5Ω) 
• probing the breadboard with probes that don’t fit was pretty 
inconvenient; 
• I broke a leg off Q2 during the process, and that took me a while to 
figure out; 
• a multimeter with no audio is a slow way to check out the circuit.  

    However, once I had it all connected and checked out with the 
multimeter, I plugged it in and it ran.  This was satisfying.

Topics

• Contrivances (p.  786) (44 notes) 
• Electronics (p.  788) (42 notes) 
• Experiment report (p.  811) (10 notes) 
• Falstad’s circuit simulator (p.  833) (6 notes) 



Geomagnetic energy harvesting is 
barely feasible at near-kilometer 
scales
Kragen Javier Sitaker, 02020-11-24 (3 minutes) 

    Variations in the geomagnetic field penetrate quite deeply into the 
earth and sea and may be a feasible energy-harvesting source, 
especially in the case of another Carrington event. 

    But how feasible is it?  The Halloween geomagnetic storm of 2003 
provoked planetwide variations of some 10 μT, out of a total 
25–65 μT, with larger variations toward the poles, while typical daily 
variation is about 25 nT, "with variations over a few seconds of 
typically around 1 nT". 

    A rate of change of 1 nT (1 nWb/m²) per second is one nanovolt 
per square meter inside a single-turn inductive loop;  even if we have 
1000 turns, that's still only a microvolt per square meter.  You could 
imagine stepping that up to a usable 0.4 volts or so with a chain of 
transformers;  three 80:1 step-up transformers would probably serve.  
If you were trying to get 1 μW, which is a challenging but achievable 
level for modern energy-harvesting machinery to survive from, you'd 
need 1 A m² at the 1000 turns level or 1000 A m² at the 1-turn level. 

    One problem is that you can't get an arbitrarily large amount of 
power out of an inductor in a varying magnetic field just by winding 
more turns around it;  at some point the current that's being induced 
will cancel out most of the magnetic field that would otherwise exist, 
and you'll stop getting more power. 

    It turns out that the energy of the magnetic field is ½B²/μ, so in 
empty space the difference between 30 nT and 31 nT is 24 pJ/m³, and 
we probably can't capture more than half of that for 
impedance-matching reasons, so we're probably limited to a few 
picowatts per cubic meter.  (I don't think using higher-permeability 
materials helps here;  the μ is on the wrong side of that fraction.) 

    A further complicating factor is that, if you're using conventional 
conductors, you probably need to use ridiculously thick wires.  
Suppose your primary coil is 1000 m², the size of a big-box store 
façade, and you're getting 100 μV out of 100 turns around it.  
(Remember, unless you're near the poles, it has to be oriented 
north-south.) To get 1 μW you need 10 mA, and if you want no more 
than 90% of the energy to be lost in heating the primary coil, you 
need a voltage drop of no more than 90 μV, 900 μV per turn.  So 
your 130-meter-long coil needs to be no more than 90 mΩ per turn, 
which requires 3-gauge copper wire (~awg(2*~circlearea(130 m / 
copperconductivity 90 milliohm)) in units(1) gives about 3.3), which is is 
normally used for carrying 150 amps or more and costs abut US$3 per 
meter. 

    (I'm not entirely sure but I think you might need to enclose a larger 
area to grab enough energy.  This helps a little with the wire thickness 
because you can enclose a larger area per unit length of wire, but the 

https://en.wikipedia.org/wiki/Earth's_magnetic_field#Currents_in_the_ionosphere_and_magnetosphere
https://en.wikipedia.org/wiki/Earth's_magnetic_field#Currents_in_the_ionosphere_and_magnetosphere
https://en.wikipedia.org/wiki/Magnetic_energy


wire is still ridiculously thick.)

Topics

• Physics (p.  792) (18 notes) 
• Energy (p.  808) (11 notes) 
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• Mole people (p.  937) (2 notes) 



Lava time capsule
Kragen Javier Sitaker, 02020-11-24 (8 minutes)

    I was just watching a Long Now Short which described the work 
of Tobias Kestel and Florian Puschmann, who flouted sacred taboos 
in 02009 to put time capsules into lava at Kilauea. 

    It occurred to me that, although putting time capsules into lava is a 
straightforward procedure (though one with substantial risk of death), 
making a time capsule that could survive within the lava is much less 
so.  Tin–lead solder melts at 187°, paper and organic polymers char in 
the 200°–400° range, lead itself melts at 327°, aluminum melts at 
660°, ordinary soda-lime glass softens around 900° depending on the 
precise mix, gold melts at 1064°, copper melts at 1085°, but Kilauea 
erupts at 1170° and has lava tubes of 1250°.  Silicon semiconductors 
exposed to such a temperature for more than a few seconds will suffer 
degradation from dopant diffusion, and their aluminum or copper 
conductors will melt and may bead up. 

    One obvious approach is to to use fused quartz, which doesn’t 
soften until 1600°.  But a possibly more interesting approach is to 
insulate the time capsule so that it can survive until the lava cools;  by 
sheathing it in a thick layer of refractory firebrick, the heat flux 
through its surface can be reduced, and by including some 
phase-change thermal mass within it, the temperature can be 
maintained at a level that doesn’t damage the payload. 

    The most obvious candidate is water, but as I noted in Desiccant 
Climate Control (p.  485) and Muriate Thermal Mass (p.  455), 
alabaster and muriate of lime also offer substantial energy densities;  
alabaster in particular has the advantage of forming an extremely 
cheap layer that can serve as insulation once calcined, surviving in 
solid form until 1460°, at which point it outgasses vitriol (see the note 
on plaster foam (p.  449).) However, water’s enthalpy of vaporization 
is 2.26 MJ/kg, and its boiling point is only 100° at normal pressures. 

    It’s also important that the time capsule be small enough to be 
covered entirely by lava, and dense enough that it doesn’t float in the 
lava.  This is in tension with the requirement for insulance;  foaming 
things to improve their insulance makes them less dense, and plaster 
of paris is not very dense to start with (I’m finding conflicting figures 
of 0.7–2.6 g/cc, but I think pahoehoe is about 2.7–3 g/cc).  A 
reasonable way to resolve this is to counterbalance the less dense 
alabaster with something denser inside the capsule, like steel (7.9 g/cc, 
US$1.06/kg), lead (11.34 g/cc, US$2.20/kg), or zinc (7.1 g/cc, 
US$2.76/kg).  I think ‘a‘a may have higher gas content and 
consequently be lighter. 

    If we figure on a nominal lava density of 3 g/cc, steel gives us 
-4.9 g/cc of effective weight (4.9 g/cc of buoyancy) and lead gives us 
-8.3 g/cc, at prices of respectively US$8.37/liter and US$24.90/liter, 
giving us prices per effective weight of US$-1.71/kg and 
US$-3.01/kg respectively.  That is, to compensate for a kg of 
buoyancy due to the low density of alabaster, you’d need US$1.71 
worth of steel or US$3.01 worth of lead. 

https://www.researchgate.net/publication/332382648_Petrophysical_variations_within_the_basaltic_lava_flows_from_Tural-Rajawadi_hot_springs_Western_India_and_their_bearing_on_the_viability_of_low-enthalpy_geothermal_systems
library/mcs2020-iron-steel.pdf
library/mcs2020-lead.pdf
library/mcs2020-zinc.pdf
library/mcs2020-zinc.pdf


    Lead has the potential advantage that it melts at 327° and thus 
forms an extra protective phase-change thermal mass, though it 
would be a poor tradeoff for water:  4.77 kJ/mol at 207.2 g/mol gives 
23 kJ/kg, 100 times less than what’s needed to boil water.  However, 
it has the advantage that, unlike water, it stays in the capsule after 
changing phase — so it can resist not only the initial injection event 
but also potential subsequent reheating events.  But its melting point 
is too high to save paper, phenolic circuit boards, or ordinary solder 
joints. 

    It’s probably also important to protect the insulation from 
dissolving in the lava — depending on its composition, the lava might 
react with it.  For this purpose it may be best to can the entire time 
capsule, insulating layer and all, in something that can withstand the 
lava;  a steel can is an obvious choice, since steel is pretty much good 
to 1400° and doesn’t dissolve in lava.  But then there’s the question of 
how the steam will escape through the can;  it needs to be porous 
enough for the steam to get out but not so porous the lava will get in, 
and moreover it needs to not clog with hardening lava (too much) or 
the steam will build up inside. 

    The steam bubbling out through the lava may be sufficient to enlist 
some of the lava around the capsule as additional insulation, and may 
also be sufficient to keep open an air passage to the surface, permitting 
the penetration of circadian air pressure variations (for example, the 
tidal swings) until, at least, the next lava flow.  ‘A‘a may be more 
favorable in this sense as well, since much of it cools as open-cell 
foams;  very commonly a lava flow will have a top surface of porous 
foams such as scoria over a less porous base layer, and it may be ideal 
to optimize the capsule’s specific gravity to float at or near the bottom 
of the porous layer. 

    Within the time capsule you can imagine a computing system that 
communicates through the lava, for example using AM radio (a big 
loopstick antenna can not only propagate waves through the steel can 
but also harvest energy from broadcast radio stations as long as those 
exist) or piezoelectric vibration. 

    I’ve previously looked around for mass-market archival media and 
found that nearly all current electronic storage (Flash, FRAM, 
MRAM) is only designed for 10-year data retention, occasionally 
100-year.  So such a time capsule would need an energy source to 
fight data loss with. 

    Aside from the obvious, but difficult, approach of using a 
betavoltaic battery, and aside from energy harvesting from AM radio 
as mentioned above, other candidate energy sources include:  daily 
thermal cycling;  vibration;  air pressure variation, like the Atmos 
clock;  or some other source. 

    I thought about a geomagnetic energy-harvesting system, but it 
seems that it would either need to run at much lower powers than are 
currently feasible, only run during violent geomagnetic storms, or be 
many orders of magnitude larger than is feasible to sink into flowing 
lava;  see Geomagnetic energy harvesting (p.  627). 

    How thick would the insulation need to be?  It depends on how 
long the lava flow takes to cool down to a temperature where the 
water stops boiling.  Suppose arbitrarily that our insulation is 

https://en.wikipedia.org/wiki/Lead


200 mW/m/K, we have 1000 kg of water for the 1200° lava to boil 
off, and our surface area is 10 m².  Well, (1000 kg 2.26 MJ/kg) / (1100 K * 
(200 mW/m/K) * 10 m^2) gives us about 1.03 million seconds per meter, so if 
our insulation is 1.03 microns thick, we only last a second, while if it’s 
a meter thick, we last almost 15 days.  So to last an hour we need 
3.5 mm of insulation, to last 3 hours we need 10.5 mm, to last 8 hours 
28 mm, to last 24 hours we need 84 mm, to last 48 hours we need 
170 mm, and to last a week we need almost 600 mm.  (This is 
discounting the thermal mass and possible phase changes of the 
insulation itself, as well as all the thermal mass of the payload.) 

    I think this demonstrates that this design approach for a survivable 
lava time capsule is feasible but probably would not fit in your hand.
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Lenticular air bearing
Kragen Javier Sitaker, 02020-11-24 (2 minutes)

    A lenticular shape consisting of the intersection of two 
slightly-overlapping spheres, or a sphere and a half-space (the part cut 
off a sphere by a flat plane, a plano-convex lens) can be lapped 
smooth.  So can the difference of a sphere (or such a lenticular shape) 
and a cylinder running through its center;  so can a cylinder with two 
flat faces.  These shapes, of which the lenticular shapes are the 
simplest, have rotational symmetry around a single axis of rotation.  
So by supporting one of them on an air bearing you can get an air 
bearing that resists movement in five degrees of freedom, rather than 
the three or four you get from a planar or endless-cylinder air bearing. 

    (In practice you probably want to trim the edges of the lens short of 
being a true knife edge.) 

    If you’re using bearings in pairs rigidly joined by a shaft, as is 
normal practice, you don’t need the lenticular shape;  you can just use 
a sphere.  Four bearing pads on a sphere (or lens) are sufficient to 
support it, but two bearing pads on each of two spheres joined by a 
rigid shaft — either all four compressing the shaft or all four stretching 
it — would also be enough.  In many applications it would be desirable 
to tolerate a little axial misalignment in this way.  In applications 
where the axial misalignment is accompanied by uncontrolled axial 
tension or compression, you might want to use four pads per sphere 
anyway, just in case the shaft gets put into tension when compression 
was expected, or vice versa. 

    It is not necessary that the shaft joining the two spherical sections 
be coaxial;  the axis of rotation will run accurately through the centers 
of the spheres regardless of where the shaft is.  Indeed, the "shaft” 
could even be a C-shaped thing that goes around the outside of the 
two trailer park girls.  Uh, the two balls.
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Machine readable microcontroller 
output
Kragen Javier Sitaker, 02020-11-26 (9 minutes)

    Suppose I have a super minimal microcontroller that generates 
some data and I later want that data somewhere else.  Like an 
ATTiny2313, say (US$0.67 in quantity 1 from Digi-Key, US$55 for 
100, but not a smart buy in 2020).  What are my options? 

UART 

    UARTs can be used with serial ports where those are present.  But 
typically they require a quartz crystal to meet the timing requirements 
of RS-232;  even the ceramic resonators used on low-end Arduinos 
are insufficient.  Lots of times I want to run off the ±10% RC 
resonators in these computers, which can be maybe trimmed to ±1%, 
or maybe not. 

    If you can get a well-controlled computer to send you some data 
first at what it thinks is an accurate baud rate, you may be able to 
examine its timing to recalibrate your clock. 

    But many modern computers omit serial ports. 

SD cards 

    SD cards support an SPI interface through which you might be 
able to write files onto the filesystem.  To deal with RAM as small as 
the ATTiny2313’s (128 bytes!) you probably need to read the same 
sector from the SD card more than once if you’re not sure where 
you’re looking in it.  This requires at least four pins (SCK, MISO, 
MOSI, /SS) and might be possible to pull off. 

    Then you can disconnect the SD card from the microcontroller and 
plug it into wherever you want to read the data. 

Pretending to be an SD card 

    I’m not sure if this is practical, since SD cards normally support 
other interfaces that are hairier than just SPI, but maybe so.  Maybe I 
should investigate further.  Lots of computers have SD card interfaces 
on them now and they’re easy to buy. 

PS/2 keyboard 

    The AT/PS/2 keyboard/mouse interface is a two-wire 
open-collector bus with separate data and clock lines.  (Plus +5V at 
up to 100mA and ground.) Chapweske reports success using PIC 
internal pullups and setting pins to output 0 to pull them low.  
Fortunately the peripheral always generates the clock signal, so in 
theory you ought to be able to use a weird clock rate, and in theory 
the clock speed should be 10–16.7 kHz.  That is, 12.9 MHz 
±23% — even the uncalibrated RC oscillator can beat that!  And you 
have to check every 10 ms or less to see if you need to generate a clock 
to receive a host-to-peripheral communication.  Other than that it’s a 

http://www.burtonsys.com/ps2_chapweske.htm


matter of sending 11-bit packets, each a byte with some start and stop 
bits. 

    So you could imagine acting as a keyboard and typing the data to a 
computer when plugged in.  In theory you’re not supposed to hotplug 
AT and PS/2 keyboards but I’ve never burned up a motherboard yet 
doing it. 

    There’s even a PS2Keyboard library in Arduino from PJRC that 
already implements the protocol, but it’s the other way around — it’s 
so you can plug a keyboard into your Arduino! 

    Unfortunately many modern computers have replaced the PS/2 
interface with USB, which is much harder to bitbang. 

Low-speed USB bitbanging 

    The well-known GPL V-USB library supports bitbanging 
low-speed (1.5 Mbps) USB on “any AVR microcontroller with at 
least 2 kB of Flash memory, 128 bytes RAM and a clock rate of at 
least 12 MHz” and claims to even support being clocked from a 
12.8-MHz or 16.5-MHz internal RC oscillator — but not the 
ATTiny2313’s 7.3–9.1-MHz (??) internal oscillator.  Also, it would 
occupy most of an ATTiny2313:  “Only about 1150 to 1400 bytes code 
size.” 

    And there’s a similar project called 16FUSB for PICs. 

    Atmel’s app note AVR291 on the ATMega32U4RC, which has 
USB hardware, explains that low-speed USB requires 1.5MHz ±1.5% 
(or, on p. 9, ±1%, but Silicon Labs says it’s 1.5%), and that this 
precision is within the capability of the AVR family’s oscillator 
calibration. 

    Bitbanging a USB interface offers the perhaps more appealing 
possibility of offering a USB mass storage interface. 

Centronics parallel port, Raspberry Pi 
GPIO, and other GPIO 

    A Centronics parallel port like the fuchsia one on the back of this 
old tower here used to be common, but isn’t now.  But if you have 
one, it’s easy enough to bitbang SPI over it, or over the GPIO pins on 
a Raspberry Pi, or an Arduino, or whatever.  I mean that’s how the 
ArduinoISP sketch works. 

Speaker modem 

    If the amount of data to be transmitted is not too great (and in the 
case of the ATTiny2313 you can’t store more than a couple of K on 
the chip;  larger micros might have 32K or 168K or something;  but 
more typical is maybe 128 bytes) then maybe you could use a really 
simple speaker modem, if the microcontroller can either transmit 
radio or has a speaker built in.  It likely doesn’t have to be able to 
travel over POTS phone service, so use of frequencies about 3kHz is 
fine;  maybe frequency-shift keying between 3520 Hz and 5280 Hz 
would work, for example.  Three cycles at 5280 Hz is 568.2 μs, and so 
is two cycles at 3520 Hz.  If this were half the bit interval (“MSK”), 
this would give 3520 baud.  Some parity bits would probably be 
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worthwhile.  You could use a square wave and it would still work 
fine if the volume was high enough. 

    It would sound terrible, though.  If you instead used 17000 Hz and 
19125 Hz, which are still within the range of most microphones, 
you’d have 9 half-waves of one against 8 half-waves of the other, 
each taking 235 μs, giving 4250 baud.  And it would be inaudible 
except to very young people. 

    If you packetized the data into packets with 1 header byte, 7 data 
bytes, and 2 parity bytes, then you’d get almost 372 bytes per second. 

    Although wireless, this approach would often work even more 
neatly if you could plug the microcontroller device into a microphone 
jack, like the Danger camera or the Square card reader.  Typical 
microphone jacks provide a 5-volt “bias” or “PiP” or “IEC 61938” 
voltage on the ring electrode for electret microphone preamps.  
Reputedly this is typically in the 340 μA to 2.5 mA range because of a 
2kΩ–10kΩ impedance.  The Google Android device specification for 
the 3.5-mm headphone jack says the “mic bias voltage” should be 
1.8–2.9 volts and that the “mic bias resistance” is “flexible” but later 
says something I don’t understand about “2.9V mic bias applied 
through 2.2 kOhm resistor”.  That would be 660 μA and thus a 
maximum output power of just under a milliwatt. 

    Wirelessness and many-to-many nature may be advantages in some 
circumstances.  You could imagine several sensors that all log data 
over the air in a room at random times or on demand, and one or 
more data loggers that demodulate that data and log it. 

LED communication 

    The actuator most easily accessible to a microcontroller, apart from 
simple wires, is an LED.  LEDs themselves typically support 
astoundingly high data rates, up into the megabits per second.  But 
most computers that might be able to observe the LEDs cannot 
observe them very fast, perhaps with a camera running at 30 fps, 60 
fps, or a slightly higher rate. 

    You might be able to get 2 or 3 bits of data per frame of video by 
modulating the apparent brightness of a single LED, but that’s only 
about 180 baud in the best common case.  At 180 baud a 128-byte 
message would take almost six seconds:  inconvenient but workable 
for some applications. 

    If you’re just after the “wireless” part rather than the “connecting 
to big computers” part, you could dragoon one microcontroller into 
feeding photodiode or phototransistor data into the big computer so it 
can demodulate it, after being transmitted by one or many small 
computers. 

    It’s a shame IrDA worked so badly and was abandoned!

Topics

• Electronics (p.  788) (42 notes) 
• Microcontrollers (p.  801) (14 notes) 
• Protocols (p.  809) (9 notes) 

https://www.epanorama.net/circuits/microphone_powering.html
https://www.epanorama.net/circuits/microphone_powering.html
https://www.epanorama.net/circuits/microphone_powering.html
https://source.android.com/devices/accessories/headset/jack-headset-spec
https://source.android.com/devices/accessories/headset/jack-headset-spec


• Embedded programming (p.  814) (9 notes) 
• Communication (p.  825) (7 notes) 
• Radio (p.  828) (6 notes) 
• Nostalgia (p.  829) (6 notes) 
• LEDs (p.  831) (6 notes) 
• The AVR microcontroller (p.  835) (6 notes) 
• Digital signal processing (p.  845) (5 notes) 
• Ultrasound (p.  851) (4 notes) 
• Coding (p.  865) (4 notes) 
• Arduino (p.  904) (3 notes) 



Muldiv
Kragen Javier Sitaker, 02020-11-26 (1 minute)

    In Forth and some other contexts, there’s a */ operation which 
multiplies by a ratio in integer arithmetic, avoiding overflow typically 
by using a double-precision intermediate product.  So even if you’re 
using a 16-bit Forth, 23082 7 8 */ should give you 20196, which only 
differs from the correct answer 20196¾ by ¾, rather than 3812, which 
is wildly wrong but what you would get if you truncated to 16 bits 
after the multiplication. 

    It occurred to me to wonder if you can do the division and the 
multiplication at the same time, if you’re doing this in hardware, thus 
overlapping the multiplication with the division.  Division can 
generate a quotient one bit at a time, and those quotient bits can be 
used to control a garden-variety shift-and-add multiplier.
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AVR OSCCAL probably won’t 
give you an FM radio
Kragen Javier Sitaker, 02020-11-26 (2 minutes)

    Hmm, I just realized that the AVR family OSCCAL oscillator 
calibration register can adjust their internal oscillator frequency, 
normally 8MHz or 16MHz, by fine degrees.  The 12th harmonic of an 
8MHz square wave would be 96MHz, which is within the FM radio 
band (87.5 MHz–108.0 MHz).  The maximum permitted deviation 
from a nominal carrier frequency is ±75 kHz, which would be 
±780 ppm at 96 MHz, ±860 ppm at 87.5 MHz, and ±690 ppm at 
108 MHz.  So, if "fine degrees" is about 1900 ppm or less (0.2%), then 
I ought to be able to transmit at least impulses and square waves over 
FM radio in this way.  In fact, since FM radio stations have about 
100 kHz of bandwidth after demodulation, that would be sufficient to 
generate PWM audio by spending different percentages of the time at 
each different wave. 

    In the ATTiny2313 OSCCAL is 7 bits, selecting one of 128 
frequencies in order to calibrate down from a nominal ±10%, so the 
situation doesn't look that great.  Maybe a better plan is the thing I'd 
wanted to try previously:  put a resistor on the AVR's VCC pin and 
modulate its current consumption in order to affect its operating 
frequency an therefore the frequency of the waves generated. 

    Also there's an ominous note in the datasheet saying that the 
processor needs to remain in RESET while OSCCAL is being 
written. 

    On p. 200 the datasheet says that with user calibration the oscillator 
can range from 7.3–9.1 MHz, with ±2% error at the given voltage and 
temperature.  On p. 230 we have a chart suggesting that OSCCAL is 
capable of moving the frequency anywhere from 3 MHz or so up to 
12 MHz!  It looks like an approximate exponential, too, suggesting 
that each step of OSCCAL is about 1.1% of frequency variation.  So 
that idea probably won't work, unless there are two adjacent 
OSCCAL values that are anomalously close.
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A field-programmable RTL array:  
a more efficient alternative to 
FPGAs?
Kragen Javier Sitaker, 02020-11-26 (updated 02020-11-27) 
(11 minutes)

    What if, instead of individual registered LUTs, you programmed a 
synchronous register-transfer-level machine whose individual units 
were more like an ALU, or a GreenArrays x18 core, than like a gate? 

Inspirational computing systems 

    I’m thinking of the TECS NAND-to-Tetris Hack CPU, based on 
the DG Nova and the PDP-8, where individual bits in ALU 
instructions control various aspects of the ALU instruction;  and 
about the kinds of register machines used for Bresenham line drawing 
and circle drawing (Appendix E of Ivan Sutherland’s SKETCHPAD 
dissertation, republished as UCAM-CL-TR-574, describes these as 
“incremental computers” and proposes using them to draw general 
conic sections);  and about the very simple register machines provided 
by AVR peripherals, for example auto-incrementing timers that are 
connected to digital comparators that automatically reset them, or 
analog comparators that can register a timer value when they observe 
a transition;  or Babbage’s Difference Engine, which tabulates a new 
value of an arbitrary polynomial on every clock cycle, simply by 
adding to each register the difference from the previous register;  and 
so on. 

    In the Hack, the ALU field has 6 control bits, zx, nx, zy, ny, o, and 
no, and the ALU is basically just six muxes: 

a <- zx ? 0 : x
b <- zy ? 0 : y
c <- nx ? ~a : a
d <- ny ? ~b : b
e <- o ? c+d : c&d
output <- no ? ~e : e
 

    This gives you 64 ALU instructions, many of which are 
unimplemented in the official Hack simulator, including NAND, 
NOR, AND, OR, addition, two’s-complement subtraction, 
two’s-complement negation, one’s-complement negation, abjunction, 
X+Y+1, and a number of others.  The PDP-8’s similar setup includes 
bits for bitwise rotation and byte swapping, which among other things 
makes division much easier to implement. 

The FPRTLA 

    Now, in a “FPRTLA”, instead of routing individual bits around 
your machine, you could route bytes, or words of 4-64 bits — an 8-bit 
byte suffices to crossbar four inputs to four outputs with each output 
derived from a single input, and those inputs and outputs can be full 

https://github.com/johnwcowan/pdp8x/blob/master/arch.md


words. 

    You could imagine that each cell in a rectangular array of cells, for 
example, might be configured with, for example, such a 6-bit ALU 
opcode determining its output word as a function of its two inputs, a 
bit determining whether its output is registered or combinational, and 
6 bits selecting its two inputs from among eight available inputs 
(including its own output).  This might suffice for very simple 
computation, but so far it’s lacking the conditional routing and 
conditional increment abilities needed for things like packet routing 
and Bresenham lines. 

    One simple way to provide that would be to provide two 
configuration words for each cell, and some kind of rule to choose 
between them, perhaps based on a single bit from somewhere. 

    Without the possibility of combinational output, you could 
implement such a machine much more densely in a bit-serial 
format — each 4×4 crossbar would literally have only 8 data wires 
going in and out of it, plus 8 control wires.  This would of course be 
much slower. 

    If such a 4×4 crossbar had 16 control wires going in instead of 8, it 
could perhaps implicitly perform a wired-AND or wired-OR, for 
example by using open-drain transistors and pullup resistors;  this 
might eliminate some of the necessity for ALU operations. 

    An interesting question is what the minimal uniform unit cell for 
such a machine might be.  It takes two or more inputs of some 
variable word size, generates one output, and has some configuration 
data.  What’s the simplest state machine that gives us a given form of 
universality? 

“Incremental computers”? 

    In Sutherland’s thesis, in perhaps the first proposal for a GPU, 
which would later return to him as the “Wheel of Reincarnation” 
paper, he said: 
In the course of the work with Sketchpad it has become all too clear that the 
spot-by-spot display now in use [is] too slow for comfortable observation of 
reasonable size drawings.  Moreover, having the central machine compute and store 
all the spots for the display is a waste of general purpose capacity... 
    The technology of incremental computers is well developed [emphasis Derctuo], but so 
far as I know, no one has yet applied them directly to the problem of computer 
display systems.  Basically the incremental computer works by adding one register 
to another successively and detecting any overflows or underflows which may be 
generated.  Certain registers are incremented conditionally on the result of 
overflow or underflow generation.  

    He goes on to explain something similar to the Bresenham line 
drawing algorithm, using an “X increment” register for the fractional 
part to be added on each iteration to an “X remainder” register, with 
an “X scope” register being incremented on overflows, we can 
increment “X scope” on average every 1/“X remainder” clock cycles.  
Essentially “X scope” and “X remainder” are the integer and 
fractional parts of a fixed-point number (in Sutherland’s case, binary), 
and “X scope” is used to control the X position of a CRT beam.  A 
similar Y arrangement is used for the Y beam.  The Clock of the 
Long Now does its calculations the same way, bit-serially, using 
mechanical binary computation. 



    This is labeled “Figure E.1.  DDA for drawing lines,” and it turns 
out that this is an abbreviation for “Digital Differential Analyser”, the 
term more commonly used in the US at the time;  “incremental 
computer” was the term used in Britain, according to Charles Philip 
Care’s 2008 Ph.D.  dissertation, “From analogy-making to modelling:  
the history of analog computing as a modelling technology.” The 
differential analyzer was the major invention of Vannevar Bush, who 
also invented hypertext and headed the atomic bomb research 
program;  it was a mechanical contrivance that performed 
“numerical” integration of ordinary differential equations, originally 
conceived by Kelvin but not built successfully until Bush managed it 
in 1931. 

    (Care’s dissertation, though I disagree with most of its conclusions 
and think its author misunderstands fundamental aspects of the 
technologies he is attempting to chronicle, is one of the few pieces of 
research to investigate the distinction between “analog” and “digital” 
in a serious way.  The fact that the conclusions he arrives at are wrong 
is, by comparison, less significant.  And it’s one of the few places that 
will tell you what “incremental computer” meant at the time of 
Sutherland’s dissertation.) 

    Presumably thanks to Sutherland, nowadays the term “digital 
differential analyzer” commonly refers to the algorithm he was 
describing rather than the family of hardware that could implement 
such algorithms inexpensively. 

    Sutherland also mentions the remarkable leapfrog-integration 
property that is also true of Minsky’s circle-drawing algorithm: 
Theory and simulation show that just as in the incremental equation used for 
generating circles (see Chapter V), the latest value of increment must be used if the 
curve is to close.  Therefore, the additions cannot all occur at once;  the order 
shown in Figure E.2 by the numbers 1–4 next to the adders makes the circles and 
ellipses close.  In a serial device it is possible to do the four additions in just two add 
times by having only a one bit time delay between the two additions for each 
coordinate, i.e., (?+) just before (+).  

    And indeed his figure E.2 does present an RTL diagram for 
something similar to Minsky’s algorithm.  (For “serial device” read 
“bit-serial adder”.) As I read his variant, it works as follows: 

xremainder += xincrement
if carry:
    yincrement += ycurvature
    yscope++
elif borrow:
    yincrement -= ycurvature
    yscope--

yremainder += yincrement
if carry:
    xincrement += xcurvature
    xscope++
elif borrow:
    xincrement -= xcurvature
    xscope--
 

    This looks like a lot of code but it’s really just four arithmetic 
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operations within the feedback oscillator, two of which are 
conditional, and two conditional operations driven by the oscillator.  
(There’s an extension to arbitrary conics.) 

    He says this sort of conditional addition/subtraction goes beyond 
“the usual practice in incremental computers”, which he says is just a 
conditional increment or decrement (the ordinary sort of carry 
propagation).  However, Wikipedia seems to describe what he’s doing 
as “the basic DDA integrator”. 

    Sutherland points out that this configuration allows us to produce 
not just circles and ellipses (as is usual for Minsky’s algorithm), but 
also straight lines (by setting the curvature numbers to 0) and 
hyperbolas (if the curvature numbers are of the same sign).  I think it 
also has a guarantee that it produces densely packed pixels, without 
space between them, which is harder to achieve with Minsky’s 
algorithm.  (To guarantee that it doesn’t dawdle on the same point, I 
think you can prescale the increment values until one of them is 
essentially 1, e.g., 0.1111111111 if you’re using 10-bit fractions.) 

    If we again treat the xscope.xremainder and yscope.yremainder 
pairs as fixed-point numbers with the “remainder” being the 
fractional part, then we can see that this is not quite Minsky’s 
algorithm, because it has four registers instead of two (if we treat the 
curvatures as constants), and, more surprisingly, it runs backwards!  
The frequency of carries (or borrows) gives us the derivative of the 
variable being thus incremented.  So if in some interval of time X 
increases (or decreases) past 12 integer values, then in that interval of 
time Y’s derivative will be increased (or decreased) by ycurvature 12 
times.  So Y’s second derivative is thus approximated by ycurvature 
times X’s first derivative, and mutatis mutandis. 

    This requires less hardware than the more straightforward approach 
of X -= k × Y;  Y += k × X because that requires a multiplier.  By 
encoding the derivative in this way as a neuron-like spike train, we 
can multiply by repeated addition instead. 

    (Spike-train circuitry is experiencing some renewed interest 
nowadays, both to reduce power consumption and as delta-sigma 
circuits for higher stochastic DSP speed — the multiplication of two 
random spike trains is their AND, and their average can be obtained 
by a multiplexer driven from a random bitstream.) 

    I think the commonplace circle midpoint algorithm can also be cast 
into such a form, but triggering additions and subtractions from 
comparisons rather than carries.  It would be interesting to see if 
there’s a stepwise transformation to show the equivalence — or 
non-equivalence! — of the two circle-drawing algorithms. 

    Sutherland reports success at the time at building a bit-serial DDA 
machine at the time using some 36-bit delay lines and some 20-MHz 
logic chips, plotting a display point every 900 ns.
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Hardware queuing
Kragen Javier Sitaker, 02020-11-26 (updated 02020-12-16) 
(11 minutes)

    Thinking about hardware multithreading, blocking, waiting, the 
Padauk chips, etc., it occurred to me that it might be reasonable to 
build a CPU with a hardware work queue, or several, instead of 
interrupt handlers and sleeping.  (A totally different thought stream 
involving many of the same features is in the transaction-per-call note 
(p.  718).) 

The CPU should have a priority queue of 
runnable instructions 

    The idea is basically hardware multithreading, really:  each work 
queue item is a machine architectural state (PC, SP, and if applicable 
accumulators, index registers, status flags, MMU tags, etc.), and the 
CPU works through the highest-priority nonempty run queue, 
interleaving instruction by instruction.  Normally whenever you 
execute an instruction you enqueue the following instruction on the 
same priority run queue, so threads of the same priority are run in 
round-robin fashion, instruction by instruction, but there’s a 
mindelay field in the instruction encoding which forces the thread to 
pause for 1-4 cycles.  So each queue item is tagged with the earliest 
cycle when it is runnable.  This allows interleaved realtime tasks of 
the same priority to maintain precisely the same timing regardless of 
how many other tasks of that priority are running at any given time, 
as long as there aren’t too many of them. 

    (Perhaps the delayed tasks should be initially stored in a separate 
queue, or perhaps each queue should practice EDF scheduling, 
although that seems potentially tricky to do in hardware.) 

    Interrupts are handled by enqueuing a new top-half task at high 
priority, either on a special interrupt queue or on the regular queue.  
In a sense an interrupt handler is just a thread that is usually asleep, 
but usually we don’t allocate it hardware registers to store its state 
between invocations. 

    There’s an instruction to terminate a task, making its hardware 
state available for forking, and a Redcode-like SPL instruction to 
fork. 

    If you have a hardware watchpoint facility, you could provide an 
instruction to sleep a thread until a given memory location is written 
to, that location becoming one of the hardware watchpoints.  The 
store units simply need to check their destination address against the 
list of watchpoints and conditionally awaken a task.  As an alternative 
to external interrupts, you could simply sleep a thread until an I/O 
port is “written” by the outside world. 

    The Tera MTA included a facility for a thread to preallocate a set 
of threads it was going to spawn off, which could atomically succeed 
or fail;  if it succeeded, subsequent thread-spawning instructions from 
that preallocation were guaranteed to succeed.  (And I think that if 



you didn’t use it, or exceeded the allocated capacity, they were 
guaranteed to fail.) 

    If trying to spawn a thread with SPL when all the thread slots are 
full is treated as a sort of processor exception, one of the possible ways 
to handle it is to invoke an “OS” that maybe “swaps” one or more 
threads to RAM, saving their architectural state — the usual OS 
context-switch code, that is.  It wouldn’t even have to save the full 
architectural state if the SPL instruction normally clobbers some of 
your registers, so it could be as efficient as a cooperative 
context-switch. 

    Another possible response to spawning a thread when all slots (at 
the requested priority level) are full is to enqueue the starting of that 
thread for later — the thread once running is real-time, but starting it 
is best-effort, much like in the old circuit-switched telephone system. 

A slightly alternate design:  A b A c A b A d 
...  static timeslots 

    Hmm, what happens if we have run a mindelay-4 instruction from 
thread A, then a mindelay-3 instruction from thread B?  One or the 
other is going to miss their deadline! 

    Here’s an alternative:  we have, say, 4 real-time “queues”, A B C, 
each of which has up to one real-time task, and a fourth hardware 
task D, a best-effort task.  A runs every other cycle (or idles the 
machine), B runs every 4th cycle, and C and D run every 8th cycle;  
the sequence is A B A C A B A D, A B A C A B A D...  
forever — except that if any real-time task is idle in a given cycle, 
because of having run a sleep instruction, best-effort task D is instead 
run.  D may be a round-robin alternation between various best-effort 
tasks, either in hardware or in software, and may have its own 
real-time task that preempts its best-effort task. 

    In this way, every instruction in queue A has mindelay a multiple 
of 2, every instruction in queue B has mindelay a multiple of 4, every 
instruction in queue C has mindelay a multiple of 8, and they are all 
guaranteed to be reawakened at the cycle-exact time they request.  A 
thread-local architectural register can provide a shift to the mindelay 
field, so that for example if the field is 2 bits then the possible values 
of mindelay with shift 1 are 2, 4, 6, and 8;  the possible values of 
mindelay with shift 2 are 4, 8, 12, and 16;  and the possible values of 
mindelay with shift 3 are 8, 16, 24, and 32.  This shift is in effect the 
priority of the thread;  a thread running with shift 3 can run in queue 
A, B, or C, while a thread with shift 2 can only run in queues A or B.  
So the machine in this form can run up to three threads with shift 3 or 
less, two threads with shift 2 or less, and one thread with shift 1. 

    In this form it would be an error to try to change your shift to 1, or 
launch a shift-1 thread, if there’s already a thread running in queue A.  
If the machine is running three real-time threads with shift 3, it will 
only be running real-time threads ⅜ of the time, ceding the others to 
the best-effort thread, but if it is running two real-time threads with 
shift 2, it will be running real-time threads half the time.  If it is 
running a shift-1 thread, a shift-2 thread, and a shift-3 thread, then it 
will be running real-time threads ⅞ of the time. 



    (Actually I guess thread D could also be running a shift-3 real-time 
thread, if it’s not a best-effort thread;  it might make sense to make 
the best-effort thread be a separate thing.) 

    In theory a shift-3 thread doesn’t care whether it’s in queue A, B, 
or C, because in any case it gets one out of every 8 cycles.  There 
might be phase offset questions it cares about. 

    With this approach, spawning an interrupt thread seems like it will 
necessarily have worse interrupt latency (both worst-case and jitter) 
than more traditional approaches, because where do you spawn the 
interrupt handler thread?  What shift do you run it at?  If you spawn 
it at shift 1 in task A, you still have at least 2 cycles of latency, but in 
order to occasionally do that, you have to never run anything other 
than interrupt handlers at shift 1.  If you spawn it at shift 2, you can 
run one other task at either shift 1 or shift 2, but not both;  and 
moreover it will take 1-4 cycles before its time slot comes around, and 
each additional instruction of handler adds 4 cycles more.  For 
purposes of reliable scheduling, effectively the interrupt handler is a 
task that always exists — you have to allocate it a task slot. 

    (The ATTiny2313 datasheet says the AVR interrupt execution 
response is four clock cycles, minimum, plus normally a three-cycle 
jump, and possibly finishing a multi-cycle instruction that was in 
progress when the interrupt fired:  7–9 cycles, plus 4 more cycles if it 
was in sleep mode, plus the wakeup time.  So maybe this isn’t actually 
so bad.) 

    A perhaps more interesting approach is to have, say, 8 time slots 
that are rigidly round-robined among in this way, but to run a task at 
shift 1 or shift 2, you must allocate respectively 4 or 2 slots to it, thus 
diminishing the total number of real-time tasks by, respectively, 3 or 
1.  This is sort of like buddy-system malloc:  two shift-3 time slots can 
Voltron into a shift-2 time slot, and two shift-2 time slots can 
Voltron into a shift-1 time slot. 

    In the simple form, there isn’t an allocation policy that permits full 
usage but makes fragmentation impossible — a simple adversarial 
allocation sequence guarantees maximal fragmentation: 

• x0 = allocate(shift=1) 
• x1 = allocate(shift=1) 
• x0.free() 
• x00 = allocate(shift=2) 
• x01 = allocate(shift=2) 
• x00.free() 
• x000 = allocate(shift=3) 
• x001 = allocate(shift=3)  

    and so on until all 8 time slots are allocated with known 
buddy-pairings.  Then you can deallocate half the time slots (x001, 
x011, x101, and x111) in a way that doesn’t permit any of them to be 
coalesced, because their buddies are still allocated;  this permits no 
shift-2 or shift-1 tasks to start, even though the machine is still half 
idle. 

    Above it was suggested that launching threads might not be a 
real-time task, even if running them is.  A different take on that is that 
launching a thread can shift you into a different timeslot, causing a 



phase shift in whatever waveforms you’re embroiled in — so in the 
above adversarial example, whatever shift-3 thread tries to launch a 
shift-2 task can get reassigned to a different shift-3 timeslot in order 
to defragment a shift-2 timeslot.  That doesn’t, however, allow you to 
launch a shift-1 timeslot. 

    Another angle on that approach is suggested by Redcode:  perhaps 
the SPL instruction divides your previous timeslot between the two 
child threads, which I think is actually what the Padauk 
microcontrollers do in real life — initially the processor runs one 
thread at 8 MHz, but when it splits into two, each runs at 4 MHz.  In 
the above terminology, SPL raises your “shift” by 1 and spawns a 
child thread with the same new “shift”.  This suggests that the way to 
deallocate is to run a MERGE or WAIT instruction which waits until 
the other thread executes DIE or HALT or whatever and then drops 
your “shift” by 1.  This incarnation of SPL requires no failure 
handling but may be somewhat inflexible. 

    The actual timeslot array in the processor might be something like 
a 3-bit counter and 8 3-bit pointers, each pointing to one of 8 register 
sets.
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Foam electro-etching and related 
techniques
Kragen Javier Sitaker, 02020-11-26 (updated 02020-12-31) 
(10 minutes)

    In electro-etching, an electrolyte selectively removes metal from a 
metal surface by anodic dissolution;  typically a vinyl mask is applied 
to the surface to shield some areas, although of course a conventional 
photolithographic resist like SU-8 epoxy or PMMA can also be used, 
and painted-on coatings such as Sharpie are also frequently used.  This 
can produce deep etching fairly quickly with high current. 

    If the surface is first uniformly electroplated (or otherwise coated) 
with a differently reactive metal, even very shallow electro-etching 
ought to be able to produce dramatic visual effects by selectively 
removing the plating, followed by a subsequent treatment such as acid 
etching, etching with alum, bluing, toning with sulfur, or possibly 
even autocatalytic “electroless” plating.  This ought to enable strongly 
nonlinear threshold effects as well:  where the plating is completely 
removed, the reactive surface is the substrate, and where it is not 
completely removed, the reactive surface is the plating. 

    In cases where the underlying substrate is more reactive than the 
plating, it ought to be possible to use further uniform electro-etching 
at a carefully controlled voltage in between the (modified, not 
standard) electrode potentials of the two materials to selectively 
remove the substrate material where it is exposed, thus deepening the 
initially patterned etch. 

    This is all prequel to suggesting that electro-etching or 
electroplating with a foam of soap bubbles, as from dishwashing 
liquid, should make a freaking awesome pattern.  The air in the bubbles 
would play the role of the vinyl resist.  Thanks to sbp for the idea. 

    A variant of this commonly happens in a variety of electrolytic 
processes (anodization, electro-etching, electroplating, 
electroforming, batteries, and so on) where the bubbles form from 
electrolysis of the liquid;  generally this is considered a nuisance, since 
the bubbles spawn at unpredictable places, and in batteries 
“depolarizers” like manganese dioxide are used to counter it.  But it 
might also provide an interesting artistic texture. 

    In addition to soap bubbles, there are several other 
surface-patterning approaches that come to mind. 

    Stamping patterns onto the surface of metal with a conductive 
rubber stamp (graphite-filled or copper-filled, say) and electrolyte 
“ink” is another possible form of electrolytic rapid patterning of metal 
surfaces. 

    Earlier I’d suggested selective electro-etching or electrodeposition 
with one or many moving electrodes very close to a metal workpiece 
as a way to produce precise surface contours, or similarly electrolytic 
anodization as a way to precisely produce colors.  The 
above-suggested methods of “developing” an extremely thin initial 
etch or plating with nonlinear effects should enable this process to 



pattern a surface orders of magnitude faster, either by selectively 
etching away part of a surface coating, by selectively depositing 
plating, or both.  (See also the note on ECM engraving (p.  776). 

    Another possible way to selectively electroplate a surface is with 
localized laser heating;  for example, in a standard acid blue vitriol 
electroplating solution, even a 5-watt blue laser has been reported to 
produce this effect by locally heating the solution and thus slightly 
shifting the electrode potentials. 

    The more common way to modify a metal surface with a laser is of 
course to heat it up in the air, which, depending on the degree of 
heating, can oxidize it, explode tiny holes in it that expose fresh 
metal, or both.  The oxide layer may also be usable as a selective resist.  
If the laser heating is carried out in a reducing atmosphere such as 
hydrogen, carbon monoxide, acetylene, or vitriolic air, it could simply 
remove the oxide, exposing raw metal, rather than depositing it. 

    By using selective corona or other glow discharge, for example 
from carbon fibers, platinum electrodes, or sharp aluminum wires, 
rather than a laser, we could gain a number of other advantages.  We 
could easily pattern the surface at scales well below the wavelength of 
light, limited only by the diffusion of the plasma, which in turn is 
largely limited by the precision with which we can control the 
distance from the tooltip to the substrate.  If we are reducing a surface 
oxide coating, we can use much smaller amounts of reducing gases (or 
dielectric liquids), and using above-atmospheric or 
below-atmospheric pressures may be more practical than they would 
be with a laser.  By giving the workpiece a negative charge, we can 
encourage anions from the plasma to smash into it, reducing lateral 
plasma diffusion, and the anions can be more reactive than 
non-ionized molecules would be.  (Butane gas, for example, is fairly 
inert, but a butane plasma will contain all kinds of hydrocarbon free 
radicals.) This will also tend to vaporize the tooltip electrode faster 
than a glow discharge would;  the electrode can contribute other 
helpful materials to the mix, including in particular metals for vapor 
deposition. 

    These processes, too, can sharpen the boundaries between surface 
regions using the same kind of differential deposition-then-removal 
process described earlier for electrolytic processing;  for example, first 
reduce the surface oxide coating everywhere, then selectively deposit 
it in some places, then selectively remove it in others to steepen its 
boundaries, and then apply some other reaction, specific to either the 
oxide or the underlying metal, to use the pattern thus deposited.  As 
another example, you could selectively deposit aluminum in an argon 
atmosphere by plasma-vaporizing it, then use an oxidizing 
atmosphere to selectively oxidize areas where you don’t want the 
aluminum. 

    Using a cold plasma pencil instead of just a glow discharge may 
permit more flexibility, for example by allowing a higher degree of 
ionization than a glow discharge can achieve, or allowing short-lived 
ionized species to decay.  But it probably can’t achieve as fine 
precision. 

    Another way to pattern a surface by local heating is by resistance 
heating, like a spot welder does.  At short distances you can invoke 

https://www.youtube.com/watch?v=w3jV58_Vv24
https://www.youtube.com/watch?v=w3jV58_Vv24


field electron emission (20–40 V/μm, lower with a 
low-work-function coating) or thermionic emission to liberate 
electrodes from your “write head” with which to bombard the 
surface.  (At short distances at atmospheric pressures there isn’t 
enough gas to sustain an avalanche discharge.) This is actually the 
same process described above for generating plasma, but with a 
different purpose, of heating the surface rather than generating ions, 
so the current is in the opposite direction.  By pulsing the discharge, 
greater peak temperatures can be achieved at a given average power, 
changing the attainable reaction products.  This heating can provoke 
many of the same kinds of reactions as described above.  Also, despite 
what I said above, this current direction is probably better for 
sputtering atoms off the tooltip electrode. 

    For thus sputtering metal onto a non-conductive substrate you 
might want to use two separate electrodes.  I suspect such sputtering 
at atmospheric pressure should be feasible at very small scales. 

    Local heating and reaction is most precisely attainable with focused 
electron beams or focused ion beams, but these of course require hard 
vacuum and thus cannot be used to provoke reactions with gases or 
volatile liquids, nor reactions that produce much of them.  Many 
semiconductor photoresists are routinely patterned in this way. 

    Semiconductor etching processes offer further possibilities for 
amplifying surface patterning, including not only the acid etching 
mentioned above but also mass anisotropic etching with reactive ion 
plasmas which react selectively with the exposed substrate. 

    If you have patterned a metal surface in such a way, you could etch 
away the substrate metal underneath it — for example, etching steel 
with alum, or aluminum with lye — to get a very thin foil of the 
deposited pattern.  I understand that Drexler prototyped a solar-sail 
material in a way similar to this, but you could also use the resulting 
perforated metal foil as a photolithography mask.  A three-layer 
technique may be the best solution here:  first a massive, rigid, 
etchable substrate;  then a uniform thin foil of microns up to hundreds 
of microns, which is also etchable, but resists at least one etchant that 
attacks the substrate;  then a “resist” mask, perhaps of metal or metal 
oxide, deposited on top and patterned with submicron thickness.  
Once the “resist” is patterned, you etch the foil away where it is 
exposed by the resist;  once the foil has been etched all the way 
through, you switch etchants and etch away the substrate while 
leaving the foil unharmed. 

    If you start by depositing a thin film of a resist on the surface, you 
can selectively remove it more easily than the thick films discussed 
above.  Langmuir–Blodgett films of poly(N-alkylmethacrylamides) 
are already used as UV photoresist for photolithography, but the 
other patterning techniques described above can also be used with 
Langmuir–Blodgett films.  That includes not only LB films of that 
photoresist, but also of a variety of inert surface coating materials, and 
also the opposite — surface coating materials that functionalize an 
otherwise inert substrate to react with materials it will be exposed to 
later, or that eventually react with a surface coating that is already 
present, for example of oxide.

https://en.wikipedia.org/wiki/Langmuir�Blodgett_film#Applications
https://en.wikipedia.org/wiki/Langmuir�Blodgett_film#Applications
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Using C99 compound literals 
unjustifiably
Kragen Javier Sitaker, 02020-11-27 (6 minutes)

    ISO C99, and GCC since earlier, support so-called compound 
literals.  I’ve written a number of C functions that look more or less 
like this: 

static struct point point_at(int x, int y)
{
    struct point p = {.x = x, .y = y};
    return p;
}
 

    The compound literal syntax allows you to write this more simply: 

static struct point point_at(int x, int y)
{
    return (struct point){.x = x, .y = y};
}
 

    However, in simple cases like this, it often eliminates the need for 
the function altogether, if it existed only for brevity;  you can just say 
typedef struct point point;  ...  mp = (point){3, 4}; rather than mp = 
point_at(3, 4);. 

    This is of course even more useful for arguments of functions;  
consider: 

static point delta(point a, point b)
{
    return (point) {.x = a.x - b.x, .y = a.y - b.y};
}

static int distsq(point a, point b)
{
    point d = delta(a, b);
    return d.x*d.x + d.y*d.y;
}

...
printf("%d\n", distsq((point){2, -1}, (point){5, 3}));
 

    It’s a shame that C doesn’t have top-down type inference for this 
context, so we can’t write distsq({2, -1}, {5, 3}) and have the compiler 
infer the point type.  Even OCaml fails us here — because its type 
inference is bottom-up, to infer types in such cases it requires the field 
names of record types to be unique, like 1970s C, rather than scoping 
them within a single record type:  as SoftTimur pointed out on Stack 
Overflow, this is an error in OCaml: 
type name =

https://gcc.gnu.org/onlinedocs/gcc/Compound-Literals.html
https://gcc.gnu.org/onlinedocs/gcc/Compound-Literals.html
https://stackoverflow.com/questions/8928970/two-fields-of-two-records-have-same-label-in-ocaml
https://stackoverflow.com/questions/8928970/two-fields-of-two-records-have-same-label-in-ocaml


    { r0: int; r1: int; c0: int; c1: int;
      typ: dtype;
      uid: uid (* key *) }

and func =
    { name: string;
      typ: dtype;
      params: var list;
      body: block }
  

    This is in the OCaml FAQ. 

    (There’s an interesting niche open for a language that uses 
structural subtyping like OCaml’s object types and polymorphic 
variants, but for records with an open set of field names — the kind of 
thing people do in JS or Lua or with JSON, but with static type 
checking.  I think OCaml didn’t have subtyping at all at the time 
records were added, and its use is still controversial.) 

    Getting back to C, one of the more interesting uses for so-called 
designated initializers for struct fields (.x =...) is optional values.  If you 
have a struct initializer with any initialized fields in it, then all the 
fields of the struct are initialized — even if its storage class is auto, the 
unspecified ones are initialized to 0, as in Java or Golang!  So 
regardless of how many fields are in a struct foo you can initialize them 
all to 0 by saying something like: 

struct foo x = {0};
 

    (I think this may be illegal in some versions of C if the first 
member of struct foo is some kind of aggregate, and I think it applies 
to arrays as well, and I think the requirement to have at least one 
initialized field has been removed in recent versions of C so struct foo 
x = {}; works too, but I’m not sure of any of those.) 

    So if you have a struct with a large number of fields, you can 
specify that you want to initialize one or two of them: 

struct image_transforms t = { .premultiply_alpha = TRUE, .max_depth = 8 };
 

    This kind of thing is especially useful to give named arguments to 
functions with a large number of optional arguments;  maybe 
somewhere there’s a transform_image(&t, ...); function you’re going to 
invoke.  Of course, you always could have designed the interface with 
a bunch of functions: 

image_transform_p t = new_image_transform();
if (!t) return 0;
it_set_premultiply_alpha(t, TRUE);
it_set_max_depth(t, 8);
 

    But this has several drawbacks compared to the 
designated-initializer approach.  It’s more code.  It introduces runtime 
failure into what could have been statically allocated memory, or 
statically-space-verified stack-allocated memory.  It takes time at 
runtime to execute the function calls, although initializing 

https://caml.inria.fr/pub/old_caml_site/FAQ/FAQ_EXPERT-eng.html#labels_surcharge
https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html#Designated-Inits
https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html#Designated-Inits


stack-allocated memory also takes time at runtime.  For 
statically-allocated objects, you need to somehow run the 
initialization code at startup, before anything uses the object.  It can’t 
be used inside an expression — it forces the caller into an imperative 
style.  And the implementor of the calling interface must write or 
macro-expand a large number of setter functions. 

    With compound literals with designated initializers, you get a sort 
of verbose named-argument syntax: 

transform_image(&(struct image_transforms){
    .premultiply_alpha = TRUE, .max_depth = 8});
 

    This is not a terribly efficient way to get named arguments, though;  
since this struct has automatic storage duration, if you have 48 fields 
in the struct, the compiler has to emit code to initialize the other 46, 
too. 

    The astonishing thing, though, is that in C, all of these compound 
literals with automatic storage duration last to the end of their 
enclosing scope, while in C++ they’re treated as temporaries and 
disappear rather quickly.  This means you can build up arbitrarily 
complex nested structures this way, like Lisp.  Consider this 
expression of the S combinator in the λ calculus: 

typedef struct ulc
{
    const char *var;
    struct ulc *rator, *rand, *body;
} ulc;

...
ulc s = { "x", .body = &(ulc) {
        "y", .body = &(ulc) {
            "z", .body = &(ulc) {
                .rator = &(ulc) {
                    .rator = &(ulc) { "x" }, .rand = &(ulc) { "z" }},
                .rand = &(ulc) {
                    .rator = &(ulc) { "y" }, .rand = &(ulc) { "z" }}}}}};
 

    Here a λ-abstraction is represented by an ulc having a non-null body 
and a non-null var, a variable is represented by having a null body and a 
non-null var, and an application of an operator to an operand is 
represented by having a null var. 

    This represents some kind of argument about the merits of these 
language features but I am not sure whether it is in favor or in 
opposition.
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A reverse-biased diode 
thermometer
Kragen Javier Sitaker, 02020-11-27 (9 minutes)

    It seems like, of everyday electronic phenomena, one of those with 
the largest variation by temperature is the reverse leakage in 
semiconductor diodes.  As explained in the note on thermistors (p.  
427), the resistivity of copper changes by about 3900 ppm/K, which is 
the basis of low-temperature "resistance temperature detectors", and 
tungsten's by about 4500 (though not consistently;  it has phase 
changes).  Carbon film resistors have a usually negative poorly 
controlled temperature coefficient of resistance;  Panasonic, for 
example, spec their ERDS1, ERDS2, and ERDS25 carbon-film 
resistors at -150–-1000 ppm/K. 

    NP0/C0G ceramic capacitors are specified to change their 
capacitance by under 1% over their temperature range and by under 
30 ppm/K, while film capacitors are typically ±200–650 ppm/K, 
depending on material and humidity.  (Thermocouples can in theory 
be arbitrarily precise but they measure a temperature difference, and 
they tend to drift.)
  

    But feast your eyes on this plot of reverse leakage from General 
Semiconductor's datasheet for 1N4001/4/7 diodes: 

    

 

    Over the 125° temperature range plotted here, they're claiming the 
diode's reverse leakage varies by a factor of 500–1500, depending on 
the voltage.  That's about 5–6% per degree, or to put it another way, 55



000 ppm/K. 

    So if you can measure the current of the diode to within 1% while 
maintaining it at a relatively constant voltage, you can measure its 
temperature to within 200 mK.  Silicon-junction signal diodes like 
the 1N4148 are qualitatively similar, but the currents are about an 
order of magnitude lower than the big rectum fryers;  this plot from 
Diodes Inc.'s 1N4148 datasheet plots leakage versus temperature at a 
fixed voltage, rather than leakage versus voltage at various fixed 
temperatures: 

    

 

    And some other diodes are even better!  Sunmate's datasheet for 
their 1N5823 Schottkys, for example, also claims a typical reverse 
current ranging over three orders of magnitude, but over only 100°, 
amounting to over 7% of current variation per degree, and 
furthermore at low reverse voltages and more reasonable currents: 

    



 

    This diode is rated for 1500 pF typical capacitance at near-zero 
voltage, but a milliamp amounts to about 0.7 V/μs at that 
capacitance, so you'd need to be pretty quick to measure it 
discharging its own junction capacitance — you'd probably want to 
use some external capacitance, which might be at a different 
temperature. 

    By putting several such diodes in parallel you can increase the 
leakage current, which will help to make it easier to measure, and 
perhaps also average out some variation among them. 

Crystals 

    Typical ADCs can't digitize a current, just a voltage, and the 
voltage is subject to a typically fairly large reference-voltage error (see 
Multimeter Metrology (p.  498) for lots on the difficulties of 
measuring voltages).  To measure a current, you have to somehow 
convert it to a voltage.  One way is to use a precise capacitor and 
measure the voltage change over time.  But then you need to measure 
time. 

    With an ordinary crystal oscillator ("SPXO") you ought to be able 
to measure the discharge rate with error of better than ±100 ppm over 
a standard -40°–+105° temperature range, or ±10 ppm if you 
temperature-compensate it. 

    Is that right?  Digi-Key reports that their most-stocked crystal 
oscillator is the Abracon ABS05-32.768KHZ-9-T, which they sell for 
US$0.67–1.16, depending on quantity, from the 728,528 they have in 
stock.  (Hopefully we can assume that it's a relatively typical part due 
to being so popular.) It's a surface-mount 32.768-kHz crystal, 1.6mm 
× 1.0mm × 0.5mm, whose error is specified as ±20 ppm at 25°, a 
temperature coefficient -0.02 to -0.04 "ppm/T²" with a "turn-over 

https://www.digikey.com/en/products/detail/abracon-llc/ABS05-32-768KHZ-9-T/3508064
https://www.digikey.com/en/products/detail/abracon-llc/ABS05-32-768KHZ-9-T/3508064


temperature" of 20°–30°, and aging of ±3 ppm in the first year if kept 
at 25° ±3°.  If we assume that "ppm/T²" means ppm/K² for the 
squared difference of the temperature from the turnover point, where 
the frequency reaches its max, then at 10° or 40° we might have ΔT 
= 20K (if the turnover temperature is, respectively, 30° or 20°), thus 
400K² and as much as 16 ppm reduction in frequency, or ±8 ppm 
over that temperature range, plus the ±20 ppm initial error and the 
±3 ppm aging error, totaling ±31 ppm over that range, or ±11 ppm if 
we initially calibrate it.  Of this ±11 ppm error, the thermal part 
reaches 1.6 ppm/K in the worst case at 10° or 40°, so if we can 
measure our temperature to within 2° we can compensate down to 
±6 ppm.  Much below that, we start running into tricky issues of 
things like thermal hysteresis. 

    To look at this another way, a 1° error in measuring the crystal's 
temperature for thermal compensation, a 0.7% temperature error 
(7000 ppm), produces at worst a 1.6 ppm timing error in the 
+10°–+40° range. 

    This is maybe a little better than typical, but not that much.  
Another very popular crystal on Digi-Key is the 20.0000 MHz 
Citizen HCM4920000000ABJT (196,220 in stock) which is described 
as "±30 ppm", but again that's at 25°, plus another ±50 ppm over the 
-10°–+60° temperature range and ±5 ppm aging over the first year.  
They don't specify the temperature coefficient, but if we figure that 
the frequency curve is, like the other crystal, parabolic with 
temperature with a maximum at 20°–30°, then that's up to -100 ppm 
at a ΔT of 40K, so a worst-case "ppm/T²" of -0.0625 ppm/K². 

    So I think it's reasonable to expect that we can get to ±10 ppm by 
calibrating and temperature-compensating random crystals, or 
±1 ppm by calibrating and ovening them. 

Current measurement error attributable to 
timing error and voltage error 

    So, suppose the diode leakage current we're measuring varies by 7% 
per degree, as the Schottky datasheet above shows it doing, and we're 
timing how fast it discharges a capacitor.  Looking more closely at 
Sunmate's data sheet: 

    

 

    We can see that on the 25° curve it's about 6 μA at 20% of rated 
peak reverse voltage and about 10 μA at 40%, which is to say, it's 
nearly proportional to the voltage;  below that, the leakage is nearly 

https://www.digikey.com/en/products/detail/citizen-finedevice-co-ltd/HCM4920000000ABJT/284290
https://www.digikey.com/en/products/detail/citizen-finedevice-co-ltd/HCM4920000000ABJT/284290


constant, and above, it starts to go superlinear.  So if we take our 
discharge-time measurements with bias voltage near this point, errors 
in our reference voltage will mostly cancel out — the reverse leakage 
voltage is, locally, nearly ohmic.  But errors in our timing won't cancel 
out. 

    However, remember that a 1° error in temperature is an 0.7% error 
(7000 ppm), and it takes a 10% error in timing (100 000 ppm) to cause 
it.  So the ±10 ppm timing error we expect, producing a ±10 ppm 
error in measuring the diode current, works out to a ±0.7 ppm 
temperature error, about 200 μK.  So probably even an 
uncompensated SPXO with ±100 ppm would only add about 2 mK 
of error to the temperature measurement. 

    Properly characterizing the error introduced by an imprecise 
reference voltage is difficult without better information than the 
datasheet gives, but handwavingly I guess that a ±2% 
reference-voltage error around the ohmic voltage will produce a 
current measurement error of about 2% of ±2%, or ±400 ppm, 
producing about ±30 ppm temperature error, or 10 millikelvins. 

Other candidate temperature transducers 

    Are there other things that would work better than a silicon 
Schottky diode? 

    I've already explored four-wire resistance temperature detectors (p.  
427), which have the advantage that their linear E–I relation permits 
measurements that precisely cancel out any non-drifting errors in the 
reference voltage, but have 15× smaller responses on an absolute scale. 

    The other temperature-measurement candidates that come to mind 
are LED reverse leakage (though apparently that's typically very small 
and difficult to detect because the bandgap is larger, suggesting that 
maybe germanium diodes might work better if you can find one), 
ferroelectric-capacitor dielectric permittivity, and the aforementioned 
quartz crystal resonant frequency itself, this last not because it varies a 
lot but because it can be measured to greater precision.  Most crystals, 
though, are cut to have their extremum in resonant frequency happen 
at 20°–30°, so it's hard to measure them against each other, and we 
need to be far from the extremum to get a large effect.
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My very first opamp
Kragen Javier Sitaker, 02020-11-27 (4 minutes)

    It’s been Norbert Wiener’s birthday today, and although he wasn’t 
the inventor of the op-amp, he was the key person in explaining the 
significance of the op-amp and similar things.  So I thought I’d 
celebrate by building my very first op-amp.  If I could. 

    I got a four-transistor circuit working in Falstad’s circuit simulator: 

    

 

$ 1 0.000005 0.06323366621862497 50 5 50
R 176 208 176 176 0 0 40 5 0 0 0.5
174 176 368 176 208 1 100 0.5693 Vin+
g 176 368 176 400 0
207 160 288 128 288 4 Vin\p
207 368 272 416 272 4 Vin\p
t 368 272 336 272 0 1 0.6109572102548784 0.6310546959814354 100
w 336 288 336 320 0
w 336 320 448 320 0
r 448 320 448 384 0 1000
g 448 384 448 400 0
r 336 256 336 192 0 10000
R 336 192 336 160 0 0 40 5 0 0 0.5
207 336 256 304 256 4 Vout\p
w 176 208 256 208 0
w 176 368 256 368 0
174 256 368 256 208 1 100 0.2822 Vin-
207 240 288 208 288 4 Vin-
t 528 272 560 272 0 1 -3.588999998997953 -0.7590165014195449 100
w 560 288 560 320 0
w 560 320 448 320 0
207 528 272 480 272 4 Vin-
R 560 192 560 160 0 0 40 5 0 0 0.5
r 560 256 560 192 0 10000
207 560 256 608 256 4 Vout-
207 688 304 656 304 4 Vout\p
r 784 384 784 304 0 100

https://tinyurl.com/yyjol6yg


R 784 192 784 160 0 0 40 5 0 0 0.5
g 784 384 784 400 0
207 784 304 832 304 4 output
368 784 304 864 352 0 0
r 752 288 704 288 0 1000
t 752 288 784 288 0 -1 -0.5948957135185378 -0.6972226181259069 100
w 784 272 784 192 0
t 688 304 704 304 0 -1 2.190113987148148 -0.6288987134827844 100
w 784 192 704 192 0
r 704 192 704 288 0 1000
g 704 320 704 400 0
368 528 272 496 224 0 0
368 368 272 400 224 0 0
o 3 1 0 4098 5 0.1 0 2 20 0
o 23 1 0 4098 5 0.1 1 2 23 3 Vout-
o 12 1 0 4098 5 0.1 1 2 12 3 Vout\p
o 28 1 0 4098 5 0.1 2 2 28 3
 

    It seems to have open-loop differential gain of at least 100 and 
outputs down to the negative rail (“single-supply op-amp”) but it 
wastes a ridiculous amount of power in its class-A output stage.  Also 
it has an input offset voltage of about 50 mV and an offset current of 
a couple of milliamps.  So it’s not a very good op-amp, but it is an 
op-amp. 

    I feel like it ought to be possible to get the output stage down to 
one transistor instead of two, but I was having a hard time getting 
that to work (my output stage was loading down the differential pair 
too much) and so I just brute-forced it with a PNP emitter follower.  
The emitter-follower loading is still probably the culprit for the 
rather poor offset voltage. 

    I haven’t breadboarded it yet, and I had a hard time figuring out 
why the previous circuit simulation weren’t working, and I’d like to 
see if I can get the output stage down to one transistor.
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Taking screenshots
Kragen Javier Sitaker, 02020-11-27 (updated 02020-12-20) 
(14 minutes) 

    I often take X-Windows screenshots to include in Derctuo, for 
example the schematic of My Very First Op-Amp (p.  661).  
Typically this process has looked something like: 

• Launch the GIMP.  Wait for it to finish booting. 
• Take a screenshot with it. 
• Crop the screenshot in the GIMP (shift-C), zooming in and out as 
necessary. 
• “Export” the screenshot (ctrl-E). 
• Exit the GIMP. 
• Confirm that, yes, I really do want to “exit without saving” (ctrl-D, 
I think).  

    This is very cumbersome, taking about a minute.  So I just tried 
some various different screenshot programs to see what would work 
better.  KDE’s “Spectacle” program is wonderful, better than I had 
thought possible, and now I can invoke it from Emacs with a single 
keystroke and automatically insert the resulting cropped screenshot 
into the Markdown document I’m editing. 

    This has had the rather alarming effect of enabling me to add half a 
megabyte of images to Derctuo over the last couple of days, which is 
about the same as the amount of text I’ve added to it in the last two 
months.  But the year 02020 is over in another month, and Derctuo is 
still less than 10MB out of its 20MB size budget, so maybe I can 
lighten up a bit. 

Using KDE Spectacle from the command 
line 

    Boudhayan Gupta’s Spectacle is the shit.  It is totally awesome. 

    I ran sudo apt install kde-spectacle because I don’t have KDE 
installed. 

    

 

    spectacle -rbo somedir/somefile.png takes a few seconds to start, and 
then brings up a fullscreen instruction screen, which you can dismiss 
by starting to drag out a rectangle.  But once the rectangle is there, you 
can interactively resize it, seeing the cropped image as it will finally 
appear.  Then you can hit Enter to save it to somefile.png (-o) with no 



further interaction (-b).  (Not even confirmation for overwriting or 
errors for unsupported file extensions — be careful!) 

    You can even use Spectacle to take a screenshot of Spectacle’s own 
cropping UI in operation;  I think it works by taking a full-screen 
screenshot when it starts, then covering up the screen with it for this 
-r region cropping UI.  In fact, sometimes the cropping UI sort of 
turns back time a little bit, showing what the screen looked like a 
second or two earlier. 

    The whole interaction takes about 15 seconds, even though I’m not 
running KDE. 

    This is the ideal mode of operation for invocation from a script;  
the only GUI interaction is dragging out a box, optionally resizing it, 
and pressing Enter or the right mouse button. 

    It has a few problems.  One is that it emits some debugging crap to 
stderr every time you run it: 

Problem creating accessible interface for:  ScreenClipper(0x9aa3c90) 
Make sure to deploy Qt with accessibility plugins.
 

    Another problem is that if you cancel the screenshot, or if it fails, 
you don’t get a nonzero exit status;  instead you just get another stderr 
message: 

ERROR:  "Screenshot capture canceled or failed"
 

    A third problem is that it somehow returns the keyboard focus to 
the XFCE desktop manager every time it runs, so you normally have to 
press alt-tab to get back to one of your windows. 

At least four other reasonable options are 
not as good as Spectacle 

    It turns out there are several other approaches that are considerably 
more convenient than what I was doing with the GIMP. 

    

 

    xfce4-screenshooter -s somedir -r is nearly as good as Spectacle, and it’s 
even faster (maybe 6 seconds rather than 15 on this netbook), but it 
doesn’t let you interactively adjust the dotted-line crop box shown 
above before saving — once you release the mouse button, that’s it!  
But then it prompts you for a filename.  At least it has the option of 



specifying what directory to put it in. 

    mate-screenshot -a is similar, but you have to manually navigate 
through the filesystem to the right directory with its GUI.  Only the 
first time you run it, though, or when you’re switching directories. 

    gnome-screenshot -i is similar, except that you additionally have to 
select the option to not screenshot the whole screen every fucking 
time you fucking start it. 

    

 

    Mirage is an image viewer with a relatively accessible “crop” 
option on its “Edit” menu, as well as a full-screen or full-window 
screenshot option on its “File” menu;  it’s a much easier way to crop 
existing images than the GIMP.  Beware, by default it saves the 
screenshots into directories like /tmp/mirage-EYotN0.  The cropping 
functionality is also somewhat suboptimal since the view of the image 
in the cropping window is teensy (though what’s shown on the left 
side of the screenshot above is the thumbnails of other nearby files).  
Having cropped the image you can save it over the original with no 
further confirmation. 

Several other options are even worse than 
the GIMP 

    KGrab takes forever and doesn’t have a crop option.  ScreenGrab is 
impossibly clumsy.  On this version of X11, xwd | xwdtopnm | pnmtopng > 
foo.png generates a totally bogus image that looks like it used the 
wrong pixel format or the wrong part of the screen or something, and 
of course it also doesn’t have a crop option.  Kazam brings up a blank 
gray fullscreen window so you can indicate which part of the screen 
you want to grab;  I think it’s really intended for screencasting, with 
screenshots being an afterthought. 

    The well-known scrot command is worth a mention;  it doesn’t 
have a crop option, but scrot -e 'mirage $f' will open the full-screen 
screenshot in Mirage so you can crop it with Mirage, and hopefully 
not forget to save the cropped version.  By default scrot generates a 
filename but you can instead specify one:  scrot foo.png. 

    ImageMagick has an import command which I think can do 
cropping — but I think you have to specify the pixel coordinates on 
the command line, not with the mouse. 

Scripting screenshotting in Elisp 

    The workflow I really want is to be editing a Markdown document 
in Emacs, press a magic key (Print Screen, which Emacs calls <print> 
or [print], actually works, since, for whatever reason, my XFCE 
doesn’t intercept it), type a filename to store the screenshot in, hide 



the Emacs window, spawn off Spectacle to capture the file, unhide 
the Emacs window, and insert a Markdown inline image tag for the 
screenshot. 

    My Elisp is a little rusty, but I managed to get this to work: 

(defun screenshot-save-to (filename)
  "Interactively crop a screenshot with Spectacle and write to FILENAME.

  This is not an interactive command because it doesn't check
  to see if FILENAME already exists, doesn't hide and
  redisplay the Emacs window, and doesn't append .png if
  FILENAME isn't a PNG or JPEG filename.  `screenshot-make'
  does those things.

  "
  (let ((screenshot-return-value 'unknown-return-value))
    (let ((screenshot-messages
           (with-temp-buffer
             (setq screenshot-return-value
                   (call-process "spectacle" nil t nil
                                 "-rbo" (expand-file-name filename)))
             (buffer-string))))
      (if (or (string-match "ERROR" screenshot-messages)
              (not (eq screenshot-return-value 0)))
          (error "Screenshot failed: %s(return value %s)"
                 screenshot-messages screenshot-return-value))

      (if (not (file-exists-p filename))
          (error "Screenshot supposedly succeeded but %s doesn't exist: %s"
                 filename screenshot-messages)))))

(defmacro with-frame-iconified (&rest body)
  "Iconify the current frame only until BODY completes."
  (declare (indent 0) (debug t))

  `(progn
     (iconify-frame)
     (unwind-protect
         (progn ,@body)
       (make-frame-visible))))

(defun screenshot-make (filename)
  "Take a cropped screenshot.

  If FILENAME doesn't end in .png or .jpeg, this command appends .png.
  When called as a Lisp function, it returns the real filename."
  (interactive "*FScreenshot filename to create: ")

  (if (not (or (string-suffix-p ".png" filename)
               (string-suffix-p ".jpeg" filename)))
      (setq filename (concat filename ".png")))

  (if (file-exists-p filename)
      (if (not (yes-or-no-p (concat filename " already exists; overwrite? ")))
          (error (concat "Not overwriting " filename))))



  (with-frame-iconified
    (screenshot-save-to filename))

  (let ((file-size (elt (file-attributes filename) 7)))
    (message "Screenshot %s is %dKiB." filename (/ (+ 512 file-size) 1024)))

  filename)

(defun screenshot-insert-preview-line (filename)

  "Insert a newline into the buffer with, if possible, the image FILENAME display
ed."
  (interactive "*FImage filename: ")
  (let ((screenshot-image-descriptor
         (create-image (expand-file-name filename) nil nil :margin 4)))
    ;; (message "descriptor %s" screenshot-image-descriptor)
    (if screenshot-image-descriptor
        (progn
          ;; If we just overwrote an image, Emacs might have it
          ;; cached.
          (image-flush screenshot-image-descriptor)
          (insert-image screenshot-image-descriptor "\n"))
      (insert "\n"))))

(defun markdown-insert-screenshot (filename)
  "Crop a screenshot and insert a Markdown inline image in source and buffer."
  (interactive "*FScreenshot filename to create: ")
  (setq filename (screenshot-make filename))

  (let ((basename (file-name-nondirectory filename)))
    (insert (format "\n![(screenshot %s)](%s)\n" basename basename)))

  (screenshot-insert-preview-line filename))

(defun markdown-insert-preview ()
   "Show a preview for the previous Markdown inline image tag if possible.

   Unfortunately this function modifies the buffer.
   "
    (interactive)
    (if (not (re-search-backward "^!\\[.*?\\](\\(.*\\))\n\n"))
        (message "no Markdown inline images found")
        (save-excursion
          (message "found %s" (match-string 1))
          (move-end-of-line 2)
          (delete-char 1)           ; hope this is a newline
          (screenshot-insert-preview-line (match-string 1)))))

 (global-set-key [print] 'markdown-insert-screenshot)
 (global-set-key [C-print] 'markdown-insert-preview)
 

    This also displays the image inline in the Emacs buffer!  But only 
until I close and reopen the file (or reboot Emacs), though I can use 
Ctrl-PrtSc (markdown-insert-preview) to re-add them one by one after 



reopening the file.  Mysteriously the revert-buffer command displays 
the images in the right margin;  I suspect this might be a bug in 
fill-column-indicator.el.  A little refactoring might make it possible to 
scan for such images to add such previews to, but I probably wouldn’t 
want to invoke that automatically every time I opened a file. 

    This is a pretty nice experience in Emacs as long as the images 
aren’t too big: 

    

 

    (To make this work with the same key on MATE on my craptop, I 
opened Main menu → Control Center → Hardware → Keyboard 
Shortcuts (not “Keyboard”) → Desktop → Take a screenshot and 
reconfigured it to “Shift+Ctrl+Print”.) 

    

 

    



 

    Sometimes the images seem to disappear and be replaced with small 
squares;  maybe Emacs is evicting them from some cache and not 
putting them back.  So far this has been a minor annoyance. 

Efficiency 

    Well, I’ve spent the last 9 hours on automating screenshots†, so 
now I can insert a screenshot into my notes in only 45 seconds.  I ran 
through the previous procedure using the GIMP again and it took me 
4 minutes and 51 seconds, but I think I was usually able to do it faster 
than that — I must be getting sleepy, and I couldn’t figure out where 
the GIMP had saved my screenshot.  But, suppose it’s 3 minutes 
“saved”.  Am I being efficient? 

    

 

    According to the comic, yes, as long as I insert several screenshots a 
week, and keep doing this for five years or more;  that seems very 
likely to be true.  That doesn’t take into account the good or bad of 
having the screenshots displayed in the notes as I’m editing them, 
though, or whether I learned anything useful in the process, or 
whether these notes are useful to somebody else. 

    (Is It Worth The Time comic by Randall Munroe, licensed 
CC-BY-NC 2.5.) 

    † Actually, I spent some more time on it the next day to add JPEG 

https://xkcd.com/1205/


support and refactor the code reasonably. 

Compression 

    By default if you ask Spectacle to write a JPEG it writes it with 
reasonably high but not impeccable quality;  in the case of the XKCD 
comic above Spectacle generates about a 140K PNG (which pngcrush 
reduces to 107K) or a 74K JPEG, while ImageMagick produces an 
equivalent-quality JPEG with convert -quality 50 xkcd-time-saved.png 
xkcd-time-saved.jpeg at 50K, or an equivalent-size JPEG with 
impeccable quality at -quality 80 (73K, monochrome). 

    On theoretical grounds we would expect PNG to have a better 
quality/compression tradeoff than JPEG on text and line art, and that 
is somewhat borne out by experiment.  Consider this 
Schottky-diode-leakage graph from the note on diode thermometers 
(p.  656): 

    

 

    As a PNG this is 15K, which is pretty good.  It’s still totally 
readable at -quality 1, where it’s 6K, and the JPEG artifacts are not 
strikingly obvious at -quality 10, where it’s 10K.  But they don’t really 
disappear until -quality 50, at which point the JPEG is 18K. 

    The Mirage screenshot earlier looks pretty much the same in JPEG 
with -quality 80 and PNG, but it’s 9K in JPEG and 17K in PNG. 

    I think the conclusion is that I should use JPEG for JPEG things 
(and just accept Spectacle’s reasonable default quality) and use PNG 
for text and line art.  And occasionally I should run pngcrush on all my 
PNGs, which is an easy batch process and therefore doesn’t need to be 
automated in the Elisp interaction above.
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Punk zine look
Kragen Javier Sitaker, 02020-11-28 (6 minutes)

    In seeking an aesthetic alternative to the shrink-wrapped Apple 
Store look so popular in modern UIs, I thought it would be inspiring 
to look at old punk zines. 

Reviewing old material 

Chainsaw 

    Looking at the aesthetic of Chainsaw I see: 

• lots of black 
• text placed at random angles within irregular cutout shapes 
overlapping backgrounds 
• Xerox halftoning (or Gestetner duplicating) blacking out or whiting 
out much of the photos 
• hand-lettered text with amphetamine style 
• photos also at random angles 
• shagging pigs on the front cover 
• typewriter text because that’s what was available 
• redrawn title every issue 
• use of image as stencil over psychedelic color gradient like from 
cheap posters 
• budget constraints forcing B&W 
• cartoon covers 
• fluorescent color clash 
• interspersed photos of fistulas and rectal examinations from a 1920s 
medical book  

Koleksi 
    Someone uploaded Koleksi to the Archive.  Seems to be a punk 
zine from Malaysia from 1997 or so.  I see: 

• pages of typewritten text with frames around them, sometimes 
broken by pasted-over titles in slightly different font size 
• a few different font sizes 
• Xerox-saturated B&W photos 
• typewriter-overstruck chars 
• all caps, ????, !!!! 
• sideways text 
• typewritten text flowed around images 
• letters maybe intentionally vertically displaced using the shift key 
• everything in English, nothing in Bahasa  

    In a 2011 issue of Keeema, a comic about politics in the same 
collection, I see: 

• photos as comic-strip panels with speech balloons 
• all Bahasa, almost no English 
• imitation logos to make fun of brands and politicians 
• lesbians in hijab kissing 

https://en.wikipedia.org/wiki/Chainsaw_(punk_zine)
https://web.archive.org/web/20070929200134/http://www.wrench.org/chainsaw.htm
https://archive.org/details/koleksizine/90schoice/page/n19/mode/2up
https://archive.org/details/koleksizine/Keema27-DIS-2011/page/n3/mode/2up


• orangutans on a motorcycle 
• posterized photos  

    In Dogged, another zine from the same collection: 

• walls of text in sans serif proportional font 
• all Bahasa 
• handwritten captions superimposed on a xeroxed photo 
• line-art comix  

Maximum Rocknroll 
    In an issue from 1992 I see: 

• lots and lots of ads 
• standard 3-column DTP kind of layout and formatting 
• newspaper-like halftoned images 
• Xerox halftoned images 
• extensive discussion of gender dynamics and rape 
• contrasty photos and drawings of naked women (the drawing, 
repeated many times, seems to be the logo of the band Spitboy) 
• columns of text pasted over backgrounds and xeroxed 
• pullquotes with poetry  

Homocore 

    Homocore was founded by Tom Jennings of FidoNet and Deke 
Nihilson, and published 1988–91.  The Internet Archive has preserved 
some even though Tom got sick of the internet’s shit and/or sold out. 

    I see: 

• basic DTP one-column layout with bold serif text 
• Xeroxed Fred Phelps bigot photos 
• basic DTP two-column layout with line drawings 
• comix 
• basic DTP two-column layout with line drawings and horizontal 
rules 2  

Kill Your Pet Puppy 

    KYPP is totally online.  In the first issue I see: 

• angled text blocks cut from other publications and pasted in (a 
screenshot of sorts) 
• running text in hand-lettered thought bubbles 
• xeroxed photos of topless women apparently sucking something 
• !!!!!  (hand-lettered) 
• collaged typewriter text at various angles 
• Xerox-saturated photos of contributors, all using pseudonyms 
• typewritten text on monochrome blue background photo 
• photo with hand-drawn speech bubbles stenciling over a psychedelic 
gradient 
• watermarked album names behind typewritten text 
• quoted cliché comics with replaced speech bubble text 
• bright primary colors mostly on white 
• an article about a problematic “new” recreational drug called Tuinal 
(which turns out to be a brand name for a barbiturate cocktail sold as 

https://archive.org/details/koleksizine/dogged5/page/n15/mode/2up
https://archive.org/details/MaximumRocknrollNo.108may1992/page/n87/mode/2up
https://en.wikipedia.org/wiki/Homocore_(zine)
https://web.archive.org/web/20120320015717/http://wps.com/archives/HOMOCORE/
https://web.archive.org/web/20120320015717/http://wps.com/archives/HOMOCORE/
https://web.archive.org/web/20041027005021/http://www.wps.com/archives/HOMOCORE/2/12.JPG
https://web.archive.org/web/20041026231657/http://www.wps.com/archives/HOMOCORE/2/1.JPG
https://web.archive.org/web/20041027160622/http://www.wps.com/archives/HOMOCORE/2/2.JPG
https://web.archive.org/web/20041027153841/http://www.wps.com/archives/HOMOCORE/2/27.JPG
https://web.archive.org/web/20041027152600/http://www.wps.com/archives/HOMOCORE/5/14.JPG
https://web.archive.org/web/20041027152600/http://www.wps.com/archives/HOMOCORE/5/14.JPG
https://web.archive.org/web/20031207211405/http://www.wps.com/archives/HOMOCORE/5/27.JPG
https://killyourpetpuppy.co.uk/news/the-complete-set-of-kill-your-pet-puppy-fanzines/


a sleeping pill from the 1940s) 
• a Xeroxed page from an anarcho-situationist leaflet from 1974 with 
Stalin imploring you to support the British government 
• doublespaced typewritten:  ‘I’m positive the 70s will be given a real 
shakedown in years to come, every moment dissected by people 
intent on rediscovering its secrets.  Where will they look?  No doubt 
“punk rock” will be celebrated and chronicled.  But what of the lost 
years of this decade, the first five.  Will schoolchildren tronble at the 
names of Gary Glitter or Slik.’  

Generalizing 

    An overriding theme here is use of whatever is expedient for 
communication:  vanilla DTP layouts, typewriters, handwriting, 
Xerox machines, Gestetner duplicators, collage, etc. Other common 
themes include intentionally transgressing taboos, whether small or 
large;  deliberate scruffiness;  social criticism;  and maximizing 
intensity rather than seeking or even accepting the sort of “tasteful 
restraint” that connotes prestige in the cultures these zines were 
criticizing. 

    Modern zines commonly use the same design elements, which you 
can interpret as an homage to the old punk zines, a clichéd imitation 
of the form which by virtue of being imitative runs counter to the 
spirit of rebellion and innovation that animated the original, as an 
attempt to appropriate the credibility and cachet of the original, or 
just a result of the authors having the same tools at their disposal. 

    What would we get if we were to apply the maxims of traditional 
punk zines, as I’ve described them above, in the current historical 
context?  Typewriters and Xerox machines are, to say the least, not 
expedient for communication today!  Using the internet is expedient, 
and so is taking photos and screenshots.  And they can be in color with 
very nearly the same ease as black and white.  Handwriting and 
scruffy hand-drawing is still expedient. 

    Of course when it comes to documents we have a Web-native 
vernacular for such things, or really several now:  plain-text mailing 
lists and their archives;  the GeoCities epoch of garish backgrounds, 
animated GIFs, “under construction” signs, and <blink> and <marquee> 
tags;  README.md on GitHub;  Yahoo Groups;  Facebook groups;  
and so on.  But what I’m interested in here is user interfaces. 

    User interfaces are not documents.  Their appearance changes over 
time, and not in a predetermined way — rather, in a way that arises 
from interaction with the user, who is in a significant sense the 
coauthor of what they are seeing. 

    What’s the equivalent of the typewriter and xerox for user 
interface design?  Hypercard?
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Caching layout
Kragen Javier Sitaker, 02020-12-03 (8 minutes)

    Let’s consider building up a GUI with table layout, flowable text, 
graphical objects, and clipping, based on a pipeline from some 
arbitrary state data, through to a set of nested boxes, to a layout which 
assigns positions to all these boxes, to pixels to put onto the screen, all 
in a form that is purely functional and therefore tractable to memoize 
or cache, without losing unreasonable amounts of efficiency. 

    First, from the arbitrary state data, we build up a structure of nested 
boxes.  Maybe we iterate over the characters of a text and generate 
letters from a font, which we stack into hboxes that form words, 
which we fill into paragraphs which will compute a reasonable set of 
positions for the word boxes within the resulting paragraph box, 
which is perhaps a child of a vbox.  Maybe somewhere there are some 
GUI elements that get laid out in a table, and one of them is a 
dropdown list which is associated with a transient dropdown, which 
should get composited on top of the whole shebang at a later step.  
Maybe all of the above is within a scrolling pane of a larger window. 

    If this stage of the process is comprehensively memoized, then 
rather than a tree of nested boxes we will have a DAG of nested 
boxes;  perhaps the letter “f” from a given font only results in a single 
tree node.  Also, if it’s comprehensively purely functional, it’s safe to 
discard any of these boxes as well, as long as we save the function call 
that produced them so that we can restart it if we need the box again. 

    Second, to do the layout, we do three further passes over this DAG 
of nested boxes. 

    Pass 2.1 is to compute a corresponding DAG of nested boxes 
augmented with requested sizes and elasticities.  This is intended to be 
a mostly bottom-up pass, where each resulting node depends on its 
descendants, but not on the space actually available for it on the 
screen.  (This is easier for Tk-style widgets than for paragraphs!) 

    Pass 2.2 is to compute the actual positions and sizes of each nested 
box, which is a top-down process, beginning with the size assigned to 
the root box.  This produces another DAG of nested boxes 
augmented with (x, y, width, height) geometry information.  Each 
box is given only the width and height assigned to it, and then can 
follow any policy it likes to assign positions to some or none of its 
children within itself, whatever is visible.  The positions may overlap, 
in which case the z-order is important. 

    Pass 2.3 is to add floating boxes by iterating over the tree from the 
previous pass and giving each visible box an opportunity to produce 
things such as dropdown lists that should be propagated further up the 
tree. 

    Now that we have a layout, we have essentially a scene graph, and 
we need to rasterize the scene graph.  So we make two more passes. 

    In pass 3.1, we produce a new augmented tree (this is starting to 
sound like a nanopass compiler framework) that has a pixel buffer 
associated with each box, a texture buffer which is scaled to the box’s 
visible area, and which contains the graphics from the background of 



that box, not the children.  But the node still has references to its child 
boxes and their positions relative to it.  Some boxes may be 
translucent, but most are opaque. 

    Pass 3.2 is rasterizing the actual screen.  The standard scan-line 
rendering algorithm (Wylie et al.  1968) is, I think, to sort all the 
objects on the screen by their minimum Y-coordinate, then iterate 
over the scan lines maintaining a currently-visible priority queue (the 
so-called “active edge table”) of the edges of the objects intersecting 
the current scan line according to their maximum Y-coordinate, while 
adding the edges of new objects to the queue when we get to their 
minimum Y-coordinate.  (The original Wylie et al.  algorithm 
calculated an “occupied table” of polygons for each scan line.) Within 
each scan line, we sort the edges of the visible objects by X-coordinate 
(an insertion sort which does work proportional to the number of 
new out-of-place edges, times the total number of edges), then iterate 
over blocks of pixels to sample from the textures of the topmost 
object in that block, and whatever other objects are visible through it, 
if alpha-blending is called for.  Finding out the topmost object at a 
given pixel is also a priority-queue problem, this time with Z-order 
instead of bottom-order. 

    Unlike all the previous passes, this last pass is not cacheable at a 
node-by-node level like the others because its results aren’t associated 
with subtrees;  a box may be overlapped by some other box that isn’t 
its descendant, and we respond by not trying to sample its texture in 
the overlapped area.  It can make up for this by being fast so we don’t 
need to cache it;  remember, it’s just sampling from textures, typically 
one or two samples per pixel, if most boxes really are opaque. 

    If we want to do this in a real-time system that guarantees 
responsiveness, we need some kind of cheat for cases where we can’t 
meet our deadline with the correct answer.  If there are too many 
things on the screen to rasterize in time, for example, we could 
rasterize only certain scanlines, for example, or make everything 
opaque, or only rasterize the first N objects on each scanline, or the 
first N objects after the largest X-coordinate that was reached during 
the last frame.  If it’s instead one of the tree stages that’s taking too 
long, we might be able to use an old or outdated version of the 
subtrees we don’t have time for, perhaps tagging them in order to 
gray them out. 

    To figure out what’s worth caching, we might be able to use 
recency, reference counts on cacheable nodes, and the computation 
time they took;  when we discard a cacheable node, we must move 
the computation time it took to each of its previous parent nodes. 

    Some ingenuity may be required for the cache manager to do this 
quickly and optimally;  a straightforward suboptimal solution is to 
maintain two caches, add each newly memoized item to both caches, 
and whenever a cache becomes full, empty it in constant time (by 
resetting an arena pointer);  additionally, whenever a cache crosses the 
halfway-full mark, empty the other cache unless it's nearly full.  
Lookups need not consult both caches, since one is a perfect superset 
of the other, but should promote the cached item to both caches. 

    The result of this approach should be to empty the caches 
alternately at nearly regular intervals, so that all the items that are 



referenced more often than that interval remain always cached, and 
items that are referenced less often have some probability of 
remaining cached.  In particular, if a parent call is getting reliably 
cached, then its children and grandchildren will not get referenced, 
and will be eventually eliminated from the cache, which is in some 
sense optimal.  It may lead to bad worst-case behavior, though.
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Compressed imaging
Kragen Javier Sitaker, 02020-12-06 (3 minutes)

    In compressed sensing we sense a signal, for example an image, via 
some kind of linear basis that’s incoherent with respect to some 
underlying basis in which we expect the signal to be sparse, and then 
attempt to estimate a sparse signal in that underlying basis that best 
“explains” our observation.  If we are correct in our prior that the 
signal should be sparse in that underlying basis, this does a great job at 
reproducing the true signal.  (And often we can choose the underlying 
basis such that when we’re wrong about that, it’s one of the cases we 
care less about.) 

    It occurs to me that you can use this for producing images as well.  
Consider, for example, a disco-ball sparkle pattern swept over a wall 
while being illuminated by a rapidly modulated LED (or three).  A 
camera or eye will sum many successive positions of the sparkle 
pattern together due to the persistence of vision, and the brightness 
and color of these positions will depend on the brightness of the LED 
at that moment.  These may be sufficiently incoherent with respect to 
a suitable basis such as the Fourier basis as to be able to sum to an 
arbitrary visually coherent image. 

    They may not, though, and the inability of the LED to emit 
negative light may be a serious limitation here, since it limits the 
image’s dynamic range, potentially rather badly (like to 3:1 or 4:1 
rather than the 100:1 of a good LCD or CRT.) Other candidate 
output devices for such compressed imaging include: 

• A rotating sparkling surface illuminated by a 
time-domain-modulated light, or several, viewed from a single point. 
• A piece of sandpaper with grains in random but known positions, 
rotated over a surface while floating on a cushion of air, then 
whacked into the surface at precise moments by a hammer at one 
location or another. 
• A sparkle pattern produced by refraction or reflection through two 
or more random but known optical surfaces, either fixed or in known 
motion with respect to one another. 
• A collection of multi-pointed electrodes swept over a surface with a 
time-domain-modulated electrical current on each one to deposit 
and/or remove and/or functionalize material, for example through 
electroplating and electro-etching, through plasma surface activation, 
or through vaporizing parts of the surface.  

    If you use an optimization algorithm in a Fourier-like basis whose 
objective function selectively neglects phase and precise frequency, 
you may gain useful degrees of freedom with respect to human vision 
and audition, among other things:  the humans can’t hear the phase of 
the tenth harmonic of a vocal signal, nor see if all the hairs in an area 
of a closeup photo of a person have been shifted half a hairsbreadth to 
the right, nor hear the difference between 60Hz and 60.1Hz.  This 
optimization approach is of course also useful for applications like 
mural design, JPEG compression, and adapting sound reproduction to 
the resonances of a given listening space.
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A letter-by-letter Hamming code 
for manual ECC computation
Kragen Javier Sitaker, 02020-12-06 (updated 02020-12-16) 
(5 minutes)

    Watched 3Blue1Brown’s video on Hamming codes recently and a 
couple of thoughts occurred to me. 

    First, Hamming codes, like matrix parity codes, are simple enough 
that you could reasonably compute them by hand, making them a 
reasonable candidate for archival media. 

    Second, you can take the same Hamming-code approach over any 
character code, not just a binary code.  For example, rather than 
computing a (15, 11) Hamming code by adding 4 parity bits to 11 data 
bits, or a (7, 4) Hamming code by adding 3 parity bits to 4 data bits, 
you could add 4 “parity” letters to 11 data letters, or 3 “parity” letters 
to 4 data letters, or indeed 6 “parity” letters to 57 data letters;  a 
variety of “parity” computations are possible but perhaps the simplest 
is to use a character code assigning numbers 0 to n-1 to the possible 
letters, and use the sum modulo n.  (It’s entirely irrelevant what n is, 
but the decoder needs to know the whole code.) This is optimized for 
situations in which a whole letter at a time is damaged or lost, rather 
than single-bit errors. 

    Third, you can run either variant of the Hamming-code approach 
along various axes.  If your text consists of lines of up to 57 characters, 
for example, you could add 6 parity characters (or 7, for a SECDED 
extended Hamming code) to each line, or you could divide it into 
“pages” of 57 lines and add 6 or 7 parity lines, each of whose 
characters would be computed over the corresponding characters in 
the other lines.  This would enable the recovery of entire missing or 
erroneous lines. 

    Fourth, you can combine this with the matrix-parity idea;  for 
example, you could compute an extended Hamming code both 
horizontally and vertically, allowing you to correct up to one error 
per line, plus up to one line with two or more errors.  This is not the 
most efficient error-correcting code, but it is very simple, and enables 
a substantial level of robustness. 

    If you were using this for archival in practice, you might want to 
put the “parity” lines and columns at the beginning or end of the 
data, rather than interspersing them as in the canonical 
Hamming-code construction. 

    The ASCII character code has some disadvantages as a code to use 
in this context, since its last position is an unprintable character (DEL) 
and so are its first 32 positions, except arguably TAB, CR, LF, and 
BEL.  Also, arguably, space is unprintable;  certainly it is especially 
prone to OCR errors.  But if you replace the unprintable characters 
with printable ones — one option would be 
“␀␁␂␃␄␅␆␇␈␉␊␋␌␍␎␏␐␑␒␓␔␕␖␗␘␙␚␛␜␝␞␟␣␥”
, but many others have been used at different times, including 
accented letters and extra punctuation — then you would have an 

https://www.youtube.com/watch?v=X8jsijhllIA
https://en.wikipedia.org/wiki/Hamming_code


error-correction code people could very plausibly discover by hand in 
an archival document, for example if microprinted. 

TeX OT1 

    One particularly handy 7-bit all-printable encoding for text is 
TeX’s OT1 font encoding, whose translation into Unicode Wikipedia 
gives as follows, if I haven't screwed it up: 

Γ U+0393
Δ U+0394
Θ U+0398
Λ U+039B
Ξ U+039E
Π U+03A0
Σ U+03A3
Υ U+03A5
Φ U+03A6
Ψ U+03A8
Ω U+03A9
ff U+FB00
fi U+FB01
fl U+FB02
ffi U+FB03
ffl U+FB04
ı U+0131
ȷ U+0237
` U+0060
´ U+00B4
ˇ U+02C7
˘ U+02D8
ˉ U+02C9
˚ U+02DA
¸ U+00B8
ß U+00DF
æ U+00E6
œ U+0153
ø U+00F8
Æ U+00C6
Œ U+0152
Ø U+00D8
̷ U+0337
! U+0021
” U+201D
# U+0023
$ U+0024
% U+0025
& U+0026
’ U+2019
( U+0028
) U+0029
* U+002A
+ U+002B
, U+002C
- U+002D
. U+002E

https://en.wikipedia.org/wiki/OT1_encoding
https://en.wikipedia.org/wiki/OT1_encoding


/ U+002F
0 U+0030
1 U+0031
2 U+0032
3 U+0033
4 U+0034
5 U+0035
6 U+0036
7 U+0037
8 U+0038
9 U+0039
: U+003A
; U+003B
¡ U+00A1
= U+003D
¿ U+00BF
? U+003F
@ U+0040
A U+0041
B U+0042
C U+0043
D U+0044
E U+0045
F U+0046
G U+0047
H U+0048
I U+0049
J U+004A
K U+004B
L U+004C
M U+004D
N U+004E
O U+004F
P U+0050
Q U+0051
R U+0052
S U+0053
T U+0054
U U+0055
V U+0056
W U+0057
X U+0058
Y U+0059
Z U+005A
[ U+005B
“ U+201C
] U+005D
ˆ U+02C6
˙ U+02D9
‘ U+2018
a U+0061
b U+0062
c U+0063
d U+0064
e U+0065



f U+0066
g U+0067
h U+0068
i U+0069
j U+006A
k U+006B
l U+006C
m U+006D
n U+006E
o U+006F
p U+0070
q U+0071
r U+0072
s U+0073
t U+0074
u U+0075
v U+0076
w U+0077
x U+0078
y U+0079
z U+007A
– U+2013
— U+2014
˝ U+02DD
˜ U+02DC
¨ U+00A8
 

    This is intentionally missing some mathematical symbols, namely <, 
>, {, |, and }, as well as some others rarely used in text like \\ and _.  
TeX generally sets mathematical symbols in a different font (which 
makes it a bit strange to include some Greek letters but not enough to 
actually write Greek), and can stack glyphs one on top of the other, so 
separate codepoints for letters like áéòč are not needed.

Topics

• Communication (p.  825) (7 notes) 
• Archival (p.  848) (5 notes) 
• Coding (p.  865) (4 notes) 



Majority logic with DRAM sense 
amps
Kragen Javier Sitaker, 02020-12-09 (30 minutes)

    Horowitz & Hill explain that modern DRAM column sense 
amplifiers consist of a cycle of two CMOS inverters (two CMOS 
inverters in antiparallel) with a pass transistor across them.  As long as 
the pass transistor is passing voltage, the inverters are held in their 
metastable state, with their input connected to their output, 
producing shoot-through current the way CMOS does.  But when 
the pass transistor is opened, the inverters become a latch precariously 
balanced in its unstable equilibrium state, and the tiniest bit of charge 
dropped on one node or the other can determine which direction the 
latch falls. 

    This is done by connecting one of the bits of memory on the 
column to the column sense line, and the other to a reference 
threshold voltage.  The capacitor pulls the sense line either up or 
down by the tiniest bit, and that sets off a positive feedback slippery 
slope in the newborn metastable flip-flop, which pulls the column 
sense line all the way down to 0 or all the way up to 1. 

    This has the salutary effect of fully charging or discharging the 
capacitor, thus refreshing the bit of memory;  so the 
commonly-repeated line that DRAM has destructive read, like core, 
is only sort of true — the refreshing action is inherent to the way the 
sense amplifier works. 

    It occurred to me that this is a potentially interesting design for 
McCulloch–Pitts sequential logic, for SRAM, and for op-amp design.  
Probably there's some flaw in these ideas that explain why they 
haven't been pursued previously. 

McCulloch–Pitts sequential logic 

    The LGP-30 manual includes the full logic design for the machine;  
each of its flip-flops (what we would today call latches) has a Boolean 
function that tells it when to transition to 1 and another Boolean 
function that tells it when to transition to 0, which are written out in 
the manual so you can fix it when it breaks.  When neither of these 
functions is true, it retains the same state it had previously, because 
that is the natural state of a latch.  These functions were computed 
monotonically with diode logic from signals already available;  the 
flip-flops provided not only all the sequentiality needed, but also all 
the inversion and all the amplification. 

    In an analogous fashion, you could run three lines to a "neuron" 
made thus of two inverters and a pass transistor:  two input-output 
lines and a "clock" (in quotes because it's level-triggered, not 
edge-triggered) to control the pass transistor, which holds the 
neuron's input-output lines at a metastable and identical level.  When 
the pass transistor is deactivated, whatever differential external drive 
is present on these input-output lines will be amplified into a Boolean 
1 or 0. 



    In CMOS this neuron is 5 transistors, and the pass transistor is 
smaller if it's N-channel, but can be P-channel instead to get an 
active-low "clock". 

    This neuron has four states: 

• Railing high, in which the pass transistor is open, and it drives its 
positive I/O line high and its negative I/O line low. 
• Railing low, in which the pass transistor is open, and it drives its 
positive I/O line low and its negative I/O line high. 
• Erased, in which the pass transistor is closed, and it drives both its 
positive and negative I/O lines firmly to their equilibrium voltage. 
• Sensitive, in which the pass transistor is open, but the I/O lines are 
still at their equilibrium level;  this state is metastable, and at this point 
it starts transitioning to either high or low, depending on the signed 
difference in the drive currents impinging upon them from the 
outside world.  

    A simple way to use it is to hook its input lines to a 
weighted-summing node driven by outputs of some set of neurons 
activated by an earlier clock phase;  resistors are one way to 
accomplish this.  For example, given four neurons A, B, C, and D, 
which have eight input-output lines A, /A ("A inverted"), B, /B, C, 
/C, D, and /D, you can connect A-10k-D ("pin A to 10-kΩ resistor 
connected to pin D"), B-10k-D, C-10k-D, /A-10k-/D, /B-10k-/D, 
and /C-10k-/D.  First you clock the A, B, and C neurons, driving 
them out of their metastable state into railing, while leaving the D 
neuron in its metastable state.  Now the D line, though held 
metastable by the D neuron, is being driven by A, B, and C to the 
average of their values;  if 1 is 3.3 volts, then they're trying to drive D 
to either 0, 1.1, 2.2, or 3.3 volts.  The /D line is being driven by the 
inverted signals to either 3.3, 2.2, 1.1, or 0 volts respectively.  So, when 
we finally clock D and let it go to a stable state, it will compute the 
majority rule of the other neurons.  At this point we are free to drive 
the other neurons back to a metastable state with the clock signal. 

    At the level of state transitions, this is closely analogous to Merkle's 
buckling-spring logic, but is not adiabatic or reversible;  the resistors 
are constantly dissipating energy, and so are the push-pull transistors 
in the metastable neurons.  It's similar to the McCulloch–Pitts 
threshold-based neuron model Turing used to explain the Pilot 
ACE's logic design, but with a clock. 

    If we then hook up D in a similar way to drive the inputs of one or 
more other neurons, a resistive path exists directly from A, B, and C 
to those other neurons, which complicates our reasoning somewhat.  
Their drive is somewhat attenuated, because it has to go through two 
resistors instead of one, but it's there.  However, if we suppose the 
output impedance of the inverters is on the order of 10Ω while the 
coupling resistors are on the order of 10kΩ, then A, B, and C together 
can only pull a low D output up by about 10mV, or a high D output 
down by only about 10mV, if the power-supply voltage Vcc is 3.3V. 

    However, it may be inconvenient to use such powerful inverters 
and such weak coupling between neurons, because the coupling needs 
to be strong enough to reliably overwhelm random variation in the 
metastable feedback currents once the pass transistor is opened.  (Also, 



if you're doing this on an IC, large-value resistors are massive space 
hogs.) We might want the inverters' output drive to only be a little 
stronger than the coupling resistors.  In that case, here are some ways 
to reduce the extra parasitic coupling described above: 

• If we drive A, B, and C back to a metastable state once D is properly 
latched, their drive will just attenuate D's drive rather than adding 
uncertainty to it, because they've been erased before we clock the 
neurons that depend on D.  We just have to not clock them back out 
of the metastable state before we're done using D's results.  
• Up to a point, we can use progressively more resistance in successive 
stages;  for example, stage-0 neurons can take their inputs through 
10Ω resistors, stage 1 through 100Ω resistors, stage 2 through 1kΩ 
resistors, and stage 4 through 10kΩ resistors.  Obviously this cannot 
continue indefinitely.  
• Instead of driving both of D's input/output lines from A, B, and C, 
we can drive just one of them, while maintaining the other at a 
reference threshold voltage, as is done in DRAM sense amps.  For 
example, instead of wiring A-10k-D, /A-10k-/D, we just wire 
A-10k-D and connect /D only to neurons that are activated at a later 
stage, /D-10k-E for example.  This way, D mediates all the 
communication between earlier and later stages, and when it's active, 
that communication is almost entirely blocked.  As D is making its 
decision, the /D line is pulled toward the equilibrium metastable 
voltage level by the neurons it will later drive, since they are still 
being held in the metastable state.  This scheme necessarily gives us a 
single layer of negation at each clock phase;  if we want to combine 
different levels of negation, we need to run wires across phases.  
• We can lengthen the bucket brigade.  Suppose we have a chain of 
neurons V:W:X:Y:Z with each one coupled to the next on both rails 
as described earlier, but with lower resistances:  V-100R-W, 
/V-100R-/W, etc. So if V goes metastable and then transitions into 
some new state, its influence on Z's input is fighting against not one 
neuron storing its old state, but three:  W, X, and Y.   

    This parasitic-influence concern is even bigger when we try to get 
fanout, influencing all of D, E, and F from the output of A — D, E, 
and F can influence each other. 

    Sometimes it's not necessary to reduce that influence, though. 

    An interesting to note about this form of logic is that its 
input-output directionality is entirely determined by the order of 
clocking.  The V:W:X:Y:Z chain described above can copy bits either 
to the left or to the right, depending on the order of clocking.  As 
Greg Sittler points out, with three-phase clocking, like a stepper 
motor or an amplifying digital CCD bucket-brigade;  we can store 
one shiftable bit per three neurons.  A two-dimensional array wired in 
such a way can shift bits north, south, east, or west, though at the cost 
of 9 neurons per bit and 9 potential clock phases. 

    Although this is already enough for universal computation (with 
elaborate preprogrammed clocking schemes), coupling between the 
neurons need not be limited to goofy McCulloch–Pitts weighted 
sums. 

    Pass transistors between stages in a bucket brigade can give us 



bidirectional shift registers with only two neurons and two pass 
registers per bit, rather than three neurons and three resistors;  we just 
clock the pass transistors to prevent the bits from going in the 
direction we don't want.  (And, for two-dimensional shifts, the 
advantage is even larger, requiring 4 neurons and 8 pass transistors per 
bit.) 

    Diodes between neurons, rather or in addition to than resistors or 
pass transistors, permit an input coupling to be stronger in pullup 
mode or pulldown mode rather than symmetric, which permits more 
compact logic than if you were to build it without diodes.  For 
example, given A->-B, C->-B, (D-<||E-<)-100R-B (D and E 
each have a diode down to them from a point which is connected to 
B through a 100-ohm resistor), F-1kR-B, then when B is in its 
metastable "receptive" state, it will be pulled up if either A or C is 
high;  if not, either D or E can pull it down;  if none of these 
conditions hold, F drives B. 

    Naïvely you might think that such diodes would determine the 
direction of data flow, but of course they don't;  this example 
configuration allows B to strongly pull down A and C whenever B is 
low or metastable, which may not be desirable.  You can fix this thing 
with tricks like (A->||C->)-100R-B, (D-<||E-<)-200R-B, which 
still allows a high on either A or C to override D and E. 

    This limited kind of diode logic is not capable of doing the full 
universal-up-to-monotonicity logic that traditional diode logic can 
do. 

    Another very interesting possible way to couple neurons together is 
via small capacitors, but this is tricky because it seems to be inherently 
pretty glitchy.  Consider, for example, (A-1pF||B-1pF||C-1pF)-D, 
where A, B, C, and D are the positive I/O lines of four neurons, and 
suppose C and D are initially held in the equilibrium state, suppose 
1.6V, while A is 3.3V, B is 0.  So the capacitors on A and B have been 
charged up to 1.6V, but in different directions, while the capacitor on 
C is discharged to 0V.  If we then open D's pass transistor to make it 
sensitive, then it will register whichever of the following events 
happens first: 

• A transitions to its equilibrium voltage, producing a 1.6V negative 
voltage spike.  This spike would have a time constant of 10 ps, if the 
10Ω-output-impedance hypothesis from earlier holds, if the capacitor 
were getting discharged through A's output impedance.  However, 
this rapidly drives D to 0, so in fact the voltage across the capacitor 
rapidly returns to 1.6V in the same direction as before. 
• B transitions to its equilibrium voltage, producing a 1.6V positive 
voltage spike that drives D to 3.3V;  this is otherwise equivalent to the 
case for A. 
• C transitions to either 0 or 3.3V, producing a 1.6V positive or 
negative voltage spike which then immediately propagates to D.  As 
before, the coupling capacitor between C and D doesn't change its 
state of charge.  

    So a group of such capacitor-coupled neurons that has just been 
sensitized (by opening their internal pass transistors) is like tinder for 
the least little glitch, which can propagate along it like wildfire in any 



direction, being inverted wherever the neighbor connections are via 
the negative outputs.  It's like a set of dominos that can be 
automatically re-erected.  The pulse's propagation is slowed if there 
are coupling capacitors to the I/O lines of other neurons that are not 
in a sensitive state;  these capacitors must be charged or discharged 
through the series output impedances of the transitioning neurons and 
the non-transitioning neurons, so the time constant would be about 
20 ps under the same assumptions as before. 

    (This is suddenly far afield of McCulloch–Pitts neurons!) 

    Such a pulse can be originated by a "destructive read" like that 
described above on A or B, where by reopening their pass transistors, 
we get a pulse that tells us what the neuron's state used to be. 

    One reliability concern:  in the case where a coupling capacitor 
must be charged or discharged because it's driving the input of a gate 
in a stable (0 or 1) state, then until that happens, a voltage spike is 
produced in the insensitive neuron that goes beyond the power rails, 
1.6V beyond in this case, so the circuitry needs to be designed to not 
explode under these circumstances. 

    If the internal pass transistors in this capacitor-coupled system were 
driven as before by stupid canned clock-phase signals, this system 
would not be very interesting.  However, we can also drive the pass 
transistors from neuron outputs, so a neuron transitioning to 0 or 1 
can make one or more neurons become sensitive or insensitive.  It's 
important in this case that the sensitivity state be determined both 
when the controlling neuron's output is 0 or 1 and when the neuron is 
at its equilibrium voltage, whether by altering the threshold voltage 
of the pass transistor or by some other means.  Specifically, I think 
normally you want the pass transistor to remain open when the 
controlling neuron is at its "erased" or equilibrium voltage, so that 
you can make a decision about whether to erase the controlled neuron 
without actually erasing it in the process. 

    I think this ability to enable or disable spike propagation in neurons 
from the state of other neurons is all you need for universal 
computation, although it may be somewhat complicated by the fact 
that erasing the neuron's previous state also produces a spike. 

    You could consider using additional coupling pass transistors in 
series with the coupling capacitors:  A-1pF-Nch-B, say, where Nch is 
the drain and source of an N-channel MOSFET.  However, this 
capacitor will act like a bit of DRAM:  whenever the MOSFET is 
open, it has a stored charge from the difference between A and B the 
last time the MOSFET was closed, unless it has been a very long 
time — tens of microseconds or more, depending on the temperature 
and physical construction.  So, if the voltage difference between A 
and B isn't the same as it was when it was last opened, closing the pass 
transistor produces a voltage spike on both A and B.  If one or both of 
them are in a sensitive state, this could cause them to transition! 

    That behavior might be useful, but when it isn't, we can be sure to 
only close these inter-neuron pass transistors when both A and B are 
in their "erased" state;  that is, their internal pass transistors are already 
closed.  (It would also be okay if they were in their high or low state, 
but that is harder to guarantee.) 

    Note that this means that the capacitor is storing a sort of trit:  



when we close the coupling pass transistor, it can produce either a 
positive pulse, a negative pulse, or no pulse.  But the "no pulse" case 
may not be reliable, since slightly different operating voltages 
between adjacent neurons might make it a small pulse instead. 

    The possibility of using coupling pass transistors in this way 
suggests another way to produce two-neuron-per-bit bidirectional 
shift registers with these neurons.  To shift right, suppose that initially 
the bits are in the left neuron of each two-neuron cell, the right 
neuron is erased.  The coupling transistor between the neurons is 
closed, copying the bit onto the capacitor, and then opened.  Now we 
erase the left neuron, so both neurons are erased, but the bit is 
preserved on the coupling capacitor.  Now we sensitize the right 
neuron, then close the coupling transistor again, thus storing the bit in 
the right neuron — but inverted!  To finish shifting the bit into the 
next cell, we do the same sequence of steps using the right neuron, the 
left neuron of the cell to the right, and the coupling capacitor and 
transistor between the cells rather than within them.  A precisely 
analogous set of steps permits shifting to the left instead. 

    There might be a way to do this with only one neuron and one 
coupling capacitor per bit, but it isn't obvious to me what it is. 

    Diodes may still be useful in this capacitor-coupled world;  
junction diodes chop a 1.6-volt spike down to only about 1.0 volts, but 
that's still plenty to knock over the domino, and they may be able to 
prevent the propagation of back-biased spikes.  However, it may be 
necessary to maintain a DC bias on the diode, or to use a PIN diode, 
to lower the back-biased diode's capacitance enough to really block 
back-biased spikes. 

    I suspect weighting different connections in the capacitor-coupled 
world with various sizes of capacitor is not going to be useful, because 
once a neuron goes sensitive, its new state will be determined by the 
relative timing of different pulses — first come, first served!  It won't 
be determined by the relative sizes of different pulses unless they 
arrive in very close proximity.  So you might still be able to do a sort 
of priority decoding by varying delays rather than impedances, and you 
might be able to provide delays by bypassing some neurons' I/O lines 
with additional capacitors to ground (or, equivalently, Vcc), thus 
slowing their transitions. 

    The power use of these neurons, if built with MOS, is negligible in 
the High and Low states, but heinous in the Erased and Sensitive 
states, because we're deliberately provoking shoot-through.  
However, in the resistor-coupled McCulloch–Pitts version described 
first, we also have constant power use whenever a High I/O line is 
connected to a Low I/O line, even indirectly (perhaps they are two 
inputs to a neuron used as a gate).  The diode-coupled version has less 
of this, and the capacitor-coupled version eliminates it entirely, 
dissipating energy only in Erased and Sensitive states and transitions, 
just like regular CMOS. 

    If resistance is interposed in one or both of the positive feedback 
paths within the neuron, it becomes possible to provoke state 
transitions without an intermediate Erased state, simply by 
overpowering the weak feedback drive with a lower-impedance 
external drive.  This potentially permits the use of the technique 



described earlier for the LGP-30, with separate Set and Reset logical 
formulas, which might be coupled to the weakly-feedback-driven 
node using diodes, so they can only pull it up or down strongly.  
Rather than interposing resistance, you could just use especially 
wimpy drive transistors in the inverter, which has the additional 
flexibility of permitting asymmetric drive capabilities — so, for 
example, a strong low signal coming in on the I/O line can 
overpower the feedback and reset the neuron, but a strong high signal 
cannot, as if that signal were diode-coupled. 

SRAM 

    Normal CMOS SRAM cells have 6 transistors or 8 transistors 
("6T" and "8T" respectively).  These neurons are 5 transistors.  I 
suspect that adding a pass transistor to a data bus line gives us precisely 
the standard 6T SRAM cell, but I need to check this out. 

Op-amps 

    So what happens if we take one of these neurons and try to use it as 
an analog comparator?  We'd probably like to have separate input and 
output signals;  let's use a couple of pass transistors and an S&H 
capacitor on each input to achieve this.  We wire 
IN0-Nch1-(20pF-GND||Nch2-A) and correspondingly 
IN1-Nch3-(20pF-GND||Nch4-/A) (that is, connect an N-channel 
MOSFET Nch3 from IN1 to a node connected to ground through a 
20-pF capacitor, and to the I/O line /A via another N-channel 
MOSFET Nch4).  To sample, we open the MOSFETs Nch2 and 
Nch4, then close Nch1 and Nch3 (with make-before-break ordering, 
probably).  Then we wait for the dual 20pF capacitors to ground to 
charge and discharge (they could probably be a single 20pF capacitor 
between these nodes, really).  Once they're adequately charged 
(failure to wait long enough will induce excessive hysteresis) we open 
Nch1 and Nch3, erase the neuron, sensitize the neuron, and 
simultaneously close Nch2 and Nch4.  The differential voltage thus 
imposed on A and /A will kick it out of the Sensitive state into either 
High or Low. 

    At this point we can return to sampling again, while the output 
state continues to rail in A and /A until the clock says it's time to do 
another comparison. 

    An interesting thing about this setup is that its input offset voltage 
doesn't depend on transistor matching in the usual way, although a 
mismatch in the equilibrium voltage between the two inverters will 
provoke some offset — the initial erased voltage will be somewhere in 
between the two inverters' equilibrium voltages, so one of them will 
tend to start rising and the other falling.  But this offset can be 
arbitrarily ensmallened by weakening the inverters' output drivers (as 
before, possibly by putting an output rsistance on them) at the cost of 
speed, or embiggening the S&H capacitors at the cost of bias current.  
The Ron of the erasing pass transistor will also provoke some 
imbalance during the erase state — if one inverter has a stronger 
high-side output drive, it will tend to pull its end of the erasing 
transistor up, and mutatis mutandis if it's the low-side output drive 
that's stronger.  This Ron also means that the inverter with the lower 



input threshold will tend to have lower output voltage, which further 
reduces the precision of the initial unstable equilibrium. 

    The input bias current of this setup is spiky, coming whenever we 
take a new sample, so we can reduce it arbitrarily low by taking 
samples less often, a choice which also enables us to completely 
prevent oscillations above half the sample frequency.  If our rails are 
±15V, then every time we sample, we briefly spike one input to -15V 
and the other to +15V.  If the input impedance is 1kΩ, then these 
spikes would decay with a time constant of 20ns.  If the inputs are 
equal (as is usual for an op-amp), these spikes will total 30V and 0.6 
nanocoulombs (regardless of what the input impedance is);  if we use 
a sampling frequency of 1MHz, that's up to 0.6 mA of input bias 
current, which is horrendous, and all of which is balanced and 
therefore also an input offset current, which is worse.  But if we 
reduce the sampling frequency to 1kHz, we reduce it to 0.6 μA, 
which is reasonable if not excellent. 

    We could perhaps reduce the magnitude of these voltage spikes by 
only drawing from the S&H capacitors until the neuron is safely out 
of equilibrium, then opening Nch2 and Nch4;  500mV out of 
equilibrium is probably plenty, and if there's a bit of resistance at 
Nch2 and Nch4, we might be able to keep the offset voltage imposed 
on the capacitor down to 50mV or so.  That is, once the horse is safely 
running free, slam the barn door shut as fast as you can.  This would 
drop the input bias current by three orders of magnitude, down to a 
reasonable 0.6 μA or good 0.6 nA in the example, assuming the input 
transistors are perfect.  (0.6 nA at 30 V would require them to have 
50 GΩ of impedance when turned off, which is unlikely.) With a bit 
of cleverness, you might be able to break the circuit at roughly the 
point where the sampling caps have been "refreshed" by the amount 
of charge they lost when they initially unbalanced the neuron. 

    It might make more sense to just use JFET followers to drive the 
S&H inputs, but then of course we get back into the question of 
transistor matching. 

    So far we only have a clocked differential-output analog 
comparator whose output spikes down to zero on every clock cycle, a 
problem that could be masked by a pass transistor, capacitor, and drain 
follower glommed onto its output, carefully clocked to exclude the 
spikes.  To transform it into an op-amp, we need to filter its output.  
The ideal way to do this might be with a SAW or coax delay-line 
filter to notch out the clock frequency and all its harmonics, plus a 
good number of subharmonics.  But it's probably more practical to 
eliminate the spikes in the time domain by the method described 
above, then use an RC filter to get some crude averaging. 

    (In some cases it might make more sense to feed the raw railing 
output to a power amplifier, LC low-pass filter the output, and use 
that for the negative feedback;  that way you get a class-D amplifier 
instead of an op-amp.) 

    I'm not sure what the impact will be of gate charge injection in the 
S&H circuit, but it seems like it could be a potential problem. 

    The potential open-loop gain of this sort of amplifier is ridiculously 
huge, because by reducing the clock rate the input power can be 
reduced to almost arbitrarily low levels.  It seems plausible that it 



could detect an input difference of 1 mV (indeed, if it can't, it's not 
going to be very useful as an analog op-amp);  if it's getting 1 nA of 
offset current there, it's consuming a picowatt of input power.  But a 
small amplifier of this design could produce an output swing of 30 V 
at 500 mA, 15 watts, in response to that millivolt input swing.  That's 
16 orders of magnitude more power, which in some sense corresponds 
to 8 orders of magnitude more voltage, which is how open-loop gain 
is normally measured. 

    Given how commonplace it is to use sample-and-hold circuits, 
analog comparators, and D flip-flops, this is surely a family of op-amp 
design that has been tried previously, even if the analog comparator in 
question wasn't specifically based on the antiparallel-shorted-inverters 
approach.
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Truth table search
Kragen Javier Sitaker, 02020-12-09 (11 minutes)

    If you read down the output column of the NOR truth table, you 
get 1110, binary 14.  The corresponding column of the AND truth 
table is 0111, binary 7.  In C-derived languages, 14 ^ 7 = 9, binary 
1001, the output column of XNOR’s truth table, and 14 & 7 = 5, 
binary 0110, XOR.  Correspondingly (A NOR B) XOR (A AND B) 
= A XNOR B, and (A NOR B) AND (A AND B) = A XOR B. 

    In this way on a modern CPU we can combine truth tables of up to 
6 inputs in a single instruction, computing the result of combining 
two Boolean functions with a Boolean operator.  We could imagine 
building up a database of optimal circuits for all Boolean functions of 
up to, say, 5 inputs (32 bits per truth table, thus 4'294'967'296 possible 
functions.) Then, if we want to know how to compute any of these 
functions, we can just look up the optimal circuit in the database.  We 
might have different databases for different design criteria;  for 
example, the circuit with the smallest number of NAND gates might 
not be the one with the smallest propagation delay, and if we 
additionally have AND or XOR gates we can produce smaller circuits 
in many cases. 

    It might be reasonable to build such a database for 6 or more inputs 
if we could exploit some kind of simple normalization.  Some 
functions, such as XOR and “threshold” functions like AND, OR, 
and majority, don’t care if you permute their inputs, but other 
functions do.  For three inputs, for example, ~A & (~B | C) gives 
truth table 0xd0, but other permutations of the same inputs give truth 
tables 0xb0, 0xc4, 0x8c, 0x8a, and 0xa2.  With five inputs you could 
have as many as 5!  = 120 functions that are equivalent under 
permutation of inputs, and presumably most possible functions don’t 
have the kind of special symmetry that XOR have, so you could 
imagine that taking advantage of such input permutations would 
reduce the database size by two orders of magnitude.  Then, before 
probing the database, you’d have to permute the bits in your truth 
table into the normal order — a simple criterion would be to take the 
truth table with the numerically lowest value, in this case 0x8a, (~C 
& (~B | A)). 

    Another kind of normalization that would be useful in many cases 
is a different kind of bit permutation:  negating some or all of the 
inputs.  If you negate the most significant bit of the input, for 
example, you swap the first and second halves of the truth table.  In 
contexts where the negated input is just as easily available as the 
non-negated input, this negation comes for free.  Even when it 
doesn’t come absoutely for free, this may be worth doing, because the 
cost is not large in many contexts.  A counting argument suggests that 
this reduces the number of possibilities greatly:  for 5 inputs we have 
2³² possible functions.  Of these, some depend on all of their inputs, 
while others depend on 4 inputs or less.  The ones with 4 inputs or less 
can be expressed with a 4-input truth table plus a position (0, 1, 2, 3, 
or 4) for the ignored bit.  There are only 2¹⁶ 4-input truth tables, and 
so only 5·2¹⁶ 6-input truth tables that ignore a bit;  that’s less than 2¹⁹, 



which is 1/8192 of the total search space.  The ones that depend on all 
5 inputs usually (handwaving here!) have 2⁵ = 32 versions equivalent 
under input negations, and (I think) all have at least 2 equivalent 
versions.  So we should expect a reduction of a factor of at least 2 and 
I think nearly 32 in the database size by this approach. 

    That’s not a rigorous argument, but it is at least strongly suggestive.  
Moreover I think these two kinds of normalization are 
complementary, and we should get at least a factor of 1000 database 
compression by combining them. 

    Also, of course, before probing the database we can check to see if 
we do have any don’t-care inputs.  If so, we can probe a much smaller 
table, probably in RAM. 

    I thought about also tabulating all the especially low-cost circuits 
for a larger number of inputs, but I think it may not be practical.  
Consider tabulating low-cost circuits with 6 bits of input:  you need 
at least 5 minimal-cost gates, if they’re binary gates (or your circuit 
has less than 6 bits of input), and so at a minimum you have the 
binary trees on 6 inputs, maybe multiplied by the 5th power of the 
number of types of gates.  I think you exceed the number of possible 
5-bit truth tables by a lot rather soon.  (But I haven’t done the 
calculation.) 

    If you have a 32-entry truth table to probe for that contains a few 
don’t-care entries, the brute-force way to handle them is to probe the 
database for the 2, 4, 8, 16, etc., entries they correspond to, 
normalizing each possibility in turn.  If the database isn’t normalized 
in the way I described earlier, you may be able to get some mileage 
out of contiguity properties of indices:  by permuting the truth table 
so that the don’t-care bits are toward the end of your search key, all 
the entries that could match will be physically close together in the 
database index.  This would permit larger numbers of don’t-care 
entries in the search key without totally losing locality. 

    As for actually building the database, a simple approach is basically 
Dijkstra’s algorithm, a breadth-first search using a queue:  initially 
enqueue the trivial circuit (for example, for five inputs, a circuit with 
nets n0=0, n1=1, n2=in0, n3=in1, n4=in2, n5=in3, n6=in4), and 
upon dequeueing a circuit, do the following: 

• compute the truth table of the last net and the cost of the circuit; 
• normalize the truth table; 
• check to see if the normalized truth table is already in the database 
with an equal or lower cost, and add it if not; 
• compute all possible single-gate extensions of the circuit (e.g., n6 = 
n2 NAND n4) and enqueue them.  

    Probably some kind of circuit-normalization step would be useful 
to avoid enqueuing trivial permutations of already-enqueued or even 
already-processed circuits.  Also, if the cost metric is something more 
complex than just “number of gates”, you might want to use a 
priority queue (by cost) rather than a regular FIFO queue.  To find 
out when you’re done, you can maintain a second database of 
still-unachieved normalized 5-input truth tables, removing items 
from it as you find them. 

    I thought about trying to just do the graph traversal on truth tables, 



stored for example as 64-bit integers, rather than circuits — so, going 
back to my first example, if you knew that computing the truth table 
14 takes c(14) = 1 gate, and computing 7 takes c(7) = 1 gate, then you 
can XOR them together (assuming XOR is one of your primitive 
gates) and get 9, with cost c(14) + c(7) + 1 = 3 gates.  This runs into 
two problems: 

• It doesn’t take structure sharing into account, which becomes 
important for circuits of more than two inputs, so the costs it 
computes are only upper bounds. 
• You have to iterate over the entire database of known truth tables 
every time you add a new truth table in order to enqueue all the 
successor circuits, and it isn’t obvious how to do that in an efficient 
way.  

    So much for tabulating forward-chaining search results for a 
meet-in-the-middle attack.  How can we chain backwards, though? 

    One omnipotent approach, ably explained by Darius Bacon in The 
Language of Choice, is the binary decision diagram:  by choosing a 
Boolean variable to split the universe in half with first, we reduce the 
number of possibilities by half.  So if we have a database of optimal 
circuits for all 5-bit-input Boolean functions, and we want a 6-bit 
Boolean function, we can pick one of the 6 bits to split our truth table 
in half with, probe the database twice, and combine the results with a 
MUX. 

    Moreover, we can quite plausibly do this six times to see if any of 
the six gives us a better result.  On an SSD each probe might take 
100 μs, so this might take 1.2 ms, while on spinning rust it might take 
a second. 

    This kind of MUX-based approach is probably reasonable up to 
somewhere around 3 more bits of input, so up to 8 bits of input if we 
have a table of circuits for all 5-bit functions.  It’s still fast and 
guaranteed to work at that point and well beyond, but beyond that I 
think it’s going to usually synthesize circuits that are worse than 
optimal by an order of magnitude or more. 

    I’m not sure how else to do backward chaining.  Maybe you could 
consider partitioning the input bits into subsets.  You could divide 9 
input bits, for example, into 1 bit and 8 others (9 ways), 2 bits and 7 
others (36 ways), 3 bits and 6 others (336 ways), or 4 bits and 5 others 
(4536 ways).  It might turn out that some single-bit function of those 
5 bits can be combined with the other 4 bits to produce the 512-row 
truth table we’re looking for. 

    Somehow for backward chaining we need to be searching for 
simpler component functions, truth tables that are functions of fewer 
inputs.  Large blocks of zeroes or ones suggest the possibility of AND 
or OR with a function of fewer bits — then on the other input of the 
AND or OR those bits become don’t-cares.
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Yablochkov arc cutter
Kragen Javier Sitaker, 02020-12-09 (1 minute)

    A Yablochkov candle was an early kind of arc light, consisting of a 
strip of plaster with two carbon rods running along its edges and 
shorted together with a fuse wire at one end.  By connecting line 
voltage to the other end of the carbon rods, you vaporize the fuse 
wire, initiating an arc, which then continues between the ends of the 
carbon electrodes, burning down the rods and the plaster at the same 
speed.  Later models included some metal powder in the plaster so 
you could initiate it a second time. 

    It occurred to me that if you had a hole through the center of the 
plaster, you could blow air through it to squirt some of the plasma 
onto things, thus perhaps cutting them;  this gives you a plasma cutter 
suitable for non-metals.  And with a modern constant-current supply 
(or even a ghetto version consisting of a quartz-halogen lightbulb or 
ten in series with the carbon rods and a voltage source high enough to 
strike the arc) you maybe don’t even need the fuse wire.
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The Language of Choice, and 
other languages
Kragen Javier Sitaker, 02020-12-09 (updated 02020-12-31) 
(10 minutes)

    I was reading over Darius Bacon’s The Language of Choice 
yesterday, which is an introduction to binary decision diagrams;  
chatting with Bacon, a couple of ideas came out that I thought I 
ought to write down. 

Eliminating left recursion 

    (I’m going to ignore tokenization and thus whitespace here, since it 
would add more heat than light.) 

    One is that the language generated by the CFG 

<expr> ::= <var> | <expr> if <expr> else <expr>
 

    is context-free, but left-recursive and ambiguous (a if b else c if d 
else e can be parsed as testing b first or d first).  If you want to parse it 
using a standard linear-time Packrat parser, you need to factor out the 
left-recursion and resolve the ambiguity.  Bacon suggested two ways 
of doing this, one right-associative as it should be: 

<expr> ← <var> (if <expr> else <expr>)?
 

    and the other left-associative: 

<expr> ← <var> (if <expr> else <var>)*
 

    Of course, once you have a parse tree, it’s a simple 
pattern-matching exercise to construct a parse tree with a different 
associativity. 

    (Of course Bacon is aware he didn’t invent left-recursion removal;  
I just had never understood it until he explained it.) 

    XXX verify these 

    In this form the language is missing a little bit of expressivity;  it 
can only express an unbranching chain of single-variable choices, and 
it can’t express negation.  You can enhance this with nesting to be 
able to handle arbitrary boolean functions: 

<expr> ← ("(" <expr> ")" / <var> / <const>) (if <expr> else <expr>)?
<const> ← 0 / 1
 

Memoization sparsity 

    (See also The sparsity of PEG memoization utility (p.  765).) 

    I was thinking that this grammar might be a good example of when 
you benefit from Packrat’s memoization, but in fact it’s not, once the 
left recursion is factored out.  I’d like to figure out how to work this 
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out rigorously:  how can we know that a given memo-table entry can 
never be used?  Is there a single canonical answer that’s practical to 
compute, or is it more a question of a series of conservative 
approximations, progressively less simple? 

    Perhaps in this case we can observe that no retry-after-backtrack of 
any callsite of <expr> will ever invoke <expr> a second time.  This is a 
whole-grammar property because it flows through invocations;  we 
could falsify it for both <expr> and <var> by, for example, adding this 
rule to the above grammar: 

<when> ← <expr> when <expr> / <expr>
 

    But if we refactor that rule as follows, we regain the desirable 
memorylessness property: 

<when> ← <expr> (when <expr>)?
 

PEG cuts 

    Mizushima, Maeda, and Yamaguchi published a paper in 2010 
where they insert a Prolog-style “cut” operator into PEGs, spelled ↑;  
the construction x ↑ y / z is similar to x y / z, but although failures 
before the cut (in x) can backtrack to z, failures after the cut (in y) do 
not.  Analogously in (x ↑ y)* if there is a failure in y then the whole 
repetition fails.  They first implemented this in Yapp, but in the 2010 
paper they explain how they inserted cuts and negative lookahead 
assertions automatically in semantics-preserving locations. 

    They say x ↑ y / z is equivalent to x y / z iff there is some string S 
such that x matches some prefix of S and z matches some (possibly 
different) prefix of S.  This is an undecidable problem even in some 
trivial cases, like where x matches everything, so that the problem 
reduces to whether z can ever succeed on any input.  So they compute 
a conservative approximation that lets them insert enough cuts to get 
“mostly sequential space” on “practical grammars”, including “a Java 
PEG and a JSON PEG” but not “an XML PEG.” 

    They also report that their cut-insertion improves error reporting 
from PEGs. 

    Redziejowski wrote a 2016 paper “Cut points in PEG” where he 
uses a second kind of “cut” ↓, which I’m guessing he got from an 
earlier Mizushima et al.  paper:  a ↓ b ↑ c / d backtracks and retries d 
only if the failure happens within b, so a failure after the ordinary cut 
↑ doesn’t backtrack, but neither does the failure before the backwards cut ↓
.  I’m not yet sure what this is good for. 

    Cut insertion doesn’t avoid sticking things into a memo table that 
we are never going to need, but it does allow us to discard potential 
backtracking points off the stack as soon as we know we aren’t going 
to need them, which allows us to safely discard everything to the left 
of that point. 

Empirical testing of cut insertion 

    Given a candidate criterion for not memoizing a callsite at all, we 
could test it by memoizing it anyway, then testing the parser on some 



input to see which callsites the criterion erred on — those whose 
memo entries were expected to be useless, but got used anyway.  It’s 
maybe also worthwhile to examine which callsites don’t need to probe 
the memo table because it’s impossible for a memo-table entry to 
exist, because no preceding attempt to parse the same text could have 
invoked that nonterminal at that position.  I haven’t seen any research 
on this aspect of the problem, but it seems like it would help a lot to 
reduce both the time usage and space usage of the memo table. 

Left-recursive PEGs 

    There’s a trick due to Warth, Douglas, and Millstein, which lets 
Packrat parse some left-recursive grammars at the expense of their 
linear-time guarantee, which I think would enable Packrat to handle 
the original grammar in PEG form: 

<expr> ← <expr> if <expr> else <expr> / <var>
 

    When it detects a left-recursive call, it initially fails;  if it finishes 
parsing the rule successfully, for example with the <var> alternative 
here, it enters the parse result into the memo table, then restarts 
parsing, this time allowing the left-recursive call to succeed.  So, for 
example, parsing a if b else c if d else e, it would initially parse a with 
the second alternative, and then on a second go-round, use that a for 
the left-recursive <expr> invocation and succeed in parsing a if b else c, 
which would replace a in the memo table;  after restarting a second 
time, the initial left-recursive <expr> requirement would be fulfilled 
with the whole a if b else c from the previous attempt, and the whole 
expression would be parsed as an <expr>, though associating incorrectly. 

    After a third restart, an attempt to parse an <expr> that begins with a 
if b else c if d else e fails, because that is followed by end of input, 
not by if.  So we keep the former parse. 

    Essentially, this left-recursion trick converts a Packrat parser locally 
from a top-down parser into a bottom-up parser. 

    I think Medeiros, Mascarenhas, and Ierusalemschy have written a 
2014 paper on this question. 

Alternative Boolean syntax 

    An earlier draft of Bacon’s article, if I recall correctly, chose the 
symbols ← and → rather than 0 and 1 for the Boolean values, and used 
infix rather than prefix syntax, so (if we interpret ← as True and → as 
False) a if b else c would be written a {b} c, which is a if b evaluates to 
← and c if b evaluates to →.  That is, a {←} c evaluates to a, and a {→} c 
evaluates to c.  So you got nice identities like {0 {x} 1} = x, a {1 {x} 0} b 
= b {x} a, and a {b} a = a.  I really liked this idea, but he dropped it for 
the final version of the article as making it less accessible. 

Laws of Form 

    The other clever Boolean notation idea is the one from Laws of 
Form, which is optimized for handwriting rather than strings of 
characters;  in a string-of-characters form we can use nested 
parentheses, which indicate negation.  One interpretation is that in 



LoF juxtaposition represents OR and the empty string represents 
False, so we can write the whole canonical evaluation ruleset as 
follows: 

()() -> ()
(()) ->
 

    That is, two empty sets of parentheses (“crosses” in LoF jargon) 
juxtaposed can be rewritten as a single empty set of parentheses, and a 
parenthesized empty parenthesis can be rewritten as an empty string. 

    This is essentially the same as the Sheffer (spelling?) stroke or NOR 
logic, but with a notation that exploits a homeomorphism between 
the empty string being the identity element in the free monad and 
falsehood being the identity element for Boolean OR.  (LoF itself is 
silent on the correspondence between its crosses and logic, so you can 
equally well interpret the empty string as true and juxtaposition as 
AND.) 

    While the notation is pleasantly straightforward for explicit 
evaluation, my attempts to formulate normalization rules such as 
CNF normalization as tree rewriting rules for LoF notation were not 
very fruitful — they seemed to come out a great deal less clear than in 
traditional Boolean logic, and at the time I wasn’t able to get them 
working.
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Scribal Basic:  a 1960s language for 
the 02020s
Kragen Javier Sitaker, 02020-12-12 (updated 02020-12-15) 
(32 minutes)

    I was thinking about the BASIC systems of my childhood and 
what a similar system, tentatively called Scribal Basic, might look like 
now.  The overall emphasis was on making them easy. 

What BASIC was like 

    One key aspect was the “IDE”:  you could interrupt the program 
at any time, type bits of code, inspect some variables (the “PRINT” 
command had a shortcut spelling “?” for this purpose, so you could 
type “?X3” to see the value of X3, a feature important enough that 
FORTH spent the single-character word “?” on it as well), modify 
the program, and continue from where you left off.  So in a sense you 
were always running “in the debugger”, just as with Smalltalk, Lisp, 
and FORTH. 

    Microsoft BASIC-80 had a set of vi-like line editing commands 
which I couldn’t understand, because I couldn’t see what was going 
on, so I would modify the program by retyping lines of code from 
scratch, with the line number.  The 8086 version of Microsoft BASIC 
improved this because it had arrow keys and modeless screen editing, 
so you could use the arrow keys to move up to a previous output line 
(from LIST, say), modify it, and hit Enter, which worked like 
retyping the line.  Because you could replace, say, line 30 of the 
program to say “INPUT X” by typing 30 INPUT X, this had the effect of 
changing the program in memory to say what you’d edited that line 
to say, as if you were WYSIWYG-editing it through a tiny 
one-line-long window. 

    Another aspect of BASIC’s easiness was that it had no mutable data 
structures other than variables.  It had array variables, but no way to 
alias them.  There were no records, no containment, no foo.bar.baz, 
no pointers (other than indices you could potentially use to index 
arrays).  Strings were immutable.  This seems to have been important 
to usability;  Joel Spolsky (?) reports that the with statement, which in 
VBA (as in Pascal or JS) imports the contents of a record into the 
variable namespace, was a significant boon to VBA’s usability.  (I 
can’t find Joel’s post now.) 

    You also didn’t have to deal with data types, and I didn’t, except 
for the distinction between strings and numbers, a distinction which 
Perl and JS eliminate.  More advanced BASIC programmers knew 
that by defining some or most of their variables as integers they could 
speed up their programs by one or two orders of magnitude, because 
of course all the floating-point math was done in software, and by 
default when you wrote FOR I = 1 TO 10 you were implicitly doing a 
floating-point addition and comparison every time through the loop. 

    There was no scoping;  all variables were global, declaration was 
implicit, and as in Perl, initialization was automatic — unassigned 



variables had the value 0, or "" if they were strings.  Like the lack of 
types, this was super bug-prone, but it was also simple — you never 
lost a variable value because it went out of scope, or had two different 
variables with the same name, or had code that worked at one point 
but then stopped working due to an unrelated change giving an 
uninitialized variable a nonsense value. 

    BASIC-80 had a one-level parser that didn’t need whitespace to 
recognize keywords, but variable names were limited to only two 
characters.  The consequence was that you could write things like 
ifx=ythen300elseprintx and have it parse.  This was terrible for readability 
but probably also improved the language’s “easiness” by making it 
more forgiving:  you couldn’t break your program by leaving out 
whitespace.  Relatedly, if you wanted to PRINT multiple things on 
the same line, you were supposed to separate them with ;, but 
BASIC-80 (and I think even GW-BASIC) didn’t enforce that. 

    There was a strong distinction between the user program and the 
system, and the temptation was to think that “learning to program” 
meant memorizing the capabilities the language provided.  BASIC’s 
extensibiilty was almost zilch.  GOSUB was the limit;  if you defined 
a subroutine to draw a line, for example, you might invoke it as 
follows: 

1450 X1=37:Y1=102:X2=128:Y2=17:GOSUB 3000
 

    Compare that to the LINE statement added to Microsoft BASIC 
at some point (it was present on at least the versions for the TRS-80 
Color Computer, the IBM PC Jr, and the Zenith Z-100): 

1450 LINE (37,102)-(128,17)
 

    From the perpective of a 7-year-old, which I was when I started 
programming the CoCo, that’s a huge difference.  I learned to define 
subroutines in Logo when I was 5 or 6;  I didn’t figure out how to 
transfer that knowledge to BASIC until after learning Pascal (at 11), 
or maybe even later. 

    The other problem created by the strong system-code/user-code 
distinction was that, even if you did implement the code to draw a 
line in high-level BASIC, it would be so slow that you could see it 
drawing each individual pixel, even on the IBM PC Jr, which ran at 
almost 1 MIPS but only about 0.2 Dhrystone MIPS.  So BASIC was 
too slow to be used as other than a “scripting language” in that sense. 

    However, the great benefit provided by the system-code/user-code 
distinction was that your BASIC program couldn’t corrupt the 
system’s structures, at least until you pierced the veil with PEEK and 
POKE.  When you interrupted your program — a common thing to 
do to fix bugs you’d just noticed, or to recover from an infinite 
loop — BASIC would tell you you were at some line number or 
other, not in the middle of some internal 
Bresenham-point-calculation routine invoked by LINE.  On one 
hand, this did not facilitate studying and extending the system, but on 
the other hand, it meant that the behavior you saw was always 
explicable in terms of your program — you didn’t have to study and 
extend the underlying system to debug your program. 

http://www.antonis.de/qbebooks/gwbasman/line.html
http://www.netlib.org/performance/html/dhrystone.data.col1.html


    (Vaguely related thought:  transactions simplify debugging and 
error recovery, at least as long as they don’t make debugging 
impossible.  What if every subroutine call were a nested transaction?  
It would simplify exception handling, too, since rolling back the 
transaction would eliminate any need for running user-defined 
cleanup code.  See [transaction-per-call.md].) 

    So, thinking about BASIC and Logo, I wondered what a modern 
sort of BASIC would look like, one that was as easy as real BASIC in 
the ways that BASIC was easy, but easier in the ways that BASIC 
was hard.  And even though I’ve said above that a lot of the important 
aspects were the IDE — you were always running the program “in the 
debugger”, you could stop and look at variables and fix it and 
CONTinue, etc. — I’m going to focus on the purely linguistic aspects 
here. 

Syntax and control flow 

    From my experience with Logo, I don’t think the absence of real 
subroutines with parameters was really a key thing that made BASIC 
easier.  In fact, I think Logo might have made things easier by having 
named subroutines with parameters. 

    But if you don’t have records or other heterogeneous aggregate 
data types (tuples or whatever) you need some way for a subroutine to 
return multiple atomic units of data.  In BASIC this was easy, because 
all the variables were global, so you could just change them.  Octave 
(another champion at making programming accessible to 
nonprogrammers) fixes this by explicitly listing named return values 
in the procedure header.  A different approach is to make parameters 
implicitly inout, for example by always using pass-by-reference. 

    Another way to compensate for not having records is by using 
closures, but closures can be confusing.  But Smalltalk-like “blocks” 
don’t have to be confusing;  consider Logo’s REPEAT 4 [FD :SIDE 
RT 90] — it’s apparently easy enough for kids to use. 

    So I propose that Scribal Basic should support CLU-like or 
Ruby-like block arguments, so you can define repeat in the language 
itself, although learners should be able to lock it so they don’t end up 
in the middle of it when they interrupt the program: 

[repeat n]
for i = 1 to n:
    yield
 

    I think Python’s indentation-based syntax with colons has been 
shown to be easier for learners to understand, but if not, you could 
spell this as follows: 

[repeat n]
for i = 1 to n
yield
next i
 

    You would invoke this with something like the following: 



repeat 4:
    fd side
    rt 90
 

    Or, if the indentation goes away: 

repeat 4 {
    fd side
    rt 90
}
 

    The block argument is invoked with yield, and because it’s not a 
first-class object, it becomes a downward funarg;  it can’t be captured 
and stored for later use, so resources can be reclaimed with stack 
discipline.  This does require a little bit of trickiness with the calling 
convention:  the block is running in the lexical context where it was 
defined, with access to variables like side, but the activation record of 
repeat is still active, so fd and rt get their activation records pushed on 
top of repeat’s.  And when we reach the end of the block we must 
“return” into the body of repeat, before it returns to the caller of repeat 
which contained the block. 

    Because all the parameters are passed by reference, you can pass 
variables to return values in as parameters, especially useful for 
IMGUI kinds of things.  Because these references are also not 
first-class values, they also cannot be saved for later, so they do not 
impede stack discipline for resource management. 

    Nonlocal exits from block arguments are potentially tricky.  If you 
implement GOTO and RETURN in the straightforward way, three 
potential problems come up: 

• You could RETURN from inside a block without giving repeat or 
similar things a chance to clean up their activation records.  They 
won’t leak memory in the usual stack implementation — you just 
restore the stack pointer to what it was on entry to the subroutine 
you’re returning from — but you could imagine wanting, for 
example, to unlock a lock or restore some graphics context state.  So 
whatever cleanup code is necessary would need to be activated.  
• If you can GOTO from within the block to outside the block, not 
only could you circumvent such cleanups, you could enter the block 
repeatedly, which means that there would be more than one 
activation record on the stack of repeat or a similar procedure for the 
block to potentially return into if it ever manages to successfully 
terminate.  
• If you can GOTO from outside the block to within it, you can end 
up at the end of the block without anyplace to return to.   

    The simplest way to avoid all these problems is to eliminate 
GOTO and RETURN from the language. 

    Blocks that take parameters could be spelled in a few different 
ways.  At one point I was thinking to use [] (otherwise unused in 
BASIC) for parameters in general, so maybe you could spell a block 
that takes X and Y parameters as [X, Y] { ...  }, for example.  Or you 
could put them after the colon if you use Python-style indented 
blocks with colons. 



    But really you don’t need parameters for blocks if parameters are 
passed by reference.  You can just use out-parameters for the 
higher-order subroutine you’re invoking: 

eachpoint x y:
   print "x: " x "y: " y
 

    Here x and y are variables in scope in the caller of eachpoint (perhaps 
local, perhaps global, perhaps parameters) which eachpoint can assign to 
before invoking yield. 

    In PostScript, we define paths by a series of commands:  moveto, 
lineto, closepath, arc, and so on.  We can then stroke, fill, or clip to 
these paths, and IIRC in Display PostScript we could also handle 
events in those paths.  This sort of thing seems like a good use of 
blocks for passing complex data down the stack.  As a simple example, 
we could define a subroutine that both strokes and fills a path: 

[strokefill]
yield              ' stroking is default behavior for discoverability

fill:
    yield
 

    And to handle a mouse click event inside a path, perhaps we could 
store the coordinates and a bitmask of buttons via out parameters: 

[handleclick x y buttons]
getmouse x y buttons         ' get mouse state from intrinsic

checkwithinpath within x y:  ' standard routine for containment check
    yield                    ' delegating path definition to block passed in

if not within:
    buttons = 0            ' zero out the buttons so caller knows to ignore
 

    I’m not sure if a single block argument will be adequate, because 
you probably want to define things like “if this button is being 
clicked, do such and so”, and that is difficult to express with a single 
block if both the button geometry and its action are represented with 
blocks.  You could do something grody like this: 

button bletches:
    if bletches = "draw":
        drawmybutton
    else:            ' it got clicked, since that's the other possibiity
        print "mybutton clicked"
 

    But some kind of syntax to pass multiple block arguments, or name 
them, might be better. 

    Other cases where you might want more than one block argument 
include clipping (an operation that takes a clipping path and a 
drawing — though this is handled in PostScript by having the clip 
operator change the current clipping path until the next grestore);  



looping constructs with a “final” block;  exception handling with a 
handler block;  union and difference of paths;  and 3-D CSG. 

    Naming all the block arguments might be a good idea: 

[handleclick x y buttons &path]
getmouse x y buttons

checkwithinpath within x y {
    path
}

if not within {
    buttons = 0
}
 

    This permits the more straightforward formulation: 

[handleclick x y buttons &path &handler]
getmouse x y buttons

checkwithinpath within x y {
    path
}

if within {
    handler        ' invoke second block argument
}
 

    This might be invoked simply with two juxtaposed blocks: 

handleclick a b c {
    moveto 100 100
    rlineto 0 200
    rlineto -100 0
} {
    print "triangle clicked" a "," b "buttons" c
}
 

    In fact, it might be written with them: 

[handleclick x y buttons &path &handler]
getmouse x y buttons

ifwithin x y {
    path
} {                       ' second block argument to ifwithin is handler
    handler
}
 

    But if we’re using the Python-like indented-block syntax, you 
need some kind of keyword to introduce the block: 

[onclick x y buttons &path then: &handler]
getmouse x y buttons



ifwithin x y:
    path
then:  ' second block argument to ifwithin is also introduced with "then:"
    handler
 

Argument separation 

    Logo and Tcl come down firmly on the side of juxtaposed 
arguments, but BASIC traditionally separates arguments with 
commas, for user-defined functions like DEF FNA, for built-in 
functions like INT and RND, and for some commands like SAVE 
"FOO",A.  Other commands separate arguments with semicolons 
(INPUT "Name";N$) or a combination (PRINT I;"th month", 
M(I)).  PV-WAVE IDL goes further and separates even the function 
name from the first argument with a comma:  F,X,Y. 

    The argument in favor of separating arguments with commas is 
redundancy for error reporting;  if rlineto 0 -100 gets interpreted as 
rlineto (0-100) it could be difficult to figure out why you were getting 
an error or an incorrect effect, or that you need to write rlineto 0 
(-100) instead. 

    Smalltalk uses keywords to separate arguments:  ary at:  pos put:  
element, which would read a little better as ary at=pos put=element 
or ary at:  pos, put:  element.  And I’m already considering that maybe 
Scribal Basic should use such keywords to introduce block arguments, 
at least after the first one. 

    For the time being I’m sticking to simple Logo-like juxtaposition 
of arguments despite infix syntax, but I’m noting this as a potential 
trouble point. 

Data model 

    I think the unification of strings with numbers as done in Perl, the 
Bourne shell, and Tcl is a significant improvement in usability, 
especially for novices, and worth keeping, although it undermines 
Scribal Basic’s claim to be a Basic.  Awk and JS also try to do this, but 
they do it by guessing when something is supposed to be a number 
and when it’s not, and there are some operations that handle the two 
differently, notably comparisons and, in JS, +.  I think this is a mistake. 

    I also think built-in hash tables (as in awk, Perl, Tcl, Lua, and JS) 
improve usability a lot, even without being first-class values, as they 
aren’t in Tcl, Perl 4, and awk. 

    The possibility of passing a nonexistent hash table entry as an 
argument by reference as an argument suggests a lurking danger of 
autovivification.  This can be ameliorated by not making hash tables 
first-class values, so the question of what to do when reading 
a("foo")("bar") doesn’t arise, and by adopting the Lua convention for 
existence:  a nonexistent hash-table entry is indistinguishable from 
one to which nil has been assigned.  This is bug-prone but probably 
better than the alternatives in this context. 

    This way, if someone says foo bar["baz"] and bar doesn’t have “baz” 
in it yet, we can safely insert a nil at “baz” into the hash table bar 



before invoking foo with a pointer to that nil, which it can then set to 
something else if it wants.  However, this pretty picture is 
complicated by the possibility of needing to rehash the table to 
expand it before foo attempts to mutate it. 

    This can be avoided, rustily, if it’s impossible to insert anything else 
into bar in the meantime, for example because no other reference to 
bar is passed to foo or used by a block argument of foo.  Alternatively, 
we could pass in a writing thunk rather than a raw memory address, 
or apply a lock to bar to prevent insertion until foo returns, a lock the 
insertion routine would have to respect. 

    If we’re going to write subroutines that process arrays of numerical 
data, we need some way to pass the whole array as an argument.  
Traditionally in BASIC this is done, inefficiently, by sharing a global 
array, while in Algol 60 it was done with call-by-name, allowing 
constructs analogous to the following: 

[sum i n item total]
total = 0
for i = 1 to n:
    total = total + item
 

    which could be invoked as, for example, sum i 10 a(i)*b(i) dp to put 
a dot product into dp. 

    I think call-by-name is a terrible idea, though I’m not clear that it’s 
really that much worse than implicit call-by-reference.  But the 
alternative to call-by-name is to pass entire arrays by reference, which 
seems like the right choice: 

[dotproduct n p q total]
total = 0
for i = 1 to n:
    total = total + p(i) * q(i)
 

    Much of the language design is aimed at pretty high and 
highly-predictable efficiency with a simple compiler:  stack discipline 
for variable storage, limited pointers, no records, and so on.  But it 
seems that if you’re going to make the language stringly-typed like 
Tcl, you’re going to have to do some type inference to figure out 
which variables are really numbers.  This is going to be complicated 
by pervasive mutability and call-by-reference, since potentially any 
function you call with a variable could change the type of that 
variable.  And any time you invoke yield (or a named block argument) 
that block can potentially mutate any global variable or by-reference 
argument, including changing its type. 

    But I think in most cases you can infer at least numeric or string 
nature for variables, and in, out, or inout mode for parameters.  Most 
subroutines won’t take block arguments;  most parameters won’t be 
modified;  etc. 

Scoping 

    Nested scopes are probably a mistake for novice usability, and 
probably implicit global is the wrong choice — it would render 



disastrous the simple repeat definition above, which mutates i without 
declaring it local — especially given the possibility to pass things by 
reference.  The usual annoying issues of producing closures in a loop 
(do they all alias the same underlying variable?) disappear with 
downward funargs. 

    But mutable global variables probably are needed.  Ruby’s solution 
of prefixing them with $ seems like the best tradeoff, avoiding the 
“action at a distance” effect of explicit declarations. 

Imaging model 

    Making graphics was one of the most important aspects of both 
Logo and BASIC.  Even on the H89 I was making ASCII-art 
graphics.  Nearly all I did in Logo was make graphics, a fact which 
will surprise anyone who’s seen my adult drawings.  Other people I’ve 
talked to about their childhood Logo experience also talked about 
making graphics.  The graphics capability of IBM PC BASIC, 
Z-BASIC, and GW-BASIC was what I spent all my time on when I 
programmed those machines.  Proce55ing is popular with novice 
programmers today and mostly focused on making graphics.  And 
James Hague describes his experience learning to program as follows: 
...I can talk about the Atari 800 I learned to program on. 
    Most games didn’t use memory-intensive bitmaps, but a gridded character mode.  
The graphics processor converted each byte to a character glyph as the display was 
scanned out.  By default these glyphs looked like ASCII characters, but you could 
change them to whatever you wanted, so the display could be mazes or platforms 
or a landscape, and with multiple colors per character, too.  Modify one of the 
character definitions and all the references to it would be drawn differently next 
frame, no CPU work involved. 
    Each row of characters could be pixel-shifted horizontally or vertically via two 
memory-mapped hardware registers, so you could smoothly scroll through levels 
without moving any data. 
    Sprites, which were admittedly only a single color each, were merged with the 
tiled background as the video chip scanned out the frame.  Nothing was ever 
drawn to a buffer, so nothing needed to be erased.  The compositing happened as 
the image was sent to the monitor.  A sprite could be moved by poking values in 
position registers. 
    The on-the-fly compositing also checked for overlap between sprites and 
background pixels, setting bits to indicate collisions.  There was no need for even 
simple rectangle intersection tests in code, given pixel-perfect collision detection at 
the video processing level. 
    What I never realized when working with all of these wonderful capabilities, 
was that to a large extent I was merely scripting the hardware.  The one sound and 
two video processors were doing the heavy lifting:  flashing colors, drawing 
characters, positioning sprites, and reporting collisions.  It was more than visuals 
and audio;  I didn’t even think about where random numbers came from.  Well, 
that’s not true:  I know they came from reading memory location 53770 (it was a 
pseudo-random number generator that updated every cycle). 
    When I moved to newer systems I found I wasn’t nearly the hotshot game coder 
I thought I was.  I had taken for granted all the work that the dedicated hardware 
handled, allowing me to experiment with game design ideas.  

    A common observation of kids (and, to a lesser extent, novice adult 
programmers) is that they quickly pick up how to use the built-in 
facilities of the environment, but struggle to build their own 
abstractions for hierarchical composition, even when they aren’t using 
generalization-impaired environments like BASIC-80.  Later in the 
article quoted above, Hague describes his own process of learning to 
do this when thrust into “the cold expanse of real programming”. 

https://prog21.dadgum.com/173.html


    So it’s really important that you can do this kind of thing in a trivial 
amount of code in GW-BASIC: 

10 screen 2:for i=0 to 20:line(i*31,0)-(0,i*9):next
 

    This generates a graceful string-art approximation of a quadratic 
Bézier curve when you RUN it, which is super cool when you’re 8.  
It’s only three bytes longer than a minimal Java program that does 
nothing at all: 

class X{public static void main(String[]args){}}
 

    Further contrast this "hello, world" program with Swing, and 
consider the level of novice-accessibility it demonstrates: 

import javax.swing.SwingUtilities;
import javax.swing.JFrame;
import javax.swing.JLabel;

public class HelloWorldSwing {
    public static void main(String[] args) {
        javax.swing.SwingUtilities.invokeLater(new Runnable() {
                public void run() {
                    JFrame frame = new JFrame("HelloWorldSwing");
                    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
                    frame.getContentPane().add(new JLabel("hello, world"));
                    frame.pack();
                    frame.setVisible(true);
                }
            });                        
    }
}
 

    That’s over an order of magnitude worse than the BASIC line-art 
program.  I don’t think you can get it much more compact than that 
with Swing, and that’s appalling. 

    So I think Scribal Basic, despite the name, would need to make it 
easy to draw graphics.  But I think most people will quickly get 
frustrated with the limits of 1980s-style opaque line-art polygons in 4 
or 16 flat colors, or even 24-bit flat colors, even for cartoons.  So I 
don’t think GW-BASIC-style flood-fill and XORing into the 
framebuffer is really going to get us very far. 

    I think instead something like the PostScript/PDF/SVG imaging 
model is better, at least for 2-D graphics, where you build up 
two-dimensional paths one at a time and apply stroke/fill/eofill/clip 
operations to them, with alpha-blending and gradients.  (The GLSL 
fragment shader approach is more powerful but more challenging.) 
There are a lot of ways for people to build graphics for that model:  
interactive drawing programs, making JPEGs or PNGs or H.264 
frames that are then loaded in, rendering from 3-D models, constraint 
solvers like SKETCHPAD and SolidWorks, and so on. 

    But I’m going to focus on the most straightforwardly usable 
imperative programming approach to defining paths, which I think is 

https://hwiegman.home.xs4all.nl/gw-man/SCREENS.html
https://hwiegman.home.xs4all.nl/gw-man/SCREENS.html


either turtle graphics or moveto/lineto with numerical coordinates.  
It’s fairly straightforward to define one in terms of the other;  here’s 
the code for turtle graphics in PostScript I used for Heckballs: 

% Turtle graphics.

/seth { /theta exch def } def
/rt { theta add seth } def
/lt { neg rt } def
/pd { /turtle-pen {rlineto} def } def
/pu { /turtle-pen {rmoveto} def } def
/here { [ /turtle-pen load  theta  currentpoint ] } def
/return { aload pop  moveto  seth  /turtle-pen exch def } def
/fd { dup  theta sin mul  exch theta cos mul  turtle-pen } def
pd  0 seth
 

    But of course the target audience for Scribal Basic is people who 
can’t figure out how to write such an adaptor layer, so you’d want it 
to be part of the base system and one that they don’t accidentally get 
lost in.  In Scribal Basic as described so far, it would be something like 
this: 

[seth θ] ' set heading
$θ = θ   ' $ to indicate global

[rt θ]       ' turn right
seth $θ + θ * π / 180

[lt θ]       ' turn left
rt -θ

[pd]         ' put turtle's pen down
$pendown = 1 ' can't use higher-order functions like PostScript

[pu]         ' pen up
$pendown = 0

[fd n]           ' go forward n paces
Δx = n * sin($θ)
Δy = n * cos($θ)
if $pendown:
    rlineto Δx Δy
else:
    rmoveto Δx Δy

[saveturtle pen θ x y] ' can't return a heterogeneous array like PostScript
pen = $pendown
θ = $θ
currentpoint x y   ' currentpoint subroutine from primitive model sets x, y

[restoreturtle pen θ x y]
$pendown = pen
seth θ
moveto x y



[saveexcursion]       ' do some turtle-drawing in a saveexcursion:
saveturtle pen θ x y  ' to return to where you started when you're done
yield
restoreturtle pen θ x y
 

    Though this is not as graceful as the PostScript, and a lot longer, I 
think it’s actually easier to read. 

    The initialization code maybe needs to get invoked somehow, 
although by using a $penup instead of $pendown we could get the right 
defaults from default initialization to zero. 

    The higher-order function saveexcursion suggests using the block 
facility as a substitute for PostScript’s gsave/grestore, which save the 
current stroke width, color, point, path, and so on, and then restore 
them.  And, as mentioned above, this would also work for fill: 

fillcolor 128 31 45
fill:
    moveto 100 100
    fd 50
    rt 100
    fd 40
 

    Aside from the possibility of providing a fourth α argument to 
things like fillcolor, you could also use the block facility to do a 
drawing with a global α.  Also, you could use the same approach to 
provide double-buffering, scaling or rotation or skewing or 
perspective distortion, drawing on an offscreen canvas that you later 
composite in, and so on. 

Sound 

    Similarly, sound was always a big deal for motivating 
programming, but you can do a lot more sound now on a computer 
than you could in 1985.  In the article of James Hague’s I mentioned 
above, he was setting two registers on his Atari 800 to produce a 
musical tone, but now a cheap soundcard can produce literally any 
sound a human can hear, if you have a precomputed CD-DA 
recording of it. 

    There are existing DSLs for computer music, such as CSound, 
SuperCollider, ChucK, Sporth, Faust, and Pure Data.  Unfortunately 
I don’t have enough experience with them to venture an opinion as to 
what subset of their capabilities could be reasonably replaced by a 
Scribal Basic embedded DSL.  Some of them, like Sporth, represent 
sounds as bits of code that execute (conceptually at least) on every 
sample;  this is not harmonious with the way I’ve conceptualized 
Scribal Basic, at least so far, although you could do it if you added 
some kind of threading.  Or you could set a global function as the 
“sound generator”, which would be invoked to generate sound 
samples from some kind of event loop. 

    At a minimum, I’d think you need support for playing WAV and 
ogg files (with a built-in mixer), playing MIDI files (with a built-in 
soundfont), and playing sequences of pitches and durations computed 
by the program (using the same path as MIDI).  But it would be super 

https://ccrma.stanford.edu/~jos/faust/


cool to be able to do subtractive synthesis, additive synthesis, FM 
synthesis, distortion, flanging, pitch bending, ADSR envelopes, 
portamento, tremolo, vibrato, reverb, digital waveguide synthesis, and 
custom wavetables (from samples or otherwise).
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Hierarchical state space learning
Kragen Javier Sitaker, 02020-12-14 (8 minutes)

    (Probably none of this is new and all of it is obvious to those who 
study such things, but I’m just beginning to learn about the area.) 

    Suppose you can observe a time-varying set of inputs or stimuli to 
some system, like a stirred vat of reagents or a circuit or a vibrating 
string, and a corresponding time-varying set of outputs.  How would 
you go about automatically “learning” the behavior of the system? 

    If you suppose that the system is approximately linear and 
time-invariant, then the output vector yt is given by some 
direct-coupling matrix D multiplied by the input ut plus some output 
matrix C multiplied by the system’s internal state xt:  yt = Dut + Cxt.  
Unfortunately we cannot observe xt directly, and we may not even 
know what its dimensionality is, and it may be infinite.  But by 
hypothesis it is evolving in time according to some input forcing 
matrix B and its own square matrix of internal linear relationships A:  
xt = But + Axt-1.  And we can linearly superpose effects from stimuli 
at different points in the past, so yt = Dut + CΣᵢAⁱBut-i, i > 0. 

    If we factor the feedback matrix A with an eigendecomposition 
QΛQ⁻¹, the eigenvectors Q give us the “vibrational modes” of the 
system, and the eigenvalues Λ tell us how fast they decay (or, possibly, 
grow).  We can fold the Q and Q⁻¹ matrices into the C and B 
matrices respectively to reduce A to the diagonal matrix of 
eigenvalues.  Some of these eigenvalues may be small, which means 
that the vibrational modes in question die away very quickly;  unless 
their coupling to the input and output is particularly strong, these can 
be dropped, reducing the dimensionality of the model, with little 
effect on the error. 

    Given some estimates A?, B?, C?, D?, of the matrices A, B, C, and D
, we can compute a residual yt - (D?ut + C?ΣᵢA?ⁱB?ut-i) that tells us 
how shitty our estimates are for a given time t, and then we can 
summarize this residual vector over all times t by, for example, 
summing the squares or absolute values of the residuals to give us an 
overall residual shittiness to minimize.  There are a variety of standard 
optimization algorithms that may work to minimize this residual. 

    In particular I think that if we use the sum of the squares of the 
residuals, ordinary least squares may work:  we just take the derivative 
of the whole residual expression, set it to zero, and figure out what 
values of A, B, C, and D that gives us.  If there are less degrees of 
freedom in the observations yt than there are in the four matrices 
we’re trying to estimate, I think the problem is underdetermined.  For 
example, if we have single scalar observations at 100 points in time yt 
for a scalar-input system (i.e., ut is also one-dimensional), and we 
suppose that the state space xt is 10-dimensional, then A has 100 
degrees of freedom, B has 10, C has 10, and D has 1, so the system isn’t 
fully determined.  But if we suppose that it is 9-dimensional, it is now 
fully determined, and if it’s 8-dimensional, it’s overdetermined.  (In 
the underdetermined case, we could add extra penalty terms for, for 
example, norms of the matrices involved, to get the “simplest” 



solution in some sense.) 

    XXX okay smart guy, how can you derive 100 unknowns from a 
single equation?  you add all the squared residuals together, take the 
derivative, you have a sum of squared residual derivatives, you set it 
to zero, that’s still one equation.  ohhh:  you take the partial derivative 
with respect to each design variable (A?₀₀, etc.), and that gives you N 
equations — but now we’re faced with a different problem...  I guess I 
need to go back and brush up on OLS and linear regression! 

    Another approach is to use gradient descent:  if we initially suppose 
that A is very small, perhaps a single real or complex coefficient, we 
should be able to iteratively converge very quickly.  If we then add 
dimensions one by one, optimizing after the addition of each new 
dimension, we ought to be able to converge relatively quickly, as each 
new dimension is in some sense being used to account for the error in 
the previous approximation. 

    Since, as explained above, we can assume without loss of generality 
that A is a (complex) diagonal matrix (of eigenvalues), the number of 
design variables we need to optimize doesn’t actually increase 
quadratically with the dimensionality of the state space, as I said it 
does above — it only increases linearly.  For example, if we have 3 
scalar inputs, 2 scalar outputs, and 20 hidden variables in the state 
space, then D is 3×2, A is a 20-item diagonal matrix, B is 3×20, and C 
is 20×2.  I think B and C need to be complex as well, not just A, but 
D can be purely real. 

    It should also be possible to use L1 basis pursuit algorithms in order 
to handle massively underdetermined systems, where we assume an 
absurdly large number of state-space dimensions, but privilege 
extremely sparse solutions.  This might require abandoning the 
eigenvalue-diagonal assumption about A, because, although that’s the 
sparsest A can be, it might impose unreasonable constraints of 
non-sparsity on B and C. 

    Of course, no real system is perfectly linear, so even without 
measurement noise, we’ll have a nonzero residual signal, but 
hopefully we’ll also have some kind of estimate of the internal state 
vector of the system at each point in time, which will presumably be 
uncorrelated with the residual once our optimization has converged.  
But if we take the outer product of that state vector with itself, we 
will get a larger matrix some of whose items may have significant 
correlations with one or another channel of the residuals, and this will 
give us a second-order correction to apply to our linear predictor.  
The kernel trick used in support vector machines is, as I understand it, 
a more efficient generalization of this approach, and can be applied to 
learn more general system behaviors. 

    While you could in theory apply this sort of approach to any 
black-box system at all, it won’t work very well for extremely 
nonlinear systems like flip-flops.  For things like that, a hidden 
Markov model is probably a better sort of model, and that also has 
efficient algorithms for learning it;  you can combine the two models 
by having different A, B, C, D matrices for different Markov states.  
But for mostly linear systems, this linear-first approach might have 
some useful merits. 

    You can apply this to control systems (automatically tuning the 



model for model-predictive control to the plant), simulation (the 
plucked-string model alluded to earlier), or system identification 
(guessing what kind of circuit you’re looking at), among other things.
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Programming in the debugger
Kragen Javier Sitaker, 02020-12-15 (2 minutes)

    Last night I watched some of the demo videos of Jonathan 
Edwards's most recent investigations in Subtext:  one in which the 
I/O stream is a filtered view of the program's execution (hiding 
everything that isn't an input or an output);  one in which sequences 
of steps from the edit history can get packaged up into formulas;  and 
one in which you incrementally build up a set of example scenarios as 
a sort of test suite as you run the program. 

    It occurred to me that programming in the debugger, 
Minsky-style, is kind of like programming by demonstration.  You 
have some values in the registers, and you add an instruction to the 
program, and continue the program.  The instruction runs, but then 
you run off the end of the program and fall back into the debugger, 
with the results in the registers.  Now you add another instruction and 
run that.  Perhaps you add a conditional jump which isn't taken this 
time, and restart the program from the beginning with a different 
input, and see where you end up:  off the end of the program, or off 
the conditional jump into nowhere, at which point you can start 
programming that case. 

    This is not a style of interaction that modern programming tools 
support very well, except for spreadsheets.  Bret Victor and Jonathan 
Edwards, among others, have done a number of explorations of what 
a less limited programming environment in that direction might look 
like.
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Transaction per call
Kragen Javier Sitaker, 02020-12-15 (updated 02020-12-23) 
(69 minutes)

    It looks like a new way to use transactional memory can 
simultaneously improve programming in a large number of very 
important ways:  improved debugging, simplifying some of the 
hardest parts of JIT compilation, dramatically simplified error 
handling, fearless concurrency, improved interactive responsiveness 
(but I repeat myself), modular blocking on input, transparent 
incrementalization, simple and fast parsing, and enormously faster 
generative testing and solving of inverse problems. 

    How does this work? 

    Suppose that you have an imperative programming language like 
Daira Hopwood’s Noether in which every function call is associated 
with a new nested transaction, one covering all mutable variables and 
other effects, and your normal means of handling errors is by rolling 
back these transactions.  What does that give you? 

    This seems like a way to mostly cut the knot of error handling and 
responsiveness, without requiring static bounds of worst-case 
execution time for your entire user interface. 

Debugging 

    Well, one thing it gives you is radical debuggability:  because every 
function call you enter has to save enough information for 
backtracking if it needs to roll back.  The debugger can see this 
information, and it can restart the function from the beginning as if it 
had not started running (Hopwood calls this “reversible execution” in 
hir 2014 Strange Loop presentation, crediting the idea to a 1973 paper 
by Marvin Zelkowitz;  ze claims that Zelkowitz found time 
overheads of less than a factor of 2 for PL/I, which features pervasive 
mutability.  Zelkowitz seems to have done his 1971 dissertation, 
“Reversible execution as a diagnostic tool,” on the topic, at Cornell, 
though I could only find a 13-page tech report).  This enables efficient 
granular time-travel debugging, but also, it’s potentially useful simply 
to look at the pending changes so far made by each of the functions 
on the stack so far. 

    And implementing edit-and-continue in the debugger becomes 
substantially easier under some circumstances when you can restart 
the function you’ve just edited. 

    Also, being able to see which transactional variables are being 
depended on at each level in the call stack is also a potential boon to 
debugging, sort of like strace at a per-function level.  This could even 
permit you to produce an interactively explorable dataflow digraph of 
the call tree;  in a standard bubble-and-arrow diagram, dataflow edges 
might be displayed as connecting to the lowest visible ancestors in the 
call tree, which you could interactively explode into self and callees.  
Other forms of aggregation for debugging (grouping together all calls 
to a particular procedure, or all calls from a particular callsite) might 
also be insightful. 

https://www.thestrangeloop.com/2013/noether-symmetry-in-programming-language-design.html
https://www.thestrangeloop.com/2013/noether-symmetry-in-programming-language-design.html
https://github.com/noether-lang/noether/tree/master/doc/presentations/StrangeLoop2014
http://www.cs.umd.edu/~mvz/pub/zelkowitz-cacm-1973.pdf
http://www.cs.umd.edu/~mvz/pub/zelkowitz-cacm-1973.pdf
https://ecommons.cornell.edu/xmlui/bitstream/handle/1813/5967/71-92.ps?sequence=2


JIT support 

    Rolling back to the beginning of the function and re-executing it is 
also a particularly simple way to support on-stack replacement 
(whether deoptimization for debuggability, or optimization to get a 
speedup on a hot loop that might not run again). 

    For example, if after entering a slow interpreted procedure, the JIT 
found that it had spent a lot of time in that procedure without 
finishing, because it contains a long loop.  The on-stack replacement 
problem is that, even if the JIT compiles a fast native-code version of 
the procedure, the interpreter is still in the middle of running the slow 
version.  To get the benefit of the compilation, it somehow needs to 
transform a state of the interpreted version (register settings, program 
counter, etc.) into a corresponding state of the native-code version.  
Transactions give us the alternative possibility of rolling back from 
the state of the interpreted version and starting the compiled version 
from a fresh slate. 

    Dynamic deoptimization, as in Self, is just the opposite:  it requires 
transforming the current state of the machine-code program into a 
corresponding state of the source-code program so the programmer 
can debug it.  This is closely related to the time-travel feature 
described in the previous section. 

Error handling 

    With a transaction per subroutine invocation, error handling 
becomes substantially easier.  Nonlocal exceptions are especially 
popular in pure functional languages because cleanup while 
unwinding the stack is unnecessary;  by contrast, C++ had so much 
trouble with this that the STL wasn’t exception-safe for several years 
after it was written!  In fact, if I understand correctly, exceptions are 
still prohibited at Google, because they complicate reasoning about 
what happens in failure cases — precisely what kinds of states can 
result.  But in such a transactional system, the transaction system takes 
care of cleaning up any incompletely made changes.  So you don’t 
need RAII, destructors, or special failure handling. 

    The basic nested-transaction feature doesn’t require tracking reads 
of transactional variables, the way Haskell’s STM does, only writes.  
That’s because there’s no need to check a transaction for validity 
when you go to commit it — no other code could have been running 
concurrently.  You only need to buffer the writes to transactional 
variables so that you can undo them if you have to roll back.  (This is 
a general property of pessimistic synchronization, and this is just the 
extreme case of it, as explained later.) 

    This seems to have been Hopwood’s primary concern in the design 
of Noether. 

Fearless concurrency and distribution 

    As Hopwood points out in hir 2014 Strange Loop presentation, 
logging writes in this way is also what you need for a concurrent or 
generational garbage collector. 

    However, if you do additionally track reads of transactional 
variables, you can use the transaction system for multithreading with 



a guarantee of serializability.  This is probably costly unless the 
language is mostly functional, like Clojure or OCaml, and only 
slightly imperative, because pervasive Python-style mutability would 
entail logging a huge amount of read traffic to the mutable variables, 
similar to the overhead of unoptimized reference counting.  The 
per-call transactions would reduce the cost of retrying in most cases. 

    There’s the question of when the threads of such a multithreaded 
program would not be in a transaction, making their transactional 
mutations visible to other threads.  I think the answer is something 
like Erlang’s top-level process loop, where the process evolves by 
having its top-level procedure make a tail call to itself, and of course 
when a thread exits successfully. 

    Such a system would be sort of like the “dynamic typing” 
equivalent of Rust’s fearless concurrency through lifetime checking:  
your program’s non-interference is checked dynamically at run-time, 
and corrected if necessary, rather than proven at compile-time.  But 
there is a crucial difference:  unlike dynamic type checking, it’s not 
just turning a subtle failure into an easier-to-understand failure;  it 
actually removes the bug, thus dramatically simplifying the correct code 
by factoring the hairy concurrency questions out of the application.  
So, while dynamic typing typically makes code harder to statically 
prove correct, this kind of dynamic concurrency checking should 
make code easier to statically prove correct. 

    A significant feature of this kind of concurrency is that it can be 
nested and physically distributed over a parallel virtual machine:  a 
“master server” node might own the “home location” of all global 
variables, while a “pool worker” node might (in the optimistic-sync 
case) start a top-level transaction that reads them from time to time 
and then in the end sends a commit message listing all the variables it 
read and all the variables it’s writing, which the master can accept or 
abort.  Meanwhile, the pool worker can create non-global 
transactional variables that exist only inside its transaction, and farm 
out work to subcontractor subtransactions potentially running on 
other subcontractor nodes, proxying their reads of transactional 
variables through the parent transaction’s node. 

    (To avoid ABA problems, probably a monotonically increasing 
revision number for each transactional variable depended on should 
be in the commit message, rather than just the value the variable 
happened to have at the time.) 

    Worker nodes can maintain a local cache of cached values for 
global mutable variables.  It’s okay if the items in the cache get 
outdated, because the master will reject the commit message for any 
transaction that has read an outdated value from such a cache — all 
that’s lost is the CPU time wasted doing work that now must be 
retried.  The system would still work properly, though inefficiently, if 
such rejected commits were the only way to learn about outdated 
cached values, but a more efficient way for a wide variety of scenarios 
is to implicitly add an observer to the variable when processing a 
read-variable message, such that a single cache invalidation 
notification will be sent to the reader when the previously-read value 
has been updated, so the reader can invalidate their cache.  Since this 
is an optimization, it’s okay if the invalidation messages aren’t reliable, 



but for most usage scenarios it’s best to discard the observer 
relationship after sending the invalidation message, so at most one 
invalidation packet (and one current-value packet) is sent per read 
packet. 

    The way that works out differs depending on the access pattern.  
Global variables that are frequently read and almost never updated are 
almost always globally cached;  after each update, the master sends 
out invalidation messages to nearly all workers, which respond by 
retrying a lot of in-progress transactions, which immediately send 
read messages to get the new values of the variable, so it’s effectively a 
two-packet-per-node broadcast of the new value.  Global variables 
that are frequently written and almost never read are also almost 
never cached, so each write produces almost no invalidation traffic.  
Global variables that are frequently written and also frequently read 
unavoidably produce a lot of traffic and also a lot of retried 
transactions, unless some sort of pessimistic synchronization is used, in 
which case they instead produce inefficient serialization. 

    The cases where this caching/invalidation mechanism is insufficient 
are the extreme cases where either it results in an unacceptable waste 
of CPU time in transactions that will abort, where it’s unacceptable 
to have to wait for a cache miss to be served from the master server, 
or where sending a separate copy of a new value of a popular or 
voluminous variable to every client is unacceptable.  The first case can 
be handled with pessimistic synchronization (see below) while the 
other two cases can work by supplementing the usual 
cache-invalidation mechanism with a “push” mechanism that 
immediately broadcasts new values of popular variables before anyone 
asks for them, for example using Ethernet multicast. 

    This scheme also permits proxies which pass through your global 
transactions to the real master server (or master server cluster), which 
look just like a real worker to the master server and just like a real 
master server to the real workers.  The proxies answer almost all 
variable-read queries from their caches, without bothering the real 
master server, and when they receive a transaction commit message, 
they simply forward it on to the real master, then relay the 
COMMITTED or ABORTED response to the real worker.  This is 
analogous to the scenario described above with a worker node 
farming out jobs in subtransactions to subcontractors.  By this means it 
is possible to scale horizontally in the same way people do with 
MySQL readslaves. 

    These proxies, again like a parent transaction, can run consistency 
validation code on the state of the database after a transaction, 
aborting the transaction if the consistency checks fail.  This is related 
to the “integrity enforcement” section below. 

    Sharding the database of global mutable variables across multiple 
master servers is somewhat problematic, because each transaction 
needs to commit or abort atomically.  The standard consensus 
protocols for distributed transactions (two-phase commit, three-phase 
commit, Paxos, Raft, Chandra–Toueg, Mostefaoui–Raynal, 
ZooKeeper ZAB, in some cases Nakamoto consensus) can be used.  
For some cases, you could instead add new “global” mutable variables 
belonging to a proxy described above, which are visible to everyone 



sharing the same proxy, in the same way that mutable variables 
created within a transaction and not exported are visible to 
subtransactions. 

    So, as with the single-machine version of the system, it’s important 
to limit the number of writes to global mutable variables, and in 
particular contention on them.  To the extent that you can instead 
pass around immutable data structures, for example blobs identified 
by their BLAKE3 hash, you can reduce the work centralized in the 
master server.  Note that this doesn’t necessarily mean you want to 
minimize the number of variables that are global and mutable;  if you’re 
building a distributed filesystem this way, for example, you could get 
by with a single global mutable variable for the root of the filesystem 
(like how a Git HEAD refers to a commit by hash), but every write 
to the filesystem would invalidate it and force all existing transactions 
to be restarted.  Instead you would probably want at least one mutable 
variable per file, possibly one per data block, to prevent concurrent 
transactions from conflicting, even at the expense of increasing the 
load on the master. 

    REST and the continuation-based web frameworks exemplified by 
Paul Graham’s Arc and the Smalltalk system Seaside can integrate 
with such systems in an interesting way.  Consider a web server 
serving up an HTML <form> for changing a field in a database record.  
If the <form> contains a hidden “manifest” field that lists all the 
transactional variables read to produce the page, along with the 
relevant values of their version counters, then when the form is 
submitted, the submit handler can check all of these variables to see if 
they are outdated, and in such a case produce an error page for the 
user, thus preventing lost-update conflicts where the user’s desired 
change no longer makes sense in light of something else on the page.  
However, in practice you’d probably want to limit the scope of these 
dependencies, so that a change to something unrelated (the number of 
users currently online, the current time) doesn’t produce spurious 
errors. 

    This “manifest” mechanism, in a sense, permits the protection of 
(purely optimistic) transactions to be extended all the way out to 
untrusted browsers, either with no server-side session state in full 
compliance with the REST model, or by storing the session state in a 
time-limited variable on the server identified by a continuation ID. 

    In summary, transactions, especially per-call transactions, enable 
the single-system-image programming model to be extended with 
acceptable efficiency across a distributed network of up to a few 
thousand nodes, including to some extent mutually untrusting actors, 
unreliable networks, unreliable nodes, heterogeneous software and 
protocols, high latency, though with a single root of trust (“there is 
one administrator,” in Peter Deutsch’s phrase).  They would do so by 
hiding latency with concurrency, avoiding latency and reducing 
bandwidth with safe caching including proxies, recovering from 
failures, and automatically retrying transactions safely after node or 
network failures. 

Optimistic vs. pessimistic synchronization 
defined 



    (This section is not specific to nested transaction systems, 
transactional memory systems, or even indeed to transactional systems 
at all;  it applies to all forms of synchronization in software.) 

    “Optimistic synchronization” means that things don’t block each 
other;  instead you allow transactions to run to completion, and if 
there’s a conflict, the first one to commit wins.  This guarantees 
progress and liveness at the potential expense of machine efficiency.  
“Pessimistic synchronization” is where you use locks to ensure that 
you don’t waste any work on transactions that would have to be 
rolled back due to write conflicts.  Most systems use a mixture rather 
than purely one or the other. 

    Pessimistic synchronization is helpful, for example, for 
interoperating with systems outside the scope of the transactional 
system, because transactions only roll back (and possibly have to be 
retried) if they are buggy and try to commit something erroneous.  
This way, the transaction system avoids imposing any obligation of 
rollback on such external systems, and the transaction system itself 
only needs to support rollback for error recovery. 

    In general, doing pessimistic synchronization safely requires some 
kind of static analysis of your transaction code to find out what 
resources it could possibly read or write, so that it won’t be started until 
it can acquire all of them.  (This lock acquisition can be atomic, but 
it’s sufficient for it to happen in a deterministic order in every 
transaction to prevent deadlocks;  and doing some computation in 
between lock acquisitions is actually okay.) To be computable, this 
analysis must be conservative, so in case of doubt, it will delay your 
transaction until it can guarantee that it will be able to succeed.  In the 
limit, pessimistic synchronization reduces to no synchronization:  
acquiring a global system lock, as in Noether and other traditional 
event-loop systems like Monte, Tcl/Tk, Twisted Python, asyncore, 
or JS. 

    This kind of static analysis is generally infeasible (for the 
transactional system to do, at least) in the context where pessimistic 
synchronization is most appealing:  that of interoperation with 
external non-transactional systems, or systems that otherwise cannot 
fulfill a commitment to roll back changes.  So pessimistic 
synchronization tends to suffer deadlocks from time to time, even 
though this is theoretically avoidable. 

    Aside from the deadlock issue, pessimistic synchronization suffers 
from an efficiency problem in the multicore era (which, for 
transaction systems, began with VAXclusters).  If your limiting 
resource is CPU cycles, then to guarantee efficient progress, then 
pessimistic synchronization is the ticket:  if a transaction read-locks 
every mutable variable it reads and write-locks every mutable varible 
it writes, then you never have to retry anything, so then the only way 
you can go slower than maximum speed is if you have deadlock or 
run out of work.  And this is important — a system making 
sufficiently slow progress is effectively indistinguishable from a 
deadlocked system, as anyone will attest after trying to use a desktop 
Linux system that’s thrashing in swap. 

    However, by never burning a CPU cycle it can’t prove will get 
committed, pessimistic synchronization fails to take advantage of 



available CPU resources in uncertain situations, thus conserving 
energy at the expense of speed. 

    Both forms of synchronization suffer from low throughput in 
situations of high contention, and both can get high throughput in 
situations where non-contention can be detected.  So in both cases the 
best way to get high concurrency is to keep your transactions short.  
But optimistic synchronization resolves contention with a strong bias 
in favor of short transactions, while pessimistic synchronization 
resolves contention with a strong bias in favor of long transactions;  
it’s easy to get into a situation where your 
pessimistically-synchronized 1000-transaction-per-second system is 
processing 1 transaction for 30 minutes. 

    One interesting compromise is granting a limited-time lease on a 
variable, which prevents any other transaction from altering it during 
that time.  If your transaction commits while holding the lease, you 
are guaranteed that nobody has written to the variable in the 
meantime, so if your transaction has to roll back and retry, at least it 
won’t be because of that variable.  If it commits while holding such 
leases on all variables it read, it is guaranteed to not have to retry 
because of any of them.  Similarly, you can grant “write-leases” or 
“write options” (“put options”?), which prevent anyone from taking 
out a read-lease on the variable during the given time.  So if your 
transaction has an unexpired read lease on every variable it read, and 
an unexpired write lease on every variable it wrote, it is guaranteed to 
be able to commit without retrying.  In a distributed system that can 
tolerate node failures, this is the only kind of lock that can ever be 
granted;  otherwise an unreachable node could hold locks forever, 
blocking some and perhaps eventually all transactions in the system. 

    The transaction manager doesn’t necessarily have to tell the 
transactions that it’s granting them a lease, and if it does, it can choose 
the expiry date at will.  Leases can be purely an optimization to 
improve throughput in the face of heavy contention by reducing the 
fraction of CPU wasted on doomed transactions. 

Modular blocking 

    You might think that this approach would preclude I/O anywhere 
but at some sort of top-level event loop, at least per thread, since I/O 
is a side effect.  It’s straightforward to see how you could buffer up 
output (maybe logging it for debugging in case of an abort) until the 
top level is reached, but how could you do that for input? 

    Fortunately Composable Memory Transactions has a solution to taking 
input:  if we log reads, as a multithreaded system would, then an 
input routine such as getchar() would simply retry if no input 
character was waiting.  This would abort its transaction, but the 
transaction system would know that it would simply fail again if no 
input character was waiting, since it failed by calling retry instead of 
having a read/write conflict or an error.  Its caller has the option (as, 
one supposes, it would have in the case of errors) to handle the retry 
by moving on to a fallback case, for example reading from a different 
input stream.  If at some point the whole shebang fails, the transaction 
system can suspend the thread (and do other work, if applicable) until 
one of the things it had read before retrying changes.  (This is the 

https://www.microsoft.com/en-us/research/publication/composable-memory-transactions/


point where handling diverges from ordinary errors:  if the handler 
for an ordinary error also fails, you just unwind the transaction stack 
until you terminate the program.) 

    This provides, in the words of the paper, “a modular form of 
blocking” — a thread can wait on a condition variable, or an arbitrary 
Boolean function of various transactional variables, or anything else 
that can be shoehorned into the transaction system, including input 
events — and the functions that do such waiting can be made 
nonblocking by having a fallback that always succeeds, or combined 
by falling back from one to the other. 

    As Shae Erisson points out, this could integrate well with modern 
event-driven I/O systems like Linux’s io_uring:  a thread reading the 
event source can enqueue events in internal queues, thus inducing 
other transactions to get retried. 

Safe aborting for guaranteed responsiveness 

    Another benefit provided by pervasive transactionality — and this 
one wouldn’t require either read-logging or nested transactions — is 
that any task can always be safely aborted, which eliminates the 
Sophie’s Choice we normally face in event-loop systems where we 
can get either safety from concurrency problems (by running code in 
the event-loop thread) or guaranteed responsiveness (by running code 
in another thread).  If an event handler is running when another 
higher-priority event comes in, we can simply peremptorily discard 
the current transaction, including the dequeuing of its input event, 
and launch the handler for the higher-priority event.  (A classic case 
of this is repainting the screen in response to an input keystroke when 
another input keystroke comes in, which will probably require an 
additional screen repaint.) Or, if we do do read logging, we can run 
one thread for each concurrently executing event handler, retrying 
executions as necessary. 

    This kind of abandonment can be constant-time, but only if the 
buffered writes from the transaction are not written to their home 
location;  as Hopwood points out in hir talk slides, if the writes are 
written to their home locations, then rolling back a transaction 
requires undoing all the writes, one by one.  An alternative that 
provides constant-time, effectively instantaneous, abandonment is to 
only write the writes to their home locations when a (top-level) 
transaction commits.  This requires every read of a transactional 
variable to check for a buffered write belonging to the current 
transaction before falling back to the value from the home location. 

    This same sort of write-log consultation is also needed for 
concurrency with optimistic synchronization:  if some other 
transaction might be concurrently reading the home location of a 
transactional variable, it needs to see the previous committed state, 
not the state that might possibly be committed.  (This could be done 
by instead having all reads of mutable variables check all active undo 
logs for old values, but that is even worse.) Pessimistic 
synchronization is a way to avoid this. 

    This possibility of abandonment through rollback solves one of the 
knottiest problems in E-style event-loop object-capability systems 
such as Monte:  in a vat shared between code from mutually 



untrusting security domains, it is always possible for one security 
domain to deny service to the other by running an infinite loop.  By 
providing a guaranteed safe way to abort and retry event handlers, 
such abandonment eliminates this risk, thus enabling closer and more 
efficient cross-domain collaboration.  (However, you still have to do 
most of the communication between the domains with eventual sends 
to get this nonblocking benefit, so it may not be more convenient.) 

    With virtual memory, one common problem for responsiveness is 
that when the system starts to thrash, responsiveness for the whole 
user interface goes to hell, because there’s no reasonable way to make 
progress when your threads are blocked on page faults.  If, instead, 
page faults are handled by failing a transaction as needing to 
retry — just as if it were blocking on input — it should be possible to 
try many different event handlers, bringing all of their working sets 
into memory, and allowing whichever ones can make progress to do 
so without being blocked by the others that are blocked on page 
faults.  This, again, could be done in a single-threaded event-loop 
system that just uses one transaction per event handler, rather than 
one transaction per function.  (However, it might make things worse 
rather than better, and of course requires integration with the OS 
kernel.) 

    These approaches could even guarantee hard-real-time event 
response.  Hardware interrupts, or software interrupts such as Unix 
signals, can be handled in this way.  If such hard-real-time tasks are to 
have strictly bounded response times, though, we must render it 
impossible for other tasks to delay their progress.  On a 
single-threaded computer this is easy — just don’t run any other code 
until the interrupt handler completes.  On a multithreaded computer, 
such as one with multiple processors or multiple hardware threads, it 
is necessary to use some kind of pessimistic synchronization to prevent 
any other top-level transaction from committing that could require 
the interrupt handler task to rollback and retry — this also makes it 
safe for the interrupt handler to manipulate the outside world without 
waiting for its transaction to commit first. 

    Support for optimistic synchronization and running the interrupt 
handler as a top-level transaction is all that’s necessary to get it to start 
running promptly, and then blocking any possibly interfering 
concurrent transactions (and any other interrupts) is all that’s needed 
to ensure that it can finish running promptly without any retries.  
When the interrupt handler finishes, the changes it commits may or 
may not cause other transactions (blocked or not) to have to retry.  So 
it isn’t always even necessary to discard the work in progress to 
guarantee responsiveness to urgent events in this way.  But buffering 
the writes of uncommitted transactions in a write buffer, rather than 
logging an undo-log record and updating mutable variables at their 
home locations, seems to be necessary for optimistic synchronization, 
and sufficient for constant-time work abandonment. 

    I’m not quite sure how precisely we can compute “any possibly 
interfering concurrent transactions” or whether this benefits from 
static analysis of the interrupt handler.  Clearly if another (top-level) 
transaction tries to write to a variable the interrupt handler has read, it 
needs to be at least blocked from committing until after the interrupt 
handler. 



    Specifically with respect to screen updates, it would be useful to 
break up the screen repaint into three pieces:  a top-half “push” that 
runs as part of input processing, which takes a small, bounded amount 
of time to ensure high input handling throughput to recover from 
overload conditions;  a “pull” that runs as part of the vertical blanking 
interrupt or even the horizontal blanking interrupt, which is higher 
priority than input processing and also takes a bounded amount of 
time, and whose reason for being is to allow the top-half push to do 
less work by using a more efficiently updatable in-memory 
representation (a scenegraph, a display list, a set of sprite positions, a 
tilemap, etc., of some bounded complexity;  see the notes in Scribal 
Basic (p.  701) about the Atari 800);  and a bottom-half push that is 
scheduled after input processing, can be abandoned and restarted if 
new input comes in, and can take unbounded time to more 
elaborately update the structures read by the pull transaction.  For 
example, the bottom-half push might read in text from a disk file 
after it’s newly scrolled into view, or overwrite an approximate 3-D 
rendering with a more precise one, possibly more than once in 
multiple different transactions. 

    In an OLTP database context, you could imagine handling 
incoming write transactions (“writes”, including record updates, 
insertions, deletions, and schema changes) by appending them to a 
journal and scheduling additional transactions to update views and 
indices (“rebuilds”, though presumably incremental).  Read 
transactions (“queries”) that consulted a view or index would also 
need to read through whatever part of the journal was not yet 
accounted for by the view or index in question.  An OLTP workload 
usually won’t work with a hard priority system, since totally starving 
any of writes, rebuilds, or queries due to a high load of the other two 
would be unacceptable;  the relative priorities of writes, queries, and 
rebuilds could be adjusted through an internal pricing system, in 
which writes and queries earn “money” by spending CPU time and 
perhaps IOPS, writes are additionally billed for the expected losses 
from slower queries, and rebuilds earn “money” by reducing the 
expected costs of queries, which is at least in part an option 
value — Black–Scholes may be the right valuation. 

    A partly completed agoric OLTP transaction would tend to be able 
to bid higher for resources than one that hadn’t started — if its 
expected completion time is 2 ms and doesn’t change during 
evaluation, and its expected net earnings are 2 simoleons, it can 
initially bid 1000 simoleons per second, but after running for 1.5 ms, it 
can bid 4000.  But, if that’s not high enough because another job with 
much higher value has arrived, it’s “socially optimal” to abort the 
currently running transaction and handle the higher-value job. 

    (This same OLTP approach also applies, of course, to updating 
source code and computing executable views of it with a compiler or 
groveling over the update log with an interpreter;  this could entirely 
eliminate the JIT pause problem that plagued Self, if Moore’s Law 
hadn’t already taken care of that.  Yet people still sometimes wait for 
rebuilds to finish.) 

    To support simultaneous OLAP operations on the OLTP database, 
you could simply run your queries on the most recent available 
indices and views, including precomputed rollup views, without 



taking the still-unincorporated journals into account. 

Error values 

    With regard to error handling, it might be best in most cases for 
aborted functions to return error values rather than automatically 
propagating.  As long as these error values are either handled 
(inspected to see what the error is, presumably as part of a 
conditional) or moved to some kind of storage (for later debugging), 
automatic propagation woud be suppressed, as in Wheat.  But if such 
an error value is ignored (evaluated in void context, or stored in a 
variable whose lifetime ends without being tested) it would propagate 
up to the parent function. 

    These error values can propagate along the program’s dataflow 
graph, like floating-point quiet NaNs;  they only leap over to the 
control-flow graph if they are “leaked” or “dropped”. 

    XXX add example 

Modal reasoning 

    Another application of transaction rollback is code search, as 
suggested by Hopwood in hir 2014 talk under the heading “confining 
side effects”, based on Joel Galenson’s† CodeHint (which cites the 
Squeak method finder):  is there an existing function in my code base 
that will convert 4 and 66 into “iv” and “lxvi” respectively?  How 
about a composition of two functions?  Or five methods?  An obvious 
way to implement such a query is to just run all the functions, or pairs 
of functions, and see what you get, but to do this safely you need to 
prevent the functions from looping infinitely or causing destructive 
side effects.  By running them inside a transaction and killing them if 
they exceed a time limit, you can test them safely. 

    (Note, though, that this time limit is a potentially deadly inlet 
through which nondeterminism could enter the system, causing any 
computation that depends on such testing to be irreproducible;  if it 
counts something like function calls plus backward control flow 
transfers and is precise, it’s safe, but not if it’s counting wall-clock 
time or clock cycles and/or is checked only irregularly.) 

    A generalization of this is the ability for a program to reason about 
code’s behavior under conditions that do not presently prevail, simply 
by running it inside a transaction that is then rolled back.  This does 
require the transaction’s rollback notification to contain enough 
information to tell us what we want to know about the code’s 
behavior, but that’s probably a requirement for useful transaction 
failure messages, anyway. 

    Given this kind of facility, you could reasonably ask questions such 
a the following:  Which methods would write to some field of this 
object?  Is there any live object on which calling the “.open()” 
method would read the current user ID?  What is the object whose 
“.destroy()” method would return the highest value? 

    In the debugger context, this kind of automatic cleanup would 
allow you to view “speculative” executions as well:  the hypothetical 
flow of values through a piece of code, without the risk of corrupting 
the “true” state of the program under inspection with a side effect. 

http://people.eecs.berkeley.edu/~bjoern/papers/galenson-codehint-icse2014.pdf


    † and Philip Reames’s, and Rastislav Bodik’s, and Björn 
Hartmann’s, and Koushik Sen’s CodeHint 

Memoization and incrementalization 

    Suppose the transaction for a procedure invocation is logging all its 
reads and writes of mutable data;  if it additionally logs which 
procedure it is, any closed-over data, and its input parameters, then it 
becomes possible to use it for memoization — any call to the same 
procedure with the same parameters and closure data will necessarily 
perform the same writes and return the same value, unless either one 
of those reads is out of date or execution is nondeterministic.  So it’s 
valid to just perform those writes and return those results without 
actually running any of the function’s code.  This is very similar to a 
build system like make, or to Umut Acar’s “Self-Adjusting 
Computation”;  it provides a way to transparently incrementalize a 
computation, so that it can be efficiently re-executed on slightly 
modified input.  Also, it automatically derives a 
guaranteed-linear-time Packrat parser from an ordinary 
exponential-time recursive-descent parser. 

    Moreover, this caching or memoization is still valid even if the 
original memoized computation was a child of a transaction that was rolled 
back.  That is, even computation that was “discarded” can affect the 
memo table.  (This is the same mechanism that produced the Spectre 
and Meltdown vulnerabilities in Intel CPUs — it can produce a 
subliminal leak of information.) This means that we can speculatively 
pre-cache computations we expect to need in the future. 

    Incrementalization is an extremely important transformation for a 
few different reasons: 

• By reducing the need for manual state management for efficiency, it 
can make direct programs much simpler.  For example, you could 
implement a word processor as a view function from document state 
to view state, a window function from view state to pixel state, and 
an edit function from (document state, input event) pairs to 
document state, or perhaps even a function from input histories 
(keystroke sequences) to rectangles of pixels.  
• By making coordinate search practical, it can make many programs 
“invertible” in practice (in the sense that you can in practice find an 
input that produces a desired output, not in the sense that such an 
input exists or is unique), permitting the practical solution of a wide 
variety of inverse problems.  The optimization procedure can 
randomly alter the program’s input, propagating the incremental 
changes through the incrementalized program, in order to converge 
on the desired result.  
• A special case of the former is generative software testing like that 
done by Hypothesis or American Fuzzy Lop, where the “desired” 
output is a crash or assertion failure;  this is to some extent how AFL 
works, but because it can only backtrack chronologically, its strategies 
for exploring the input space are necessarily limited.  Once a failure is 
found, incrementalization also greatly accelerates the test-case 
minimization process.  Additionally, the introspection provided by the 
transaction system can be used by the generative testing system to 
guide its search.  



• Another special case, one which might not work out, is 
superoptimization — search over a space of programs for the shortest or 
fastest program that has the desired effect.  This shades into the “code 
search” application mentioned earlier.   

    In short, incrementalization reduces the need for explicit caching 
and makes searching over the space of executions immensely more 
efficient. 

    As an example of “invertibility in practice”, or “solving inverse 
problems”, you could imagine applying a ray tracer like Peter Stefek’s 
incremental ray tracer to solve photogrammetry or caustic design:  by 
searching for an input 3-dimensional scene that closely approximates a 
movie taken by a moving camera, you can estimate the geometry of a 
scene.  Mitsuba 2, for example, has demonstrated this using automatic 
differentiation rather than incrementalization.  (As I said in Dercuano, 
I suspect that integrating reduced affine arithmetic into the caching 
system might make it possible to do this trick much more effectively 
by permitting limited errors in the output, so that memo table values 
can be reused even for slightly changed inputs.) 

    Above I talked about using transaction scheduling as a way to 
guarantee responsivity for real-time and OLTP systems, in particular 
allowing updating of indices and views to be deferred to some degree 
to improve query responsivity.  A simpler, though probably lower 
performance, design is to compute an index (or a view) as the cached 
result of a giant computation over one or more entire tables, or even 
the update log.  Then, queries that consult this index will first request 
the index in a cached subtransaction, made out of smaller 
subtransactions;  normally this will be instant, served from the memo 
cache, but in other cases will require a partial or full recomputation to 
bring the index up to date. 

    So, for example, you might have 99000 data blocks in an 
append-only table, each containing 10 rows.  Each data block is an 
immutable blob pointed to by a separate mutable variable, and there’s 
another mutable variable that’s a list of all 99000 blocks.  Every 
append to the table appends a row to the last data block (by copying 
the other 9 or less rows into a new block), or if it’s full, creates a new 
mutable variable, points it to a block of one row, and adds it to the 
list.  The index on column FOO is an LSM-tree, consisting of a run 
of the sorted FOO values (and record numbers) of the first 65536 
rows in the update log, a run of 32768 FOO values, a run of 512 FOO 
values, a run of 128 FOO values, and so on for 32, 16, and 8.  So when 
a new row is added, maybe a new run gets added, or normally the 
smallest few runs get jiggered around a bit in the next query, but the 
65536-item run and the 32768-item run are returned immediately 
from the cache rather than being recomputed. 

    This scheme “works” with tables that are being updated “in place” 
(by replacing immutable data blocks at random offsets by slightly 
different immutable data blocks) in the sense that queries will never 
return the wrong answer, but suppose someone updates record 50000.  
This will invalidate, among other things, one of the leaves under the 
65536-item run in the index;  if the FOO value has changed, this 
change will bubble up to recomputing that 65536-item run by 
merging together two 32768-item runs, the first of which is hopefully 

https://www.peterstefek.me/incr-ray-tracer.html
https://www.peterstefek.me/incr-ray-tracer.html
http://rgl.epfl.ch/publications/NimierDavidVicini2019Mitsuba2


still in the cache despite not having been used in quite a while.  This 
takes some 65536 comparisons, which is not a lot of work in an 
absolute sense but still about four orders of magnitude larger than 
what you would hope to see for a single record update.  Also when 
you append record 131072 you are going to have to do 131072 
comparisons the next time you run a query that uses that index. 

    I think you can repair this approach to some degree by storing the 
table as a segmented journal of changes, maintaining a parallel bitmap 
or something of liveness markers for those changes, periodically 
cleaning low-occupancy segments like a log-structured filesystem by 
copying their remaining live changes to a new segment, and then 
using an incrementalized version of the LSM-tree-merging code that 
computes partial merges of soon-to-be-superseded blocks of the LSM 
tree.  But this degree of complexity seems like it kind of loses the 
appeal of having the transaction caching system do everything for you 
automatically, and it still doesn’t give you the option of having 
queries grovel over the log of recent changes when churn is too high. 

Integrity enforcement 

    Hopwood also describes the use of such write logging to help with 
invariant maintenance:  the write log tells you which objects have 
been changed in a transaction and whose state thus ought to be 
checked for correctness, and transaction rollback gives you the 
wherewithal to undo the damage.  This is of course precisely the “C” 
in “ACID” in the traditional RDBMS usage of transactions:  
transactions violating consistency constraints will not be committed.  
(Ze also suggests automatic failover to alternate implementations in 
order to either detect the bug more precisely, by using slower 
invariant checking, or to fail over to an inefficient but 
trivially-correct implementation of the mutation.) 

    The incremental computation framework described in the previous 
section provides an efficient and simple way to do this:  before 
committing, the code in the top-level transaction invokes a procedure 
which ostensibly verifies all the interesting invariants in the entire part 
of the system that it knows about, failing otherwise.  This procedure 
invokes many other procedures to check invariants on particular parts 
of the system;  most of these procedures will not have changed their 
inputs since the last invocation, and thus can succeed instantly simply 
using the memo table.  But those which read transactional variables 
that have been written to will run for real, giving the transaction a 
chance to fail. 

Relationship with dynamic scoping and 
graphics contexts 

    In retained-mode graphics APIs, it’s common for graphical 
properties like fill color, line width, font, and transformation matrices 
to be implicitly inherited from parents to children in a 
hierarchically-nested scene graph;  CSS properties in HTML and 
SVG are examples.  In immediate-mode graphics APIs, such as 
PostScript, <canvas>, and even TeX, these are typically implemented as 
a large number of stateful variables instead, whose values are saved 
and restored using a stack of graphics states, for example using gsave 



and grestore in PS, .save() and .restore() in <canvas>, or {} in TeX.  The 
same set of tricks used for dynamically-scoped variables in Lisp are 
applicable — shallow binding for best read performance, deep binding 
for fastest context switching — and indeed such variables were one of 
the major arguments for retaining “special variables” in Common 
Lisp and adding dynamic-wind to Scheme. 

    This operation of temporarily obscuring the “global” value of a 
dynamically-scoped variable with one or more stack layers of “local” 
variables, then restoring it upon exit from a scope — this is all very 
closely reminiscent of the process of buffering mutable-cell writes and 
then discarding them on rollback.  But of course you don’t normally 
want to erase everything you’ve drawn when you restore these 
graphics parameters, and that’s what rolling back a transaction would 
do.  Is there an underlying unifying abstraction that can be applied to 
both cases? 

Optimizing transactions 

    Zelkowitz’s work in 1971 found that adding comprehensive undo 
logs to PL/I only added about 70% execution time to his PL/I 
programs (and bloated the programs themselves somewhat);  he didn’t 
report on runtime memory usage, which I’d think would often be the 
more crucial aspect. 

    Even with read logging and competing with modern compilers, the 
cost for one transaction per subroutine invocation for a pervasively 
mutable language like Python might be comparable to CPython’s 
existing interpretation cost.  But for many purposes CPython’s 
performance is unsatisfactory. 

    How can we do better? 

Only logging writes for high-priority transactions 

    As discussed in the section about interrupt handling, if a piece of 
code is protected from interference by other concurrent 
transactions — for example, by not allowing any of them to 
commit — it is guaranteed not to need a retry.  So in that case the 
transaction mechanism is only providing error recovery, and for that 
the transaction system need only be involved in writes of transactional 
variables, not reads.  This reduces the overhead of the transaction 
system by about an order of magnitude for these transactions, perhaps 
to less than a factor of 2 for conventional mutable code.  (If we write 
transactional variables back to their home locations while doing this, 
we can use normal memory reads to read transactional variables inside 
the transaction.) Compiling code for latency-sensitive transactions in 
this way may be a worthwhile optimization. 

    A more extreme version of this is possible if the high-priority 
transactions are read-only;  see the section below about read-only 
transactions and time travel. 

Reducing the number of mutable variables 

    As mentioned above in the “fearless concurrency” section, the cost 
of logging reads and writes ought to be proportionally lower in a 
language design with many fewer mutable variables, like Haskell, 
OCaml, or Clojure — though, by the same token, many of the 



potential benefits are smaller:  for debugging you’ll need to use a 
smart diff for path-copied data structures or other FP-persistent data 
structures, tail-call looping constructs already provide on-stack 
replacement, cleanup from exceptions is rarely necessary, and in many 
cases it’s possible to confine bits of code for safe experimentation (for 
modal reasoning or debugging) using mechanisms the type system or 
object-capability discipline without resorting to transactions.  The 
benefits for concurrency, I/O composability, and responsiveness 
remain unchanged, but they pertain to transactional-memory systems 
in general, not just those with implicit per-invocation nested 
transactions. 

    Even in pure or very-nearly-pure functional programming systems, 
acquiring the benefits of the time-limiting, automatic memoization, 
and incrementalization features described above requires other kinds 
of work, such as hash consing and the development of good cache 
eviction heuristics.  This work is needed with or without transactions, 
and promises to be the lion’s share of the job. 

    However, as mentioned in the filesystem example, reducing the 
number of mutable variables too far will cause unnecessary contention 
and thus reduce system throughput, either by optimistic concurrency 
control retrying transactions or by pessimistic concurrency control 
blocking them.  In some cases, we would actually benefit by 
introducing extra mutable variables to permit higher levels of 
concurrency. 

Aggregation 

    Aggregation is another common way to reduce the cost of read 
barriers, write barriers, and dependency tracking for incremental 
computation and rollback.  The idea is that, by agglomerating 
mutable variables into larger units, we can reduce the work needed to 
track them, though, as above, reducing our potential concurrency as 
well.  (Maybe this is the same idea under a different name.) 

    Under make, compilers and linkers communicate through the 
filesystem;  if the compiler† changes psmouse.o, make reinvokes the whole 
linker with the whole new psmouse.o.  It doesn’t care which parts of 
psmouse.o have changed, and its devil-may-care attitude buys much less 
dependency-tracking overhead on the compiler’s workings in 
exchange for a less precise incremental recompilation, involving a full 
relink. 

    If we try to analyze the make example in functional-programming 
terms, we could say that the compiler mutates the psmouse.o entry in a 
mutable directory to point to a new (immutable) binary string — the 
new contents of the object file;  or that the compiler produces a new 
state of the filesystem in which the directory is a copy of the old 
directory except with psmouse.o pointing to different contents, and that 
is in fact more or less how Git implements directories in commits.  
(Even if you wouldn’t normally commit psmouse.o.) But another way 
to analyze it is that the compiler applies a sequence of mutation 
operations to psmouse.o:  first truncating it, then appending various 
blocks of bytes, perhaps even seeking around and backpatching some 
bytes.  What strace shows is somewhere in between: 

[pid 26311] stat("psmouse.o", {st_mode=S_IFREG|0644, st_size=2352, ...}) = 0



[pid 26311] lstat("psmouse.o", {st_mode=S_IFREG|0644, st_size=2352, ...}) = 0
[pid 26311] unlink("psmouse.o")         = 0
[pid 26311] open("psmouse.o", O_RDWR|O_CREAT|O_TRUNC, 0666) = 3
[pid 26311] write(3, "\0psmouse.c\0main\0read\0printf\0putc"..., 53) = 53
[pid 26311] lseek(3, 0, SEEK_SET)       = 0

[pid 26311] read(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0"..., 4096) = 1029
[pid 26311] lseek(3, -965, SEEK_CUR)    = 64

[pid 26311] write(3, "UH\211\345H\203\3540dH\213\4%(\0\0\0H\211E\3701\300\307E\32
0\0\0\0\0\307E"..., 516) = 516
[pid 26311] lseek(3, 0, SEEK_SET)       = 0

[pid 26311] read(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0"..., 4096) = 1029
[pid 26311] lseek(3, -445, SEEK_CUR)    = 584

[pid 26311] write(3, "\24\0\0\0\0\0\0\0\1zR\0\1x\20\1\33\f\7\10\220\1\0\0\34\0\0\
0\34\0\0\0"..., 56) = 56
[pid 26311] lseek(3, 0, SEEK_SET)       = 0

[pid 26311] read(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0"..., 4096) = 1029
[pid 26311] lseek(3, 3, SEEK_CUR)       = 1032

[pid 26311] write(3, "7\0\0\0\0\0\0\0\2\0\0\0\n\0\0\0\374\377\377\377\377\377\377
\377g\0\0\0\0\0\0\0"..., 384) = 384
[pid 26311] lseek(3, 0, SEEK_SET)       = 0

[pid 26311] read(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0"..., 4096) = 1416
[pid 26311] lseek(3, -776, SEEK_CUR)    = 640

[pid 26311] write(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\1\0\0\0\4\
0\361\377"..., 336) = 336
[pid 26311] lseek(3, 0, SEEK_SET)       = 0

[pid 26311] read(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0"..., 4096) = 1416
[pid 26311] write(3, "\0.symtab\0.strtab\0.shstrtab\0.rela"..., 97) = 97
[pid 26311] lseek(3, 0, SEEK_SET)       = 0

[pid 26311] write(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\1\0>\0\1\0\0\0\0\0\0\0\0\0\
0\0"..., 64) = 64
[pid 26311] lseek(3, 0, SEEK_SET)       = 0

[pid 26311] read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\1\0>\0\1\0\0\0\0\0\0\0\0\0\0
\0"..., 4096) = 1513
[pid 26311] lseek(3, 7, SEEK_CUR)       = 1520

[pid 26311] write(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
0\0\0"..., 832) = 832
[pid 26311] close(3)                    = 0
 



    From the point of view of the kernel, the compiler† is mutating 
psmouse.o nine or ten times:  first it unlinks the old file, then it creates 
the new one (O_TRUNCing it if it somehow already exists), and then it 
write()s into it eight times at six different offsets. 

    But make doesn’t care about that level of detail;  it’s content to work 
with the knowledge that psmouse.o has changed.  So, for transactional 
purposes, it’s unnecessary to keep noting that psmouse.o keeps changing 
unless we’re creating new rollback points;  it’s adequate to keep a 
snapshot of its previous state. 

    We could imagine a filesystem or similar tree structure in which 
the degree of detail we retain about a transaction’s writes varies 
dynamically:  perhaps after we’ve accumulated a bunch of 
before-images of sibling “files” that are all being modified at once in a 
single transaction, we throw up our hands and save a before-image of 
the whole parent “directory”, thus avoiding any further requirement 
to interpose write barriers on anything within it. 

    Similarly, if we have a large numerical array we’re running a 
mutation loop over, it’s adequate for many purposes to snapshot the 
whole array before the first mutation, rather than tracking individual 
mutations on the array.  Analogously, array-computation libraries 
with automatic differentiation like TensorFlow track computational 
dependencies between entire arrays (vectors, matrices, etc.) rather 
than individual scalars within them. 

    The card-marking write barrier developed for Self used a single 
dirty bit for each chunk of memory (of I think 32 or 64 bytes), 
keeping the write-barrier data tiny and the write-barrier code fast, at 
the expense of imposing extra scanning work on the garbage collector.  
Similarly, for purposes of swapping out individual objects to disk, 
LOOM (Kaehler & Krasner 1982) used a single dirty bit per Smalltalk 
object.  Logical logging for transactional RDBMS rollback logs 
typically stores before-images of rows being updated rather than the 
individual updated fields, and physical logging, used for rapid 
recovery to checkpoints rather than rolling back individual 
transactions, instead stores before-images of entire pages.  
(Terminology varies somewhat between databases.) 

    And, of course, virtual-memory operating systems typically track 
memory dirtiness at the granularity of a hardware page — 512 bytes on 
the VAX and 4096 bytes on most other systems — and handle 
copy-on-write data at the same granularity.  Traditional FORTHs do 
the same thing, but with 1024-byte blocks. 

    For our transactional purposes we’d need to do more than set a 
dirty bit;  as with RDBMS logging, we’d need to copy the clean data 
before modifying it, either into an undo log (as in Noether) or into a 
buffer of pending writes for the current transaction (to permit 
optimistic synchronization or constant-time rollback). 

    In the note on segments and blocks (p.  162) I outlined a 
virtual-machine system in which the virtual machine has a number of 
“descriptor registers” which mediate its access to memory, which 
consists of “segments” and “blocks”;  read and write access is checked 
when a new descriptor is loaded into a descriptor register, while any 
number of accesses via an already-loaded descriptor can proceed with 
no further checking.  Loading a read/write descriptor register would 

https://www.ibm.com/support/knowledgecenter/SSGU8G_11.50.0/com.ibm.admin.doc/ids_admin_0694.htm
http://www.informix-dba.com/2010/07/blogging-about-logging-informix.html
http://www.informix-dba.com/2010/07/blogging-about-logging-informix.html
http://www.informix-dba.com/2010/07/blogging-about-logging-informix.html


potentially trigger a copy of the segment or block to be modified.  
This is explained in more detail in that note. 

    †Typically the assembler on Unix, actually. 

Eliding unused rollback points 

    If we’re only using transactions for error recovery and/or 
peremptory work discarding for responsiveness (not memoization, 
multithreading with optimistic synchronization, deoptimization, or 
debugging, as suggested above), then, when a parent procedure 
invokes a child procedure at a callsite where failures in the child will 
necessarily propagate to a failure in the parent, it’s not necessary (for 
execution) to preserve the separate transaction for the child 
procedure — if the child rolls back, the parent rolls back too.  This 
optimization dramatically reduces the amount of extra work imposed 
by the transaction system, and in particular something like it is 
mandatory for systems like Scheme that rely on tail-call optimization 
for looping. 

Local variables and escape analysis 

    A subroutine can mutate its local variables freely without incurring 
any transaction overhead, unless those variables are referenceable 
(something impossible in, for example, Scheme) and references to 
them have in fact escaped.  For example, Pascal-style var parameters 
can enable references to local variables to be passed to callees, but the 
language guarantees that once the callees return, those references are 
no longer live. 

Plumbing transactions to the user interface, 
the filesystem, and the network 

    Depending on what filesystem you’re running and how deeply 
you’ve been hurt, you might be able to trust the filesystem to honor 
your transaction boundaries as well, which means that code inside a 
transaction can read and write the filesystem freely — but the 
filesystem must give us a way to keep the writes within a transactional 
bubble, hidden from the rest of the world at first, and perhaps forever.  
Also, it must give us a way to transactionally validate our reads when 
we go to commit, if there’s a possibility the data we read has been 
modified in the meantime. 

    This is potentially useful because it means you can run a transaction 
that includes multiple programs all communicating through the 
filesystem.  This also potentially means you can use this sort of fearless 
concurrency in things like shell scripts, avoiding the messy failure 
cases and concurrency problems that normally plague them. 

    (If you do this with memoization of program outputs, you have a 
rather standard build system.) 

    A network file server can participate in your transactions in the 
same way as a local filesystem.  Indeed, a network server need not be 
implementing anything very similar to a filesystem;  it just needs to be 
participating in a transactional protocol with you, either arbitrating 
transaction commits and serialization or faithfully deferring to some 
such arbitration system.  A queueing system is a prime candidate. 



    If you’re willing to embrace the filesystem and networked services 
as part of your transactions, what about users?  In particular, if you 
can run multiple entire programs inside a giant transaction, you could 
enable users to create a long-lived transaction that they then have a 
window into, as a way to experiment with new states they may not 
want to keep.  However, I’m not sure this approach can really deliver 
a usable user experience of undo and restoration from backups;  
NixOS has its fans, in part because it offers a much freer model of 
switching between configurations than simple nested 
commit/rollback.  On the other hand, using this approach for 
debugging implies that it’s possible for users to see inside an 
uncommitted transaction, at least within the debugger;  being able to 
can copy things out of the transaction history or an uncommitted 
transaction might be enough. 

    (Also, see above about the relationship with REST;  the system can 
be extended in a natural way to prevent lost-update errors in web 
services.) 

    What about the XPra/NeWS/AJAX problem?  Above I talked 
about using transactions across a distributed network under a single 
administrator as a near-panacea for problems of distributed 
programming, a level of optimism that surely will not pan out in real 
life.  XPra provides remote access to GUI applications running on a 
server somewhere by rendering their GUIs server-side and 
transmitting the screen updates using a codec such as H.264, but this 
suffers from both computing-power-bottleneck problems (especially 
when many users share the same server) and latency problems.  
NeWS tried to solve this problem by allowing the application author 
to upload snippets of PostScript code to the window server, which 
could then react instantly to user interface events and do as much 
rendering inside the window server as desirable, providing a 
smart-client/mobile-code solution similar to modern AJAX webapps, 
but with PostScript as the client-side programming language instead 
of JS.  AJAX is very good at improving responsivity, at least when it 
doesn’t bloat a fucking text chat UI to occupy a gigabyte of RAM, 
and especially at reducing server load. 

    Could distributed transactions simplify the task of programming 
such applications?  This is a degenerate case of the network of worker 
nodes all beating on a single master:  one master, which is also a 
worker, and a second worker for low latency.  Maybe they could 
allow any given code to run transparently on either end of the 
high-latency connection, or indeed optimistically on both ends of the 
connection, with the results from the second-to-commit execution 
being discarded.  Transactions that only read the database can display 
their results from the database with the possibility of being 
out-of-date and needing to be re-executed (this is more or less how 
Meteor works, although they aren’t called “transactions”), while 
transactions that write to it would have to wait for the server to 
confirm before reporting success.  I don’t know, I think there’s maybe 
some potential here, but I don’t have it thoroughly thought out. 

    Is there a connection with hardware transactional memory support 
that is starting to appear in modern high-end manycore systems?  It is 
in some ways a way to expose the multisocket nature of the system to 
application software so that it can avoid paying unnecessary 



synchronization costs.  How would it play with this kind of 
per-subroutine-call nested transactions? 

Reverse-mode automatic differentiation 

    Implementing this kind of rollback suffers from the same 
difficulties as reverse-mode automatic differentiation, namely that it 
needs to keep around all the intermediate values that have been 
overwritten, or anyway those that were live at a live rollback point.  
The checkpoints it provides could in fact literally be used as the 
checkpoints for reverse-mode automatic differentiation, a further 
crucial technique for solving inverse problems. 

First-class transactions 

    What would it look like to, as Shae Erisson suggested, expose the 
per-call transactions as first-class objects to the user program?  You 
could imagine, for example, inspecting your current transaction to see 
what mutable variables it had read or written, or the rolled-back 
transaction executed by a callee, and this would provide a natural 
interface for applying the technique to the various problems described 
above. 

    For example, the suggested application to REST would require the 
web framework to be able to generate some kind of serializable 
identifier for each mutable variable the HTML <form> depends on, and 
also to retrieve those variables given those identifiers when the form is 
returned.  Facilities like those would also allow the proxy code for 
distributed nodes as described above to be written entirely at user 
level.  As another example, the modal-reasoning question “what 
variables would this randomly generated code write to if I ran it?” 
needs to be able to abort the child transaction and then inspect its 
write log. 

Time travel and read-only transactions 

    A transaction that doesn’t write any transactional variables can be 
safely run at any time, regardless of anything else that’s happening.  
The vertical-blanking-interval pull transaction mentioned above is 
one example:  it might write to video RAM, but probably not to 
anything within the transaction system.  Normally you would like 
such a transaction to run in the most up-to-date state possible, but the 
usual ACID serializability requirements don’t actually require that;  
it’s perfectly valid to run it with access to some consistent past state, 
maybe a recent-past state. 

    In a flat memory space in which transactional variables live at some 
“home” memory address, doing this without retrying or blocking any 
write transactions would normally require every read access to a 
transactional variable to be indirected through the transaction system, 
so that it could give you the results that were valid at the point in 
time you’ve been transported to.  Although this is a reasonable cost, 
and one that most of the above discussion assumes we normally pay in 
every transaction, it might be nice to avoid it for real-time things like 
the VBI screen redraw transaction example.  Earlier I suggested 
blocking all other transactions that go to commit until after the 
real-time transaction is done, but another alternative is to let them 



commit, but buffer their writes in an update journal rather than write 
them back to their home addresses.  This allows the read-only 
real-time transaction to proceed to completion without interacting 
with the transaction system at all, thus running at maximum speed.  
Other transactions can run in parallel as usual, if you have multiple 
cores, but their reads are served from the update log, so they can see 
updates that have happened since the real-time transaction began. 

    To the extent that past states of the transactional variables are 
logged and don’t suffer linkrot (for example, because logged past 
states are not included as GC roots) you can also provide a time travel 
facility to allow not just debuggers but ordinary application programs 
to inspect past states, by explicitly running read-only transactions at 
past points — analogous to detached HEAD state in Git. 

Thanks 

    Thanks to sbp, Darius Bacon, Corbin Simpson, CcxWrk, and 
especially Shae Erisson for many very informative discussions that 
helped greatly with this note.
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Materials YouTube
Kragen Javier Sitaker, 02020-12-16 (updated 02020-12-17) (1 minute)

    You can learn theoretical materials science by doing 
pencil-and-paper exercises from a book, but for doing it in practice, 
it's often crucially important to watch other people work through 
problems — this often allows you to pick up details of technique they 
wouldn't think to mention. 

    Some YouTube channels with a lot of information on materials 
processing: 

• NileRed (2.2M subs) & NileBlue 
• Applied Science (700k subs) 
• Nurdrage (750k subs) 
• Cody'sLab (1.9M subs) 
• Primitive Technology (10M subs, largely bushcraft) 
• How to Make Everything (though usually it omits details crucial to 
reproducing results;  1.4M subs, autarky-focused) 
• MIT OCW Digital Lab Technique Manual, part of MIT OCW 
(2.8M subs) 
• Mrhomescientist (57k subs) 
• NightHawkInLight (1.7M subs) 
• N2H4 labs 
• Extractions&Ire (64k subs) 
• Doug's Lab (52k subs) 
• Gyzmodium (330 subs) 
• Scrap Science (3.7k subs) 
• Hydrogen, Time (240 subs) 
• UC235 (9.2k subs) 
• Chemsurvival (53k subs) (mostly lecture animations) 
• Chemplayer, now banned on YT, moved to BitChute 
• Neptunium (1.9k subs) 
• ytmachx 
• Myst32yt (18k subs) 
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Electronics next project
Kragen Javier Sitaker, 02020-12-21 (updated 02020-12-22) 
(7 minutes)

    I’m suffering from analysis paralysis as I ponder what electronic 
project to do next to level up (to both level up my skills and my 
equipment).  This is related to the microcontroller inventory (p.  616) 
and the nonshopping list (p.  512).  Here are some 58 projects I could 
try to do, mostly in random order with five randomly chosen but 
with a few manually chosen to move to the top list of finalists: 

• house thermometer (indoor, outdoor, logging) 
• Joule Thief as a simple battery tester if nothing else 
• 7-segment display with 7 scavenged discrete LEDs in some kind of 
case with slits and partitions, which can be very large 
• use a speaker as a microphone to get bidirectional audio on a 
microcontroller. 
• make the strip of giant LEDs shine so we can illuminate with it 
• audio amp driving one or more of the speakers here 
• metronome with relays 
• low-bandwidth 433MHz license-free SDR for kilometer-scale 
robust communication 
• pulse soldering:  a circuit to deliver a calibrated amount of energy at 
a calibrated power level for, for example, battery pack construction or 
hair-wire soldering 
• ultra-low-power FM radio transmitter to listen to music wirelessly 
• display text on a 7-segment LED screen from an AVR or STM32 
• timer with relay to turn off the water pump after 20' 
• plant waterer to keep the plants from dying;  this probably involves 
a microwave oven relay, a washing machine valve, a microcontroller, 
and some transistors   

• hot air pencil:  thermostatic control of air temperature permits rapid 
localized heating, very useful for rework and electronics scavenging, 
as well as preheat for soldering 
• ultrasound measurement with two piezos and some oil, to see what 
frequencies I can get through the oil;  this might require the Blue Pill 
• basic Magic Kazoo:  you hum into a microphone on one end, and it 
does pitch ID and synthesizes a musical instrument out the other 
• lightbulb thermometer using a lightbulb as the temperature sensor 
• read the digital caliper’s output port to get another 
20-micron-precision positional feedback source 
• stepper controller:  drive a low-power stepper motor with some 
transistors and a microcontroller 
• an electromagnet, pure and simple 
• electrolysis controller to permit precise control of electroplating, 
electro-etching, and similar processes 
• copper-wire foam cutter (see Copper Segelin (p.  534)) 
• micro-engraver with three piezos, or two piezos and 
electro-etching, or one piezo and several electrodes, as a testbed for 
micro-engraving ideas 
• stainless steel wool foam cutter:  it’s about 0.2Ω per 100mm, which 



is in the same ballpark as thinner copper wire for the copper segelín 
(p.  534), but instead of burning at 300° it can get to over 800°, which 
is plenty for cutting styrofoam. 
• adjustable switching power supply using discontinuous conduction 
mode to get current limiting 
• program the PALs I scavenged to compute some particular logic 
function 
• noise-based optical position encoder:  by measuring randomly 
varying transmissivity or reflectivity along a linear track, it can rapidly 
determine its precise position 
• read and write SD card from AVR or STM32:  SD cards support 
SPI, and this enables a lot of projects that otherwise need way too 
much space. 
• air conditioner remote control to control the air conditioner with 
infrared 
• FM radio receiver to listen to the radio 
• Blue Pill oscilloscope, only up to a megahertz or two but still better 
than a sound card 
• ultrasonic vector image transmission (see audio vector image (p.  
509)) 
• program my ATMega328s with the Duemilanove, the ones that are 
in a tube 
• program the ATTiny2313s I have a tube full of here so I can use 
them for things like capacitance measurement 
• humidity sensor (see PET dielectric spectroscopy (p.  562)) 
• make an MPPT to measure a red LED in the sun to find out how 
much energy you can harvest from it and at what power level 
• recognize whistling with an AVR to command household 
electronics 
• synthesize voice with AVR and speaker to get output  
• program the ATTiny45s so I can use them for things like my 
notebook 
• dielectric spectroscopy:  identify materials, especially including 
humidity, capacitively through their frequency-dependent 
permittivity 
• program Blink onto one of the Blue Pills so I can start using them 
• test the PAL delay line I scavenged from a VCR 
• Lissajous projector, scanning a laser pointer with a resonating 
nutating mirror.  Once the mirror has a stable resonance set up, maybe 
from a speaker, you can tune in a picture by moving a photodiode 
into the illuminated area to find the overall period, then to corners 
and across the center to find the phase 
• impedance tomography sensor to detect touches on a resistive 
surface with just a few electrodes and a microcontroller 
• emulate a PS/2 keyboard to get data from microcontrollers onto 
bigger computers (see machine-readable microcontroller output (p.  
633)) 
• build a simple circuit with hair wire to see if it can be made feasible 
• data reception with bidirectional LEDs as extensively tested for, 
among other things, PJON 
• linear motor with aluminum sheet consisting of two or three coils 
that can levitate and move the sheet;  this probably requires some 
pretty hefty power 
• thermostat-controlled microfurnace for things like firing pottery 



• current microbalance to weigh light things by counteracting their 
weight with a precisely measured electromagnetic force 
• adjustable linear power supply hanging off an ATX or power-brick 
power supply so I have an adjustable voltage;  this becomes a lot more 
useful once it has some kind of readout, and ideally current limiting 
too;  if it depends on the upstream power supply for voltage 
regulation it can be just a trimpot and an emitter follower 
• TransistorTester, maybe not a super sophisticated one 
• rotational capacitive sensor made of paper towel tubes and 
aluminum foil to measure rotational position with some precision, 
thus providing feedback for DC motors 
• capacitor meter (p.  585):  with Duemilanove, to begin with 
• test PS/2 keyboard by programming the host side of the PS/2 
protocol into an AVR or STM32 
• decode a printer position sensor signal of one of the two inkjet 
carriage assemblies I have here so as to get a 20-μm-precision motion 
control feedback system 
• 4-wire ohmmeter to measure sub-hectaohm resistances precisely 
• show text on a passive LCD (ideally 7-segment at first;  see the note 
on screens (p.  580) and rebraining (p.  593)) 
• decode the microwave keyboard so I can use it as a project box with 
membrane buttons 

Topics

• Electronics (p.  788) (42 notes) 
• Ghettobotics (p.  793) (18 notes) 
• Microcontrollers (p.  801) (14 notes) 
• Independence (p.  813) (9 notes) 
• Relays



Electroforming networks
Kragen Javier Sitaker, 02020-12-22 (3 minutes)

    aluminum VLA horn.  cloth.  soluble insulation 

    Suppose you want to make a metal sheet that has channels running 
through it, say for coolant.  One possible way to do this is to make the 
shape of the channels out of wire of steel or aluminum, electroform 
copper onto them until you have a solid sheet (after a flash of some 
intermediate metal in the case of steel), and then dissolve the channels 
out of the copper, using alum solution for steel, or either hydrochloric 
acid or lye for aluminum. 

    This is potentially useful for many things, such as heat exchangers, 
cooling jackets, heated floors, and “labs on a chip” in which a 
sequence of processes is carried out in tubes within a monolithic 
device.  Another similar application is making coils for induction 
heating:  at high frequencies only the very surface of the coil’s metal 
can be used, and you normally want to run water through it to keep it 
coool. 

    In many cases like this, it’s useful to have a minimum separation 
between the channels to prevent fluid flow between them.  For 
example, in a long serpentine coolant channel, a “short circuit” for 
the fluid could eliminate one or more loops, producing a hot spot due 
to inadequate coolant flow;  and, in an induction coil, unwanted 
contact between successive coils can produce an electrical short circuit, 
which can produce a hot spot due to a narrow resistive connection. 

    To provide such a minimum separation, it’s potentially useful to 
form the original wire network using wires bearing a layer of flexible 
“spacer”, similar to the insulation used on electrical wires.  Once the 
wires are all in place, you can remove the spacer, for example by 
burning it off with fire (if it is an organic chemical or, say, amorphous 
sulfur);  dissolving it off with water (if it is a water-soluble material 
such as gelatin, albumin, pectin, starch, carboxymethylcellulose, 
poly(ethylene glycol), poly(acrylic acid), xanthan or guar gum, or 
polyvinyl alcohol, or held together with a water-soluble binder;  
mixing some baking powder in may speed this process);  melting it 
off, if it has a low enough melting temperature;  degelling it by 
changing the pH, if it’s a pH-dependent gel like poly(acrylic acid) or 
some carrageenans;  etc. Once the spacer is gone, hopefully without 
the wires sagging much, the electroforming process can begin. 

    Ideally the wires would themselves be hollow, having a thin open 
tube through their centers, thus containing within themselves the seed 
of their own doom — the alum or lye or whatever can attack them 
enormously more rapidly if it can be run through this pipe, rather 
than having to diffuse in from the ends. 

    Of course, copper is not the only metal that can be electroformed, 
and alternatives to electroforming exist:  you may be able to pot the 
channel wires in resin, for example.  But these processes are perhaps 
less interesting.



Topics

• Materials (p.  784) (51 notes) 
• Manufacturing (p.  795) (17 notes) 
• Electrolysis (p.  824) (7 notes) 



Time-scale material processing
Kragen Javier Sitaker, 02020-12-22 (3 minutes)

    We frequently talk about whether something is soluble in water as 
purely a function of temperature, because of course the equilibrium is 
a function of temperature (and slightly of pressure, or more than 
slightly, for gases).  But equilibrium is an ideal state never reached;  
two different materials with the same equilibrium solubility might 
have very different dissolution rates, and in the absence of seed 
crystals, one might have a much higher energy barrier than the other 
to nucleate crystals.  Moreover, the growth of crystals after nucleation 
is initially exponential, then slows down to quadratic, rather than the 
initially-linear growth you'd expect from the simple Boltzmann 
energy-barrier picture. 

    Similar comments pertain to other reactions:  the Gibbs free energy 
determines the reaction's equilibrium, but not the reaction rate, which 
may be autocatalytic (like crystal growth, but with diffusion) and thus 
experience exponential growth. 

    Historically the humans haven't taken much advantage of this in 
material processing (?), other than in heat treatment of metals, where 
it's an unavoidable challenge.  But most lab techniques involve 
running the relevant reactions fully to equilibrium over the time of 
seconds to hours, spanning about four orders of magnitude.  Processes 
that don't happen to an appreciable degree over hours are considered 
unimportant;  processes that happen in less than a second are 
considered immediate. 

    It occurs to me that modern electronics and microfluidics each 
offer us the opportunity to intervene reproducibly in such processes at 
nanosecond timescales, adding nine more orders of temporal 
magnitude to our arsenal.  If we have two processes in a material 
mixture, one which runs to completion at a given temperature in 10 
microseconds and the other in 10 milliseconds, we can interrupt the 
proceedings after 10 microseconds when the second process is only 
0.1% complete, or perhaps 0.0001%.  (Interrupt?  For example, by 
diluting, chilling, or poisoning the interaction.) We commonly do this 
kind of thing over a longer timescale in cooking:  boiling the carrots 
for five minutes may make them delightfully soft, while boiling them 
for an hour will make them unpalatably mushy. 

    The information needed to plan such processes is rarely available in 
the existing research literature, because workers in the field usually 
don’t care whether a particular material change takes a nanosecond, a 
millisecond, or a microsecond. 

    We can alternate between two processes, one which has a yield of 
0.01% of a desired product (due to equilibrium, for example) and the 
other of which removes the product from it, at kilohertz or 
megahertz frequencies.  Of course, there are many existing processes 
which work this way already without such alternation;  the Pidgeon 
process, for example, produces magnesium through silicothermic 
reduction of magnesia (produced by calcining dolomite) despite an 
unpromising equilibrium, because the magnesium boils out of the 



reaction and the silicon is taken up by quicklime (also from the 
dolomite) to form larnite.  But there are other processes that cannot 
be run in this way, for example because they involve ingredients that 
would have unwanted reactions with one another, or the desired 
equilibria require vastly different temperatures or pressures.

Topics

• Materials (p.  784) (51 notes) 
• The future (p.  820) (7 notes) 



Circle-portal GUI Ⅱ
Kragen Javier Sitaker, 02020-12-22 (updated 02020-12-23) 
(4 minutes)

    In Dercuano I wrote about a "circle portal GUI" ZUI design 
consisting entirely of circular windows.  Your user interface is a 
circular viewport onto an infinitely zoomable canvas, which contains 
other such circular viewports onto other parts of itself, each possessed 
of only a position and size, a destination position and size and 
orientation, a z-order, a background color, and a translucency.  You 
can create these portals, duplicate them, move them, move their 
destination, resize them, resize their destination, change their 
background color, change their z-order, and follow them — they 
function as hyperlinks.  Also you can "snap" them, destroying them 
and copying the region of canvas they view onto the place where they 
are displayed. 

    By arranging some empty portals with a given background color 
somewhere, you could create a letterform, and then by making portals 
that view that letterform in various places you could make copies of 
the letter.  By arranging dozens of such letters together in a font, you 
could have a way to write text in that font;  if you made a "font 
portal" viewing that font, you could make portals onto the positions 
of letterforms in that portal, which could also be used to spell text;  by 
changing the destination of your font portal, you could change the 
font used for that text. 

    (You'd probably want to have a way to interpose a level of 
indirection like that after the fact.) 

    If you wanted to draw something in some changeable colors, you 
could do that by putting your palette in one place, and making your 
drawing out of portals onto the palette. 

    So this single type of object serves as a graphical primitive (since 
you can set the background color), a limited IFS generator (without 
shearing or nonuniform scaling, since each transform only supports 
four degrees of freedom rather than the usual 6), a hypermedia 
navigation system with live preview, a graphical instancing system 
capable of some use as a stylesheet, a universal "view source" button, 
and so on, all through direct manipulation, though a sort of direct 
manipulation that would probably be super confusing, just due to its 
hall-of-mirrors nature. 

    (I implemented a tiny prototype of the system one day, but didn't 
get far enough to get a good sense for how to use it.  I imagine you'd 
want to add some other graphical primitives and interaction modes;  
dragging letterforms one by one is maybe not a great way to write 
text.) 

    I was thinking today that it would be interesting to do the same 
thing in 3-D, using spheres instead of circles.  The sphere portals 
could display what was within their target volume, like you might 
imagine looking into a crystal ball;  they could display what was 
visible by looking through it (either in a given direction, or in the 
direction you're looking in);  or they could display what would be 



reflected from the volume around their target volume, just as a silver ball 
displays what is reflected from the volume around itself.  This last 
item would have the benefit that the target volume could itself be an 
object in the world, so the hypertext links in this system could be 
bidirectional, which might actually help a little bit with the 
confusion, though it would impede uses like instancing a character 
from a font.  (You could probably get an acceptable approximation by 
using really small target spheres.)

Topics

• HCI (p.  797) (17 notes) 
• Graphics (p.  810) (10 notes) 
• GUIs (p.  861) (4 notes) 
• Hypertext (p.  882) (3 notes) 
• Small is beautiful (p.  916) (2 notes) 



Methods for two-dimensional 
rotation with two or three real 
multiplies
Kragen Javier Sitaker, 02020-12-23 (updated 02020-12-26) 
(14 minutes) 

Method K for complex multiplication 

    Wikipedia says Knuth gives an algorithm for multiplying (a + bi)(c 
+ di) as follows:  (k₁ - k₂) + (k₁ + k₃)i where k₁ = a(c + d), k₂ = (a + b)
d, k₃ = (b - a)c, which works out to (ac - bd) + (ad + bc)i as it should.  
Call this Method K.  Method K is interesting because often 
multiplication is much more expensive than addition or subtraction 
(for example, it takes much more space in hardware in fixed point, 
and much more time in multiple precision), and this algorithm 
requires only three real multiplies, rather than the four required by 
the more direct approach. 

    In Unicode matrix form: 

┎             ┒┎  ┒     ┎  ┒
┃  1  1  0  0 ┃┃ac┃     ┃k₁┃
┃  0  1  0  1 ┃┃ad┃  =  ┃k₂┃
┃ -1  0  1  0 ┃┃bc┃     ┃k₃┃
┖             ┚┃bd┃     ┖  ┚
               ┖  ┚

┎           ┒┎  ┒     ┎ ┒
┃  1  -1  0 ┃┃k₁┃     ┃ℜ┃
┃  1   0  1 ┃┃k₂┃  =  ┃ℑ┃
┖           ┚┃k₃┃     ┖ ┚
             ┖  ┚
 

    Because 

┎           ┒┎             ┒┎  ┒
┃  1  -1  0 ┃┃  1  1  0  0 ┃┃ac┃
┃  1   0  1 ┃┃  0  1  0  1 ┃┃ad┃ =
┖           ┚┃ -1  0  1  0 ┃┃bc┃
             ┖             ┚┃bd┃
                            ┖  ┚
               ┎  ┒
┎             ┒┃ac┃
┃  1  0  0 -1 ┃┃ad┃
┃  0  1  1  0 ┃┃bc┃
┖             ┚┃bd┃
               ┖  ┚
 

    (Incidentally, the version of Method K given in Wikipedia 
interchanges k₂ and k₃, as well as a and c, and b and d.  That’s because I 
reconstructed it from memory and it has an asymmetry with respect 



to its arguments that Karatsuba multiplication does not.) 

Karatsuba multiplication 

    A very similar insight underlies Karatsuba multiplication for 
multiple-precision real numbers;  I don’t know if Karatsuba was 
working directly from the above complex algorithm, but in Karatsuba 
multiplication we obtain (a + br)(c + dr) = ac + (ad + bc)r + bdr² by 
calculating j₀ + (j₂ - j₁ - j₀)r + j₁r², where j₀ is of course ac and j₁ is of 
course bd, from which we can calculate that j₂ must be ac + ad + bc + 
bd = (a + b)(c + d) — our third multiply!  (And two adds.) 

    So, for example, with r = 10, we can calculate 97 × 86 as j₀ = 7×6 
= 42, j₁ = 9×8 = 72, j₂ = (9+7)×(8+6) - j₁ - j₀ = 16×14 - 42 - 72 = 
224 - 42 - 72 = 110, so our answer is 42 + 110×10 + 72×100 = 8342, 
which is correct.  And recursively subdividing the problem this way 
gives us Karatsuba’s asymptotically faster multiplication algorithm, 
the first one discovered in millennia. 

    Applied to the special case r = i, Karatsuba multiplication gives us j₀ 
- j₁ + (j₂ - j₁ - j₀)i, so Karatsuba multiplication gives us a slightly 
different three-real-multiply algorithm for complex multiplication.  
It uses two adds and three subtracts in addition to the multiplies, 
while Method K uses three adds and two subtracts — virtually the 
same computational cost. 

Partial evaluation 

    If we partially evaluate these two algorithms with respect to one of 
the arguments, say we hold constant the (a, b) argument, Method K 
eliminates an add and a subtract, because k₂ = m₀d and k₃ = m₁c, where 
the mᵢ depend only on the constant argument.  Partially evaluating 
Karatsuba multiplication in the same way only eliminates the a + b 
add.  So for complex multiplication by a constant multiplier, 
Karatsuba costs three multiplies, one add, and three subtracts;  
Method K costs three multiplies, two adds, and one subtract;  and the 
basic method costs four multiplies, one add, and one subtract, just as 
for non-constant arguments. 

Complex multiplication for rotation and 
scaling 

    In the context of computer graphics, complex multiplies are 
particularly interesting because they perform uniform scaling and 
rotation in a single operation.  So, for example, you can take a vector 
figure represented as a list of (x, y) points, and scale it by n and rotate 
it by θ by multiplying each number (x + yi) by a complex constant (n 
cos θ + ni sin θ).  (Typically you also want translation, which is 
complex addition if you’re still thinking in complex numbers, but 
there’s no advantage in doing so.) If you have the x and y components 
of various different points in some SIMD registers, this costs you 
three SIMD multiplies, two SIMD adds, and one SIMD subtract 
using the partially-evaluated Method K. 

    Commonly in computer graphics we instead rotate raster images;  
this can be done by brute force by translating and rotating the screen 
coordinates of every screen pixel into texture space by the methods 



above, but strength-reducing this operation is very advantageous and 
universally done.  Instead of transforming the coordinates of each 
pixel, we transform the coordinates of a start pixel, the delta (1, 0) to 
move one pixel to the right, and the delta (0, 1) to move one scan line 
down.  These give us increments we can use to walk around texture 
space with simple adds.  Then we can sample from texture space with 
a variety of methods — for procedural textures like fragment shaders, 
we just invoke the procedure with the transformed (x, y) arguments, 
while for materialized textures we commonly use nearest-neighbor or 
bilinear sampling, though there are a variety of common tradeoffs 
between aliasing and computation time. 

Paeth’s three-shear rotation algorithm 

    There’s another famous algorithm for rotating raster images with 
three multiplies, though, by Paeth, usually called the “three-shear 
rotation”.  It doesn’t do any scaling, but its compensating virtue is 
that, in its usual form, it doesn’t lose any pixels — under appropriate 
circumstances it’s perfectly reversible, because you execute it by 
shearing the raster pixels by displacing them some integer number of 
pixels.  This also means that it doesn’t require per-pixel sampling 
operations, even rounding. 

    The disadvantage of Paeth’s three-shear rotation is that it produces 
a lot of aliasing artifacts because of the constraint of shifting the pixels 
only by integer amounts.  See the note on stochastic fractional delay 
lines (p.  768) for some approaches to this problem. 

    Paeth’s algorithm for rotating a vector (x, y) consist of the 
following three steps: 

x += αy;
y -= βx;
x += αy;
 

    (And the shear transformations work by shifting pixels αy pixels to 
the right in the first step, βx pixels up in the second step, and αy pixels 
to the right again in the third step.  Normally you round these shifts 
to integers.) 

    We can represent this calculation with matrix concatenation as 
follows (here I’m copying my memory of Tobin Fricke’s page on the 
subject): 

┎       ┒┎       ┒┎       ┒┎   ┒
┃  1  α ┃┃  1  0 ┃┃  1  α ┃┃ x ┃
┃  0  1 ┃┃ -β  1 ┃┃  0  1 ┃┃ y ┃
┖       ┚┖       ┚┖       ┚┖   ┚
 

    Let’s concatenate out the matrices;  first the rightmost ones: 

┎       ┒┎       ┒   ┎          ┒
┃  1  0 ┃┃  1  α ┃ = ┃  1   α   ┃
┃ -β  1 ┃┃  0  1 ┃   ┃ -β  1-αβ ┃
┖       ┚┖       ┚   ┖          ┚
 

    That is, when we subtract off β of x from y in the second step, the x 



we’re subtracting already has an α of the original y in it, so the y-to-y 
item isn’t 1.  Now the third step: 

┎       ┒┎          ┒   ┎                   ┒
┃  1  α ┃┃  1   α   ┃ = ┃ 1 - αβ   2α - α²β ┃
┃  0  1 ┃┃ -β  1-αβ ┃   ┃   -β      1 - αβ  ┃
┖       ┚┖          ┚   ┖                   ┚
 

    So now we end up subtracting off a proportion αβ of the original x 
as well as the original y, and adjusting each one by different fractions 
(respectively -β and 2α - α²β) of the other, fractions which approach 
0 if α and β do. 

    So, to get a matrix for rotation by θ out of this, we need cos θ = 1 - 
αβ and sin θ = -β = α²β - 2α, which is three equations in two 
unknowns.  We have directly that β = -sin θ, and to calculate α we 
can observe that cos θ = √(1 - sin² θ) = √(1 - β²) = 1 - αβ.  Thus α = 
(1 - √(1 - β²))/β.  (As it turns out, this is -tan ½θ, but that’s a terrible 
way to calculate it.) 

    But our problem was overdetermined, so we still have to check if 
this gives us -β = α²β - 2α, so we want to see if β = 2α - α²β, which 
becomes
 2(1 - √(1 - β²))/β - β(1 - √(1 - β²))²/β² =
 2/β - 2√(1 - β²)/β - (1 - √(1 - β²))²/β =
 (2 - 2√(1 - β²) - (1 - √(1 - β²))²)/β =
 (2 - 2√(1 - β²) - 1 + 2√(1 - β²) - (1 - β²))/β =
 (2 - 1 - 1 + β²))/β =
 β. 

    So choosing α and β in this way does give us a pure rotation.  For 
example, for θ = 10°, β = -sin θ ≈ -.174, α = (1 - √(1 - β²))/β ≈ 
-.0877.  Starting at (100, 0), we proceed to (98.5, 17.4), (93.9, 34.3), 
(86.5, 50.1).  These all have magnitude 100 and angles of respectively 
0°, 10°, 20°, and 30°, so it seems to be working, though with a bit of 
rounding error — the last one should have been (86.6 = 100√¾, 50.0 = 
100/2). 

    Toffoli and Quick in 1997 reported a similar three-shear algorithm 
for three-dimensional rotation, but I haven’t read the paper. 

Minsky’s circle algorithm and two-shear 
image rotation 

    Paeth’s algorithm is strikingly similar to the Minsky circle 
algorithm described in HAKMEM, which computes an approximate 
rotation of a point around the origin as follows: 

x += αy;
y -= αx;
# no further steps
 

    This is, surprisingly, stable with exact math;  the determinant of the 
resulting matrix is exactly 1: 

┎          ┒
┃  1   α   ┃

https://www.sciencedirect.com/science/article/abs/pii/S1077316997904202


┃ -α  1-α² ┃
┖          ┚
 

    It’s usually even stable with approximate math, including integer 
math.  With integer math, even if α is prescaled to be something like 
3/32, each of the steps is computationally reversible, like Paeth’s 
rotations;  so orbits can’t converge, and they can’t grow without 
bound because the determinant is 1, so they must return to the 
starting point.  (For it to be computationally irreversible, you’d need 
addition and subtraction to round sometimes.) But the circles 
described by successive iterations are elliptical, which is obvious if you 
start with, for example, (x, y, α) = (1, 1, 1) — the orbit is (1, 1), (2, -1), 
(2, -1), (1, -2), (-1, -1), (-2, 1), (-1, 2), and then repeats.  For smaller 
values of α the ellipticity is quite small. 

    The reversibility property means that if you use this transformation 
to map a bunch of unique pixel coordinates, the resulting pixel 
coordinates will still be unique!  In fact we can implement this 
“rotation” on a raster image with two Paeth-like shears, and each of 
the pixels will describe a Minsky pseudocircle that never collides with 
any other pixel, and eventually returns to its starting point.  The 
image will be distorted as it rotates (in particular any pixels close 
enough to the origin that αx and αy round to zero will stay put 
instead of rotating!) but it will eventually return to its original form.  
Not having tried it, I suspect that for many parameter values, 
particularly with the center of rotation well outside the image, the 
distortions will be imperceptibly small compared to the aliasing of 
Paeth’s algorithm implemented with integer shears. 

    Both Minsky’s and Paeth’s algorithm can be thought of as two 
timesteps of leapfrog integration of a simple harmonic oscillator (ẍ = -
kx);  the difference is that Paeth’s algorithm starts halfway in between 
two timesteps.  But it seems like this would imply that you can undo 
the ellipticity of Minsky’s algorithm by picking a different starting 
position, and in fact you can’t. 

Paeth locality and run-length slicing 

    Many people have questioned whether Paeth rotation is still fast on 
modern machines, quite apart from the aliasing artifacts induced by its 
standard implementation with integer pixel shifts, because the 
standard approach uses three passes over the image, thus blowing up 
your dcache unnecessarily.  I think you can probably get enough 
locality by pipelining and maybe tiling.  Suppose you break the image 
into tiles of 16×16 pixels (768 bytes in fancy shmancy 24-bit color) 
and your α and β factors are small enough that the shift over the 
whole image is less than ±16 pixels.  Then producing a single output 
tile involves only pixels from two horizontally adjacent second-stage 
tiles;  each of these involves only pixels from two vertically adjacent 
first-stage tiles, four in all;  and each of these involves only pixels 
from two horizontally adjacent input tiles, six in all, spread across two 
rows of tiles. 

    So if you pipeline the shears you only need enough dcache to hold 
32 scan lines of the image, which I think is even true without tiling;  
if it’s the traditional 1024 pixels wide then that’s 96 kilobytes in 



24-bit color, which is coincidentally exactly the size of my L1D cache 
on my Pentium N3700 laptop. 

    We can do better than this with Z-curve or Hilbert-curve ordering 
over the tiles. 

    However, for smallish rotations, we can do much better;  each scan 
line of the output is made out of concatenated segments from 
different scan lines of the input. 

    Consider an input image all white with one horizontal black line.  
The initial x-shear just moves the black line with the image.  Then 
the y-shear breaks the black line up into something like a Bresenham 
line;  if the y-shear is 16 pixels over a width of 500, for example, it 
consists of alternating 31-pixel (75%) and 32-pixel (25%) segments, 
placed on successive scan lines;  this stretches the originally-500-pixel 
line into a line of roughly 500.26 pixels in length.  Then the final 
x-shear may overlap some of these segments, putting two black pixels 
above one another, or it may not, depending on where the line is 
positioned vertically. 

    I think these overlaps are points where, when moving from writing 
into output scan line m by copying from input scan line n to copying 
from input scan line n±1, we also adjust the x-offset from which we 
are copying. 

    Larger rotations produce shorter segments which overlap more 
often, but until you get to a rotation of more than about 20°, the 
segments are still substantial.  You can copy these segments directly 
from the input image into their place in the output image, rather like 
run-length-slice line drawing, but sometimes with overlap between 
the ends of the slices, and copying pixels rather than filling colors.

Topics

• Performance (p.  790) (24 notes) 
• Math (p.  804) (13 notes) 
• Graphics (p.  810) (10 notes) 
• Paeth rotation (p.  930) (2 notes) 
• Minsky algorithm (p.  938) (2 notes) 
• Karatsuba



Light pen latency
Kragen Javier Sitaker, 02020-12-23 (updated 02020-12-28) 
(29 minutes)

    There’s a lot of recent HCI research on the impact of UI latency on 
computer usability.  The picture is abysmal:  keyboard latency is 
70–200 ms and touchscreen latency is 70–250;  even musical 
performance systems like the Reactable suffer from 100–300 ms input 
lag (I counted frames in that video);  the experimental tangible 
programming system at Dynamicland is kneecapped by a latency in 
the 600–2500 ms range.  Meanwhile, people can tell the difference 
between 1 ms and 2 ms of dragging lag in user tests with a 
custom-built low-latency stylus tracking system, or detect 10 ms of 
latency in a different experiment;  10 ms of latency at dragging or 
drawing is extremely obvious;  performance in the simplest 
touchscreen tasks is hampered by input latency over 25–50 ms;  and 
with 1–3 ms of latency, projection-mapping can convincingly add 
textures to moving and flexing objects, even when some of the light 
leaks around the edges or the objects ripple in the wind, though 
commercially available real-time projection mapping systems let the 
projection mapping visibly slide around over the moving surface due 
to their higher latency, thus failing to achieve the desired illusion. 

    The Microsoft system used above used a custom-built 
“high-performance stylus system” using Gray-code-modulated light 
patterns projected at 24kHz with a TI DLP DMD “projector 
development kit” which costs US$1800;  the Ishikawa .* Lab research 
used both a projector with a custom-built 1000fps tracking mirror 
setup (using what looks like the kind of galvo rotating mirrors used 
for laser shows), later a 1000fps custom-built projector, and a 
custom-built 1000fps camera.  Lower-cost DMD devices like the TI 
DLP4710 chip can only manage 120Hz but still cost US$170. 

    Is there nothing we can do to do HCI experimentation with 
low-latency user interfaces without shelling out the big bucks? 

    Seven possibilities occur to me:  light pens, Wacom tablets, 
theremins, MEMS accelerometers and gyroscopes, inkjet-printer 
carriage feedback hardware, acoustic surface triangulation, encoded 
LEDs and photodetectors, and impedance tomography. 

Light pens 

    A light pen — described in Ivan Sutherland’s SKETCHPAD 
dissertation and his 1994 talk about SKETCHPAD, and he seems to 
have been the first to draw with it, but apparently didn’t invent the 
thing — is a high-temporal-resolution light sensor in a tube.  You 
point it at a CRT screen, and it detects the time when the electron 
beam illuminates the point the pen is pointed at on the screen.  A 6-ns 
photodiode covering the whole visible spectrum will run you 26¢ in 
quantity 10 at Digi-Key or 63¢ for a bigger 5-ns one, although some 
common photodiodes are as slow as 50 ns or 100 ns. 

    An NTSC TV set runs 29.97 full interlaced frames per second at 
525 lines per frame (486 visible), so the electron beam in an NTSC 
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CRT takes 63.6 μs to sweep across each line, including the 10.9 μs 
horizontal blanking interval.  Typically about a quarter of the screen is 
illuminated at any given time, as viewed through a high-speed 
camera, about 4–5 ms (a fourth of a 16.7-ms field), because that’s how 
long the phosphors take to fade (maybe 200 ns P22B, 850 μs P22R, 
35 μs P22G).  So the brightness at any given point on the screen rises 
sharply once or twice per 33.3-ms frame, with a rise time limited 
mostly by the focus of the electron beam (or, at high beam energies, 
the contagion of cathodoluminescence through the phosphor, or 
sometimes the rise time of fluorescence in the phosphor, which is on 
the order of 10 ns), and then fades away exponentially to zero over 
4–5 ms.  Since each scan line is 52.7 μs, not counting the HBI, 100 ns 
is a 527th of a scan line, and 5 ns is a 10,540th of a scan line.  So any 
old photodiode would work to get near-single-pixel precision on a 
light pen driven by a regular NTSC raster.  (High-quality analog 
CRTs could reproduce 400 dark-light cycles across a scan line, so we 
can consider them to have about 800 pixels per scan line, but NTSC 
was more limited.  The whole NTSC broadcast signal was only 
6 MHz in bandwidth, which is 200 kilocycles or 400 kilopixels per 
29.97-Hz frame;  split across 525 lines, that’s only 762 pixels per line, 
only 52.7/63.6 = 632 of which were outside the HBI.) 

    However, because each point on the screen is only scanned once 
every 33.3 ms, your average latency in the light pen itself would be 
16.7 ms, while the worst-case latency would be 33.3 ms.  This is an 
unpromising place to start. 

    However, in SKETCHPAD, Sutherland was driving the TX-2’s 
“scope” with two registers that were wired up to (10-bit) DACs;  so, 
by writing to these registers, he could position the electron beam at 
any position on the screen immediately.  To track the light pen, he 
drew a crosshair around the point where the pen was believed to be 
pointing, and by detecting which part of the crosshair was stimulating 
the pen’s photodetector (by way of their timing), he could detect 
when the pen had moved somewhat.  The TX-2 was far too small 
and too slow to handle a raster scan at any kind of reasonable 
resolution. 

Light pens on NTSC CRTs 

    I find PAL CRT TVs discarded on the sidewalk on a regular basis;  
some are NTSC-capable as well, and PAL is broadly similar to 
NTSC.  Usually the deflection coils have been recycled before I get 
to them, destroying the CRT.  I’m told that in the US the going rate 
for a CRT TV is US$25 — paid to the person who hauls it away. 

    You could rip out the sync and scanning circuitry from a regular 
NTSC CRT TV and drive its deflection coils from custom circuitry 
so as to revisit the area around your light pen more often.  This won’t 
be quite as simple as the electrostatic deflection used in oscilloscope 
tubes and the TX-2 “scope” — magnetic deflection coils have 
substantial inductance, and the vertical scan coil in particular isn’t 
guaranteed to be able to cope with more than a few hundred Hz of 
bandwidth;  a 60-Hz vertical scan with a fast vertical retrace.  But you 
probably don’t need it to.  (The horizontal deflection coil normally 
runs at 15.73 kHz, so it should be fine down to deep sub-millisecond 
latency.) 
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    The particular form of bandwidth limiting is that it the electron 
beam’s vertical position is determined by the coil’s current, and the 
voltage aplied to the coil is proportional to the position’s derivative, 
and you can only apply so much voltage before something breaks.  So, 
in theory, there’s no difficulty with instantly starting and stopping the 
vertical scanning motion, though some parasitic capacitances across 
the coil might cause that until you counteract them;  what you can’t 
do is move the electron beam quickly vertically, like probably at more 
than about one screen height per millisecond.  The NTSC vertical 
blanking interval is 16.67 ms × (525 - 486)/525 ≈ 1.24 ms, but maybe 
you’ll get lucky and get a faster tube. 

    So you could spend some of the time doing a semi-normal raster 
scan over the whole display, but periodically, like every 4 ms, take a 
break from drawing the normal raster image, jump down to where 
you expect the cursor to be, draw a crosshair or whatever to see if it 
generates a pulse in the photodiode, and then start drawing raster 
again.  Once every field (you could perhaps increase the interlacing 
from NTSC’s two fields up to three or four fields) you can do this for 
free;  if the cursor isn’t too close to the top or bottom of the screen, 
you can start drawing the raster starting from the cursor, moving up or 
down according to where pixels need painting.  So if the cursor is in 
the middle of the screen, for example, you can paint each field in two 
halves, one starting from the cursor and going up, the other starting 
from the cursor and going down.  This might save you the return fare 
from your round-trip ticket.  (I’m not convinced it will actually help, 
though.) 

    Sometimes, though, especially if the cursor is close to the top or 
bottom of the screen, you’ll have to spend the time to jump up or 
down to the cursor, then jump back to what you were drawing. 

    So one scheme is: 

• 15.73 kHz horizontal raster scan most of the time. 
• 29.97 Hz raster frame rate (33.37 ms per frame). 
• 4:1 interlacing, so each field is 8.34 ms, implying a 120 Hz vertical 
retrace frequency, which is probably feasible but may be challenging. 
• Three cursor probes per field:  one when it happens to reach the 
cursor and thus costs no travel time;  one from a worst-case vertical 
distance of ⅓ field away from the cursor and thus 0.41 ms each way, 
0.83 ms total;  and one from a worst-case vertical distance of ⅔ fields 
away from the cursor and thus 0.83 ms each way, 1.7 ms total.  So in 
the worst case we spend 2.48 ms of our 8.34 ms field waiting for 
partial vertical retraces to go to and from the cursor position to probe 
it. 
• Boustrophedon vertical scanning, so we don’t have to waste any 
other time on vertical retrace;  to keep the scan lines parallel, when 
drawing upwards, we scan right to left, but when drawing 
downwards, left to right. 
• The cursor probing proper is restricted to 5% of the height and 
width of the screen (24 scan lines, each scanned horizontally 5% of the 
screen width) so it takes about as much time as drawing a single scan 
line, 60 μs or so.  This can also be used to rapidly update images 
around the cursor to reduce visual feedback latency. 
• So, out of the 33.37 ms per frame, we spend 0.72 ms probing for the 



cursor 12 times, 9.92 moving the beam vertically to and from where 
we’re tracking the cursor, leaving 22.7 ms to draw pixels.  This gives 
us 357 scan lines of actual data, which is respectably close to the 486 
visible scan lines of normal NTSC.  

    I suspect that boustrophedon horizontal scanning might allow us to 
use much higher raster scan rates with the same tube, since there’s no 
need for an HBI, but then you have to modulate your data to avoid 
bright spots where scan lines intersect.  Also, the higher raster scan 
rates would place more demand on the light pen’s signal latency and 
the phosphor’s rise time in order to achieve the same horizontal 
positioning precision. 

    This would give us 2.8 ms worst case input latency, 1.4 ms average, 
and almost a quarter of a megapixel.  “VGA” resolution, you might 
say.  This is capable of supporting some HCI experiments with about 
two orders of magnitude better latency than commonly deployed user 
interface hardware. 

    A less demanding way to use the device would be to only draw 
things in a narrow band, like ½ of the screen height, around the 
cursor.  Maybe you could occasionally sneak away to draw something 
on the outer parts of the display, or maybe you could just leave 
letterboxing black strips at the top and bottom of the screen. 

Light pens with VGA CRTs 

    I also regularly find discarded computer CRT monitors on the 
sidewalk, also usually with the deflection yokes having been already 
recycled by scavengers.  These are similar to NTSC TVs, but typically 
support at least 1024×768 pixels at 72 Hz, implying a horizontal 
deflection frequency of at least 55 kHz. 

    This would probably be a bit superior to an NTSC TV, but maybe 
not as much as you might hope, since the vertical slew rate is still the 
limiting factor on input latency. 

Light pens with projectors 

    CRT projectors have similar time-domain behavior, so in theory 
you ought to be able to use a light pen by pointing it at the image 
from a CRT projector or eidophor in the same way you could use a 
direct-view CRT.  However, CRT projectors were never very 
common and have become extinct since the 1990s, so it’s hard to find 
them nowadays. 

    There’s a specialized kind of CRT projector called a “flying-spot 
scanner” which projects a flat light field onto a sheet of paper, then 
using the time-domain variation in diffuse reflectance to recover the 
original paper image;  this is closely analogous to structured-light 3-D 
scanning, which identifies the parallax to all the points on an object 
using the same kind of binary or Gray-code images the Microsoft 
researchers used for their touchscreen.  By the 1970s flying-spot 
scanners were using specialized low-persistence phosphors to 
maximize “flicker” and thus the sharpness of the scanned image.  
(Before the Vidicon tube, such flying-spot illumination was a favored 
way to take television images.) 

    Several times in the past it has occurred to me that you could scan a 
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time-domain-modulated laser across a surface with mirrors to make a 
flying-spot projector.  (Perhaps a planar Kerr cell or Pockels cell with 
a voltage gradient along its surface across a resistive surface film 
electrode could provide a faster-response alternative to a moving 
mirror.) This approach of course would also work with a light pen in 
the same way as the scanning electron beam from a CRT, but without 
the problems induced by phosphor persistence and phosphor electron 
penetration depth.  Ordinary laser-show galvos are capable of much 
faster response than typical CRT vertical deflection yokes. 

    Ordinary LCD and DMD projectors cannot be used in this way 
because the high-resolution time-domain signal is respectively absent 
or not under the control of the computer system.  (DMDs control the 
brightness of their pixels with PWM at some kilohertz, so they would 
be able to transmit tens of kilobits pe second of data if those PWM 
signals could be fed in externally.) 

    A potentially more interesting way to do this would be to use a 
separate infrared (or green + infrared) tracking laser to track the light 
pen, so that you would never have to move the tracking laser away 
from the indicated point, except when you lost it. 

    Such light pens would probably also usually be indirect pointing 
devices, where the user relies on projected feedback from the 
computer system to find out where their “hand” is, although with 
rear projection (like large multitouch screens use) you could get direct 
pointing out of them. 

Wacom tablets 

    I can’t find good information about the latency of Wacom tablets, 
although they’re popular for experimental musical instrument 
interfaces.  Apparently the wires in the tablet grid switch between 
transmitting and receiving to the pen every 20 μs, though, and 
demanding users report higher latency with the USB versions, so I 
suspect they’re submillisecond. 

    Wacom tablets, unlike touchscreens and stylus screens, are 
normally indirect pointing devices:  what you are looking at is not 
what you are pointing to.  This makes the latency demands less 
demanding, but it also probably makes people’s performance slower, 
since they don’t have a lifetime of experience coordinating their 
proprioceptive and visual feedback channels to know how far to move 
their hand. 

Theremins 

    A theremin, invented in 1920, capacitively senses the distance to the 
user’s hand by inducing a small frequency shift in an RF oscillator of a 
few hundred kHz, whose resonator is a tank circuit including the user 
as part of the capacitor.  A second RF oscillator is calibrated to have 
nearly the same frequency;  by heterodyning the two, an audio 
difference frequency is produced.  Thus a difference that is very small 
in relative terms — the difference between 100 Hz and 2000 Hz is only 
1900 Hz, and on a signal resonating around 400 kHz, that’s only a 
difference of about 0.25%, produced by a difference of about 0.01 pF.  
But this difference can be easily detected. 

    If I understand correctly, the theremin’s memory, and thus its 
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maximum possible response latency, is around a millisecond.  If you 
want to use the theremin principle for low-latency gesture detection, 
though, you probably want to use slightly higher beat frequencies, or 
directly measure the frequency of the oscillations rather than 
heterodyning anything, because measuring the frequency of a 440-Hz 
distorted sine wave in less than a millisecond is, if not impossible, at 
least unnecessarily difficult. 

    A theremin is normally also an indirect pointing instrument, but 
you could imagine projecting an image with any kind of 
projector — even an LCD projector — and using the theremin to 
detect where your hand was on the projected image, having calibrated 
it to the projection setup.  Other kinds of screens (LCD screens, 
OLED screens) would probably overwhelm the theremin signal with 
electrostatic noise. 

MEMS accelerometers and “gyroscopes” 

    Every new cellphone or tablet computer has one of these MEMS 
accelerometer chips.  I think the ADXL350 is typical of the genre:  
3×4 mm, 3200 samples per second, 2 milligee resolution, typically a 
few tens of milligees offset error.  A pointing device containing such a 
chip could in theory give you hand orientation and movement 
feedback at 300-μs latency, but of course a cellphone can’t manage 
anything like such low latencies;  from Digi-Key these devices cost 
US$7.38 in quantity 10. 

    There are also similar “gyroscope” chips that directly detect 
rotation, as well as “IMU” chips combining both;  rotation might 
actually be a more amenable input modality for pointing at things.  
The TDK IAM-20380 MEMS gyro costs US$10.32 in quantity 10 
and gives you 16-bit readouts on rotation speed around three axes, 
with 16.4 to 131 counts per (degree per second) depending on which 
range you have set, about ±2 degrees per second of offset, and 
8000-sample-per-second output — but with a built-in low-pass filter, 
which suggests that possibly the signal is super noisy, and which isn’t 
really documented in the datasheet except to say that it’s 5–250 Hz.  
The specs say it has 0.010 dps/√Hz noise spectral density, which 
suggests that at 500 Hz (thus 1000 samples/second) you’d expect 
about 0.2 dps of noise, which sounds pretty tolerable for a low-latency 
pointing device. 

    Even the 2 ms latency implied by the 250 ms low-pass filter setting 
would be a vast improvement over conventional I/O devices. 

    A cheaper option is the ST L2G2ISTR, which costs US$2.54 in 
quantity 10 and has only two axes;  it has 131–262 counts per (degree 
per second) and 9090 samples per second.  Its target market is “optical 
image stabilization”, so presumably digital cameras use it to tilt their 
mirrors around, and high sample rates and low latency are obviously a 
sine qua non there.  It has a worse offset rating of ±5°/s and a better 
noise density rate of 0.006°/s/√Hz.  It also has a built-in LPF, which 
goes up to 350 Hz, but it can be disabled with the LPF_D bit in the 
CTRL_REG3 register;  it claims that this LPF imposes 7° of phase delay at 
20 Hz, which is about a millisecond of latency. 

    I suspect that such chips can be scavenged from discarded 
cellphones.  They would of course also be indirect pointing devices. 
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Inkjet printer feedback strips 

    Inkjet printer carriages have precise positional feedback with about 
20-μm precision, typically using an optical quadrature encoder made 
of four differential slit photointerruptors with some integrated 
comparators and a strip of transparent plastic with black stripes 
printed on it;  typically these operate at about 200 mm/s in normal 
printer operation, suggesting about a 10kHz encoder transition rate.  If 
you could arrange your input device to move such a carriage, you 
could decode the quadrature signal and probably get submillisecond 
latency out of that hardware. 

    Inkjet-printer linear optical encoders might be used as direct or 
indirect pointing devices. 

Acoustic surface triangulation 

    Last year, in the “Audio Tablet” note in Dercuano, I wrote about 
using the sound conducted through a surface between a stylus and 
two or more reference transducers to detect the distance along the 
surface to the stylus.  The idea is that the audio lag time along the 
paths through the surface tells you what the distance is;  then it’s just a 
matter of damping the waves when they reach the edge of the surface 
so they don’t rebound and give you multipath.  Typical sound speeds 
through solids are kilometers per second, which is millimeters per 
microsecond, so a microsecond or so is about the right level of 
precision on the lag, and so the acoustic signal needs to be a few MHz, 
which won’t propagate far through air but has no trouble with most 
solids.  You can use pulses, noise signals, or perhaps even just the 
scratching of the stylus on the surface, though in that case it might 
lack the requisite MHz-frequency components. 

    (If you’re using lower-frequency acoustic signals, you might not be 
able to use the time lag, but be forced to use the attenuation, a 
technique I learned from David H.  “n2” Christensen, RIP, PBUH.) 

    This has the inherent latency of the audio propagation time, which 
might be up to a millisecond or so depending on how many 
transducers you’re using, plus several microseconds to measure the 
correlation. 

    This technique should still work if the surface you’re using is a 
screen displaying an image, whether from front projection, rear 
projection, or an LCD. 

Encoded LEDs and photodetectors 

    All common LEDs, except the white ones, have submicrosecond 
response times, so you can modulate them at megabits per second;  so 
do all common photodiodes, although some phototransistors are a bit 
slower.  If you’re modulating an LED with some random bit 
sequence, or even just a sine wave, at hundreds of kilobits per second, 
you should be able to run a correlation with the signal from such a 
photodetector (at zero lag, if they’re within a meter or two) to 
measure the strength of the coupling between the LED and the 
photodetector.  The correlation can be done with a simple analog 
chopper circuit, or digitally to get a window shape closer to the ideal 
boxcar;  if the modulating signal is a simple sine wave, you can even 
use a simple tuned filter.  Since LEDs and photodetectors are 

https://electro.david.promo/the-last-goodbye/


somewhat directional, this coupling strength is a function not only of 
the distance between the devices but also their relative angles, but 
(unlike with a laser pointer) it typically doesn’t drop off to near-zero 
until the LED or the photodetector are pointed nearly 90° off-axis. 

    If you have two such encoded LEDs mounted on an object at 
different angles, carrying different signals, this gives you two degrees 
of freedom, which allows you to separate the factor of the coupling 
due to the orientation of the object from a factor that combines the 
distance to the object and its closeness to the photodetector’s optical 
axis.  Adding two additional photodetectors gives you a total of six 
coupling constants, one between each photodetector-LED pair, 
which in theory might be enough to measure the position and 
orientation of the object in all six degrees of freedom;  I suspect you 
might actually need three LEDs on the object to disambiguate 
orientations reliably. 

    Moreover, these three photodetectors are in theory sufficient for 
any number of objects as long as their optical signals are uncorrelated 
and the photodetectors don’t saturate, or don’t saturate much. 

    Measuring the relevant correlations to the necessary degree of 
precision should in theory take much less than a millisecond when 
using signals modulated at hundreds of kHz which are perfectly 
uncorrelated over millisecond timescales.  250kbps random bitstreams 
have a bit per 4 μs, so surely over 100 μs their Hamming distance will 
be quite large.  (An even simpler alternative is that each LED could 
simply transmit its callsign over and over, but I suspect that will tend 
to perform worse.) 

    You can use this for either a direct pointing device positioned on a 
screen, perhaps for a ring worn on the hand, as long as the 
photodetectors are looking down at the screen from known positions 
on the same side as the user, or an indirect pointing device in an 
arbitrary place in space. 

    I think some virtual-reality gear from the 1990s used this approach 
with an ultrasonic signal rather than an optical one, thus enabling it to 
use the 343-μm-per-μs speed of sound in air to get distance 
information. 

Impedance tomography 

    I’ve seen some recent papers using “impedance tomography” over a 
resistive surface under a dielectric layer to detect finger touches on the 
dielectric layer;  a series of eight or so electrodes around the edge are 
alternately stimulated to measure the pairwise impedance between all 
pairs of electrodes, which changes when a finger capacitively couples 
some of the surface to ground, which allows you to approximate the 
finger position.  In theory this could be done very quickly, but the 
papers I’ve seen didn’t achieve submillisecond latency, so maybe 
there’s some obstacle such as high noise.  I suspect this is probably 
unavoidably an indirect pointing method. 

Thanks 

    Thanks to Brandon Moore and Greg Sittler for the discussion this 
note arose from.
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The sparsity of PEG memoization 
utility
Kragen Javier Sitaker, 02020-12-24 (updated 02020-12-28) 
(1 minute)

    Most PEG callsites can’t memoize usefully:  either they can’t be 
reached by backtracking, so they can never find a hit in the memo 
table, or their result can’t be used by backtracking, so there’s no point 
in saving their result in the memo table.  This should dramatically 
improve the memory and even time consumption of PEG parsers 
without affecting their other advantages. 

    The memoizability of a particular call in a PEG (an attempt to 
parse a particular nonterminal at a particular position) has two aspects:  
winkability — the ability to avoid doing any actual parsing by fetching 
the result from the memo table;  and storability — the fact that the 
call’s results, if stored in the memo table, will be used by a later 
winkable call.  Both of these are potentially dependent on the entire 
source text, both before and after the XXX
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Cheating étendue?
Kragen Javier Sitaker, 02020-12-26 (4 minutes)

    One way to cheat conservation of étendue is apparently to use a 
highly diffusively reflective cavity with only a small pinhole in it to 
let light out, but in practice I don’t think this works out.  A large 
extended light source inside the cavity will tend to make the pinhole 
as bright per unit area as the light source itself;  if the light source 
flashes only briefly, the light will escape through the pinhole over a 
longer period of time than the original light source was emitting.  In 
theory this ought to allow you to reduce the étendue of the light 
source:  the light is originally emitted over, say, 100 square 
millimeters and 4π steradians (isotropically), but then escapes 
through, say, 0.01 square millimeters and 2π steradians. 

    For the moment, let’s suppose the cavity is perfectly reflective and 
a perfect Lambertian diffuser;  there’s no known way to achieve this, 
but it doesn’t violate at least classical optics or classical 
thermodynamics.  (There might be a quantum-physical reason it’s 
impossible, but I don’t know of one.) 

    For straightforward thermodynamic reasons the brightness escaping 
through the hole is the same as the brightness of the emitting surface:  
the emitter has to have the same absorptivity and emittivity, so when 
it turns on, the light level in the cavity rises until it’s absorbing the 
same quantity of light that it’s emitting and therefore is in 
thermodynamic equilibrium;  at this point the entire reflective cavity 
is reflecting light at the same illuminance:  however many lux 
(lm/m²) the surface of the emitter is, that’s how many lux the cavity 
surface is too.  And the hole is the same brightness as the rest of the 
surface. 

    So if you flash the emitter for 1 nanosecond, for example, then the 
light will escape through the hole at the same brightness over a longer 
period of time, maybe 10 μs:  ten thousand times less étendue in 
exchange for a light pulse ten thousand times longer.  Of course, 
though, there’ll be a finite rise time and an exponential falloff to zero, 
and depending on how the emitter works, it might extract energy 
from the cavity by non-optical means.  (For example, if it’s an LED, 
it would just heat up without emitting light, perhaps also driving a 
little photocurrent given the opportunity.) 

    So, in effect, the light in the cavity behaves pretty similar to an 
incandescent thermal mass, cooling off by emitting light through the 
pinhole.  It’s almost effectively just a cavity absorber;  we don’t gain 
much from the perfect reflective surface, although the “cooling” is 
proportional to the remaining energy, rather than the fourth power of 
the remaining energy as in Stefan–Boltzmann cooling.  The emitter 
rather quickly will become a real incandescent thermal mass, though, 
and by hypothesis it’s much larger than the exit pinhole, so I think 
even this apparent difference will turn out to be illusory:  the 
brightness in the cavity will follow the brightness of the emitter much 
more quickly than it decays by escaping through the pinhole. 

    (You could argue that a Lambertian diffuser doesn’t conserve 



étendue, and is thus cheating, but (a) you can do an adequate 
imitation of a Lambertian diffuser with a pockmarked mirror, with 
lots and lots of little reflective craters covering its surface, and such a 
mirror does conserve étendue;  (b) a Lambertian diffuser increases 
étendue, while the cavity system described above seemed interesting 
because of the possibility of decreasing étendue.) 

    There’s also the issue that in fact the most reflective known 
materials for visible light are in fact only about 95% reflective, so if 
the pinhole is less than 5% of the surface area of the cavity, the system 
loses more energy to its walls than through the pinhole.  So you really 
can’t get much benefit from this hack with known materials anyway.
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Stochastic fractional delay lines
Kragen Javier Sitaker, 02020-12-26 (9 minutes)

    One of the key primitives for constructing delay-line synthesis 
sounds like Karplus–Strong is the fractional-delay filter, but 
computing this filter is often computationally more expensive than 
the rest of the delay line, even if it’s a first-order FIR filter.  I think a 
simple stochastic version of this filter is likely to be good enough for 
many applications and dramatically cheaper to compute. 

    If, for example, the resonance you want is a lag of 22.32 samples (at 
CD-DA’s 44.1 ksps, that’s 1976 Hz, B₆, more than an octave below 
the top of a piano) then a lag of 22 samples would give you 2004 Hz, 
about 24 cents sharp — a very conspicuous tone difference to the 
ear — and a lag of 23 samples would be even worse.  Worse, if you’re 
changing the delay over time (for example, for a vibrato), the sudden 
change in pitch would be even more conspicuous.  So you really need a 
fractional-sample delay.  As Julius Smith explains, the easiest way to 
do this is to calculate the lerp (1 - η) y(n) + ηy(n - 1) = y(n) + η(y(n - 
1) - y(n)), where η is the desired fractional delay, 0.32 in this case;  this 
requires one multiply per sample.  (There’s also a feedforward 
first-order allpass alternative with the same computational cost, less 
phase distortion, no low-pass filtering loss, but less ability to handle 
variable delays:  y(n) = η(x(n) - y(n - 1)) + x(n - 1), with the delay 
being roughly (1 - η)/(1 + η).) 

    But a multiply is much more costly than an add.  A different way 
to achieve the same effect is to randomly choose a lag of 22 or 23 
samples on every sample, with probabilities 0.68 and 0.32.  This will 
give the desired average lag of 22.32 samples, but it can be done much 
more efficiently than a multiply:  an 8-bit LFSR and an 8-bit 
comparator, for example, would suffice, and these take much less 
circuitry than even an 8×8-bit multiplier, much less an 8×16 
multiplier or 8×24. 

    The resulting phase noise will tend to introduce white noise 
modulated by high-frequency components and time-domain 
transients of the signal.  This can be somewhat diminished by 
switching between the lags less often than every sample, perhaps every 
4–8 samples.  And if the cheaper fractional-delay filter allows you to 
use a higher sampling rate, that may have a larger effect than this 
noise. 

    A different approach to mitigating the white-noise modulation 
problem is to synthetically add white noise where it wouldn’t 
otherwise be necessary, so that this technique adds even more noise, 
but consistently rather than at a rate modulated by the signal’s 
maximum slew rate and the momentary value of the lag. 

    This stochastic-fractional-delay technique can be applied to a 
variety of other applications:  Paeth (and Minsky-circle) rotation of 
raster images (p.  750), adding vibrato or flanging to an existing audio 
signal, fractional-delay resonators for tone recognition (including 
radio-frequency tone recognition), calculating optimal sampling times 
for clock and data recovery in asynchronous communication, and 

https://ccrma.stanford.edu/~jos/Interpolation/Linearly_Interpolated_Delay_Line.html
https://ccrma.stanford.edu/~jos/pasp/Linear_Interpolation.html
https://ccrma.stanford.edu/~jos/pasp/First_Order_Allpass_Interpolation.html
https://ccrma.stanford.edu/~jos/pasp/First_Order_Allpass_Interpolation.html


phased-array beamforming. 

Paeth rotation 

    In the standard version of Paeth three-shear rotation, shearing is 
done by shifting rows and columns of pixels by integer numbers of 
pixels, which approximate fractional-pixel shifts.  But the rounding 
of the shifts produces aliasing artifacts, which can be diminished by 
fractional-delay filtering.  Different tradeoffs are possible here.  A 
single row or column can be shifted by a fractional amount by 
sampling individual pixels, or runs of pixels, at randomly different 
“lags” or shift distances, which will tend to fuzz out the rows or 
columns that have ideal shifts further from any integer, like 33.5 pixels 
rather than 33.9 or 33.1, similar to how just doing bilinear filtering on 
them (the lerp fractional-delay approach described above for audio) 
would fuzz them out, but also adding noise.  As before, randomly 
selecting lags for runs of samples (pixels) rather than individual 
samples will tend to reduce this noise. 

    (Shearing using an all-pass filter, again as described above for 
delay-line music synthesis, would eliminate the shift-dependent 
fuzzing-out low-pass filtering, still costing one multiply per sample.  
Condat, Van de Ville, and Forster-Heinlein found a way to do this 
with a more computationally expensive symmetrically reversible 
all-pass filter in 2007.  Also, JOS claims the all-pass approach isn’t 
suitable for “random access” — computing output sample n without 
computing all the n output samples before it, which is obviously 
relevant to tiled rendering of images — because it’s recursive;  but 
presumably you can apply the standard prefix-sum algorithm to the 
recurrence relation to get a more efficient way to do random access.) 

    Sampling different pixels in the same row (or column) being shifted 
will result in making zero copies of some of them and two copies of 
others, thus degrading the image somewhat.  A different approach is 
to generate the random lags on a per-row (or per-column) basis, so all 
pixels in a row (or column) are shifted horizontally (respectively, 
vertically) by the same amount, and no pixels are lost or duplicated.  
This eliminates much of the information loss and also takes the extra 
work out of the inner loop. 

    A further step to reduce the information loss and extra work is to 
make these rounded lags of successive rows (or columns) monotonic:  
if there’s a succession of rows to be shifted by 33.0 pixels, 33.2 pixels, 
33.4, 33.6, 33.8, and 34.0, then we pick a random breakpoint among 
the fractional shifts where we switch from rounding to 33 to rounding 
to 34.  This should still provide enough randomness to break up the 
most objectionable aliasing patterns. 

Vibrato and flanging 

    Vibrato on a musical instrument alters its pitch slightly in a periodic 
manner;  in most cases a good approximation can be achieved by 
slightly advancing and retarding the signal, although of course if taken 
to an extreme this would start swinging the tempo too.  Flanging is 
pretty much by definition just a matter of retarding one copy of the 
signal by a variable amount.  So these techniques are directly 
applicable. 

https://hal.archives-ouvertes.fr/hal-00377101/document
https://hal.archives-ouvertes.fr/hal-00377101/document


Resonators for tone recognition 

    A piano string is a delay-line resonator that can recognize particular 
audio frequencies (or their harmonics).  The same technique can be 
applied with a Karplus–Strong delay-line resonator in a relatively 
small amount of memory;  also, though, if we have enough memory 
to store the whole input signal, we can quite reasonably convolve it 
with a sparse impulse train in order to detect periodic motifs in it at 
the relevant frequency, whether sinusoidal or of some other form, 
which allows us to choose a different shape for our temporal window 
than the exponential rise and decay the constant-space cyclic delay 
line would seem to limit us to.  The various fractional-delay 
techniques described above can allow us to effectively position these 
impulses at fractional-sample positions. 

    This, of course, also works for variable-frequency and 
radio-frequency tones, for example for FM radio reception. 

Clock and data recovery 

    The simplest form of clock and data recovery is just a question of 
extracting the phase of a periodic motif of a known frequency and 
shape from noisy data, and of course there’s no guarantee that the 
period of that frequency has an integer number of samples. 

Phased-array beamforming 

    In phased-array beamforming we sum up the signals received at 
many different transducers from a given source (or do the equivalent 
with time and causality reversed).  Depending on the direction and 
sometimes the distance to the source, the delays from the source to 
these different transducers are different, and this permits us too 
separate the source’s signal from other signals. 

    If everything is known except the signal, this is just a matter of 
applying the right lags to the different signals and adding them up.  A 
fast way of applying different fractional-sample lags to different 
signals is thus useful. 

    (But it’s hard for me to imagine that it can compete with an FX 
correlator on precision, so you'd probably only do it when the Fourier 
technique is too expensive.)
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Successive-approximation UI 
design
Kragen Javier Sitaker, 02020-12-28 (1 minute)

    In Ivan Sutherland’s 1994 talk about SKETCHPAD, he explains, 
“The idea was that you draw the drawing first, and then fix it up 
later,” (33'38" into the video) by adding constraints, for example by 
adding parallelism and equal-length constraints.  And this is still 
pretty similar to modern constraint-driven CAD programs like 
FreeCAD. 

    But on modern computers, we could imagine a wider variety of 
ways of “fixing it up”.  For example, we could imagine smoothing 
out a crooked line you’ve drawn, or converting it into a circle arc, or 
connecting or disconnecting two lines, or cleaning up some text 
you’ve written, or running handwriting recognition on it.  Perhaps 
buttons would pop up next to recently drawn objects to offer you 
these opportunities. 

    This kind of successive approximation to the state you want is not 
nearly as well supported in current drawing software as I think it 
should be.
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Differential dividing plate
Kragen Javier Sitaker, 02020-12-31 (14 minutes)

    A dividing plate has circles of evenly-spaced holes used to measure 
out precise divisions of the circle for machining purposes such as 
cutting gear teeth;  by using close-fitting physical contact between 
hard materials with minimal thermal expansion (for example, a hole 
in a steel plate and a brass dowel pin shoved into it), they can easily 
achieve precisions far better than we can achieve by eye.  “Cliff” aka 
“Clickspring” has speculated that such objects might date back to 
Hellenistic times or earlier, since you’d need some way to lay out the 
gear teeth in the Antikythera Mechanism, and a compass (without 
even a straightedge!) is sufficient measuring equipment to construct 
them.  Modern dividing plates are normally used with a dividing head, 
which gears down the angles by some constant factor to increase the 
number of possibilities. 

    But if you had no gears and wanted to minimize the number of 
holes you had to drill, and thus the opportunities to introduce error, 
you could get by with a relatively small number of plates stacked on a 
common axis. 

    To divide a circle into 6 equal sectors, you can use one plate with 
two holes 180° apart and a second plate of the same diameter stacked 
atop it with two holes 60° apart.  By aligning each of the four possible 
pairs of holes in these plates with a dowel pin (several of which seem 
to have been present in the Antikythera Mechanism, both as gear 
pivots and as rivets), we achieve four orientations of the top plate 
relative to the bottom, adding four positions to the two achievable 
with only the bottom plate.  Even if both plates are present, the dowel 
pin can stick through the top plate, so we can bump our straightedge 
up against that dowel pin instead of whatever dowel pin we have 
stuck in the top plate.  (The other side of the straightedge might, for 
example, run through the center of the shaft, as in Clickspring’s 
ingenious construction.) 

    A 120° plate would work in precisely the same way as the 60° plate.  
You can think of the 120° plate as giving you the option to either add 
or subtract 120° from either of the two reference angles (0° and 180°). 

    With the 180° plate and a 90° plate, again stacked with the same 
diameter, we can divide the circle into 4 equal sectors.  If we then use 
the 60° (or 120°) plate from the two 180° and two new 90° positions, 
we can now divide the circle into the other 8 of 12 equal parts. 

    Adding a fourth plate, again stacked with the same diameter, we 
could increase this from 12 equal divisions to 36;  the possible angles 
between the two holes on the rim of this fourth plate are 10°, 20°, 
40°, 50°, 70°, 80°, 100°, 110°, 130°, 140°, 160°, and 170°. 

    If at this point we wanted to continue in this balanced-ternary 
groove, we would add an angle of 3°20' + 10°n for some integer n and 
get 108 equal divisions of the circle, but for many purposes it would 
be more useful to be able to divide the circle by multiples of 5, so a 
plate with three holes instead of two (at 0°, 2°, 4°, all plus 10°n, thus 
allowing us to reach 2°, 4°, 6° (10° - 4°), etc.) would be useful. 

https://www.youtube.com/watch?v=BIUAdINXZmQ
https://www.youtube.com/watch?v=BIUAdINXZmQ


    Note that at this point we are suffering from symmetry:  although 
there are three positions in which we can position this new plate 
relative to the previous one, the center position of these three offers us 
no additional dividing power.  We’ll come back to the theme of 
suffering from symmetry below. 

    So at this point, for 180 equal divisions, we have five plates, four 
with two holes each (plus the shaft hole) and a fifth with three holes, 
for a total of 11 holes, or 16 holes if we count the shaft hole.  A sixth 
plate with two holes brings us to 360 equal divisions, 6 plates, and 13 
holes.  This is substantially simpler than drilling 360 precise holes into 
a plate.  It might be less convenient to use, but when switching 
between angles you simply leave some of the plate pairs immobile to 
drop out the factors they contribute, so you can divide the circle by 
any of the divisors of 360:  2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 
36, 40, 45, 60, 72, 90, 120, 180, and 360. 

    (Perhaps the Babylonians and the Vedic sages stopped there because 
you can’t construct a regular heptagon with a compass and 
straightedge.) 

    It might be desirable to use plates of different diameters, stacked 
like the discs of the Towers of Hanoi, each one referenced to the disc 
below it with a dowel pin at its rim.  At first I thought that to make 
this work without increasing the number of plates, though, we’d need 
more holes in each plate, since you can’t switch the “input hole” 
referenced to the previous plate and the “output pin” the next plate 
(or final output angle) is referenced to, so if there are only two holes 
in the previous plate, there are only two positions for a given plate, so 
with only two holes a plate always moves you either clockwise or 
counterclockwise — you don’t get to pick.  So I thought you needed 
three holes per plate, plus the center hole, and one of them can have a 
reference pin permanently installed in it. 

    But then I realized you can flip a plate over if the reference pin sticks 
out of both sides.  And that way you can either add or subtract.  We 
were suffering from the reflection-plane symmetry of the plates 
without even noticing it! 

    So, by this method, to get to 360°, you still need six plates, each 
with a dowel pin permanently pressed into one of its holes, five with 
two holes and a sixth with three, a total of 13 holes, plus the shaft 
holes in the center. 

    Incidentally, the width of the dowel pin itself can be calibrated to 
give us a particular angle, so we can double the number of angles 
available by bumping our straightedge up against one side or the other 
of the dowel pin. 

    But what if we go back to movable dowel pins all at the same 
radius, and exploit this new possibility of flipping the plates over? 

    Our first plate, which I will assume is clamped down to a table or 
something, has two holes 180° apart, as before.  Our second plate now 
has three holes, at -60°, 0°, and +90°.  With these two, and the 
possibility of flipping the second plate, we can reach 0°, 60°, 90°, 
150°, 300°, 270°, and 210° from the 0° hole on the first plate, plus 
180°, 240°, 270°, 330°, 120°, 90°, and 30° from its 180° hole.  So we 
get to 12 equal divisions of the circle with only 2 plates, 5 holes, and 
one dowel pin, instead of (as previously) 3 plates, 6 holes, and 2 dowel 



pins.  But maybe we could do better than this, because of our 14 
configurations, only 12 are unique — we can reach 270° and 90° in 
two different ways. 

    What do we gain from a third flippable plate with three irregularly 
spaced holes?  We could use, for example, -10°, 0°, and +5°, or 
perhaps some variant that spaces these out by some multiples of 30°.  
This gets us to 72 equal divisions of the circle in 3 plates, 8 holes, and 
two alignment pins.  I think we could still do better than this, though, 
because the 15° increment here doesn’t buy us anything. 

    A fourth flippable plate with holes at -1°, 0°, and +2° gets us to the 
traditional 360°, in 4 plates, 11 holes, and 3 alignment pins. 

    We could try to exploit the possibilities inherent in this scheme 
more fully.  Suppose that our second plate, instead of having its holes 
at 0, -2/12, and +3/12 as before, instead has them at 0, -2/14 and 
+3/14?  As before, this allows us to measure 2, 3, or 5 divisions in 
either direction from either of our two initial reference holes, which 
are themselves 7/14 apart.  But this doesn't actually work the way we 
hoped:  instead of getting 14 equal divisions, we get only 10 distinct 
positions, because we have two different ways to reach +2/14 (0 + 
2/14 and 7 - 5/14), and simiarly for 5, 7, 9, and 12.  By trying to be 
less clever, and putting the second plate’s holes at 0, -1/14, and +2/14, 
we do in fact achieve an equal division into 14 parts with 2 plates, 5 
holes, and 1 dowel pin.  If we divide the first plate into thirds instead 
of halves, and put the second plates holes at 0, -1/21, and +2/21, we 
can achieve an equal division into 21 parts with 2 plates, 6 holes, and 1 
dowel pin.  Adding a third plate with holes at 0, -1/147, and +2/147 
gives us an equal division of the circle into 147 parts with 3 plates, 9 
holes, and 2 dowel pins. 

    All of this has a flavor rather similar to the note on the 6 Trit 
Variac (p.  108), but with angles rather than voltages. 

    If the plates are perfectly round and consistent in diameter, the 
central shaft is strictly speaking unnecessary:  you could line the plates 
up by the feel of your fingers running over the edges.  This is perhaps 
less implausible than it seems, since we know that lathe technology 
goes back to Old Kingdom Egypt. 

    Metals are not the only reasonable materials for such discs, shafts, 
and pins;  jade would work well, as of course would various kinds of 
concretes and sintered ceramics, perhaps even including fired clay, 
particularly if foamed to improve its machinability.  Granite might 
also be an option.  Glasses such as fused quartz would be more 
challenging to cut without chipping, but might be feasible. 

    Tom Lipton of Ox Tools has demonstrated a modern alternative to 
dividing plates, using two plates each containing an identical circular 
row of identical bearing balls, which are pressed against one another 
to give as many divisions of the circle as there are balls in each plate.  
The plates are constrained to move with the balls, rather than rolling 
on them as in a ball bearing.  These balls are routinely made spherical 
to submicron tolerances, and the errors that do exist are averaged over 
the whole row of balls, permitting enormously closer tolerances with 
this mechanism than with the holes bored in a conventional dividing 
plate. 

    A sort of hybrid approach that avoids the use of shafts entirely 



would align adjacent pairs of discs with kinematic ball-and-V-groove 
mounts rather than entire rows of ball bearings or dowel pins.  Each 
disc (perhaps except the bottommost) would have three balls on its 
bottom side, spaced evenly 120° apart around its rim, and (perhaps 
except the topmost) six radial V-grooves on its top side, in two sets of 
three 120°-apart grooves.  The angle between the two sets of grooves 
would determine the contributions of this disc to the angle of the 
total stackup.  So a single disc pair, where the bottom disc's six 
V-grooves are all 60° from the previous one, could divide the circle 
into sixths.  A third disc, with its V-grooves at 0°, 120°, 240°, 90°, 
210°, and 330°, bumps that up to twelfths — but not 24ths, as you 
might hope.  The third disc adds the possibility of incrementing the 
angle by 90°, but not decrementing it, but since we already had 180°, 
we don't need it. 

    There are a couple ways to try to improve that situation before 
adding more parts or features.  If we put V-grooves on both sides of a 
single disc, we can flip it over, giving us the possibility of either 
adding its angle, or subtracting it, as initially — but without the 
possibility of zero.  If we alternate double-V-groove discs and 
three-ball discs (with the same three balls protruding from both side 
of the disc) then we could delete a pair of discs from the stackup to 
get a 0 angle, but at the expense of changing the stack’s thickness, 
which may be a problem.
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ECM engraving
Kragen Javier Sitaker, 02020-12-31 (5 minutes)

    PEMTec claim that with ECM they get surface reproducibility (I 
think?) down to 30 nanometers.  This is an extremely promising 
figure for micro-engraving of information or machinery on metal 
surfaces using movable ECM electrodes.  They claim to use a process 
gap of some microns, a salt-water electrolyte, “an exact current 
pulse”, “workpieces with an imaging accuracy in the lower 
micrometer range”, and oscillating die-sink tool electrodes, and get “a 
surface quality of up to 0.03 micrometers.” 

    (Magnetic impulse engraving is also potentially interesting:  a large 
high-permittivity core brought down to a sharp needle point resting 
on a copper or aluminum surface, with a high-current pancake-stack 
coil wrapped around the core and connected through a step-down 
transformer to a high-voltage source with a fast switch such as a spark 
gap.  This ought to produce, I think, enough force from the eddy 
currents around the sharp point to plastically indent the softer metal, 
but I haven’t done the math to check this.  I guess I could do an 
experiment, but if it fails, that would only provide evidence that a 
particular configuration didn’t work, and I’d still have to do the 
math.) 

    ECM is also a potentially valuable technique for getting sharp 
metal conical points, flat surfaces, cylindrical surfaces, and spherical 
surfaces.  By rotating the workpiece past an ECM “form tool” 
electrode you can do “ECM lathing”;  if the form tool is a straight 
edge and also translates parallel to that edge, then small errors in the 
edge will be smoothed out, somewhat analogous to lapping — but 
permitting the formation of precise conical and hyperboloid shapes 
(depending on whether the edge intersects the axis) as well as 
cylindrical and flat.  For a spherical surface, you want to use a concave 
circular form tool instead, and rotate it around its center of curvature. 

    A taut wire may be an adequate straight edge for many ECM 
purposes, and a taut wire being moved back and forth may be an 
adequate plane. 

    For high precision, this is superior to traditional lathing because the 
forces distorting and heating the workpiece and tool can be made 
arbitrarily low.  Sometimes, though, it may be more desirable to 
maintain a positive fluid pressure in the gap in order to control the 
gap between the tool and workpiece more precisely than the position 
of either can be controlled independently.  When this pressure can be 
spread over a large area, it should produce no local distortion, for 
example in the shape of the surface, only global distortion.  However, 
in this case, only the cylindrical, flat, and spherical shapes achievable 
by lapping are achievable, not the wider range of shapes achievable on 
the traditional lathe. 

    (A different, widely-used electrochemical approach to sharpening is 
isotropic electrochemical etching;  by isotropically eroding the metal 
by some distance d, any rounded features of radius less than d should 
in theory shrink to a point.  This doesn’t produce precise shapes but it 

https://www.youtube.com/watch?v=9K9cZeO33rk


does produce sharp points.) 

    Plasmas, especially nonthermal plasmas, may be better working 
fluids for fluid-bearing purposes than traditional liquid electrolytes, 
particularly if they contain groups such as carbonyl which form 
low-boiling-point compounds with the workpiece metal.  They 
would permit a much smaller process gap at a given pressure, and 
plasmas containing oxygen, hydrogen, or fluorine should be able to 
erode graphite, silicon, silicon carbide, and diamond, although in this 
case we are perhaps going a bit afield of ECM proper. 

    With a tool electrode shaped like an air-hockey puck with a needle 
stuck through it, the fluid-bearing technique will give extremely 
precise control of the process gap.  To engrave precise 
three-dimensional shapes you still need precise positional control of 
the other two axes, though;  while a kinematic mount consisting of 
six such fluid bearings able to swivel would achieve this, we wouldn’t 
be cutting inside those bearings, so traditional piezoelectric or 
galvanometer approaches are probably better. 

    (Probably EDM is a better fit than ECM for “lathing” and 
“lapping”, since its material removal rate is both higher and has a 
much sharper falloff with distance from the workpiece, but ECM will 
make it practical to do this with tungsten, copper, and 
tungsten-copper alloys, and with plasma, even semiconductors such as 
graphite.) 

    This technique should make it possible to produce, among other 
things, precise sharp-pointed electrodes for uses such as 
electrochemical engraving and scanning-probe microscopy.

Topics

• Materials (p.  784) (51 notes) 
• Manufacturing (p.  795) (17 notes) 
• Digital fabrication (p.  798) (17 notes) 
• Archival (p.  848) (5 notes) 
• Electrochemical machining (p.  888) (3 notes) 
• Scanning probe microscopes (p.  917) (2 notes) 



Electro-etching graded-index 
optics in porous silicon
Kragen Javier Sitaker, 02020-12-31 (2 minutes)

    Ben Krasnow, aka Applied Science, did a wonderful video on 
fabricating rugate filters by electro-etching heavily-doped P-type 
silicon wafers (≤10mΩ·cm) at 10–100 mA/cm² in aqueous HF 
(1:1 — 50% HF, I think w/w) mixed 1:1 with ethanol (50% v/v) as a 
depolarizer.  The silicon superlattice thus anodized onto the surface, 
layer by layer, has an index of refraction determined by the electrical 
current density used to porosify it at that moment, and consequently 
has a butterfly-wing-like spectrum that is the Fourier transform of 
the time-domain current signal. 

    This is an astonishing and unique property, and it opens the door to 
fabricating not only cheap dichroic filters but also, by applying the 
current in a spatially varying way (for example, by spatially 
modulated UV light on a photosensitive N-type wafer during etching 
as Krasnow suggests, or by any of the methods described in the note 
on foam electro-etching (p.  648)) the fabrication of general 
graded-index optics and color holograms on the surface of the silicon. 

    Graded-index optics avoid discontinuous changes of index;  if the 
index changes over many wavelengths rather than a fraction of a 
wavelength, this entirely avoids the interfacial reflections that 
produce the stray light that plagues optical systems. 

    Even more amazingly, Krasnow demonstrates how to separate the 
microporous silicon lattice thus formed from the silicon substrate, 
which is opaque to visible light, though somewhat reflective.  (I 
suspect that the useful refractive-index property will disappear for 
infrared light, for which the substrate is transparent, though Krasnow 
claims they should work better at those frequencies.) By turning the 
current up high enough, the new layer of microporous silicon being 
formed underneath the previous layers is so diaphanous that a simple 
water wash can separate the previously-formed layers from the wafer! 

    One of several surprising things about this process is that HF 
doesn’t normally etch Si;  it’s used as a specific wet etch in 
semiconductor fabrication to remove SiO₂ without attacking the 
silicon.  Krasnow explains that, even without the current, silicon is 
not totally invulnerable to HF, limiting the time span of this process. 

    Krasnow also points out that the filter material’s transmissivity to 
blue light cannot reach 100%.

Topics

• Materials (p.  784) (51 notes) 
• Digital fabrication (p.  798) (17 notes) 
• Optics (p.  839) (5 notes) 
• Metamaterials (p.  939) (2 notes) 

https://www.youtube.com/watch?v=iwj78pR46zM
https://en.wikipedia.org/wiki/Rugate_filter


Electrodeposition welding
Kragen Javier Sitaker, 02020-12-31 (2 minutes)

    To connect two pieces of metal together, commonly you weld 
them.  This is versatile and relatively inexpensive if you have a 
high-power electrical supply, but it tends to stress and distort the 
metal, also creating a heat-affected zone with a different crystal 
structure, and it is challenging for some combinations of metals. 

    But many metals can be electrodeposited fairly easily, notably 
copper and nickel.  What if you instead electrodeposited metal at the 
junction of two existing metal pieces?  You could use an 
insulated-shaft tool with electrolyte flowing through it, similar to the 
kind used for EDM small hole drilling (and presumably also ECM 
drilling), but electrolytically depositing metal and progressively 
withdrawing from the hole rather than being fed into it.  This could 
permit “welding” “without heat” (< 100°) and thus without 
distorting the metal.  The material deposition rate would surely be 
much smaller than with traditional welding, but if it can be deposited 
in precisely the right place, you need much less material. 

    As with ECM, tool oscillation is a potentially valuable approach for 
increasing flow of electrolyte through the process gap. 

    Deep eutectic systems and molten salts offer a similar approach for 
metals that can’t be electrodeposited from an aqueous solution.  This 
requires far lower temperature and is consequently far less hazardous 
than welding, for example, magnesium by traditional methods. 

    Such “welding” might also be able to compensate for its low 
material deposition rate by simultaneously depositing material evenly 
over a very long seam, for example through electrolyte held in blotter 
paper.  Without inserting the electrode into the seam, good 
penetration would be difficult or impossible to achieve, so you need 
to bevel the edges so that you can electrodeposit at the bottom of a 
V-groove. 

    A place where this technique would really shine would be in 
replacing “spray welding” for building up worn parts with new metal, 
at which point it’s pretty much just ordinary electroforming.

Topics

• Materials (p.  784) (51 notes) 
• Manufacturing (p.  795) (17 notes) 
• Digital fabrication (p.  798) (17 notes) 
• Electrolysis (p.  824) (7 notes) 
• Electrochemical machining (p.  888) (3 notes) 



Jigsaw blades
Kragen Javier Sitaker, 02020-12-31 (5 minutes)

    Jigsaw blades break a lot.  In a sense that’s because the stroke of the 
saw is greater than the elastic limit of the sawblade material.  But this 
is entirely avoidable. 

    If the stroke of the saw is too short, it won’t cut, because all of the 
motion will be taken up by the elastic deformation of the sawblade 
and the workpiece.  This is how saws for removing plaster casts avoid 
cutting skin:  their stroke length is shorter than the skin’s elastic limit.  
But the saw blade is typically much, much longer than the distance 
the chips from the workpiece have to move to detach from the 
workpiece;  typical numbers might be 100 mm and 100 μm.  The 
elastic limit of a hard steel might be ½% permitting about a 250-μm 
stroke without risk of breaking the blade, which is plenty to cut the 
workpiece;  if this is not long enough, the jigsaw can be built bigger. 

    It’s also necessary for the stroke length to be larger than the tooth 
size, or each tooth will cut a separate hole, rather than joining the 
holes together into a slot.  A higher movement frequency can be used 
with smaller teeth and the same total material removal rate;  
moreover thinner teeth and the elimination of the breakage risk 
sometimes permit using thinner blades and thus lower total power;  
but sometimes this undesirably reduces the achievable kerf curvature. 

    A typical electric jigsaw blade might move 1 m/s at 50 Hz.  The 
speed of sound in steel is about 4 km/s, so a 100-mm-long 
stretched-tight steel jigsaw blade will move more or less as a rigid 
body at frequencies below about 40 kHz.  Moving 250 μm twice per 
cycle at 40 kHz would be 20 m/s, so such an ultrasonic jigsaw could 
probably cut at a higher speed than a regular jigsaw without risk of 
breaking the blade, at least if there’s some way to clear the chips.  If 
the blade is 100 μm square, like one of my beard hairs or these 
hair-fine copper wires I’ve been trying to solder with, and has an 
extra 50% of non-tensile-load-bearing mass of teeth on one side, it 
weighs 120 μg/mm and so has a total mass of some 12 mg.  
Accelerating it by 40 m/s in half of a 40 kHz would require 3.2 
Mm/s/s, or 330 thousand gees of acceleration, which works out to 
almost 40 newtons with this mass, thus a stress of 40 MPa at the 
pulling end, about 4% of the strength of steel. 

    This kind of sounds like an ultrasonic cheesecutter that can cut 
through brass, mild steel, glass, bone, fingernails, hard plastics, fired 
clay, concrete, and maybe wood and granite, but not actual cheese as 
such, or your skin, or turkey. 

    Other possibilities to alleviate these compromises include using a 
blade with omnidirectional teeth (for example a single helical tooth, 
like a buttress-thread screw), which has no minimum kerf curvature 
radius and can also be rotated between cutting strokes;  mounting 
hard teeth (whether high-speed steel or something like tungsten 
carbide) on a softer blade that can stretch further;  and force feedback 
through electronics that stop pulling on the blade when overload is 
detected;  or coupling the saw frame to the jigsaw blade through a 

https://www.hitachi-metals.co.jp/e/products/auto/ml/pdf/yss_tool_steels_d.pdf
https://www.hitachi-metals.co.jp/e/products/auto/ml/pdf/yss_tool_steels_d.pdf


lightweight spring that limits the force over the saw’s normal stroke.  
But I’m kind of excited about this ultrasonic cheesecutter thing. 

    To actually make it work you probably need synchronized but 
mechanically weakly coupled pullers at the two ends of the sawblade, 
like a two-man sawing team, rather than hoping the saw frame will 
move as a sufficiently solid body.  By controlling the amount of slack 
with some sort of feedback, they ought to be able to keep the tension 
on the blade relatively constant.  Strain gauges in a lightweight saw 
frame occur to me as one possibility. 

    The mechanical power going into the wire is about 20 m/s · 40 N = 
800 W, but almost all of that is being transmitted from one sawblade 
puller to the other over the wire, then returned 25 μs later;  only a 
small amount of it goes into the workpiece being cut.  You’d still 
probably have to water-cool it. 

    An interesting feature of this device is that, because it runs at 
40 kHz, its cutting action should be uncannily almost silent. 

    A vibrating engraver or scraper that works at scales, frequencies, 
and powers like this, rather than the usual 50 Hz or so, would also be 
very interesting.  It could push its hardened tip into the workpiece as 
per normal.

Topics

• Mechanical things (p.  791) (19 notes) 
• Strength of materials (p.  816) (8 notes) 
• Self replication (p.  827) (6 notes) 
• Ultrasound (p.  851) (4 notes) 
• Steel (p.  853) (4 notes) 



Table text
Kragen Javier Sitaker, 02020-12-31 (4 minutes)

    “Plain ASCII text files” traditionally means files that could be 
interpreted directly by an ASR-33, with a CR LF sequence at the end 
of each line and a fixed-width font.  Unix simplified this by 
eliminating the CRs, and CRT terminals simplified it by eliminating 
overstrikes.  Nowadays we’ve usually extended this to UTF-8 
Unicode text and sometimes ANSI color and other SGR escape 
sequences, and for a program with a terminal interface, other escape 
codes. 

    But this is terribly limiting.  Usually we have only a single font size 
(though the VT100 did support double-width and double-height 
characters, most modern terminal emulators don’t support them, and 
that’s not much of an improvement really) and the font still has to be 
fixed-width.  Otherwise our carefully vertically aligned tables and 
ASCII art will get mangled by the unknowable font metrics of the 
user’s viewer. 

    Formatting those fixed-width-font tables and ASCII art isn’t easy, 
either.  It takes substantially more code than just spewing out some 
strings. 

    Markdown, or some variant thereof, might be a reasonable choice;  
you could write a Markdown or Markdown-variant terminal 
program.  CommonMark doesn’t support tables, but pandoc, 
GitHub-flavored Markdown, and PHP Markdown Extra do. 

    It occurs to me that a slight variation on the ordinary Unix 
interpretation of ASCII or UTF-8 text could work, as well.  Suppose 
you consider a text (any text) to consist of a sequence of tables, where 
the rows are separated by LF (^J), and the tables are separated by 
blank lines consisting of two consecutive LFs (^J^J).  Thus ordinary 
paragraphs are single-column tables.  Then, instead of treating TAB 
(^I) to instruct a terminal to move the cursor to the next tab stop, 
treat it as instructing the terminal to move the cursor to the next 
column;  enough space for each column is allocated to hold its 
contents, which means that text in subsequent rows of the table can 
expand them, moving previously displayed text to the right. 

    This form of output is clearly very easy to produce in a program, 
and it can be reasonably copied and pasted between programs.  In fact 
lots of programs already accept a table in this format as input or 
produce it as output, under the name TSV, “tab-separated values”. 

    However, no self-respecting programmer would rest content 
without adding recursion.  So if we use the characters ^R and ^T 
(DC2 and DC4) to begin and end nested tables (or blank-line 
separated sequences of tables), we gain new and exciting abilities: 

• We can put a paragraph of text in a table cell, as long as we wrap it 
beforehand, just by beginning it with ^R and ending it with ^T. 
• We can put a header across the top of a whole table by beginning 
the table with ^R and ending it with ^T, so that the header isn’t really 
part of the table. 

https://gist.github.com/srawlins/ad5ef4d153bc0fc223e1
https://gist.github.com/srawlins/ad5ef4d153bc0fc223e1


• If the vertical layout of the table is well-defined, we can split a table 
into vertical slices with their own headers by putting each of the 
vertical slices in its own table cell. 
• In general we can do Tk-style packing layout or TeX-style 
vbox/hbox layout by nesting “tables” each consisting of just one row 
or just one column.  

    A document in this format isn’t merely readable, it’s also editable at 
the character level, although deleting a ^T or inserting a ^R may have 
surprising and exciting results.  Incremental relayout is vastly easier 
than with the CSS box model.  And proportional fonts don’t 
inconvenience the table layout in the slightest. 

    Still, I feel like this is maybe more of a 1995 protocol or format 
design than a 2025 design.

Topics

• HCI (p.  797) (17 notes) 
• File formats (p.  823) (7 notes) 
• Text editors (p.  852) (4 notes) 
• Layout (p.  860) (4 notes) 
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• A reverse-biased diode thermometer (p.  656) 02020-11-27 
(9 minutes) 
• My very first opamp (p.  661) 02020-11-27 (4 minutes) 
• Majority logic with DRAM sense amps (p.  683) 02020-12-09 
(30 minutes) 
• Hierarchical state space learning (p.  714) 02020-12-14 (8 minutes) 
• Electronics next project (p.  741) 02020-12-21 (updated 
02020-12-22) (7 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 



Notes concerning “Performance”

• A reproducible vector-instruction VM? (p.  16) 02020-04-21 
(updated 02020-06-17) (30 minutes) 
• Bloomtags:  a Bloom-filter tree for efficient and flexible database 
queries (p.  40) 02020-05-13 (21 minutes) 
• Commit log transfer (p.  53) 02020-05-16 (1 minute) 
• One pass sort (p.  54) 02020-05-16 (15 minutes) 
• Font rendering with all-pass filters (p.  72) 02020-05-18 (7 minutes) 
• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 
• Virtual machine setup (p.  205) 02020-07-10 (updated 02020-07-14) 
(17 minutes) 
• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 
• Retro teletext (p.  225) 02020-07-18 (updated 02020-07-23) 
(18 minutes) 
• Merkle ropes (p.  411) 02020-10-09 (15 minutes) 
• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Residue number systems (p.  479) 02020-10-26 (2 minutes) 
• Dictionary data structures for tiny memories (p.  569) 02020-11-12 
(3 minutes) 
• Muldiv (p.  637) 02020-11-26 (1 minute) 
• Hardware queuing (p.  644) 02020-11-26 (updated 02020-12-16) 
(11 minutes) 
• Caching layout (p.  674) 02020-12-03 (8 minutes) 
• The Language of Choice, and other languages (p.  697) 02020-12-09 
(updated 02020-12-31) (10 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 
• Methods for two-dimensional rotation with two or three real 
multiplies (p.  750) 02020-12-23 (updated 02020-12-26) (14 minutes) 
• The sparsity of PEG memoization utility (p.  765) 02020-12-24 
(updated 02020-12-28) (1 minute) 
• Stochastic fractional delay lines (p.  768) 02020-12-26 (9 minutes) 



Notes concerning “Mechanical 
things”

• Ballpoint SPIF (p.  32) 02020-04-25 (7 minutes) 
• Optimized finger joints (p.  59) 02020-05-16 (4 minutes) 
• Lantern gears (p.  161) 02020-06-20 (updated 02020-06-28) 
(1 minute) 
• The orbital drive and stepped planetary drive (p.  231) 02020-07-28 
(updated 02020-08-02) (10 minutes) 
• Machine teeth (p.  247) 02020-08-02 (updated 02020-12-31) 
(8 minutes) 
• Modern material processing (p.  338) 02020-09-24 (updated 
02020-09-26) (8 minutes) 
• A seamless CMG-driven walker (p.  416) 02020-10-11 (updated 
02020-10-12) (6 minutes) 
• Rigid glider (p.  418) 02020-10-12 (1 minute) 
• Wire machines (p.  423) 02020-10-13 (updated 02020-12-31) 
(12 minutes) 
• Atkinson differential blower (p.  431) 02020-10-14 (updated 
02020-12-31) (10 minutes) 
• Oscillating flexion (p.  436) 02020-10-15 (updated 02020-10-16) 
(11 minutes) 
• Reuleaux (p.  440) 02020-10-15 (updated 02020-10-18) (19 minutes) 

• Abbe-limited DRO (p.  472) 02020-10-24 (updated 02020-12-31) 
(11 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• Swashplate screwdriver (p.  532) 02020-11-06 (1 minute) 
• Alien screws (p.  540) 02020-11-06 (updated 02020-11-11) 
(4 minutes) 
• Lenticular air bearing (p.  632) 02020-11-24 (2 minutes) 
• Differential dividing plate (p.  772) 02020-12-31 (14 minutes) 
• Jigsaw blades (p.  780) 02020-12-31 (5 minutes) 



Notes concerning “Physics”

• Ballpoint SPIF (p.  32) 02020-04-25 (7 minutes) 
• Solar furnace CPC (p.  61) 02020-05-16 (12 minutes) 
• Long distance radio (p.  212) 02020-07-17 (19 minutes) 
• Inductively-coupled plasma torches (p.  275) 02020-09-10 
(5 minutes) 
• Oxygen generator rocket (p.  277) 02020-09-10 (1 minute) 
• Spark gap logic (p.  305) 02020-09-20 (updated 02020-12-16) 
(25 minutes) 
• A digital Dagarti might save your life (p.  324) 02020-09-23 
(3 minutes) 
• A seamless CMG-driven walker (p.  416) 02020-10-11 (updated 
02020-10-12) (6 minutes) 
• Oscillating flexion (p.  436) 02020-10-15 (updated 02020-10-16) 
(11 minutes) 
• Fluidic household pumping (p.  452) 02020-10-18 (updated 
02020-10-19) (7 minutes) 
• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• Multimeter metrology (p.  498) 02020-11-01 (updated 02020-11-27) 
(23 minutes) 
• Thermal expansion speaker (p.  533) 02020-11-06 (1 minute) 
• Copper segelín (p.  534) 02020-11-06 (updated 02020-11-08) 
(19 minutes) 
• Adiabatic separation (p.  571) 02020-11-12 (updated 02020-11-14) 
(14 minutes) 
• Geomagnetic energy harvesting is barely feasible at near-kilometer 
scales (p.  627) 02020-11-24 (3 minutes) 
• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 
• Cheating étendue? (p.  766) 02020-12-26 (4 minutes) 



Notes concerning “Ghettobotics”

• Electronics kit (p.  77) 02020-05-23 (updated 02020-12-20) 
(14 minutes) 
• A 6-bit “variac casero” (p.  108) 02020-06-06 (22 minutes) 
• Ghettobotics soldering iron (p.  120) 02020-06-17 (4 minutes) 
• Wire machines (p.  423) 02020-10-13 (updated 02020-12-31) 
(12 minutes) 
• Thermistors, resistance temperature detectors, and other thermal 
sensors (p.  427) 02020-10-14 (updated 02020-11-06) (12 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• Dead bugging (p.  510) 02020-11-04 (3 minutes) 
• Ghettobotics nonshopping list (p.  512) 02020-11-04 (updated 
02020-12-21) (22 minutes) 
• Rosining chips (p.  555) 02020-11-08 (2 minutes) 
• Improvised humidity sensors with PET dielectric spectroscopy (p.  
562) 02020-11-11 (3 minutes) 
• Random synchronous motor (p.  565) 02020-11-11 (2 minutes) 
• The rep-2 cuboid (p.  576) 02020-11-13 (5 minutes) 
• Mica composites (p.  578) 02020-11-14 (3 minutes) 
• Improvised display options for embedded hardware development (p.  
580) 02020-11-16 (updated 02020-11-17) (16 minutes) 
• Capacitor meter (p.  585) 02020-11-16 (updated 02020-12-03) 
(26 minutes) 
• Rebraining (p.  593) 02020-11-16 (updated 02020-12-06) 
(12 minutes) 
• Electronics next project (p.  741) 02020-12-21 (updated 
02020-12-22) (7 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 



Notes concerning “Metrology”

• Electronics kit (p.  77) 02020-05-23 (updated 02020-12-20) 
(14 minutes) 
• Ultra machining (p.  196) 02020-07-06 (updated 02020-07-18) 
(5 minutes) 
• Cyclic fabrication systems (p.  256) 02020-08-17 (updated 
02020-09-10) (56 minutes) 
• Micro material sorting (p.  296) 02020-09-12 (2 minutes) 
• VGA oscilloscope? (p.  421) 02020-10-13 (5 minutes) 
• Thermistors, resistance temperature detectors, and other thermal 
sensors (p.  427) 02020-10-14 (updated 02020-11-06) (12 minutes) 
• Abbe-limited DRO (p.  472) 02020-10-24 (updated 02020-12-31) 
(11 minutes) 
• Multimeter metrology (p.  498) 02020-11-01 (updated 02020-11-27) 
(23 minutes) 
• Ghettobotics nonshopping list (p.  512) 02020-11-04 (updated 
02020-12-21) (22 minutes) 
• Improvised humidity sensors with PET dielectric spectroscopy (p.  
562) 02020-11-11 (3 minutes) 
• Capacitor meter (p.  585) 02020-11-16 (updated 02020-12-03) 
(26 minutes) 
• Oscilloscope superresolution via compressed sensing? (p.  607) 
02020-11-17 (1 minute) 
• Representing E12 electronic component values musically (p.  610) 
02020-11-17 (updated 02020-12-26) (16 minutes) 
• A reverse-biased diode thermometer (p.  656) 02020-11-27 
(9 minutes) 
• Majority logic with DRAM sense amps (p.  683) 02020-12-09 
(30 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 
• Differential dividing plate (p.  772) 02020-12-31 (14 minutes) 



Notes concerning 
“Manufacturing”

• Ballpoint SPIF (p.  32) 02020-04-25 (7 minutes) 
• Ultra machining (p.  196) 02020-07-06 (updated 02020-07-18) 
(5 minutes) 
• 3-D printing iron by electrodeposition? (p.  251) 02020-08-15 
(11 minutes) 
• Cyclic fabrication systems (p.  256) 02020-08-17 (updated 
02020-09-10) (56 minutes) 
• Foil-marking glass (p.  273) 02020-08-18 (4 minutes) 
• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 
• Toolpath optimization (p.  343) 02020-09-27 (updated 
02020-09-30) (19 minutes) 
• Ancient machinists (p.  399) 02020-10-08 (26 minutes) 
• Abbe-limited DRO (p.  472) 02020-10-24 (updated 02020-12-31) 
(11 minutes) 
• Hard sticky balls (p.  521) 02020-11-06 (1 minute) 
• Cold plasma (p.  556) 02020-11-08 (updated 02020-11-24) 
(14 minutes) 
• Cutting steel with steam (p.  561) 02020-11-11 (1 minute) 
• Lenticular air bearing (p.  632) 02020-11-24 (2 minutes) 
• Electroforming networks (p.  744) 02020-12-22 (3 minutes) 
• Differential dividing plate (p.  772) 02020-12-31 (14 minutes) 
• ECM engraving (p.  776) 02020-12-31 (5 minutes) 
• Electrodeposition welding (p.  779) 02020-12-31 (2 minutes) 



Notes concerning “History”

• Pandemic collapse (p.  65) 02020-05-17 (updated 02020-12-16) 
(22 minutes) 
• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Lantern gears (p.  161) 02020-06-20 (updated 02020-06-28) 
(1 minute) 
• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Hacker calendar (p.  181) 02020-06-28 (updated 02020-12-03) 
(15 minutes) 
• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 
• Retro teletext (p.  225) 02020-07-18 (updated 02020-07-23) 
(18 minutes) 
• Notable quotes from Steinmetz’s 1892 hysteresis paper (p.  284) 
02020-09-10 (2 minutes) 
• An index of the 1880 edition of Cooley’s Cyclopædia (p.  301) 
02020-09-17 (updated 02020-10-23) (9 minutes) 
• Ancient batteries (p.  336) 02020-09-23 (updated 02020-12-31) 
(4 minutes) 
• Ancient machinists (p.  399) 02020-10-08 (26 minutes) 
• Reuleaux (p.  440) 02020-10-15 (updated 02020-10-18) (19 minutes) 

• Multimeter metrology (p.  498) 02020-11-01 (updated 02020-11-27) 
(23 minutes) 
• Mica composites (p.  578) 02020-11-14 (3 minutes) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 
• Punk zine look (p.  671) 02020-11-28 (6 minutes) 
• Yablochkov arc cutter (p.  696) 02020-12-09 (1 minute) 



Notes concerning “HCI”

• Pure functional UI (p.  13) 02020-04-21 (4 minutes) 
• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Writing a shopping list in TeX (p.  106) 02020-06-05 (4 minutes) 
• Modelica notes (p.  192) 02020-07-06 (updated 02020-07-07) 
(9 minutes) 
• The programmable world (p.  285) 02020-09-10 (0 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• Nodebook:  autotagging quantities for ad-hoc calculation and 
example-based end-user programming (p.  388) 02020-10-07 
(7 minutes) 
• The Spungot sentential database for end-user logic programming (p.  
542) 02020-11-06 (updated 02020-12-31) (27 minutes) 
• Representing E12 electronic component values musically (p.  610) 
02020-11-17 (updated 02020-12-26) (16 minutes) 
• Keyboard object environment (p.  620) 02020-11-19 (13 minutes) 
• Scribal Basic:  a 1960s language for the 02020s (p.  701) 02020-12-12 
(updated 02020-12-15) (32 minutes) 
• Programming in the debugger (p.  717) 02020-12-15 (2 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 
• Circle-portal GUI Ⅱ (p.  748) 02020-12-22 (updated 02020-12-23) 
(4 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 
• Successive-approximation UI design (p.  771) 02020-12-28 
(1 minute) 
• Table text (p.  782) 02020-12-31 (4 minutes) 



Notes concerning “Digital 
fabrication”

• Ballpoint SPIF (p.  32) 02020-04-25 (7 minutes) 
• Optimized finger joints (p.  59) 02020-05-16 (4 minutes) 
• Pyrolysis 3-D printing (p.  238) 02020-08-02 (updated 02020-11-24) 
(20 minutes) 
• Machine teeth (p.  247) 02020-08-02 (updated 02020-12-31) 
(8 minutes) 
• 3-D printing iron by electrodeposition? (p.  251) 02020-08-15 
(11 minutes) 
• Cyclic fabrication systems (p.  256) 02020-08-17 (updated 
02020-09-10) (56 minutes) 
• Foil-marking glass (p.  273) 02020-08-18 (4 minutes) 
• Inorganic burnout (p.  290) 02020-09-11 (updated 02020-09-12) 
(18 minutes) 
• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 
• Abbe-limited DRO (p.  472) 02020-10-24 (updated 02020-12-31) 
(11 minutes) 
• Hard sticky balls (p.  521) 02020-11-06 (1 minute) 
• Copper segelín (p.  534) 02020-11-06 (updated 02020-11-08) 
(19 minutes) 
• Foam electro-etching and related techniques (p.  648) 02020-11-26 
(updated 02020-12-31) (10 minutes) 
• ECM engraving (p.  776) 02020-12-31 (5 minutes) 
• Electro-etching graded-index optics in porous silicon (p.  778) 
02020-12-31 (2 minutes) 
• Electrodeposition welding (p.  779) 02020-12-31 (2 minutes) 



Notes concerning “Algorithms”

• Reversible parsing (p.  36) 02020-05-11 (6 minutes) 
• Bloomtags:  a Bloom-filter tree for efficient and flexible database 
queries (p.  40) 02020-05-13 (21 minutes) 
• One pass sort (p.  54) 02020-05-16 (15 minutes) 
• Font rendering with all-pass filters (p.  72) 02020-05-18 (7 minutes) 
• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• Merkle ropes (p.  411) 02020-10-09 (15 minutes) 
• Skip list variants (p.  419) 02020-10-12 (4 minutes) 
• Specular photogrammetry (p.  566) 02020-11-11 (3 minutes) 
• Dictionary data structures for tiny memories (p.  569) 02020-11-12 
(3 minutes) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 
• The Language of Choice, and other languages (p.  697) 02020-12-09 
(updated 02020-12-31) (10 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 
• The sparsity of PEG memoization utility (p.  765) 02020-12-24 
(updated 02020-12-28) (1 minute) 
• Stochastic fractional delay lines (p.  768) 02020-12-26 (9 minutes) 



Notes concerning “Pricing”

• Sodium silicate (p.  82) 02020-06-04 (32 minutes) 
• Phosphate precipitation (p.  280) 02020-09-10 (12 minutes) 
• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 
• Solar netting (p.  326) 02020-09-23 (9 minutes) 
• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Some of the cheapest memory ICs (p.  484) 02020-10-27 (updated 
02020-10-30) (1 minute) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• Bluepill aspirations (p.  495) 02020-10-30 (updated 02020-11-01) 
(9 minutes) 
• Multimeter metrology (p.  498) 02020-11-01 (updated 02020-11-27) 
(23 minutes) 
• Mica composites (p.  578) 02020-11-14 (3 minutes) 
• A solar panel from an LED garden light (p.  608) 02020-11-17 
(updated 02020-12-01) (5 minutes) 
• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 



Notes concerning 
“Microcontrollers”

• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Retro teletext (p.  225) 02020-07-18 (updated 02020-07-23) 
(18 minutes) 
• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Bluepill aspirations (p.  495) 02020-10-30 (updated 02020-11-01) 
(9 minutes) 
• Multimeter metrology (p.  498) 02020-11-01 (updated 02020-11-27) 
(23 minutes) 
• Ghettobotics nonshopping list (p.  512) 02020-11-04 (updated 
02020-12-21) (22 minutes) 
• Arduino support for STM32 (p.  526) 02020-11-06 (10 minutes) 
• Capacitor meter (p.  585) 02020-11-16 (updated 02020-12-03) 
(26 minutes) 
• Rebraining (p.  593) 02020-11-16 (updated 02020-12-06) 
(12 minutes) 
• Microcontroller inventory (p.  616) 02020-11-18 (updated 
02020-11-28) (4 minutes) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• AVR OSCCAL probably won’t give you an FM radio (p.  638) 
02020-11-26 (2 minutes) 
• Hardware queuing (p.  644) 02020-11-26 (updated 02020-12-16) 
(11 minutes) 
• Electronics next project (p.  741) 02020-12-21 (updated 
02020-12-22) (7 minutes) 



Notes concerning 
“Thermodynamics”

• Solar furnace CPC (p.  61) 02020-05-16 (12 minutes) 
• Cyclic fabrication systems (p.  256) 02020-08-17 (updated 
02020-09-10) (56 minutes) 
• Smart plumbing (p.  286) 02020-09-10 (updated 02020-09-12) 
(11 minutes) 
• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 
• Magnesium fuel (p.  331) 02020-09-23 (updated 02020-10-09) 
(13 minutes) 
• Reducing sucrose (p.  350) 02020-09-30 (7 minutes) 
• Lithium fuel (p.  367) 02020-10-04 (7 minutes) 
• Atkinson differential blower (p.  431) 02020-10-14 (updated 
02020-12-31) (10 minutes) 
• Fluidic household pumping (p.  452) 02020-10-18 (updated 
02020-10-19) (7 minutes) 
• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• Copper segelín (p.  534) 02020-11-06 (updated 02020-11-08) 
(19 minutes) 
• Cheating étendue? (p.  766) 02020-12-26 (4 minutes) 



Notes concerning “Programming”

• Difficulty estimation of programming tasks (p.  12) 02020-04-20 
(2 minutes) 
• Bloomtags:  a Bloom-filter tree for efficient and flexible database 
queries (p.  40) 02020-05-13 (21 minutes) 
• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• Using Numpy for non-numerical computation:  what would a good 
example be? (p.  189) 02020-06-29 (updated 02020-06-30) 
(3 minutes) 
• Virtual machine setup (p.  205) 02020-07-10 (updated 02020-07-14) 
(17 minutes) 
• A generic universal entity-component simulatorium (p.  219) 
02020-07-18 (1 minute) 
• The Spungot sentential database for end-user logic programming (p.  
542) 02020-11-06 (updated 02020-12-31) (27 minutes) 
• Printf tracebacks (p.  564) 02020-11-11 (2 minutes) 
• Dictionary data structures for tiny memories (p.  569) 02020-11-12 
(3 minutes) 
• Using C99 compound literals unjustifiably (p.  652) 02020-11-27 
(6 minutes) 
• Taking screenshots (p.  663) 02020-11-27 (updated 02020-12-20) 
(14 minutes) 
• The Language of Choice, and other languages (p.  697) 02020-12-09 
(updated 02020-12-31) (10 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Math”

• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• Slide rule addition (p.  179) 02020-06-22 (3 minutes) 
• Sparse sinc (p.  297) 02020-09-17 (12 minutes) 
• Wang tile chemicals (p.  353) 02020-09-30 (2 minutes) 
• Oscillating flexion (p.  436) 02020-10-15 (updated 02020-10-16) 
(11 minutes) 
• Intervals and gradients (p.  447) 02020-10-16 (4 minutes) 
• Residue number systems (p.  479) 02020-10-26 (2 minutes) 
• The rep-2 cuboid (p.  576) 02020-11-13 (5 minutes) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 
• Compressed imaging (p.  677) 02020-12-06 (3 minutes) 
• Hierarchical state space learning (p.  714) 02020-12-14 (8 minutes) 
• Methods for two-dimensional rotation with two or three real 
multiplies (p.  750) 02020-12-23 (updated 02020-12-26) (14 minutes) 
• Stochastic fractional delay lines (p.  768) 02020-12-26 (9 minutes) 



Notes concerning “Systems 
architecture”

• Pure functional VM (p.  15) 02020-04-21 (1 minute) 
• Bitwise reproducibility (p.  35) 02020-04-25 (1 minute) 
• Feeds or streams on CCNs (p.  48) 02020-05-16 (15 minutes) 
• Commit log transfer (p.  53) 02020-05-16 (1 minute) 
• One pass sort (p.  54) 02020-05-16 (15 minutes) 
• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 
• A generic universal entity-component simulatorium (p.  219) 
02020-07-18 (1 minute) 
• Prate thoughts (p.  363) 02020-10-02 (updated 02020-12-30) 
(12 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Practical”

• Writing a shopping list in TeX (p.  106) 02020-06-05 (4 minutes) 
• Importing the WHO’s COVID-19 data into SQLite (p.  198) 
02020-07-10 (2 minutes) 
• Virtual machine setup (p.  205) 02020-07-10 (updated 02020-07-14) 
(17 minutes) 
• Scraping Sciencemadness (p.  354) 02020-10-01 (updated 
02020-10-05) (4 minutes) 
• Wire machines (p.  423) 02020-10-13 (updated 02020-12-31) 
(12 minutes) 
• COVID-19 risk and vitamin D (p.  480) 02020-10-27 (updated 
02020-10-28) (12 minutes) 
• Guide to finding datasheets and avoiding malicious datasheet SEO 
sites (p.  505) 02020-11-02 (updated 02020-12-22) (7 minutes) 
• Ghettobotics nonshopping list (p.  512) 02020-11-04 (updated 
02020-12-21) (22 minutes) 
• Arduino support for STM32 (p.  526) 02020-11-06 (10 minutes) 
• Microcontroller inventory (p.  616) 02020-11-18 (updated 
02020-11-28) (4 minutes) 
• Taking screenshots (p.  663) 02020-11-27 (updated 02020-12-20) 
(14 minutes) 
• Materials YouTube (p.  740) 02020-12-16 (updated 02020-12-17) 
(1 minute) 



Notes concerning “Security”

• Static hypertext on CCN (p.  47) 02020-05-16 (2 minutes) 
• Feeds or streams on CCNs (p.  48) 02020-05-16 (15 minutes) 
• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 
• A digital Dagarti might save your life (p.  324) 02020-09-23 
(3 minutes) 
• Secure Scuttlebutt is a cool idea whose realization has fatal flaws (p.  
357) 02020-10-02 (updated 02020-11-06) (17 minutes) 
• Prate thoughts (p.  363) 02020-10-02 (updated 02020-12-30) 
(12 minutes) 
• DNS Cache Rendezvous:  a permissionless signaling channel for 
bootstrapping end-to-end connections (p.  383) 02020-10-07 
(13 minutes) 
• Single-bridge Tor deanonymization? (p.  392) 02020-10-07 
(4 minutes) 
• LOGSL:  Lisp object-graph serialization language (p.  394) 
02020-10-07 (updated 02020-10-09) (8 minutes) 
• Merkle ropes (p.  411) 02020-10-09 (15 minutes) 



Notes concerning “Energy”

• Solar furnace CPC (p.  61) 02020-05-16 (12 minutes) 
• Fossil geothermal (p.  234) 02020-08-02 (updated 02020-11-13) 
(12 minutes) 
• Oxygen generator rocket (p.  277) 02020-09-10 (1 minute) 
• Smart plumbing (p.  286) 02020-09-10 (updated 02020-09-12) 
(11 minutes) 
• Aluminum-air batteries (p.  322) 02020-09-23 (4 minutes) 
• Magnesium fuel (p.  331) 02020-09-23 (updated 02020-10-09) 
(13 minutes) 
• Lithium fuel (p.  367) 02020-10-04 (7 minutes) 
• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• A solar panel from an LED garden light (p.  608) 02020-11-17 
(updated 02020-12-01) (5 minutes) 
• Geomagnetic energy harvesting is barely feasible at near-kilometer 
scales (p.  627) 02020-11-24 (3 minutes) 



Notes concerning “Protocols”

• Static hypertext on CCN (p.  47) 02020-05-16 (2 minutes) 
• Feeds or streams on CCNs (p.  48) 02020-05-16 (15 minutes) 
• Commit log transfer (p.  53) 02020-05-16 (1 minute) 
• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 
• Secure Scuttlebutt is a cool idea whose realization has fatal flaws (p.  
357) 02020-10-02 (updated 02020-11-06) (17 minutes) 
• Prate thoughts (p.  363) 02020-10-02 (updated 02020-12-30) 
(12 minutes) 
• DNS Cache Rendezvous:  a permissionless signaling channel for 
bootstrapping end-to-end connections (p.  383) 02020-10-07 
(13 minutes) 
• Single-bridge Tor deanonymization? (p.  392) 02020-10-07 
(4 minutes) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Graphics”

• Font rendering with all-pass filters (p.  72) 02020-05-18 (7 minutes) 
• Intervals and gradients (p.  447) 02020-10-16 (4 minutes) 
• Specular photogrammetry (p.  566) 02020-11-11 (3 minutes) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 
• Caching layout (p.  674) 02020-12-03 (8 minutes) 
• Compressed imaging (p.  677) 02020-12-06 (3 minutes) 
• Circle-portal GUI Ⅱ (p.  748) 02020-12-22 (updated 02020-12-23) 
(4 minutes) 
• Methods for two-dimensional rotation with two or three real 
multiplies (p.  750) 02020-12-23 (updated 02020-12-26) (14 minutes) 
• Stochastic fractional delay lines (p.  768) 02020-12-26 (9 minutes) 
• Successive-approximation UI design (p.  771) 02020-12-28 
(1 minute) 



Notes concerning “Experiment 
report”

• Ancient batteries (p.  336) 02020-09-23 (updated 02020-12-31) 
(4 minutes) 
• Plaster foam (p.  449) 02020-10-16 (updated 02020-11-08) 
(8 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 
• Bluepill aspirations (p.  495) 02020-10-30 (updated 02020-11-01) 
(9 minutes) 
• Dead bugging (p.  510) 02020-11-04 (3 minutes) 
• Ghettobotics nonshopping list (p.  512) 02020-11-04 (updated 
02020-12-21) (22 minutes) 
• Arduino support for STM32 (p.  526) 02020-11-06 (10 minutes) 
• A solar panel from an LED garden light (p.  608) 02020-11-17 
(updated 02020-12-01) (5 minutes) 
• Relay buzzer (p.  625) 02020-11-23 (2 minutes) 
• My very first opamp (p.  661) 02020-11-27 (4 minutes) 



Notes concerning “Mathematical 
optimization”

• Penalized bits (p.  278) 02020-09-10 (3 minutes) 
• Toolpath optimization (p.  343) 02020-09-27 (updated 
02020-09-30) (19 minutes) 
• Intervals and gradients (p.  447) 02020-10-16 (4 minutes) 
• OCR with linear optimization (p.  522) 02020-11-06 (1 minute) 
• Specular photogrammetry (p.  566) 02020-11-11 (3 minutes) 
• Oscilloscope superresolution via compressed sensing? (p.  607) 
02020-11-17 (1 minute) 
• Compressed imaging (p.  677) 02020-12-06 (3 minutes) 
• Truth table search (p.  692) 02020-12-09 (11 minutes) 
• Hierarchical state space learning (p.  714) 02020-12-14 (8 minutes) 



Notes concerning “Independence”

• Long distance radio (p.  212) 02020-07-17 (19 minutes) 
• Cyclic fabrication systems (p.  256) 02020-08-17 (updated 
02020-09-10) (56 minutes) 
• Micro material sorting (p.  296) 02020-09-12 (2 minutes) 
• DNS Cache Rendezvous:  a permissionless signaling channel for 
bootstrapping end-to-end connections (p.  383) 02020-10-07 
(13 minutes) 
• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• Rosining chips (p.  555) 02020-11-08 (2 minutes) 
• Rebraining (p.  593) 02020-11-16 (updated 02020-12-06) 
(12 minutes) 
• Electronics next project (p.  741) 02020-12-21 (updated 
02020-12-22) (7 minutes) 



Notes concerning “Embedded 
programming”

• A digital Dagarti might save your life (p.  324) 02020-09-23 
(3 minutes) 
• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Arduino support for STM32 (p.  526) 02020-11-06 (10 minutes) 
• Dictionary data structures for tiny memories (p.  569) 02020-11-12 
(3 minutes) 
• Improvised display options for embedded hardware development (p.  
580) 02020-11-16 (updated 02020-11-17) (16 minutes) 
• Capacitor meter (p.  585) 02020-11-16 (updated 02020-12-03) 
(26 minutes) 
• Keyboard object environment (p.  620) 02020-11-19 (13 minutes) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• AVR OSCCAL probably won’t give you an FM radio (p.  638) 
02020-11-26 (2 minutes) 



Notes concerning “Derctuo”

• Difficulty estimation of programming tasks (p.  12) 02020-04-20 
(2 minutes) 
• Pure functional VM (p.  15) 02020-04-21 (1 minute) 
• A reproducible vector-instruction VM? (p.  16) 02020-04-21 
(updated 02020-06-17) (30 minutes) 
• Bitwise reproducibility (p.  35) 02020-04-25 (1 minute) 
• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Tentative outline of a body of knowledge (p.  116) 02020-06-06 
(updated 02020-10-28) (10 minutes) 
• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Importing the WHO’s COVID-19 data into SQLite (p.  198) 
02020-07-10 (2 minutes) 
• Taking screenshots (p.  663) 02020-11-27 (updated 02020-12-20) 
(14 minutes) 



Notes concerning “Strength of 
materials”

• Ballpoint SPIF (p.  32) 02020-04-25 (7 minutes) 
• Sodium silicate (p.  82) 02020-06-04 (32 minutes) 
• Machine teeth (p.  247) 02020-08-02 (updated 02020-12-31) 
(8 minutes) 
• Phosphate precipitation (p.  280) 02020-09-10 (12 minutes) 
• Solar netting (p.  326) 02020-09-23 (9 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• Oscillating flexion (p.  436) 02020-10-15 (updated 02020-10-16) 
(11 minutes) 
• Jigsaw blades (p.  780) 02020-12-31 (5 minutes) 



Notes concerning “Refractory”

• Inductively-coupled plasma torches (p.  275) 02020-09-10 
(5 minutes) 
• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• Plaster foam (p.  449) 02020-10-16 (updated 02020-11-08) 
(8 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 
• Pit firing (p.  523) 02020-11-06 (3 minutes) 
• Mica composites (p.  578) 02020-11-14 (3 minutes) 
• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 



Notes concerning “Foaming”

• Sodium silicate (p.  82) 02020-06-04 (32 minutes) 
• Cyclic fabrication systems (p.  256) 02020-08-17 (updated 
02020-09-10) (56 minutes) 
• Inorganic burnout (p.  290) 02020-09-11 (updated 02020-09-12) 
(18 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• Plaster foam (p.  449) 02020-10-16 (updated 02020-11-08) 
(8 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 
• Foaming infiltration (p.  520) 02020-11-06 (1 minute) 
• Foam electro-etching and related techniques (p.  648) 02020-11-26 
(updated 02020-12-31) (10 minutes) 



Notes concerning “Facepalm”

• Pandemic collapse (p.  65) 02020-05-17 (updated 02020-12-16) 
(22 minutes) 
• Trying to drive a speaker with a buck converter (p.  187) 
02020-06-29 (4 minutes) 
• Peroxide and bleach (p.  255) 02020-08-15 (2 minutes) 
• Oxygen generator rocket (p.  277) 02020-09-10 (1 minute) 
• Secure Scuttlebutt is a cool idea whose realization has fatal flaws (p.  
357) 02020-10-02 (updated 02020-11-06) (17 minutes) 
• Ancient machinists (p.  399) 02020-10-08 (26 minutes) 
• Microcontroller inventory (p.  616) 02020-11-18 (updated 
02020-11-28) (4 minutes) 
• Cheating étendue? (p.  766) 02020-12-26 (4 minutes) 



Notes concerning “The future”

• Pandemic collapse (p.  65) 02020-05-17 (updated 02020-12-16) 
(22 minutes) 
• Ultra machining (p.  196) 02020-07-06 (updated 02020-07-18) 
(5 minutes) 
• Cyclic fabrication systems (p.  256) 02020-08-17 (updated 
02020-09-10) (56 minutes) 
• The programmable world (p.  285) 02020-09-10 (0 minutes) 
• A digital Dagarti might save your life (p.  324) 02020-09-23 
(3 minutes) 
• Modern material processing (p.  338) 02020-09-24 (updated 
02020-09-26) (8 minutes) 
• Time-scale material processing (p.  746) 02020-12-22 (3 minutes) 



Notes concerning “The STM32 
microcontroller family”

• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Bluepill aspirations (p.  495) 02020-10-30 (updated 02020-11-01) 
(9 minutes) 
• Arduino support for STM32 (p.  526) 02020-11-06 (10 minutes) 
• Capacitor meter (p.  585) 02020-11-16 (updated 02020-12-03) 
(26 minutes) 
• Oscilloscope superresolution via compressed sensing? (p.  607) 
02020-11-17 (1 minute) 
• Microcontroller inventory (p.  616) 02020-11-18 (updated 
02020-11-28) (4 minutes) 



Notes concerning “Physical 
computation”

• The programmable world (p.  285) 02020-09-10 (0 minutes) 
• Spark gap logic (p.  305) 02020-09-20 (updated 02020-12-16) 
(25 minutes) 
• Wang tile chemicals (p.  353) 02020-09-30 (2 minutes) 
• LED computation? (p.  476) 02020-10-25 (5 minutes) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 
• Majority logic with DRAM sense amps (p.  683) 02020-12-09 
(30 minutes) 
• Truth table search (p.  692) 02020-12-09 (11 minutes) 



Notes concerning “File formats”

• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Nodebook:  autotagging quantities for ad-hoc calculation and 
example-based end-user programming (p.  388) 02020-10-07 
(7 minutes) 
• LOGSL:  Lisp object-graph serialization language (p.  394) 
02020-10-07 (updated 02020-10-09) (8 minutes) 
• Machine-readable PNG circuit diagram watermarks (p.  525) 
02020-11-06 (1 minute) 
• The Spungot sentential database for end-user logic programming (p.  
542) 02020-11-06 (updated 02020-12-31) (27 minutes) 
• A compact textual format for interchange of electronic circuit 
designs (p.  568) 02020-11-11 (updated 02020-11-26) (1 minute) 
• Table text (p.  782) 02020-12-31 (4 minutes) 



Notes concerning “Electrolysis”

• 3-D printing iron by electrodeposition? (p.  251) 02020-08-15 
(11 minutes) 
• Copper salts (p.  313) 02020-09-21 (updated 02020-09-23) 
(8 minutes) 
• Aluminum-air batteries (p.  322) 02020-09-23 (4 minutes) 
• Ancient batteries (p.  336) 02020-09-23 (updated 02020-12-31) 
(4 minutes) 
• Foam electro-etching and related techniques (p.  648) 02020-11-26 
(updated 02020-12-31) (10 minutes) 
• Electroforming networks (p.  744) 02020-12-22 (3 minutes) 
• Electrodeposition welding (p.  779) 02020-12-31 (2 minutes) 



Notes concerning 
“Communication”

• Long distance radio (p.  212) 02020-07-17 (19 minutes) 
• Audio vector image (p.  509) 02020-11-04 (2 minutes) 
• Machine-readable PNG circuit diagram watermarks (p.  525) 
02020-11-06 (1 minute) 
• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• AVR OSCCAL probably won’t give you an FM radio (p.  638) 
02020-11-26 (2 minutes) 
• A letter-by-letter Hamming code for manual ECC computation (p.  
679) 02020-12-06 (updated 02020-12-16) (5 minutes) 



Notes concerning “Caching”

• Pure functional UI (p.  13) 02020-04-21 (4 minutes) 
• Single output build (p.  75) 02020-05-19 (4 minutes) 
• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 
• Caching layout (p.  674) 02020-12-03 (8 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Self 
replication”

• Machine teeth (p.  247) 02020-08-02 (updated 02020-12-31) 
(8 minutes) 
• Cyclic fabrication systems (p.  256) 02020-08-17 (updated 
02020-09-10) (56 minutes) 
• Micro material sorting (p.  296) 02020-09-12 (2 minutes) 
• Wire machines (p.  423) 02020-10-13 (updated 02020-12-31) 
(12 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 
• Jigsaw blades (p.  780) 02020-12-31 (5 minutes) 



Notes concerning “Radio”

• Electronics kit (p.  77) 02020-05-23 (updated 02020-12-20) 
(14 minutes) 
• Long distance radio (p.  212) 02020-07-17 (19 minutes) 
• VGA oscilloscope? (p.  421) 02020-10-13 (5 minutes) 
• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• AVR OSCCAL probably won’t give you an FM radio (p.  638) 
02020-11-26 (2 minutes) 



Notes concerning “Nostalgia”

• Electronics kit (p.  77) 02020-05-23 (updated 02020-12-20) 
(14 minutes) 
• Slide rule addition (p.  179) 02020-06-22 (3 minutes) 
• Machine-readable PNG circuit diagram watermarks (p.  525) 
02020-11-06 (1 minute) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• Punk zine look (p.  671) 02020-11-28 (6 minutes) 
• Scribal Basic:  a 1960s language for the 02020s (p.  701) 02020-12-12 
(updated 02020-12-15) (32 minutes) 



Notes concerning “Minerals”

• Sodium silicate (p.  82) 02020-06-04 (32 minutes) 
• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 
• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 



Notes concerning “LEDs”

• Electronics kit (p.  77) 02020-05-23 (updated 02020-12-20) 
(14 minutes) 
• Abbe-limited DRO (p.  472) 02020-10-24 (updated 02020-12-31) 
(11 minutes) 
• LED computation? (p.  476) 02020-10-25 (5 minutes) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• Compressed imaging (p.  677) 02020-12-06 (3 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 



Notes concerning “Latency”

• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 
• Virtual machine setup (p.  205) 02020-07-10 (updated 02020-07-14) 
(17 minutes) 
• Hardware queuing (p.  644) 02020-11-26 (updated 02020-12-16) 
(11 minutes) 
• Caching layout (p.  674) 02020-12-03 (8 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 



Notes concerning “Falstad’s circuit 
simulator”

• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Machine-readable PNG circuit diagram watermarks (p.  525) 
02020-11-06 (1 minute) 
• Copper segelín (p.  534) 02020-11-06 (updated 02020-11-08) 
(19 minutes) 
• A compact textual format for interchange of electronic circuit 
designs (p.  568) 02020-11-11 (updated 02020-11-26) (1 minute) 
• Relay buzzer (p.  625) 02020-11-23 (2 minutes) 
• My very first opamp (p.  661) 02020-11-27 (4 minutes) 



Notes concerning “Calculation”

• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Slide rule addition (p.  179) 02020-06-22 (3 minutes) 
• Modelica notes (p.  192) 02020-07-06 (updated 02020-07-07) 
(9 minutes) 
• Nodebook:  autotagging quantities for ad-hoc calculation and 
example-based end-user programming (p.  388) 02020-10-07 
(7 minutes) 
• Keyboard object environment (p.  620) 02020-11-19 (13 minutes) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 



Notes concerning “The AVR 
microcontroller”

• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Capacitor meter (p.  585) 02020-11-16 (updated 02020-12-03) 
(26 minutes) 
• Microcontroller inventory (p.  616) 02020-11-18 (updated 
02020-11-28) (4 minutes) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• AVR OSCCAL probably won’t give you an FM radio (p.  638) 
02020-11-26 (2 minutes) 
• Hardware queuing (p.  644) 02020-11-26 (updated 02020-12-16) 
(11 minutes) 



Notes concerning “Waterglass”

• Sodium silicate (p.  82) 02020-06-04 (32 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• Plaster foam (p.  449) 02020-10-16 (updated 02020-11-08) 
(8 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 
• Foaming infiltration (p.  520) 02020-11-06 (1 minute) 



Notes concerning “Solar”

• Solar furnace CPC (p.  61) 02020-05-16 (12 minutes) 
• Long distance radio (p.  212) 02020-07-17 (19 minutes) 
• Solar netting (p.  326) 02020-09-23 (9 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• A solar panel from an LED garden light (p.  608) 02020-11-17 
(updated 02020-12-01) (5 minutes) 



Notes concerning 
“Reproducibility”

• Pure functional VM (p.  15) 02020-04-21 (1 minute) 
• A reproducible vector-instruction VM? (p.  16) 02020-04-21 
(updated 02020-06-17) (30 minutes) 
• Bitwise reproducibility (p.  35) 02020-04-25 (1 minute) 
• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 



Notes concerning “Optics”

• Solar furnace CPC (p.  61) 02020-05-16 (12 minutes) 
• Abbe-limited DRO (p.  472) 02020-10-24 (updated 02020-12-31) 
(11 minutes) 
• Compressed imaging (p.  677) 02020-12-06 (3 minutes) 
• Cheating étendue? (p.  766) 02020-12-26 (4 minutes) 
• Electro-etching graded-index optics in porous silicon (p.  778) 
02020-12-31 (2 minutes) 



Notes concerning “Instruction 
sets”

• Pure functional VM (p.  15) 02020-04-21 (1 minute) 
• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Muldiv (p.  637) 02020-11-26 (1 minute) 
• Hardware queuing (p.  644) 02020-11-26 (updated 02020-12-16) 
(11 minutes) 



Notes concerning “Incremental 
computation”

• Single output build (p.  75) 02020-05-19 (4 minutes) 
• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Toolpath optimization (p.  343) 02020-09-27 (updated 
02020-09-30) (19 minutes) 
• Caching layout (p.  674) 02020-12-03 (8 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Household”

• Smart plumbing (p.  286) 02020-09-10 (updated 02020-09-12) 
(11 minutes) 
• Fluidic household pumping (p.  452) 02020-10-18 (updated 
02020-10-19) (7 minutes) 
• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• COVID-19 risk and vitamin D (p.  480) 02020-10-27 (updated 
02020-10-28) (12 minutes) 
• The rep-2 cuboid (p.  576) 02020-11-13 (5 minutes) 



Notes concerning “Heating”

• Smart plumbing (p.  286) 02020-09-10 (updated 02020-09-12) 
(11 minutes) 
• Fluidic household pumping (p.  452) 02020-10-18 (updated 
02020-10-19) (7 minutes) 
• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• Pit firing (p.  523) 02020-11-06 (3 minutes) 



Notes concerning “End-user 
programming”

• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Modelica notes (p.  192) 02020-07-06 (updated 02020-07-07) 
(9 minutes) 
• Nodebook:  autotagging quantities for ad-hoc calculation and 
example-based end-user programming (p.  388) 02020-10-07 
(7 minutes) 
• The Spungot sentential database for end-user logic programming (p.  
542) 02020-11-06 (updated 02020-12-31) (27 minutes) 
• Programming in the debugger (p.  717) 02020-12-15 (2 minutes) 



Notes concerning “Digital signal 
processing”

• Font rendering with all-pass filters (p.  72) 02020-05-18 (7 minutes) 
• Sparse sinc (p.  297) 02020-09-17 (12 minutes) 
• Residue number systems (p.  479) 02020-10-26 (2 minutes) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• Stochastic fractional delay lines (p.  768) 02020-12-26 (9 minutes) 



Notes concerning “Debugging”

• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Printf tracebacks (p.  564) 02020-11-11 (2 minutes) 
• Scribal Basic:  a 1960s language for the 02020s (p.  701) 02020-12-12 
(updated 02020-12-15) (32 minutes) 
• Programming in the debugger (p.  717) 02020-12-15 (2 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Control”

• Ultra machining (p.  196) 02020-07-06 (updated 02020-07-18) 
(5 minutes) 
• Toolpath optimization (p.  343) 02020-09-27 (updated 
02020-09-30) (19 minutes) 
• Abbe-limited DRO (p.  472) 02020-10-24 (updated 02020-12-31) 
(11 minutes) 
• Copper segelín (p.  534) 02020-11-06 (updated 02020-11-08) 
(19 minutes) 
• Hierarchical state space learning (p.  714) 02020-12-14 (8 minutes) 



Notes concerning “Archival”

• Tentative outline of a body of knowledge (p.  116) 02020-06-06 
(updated 02020-10-28) (10 minutes) 
• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 
• A letter-by-letter Hamming code for manual ECC computation (p.  
679) 02020-12-06 (updated 02020-12-16) (5 minutes) 
• ECM engraving (p.  776) 02020-12-31 (5 minutes) 



Notes concerning “Analog”

• Trying to drive a speaker with a buck converter (p.  187) 
02020-06-29 (4 minutes) 
• LED computation? (p.  476) 02020-10-25 (5 minutes) 
• Capacitor meter (p.  585) 02020-11-16 (updated 02020-12-03) 
(26 minutes) 
• My very first opamp (p.  661) 02020-11-27 (4 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 



Notes concerning “Zirconia”

• Machine teeth (p.  247) 02020-08-02 (updated 02020-12-31) 
(8 minutes) 
• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 
• Modern material processing (p.  338) 02020-09-24 (updated 
02020-09-26) (8 minutes) 
• Cold plasma (p.  556) 02020-11-08 (updated 02020-11-24) 
(14 minutes) 



Notes concerning “Ultrasound”

• Audio vector image (p.  509) 02020-11-04 (2 minutes) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 
• Jigsaw blades (p.  780) 02020-12-31 (5 minutes) 



Notes concerning “Text editors”

• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 
• Table text (p.  782) 02020-12-31 (4 minutes) 



Notes concerning “Steel”

• Ballpoint SPIF (p.  32) 02020-04-25 (7 minutes) 
• Machine teeth (p.  247) 02020-08-02 (updated 02020-12-31) 
(8 minutes) 
• Cutting steel with steam (p.  561) 02020-11-11 (1 minute) 
• Jigsaw blades (p.  780) 02020-12-31 (5 minutes) 



Notes concerning “Sensors”

• Ultra machining (p.  196) 02020-07-06 (updated 02020-07-18) 
(5 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• Specular photogrammetry (p.  566) 02020-11-11 (3 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 



Notes concerning “Python”

• A reproducible vector-instruction VM? (p.  16) 02020-04-21 
(updated 02020-06-17) (30 minutes) 
• Using Numpy for non-numerical computation:  what would a good 
example be? (p.  189) 02020-06-29 (updated 02020-06-30) 
(3 minutes) 
• LOGSL:  Lisp object-graph serialization language (p.  394) 
02020-10-07 (updated 02020-10-09) (8 minutes) 
• Scribal Basic:  a 1960s language for the 02020s (p.  701) 02020-12-12 
(updated 02020-12-15) (32 minutes) 



Notes concerning “Plumbing”

• Smart plumbing (p.  286) 02020-09-10 (updated 02020-09-12) 
(11 minutes) 
• Modern material processing (p.  338) 02020-09-24 (updated 
02020-09-26) (8 minutes) 
• Atkinson differential blower (p.  431) 02020-10-14 (updated 
02020-12-31) (10 minutes) 
• Adiabatic separation (p.  571) 02020-11-12 (updated 02020-11-14) 
(14 minutes) 



Notes concerning “Photovoltaic”

• Long distance radio (p.  212) 02020-07-17 (19 minutes) 
• Copper salts (p.  313) 02020-09-21 (updated 02020-09-23) 
(8 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• A solar panel from an LED garden light (p.  608) 02020-11-17 
(updated 02020-12-01) (5 minutes) 



Notes concerning “Parsing”

• Reversible parsing (p.  36) 02020-05-11 (6 minutes) 
• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• The Language of Choice, and other languages (p.  697) 02020-12-09 
(updated 02020-12-31) (10 minutes) 
• The sparsity of PEG memoization utility (p.  765) 02020-12-24 
(updated 02020-12-28) (1 minute) 



Notes concerning “Music”

• Representing E12 electronic component values musically (p.  610) 
02020-11-17 (updated 02020-12-26) (16 minutes) 
• Scribal Basic:  a 1960s language for the 02020s (p.  701) 02020-12-12 
(updated 02020-12-15) (32 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 
• Stochastic fractional delay lines (p.  768) 02020-12-26 (9 minutes) 



Notes concerning “Layout”

• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 
• Caching layout (p.  674) 02020-12-03 (8 minutes) 
• Table text (p.  782) 02020-12-31 (4 minutes) 



Notes concerning “GUIs”

• Pure functional UI (p.  13) 02020-04-21 (4 minutes) 
• Caching layout (p.  674) 02020-12-03 (8 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 
• Circle-portal GUI Ⅱ (p.  748) 02020-12-22 (updated 02020-12-23) 
(4 minutes) 



Notes concerning “Energy 
harvesting”

• Long distance radio (p.  212) 02020-07-17 (19 minutes) 
• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Geomagnetic energy harvesting is barely feasible at near-kilometer 
scales (p.  627) 02020-11-24 (3 minutes) 
• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 



Notes concerning “Cooling”

• Smart plumbing (p.  286) 02020-09-10 (updated 02020-09-12) 
(11 minutes) 
• Fluidic household pumping (p.  452) 02020-10-18 (updated 
02020-10-19) (7 minutes) 
• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 



Notes concerning “Composite 
materials”

• Pyrolysis 3-D printing (p.  238) 02020-08-02 (updated 02020-11-24) 
(20 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 
• Mica composites (p.  578) 02020-11-14 (3 minutes) 



Notes concerning “Coding”

• Long distance radio (p.  212) 02020-07-17 (19 minutes) 
• Machine-readable PNG circuit diagram watermarks (p.  525) 
02020-11-06 (1 minute) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 
• A letter-by-letter Hamming code for manual ECC computation (p.  
679) 02020-12-06 (updated 02020-12-16) (5 minutes) 



Notes concerning “C”

• A reproducible vector-instruction VM? (p.  16) 02020-04-21 
(updated 02020-06-17) (30 minutes) 
• Reversible parsing (p.  36) 02020-05-11 (6 minutes) 
• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Using C99 compound literals unjustifiably (p.  652) 02020-11-27 
(6 minutes) 



Notes concerning “Book notes”

• Sodium silicate (p.  82) 02020-06-04 (32 minutes) 
• Notable quotes from Steinmetz’s 1892 hysteresis paper (p.  284) 
02020-09-10 (2 minutes) 
• An index of the 1880 edition of Cooley’s Cyclopædia (p.  301) 
02020-09-17 (updated 02020-10-23) (9 minutes) 
• Reuleaux (p.  440) 02020-10-15 (updated 02020-10-18) (19 minutes) 



Notes concerning “Alabaster”

• Plaster foam (p.  449) 02020-10-16 (updated 02020-11-08) 
(8 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 
• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 



Notes concerning “Virtual 
machines”

• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 
• Virtual machine setup (p.  205) 02020-07-10 (updated 02020-07-14) 
(17 minutes) 



Notes concerning “Urbit”

• Pure functional VM (p.  15) 02020-04-21 (1 minute) 
• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 



Notes concerning “Thermal 
storage”

• Smart plumbing (p.  286) 02020-09-10 (updated 02020-09-12) 
(11 minutes) 
• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 



Notes concerning 
“SKETCHPAD”

• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 
• Successive-approximation UI design (p.  771) 02020-12-28 
(1 minute) 



Notes concerning “Physical system 
simulation”

• Modelica notes (p.  192) 02020-07-06 (updated 02020-07-07) 
(9 minutes) 
• Toolpath optimization (p.  343) 02020-09-27 (updated 
02020-09-30) (19 minutes) 
• Hierarchical state space learning (p.  714) 02020-12-14 (8 minutes) 



Notes concerning “Ropes (the data 
structure)”

• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 
• Merkle ropes (p.  411) 02020-10-09 (15 minutes) 



Notes concerning “R”

• A reproducible vector-instruction VM? (p.  16) 02020-04-21 
(updated 02020-06-17) (30 minutes) 
• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Writing a shopping list in TeX (p.  106) 02020-06-05 (4 minutes) 



Notes concerning “Purification”

• Micro material sorting (p.  296) 02020-09-12 (2 minutes) 
• Modern material processing (p.  338) 02020-09-24 (updated 
02020-09-26) (8 minutes) 
• Adiabatic separation (p.  571) 02020-11-12 (updated 02020-11-14) 
(14 minutes) 



Notes concerning “Prolog”

• Reversible parsing (p.  36) 02020-05-11 (6 minutes) 
• The Spungot sentential database for end-user logic programming (p.  
542) 02020-11-06 (updated 02020-12-31) (27 minutes) 
• The Language of Choice, and other languages (p.  697) 02020-12-09 
(updated 02020-12-31) (10 minutes) 



Notes concerning “Programming 
by example”

• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Nodebook:  autotagging quantities for ad-hoc calculation and 
example-based end-user programming (p.  388) 02020-10-07 
(7 minutes) 
• Programming in the debugger (p.  717) 02020-12-15 (2 minutes) 



Notes concerning “Plasma”

• Inductively-coupled plasma torches (p.  275) 02020-09-10 
(5 minutes) 
• Cold plasma (p.  556) 02020-11-08 (updated 02020-11-24) 
(14 minutes) 
• Yablochkov arc cutter (p.  696) 02020-12-09 (1 minute) 



Notes concerning “Parsing 
expression grammars”

• Reversible parsing (p.  36) 02020-05-11 (6 minutes) 
• The Language of Choice, and other languages (p.  697) 02020-12-09 
(updated 02020-12-31) (10 minutes) 
• The sparsity of PEG memoization utility (p.  765) 02020-12-24 
(updated 02020-12-28) (1 minute) 



Notes concerning “Merkle 
graphs”

• Feeds or streams on CCNs (p.  48) 02020-05-16 (15 minutes) 
• Prate thoughts (p.  363) 02020-10-02 (updated 02020-12-30) 
(12 minutes) 
• Merkle ropes (p.  411) 02020-10-09 (15 minutes) 



Notes concerning “Hypertext”

• Static hypertext on CCN (p.  47) 02020-05-16 (2 minutes) 
• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Circle-portal GUI Ⅱ (p.  748) 02020-12-22 (updated 02020-12-23) 
(4 minutes) 



Notes concerning “Gradient 
descent”

• Penalized bits (p.  278) 02020-09-10 (3 minutes) 
• OCR with linear optimization (p.  522) 02020-11-06 (1 minute) 
• Hierarchical state space learning (p.  714) 02020-12-14 (8 minutes) 



Notes concerning “Gearing”

• Lantern gears (p.  161) 02020-06-20 (updated 02020-06-28) 
(1 minute) 
• The orbital drive and stepped planetary drive (p.  231) 02020-07-28 
(updated 02020-08-02) (10 minutes) 
• Reuleaux (p.  440) 02020-10-15 (updated 02020-10-18) (19 minutes) 



Notes concerning 
“Publish/subscribe feeds”

• Feeds or streams on CCNs (p.  48) 02020-05-16 (15 minutes) 
• Commit log transfer (p.  53) 02020-05-16 (1 minute) 
• Prate thoughts (p.  363) 02020-10-02 (updated 02020-12-30) 
(12 minutes) 



Notes concerning “Emacs”

• Writing a shopping list in TeX (p.  106) 02020-06-05 (4 minutes) 
• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 
• Taking screenshots (p.  663) 02020-11-27 (updated 02020-12-20) 
(14 minutes) 



Notes concerning “Espacio de 
César”

• A 6-bit “variac casero” (p.  108) 02020-06-06 (22 minutes) 
• Ghettobotics soldering iron (p.  120) 02020-06-17 (4 minutes) 
• Ghettobotics nonshopping list (p.  512) 02020-11-04 (updated 
02020-12-21) (22 minutes) 



Notes concerning 
“Electrochemical machining”

• Cyclic fabrication systems (p.  256) 02020-08-17 (updated 
02020-09-10) (56 minutes) 
• ECM engraving (p.  776) 02020-12-31 (5 minutes) 
• Electrodeposition welding (p.  779) 02020-12-31 (2 minutes) 



Notes concerning “Distributed 
systems”

• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Digital logic”

• Muldiv (p.  637) 02020-11-26 (1 minute) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 
• Truth table search (p.  692) 02020-12-09 (11 minutes) 



Notes concerning “Desiccants”

• Smart plumbing (p.  286) 02020-09-10 (updated 02020-09-12) 
(11 minutes) 
• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 



Notes concerning “Databases”

• Bloomtags:  a Bloom-filter tree for efficient and flexible database 
queries (p.  40) 02020-05-13 (21 minutes) 
• The Spungot sentential database for end-user logic programming (p.  
542) 02020-11-06 (updated 02020-12-31) (27 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Crackpots”

• Convincingness (p.  160) 02020-06-20 (1 minute) 
• Ancient batteries (p.  336) 02020-09-23 (updated 02020-12-31) 
(4 minutes) 
• Ancient machinists (p.  399) 02020-10-08 (26 minutes) 



Notes concerning “Covid”

• Pandemic collapse (p.  65) 02020-05-17 (updated 02020-12-16) 
(22 minutes) 
• Importing the WHO’s COVID-19 data into SQLite (p.  198) 
02020-07-10 (2 minutes) 
• COVID-19 risk and vitamin D (p.  480) 02020-10-27 (updated 
02020-10-28) (12 minutes) 



Notes concerning “Constraint 
satisfaction”

• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• The Spungot sentential database for end-user logic programming (p.  
542) 02020-11-06 (updated 02020-12-31) (27 minutes) 
• Truth table search (p.  692) 02020-12-09 (11 minutes) 



Notes concerning “Concurrency”

• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Hardware queuing (p.  644) 02020-11-26 (updated 02020-12-16) 
(11 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Concrete”

• Sodium silicate (p.  82) 02020-06-04 (32 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 



Notes concerning “Ceramic”

• Sodium silicate (p.  82) 02020-06-04 (32 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 



Notes concerning “Build systems”

• Single output build (p.  75) 02020-05-19 (4 minutes) 
• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Automatic 
differentiation”

• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Penalized bits (p.  278) 02020-09-10 (3 minutes) 
• Intervals and gradients (p.  447) 02020-10-16 (4 minutes) 



Notes concerning “Audio”

• Trying to drive a speaker with a buck converter (p.  187) 
02020-06-29 (4 minutes) 
• Representing E12 electronic component values musically (p.  610) 
02020-11-17 (updated 02020-12-26) (16 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 



Notes concerning “Art”

• Inspiration (p.  435) 02020-10-15 (3 minutes) 
• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 
• Punk zine look (p.  671) 02020-11-28 (6 minutes) 



Notes concerning “Arrays”

• A reproducible vector-instruction VM? (p.  16) 02020-04-21 
(updated 02020-06-17) (30 minutes) 
• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Using Numpy for non-numerical computation:  what would a good 
example be? (p.  189) 02020-06-29 (updated 02020-06-30) 
(3 minutes) 



Notes concerning “Arduino”

• Arduino support for STM32 (p.  526) 02020-11-06 (10 minutes) 
• Microcontroller inventory (p.  616) 02020-11-18 (updated 
02020-11-28) (4 minutes) 
• Machine readable microcontroller output (p.  633) 02020-11-26 
(9 minutes) 



Notes concerning “Archaeology”

• Machine teeth (p.  247) 02020-08-02 (updated 02020-12-31) 
(8 minutes) 
• Ancient batteries (p.  336) 02020-09-23 (updated 02020-12-31) 
(4 minutes) 
• Ancient machinists (p.  399) 02020-10-08 (26 minutes) 



Notes concerning “Yttria”

• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 
• Modern material processing (p.  338) 02020-09-24 (updated 
02020-09-26) (8 minutes) 



Notes concerning “Web scraping”

• Importing the WHO’s COVID-19 data into SQLite (p.  198) 
02020-07-10 (2 minutes) 
• Scraping Sciencemadness (p.  354) 02020-10-01 (updated 
02020-10-05) (4 minutes) 



Notes concerning “Veskeno”

• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 



Notes concerning “Utopias”

• Hacker calendar (p.  181) 02020-06-28 (updated 02020-12-03) 
(15 minutes) 
• Cyclic fabrication systems (p.  256) 02020-08-17 (updated 
02020-09-10) (56 minutes) 



Notes concerning “Transactions”

• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Toxicology”

• Copper salts (p.  313) 02020-09-21 (updated 02020-09-23) 
(8 minutes) 
• Mild bases (p.  329) 02020-09-23 (updated 02020-10-01) (3 minutes) 



Notes concerning “TeX”

• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Writing a shopping list in TeX (p.  106) 02020-06-05 (4 minutes) 



Notes concerning “Ternary”

• A 6-bit “variac casero” (p.  108) 02020-06-06 (22 minutes) 
• Differential dividing plate (p.  772) 02020-12-31 (14 minutes) 



Notes concerning “Sparkle”

• Abbe-limited DRO (p.  472) 02020-10-24 (updated 02020-12-31) 
(11 minutes) 
• Compressed imaging (p.  677) 02020-12-06 (3 minutes) 



Notes concerning “Sorting”

• One pass sort (p.  54) 02020-05-16 (15 minutes) 
• Dictionary data structures for tiny memories (p.  569) 02020-11-12 
(3 minutes) 



Notes concerning “Small is 
beautiful”

• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Circle-portal GUI Ⅱ (p.  748) 02020-12-22 (updated 02020-12-23) 
(4 minutes) 



Notes concerning “Scanning probe 
microscopes”

• Abbe-limited DRO (p.  472) 02020-10-24 (updated 02020-12-31) 
(11 minutes) 
• ECM engraving (p.  776) 02020-12-31 (5 minutes) 



Notes concerning “Sapphire”

• Machine teeth (p.  247) 02020-08-02 (updated 02020-12-31) 
(8 minutes) 
• Modern material processing (p.  338) 02020-09-24 (updated 
02020-09-26) (8 minutes) 



Notes concerning “Rutile”

• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 
• Cold plasma (p.  556) 02020-11-08 (updated 02020-11-24) 
(14 minutes) 



Notes concerning “Regrettable”

• Guide to finding datasheets and avoiding malicious datasheet SEO 
sites (p.  505) 02020-11-02 (updated 02020-12-22) (7 minutes) 
• Using C99 compound literals unjustifiably (p.  652) 02020-11-27 
(6 minutes) 



Notes concerning “Quotes”

• Inspiration (p.  435) 02020-10-15 (3 minutes) 
• Intervals and gradients (p.  447) 02020-10-16 (4 minutes) 



Notes concerning “QEMU”

• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 
• Virtual machine setup (p.  205) 02020-07-10 (updated 02020-07-14) 
(17 minutes) 



Notes concerning “Projectors”

• Compressed imaging (p.  677) 02020-12-06 (3 minutes) 
• Light pen latency (p.  756) 02020-12-23 (updated 02020-12-28) 
(29 minutes) 



Notes concerning “Programming 
languages”

• The Spungot sentential database for end-user logic programming (p.  
542) 02020-11-06 (updated 02020-12-31) (27 minutes) 
• Scribal Basic:  a 1960s language for the 02020s (p.  701) 02020-12-12 
(updated 02020-12-15) (32 minutes) 



Notes concerning “Prefix sums”

• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 



Notes concerning “Politics”

• Pandemic collapse (p.  65) 02020-05-17 (updated 02020-12-16) 
(22 minutes) 
• Phosphate precipitation (p.  280) 02020-09-10 (12 minutes) 



Notes concerning “Pocket 
furnaces”

• Solar furnace CPC (p.  61) 02020-05-16 (12 minutes) 
• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 



Notes concerning “Pidgeon 
process”

• Lithium fuel (p.  367) 02020-10-04 (7 minutes) 
• Cold plasma (p.  556) 02020-11-08 (updated 02020-11-24) 
(14 minutes) 



Notes concerning “Phosphates”

• Phosphate precipitation (p.  280) 02020-09-10 (12 minutes) 
• Calcium strengthening (p.  459) 02020-10-21 (updated 
02020-10-24) (23 minutes) 



Notes concerning “Paeth 
rotation”

• Methods for two-dimensional rotation with two or three real 
multiplies (p.  750) 02020-12-23 (updated 02020-12-26) (14 minutes) 
• Stochastic fractional delay lines (p.  768) 02020-12-26 (9 minutes) 



Notes concerning “Padauk”

• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• Hardware queuing (p.  644) 02020-11-26 (updated 02020-12-16) 
(11 minutes) 



Notes concerning “Oscilloscopes”

• VGA oscilloscope? (p.  421) 02020-10-13 (5 minutes) 
• Oscilloscope superresolution via compressed sensing? (p.  607) 
02020-11-17 (1 minute) 



Notes concerning “Octave”

• A reproducible vector-instruction VM? (p.  16) 02020-04-21 
(updated 02020-06-17) (30 minutes) 
• Sparse sinc (p.  297) 02020-09-17 (12 minutes) 



Notes concerning “Numpy”

• A reproducible vector-instruction VM? (p.  16) 02020-04-21 
(updated 02020-06-17) (30 minutes) 
• Using Numpy for non-numerical computation:  what would a good 
example be? (p.  189) 02020-06-29 (updated 02020-06-30) 
(3 minutes) 



Notes concerning “Muriate of 
lime”

• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 



Notes concerning “Monoids”

• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 



Notes concerning “Mole people”

• Fossil geothermal (p.  234) 02020-08-02 (updated 02020-11-13) 
(12 minutes) 
• Geomagnetic energy harvesting is barely feasible at near-kilometer 
scales (p.  627) 02020-11-24 (3 minutes) 



Notes concerning “Minsky 
algorithm”

• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 
• Methods for two-dimensional rotation with two or three real 
multiplies (p.  750) 02020-12-23 (updated 02020-12-26) (14 minutes) 



Notes concerning “Metamaterials”

• Abbe-limited DRO (p.  472) 02020-10-24 (updated 02020-12-31) 
(11 minutes) 
• Electro-etching graded-index optics in porous silicon (p.  778) 
02020-12-31 (2 minutes) 



Notes concerning “Merging”

• One pass sort (p.  54) 02020-05-16 (15 minutes) 
• Merkle ropes (p.  411) 02020-10-09 (15 minutes) 



Notes concerning “Magnesium”

• Magnesium fuel (p.  331) 02020-09-23 (updated 02020-10-09) 
(13 minutes) 
• Cold plasma (p.  556) 02020-11-08 (updated 02020-11-24) 
(14 minutes) 



Notes concerning “LSM-trees 
(log-structured merge trees)”

• One pass sort (p.  54) 02020-05-16 (15 minutes) 
• Merkle ropes (p.  411) 02020-10-09 (15 minutes) 



Notes concerning “The Long 
Now Foundation”

• Lava time capsule (p.  629) 02020-11-24 (8 minutes) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 



Notes concerning “Logic”

• The Spungot sentential database for end-user logic programming (p.  
542) 02020-11-06 (updated 02020-12-31) (27 minutes) 
• The Language of Choice, and other languages (p.  697) 02020-12-09 
(updated 02020-12-31) (10 minutes) 



Notes concerning “Linux”

• Virtual machine setup (p.  205) 02020-07-10 (updated 02020-07-14) 
(17 minutes) 
• Taking screenshots (p.  663) 02020-11-27 (updated 02020-12-20) 
(14 minutes) 



Notes concerning “Kafka”

• Feeds or streams on CCNs (p.  48) 02020-05-16 (15 minutes) 
• Commit log transfer (p.  53) 02020-05-16 (1 minute) 



Notes concerning “The JS 
language”

• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• Scribal Basic:  a 1960s language for the 02020s (p.  701) 02020-12-12 
(updated 02020-12-15) (32 minutes) 



Notes concerning “Interrupts”

• Hardware queuing (p.  644) 02020-11-26 (updated 02020-12-16) 
(11 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning 
“Immediate-mode GUIs”

• Printf tracebacks (p.  564) 02020-11-11 (2 minutes) 
• Scribal Basic:  a 1960s language for the 02020s (p.  701) 02020-12-12 
(updated 02020-12-15) (32 minutes) 



Notes concerning “FPGAs”

• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 



Notes concerning “FP-persistent 
data structures”

• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 



Notes concerning “Flying 
machines”

• Oxygen generator rocket (p.  277) 02020-09-10 (1 minute) 
• Rigid glider (p.  418) 02020-10-12 (1 minute) 



Notes concerning “Flexures”

• Wire machines (p.  423) 02020-10-13 (updated 02020-12-31) 
(12 minutes) 
• Oscillating flexion (p.  436) 02020-10-15 (updated 02020-10-16) 
(11 minutes) 



Notes concerning “Étendue”

• Solar furnace CPC (p.  61) 02020-05-16 (12 minutes) 
• Cheating étendue? (p.  766) 02020-12-26 (4 minutes) 



Notes concerning “Errors”

• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Epistemology”

• Convincingness (p.  160) 02020-06-20 (1 minute) 
• Ancient machinists (p.  399) 02020-10-08 (26 minutes) 



Notes concerning “Energy 
efficiency”

• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 



Notes concerning “Earthships”

• Smart plumbing (p.  286) 02020-09-10 (updated 02020-09-12) 
(11 minutes) 
• Fluidic household pumping (p.  452) 02020-10-18 (updated 
02020-10-19) (7 minutes) 



Notes concerning “Drying”

• Muriate thermal mass (p.  455) 02020-10-18 (updated 02020-10-28) 
(11 minutes) 
• Desiccant climate control (p.  485) 02020-10-27 (updated 
02020-11-24) (31 minutes) 



Notes concerning “Docker”

• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 



Notes concerning “Corewar”

• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Hardware queuing (p.  644) 02020-11-26 (updated 02020-12-16) 
(11 minutes) 



Notes concerning “Copy on 
write”

• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Migrating app snapshots (p.  200) 02020-07-10 (updated 
02020-07-11) (14 minutes) 



Notes concerning “Compilers”

• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Collapse”

• Pandemic collapse (p.  65) 02020-05-17 (updated 02020-12-16) 
(22 minutes) 
• Ancient machinists (p.  399) 02020-10-08 (26 minutes) 



Notes concerning “Clusters”

• Segments and blocks (p.  162) 02020-06-20 (updated 02020-12-16) 
(51 minutes) 
• Transaction per call (p.  718) 02020-12-15 (updated 02020-12-23) 
(69 minutes) 



Notes concerning “Chifir”

• A reproducible vector-instruction VM? (p.  16) 02020-04-21 
(updated 02020-06-17) (30 minutes) 
• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 



Notes concerning “Chat”

• Secure Scuttlebutt is a cool idea whose realization has fatal flaws (p.  
357) 02020-10-02 (updated 02020-11-06) (17 minutes) 
• Prate thoughts (p.  363) 02020-10-02 (updated 02020-12-30) 
(12 minutes) 



Notes concerning 
“Content-centric 
networking/named-data 
networking”

• Static hypertext on CCN (p.  47) 02020-05-16 (2 minutes) 
• Feeds or streams on CCNs (p.  48) 02020-05-16 (15 minutes) 



Notes concerning “Casting”

• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 
• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 



Notes concerning 
“Carborundum”

• Machine teeth (p.  247) 02020-08-02 (updated 02020-12-31) 
(8 minutes) 
• Hot fabrication (p.  316) 02020-09-21 (updated 02020-09-23) 
(16 minutes) 



Notes concerning “Cameras”

• Globoflexia (p.  370) 02020-10-05 (updated 02020-10-10) 
(37 minutes) 
• Specular photogrammetry (p.  566) 02020-11-11 (3 minutes) 



Notes concerning “Bootstrapping”

• Minimal cost computer (p.  467) 02020-10-23 (updated 
02020-12-01) (12 minutes) 
• A field-programmable RTL array:  a more efficient alternative to 
FPGAs? (p.  639) 02020-11-26 (updated 02020-11-27) (11 minutes) 



Notes concerning “Bearings”

• Ballpoint SPIF (p.  32) 02020-04-25 (7 minutes) 
• Lenticular air bearing (p.  632) 02020-11-24 (2 minutes) 



Notes concerning “Batteries”

• Aluminum-air batteries (p.  322) 02020-09-23 (4 minutes) 
• Ancient batteries (p.  336) 02020-09-23 (updated 02020-12-31) 
(4 minutes) 



Notes concerning “Basic”

• One big text file (p.  93) 02020-06-04 (updated 02020-06-06) 
(20 minutes) 
• Scribal Basic:  a 1960s language for the 02020s (p.  701) 02020-12-12 
(updated 02020-12-15) (32 minutes) 



Notes concerning “B-trees”

• Line-numbered ISAM buffers (p.  220) 02020-07-18 (updated 
02020-07-23) (14 minutes) 
• Skip list variants (p.  419) 02020-10-12 (4 minutes) 



Notes concerning “Automata 
theory”

• Monoid prefix sum (p.  101) 02020-06-05 (13 minutes) 
• Wang tile chemicals (p.  353) 02020-09-30 (2 minutes) 



Notes concerning “Assembly 
language”

• An outline of the design process leading up to the Veskeno virtual 
machine (p.  122) 02020-06-17 (updated 02020-07-10) (88 minutes) 
• Hardware queuing (p.  644) 02020-11-26 (updated 02020-12-16) 
(11 minutes) 
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